MyArxiv
Computer Vision and Pattern Recognition 132
☆ Learning from Streaming Video with Orthogonal Gradients CVPR2025
We address the challenge of representation learning from a continuous stream of video as input, in a self-supervised manner. This differs from the standard approaches to video learning where videos are chopped and shuffled during training in order to create a non-redundant batch that satisfies the independently and identically distributed (IID) sample assumption expected by conventional training paradigms. When videos are only available as a continuous stream of input, the IID assumption is evidently broken, leading to poor performance. We demonstrate the drop in performance when moving from shuffled to sequential learning on three tasks: the one-video representation learning method DoRA, standard VideoMAE on multi-video datasets, and the task of future video prediction. To address this drop, we propose a geometric modification to standard optimizers, to decorrelate batches by utilising orthogonal gradients during training. The proposed modification can be applied to any optimizer -- we demonstrate it with Stochastic Gradient Descent (SGD) and AdamW. Our proposed orthogonal optimizer allows models trained from streaming videos to alleviate the drop in representation learning performance, as evaluated on downstream tasks. On three scenarios (DoRA, VideoMAE, future prediction), we show our orthogonal optimizer outperforms the strong AdamW in all three scenarios.
comment: CVPR2025
Diffusion-Guided Gaussian Splatting for Large-Scale Unconstrained 3D Reconstruction and Novel View Synthesis WACV
Recent advancements in 3D Gaussian Splatting (3DGS) and Neural Radiance Fields (NeRF) have achieved impressive results in real-time 3D reconstruction and novel view synthesis. However, these methods struggle in large-scale, unconstrained environments where sparse and uneven input coverage, transient occlusions, appearance variability, and inconsistent camera settings lead to degraded quality. We propose GS-Diff, a novel 3DGS framework guided by a multi-view diffusion model to address these limitations. By generating pseudo-observations conditioned on multi-view inputs, our method transforms under-constrained 3D reconstruction problems into well-posed ones, enabling robust optimization even with sparse data. GS-Diff further integrates several enhancements, including appearance embedding, monocular depth priors, dynamic object modeling, anisotropy regularization, and advanced rasterization techniques, to tackle geometric and photometric challenges in real-world settings. Experiments on four benchmarks demonstrate that GS-Diff consistently outperforms state-of-the-art baselines by significant margins.
comment: WACV ULTRRA Workshop 2025
GaussianLSS -- Toward Real-world BEV Perception: Depth Uncertainty Estimation via Gaussian Splatting CVPR 2025
Bird's-eye view (BEV) perception has gained significant attention because it provides a unified representation to fuse multiple view images and enables a wide range of down-stream autonomous driving tasks, such as forecasting and planning. Recent state-of-the-art models utilize projection-based methods which formulate BEV perception as query learning to bypass explicit depth estimation. While we observe promising advancements in this paradigm, they still fall short of real-world applications because of the lack of uncertainty modeling and expensive computational requirement. In this work, we introduce GaussianLSS, a novel uncertainty-aware BEV perception framework that revisits unprojection-based methods, specifically the Lift-Splat-Shoot (LSS) paradigm, and enhances them with depth un-certainty modeling. GaussianLSS represents spatial dispersion by learning a soft depth mean and computing the variance of the depth distribution, which implicitly captures object extents. We then transform the depth distribution into 3D Gaussians and rasterize them to construct uncertainty-aware BEV features. We evaluate GaussianLSS on the nuScenes dataset, achieving state-of-the-art performance compared to unprojection-based methods. In particular, it provides significant advantages in speed, running 2.5x faster, and in memory efficiency, using 0.3x less memory compared to projection-based methods, while achieving competitive performance with only a 0.4% IoU difference.
comment: Accepted to CVPR 2025
VideoScene: Distilling Video Diffusion Model to Generate 3D Scenes in One Step
Recovering 3D scenes from sparse views is a challenging task due to its inherent ill-posed problem. Conventional methods have developed specialized solutions (e.g., geometry regularization or feed-forward deterministic model) to mitigate the issue. However, they still suffer from performance degradation by minimal overlap across input views with insufficient visual information. Fortunately, recent video generative models show promise in addressing this challenge as they are capable of generating video clips with plausible 3D structures. Powered by large pretrained video diffusion models, some pioneering research start to explore the potential of video generative prior and create 3D scenes from sparse views. Despite impressive improvements, they are limited by slow inference time and the lack of 3D constraint, leading to inefficiencies and reconstruction artifacts that do not align with real-world geometry structure. In this paper, we propose VideoScene to distill the video diffusion model to generate 3D scenes in one step, aiming to build an efficient and effective tool to bridge the gap from video to 3D. Specifically, we design a 3D-aware leap flow distillation strategy to leap over time-consuming redundant information and train a dynamic denoising policy network to adaptively determine the optimal leap timestep during inference. Extensive experiments demonstrate that our VideoScene achieves faster and superior 3D scene generation results than previous video diffusion models, highlighting its potential as an efficient tool for future video to 3D applications. Project Page: https://hanyang-21.github.io/VideoScene
comment: Project Page: https://hanyang-21.github.io/VideoScene
☆ Scene-Centric Unsupervised Panoptic Segmentation CVPR 2025
Unsupervised panoptic segmentation aims to partition an image into semantically meaningful regions and distinct object instances without training on manually annotated data. In contrast to prior work on unsupervised panoptic scene understanding, we eliminate the need for object-centric training data, enabling the unsupervised understanding of complex scenes. To that end, we present the first unsupervised panoptic method that directly trains on scene-centric imagery. In particular, we propose an approach to obtain high-resolution panoptic pseudo labels on complex scene-centric data, combining visual representations, depth, and motion cues. Utilizing both pseudo-label training and a panoptic self-training strategy yields a novel approach that accurately predicts panoptic segmentation of complex scenes without requiring any human annotations. Our approach significantly improves panoptic quality, e.g., surpassing the recent state of the art in unsupervised panoptic segmentation on Cityscapes by 9.4% points in PQ.
comment: To appear at CVPR 2025. Christoph Reich and Oliver Hahn - both authors contributed equally. Code: https://github.com/visinf/cups Project page: https://visinf.github.io/cups/
☆ Towards Unified Referring Expression Segmentation Across Omni-Level Visual Target Granularities
Referring expression segmentation (RES) aims at segmenting the entities' masks that match the descriptive language expression. While traditional RES methods primarily address object-level grounding, real-world scenarios demand a more versatile framework that can handle multiple levels of target granularity, such as multi-object, single object or part-level references. This introduces great challenges due to the diverse and nuanced ways users describe targets. However, existing datasets and models mainly focus on designing grounding specialists for object-level target localization, lacking the necessary data resources and unified frameworks for the more practical multi-grained RES. In this paper, we take a step further towards visual granularity unified RES task. To overcome the limitation of data scarcity, we introduce a new multi-granularity referring expression segmentation (MRES) task, alongside the RefCOCOm benchmark, which includes part-level annotations for advancing finer-grained visual understanding. In addition, we create MRES-32M, the largest visual grounding dataset, comprising over 32.2M masks and captions across 1M images, specifically designed for part-level vision-language grounding. To tackle the challenges of multi-granularity RES, we propose UniRES++, a unified multimodal large language model that integrates object-level and part-level RES tasks. UniRES++ incorporates targeted designs for fine-grained visual feature exploration. With the joint model architecture and parameters, UniRES++ achieves state-of-the-art performance across multiple benchmarks, including RefCOCOm for MRES, gRefCOCO for generalized RES, and RefCOCO, RefCOCO+, RefCOCOg for classic RES. To foster future research into multi-grained visual grounding, our RefCOCOm benchmark, MRES-32M dataset and model UniRES++ will be publicly available at https://github.com/Rubics-Xuan/MRES.
☆ Deep Representation Learning for Unsupervised Clustering of Myocardial Fiber Trajectories in Cardiac Diffusion Tensor Imaging MICCAI 2025
Understanding the complex myocardial architecture is critical for diagnosing and treating heart disease. However, existing methods often struggle to accurately capture this intricate structure from Diffusion Tensor Imaging (DTI) data, particularly due to the lack of ground truth labels and the ambiguous, intertwined nature of fiber trajectories. We present a novel deep learning framework for unsupervised clustering of myocardial fibers, providing a data-driven approach to identifying distinct fiber bundles. We uniquely combine a Bidirectional Long Short-Term Memory network to capture local sequential information along fibers, with a Transformer autoencoder to learn global shape features, with pointwise incorporation of essential anatomical context. Clustering these representations using a density-based algorithm identifies 33 to 62 robust clusters, successfully capturing the subtle distinctions in fiber trajectories with varying levels of granularity. Our framework offers a new, flexible, and quantitative way to analyze myocardial structure, achieving a level of delineation that, to our knowledge, has not been previously achieved, with potential applications in improving surgical planning, characterizing disease-related remodeling, and ultimately, advancing personalized cardiac care.
comment: 10 pages, 5 figures. Submitted to MICCAI 2025 (under review)
☆ Image Difference Grounding with Natural Language
Visual grounding (VG) typically focuses on locating regions of interest within an image using natural language, and most existing VG methods are limited to single-image interpretations. This limits their applicability in real-world scenarios like automatic surveillance, where detecting subtle but meaningful visual differences across multiple images is crucial. Besides, previous work on image difference understanding (IDU) has either focused on detecting all change regions without cross-modal text guidance, or on providing coarse-grained descriptions of differences. Therefore, to push towards finer-grained vision-language perception, we propose Image Difference Grounding (IDG), a task designed to precisely localize visual differences based on user instructions. We introduce DiffGround, a large-scale and high-quality dataset for IDG, containing image pairs with diverse visual variations along with instructions querying fine-grained differences. Besides, we present a baseline model for IDG, DiffTracker, which effectively integrates feature differential enhancement and common suppression to precisely locate differences. Experiments on the DiffGround dataset highlight the importance of our IDG dataset in enabling finer-grained IDU. To foster future research, both DiffGround data and DiffTracker model will be publicly released.
☆ End-to-End Driving with Online Trajectory Evaluation via BEV World Model
End-to-end autonomous driving has achieved remarkable progress by integrating perception, prediction, and planning into a fully differentiable framework. Yet, to fully realize its potential, an effective online trajectory evaluation is indispensable to ensure safety. By forecasting the future outcomes of a given trajectory, trajectory evaluation becomes much more effective. This goal can be achieved by employing a world model to capture environmental dynamics and predict future states. Therefore, we propose an end-to-end driving framework WoTE, which leverages a BEV World model to predict future BEV states for Trajectory Evaluation. The proposed BEV world model is latency-efficient compared to image-level world models and can be seamlessly supervised using off-the-shelf BEV-space traffic simulators. We validate our framework on both the NAVSIM benchmark and the closed-loop Bench2Drive benchmark based on the CARLA simulator, achieving state-of-the-art performance. Code is released at https://github.com/liyingyanUCAS/WoTE.
☆ ILLUME+: Illuminating Unified MLLM with Dual Visual Tokenization and Diffusion Refinement
We present ILLUME+ that leverages dual visual tokenization and a diffusion decoder to improve both deep semantic understanding and high-fidelity image generation. Existing unified models have struggled to simultaneously handle the three fundamental capabilities in a unified model: understanding, generation, and editing. Models like Chameleon and EMU3 utilize VQGAN for image discretization, due to the lack of deep semantic interaction, they lag behind specialist models like LLaVA in visual understanding tasks. To mitigate this, LaViT and ILLUME employ semantic encoders for tokenization, but they struggle with image editing due to poor texture preservation. Meanwhile, Janus series decouples the input and output image representation, limiting their abilities to seamlessly handle interleaved image-text understanding and generation. In contrast, ILLUME+ introduces a unified dual visual tokenizer, DualViTok, which preserves both fine-grained textures and text-aligned semantics while enabling a coarse-to-fine image representation strategy for multimodal understanding and generation. Additionally, we employ a diffusion model as the image detokenizer for enhanced generation quality and efficient super-resolution. ILLUME+ follows a continuous-input, discrete-output scheme within the unified MLLM and adopts a progressive training procedure that supports dynamic resolution across the vision tokenizer, MLLM, and diffusion decoder. This design allows for flexible and efficient context-aware image editing and generation across diverse tasks. ILLUME+ (3B) exhibits competitive performance against existing unified MLLMs and specialized models across multimodal understanding, generation, and editing benchmarks. With its strong performance, ILLUME+ provides a scalable and versatile foundation for future multimodal applications. Project Page: https://illume-unified-mllm.github.io/.
Equivariant Spherical CNNs for Accurate Fiber Orientation Distribution Estimation in Neonatal Diffusion MRI with Reduced Acquisition Time
Early and accurate assessment of brain microstructure using diffusion Magnetic Resonance Imaging (dMRI) is crucial for identifying neurodevelopmental disorders in neonates, but remains challenging due to low signal-to-noise ratio (SNR), motion artifacts, and ongoing myelination. In this study, we propose a rotationally equivariant Spherical Convolutional Neural Network (sCNN) framework tailored for neonatal dMRI. We predict the Fiber Orientation Distribution (FOD) from multi-shell dMRI signals acquired with a reduced set of gradient directions (30% of the full protocol), enabling faster and more cost-effective acquisitions. We train and evaluate the performance of our sCNN using real data from 43 neonatal dMRI datasets provided by the Developing Human Connectome Project (dHCP). Our results demonstrate that the sCNN achieves significantly lower mean squared error (MSE) and higher angular correlation coefficient (ACC) compared to a Multi-Layer Perceptron (MLP) baseline, indicating improved accuracy in FOD estimation. Furthermore, tractography results based on the sCNN-predicted FODs show improved anatomical plausibility, coverage, and coherence compared to those from the MLP. These findings highlight that sCNNs, with their inherent rotational equivariance, offer a promising approach for accurate and clinically efficient dMRI analysis, paving the way for improved diagnostic capabilities and characterization of early brain development.
☆ FineLIP: Extending CLIP's Reach via Fine-Grained Alignment with Longer Text Inputs
As a pioneering vision-language model, CLIP (Contrastive Language-Image Pre-training) has achieved significant success across various domains and a wide range of downstream vision-language tasks. However, the text encoders in popular CLIP models are limited to processing only 77 text tokens, which constrains their ability to effectively handle longer, detail-rich captions. Additionally, CLIP models often struggle to effectively capture detailed visual and textual information, which hampers their performance on tasks that require fine-grained analysis. To address these limitations, we present a novel approach, \textbf{FineLIP}, that extends the capabilities of CLIP. FineLIP enhances cross-modal text-image mapping by incorporating \textbf{Fine}-grained alignment with \textbf{L}onger text input within the CL\textbf{IP}-style framework. FineLIP first extends the positional embeddings to handle longer text, followed by the dynamic aggregation of local image and text tokens. The aggregated results are then used to enforce fine-grained token-to-token cross-modal alignment. We validate our model on datasets with long, detailed captions across two tasks: zero-shot cross-modal retrieval and text-to-image generation. Quantitative and qualitative experimental results demonstrate the effectiveness of FineLIP, outperforming existing state-of-the-art approaches. Furthermore, comprehensive ablation studies validate the benefits of key design elements within FineLIP.
☆ Ross3D: Reconstructive Visual Instruction Tuning with 3D-Awareness
The rapid development of Large Multimodal Models (LMMs) for 2D images and videos has spurred efforts to adapt these models for interpreting 3D scenes. However, the absence of large-scale 3D vision-language datasets has posed a significant obstacle. To address this issue, typical approaches focus on injecting 3D awareness into 2D LMMs by designing 3D input-level scene representations. This work provides a new perspective. We introduce reconstructive visual instruction tuning with 3D-awareness (Ross3D), which integrates 3D-aware visual supervision into the training procedure. Specifically, it incorporates cross-view and global-view reconstruction. The former requires reconstructing masked views by aggregating overlapping information from other views. The latter aims to aggregate information from all available views to recover Bird's-Eye-View images, contributing to a comprehensive overview of the entire scene. Empirically, Ross3D achieves state-of-the-art performance across various 3D scene understanding benchmarks. More importantly, our semi-supervised experiments demonstrate significant potential in leveraging large amounts of unlabeled 3D vision-only data.
☆ Is Temporal Prompting All We Need For Limited Labeled Action Recognition? CVPR
Video understanding has shown remarkable improvements in recent years, largely dependent on the availability of large scaled labeled datasets. Recent advancements in visual-language models, especially based on contrastive pretraining, have shown remarkable generalization in zero-shot tasks, helping to overcome this dependence on labeled datasets. Adaptations of such models for videos, typically involve modifying the architecture of vision-language models to cater to video data. However, this is not trivial, since such adaptations are mostly computationally intensive and struggle with temporal modeling. We present TP-CLIP, an adaptation of CLIP that leverages temporal visual prompting for temporal adaptation without modifying the core CLIP architecture. This preserves its generalization abilities. TP-CLIP efficiently integrates into the CLIP architecture, leveraging its pre-trained capabilities for video data. Extensive experiments across various datasets demonstrate its efficacy in zero-shot and few-shot learning, outperforming existing approaches with fewer parameters and computational efficiency. In particular, we use just 1/3 the GFLOPs and 1/28 the number of tuneable parameters in comparison to recent state-of-the-art and still outperform it by up to 15.8% depending on the task and dataset.
comment: Accepted in CVPR-W 2025
☆ GMAI-VL-R1: Harnessing Reinforcement Learning for Multimodal Medical Reasoning
Recent advances in general medical AI have made significant strides, but existing models often lack the reasoning capabilities needed for complex medical decision-making. This paper presents GMAI-VL-R1, a multimodal medical reasoning model enhanced by reinforcement learning (RL) to improve its reasoning abilities. Through iterative training, GMAI-VL-R1 optimizes decision-making, significantly boosting diagnostic accuracy and clinical support. We also develop a reasoning data synthesis method, generating step-by-step reasoning data via rejection sampling, which further enhances the model's generalization. Experimental results show that after RL training, GMAI-VL-R1 excels in tasks such as medical image diagnosis and visual question answering. While the model demonstrates basic memorization with supervised fine-tuning, RL is crucial for true generalization. Our work establishes new evaluation benchmarks and paves the way for future advancements in medical reasoning models. Code, data, and model will be released at \href{https://github.com/uni-medical/GMAI-VL-R1}{this link}.
☆ TransientTables: Evaluating LLMs' Reasoning on Temporally Evolving Semi-structured Tables
Humans continuously make new discoveries, and understanding temporal sequence of events leading to these breakthroughs is essential for advancing science and society. This ability to reason over time allows us to identify future steps and understand the effects of financial and political decisions on our lives. However, large language models (LLMs) are typically trained on static datasets, limiting their ability to perform effective temporal reasoning. To assess the temporal reasoning capabilities of LLMs, we present the TRANSIENTTABLES dataset, which comprises 3,971 questions derived from over 14,000 tables, spanning 1,238 entities across multiple time periods. We introduce a template-based question-generation pipeline that harnesses LLMs to refine both templates and questions. Additionally, we establish baseline results using state-of-the-art LLMs to create a benchmark. We also introduce novel modeling strategies centered around task decomposition, enhancing LLM performance.
comment: 19 Pages. 21 Tables, 1 figure
☆ A Diffusion-Based Framework for Occluded Object Movement
Seamlessly moving objects within a scene is a common requirement for image editing, but it is still a challenge for existing editing methods. Especially for real-world images, the occlusion situation further increases the difficulty. The main difficulty is that the occluded portion needs to be completed before movement can proceed. To leverage the real-world knowledge embedded in the pre-trained diffusion models, we propose a Diffusion-based framework specifically designed for Occluded Object Movement, named DiffOOM. The proposed DiffOOM consists of two parallel branches that perform object de-occlusion and movement simultaneously. The de-occlusion branch utilizes a background color-fill strategy and a continuously updated object mask to focus the diffusion process on completing the obscured portion of the target object. Concurrently, the movement branch employs latent optimization to place the completed object in the target location and adopts local text-conditioned guidance to integrate the object into new surroundings appropriately. Extensive evaluations demonstrate the superior performance of our method, which is further validated by a comprehensive user study.
☆ CoMatcher: Multi-View Collaborative Feature Matching CVPR 2025
This paper proposes a multi-view collaborative matching strategy for reliable track construction in complex scenarios. We observe that the pairwise matching paradigms applied to image set matching often result in ambiguous estimation when the selected independent pairs exhibit significant occlusions or extreme viewpoint changes. This challenge primarily stems from the inherent uncertainty in interpreting intricate 3D structures based on limited two-view observations, as the 3D-to-2D projection leads to significant information loss. To address this, we introduce CoMatcher, a deep multi-view matcher to (i) leverage complementary context cues from different views to form a holistic 3D scene understanding and (ii) utilize cross-view projection consistency to infer a reliable global solution. Building on CoMatcher, we develop a groupwise framework that fully exploits cross-view relationships for large-scale matching tasks. Extensive experiments on various complex scenarios demonstrate the superiority of our method over the mainstream two-view matching paradigm.
comment: 15 pages, 7 figures, to be published in CVPR 2025
☆ BOGausS: Better Optimized Gaussian Splatting
3D Gaussian Splatting (3DGS) proposes an efficient solution for novel view synthesis. Its framework provides fast and high-fidelity rendering. Although less complex than other solutions such as Neural Radiance Fields (NeRF), there are still some challenges building smaller models without sacrificing quality. In this study, we perform a careful analysis of 3DGS training process and propose a new optimization methodology. Our Better Optimized Gaussian Splatting (BOGausS) solution is able to generate models up to ten times lighter than the original 3DGS with no quality degradation, thus significantly boosting the performance of Gaussian Splatting compared to the state of the art.
☆ Prompting Medical Vision-Language Models to Mitigate Diagnosis Bias by Generating Realistic Dermoscopic Images
Artificial Intelligence (AI) in skin disease diagnosis has improved significantly, but a major concern is that these models frequently show biased performance across subgroups, especially regarding sensitive attributes such as skin color. To address these issues, we propose a novel generative AI-based framework, namely, Dermatology Diffusion Transformer (DermDiT), which leverages text prompts generated via Vision Language Models and multimodal text-image learning to generate new dermoscopic images. We utilize large vision language models to generate accurate and proper prompts for each dermoscopic image which helps to generate synthetic images to improve the representation of underrepresented groups (patient, disease, etc.) in highly imbalanced datasets for clinical diagnoses. Our extensive experimentation showcases the large vision language models providing much more insightful representations, that enable DermDiT to generate high-quality images. Our code is available at https://github.com/Munia03/DermDiT
comment: Paper accepted at International Symposium on Biomedical Imaging (ISBI 2025)
Implicit Bias Injection Attacks against Text-to-Image Diffusion Models CVPR 2025
The proliferation of text-to-image diffusion models (T2I DMs) has led to an increased presence of AI-generated images in daily life. However, biased T2I models can generate content with specific tendencies, potentially influencing people's perceptions. Intentional exploitation of these biases risks conveying misleading information to the public. Current research on bias primarily addresses explicit biases with recognizable visual patterns, such as skin color and gender. This paper introduces a novel form of implicit bias that lacks explicit visual features but can manifest in diverse ways across various semantic contexts. This subtle and versatile nature makes this bias challenging to detect, easy to propagate, and adaptable to a wide range of scenarios. We further propose an implicit bias injection attack framework (IBI-Attacks) against T2I diffusion models by precomputing a general bias direction in the prompt embedding space and adaptively adjusting it based on different inputs. Our attack module can be seamlessly integrated into pre-trained diffusion models in a plug-and-play manner without direct manipulation of user input or model retraining. Extensive experiments validate the effectiveness of our scheme in introducing bias through subtle and diverse modifications while preserving the original semantics. The strong concealment and transferability of our attack across various scenarios further underscore the significance of our approach. Code is available at https://github.com/Hannah1102/IBI-attacks.
comment: Accept to CVPR 2025
☆ Spatial-R1: Enhancing MLLMs in Video Spatial Reasoning
Enhancing the spatial reasoning capabilities of Multi-modal Large Language Models (MLLMs) for video understanding is crucial yet challenging. We present Spatial-R1, a targeted approach involving two key contributions: the curation of SR, a new video spatial reasoning dataset from ScanNet with automatically generated QA pairs across seven task types, and the application of Task-Specific Group Relative Policy Optimization (GRPO) for fine-tuning. By training the Qwen2.5-VL-7B-Instruct model on SR using GRPO, Spatial-R1 significantly advances performance on the VSI-Bench benchmark, achieving a 7.4\% gain over the baseline and outperforming strong contemporary models. This work validates the effectiveness of specialized data curation and optimization techniques for improving complex spatial reasoning in video MLLMs.
☆ UniViTAR: Unified Vision Transformer with Native Resolution
Conventional Vision Transformer simplifies visual modeling by standardizing input resolutions, often disregarding the variability of natural visual data and compromising spatial-contextual fidelity. While preliminary explorations have superficially investigated native resolution modeling, existing approaches still lack systematic analysis from a visual representation perspective. To bridge this gap, we introduce UniViTAR, a family of homogeneous vision foundation models tailored for unified visual modality and native resolution scenario in the era of multimodal. Our framework first conducts architectural upgrades to the vanilla paradigm by integrating multiple advanced components. Building upon these improvements, a progressive training paradigm is introduced, which strategically combines two core mechanisms: (1) resolution curriculum learning, transitioning from fixed-resolution pretraining to native resolution tuning, thereby leveraging ViT's inherent adaptability to variable-length sequences, and (2) visual modality adaptation via inter-batch image-video switching, which balances computational efficiency with enhanced temporal reasoning. In parallel, a hybrid training framework further synergizes sigmoid-based contrastive loss with feature distillation from a frozen teacher model, thereby accelerating early-stage convergence. Finally, trained exclusively on public datasets, externsive experiments across multiple model scales from 0.3B to 1B demonstrate its effectiveness.
☆ Memory-efficient Low-latency Remote Photoplethysmography through Temporal-Spatial State Space Duality
Remote photoplethysmography (rPPG), enabling non-contact physiological monitoring through facial light reflection analysis, faces critical computational bottlenecks as deep learning introduces performance gains at the cost of prohibitive resource demands. This paper proposes ME-rPPG, a memory-efficient algorithm built on temporal-spatial state space duality, which resolves the trilemma of model scalability, cross-dataset generalization, and real-time constraints. Leveraging a transferable state space, ME-rPPG efficiently captures subtle periodic variations across facial frames while maintaining minimal computational overhead, enabling training on extended video sequences and supporting low-latency inference. Achieving cross-dataset MAEs of 5.38 (MMPD), 0.70 (VitalVideo), and 0.25 (PURE), ME-rPPG outperforms all baselines with improvements ranging from 21.3% to 60.2%. Our solution enables real-time inference with only 3.6 MB memory usage and 9.46 ms latency -- surpassing existing methods by 19.5%-49.7% accuracy and 43.2% user satisfaction gains in real-world deployments. The code and demos are released for reproducibility on https://github.com/Health-HCI-Group/ME-rPPG-demo.
☆ Leveraging Embedding Techniques in Multimodal Machine Learning for Mental Illness Assessment
The increasing global prevalence of mental disorders, such as depression and PTSD, requires objective and scalable diagnostic tools. Traditional clinical assessments often face limitations in accessibility, objectivity, and consistency. This paper investigates the potential of multimodal machine learning to address these challenges, leveraging the complementary information available in text, audio, and video data. Our approach involves a comprehensive analysis of various data preprocessing techniques, including novel chunking and utterance-based formatting strategies. We systematically evaluate a range of state-of-the-art embedding models for each modality and employ Convolutional Neural Networks (CNNs) and Bidirectional LSTM Networks (BiLSTMs) for feature extraction. We explore data-level, feature-level, and decision-level fusion techniques, including a novel integration of Large Language Model (LLM) predictions. We also investigate the impact of replacing Multilayer Perceptron classifiers with Support Vector Machines. We extend our analysis to severity prediction using PHQ-8 and PCL-C scores and multi-class classification (considering co-occurring conditions). Our results demonstrate that utterance-based chunking significantly improves performance, particularly for text and audio modalities. Decision-level fusion, incorporating LLM predictions, achieves the highest accuracy, with a balanced accuracy of 94.8% for depression and 96.2% for PTSD detection. The combination of CNN-BiLSTM architectures with utterance-level chunking, coupled with the integration of external LLM, provides a powerful and nuanced approach to the detection and assessment of mental health conditions. Our findings highlight the potential of MMML for developing more accurate, accessible, and personalized mental healthcare tools.
☆ Dual-stream Transformer-GCN Model with Contextualized Representations Learning for Monocular 3D Human Pose Estimation
This paper introduces a novel approach to monocular 3D human pose estimation using contextualized representation learning with the Transformer-GCN dual-stream model. Monocular 3D human pose estimation is challenged by depth ambiguity, limited 3D-labeled training data, imbalanced modeling, and restricted model generalization. To address these limitations, our work introduces a groundbreaking motion pre-training method based on contextualized representation learning. Specifically, our method involves masking 2D pose features and utilizing a Transformer-GCN dual-stream model to learn high-dimensional representations through a self-distillation setup. By focusing on contextualized representation learning and spatial-temporal modeling, our approach enhances the model's ability to understand spatial-temporal relationships between postures, resulting in superior generalization. Furthermore, leveraging the Transformer-GCN dual-stream model, our approach effectively balances global and local interactions in video pose estimation. The model adaptively integrates information from both the Transformer and GCN streams, where the GCN stream effectively learns local relationships between adjacent key points and frames, while the Transformer stream captures comprehensive global spatial and temporal features. Our model achieves state-of-the-art performance on two benchmark datasets, with an MPJPE of 38.0mm and P-MPJPE of 31.9mm on Human3.6M, and an MPJPE of 15.9mm on MPI-INF-3DHP. Furthermore, visual experiments on public datasets and in-the-wild videos demonstrate the robustness and generalization capabilities of our approach.
☆ Bridge the Gap between SNN and ANN for Image Restoration
Models of dense prediction based on traditional Artificial Neural Networks (ANNs) require a lot of energy, especially for image restoration tasks. Currently, neural networks based on the SNN (Spiking Neural Network) framework are beginning to make their mark in the field of image restoration, especially as they typically use less than 10\% of the energy of ANNs with the same architecture. However, training an SNN is much more expensive than training an ANN, due to the use of the heuristic gradient descent strategy. In other words, the process of SNN's potential membrane signal changing from sparse to dense is very slow, which affects the convergence of the whole model.To tackle this problem, we propose a novel distillation technique, called asymmetric framework (ANN-SNN) distillation, in which the teacher is an ANN and the student is an SNN. Specifically, we leverage the intermediate features (feature maps) learned by the ANN as hints to guide the training process of the SNN. This approach not only accelerates the convergence of the SNN but also improves its final performance, effectively bridging the gap between the efficiency of the SNN and the superior learning capabilities of ANN. Extensive experimental results show that our designed SNN-based image restoration model, which has only 1/300 the number of parameters of the teacher network and 1/50 the energy consumption of the teacher network, is as good as the teacher network in some denoising tasks.
comment: Under review
☆ Understanding Cross-Model Perceptual Invariances Through Ensemble Metamers
Understanding the perceptual invariances of artificial neural networks is essential for improving explainability and aligning models with human vision. Metamers - stimuli that are physically distinct yet produce identical neural activations - serve as a valuable tool for investigating these invariances. We introduce a novel approach to metamer generation by leveraging ensembles of artificial neural networks, capturing shared representational subspaces across diverse architectures, including convolutional neural networks and vision transformers. To characterize the properties of the generated metamers, we employ a suite of image-based metrics that assess factors such as semantic fidelity and naturalness. Our findings show that convolutional neural networks generate more recognizable and human-like metamers, while vision transformers produce realistic but less transferable metamers, highlighting the impact of architectural biases on representational invariances.
☆ AdPO: Enhancing the Adversarial Robustness of Large Vision-Language Models with Preference Optimization
Large Vision-Language Models (LVLMs), such as GPT-4o and LLaVA, have recently witnessed remarkable advancements and are increasingly being deployed in real-world applications. However, inheriting the sensitivity of visual neural networks, LVLMs remain vulnerable to adversarial attacks, which can result in erroneous or malicious outputs. While existing efforts utilize adversarial fine-tuning to enhance robustness, they often suffer from performance degradation on clean inputs. In this paper, we proposes AdPO, a novel adversarial defense strategy for LVLMs based on preference optimization. For the first time, we reframe adversarial training as a preference optimization problem, aiming to enhance the model's preference for generating normal outputs on clean inputs while rejecting the potential misleading outputs for adversarial examples. Notably, AdPO achieves this by solely modifying the image encoder, e.g., CLIP ViT, resulting in superior clean and adversarial performance in a variety of downsream tasks. Considering that training involves large language models (LLMs), the computational cost increases significantly. We validate that training on smaller LVLMs and subsequently transferring to larger models can achieve competitive performance while maintaining efficiency comparable to baseline methods. Our comprehensive experiments confirm the effectiveness of the proposed AdPO, which provides a novel perspective for future adversarial defense research.
☆ FIORD: A Fisheye Indoor-Outdoor Dataset with LIDAR Ground Truth for 3D Scene Reconstruction and Benchmarking
The development of large-scale 3D scene reconstruction and novel view synthesis methods mostly rely on datasets comprising perspective images with narrow fields of view (FoV). While effective for small-scale scenes, these datasets require large image sets and extensive structure-from-motion (SfM) processing, limiting scalability. To address this, we introduce a fisheye image dataset tailored for scene reconstruction tasks. Using dual 200-degree fisheye lenses, our dataset provides full 360-degree coverage of 5 indoor and 5 outdoor scenes. Each scene has sparse SfM point clouds and precise LIDAR-derived dense point clouds that can be used as geometric ground-truth, enabling robust benchmarking under challenging conditions such as occlusions and reflections. While the baseline experiments focus on vanilla Gaussian Splatting and NeRF based Nerfacto methods, the dataset supports diverse approaches for scene reconstruction, novel view synthesis, and image-based rendering.
comment: SCIA 2025
☆ DreamActor-M1: Holistic, Expressive and Robust Human Image Animation with Hybrid Guidance
While recent image-based human animation methods achieve realistic body and facial motion synthesis, critical gaps remain in fine-grained holistic controllability, multi-scale adaptability, and long-term temporal coherence, which leads to their lower expressiveness and robustness. We propose a diffusion transformer (DiT) based framework, DreamActor-M1, with hybrid guidance to overcome these limitations. For motion guidance, our hybrid control signals that integrate implicit facial representations, 3D head spheres, and 3D body skeletons achieve robust control of facial expressions and body movements, while producing expressive and identity-preserving animations. For scale adaptation, to handle various body poses and image scales ranging from portraits to full-body views, we employ a progressive training strategy using data with varying resolutions and scales. For appearance guidance, we integrate motion patterns from sequential frames with complementary visual references, ensuring long-term temporal coherence for unseen regions during complex movements. Experiments demonstrate that our method outperforms the state-of-the-art works, delivering expressive results for portraits, upper-body, and full-body generation with robust long-term consistency. Project Page: https://grisoon.github.io/DreamActor-M1/.
☆ {GSR4B}: Biomass Map Super-Resolution with Sentinel-1/2 Guidance
Accurate Above-Ground Biomass (AGB) mapping at both large scale and high spatio-temporal resolution is essential for applications ranging from climate modeling to biodiversity assessment, and sustainable supply chain monitoring. At present, fine-grained AGB mapping relies on costly airborne laser scanning acquisition campaigns usually limited to regional scales. Initiatives such as the ESA CCI map attempt to generate global biomass products from diverse spaceborne sensors but at a coarser resolution. To enable global, high-resolution (HR) mapping, several works propose to regress AGB from HR satellite observations such as ESA Sentinel-1/2 images. We propose a novel way to address HR AGB estimation, by leveraging both HR satellite observations and existing low-resolution (LR) biomass products. We cast this problem as Guided Super-Resolution (GSR), aiming at upsampling LR biomass maps (sources) from $100$ to $10$ m resolution, using auxiliary HR co-registered satellite images (guides). We compare super-resolving AGB maps with and without guidance, against direct regression from satellite images, on the public BioMassters dataset. We observe that Multi-Scale Guidance (MSG) outperforms direct regression both for regression ($-780$ t/ha RMSE) and perception ($+2.0$ dB PSNR) metrics, and better captures high-biomass values, without significant computational overhead. Interestingly, unlike the RGB+Depth setting they were originally designed for, our best-performing AGB GSR approaches are those that most preserve the guide image texture. Our results make a strong case for adopting the GSR framework for accurate HR biomass mapping at scale. Our code and model weights are made publicly available (https://github.com/kaankaramanofficial/GSR4B).
comment: Accepted for an oral presentation at the ISPRS Geospatial Week 2025
☆ InvFussion: Bridging Supervised and Zero-shot Diffusion for Inverse Problems
Diffusion Models have demonstrated remarkable capabilities in handling inverse problems, offering high-quality posterior-sampling-based solutions. Despite significant advances, a fundamental trade-off persists, regarding the way the conditioned synthesis is employed: Training-based methods achieve high quality results, while zero-shot approaches trade this with flexibility. This work introduces a framework that combines the best of both worlds -- the strong performance of supervised approaches and the flexibility of zero-shot methods. This is achieved through a novel architectural design that seamlessly integrates the degradation operator directly into the denoiser. In each block, our proposed architecture applies the degradation operator on the network activations and conditions the output using the attention mechanism, enabling adaptation to diverse degradation scenarios while maintaining high performance. Our work demonstrates the versatility of the proposed architecture, operating as a general MMSE estimator, a posterior sampler, or a Neural Posterior Principal Component estimator. This flexibility enables a wide range of downstream tasks, highlighting the broad applicability of our framework. The proposed modification of the denoiser network offers a versatile, accurate, and computationally efficient solution, demonstrating the advantages of dedicated network architectures for complex inverse problems. Experimental results on the FFHQ and ImageNet datasets demonstrate state-of-the-art posterior-sampling performance, surpassing both training-based and zero-shot alternatives.
☆ Overlap-Aware Feature Learning for Robust Unsupervised Domain Adaptation for 3D Semantic Segmentation
3D point cloud semantic segmentation (PCSS) is a cornerstone for environmental perception in robotic systems and autonomous driving, enabling precise scene understanding through point-wise classification. While unsupervised domain adaptation (UDA) mitigates label scarcity in PCSS, existing methods critically overlook the inherent vulnerability to real-world perturbations (e.g., snow, fog, rain) and adversarial distortions. This work first identifies two intrinsic limitations that undermine current PCSS-UDA robustness: (a) unsupervised features overlap from unaligned boundaries in shared-class regions and (b) feature structure erosion caused by domain-invariant learning that suppresses target-specific patterns. To address the proposed problems, we propose a tripartite framework consisting of: 1) a robustness evaluation model quantifying resilience against adversarial attack/corruption types through robustness metrics; 2) an invertible attention alignment module (IAAM) enabling bidirectional domain mapping while preserving discriminative structure via attention-guided overlap suppression; and 3) a contrastive memory bank with quality-aware contrastive learning that progressively refines pseudo-labels with feature quality for more discriminative representations. Extensive experiments on SynLiDAR-to-SemanticPOSS adaptation demonstrate a maximum mIoU improvement of 14.3\% under adversarial attack.
comment: 8 pages,6 figures
☆ CLIP-SLA: Parameter-Efficient CLIP Adaptation for Continuous Sign Language Recognition
Continuous sign language recognition (CSLR) focuses on interpreting and transcribing sequences of sign language gestures in videos. In this work, we propose CLIP sign language adaptation (CLIP-SLA), a novel CSLR framework that leverages the powerful pre-trained visual encoder from the CLIP model to sign language tasks through parameter-efficient fine-tuning (PEFT). We introduce two variants, SLA-Adapter and SLA-LoRA, which integrate PEFT modules into the CLIP visual encoder, enabling fine-tuning with minimal trainable parameters. The effectiveness of the proposed frameworks is validated on four datasets: Phoenix2014, Phoenix2014-T, CSL-Daily, and Isharah-500, where both CLIP-SLA variants outperformed several SOTA models with fewer trainable parameters. Extensive ablation studies emphasize the effectiveness and flexibility of the proposed methods with different vision-language models for CSLR. These findings showcase the potential of adapting large-scale pre-trained models for scalable and efficient CSLR, which pave the way for future advancements in sign language understanding.
☆ BioAtt: Anatomical Prior Driven Low-Dose CT Denoising
Deep-learning-based denoising methods have significantly improved Low-Dose CT (LDCT) image quality. However, existing models often over-smooth important anatomical details due to their purely data-driven attention mechanisms. To address this challenge, we propose a novel LDCT denoising framework, BioAtt. The key innovation lies in attending anatomical prior distributions extracted from the pretrained vision-language model BiomedCLIP. These priors guide the denoising model to focus on anatomically relevant regions to suppress noise while preserving clinically relevant structures. We highlight three main contributions: BioAtt outperforms baseline and attention-based models in SSIM, PSNR, and RMSE across multiple anatomical regions. The framework introduces a new architectural paradigm by embedding anatomic priors directly into spatial attention. Finally, BioAtt attention maps provide visual confirmation that the improvements stem from anatomical guidance rather than increased model complexity.
comment: 14 pages
☆ Robust Unsupervised Domain Adaptation for 3D Point Cloud Segmentation Under Source Adversarial Attacks
Unsupervised domain adaptation (UDA) frameworks have shown good generalization capabilities for 3D point cloud semantic segmentation models on clean data. However, existing works overlook adversarial robustness when the source domain itself is compromised. To comprehensively explore the robustness of the UDA frameworks, we first design a stealthy adversarial point cloud generation attack that can significantly contaminate datasets with only minor perturbations to the point cloud surface. Based on that, we propose a novel dataset, AdvSynLiDAR, comprising synthesized contaminated LiDAR point clouds. With the generated corrupted data, we further develop the Adversarial Adaptation Framework (AAF) as the countermeasure. Specifically, by extending the key point sensitive (KPS) loss towards the Robust Long-Tail loss (RLT loss) and utilizing a decoder branch, our approach enables the model to focus on long-tail classes during the pre-training phase and leverages high-confidence decoded point cloud information to restore point cloud structures during the adaptation phase. We evaluated our AAF method on the AdvSynLiDAR dataset, where the results demonstrate that our AAF method can mitigate performance degradation under source adversarial perturbations for UDA in the 3D point cloud segmentation application.
☆ Q-Adapt: Adapting LMM for Visual Quality Assessment with Progressive Instruction Tuning
The rapid advancement of Large Multi-modal Foundation Models (LMM) has paved the way for the possible Explainable Image Quality Assessment (EIQA) with instruction tuning from two perspectives: overall quality explanation, and attribute-wise perception answering. However, existing works usually overlooked the conflicts between these two types of perception explanations during joint instruction tuning, leading to insufficient perception understanding. To mitigate this, we propose a new paradigm for perception-oriented instruction tuning, i.e., Q-Adapt, which aims to eliminate the conflicts and achieve the synergy between these two EIQA tasks when adapting LMM, resulting in enhanced multi-faceted explanations of IQA. Particularly, we propose a progressive instruction tuning strategy by dividing the adaption process of LMM for EIQA into two stages, where the first stage empowers the LMM with universal perception knowledge tailored for two tasks using an efficient transfer learning strategy, i.e., LoRA, and the second stage introduces the instruction-adaptive visual prompt tuning to dynamically adapt visual features for the different instructions from two tasks. In this way, our proposed Q-Adapt can achieve a lightweight visual quality evaluator, demonstrating comparable performance and, in some instances, superior results across perceptual-related benchmarks and commonly-used IQA databases. The source code is publicly available at https://github.com/yeppp27/Q-Adapt.
☆ ProtoGuard-guided PROPEL: Class-Aware Prototype Enhancement and Progressive Labeling for Incremental 3D Point Cloud Segmentation
3D point cloud semantic segmentation technology has been widely used. However, in real-world scenarios, the environment is evolving. Thus, offline-trained segmentation models may lead to catastrophic forgetting of previously seen classes. Class-incremental learning (CIL) is designed to address the problem of catastrophic forgetting. While point clouds are common, we observe high similarity and unclear boundaries between different classes. Meanwhile, they are known to be imbalanced in class distribution. These lead to issues including misclassification between similar classes and the long-tail problem, which have not been adequately addressed in previous CIL methods. We thus propose ProtoGuard and PROPEL (Progressive Refinement Of PsEudo-Labels). In the base-class training phase, ProtoGuard maintains geometric and semantic prototypes for each class, which are combined into prototype features using an attention mechanism. In the novel-class training phase, PROPEL inherits the base feature extractor and classifier, guiding pseudo-label propagation and updates based on density distribution and semantic similarity. Extensive experiments show that our approach achieves remarkable results on both the S3DIS and ScanNet datasets, improving the mIoU of 3D point cloud segmentation by a maximum of 20.39% under the 5-step CIL scenario on S3DIS.
☆ FlowR: Flowing from Sparse to Dense 3D Reconstructions
3D Gaussian splatting enables high-quality novel view synthesis (NVS) at real-time frame rates. However, its quality drops sharply as we depart from the training views. Thus, dense captures are needed to match the high-quality expectations of some applications, e.g. Virtual Reality (VR). However, such dense captures are very laborious and expensive to obtain. Existing works have explored using 2D generative models to alleviate this requirement by distillation or generating additional training views. These methods are often conditioned only on a handful of reference input views and thus do not fully exploit the available 3D information, leading to inconsistent generation results and reconstruction artifacts. To tackle this problem, we propose a multi-view, flow matching model that learns a flow to connect novel view renderings from possibly sparse reconstructions to renderings that we expect from dense reconstructions. This enables augmenting scene captures with novel, generated views to improve reconstruction quality. Our model is trained on a novel dataset of 3.6M image pairs and can process up to 45 views at 540x960 resolution (91K tokens) on one H100 GPU in a single forward pass. Our pipeline consistently improves NVS in sparse- and dense-view scenarios, leading to higher-quality reconstructions than prior works across multiple, widely-used NVS benchmarks.
comment: Project page is available at https://tobiasfshr.github.io/pub/flowr
☆ Bridge 2D-3D: Uncertainty-aware Hierarchical Registration Network with Domain Alignment AAAI2025
The method for image-to-point cloud registration typically determines the rigid transformation using a coarse-to-fine pipeline. However, directly and uniformly matching image patches with point cloud patches may lead to focusing on incorrect noise patches during matching while ignoring key ones. Moreover, due to the significant differences between image and point cloud modalities, it may be challenging to bridge the domain gap without specific improvements in design. To address the above issues, we innovatively propose the Uncertainty-aware Hierarchical Matching Module (UHMM) and the Adversarial Modal Alignment Module (AMAM). Within the UHMM, we model the uncertainty of critical information in image patches and facilitate multi-level fusion interactions between image and point cloud features. In the AMAM, we design an adversarial approach to reduce the domain gap between image and point cloud. Extensive experiments and ablation studies on RGB-D Scene V2 and 7-Scenes benchmarks demonstrate the superiority of our method, making it a state-of-the-art approach for image-to-point cloud registration tasks.
comment: AAAI2025accept
☆ Benchmarking the Spatial Robustness of DNNs via Natural and Adversarial Localized Corruptions
The robustness of DNNs is a crucial factor in safety-critical applications, particularly in complex and dynamic environments where localized corruptions can arise. While previous studies have evaluated the robustness of semantic segmentation (SS) models under whole-image natural or adversarial corruptions, a comprehensive investigation into the spatial robustness of dense vision models under localized corruptions remained underexplored. This paper fills this gap by introducing specialized metrics for benchmarking the spatial robustness of segmentation models, alongside with an evaluation framework to assess the impact of localized corruptions. Furthermore, we uncover the inherent complexity of characterizing worst-case robustness using a single localized adversarial perturbation. To address this, we propose region-aware multi-attack adversarial analysis, a method that enables a deeper understanding of model robustness against adversarial perturbations applied to specific regions. The proposed metrics and analysis were evaluated on 15 segmentation models in driving scenarios, uncovering key insights into the effects of localized corruption in both natural and adversarial forms. The results reveal that models respond to these two types of threats differently; for instance, transformer-based segmentation models demonstrate notable robustness to localized natural corruptions but are highly vulnerable to adversarial ones and vice-versa for CNN-based models. Consequently, we also address the challenge of balancing robustness to both natural and adversarial localized corruptions by means of ensemble models, thereby achieving a broader threat coverage and improved reliability for dense vision tasks.
comment: Under review
☆ A Conic Transformation Approach for Solving the Perspective-Three-Point Problem
We propose a conic transformation method to solve the Perspective-Three-Point (P3P) problem. In contrast to the current state-of-the-art solvers, which formulate the P3P problem by intersecting two conics and constructing a degenerate conic to find the intersection, our approach builds upon a new formulation based on a transformation that maps the two conics to a new coordinate system, where one of the conics becomes a standard parabola in a canonical form. This enables expressing one variable in terms of the other variable, and as a consequence, substantially simplifies the problem of finding the conic intersection. Moreover, the polynomial coefficients are fast to compute, and we only need to determine the real-valued intersection points, which avoids the requirement of using computationally expensive complex arithmetic. While the current state-of-the-art methods reduce the conic intersection problem to solving a univariate cubic equation, our approach, despite resulting in a quartic equation, is still faster thanks to this new simplified formulation. Extensive evaluations demonstrate that our method achieves higher speed while maintaining robustness and stability comparable to state-of-the-art methods.
☆ 3DBonsai: Structure-Aware Bonsai Modeling Using Conditioned 3D Gaussian Splatting ICME 2025
Recent advancements in text-to-3D generation have shown remarkable results by leveraging 3D priors in combination with 2D diffusion. However, previous methods utilize 3D priors that lack detailed and complex structural information, limiting them to generating simple objects and presenting challenges for creating intricate structures such as bonsai. In this paper, we propose 3DBonsai, a novel text-to-3D framework for generating 3D bonsai with complex structures. Technically, we first design a trainable 3D space colonization algorithm to produce bonsai structures, which are then enhanced through random sampling and point cloud augmentation to serve as the 3D Gaussian priors. We introduce two bonsai generation pipelines with distinct structural levels: fine structure conditioned generation, which initializes 3D Gaussians using a 3D structure prior to produce detailed and complex bonsai, and coarse structure conditioned generation, which employs a multi-view structure consistency module to align 2D and 3D structures. Moreover, we have compiled a unified 2D and 3D Chinese-style bonsai dataset. Our experimental results demonstrate that 3DBonsai significantly outperforms existing methods, providing a new benchmark for structure-aware 3D bonsai generation.
comment: Accepted by ICME 2025
☆ A$^\text{T}$A: Adaptive Transformation Agent for Text-Guided Subject-Position Variable Background Inpainting CVPR 2025
Image inpainting aims to fill the missing region of an image. Recently, there has been a surge of interest in foreground-conditioned background inpainting, a sub-task that fills the background of an image while the foreground subject and associated text prompt are provided. Existing background inpainting methods typically strictly preserve the subject's original position from the source image, resulting in inconsistencies between the subject and the generated background. To address this challenge, we propose a new task, the "Text-Guided Subject-Position Variable Background Inpainting", which aims to dynamically adjust the subject position to achieve a harmonious relationship between the subject and the inpainted background, and propose the Adaptive Transformation Agent (A$^\text{T}$A) for this task. Firstly, we design a PosAgent Block that adaptively predicts an appropriate displacement based on given features to achieve variable subject-position. Secondly, we design the Reverse Displacement Transform (RDT) module, which arranges multiple PosAgent blocks in a reverse structure, to transform hierarchical feature maps from deep to shallow based on semantic information. Thirdly, we equip A$^\text{T}$A with a Position Switch Embedding to control whether the subject's position in the generated image is adaptively predicted or fixed. Extensive comparative experiments validate the effectiveness of our A$^\text{T}$A approach, which not only demonstrates superior inpainting capabilities in subject-position variable inpainting, but also ensures good performance on subject-position fixed inpainting.
comment: Accepted by CVPR 2025
☆ A topology-preserving three-stage framework for fully-connected coronary artery extraction
Coronary artery extraction is a crucial prerequisite for computer-aided diagnosis of coronary artery disease. Accurately extracting the complete coronary tree remains challenging due to several factors, including presence of thin distal vessels, tortuous topological structures, and insufficient contrast. These issues often result in over-segmentation and under-segmentation in current segmentation methods. To address these challenges, we propose a topology-preserving three-stage framework for fully-connected coronary artery extraction. This framework includes vessel segmentation, centerline reconnection, and missing vessel reconstruction. First, we introduce a new centerline enhanced loss in the segmentation process. Second, for the broken vessel segments, we further propose a regularized walk algorithm to integrate distance, probabilities predicted by a centerline classifier, and directional cosine similarity, for reconnecting the centerlines. Third, we apply implicit neural representation and implicit modeling, to reconstruct the geometric model of the missing vessels. Experimental results show that our proposed framework outperforms existing methods, achieving Dice scores of 88.53\% and 85.07\%, with Hausdorff Distances (HD) of 1.07mm and 1.63mm on ASOCA and PDSCA datasets, respectively. Code will be available at https://github.com/YH-Qiu/CorSegRec.
☆ DEPTHOR: Depth Enhancement from a Practical Light-Weight dToF Sensor and RGB Image
Depth enhancement, which uses RGB images as guidance to convert raw signals from dToF into high-precision, dense depth maps, is a critical task in computer vision. Although existing super-resolution-based methods show promising results on public datasets, they often rely on idealized assumptions like accurate region correspondences and reliable dToF inputs, overlooking calibration errors that cause misalignment and anomaly signals inherent to dToF imaging, limiting real-world applicability. To address these challenges, we propose a novel completion-based method, named DEPTHOR, featuring advances in both the training strategy and model architecture. First, we propose a method to simulate real-world dToF data from the accurate ground truth in synthetic datasets to enable noise-robust training. Second, we design a novel network that incorporates monocular depth estimation (MDE), leveraging global depth relationships and contextual information to improve prediction in challenging regions. On the ZJU-L5 dataset, our training strategy significantly enhances depth completion models, achieving results comparable to depth super-resolution methods, while our model achieves state-of-the-art results, improving Rel and RMSE by 27% and 18%, respectively. On a more challenging set of dToF samples we collected, our method outperforms SOTA methods on preliminary stereo-based GT, improving Rel and RMSE by 23% and 22%, respectively. Our Code is available at https://github.com/ShadowBbBb/Depthor
comment: 10 pages, 8 figures, 7 tables
☆ Leveraging Modality Tags for Enhanced Cross-Modal Video Retrieval
Video retrieval requires aligning visual content with corresponding natural language descriptions. In this paper, we introduce Modality Auxiliary Concepts for Video Retrieval (MAC-VR), a novel approach that leverages modality-specific tags -- automatically extracted from foundation models -- to enhance video retrieval. We propose to align modalities in a latent space, along with learning and aligning auxiliary latent concepts, derived from the features of a video and its corresponding caption. We introduce these auxiliary concepts to improve the alignment of visual and textual latent concepts, and so are able to distinguish concepts from one other. We conduct extensive experiments on five diverse datasets: MSR-VTT, DiDeMo, TGIF, Charades and YouCook2. The experimental results consistently demonstrate that modality-specific tags improve cross-modal alignment, outperforming current state-of-the-art methods across three datasets and performing comparably or better across the other two.
☆ Text Speaks Louder than Vision: ASCII Art Reveals Textual Biases in Vision-Language Models
Vision-language models (VLMs) have advanced rapidly in processing multimodal information, but their ability to reconcile conflicting signals across modalities remains underexplored. This work investigates how VLMs process ASCII art, a unique medium where textual elements collectively form visual patterns, potentially creating semantic-visual conflicts. We introduce a novel evaluation framework that systematically challenges five state-of-the-art models (including GPT-4o, Claude, and Gemini) using adversarial ASCII art, where character-level semantics deliberately contradict global visual patterns. Our experiments reveal a strong text-priority bias: VLMs consistently prioritize textual information over visual patterns, with visual recognition ability declining dramatically as semantic complexity increases. Various mitigation attempts through visual parameter tuning and prompt engineering yielded only modest improvements, suggesting that this limitation requires architectural-level solutions. These findings uncover fundamental flaws in how current VLMs integrate multimodal information, providing important guidance for future model development while highlighting significant implications for content moderation systems vulnerable to adversarial examples.
comment: Under review at COLM 2025
☆ Instance Migration Diffusion for Nuclear Instance Segmentation in Pathology
Nuclear instance segmentation plays a vital role in disease diagnosis within digital pathology. However, limited labeled data in pathological images restricts the overall performance of nuclear instance segmentation. To tackle this challenge, we propose a novel data augmentation framework Instance Migration Diffusion Model (IM-Diffusion), IM-Diffusion designed to generate more varied pathological images by constructing diverse nuclear layouts and internuclear spatial relationships. In detail, we introduce a Nuclear Migration Module (NMM) which constructs diverse nuclear layouts by simulating the process of nuclear migration. Building on this, we further present an Internuclear-regions Inpainting Module (IIM) to generate diverse internuclear spatial relationships by structure-aware inpainting. On the basis of the above, IM-Diffusion generates more diverse pathological images with different layouts and internuclear spatial relationships, thereby facilitating downstream tasks. Evaluation on the CoNSeP and GLySAC datasets demonstrate that the images generated by IM-Diffusion effectively enhance overall instance segmentation performance. Code will be made public later.
☆ Pro-DG: Procedural Diffusion Guidance for Architectural Facade Generation
We present Pro-DG, a framework for procedurally controllable photo-realistic facade generation that combines a procedural shape grammar with diffusion-based image synthesis. Starting from a single input image, we reconstruct its facade layout using grammar rules, then edit that structure through user-defined transformations. As facades are inherently multi-hierarchical structures, we introduce hierarchical matching procedure that aligns facade structures at different levels which is used to introduce control maps to guide a generative diffusion pipeline. This approach retains local appearance fidelity while accommodating large-scale edits such as floor duplication or window rearrangement. We provide a thorough evaluation, comparing Pro-DG against inpainting-based baselines and synthetic ground truths. Our user study and quantitative measurements indicate improved preservation of architectural identity and higher edit accuracy. Our novel method is the first to integrate neuro-symbolically derived shape-grammars for modeling with modern generative model and highlights the broader potential of such approaches for precise and controllable image manipulation.
comment: 12 pages, 13 figures
☆ STPNet: Scale-aware Text Prompt Network for Medical Image Segmentation
Accurate segmentation of lesions plays a critical role in medical image analysis and diagnosis. Traditional segmentation approaches that rely solely on visual features often struggle with the inherent uncertainty in lesion distribution and size. To address these issues, we propose STPNet, a Scale-aware Text Prompt Network that leverages vision-language modeling to enhance medical image segmentation. Our approach utilizes multi-scale textual descriptions to guide lesion localization and employs retrieval-segmentation joint learning to bridge the semantic gap between visual and linguistic modalities. Crucially, STPNet retrieves relevant textual information from a specialized medical text repository during training, eliminating the need for text input during inference while retaining the benefits of cross-modal learning. We evaluate STPNet on three datasets: COVID-Xray, COVID-CT, and Kvasir-SEG. Experimental results show that our vision-language approach outperforms state-of-the-art segmentation methods, demonstrating the effectiveness of incorporating textual semantic knowledge into medical image analysis. The code has been made publicly on https://github.com/HUANGLIZI/STPNet.
☆ RealityAvatar: Towards Realistic Loose Clothing Modeling in Animatable 3D Gaussian Avatars
Modeling animatable human avatars from monocular or multi-view videos has been widely studied, with recent approaches leveraging neural radiance fields (NeRFs) or 3D Gaussian Splatting (3DGS) achieving impressive results in novel-view and novel-pose synthesis. However, existing methods often struggle to accurately capture the dynamics of loose clothing, as they primarily rely on global pose conditioning or static per-frame representations, leading to oversmoothing and temporal inconsistencies in non-rigid regions. To address this, We propose RealityAvatar, an efficient framework for high-fidelity digital human modeling, specifically targeting loosely dressed avatars. Our method leverages 3D Gaussian Splatting to capture complex clothing deformations and motion dynamics while ensuring geometric consistency. By incorporating a motion trend module and a latentbone encoder, we explicitly model pose-dependent deformations and temporal variations in clothing behavior. Extensive experiments on benchmark datasets demonstrate the effectiveness of our approach in capturing fine-grained clothing deformations and motion-driven shape variations. Our method significantly enhances structural fidelity and perceptual quality in dynamic human reconstruction, particularly in non-rigid regions, while achieving better consistency across temporal frames.
☆ Semi-Supervised Biomedical Image Segmentation via Diffusion Models and Teacher-Student Co-Training
Supervised deep learning for semantic segmentation has achieved excellent results in accurately identifying anatomical and pathological structures in medical images. However, it often requires large annotated training datasets, which limits its scalability in clinical settings. To address this challenge, semi-supervised learning is a well-established approach that leverages both labeled and unlabeled data. In this paper, we introduce a novel semi-supervised teacher-student framework for biomedical image segmentation, inspired by the recent success of generative models. Our approach leverages denoising diffusion probabilistic models (DDPMs) to generate segmentation masks by progressively refining noisy inputs conditioned on the corresponding images. The teacher model is first trained in an unsupervised manner using a cycle-consistency constraint based on noise-corrupted image reconstruction, enabling it to generate informative semantic masks. Subsequently, the teacher is integrated into a co-training process with a twin-student network. The student learns from ground-truth labels when available and from teacher-generated pseudo-labels otherwise, while the teacher continuously improves its pseudo-labeling capabilities. Finally, to further enhance performance, we introduce a multi-round pseudo-label generation strategy that iteratively improves the pseudo-labeling process. We evaluate our approach on multiple biomedical imaging benchmarks, spanning multiple imaging modalities and segmentation tasks. Experimental results show that our method consistently outperforms state-of-the-art semi-supervised techniques, highlighting its effectiveness in scenarios with limited annotated data. The code to replicate our experiments can be found at https://github.com/ciampluca/diffusion_semi_supervised_biomedical_image_segmentation
☆ Beyond Nearest Neighbor Interpolation in Data Augmentation
Avoiding the risk of undefined categorical labels using nearest neighbor interpolation overlooks the risk of exacerbating pixel level annotation errors in data augmentation. To simultaneously avoid these risks, the author modified convolutional neural networks data transformation functions by incorporating a modified geometric transformation function to improve the quality of augmented data by removing the reliance on nearest neighbor interpolation and integrating a mean based class filtering mechanism to handle undefined categorical labels with alternative interpolation algorithms. Experiments on semantic segmentation tasks using three medical image datasets demonstrated both qualitative and quantitative improvements with alternative interpolation algorithms.
comment: 6 pages, 9 figures, 1 table
☆ Domain Guidance: A Simple Transfer Approach for a Pre-trained Diffusion Model
Recent advancements in diffusion models have revolutionized generative modeling. However, the impressive and vivid outputs they produce often come at the cost of significant model scaling and increased computational demands. Consequently, building personalized diffusion models based on off-the-shelf models has emerged as an appealing alternative. In this paper, we introduce a novel perspective on conditional generation for transferring a pre-trained model. From this viewpoint, we propose *Domain Guidance*, a straightforward transfer approach that leverages pre-trained knowledge to guide the sampling process toward the target domain. Domain Guidance shares a formulation similar to advanced classifier-free guidance, facilitating better domain alignment and higher-quality generations. We provide both empirical and theoretical analyses of the mechanisms behind Domain Guidance. Our experimental results demonstrate its substantial effectiveness across various transfer benchmarks, achieving over a 19.6% improvement in FID and a 23.4% improvement in FD$_\text{DINOv2}$ compared to standard fine-tuning. Notably, existing fine-tuned models can seamlessly integrate Domain Guidance to leverage these benefits, without additional training.
☆ Training-free Dense-Aligned Diffusion Guidance for Modular Conditional Image Synthesis
Conditional image synthesis is a crucial task with broad applications, such as artistic creation and virtual reality. However, current generative methods are often task-oriented with a narrow scope, handling a restricted condition with constrained applicability. In this paper, we propose a novel approach that treats conditional image synthesis as the modular combination of diverse fundamental condition units. Specifically, we divide conditions into three primary units: text, layout, and drag. To enable effective control over these conditions, we design a dedicated alignment module for each. For the text condition, we introduce a Dense Concept Alignment (DCA) module, which achieves dense visual-text alignment by drawing on diverse textual concepts. For the layout condition, we propose a Dense Geometry Alignment (DGA) module to enforce comprehensive geometric constraints that preserve the spatial configuration. For the drag condition, we introduce a Dense Motion Alignment (DMA) module to apply multi-level motion regularization, ensuring that each pixel follows its desired trajectory without visual artifacts. By flexibly inserting and combining these alignment modules, our framework enhances the model's adaptability to diverse conditional generation tasks and greatly expands its application range. Extensive experiments demonstrate the superior performance of our framework across a variety of conditions, including textual description, segmentation mask (bounding box), drag manipulation, and their combinations. Code is available at https://github.com/ZixuanWang0525/DADG.
☆ High-fidelity 3D Object Generation from Single Image with RGBN-Volume Gaussian Reconstruction Model
Recently single-view 3D generation via Gaussian splatting has emerged and developed quickly. They learn 3D Gaussians from 2D RGB images generated from pre-trained multi-view diffusion (MVD) models, and have shown a promising avenue for 3D generation through a single image. Despite the current progress, these methods still suffer from the inconsistency jointly caused by the geometric ambiguity in the 2D images, and the lack of structure of 3D Gaussians, leading to distorted and blurry 3D object generation. In this paper, we propose to fix these issues by GS-RGBN, a new RGBN-volume Gaussian Reconstruction Model designed to generate high-fidelity 3D objects from single-view images. Our key insight is a structured 3D representation can simultaneously mitigate the afore-mentioned two issues. To this end, we propose a novel hybrid Voxel-Gaussian representation, where a 3D voxel representation contains explicit 3D geometric information, eliminating the geometric ambiguity from 2D images. It also structures Gaussians during learning so that the optimization tends to find better local optima. Our 3D voxel representation is obtained by a fusion module that aligns RGB features and surface normal features, both of which can be estimated from 2D images. Extensive experiments demonstrate the superiority of our methods over prior works in terms of high-quality reconstruction results, robust generalization, and good efficiency.
comment: 12 pages
☆ Luminance-GS: Adapting 3D Gaussian Splatting to Challenging Lighting Conditions with View-Adaptive Curve Adjustment CVPR 2025
Capturing high-quality photographs under diverse real-world lighting conditions is challenging, as both natural lighting (e.g., low-light) and camera exposure settings (e.g., exposure time) significantly impact image quality. This challenge becomes more pronounced in multi-view scenarios, where variations in lighting and image signal processor (ISP) settings across viewpoints introduce photometric inconsistencies. Such lighting degradations and view-dependent variations pose substantial challenges to novel view synthesis (NVS) frameworks based on Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS). To address this, we introduce Luminance-GS, a novel approach to achieving high-quality novel view synthesis results under diverse challenging lighting conditions using 3DGS. By adopting per-view color matrix mapping and view-adaptive curve adjustments, Luminance-GS achieves state-of-the-art (SOTA) results across various lighting conditions -- including low-light, overexposure, and varying exposure -- while not altering the original 3DGS explicit representation. Compared to previous NeRF- and 3DGS-based baselines, Luminance-GS provides real-time rendering speed with improved reconstruction quality.
comment: CVPR 2025, project page: https://cuiziteng.github.io/Luminance_GS_web/
☆ GarmageNet: A Dataset and Scalable Representation for Generic Garment Modeling
High-fidelity garment modeling remains challenging due to the lack of large-scale, high-quality datasets and efficient representations capable of handling non-watertight, multi-layer geometries. In this work, we introduce Garmage, a neural-network-and-CG-friendly garment representation that seamlessly encodes the accurate geometry and sewing pattern of complex multi-layered garments as a structured set of per-panel geometry images. As a dual-2D-3D representation, Garmage achieves an unprecedented integration of 2D image-based algorithms with 3D modeling workflows, enabling high fidelity, non-watertight, multi-layered garment geometries with direct compatibility for industrial-grade simulations.Built upon this representation, we present GarmageNet, a novel generation framework capable of producing detailed multi-layered garments with body-conforming initial geometries and intricate sewing patterns, based on user prompts or existing in-the-wild sewing patterns. Furthermore, we introduce a robust stitching algorithm that recovers per-vertex stitches, ensuring seamless integration into flexible simulation pipelines for downstream editing of sewing patterns, material properties, and dynamic simulations. Finally, we release an industrial-standard, large-scale, high-fidelity garment dataset featuring detailed annotations, vertex-wise correspondences, and a robust pipeline for converting unstructured production sewing patterns into GarmageNet standard structural assets, paving the way for large-scale, industrial-grade garment generation systems.
☆ Enhanced Cross-modal 3D Retrieval via Tri-modal Reconstruction ICME 2025
Cross-modal 3D retrieval is a critical yet challenging task, aiming to achieve bi-directional retrieval between 3D and text modalities. Current methods predominantly rely on a certain 3D representation (e.g., point cloud), with few exploiting the 2D-3D consistency and complementary relationships, which constrains their performance. To bridge this gap, we propose to adopt multi-view images and point clouds to jointly represent 3D shapes, facilitating tri-modal alignment (i.e., image, point, text) for enhanced cross-modal 3D retrieval. Notably, we introduce tri-modal reconstruction to improve the generalization ability of encoders. Given point features, we reconstruct image features under the guidance of text features, and vice versa. With well-aligned point cloud and multi-view image features, we aggregate them as multimodal embeddings through fine-grained 2D-3D fusion to enhance geometric and semantic understanding. Recognizing the significant noise in current datasets where many 3D shapes and texts share similar semantics, we employ hard negative contrastive training to emphasize harder negatives with greater significance, leading to robust discriminative embeddings. Extensive experiments on the Text2Shape dataset demonstrate that our method significantly outperforms previous state-of-the-art methods in both shape-to-text and text-to-shape retrieval tasks by a substantial margin.
comment: ICME 2025
☆ ANNEXE: Unified Analyzing, Answering, and Pixel Grounding for Egocentric Interaction
Egocentric interaction perception is one of the essential branches in investigating human-environment interaction, which lays the basis for developing next-generation intelligent systems. However, existing egocentric interaction understanding methods cannot yield coherent textual and pixel-level responses simultaneously according to user queries, which lacks flexibility for varying downstream application requirements. To comprehend egocentric interactions exhaustively, this paper presents a novel task named Egocentric Interaction Reasoning and pixel Grounding (Ego-IRG). Taking an egocentric image with the query as input, Ego-IRG is the first task that aims to resolve the interactions through three crucial steps: analyzing, answering, and pixel grounding, which results in fluent textual and fine-grained pixel-level responses. Another challenge is that existing datasets cannot meet the conditions for the Ego-IRG task. To address this limitation, this paper creates the Ego-IRGBench dataset based on extensive manual efforts, which includes over 20k egocentric images with 1.6 million queries and corresponding multimodal responses about interactions. Moreover, we design a unified ANNEXE model to generate text- and pixel-level outputs utilizing multimodal large language models, which enables a comprehensive interpretation of egocentric interactions. The experiments on the Ego-IRGBench exhibit the effectiveness of our ANNEXE model compared with other works.
comment: Computer Vision and Pattern Recognition
☆ Detecting Lip-Syncing Deepfakes: Vision Temporal Transformer for Analyzing Mouth Inconsistencies
Deepfakes are AI-generated media in which the original content is digitally altered to create convincing but manipulated images, videos, or audio. Among the various types of deepfakes, lip-syncing deepfakes are one of the most challenging deepfakes to detect. In these videos, a person's lip movements are synthesized to match altered or entirely new audio using AI models. Therefore, unlike other types of deepfakes, the artifacts in lip-syncing deepfakes are confined to the mouth region, making them more subtle and, thus harder to discern. In this paper, we propose LIPINC-V2, a novel detection framework that leverages a combination of vision temporal transformer with multihead cross-attention to detect lip-syncing deepfakes by identifying spatiotemporal inconsistencies in the mouth region. These inconsistencies appear across adjacent frames and persist throughout the video. Our model can successfully capture both short-term and long-term variations in mouth movement, enhancing its ability to detect these inconsistencies. Additionally, we created a new lip-syncing deepfake dataset, LipSyncTIMIT, which was generated using five state-of-the-art lip-syncing models to simulate real-world scenarios. Extensive experiments on our proposed LipSyncTIMIT dataset and two other benchmark deepfake datasets demonstrate that our model achieves state-of-the-art performance. The code and the dataset are available at https://github.com/skrantidatta/LIPINC-V2 .
☆ Mesh Mamba: A Unified State Space Model for Saliency Prediction in Non-Textured and Textured Meshes CVPR 2025
Mesh saliency enhances the adaptability of 3D vision by identifying and emphasizing regions that naturally attract visual attention. To investigate the interaction between geometric structure and texture in shaping visual attention, we establish a comprehensive mesh saliency dataset, which is the first to systematically capture the differences in saliency distribution under both textured and non-textured visual conditions. Furthermore, we introduce mesh Mamba, a unified saliency prediction model based on a state space model (SSM), designed to adapt across various mesh types. Mesh Mamba effectively analyzes the geometric structure of the mesh while seamlessly incorporating texture features into the topological framework, ensuring coherence throughout appearance-enhanced modeling. More importantly, by subgraph embedding and a bidirectional SSM, the model enables global context modeling for both local geometry and texture, preserving the topological structure and improving the understanding of visual details and structural complexity. Through extensive theoretical and empirical validation, our model not only improves performance across various mesh types but also demonstrates high scalability and versatility, particularly through cross validations of various visual features.
comment: to be published in CVPR 2025
☆ Deep LG-Track: An Enhanced Localization-Confidence-Guided Multi-Object Tracker
Multi-object tracking plays a crucial role in various applications, such as autonomous driving and security surveillance. This study introduces Deep LG-Track, a novel multi-object tracker that incorporates three key enhancements to improve the tracking accuracy and robustness. First, an adaptive Kalman filter is developed to dynamically update the covariance of measurement noise based on detection confidence and trajectory disappearance. Second, a novel cost matrix is formulated to adaptively fuse motion and appearance information, leveraging localization confidence and detection confidence as weighting factors. Third, a dynamic appearance feature updating strategy is introduced, adjusting the relative weighting of historical and current appearance features based on appearance clarity and localization accuracy. Comprehensive evaluations on the MOT17 and MOT20 datasets demonstrate that the proposed Deep LG-Track consistently outperforms state-of-the-art trackers across multiple performance metrics, highlighting its effectiveness in multi-object tracking tasks.
comment: 11 pages, 6 fugures
☆ BiSeg-SAM: Weakly-Supervised Post-Processing Framework for Boosting Binary Segmentation in Segment Anything Models
Accurate segmentation of polyps and skin lesions is essential for diagnosing colorectal and skin cancers. While various segmentation methods for polyps and skin lesions using fully supervised deep learning techniques have been developed, the pixel-level annotation of medical images by doctors is both time-consuming and costly. Foundational vision models like the Segment Anything Model (SAM) have demonstrated superior performance; however, directly applying SAM to medical segmentation may not yield satisfactory results due to the lack of domain-specific medical knowledge. In this paper, we propose BiSeg-SAM, a SAM-guided weakly supervised prompting and boundary refinement network for the segmentation of polyps and skin lesions. Specifically, we fine-tune SAM combined with a CNN module to learn local features. We introduce a WeakBox with two functions: automatically generating box prompts for the SAM model and using our proposed Multi-choice Mask-to-Box (MM2B) transformation for rough mask-to-box conversion, addressing the mismatch between coarse labels and precise predictions. Additionally, we apply scale consistency (SC) loss for prediction scale alignment. Our DetailRefine module enhances boundary precision and segmentation accuracy by refining coarse predictions using a limited amount of ground truth labels. This comprehensive approach enables BiSeg-SAM to achieve excellent multi-task segmentation performance. Our method demonstrates significant superiority over state-of-the-art (SOTA) methods when tested on five polyp datasets and one skin cancer dataset.
comment: 2024 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
☆ Multimodal Point Cloud Semantic Segmentation With Virtual Point Enhancement
LiDAR-based 3D point cloud recognition has been proven beneficial in various applications. However, the sparsity and varying density pose a significant challenge in capturing intricate details of objects, particularly for medium-range and small targets. Therefore, we propose a multi-modal point cloud semantic segmentation method based on Virtual Point Enhancement (VPE), which integrates virtual points generated from images to address these issues. These virtual points are dense but noisy, and directly incorporating them can increase computational burden and degrade performance. Therefore, we introduce a spatial difference-driven adaptive filtering module that selectively extracts valuable pseudo points from these virtual points based on density and distance, enhancing the density of medium-range targets. Subsequently, we propose a noise-robust sparse feature encoder that incorporates noise-robust feature extraction and fine-grained feature enhancement. Noise-robust feature extraction exploits the 2D image space to reduce the impact of noisy points, while fine-grained feature enhancement boosts sparse geometric features through inner-voxel neighborhood point aggregation and downsampled voxel aggregation. The results on the SemanticKITTI and nuScenes, two large-scale benchmark data sets, have validated effectiveness, significantly improving 2.89\% mIoU with the introduction of 7.7\% virtual points on nuScenes.
☆ MuTri: Multi-view Tri-alignment for OCT to OCTA 3D Image Translation
Optical coherence tomography angiography (OCTA) shows its great importance in imaging microvascular networks by providing accurate 3D imaging of blood vessels, but it relies upon specialized sensors and expensive devices. For this reason, previous works show the potential to translate the readily available 3D Optical Coherence Tomography (OCT) images into 3D OCTA images. However, existing OCTA translation methods directly learn the mapping from the OCT domain to the OCTA domain in continuous and infinite space with guidance from only a single view, i.e., the OCTA project map, resulting in suboptimal results. To this end, we propose the multi-view Tri-alignment framework for OCT to OCTA 3D image translation in discrete and finite space, named MuTri. In the first stage, we pre-train two vector-quantized variational auto-encoder (VQ- VAE) by reconstructing 3D OCT and 3D OCTA data, providing semantic prior for subsequent multi-view guidances. In the second stage, our multi-view tri-alignment facilitates another VQVAE model to learn the mapping from the OCT domain to the OCTA domain in discrete and finite space. Specifically, a contrastive-inspired semantic alignment is proposed to maximize the mutual information with the pre-trained models from OCT and OCTA views, to facilitate codebook learning. Meanwhile, a vessel structure alignment is proposed to minimize the structure discrepancy with the pre-trained models from the OCTA project map view, benefiting from learning the detailed vessel structure information. We also collect the first large-scale dataset, namely, OCTA2024, which contains a pair of OCT and OCTA volumes from 846 subjects.
☆ TimeSearch: Hierarchical Video Search with Spotlight and Reflection for Human-like Long Video Understanding
Large video-language models (LVLMs) have shown remarkable performance across various video-language tasks. However, they encounter significant challenges when processing long videos because of the large number of video frames involved. Downsampling long videos in either space or time can lead to visual hallucinations, making it difficult to accurately interpret long videos. Motivated by human hierarchical temporal search strategies, we propose \textbf{TimeSearch}, a novel framework enabling LVLMs to understand long videos in a human-like manner. TimeSearch integrates two human-like primitives into a unified autoregressive LVLM: 1) \textbf{Spotlight} efficiently identifies relevant temporal events through a Temporal-Augmented Frame Representation (TAFR), explicitly binding visual features with timestamps; 2) \textbf{Reflection} evaluates the correctness of the identified events, leveraging the inherent temporal self-reflection capabilities of LVLMs. TimeSearch progressively explores key events and prioritizes temporal search based on reflection confidence. Extensive experiments on challenging long-video benchmarks confirm that TimeSearch substantially surpasses previous state-of-the-art, improving the accuracy from 41.8\% to 51.5\% on the LVBench. Additionally, experiments on temporal grounding demonstrate that appropriate TAFR is adequate to effectively stimulate the surprising temporal grounding ability of LVLMs in a simpler yet versatile manner, which improves mIoU on Charades-STA by 11.8\%. The code will be released.
☆ Leveraging Generalizability of Image-to-Image Translation for Enhanced Adversarial Defense
In the rapidly evolving field of artificial intelligence, machine learning emerges as a key technology characterized by its vast potential and inherent risks. The stability and reliability of these models are important, as they are frequent targets of security threats. Adversarial attacks, first rigorously defined by Ian Goodfellow et al. in 2013, highlight a critical vulnerability: they can trick machine learning models into making incorrect predictions by applying nearly invisible perturbations to images. Although many studies have focused on constructing sophisticated defensive mechanisms to mitigate such attacks, they often overlook the substantial time and computational costs of training and maintaining these models. Ideally, a defense method should be able to generalize across various, even unseen, adversarial attacks with minimal overhead. Building on our previous work on image-to-image translation-based defenses, this study introduces an improved model that incorporates residual blocks to enhance generalizability. The proposed method requires training only a single model, effectively defends against diverse attack types, and is well-transferable between different target models. Experiments show that our model can restore the classification accuracy from near zero to an average of 72\% while maintaining competitive performance compared to state-of-the-art methods.
☆ All Patches Matter, More Patches Better: Enhance AI-Generated Image Detection via Panoptic Patch Learning
The exponential growth of AI-generated images (AIGIs) underscores the urgent need for robust and generalizable detection methods. In this paper, we establish two key principles for AIGI detection through systematic analysis: \textbf{(1) All Patches Matter:} Unlike conventional image classification where discriminative features concentrate on object-centric regions, each patch in AIGIs inherently contains synthetic artifacts due to the uniform generation process, suggesting that every patch serves as an important artifact source for detection. \textbf{(2) More Patches Better}: Leveraging distributed artifacts across more patches improves detection robustness by capturing complementary forensic evidence and reducing over-reliance on specific patches, thereby enhancing robustness and generalization. However, our counterfactual analysis reveals an undesirable phenomenon: naively trained detectors often exhibit a \textbf{Few-Patch Bias}, discriminating between real and synthetic images based on minority patches. We identify \textbf{Lazy Learner} as the root cause: detectors preferentially learn conspicuous artifacts in limited patches while neglecting broader artifact distributions. To address this bias, we propose the \textbf{P}anoptic \textbf{P}atch \textbf{L}earning (PPL) framework, involving: (1) Random Patch Replacement that randomly substitutes synthetic patches with real counterparts to compel models to identify artifacts in underutilized regions, encouraging the broader use of more patches; (2) Patch-wise Contrastive Learning that enforces consistent discriminative capability across all patches, ensuring uniform utilization of all patches. Extensive experiments across two different settings on several benchmarks verify the effectiveness of our approach.
☆ DALIP: Distribution Alignment-based Language-Image Pre-Training for Domain-Specific Data
Recently, Contrastive Language-Image Pre-training (CLIP) has shown promising performance in domain-specific data (e.g., biology), and has attracted increasing research attention. Existing works generally focus on collecting extensive domain-specific data and directly tuning the original CLIP models. Intuitively, such a paradigm takes no full consideration of the characteristics lying in domain-specific data (e.g., fine-grained nature of biological data) and so limits model capability, while mostly losing the original ability of CLIP in the general domain. In this paper, we propose a Distribution Alignment-based Language-Image Pre-Training (DALIP) method for biological data. Specifically, DALIP optimizes CLIP models by matching the similarity between feature distribution of image-text pairs instead of the original [cls] token, which can capture rich yet effective information inherent in image-text pairs as powerful representations, and so better cope with fine-grained nature of biological data. Particularly, our DALIP efficiently approximates feature distribution via its first- and second-order statistics, while presenting a Multi-head Brownian Distance Covariance (MBDC) module to acquire second-order statistics of token features efficiently. Furthermore, we collect a new dataset for plant domain (e.g., specific data in biological domain) comprising 10M plant data with 3M general-domain data (namely PlantMix-13M) according to data mixing laws. Extensive experiments show that DALIP clearly outperforms existing CLIP counterparts in biological domain, while well generalizing to remote sensing and medical imaging domains. Besides, our PlantMix-13M dataset further boosts performance of DALIP in plant domain, while preserving model ability in general domain.
comment: 14 pages
☆ v-CLR: View-Consistent Learning for Open-World Instance Segmentation CVPR 2025
In this paper, we address the challenging problem of open-world instance segmentation. Existing works have shown that vanilla visual networks are biased toward learning appearance information, \eg texture, to recognize objects. This implicit bias causes the model to fail in detecting novel objects with unseen textures in the open-world setting. To address this challenge, we propose a learning framework, called view-Consistent LeaRning (v-CLR), which aims to enforce the model to learn appearance-invariant representations for robust instance segmentation. In v-CLR, we first introduce additional views for each image, where the texture undergoes significant alterations while preserving the image's underlying structure. We then encourage the model to learn the appearance-invariant representation by enforcing the consistency between object features across different views, for which we obtain class-agnostic object proposals using off-the-shelf unsupervised models that possess strong object-awareness. These proposals enable cross-view object feature matching, greatly reducing the appearance dependency while enhancing the object-awareness. We thoroughly evaluate our method on public benchmarks under both cross-class and cross-dataset settings, achieving state-of-the-art performance. Project page: https://visual-ai.github.io/vclr
comment: Accepted by CVPR 2025, Project page: https://visual-ai.github.io/vclr, Code: https://github.com/Visual-AI/vCLR
☆ 3D Gaussian Inverse Rendering with Approximated Global Illumination
3D Gaussian Splatting shows great potential in reconstructing photo-realistic 3D scenes. However, these methods typically bake illumination into their representations, limiting their use for physically-based rendering and scene editing. Although recent inverse rendering approaches aim to decompose scenes into material and lighting components, they often rely on simplifying assumptions that fail when editing. We present a novel approach that enables efficient global illumination for 3D Gaussians Splatting through screen-space ray tracing. Our key insight is that a substantial amount of indirect light can be traced back to surfaces visible within the current view frustum. Leveraging this observation, we augment the direct shading computed by 3D Gaussians with Monte-Carlo screen-space ray-tracing to capture one-bounce indirect illumination. In this way, our method enables realistic global illumination without sacrificing the computational efficiency and editability benefits of 3D Gaussians. Through experiments, we show that the screen-space approximation we utilize allows for indirect illumination and supports real-time rendering and editing. Code, data, and models will be made available at our project page: https://wuzirui.github.io/gs-ssr.
☆ Prompt-Guided Attention Head Selection for Focus-Oriented Image Retrieval CVPR 2025
The goal of this paper is to enhance pretrained Vision Transformer (ViT) models for focus-oriented image retrieval with visual prompting. In real-world image retrieval scenarios, both query and database images often exhibit complexity, with multiple objects and intricate backgrounds. Users often want to retrieve images with specific object, which we define as the Focus-Oriented Image Retrieval (FOIR) task. While a standard image encoder can be employed to extract image features for similarity matching, it may not perform optimally in the multi-object-based FOIR task. This is because each image is represented by a single global feature vector. To overcome this, a prompt-based image retrieval solution is required. We propose an approach called Prompt-guided attention Head Selection (PHS) to leverage the head-wise potential of the multi-head attention mechanism in ViT in a promptable manner. PHS selects specific attention heads by matching their attention maps with user's visual prompts, such as a point, box, or segmentation. This empowers the model to focus on specific object of interest while preserving the surrounding visual context. Notably, PHS does not necessitate model re-training and avoids any image alteration. Experimental results show that PHS substantially improves performance on multiple datasets, offering a practical and training-free solution to enhance model performance in the FOIR task.
comment: Accepted to CVPR 2025 PixFoundation Workshop
☆ Slow-Fast Architecture for Video Multi-Modal Large Language Models
Balancing temporal resolution and spatial detail under limited compute budget remains a key challenge for video-based multi-modal large language models (MLLMs). Existing methods typically compress video representations using predefined rules before feeding them into the LLM, resulting in irreversible information loss and often ignoring input instructions. To address this, we propose a novel slow-fast architecture that naturally circumvents this trade-off, enabling the use of more input frames while preserving spatial details. Inspired by how humans first skim a video before focusing on relevant parts, our slow-fast design employs a dual-token strategy: 1) "fast" visual tokens -- a compact set of compressed video features -- are fed into the LLM alongside text embeddings to provide a quick overview; 2) "slow" visual tokens -- uncompressed video features -- are cross-attended by text embeddings through specially designed hybrid decoder layers, enabling instruction-aware extraction of relevant visual details with linear complexity. We conduct systematic exploration to optimize both the overall architecture and key components. Experiments show that our model significantly outperforms self-attention-only baselines, extending the input capacity from 16 to 128 frames with just a 3% increase in computation, and achieving a 16% average performance improvement across five video understanding benchmarks. Our 7B model achieves state-of-the-art performance among models of similar size. Furthermore, our slow-fast architecture is a plug-and-play design that can be integrated into other video MLLMs to improve efficiency and scalability.
comment: Technical report
☆ CFMD: Dynamic Cross-layer Feature Fusion for Salient Object Detection
Cross-layer feature pyramid networks (CFPNs) have achieved notable progress in multi-scale feature fusion and boundary detail preservation for salient object detection. However, traditional CFPNs still suffer from two core limitations: (1) a computational bottleneck caused by complex feature weighting operations, and (2) degraded boundary accuracy due to feature blurring in the upsampling process. To address these challenges, we propose CFMD, a novel cross-layer feature pyramid network that introduces two key innovations. First, we design a context-aware feature aggregation module (CFLMA), which incorporates the state-of-the-art Mamba architecture to construct a dynamic weight distribution mechanism. This module adaptively adjusts feature importance based on image context, significantly improving both representation efficiency and generalization. Second, we introduce an adaptive dynamic upsampling unit (CFLMD) that preserves spatial details during resolution recovery. By adjusting the upsampling range dynamically and initializing with a bilinear strategy, the module effectively reduces feature overlap and maintains fine-grained boundary structures. Extensive experiments on three standard benchmarks using three mainstream backbone networks demonstrate that CFMD achieves substantial improvements in pixel-level accuracy and boundary segmentation quality, especially in complex scenes. The results validate the effectiveness of CFMD in jointly enhancing computational efficiency and segmentation performance, highlighting its strong potential in salient object detection tasks.
☆ On Data Synthesis and Post-training for Visual Abstract Reasoning
This paper is a pioneering work attempting to address abstract visual reasoning (AVR) problems for large vision-language models (VLMs). We make a common LLaVA-NeXT 7B model capable of perceiving and reasoning about specific AVR problems, surpassing both open-sourced (e.g., Qwen-2-VL-72B) and closed-sourced powerful VLMs (e.g., GPT-4o) with significant margin. This is a great breakthrough since almost all previous VLMs fail or show nearly random performance on representative AVR benchmarks. Our key success is our innovative data synthesis and post-training process, aiming to fully relieve the task difficulty and elicit the model to learn, step by step. Our 7B model is also shown to be behave well on AVR without sacrificing common multimodal comprehension abilities. We hope our paper could serve as an early effort in this area and would inspire further research in abstract visual reasoning.
☆ COST: Contrastive One-Stage Transformer for Vision-Language Small Object Tracking
Transformer has recently demonstrated great potential in improving vision-language (VL) tracking algorithms. However, most of the existing VL trackers rely on carefully designed mechanisms to perform the multi-stage multi-modal fusion. Additionally, direct multi-modal fusion without alignment ignores distribution discrepancy between modalities in feature space, potentially leading to suboptimal representations. In this work, we propose COST, a contrastive one-stage transformer fusion framework for VL tracking, aiming to learn semantically consistent and unified VL representations. Specifically, we introduce a contrastive alignment strategy that maximizes mutual information (MI) between a video and its corresponding language description. This enables effective cross-modal alignment, yielding semantically consistent features in the representation space. By leveraging a visual-linguistic transformer, we establish an efficient multi-modal fusion and reasoning mechanism, empirically demonstrating that a simple stack of transformer encoders effectively enables unified VL representations. Moreover, we contribute a newly collected VL tracking benchmark dataset for small object tracking, named VL-SOT500, with bounding boxes and language descriptions. Our dataset comprises two challenging subsets, VL-SOT230 and VL-SOT270, dedicated to evaluating generic and high-speed small object tracking, respectively. Small object tracking is notoriously challenging due to weak appearance and limited features, and this dataset is, to the best of our knowledge, the first to explore the usage of language cues to enhance visual representation for small object tracking. Extensive experiments demonstrate that COST achieves state-of-the-art performance on five existing VL tracking datasets, as well as on our proposed VL-SOT500 dataset. Source codes and dataset will be made publicly available.
comment: Preprint submitted to Elsevier. https://github.com/983632847/Awesome-Multimodal-Object-Tracking
☆ Safeguarding Vision-Language Models: Mitigating Vulnerabilities to Gaussian Noise in Perturbation-based Attacks
Vision-Language Models (VLMs) extend the capabilities of Large Language Models (LLMs) by incorporating visual information, yet they remain vulnerable to jailbreak attacks, especially when processing noisy or corrupted images. Although existing VLMs adopt security measures during training to mitigate such attacks, vulnerabilities associated with noise-augmented visual inputs are overlooked. In this work, we identify that missing noise-augmented training causes critical security gaps: many VLMs are susceptible to even simple perturbations such as Gaussian noise. To address this challenge, we propose Robust-VLGuard, a multimodal safety dataset with aligned / misaligned image-text pairs, combined with noise-augmented fine-tuning that reduces attack success rates while preserving functionality of VLM. For stronger optimization-based visual perturbation attacks, we propose DiffPure-VLM, leveraging diffusion models to convert adversarial perturbations into Gaussian-like noise, which can be defended by VLMs with noise-augmented safety fine-tuning. Experimental results demonstrate that the distribution-shifting property of diffusion model aligns well with our fine-tuned VLMs, significantly mitigating adversarial perturbations across varying intensities. The dataset and code are available at https://github.com/JarvisUSTC/DiffPure-RobustVLM.
☆ Direction-Aware Hybrid Representation Learning for 3D Hand Pose and Shape Estimation CVPR 2025
Most model-based 3D hand pose and shape estimation methods directly regress the parametric model parameters from an image to obtain 3D joints under weak supervision. However, these methods involve solving a complex optimization problem with many local minima, making training difficult. To address this challenge, we propose learning direction-aware hybrid features (DaHyF) that fuse implicit image features and explicit 2D joint coordinate features. This fusion is enhanced by the pixel direction information in the camera coordinate system to estimate pose, shape, and camera viewpoint. Our method directly predicts 3D hand poses with DaHyF representation and reduces jittering during motion capture using prediction confidence based on contrastive learning. We evaluate our method on the FreiHAND dataset and show that it outperforms existing state-of-the-art methods by more than 33% in accuracy. DaHyF also achieves the top ranking on both the HO3Dv2 and HO3Dv3 leaderboards for the metric of Mean Joint Error (after scale and translation alignment). Compared to the second-best results, the largest improvement observed is 10%. We also demonstrate its effectiveness in real-time motion capture scenarios with hand position variability, occlusion, and motion blur.
comment: Accepted to CVPR 2025 workshop
☆ BOLDSimNet: Examining Brain Network Similarity between Task and Resting-State fMRI
Traditional causal connectivity methods in task-based and resting-state functional magnetic resonance imaging (fMRI) face challenges in accurately capturing directed information flow due to their sensitivity to noise and inability to model multivariate dependencies. These limitations hinder the effective comparison of brain networks between cognitive states, making it difficult to analyze network reconfiguration during task and resting states. To address these issues, we propose BOLDSimNet, a novel framework utilizing Multivariate Transfer Entropy (MTE) to measure causal connectivity and network similarity across different cognitive states. Our method groups functionally similar regions of interest (ROIs) rather than spatially adjacent nodes, improving accuracy in network alignment. We applied BOLDSimNet to fMRI data from 40 healthy controls and found that children exhibited higher similarity scores between task and resting states compared to adolescents, indicating reduced variability in attention shifts. In contrast, adolescents showed more differences between task and resting states in the Dorsal Attention Network (DAN) and the Default Mode Network (DMN), reflecting enhanced network adaptability. These findings emphasize developmental variations in the reconfiguration of the causal brain network, showcasing BOLDSimNet's ability to quantify network similarity and identify attentional fluctuations between different cognitive states.
☆ ForestVO: Enhancing Visual Odometry in Forest Environments through ForestGlue
Recent advancements in visual odometry systems have improved autonomous navigation; however, challenges persist in complex environments like forests, where dense foliage, variable lighting, and repetitive textures compromise feature correspondence accuracy. To address these challenges, we introduce ForestGlue, enhancing the SuperPoint feature detector through four configurations - grayscale, RGB, RGB-D, and stereo-vision - optimised for various sensing modalities. For feature matching, we employ LightGlue or SuperGlue, retrained with synthetic forest data. ForestGlue achieves comparable pose estimation accuracy to baseline models but requires only 512 keypoints - just 25% of the baseline's 2048 - to reach an LO-RANSAC AUC score of 0.745 at a 10{\deg} threshold. With only a quarter of keypoints needed, ForestGlue significantly reduces computational overhead, demonstrating effectiveness in dynamic forest environments, and making it suitable for real-time deployment on resource-constrained platforms. By combining ForestGlue with a transformer-based pose estimation model, we propose ForestVO, which estimates relative camera poses using matched 2D pixel coordinates between frames. On challenging TartanAir forest sequences, ForestVO achieves an average relative pose error (RPE) of 1.09 m and a kitti_score of 2.33%, outperforming direct-based methods like DSO by 40% in dynamic scenes. Despite using only 10% of the dataset for training, ForestVO maintains competitive performance with TartanVO while being a significantly lighter model. This work establishes an end-to-end deep learning pipeline specifically tailored for visual odometry in forested environments, leveraging forest-specific training data to optimise feature correspondence and pose estimation, thereby enhancing the accuracy and robustness of autonomous navigation systems.
comment: Accepted to the IEEE Robotics and Automation Letters
♻ ☆ Mr. DETR: Instructive Multi-Route Training for Detection Transformers CVPR 2025
Existing methods enhance the training of detection transformers by incorporating an auxiliary one-to-many assignment. In this work, we treat the model as a multi-task framework, simultaneously performing one-to-one and one-to-many predictions. We investigate the roles of each component in the transformer decoder across these two training targets, including self-attention, cross-attention, and feed-forward network. Our empirical results demonstrate that any independent component in the decoder can effectively learn both targets simultaneously, even when other components are shared. This finding leads us to propose a multi-route training mechanism, featuring a primary route for one-to-one prediction and two auxiliary training routes for one-to-many prediction. We enhance the training mechanism with a novel instructive self-attention that dynamically and flexibly guides object queries for one-to-many prediction. The auxiliary routes are removed during inference, ensuring no impact on model architecture or inference cost. We conduct extensive experiments on various baselines, achieving consistent improvements as shown in Figure 1. Project page: https://visual-ai.github.io/mrdetr
comment: Accepted by CVPR 2025, Project page: https://visual-ai.github.io/mrdetr, Code: https://github.com/Visual-AI/Mr.DETR
♻ ☆ Cosmos-Reason1: From Physical Common Sense To Embodied Reasoning
Physical AI systems need to perceive, understand, and perform complex actions in the physical world. In this paper, we present the Cosmos-Reason1 models that can understand the physical world and generate appropriate embodied decisions (e.g., next step action) in natural language through long chain-of-thought reasoning processes. We begin by defining key capabilities for Physical AI reasoning, with a focus on physical common sense and embodied reasoning. To represent physical common sense, we use a hierarchical ontology that captures fundamental knowledge about space, time, and physics. For embodied reasoning, we rely on a two-dimensional ontology that generalizes across different physical embodiments. Building on these capabilities, we develop two multimodal large language models, Cosmos-Reason1-8B and Cosmos-Reason1-56B. We curate data and train our models in four stages: vision pre-training, general supervised fine-tuning (SFT), Physical AI SFT, and Physical AI reinforcement learning (RL) as the post-training. To evaluate our models, we build comprehensive benchmarks for physical common sense and embodied reasoning according to our ontologies. Evaluation results show that Physical AI SFT and reinforcement learning bring significant improvements. To facilitate the development of Physical AI, we will make our code and pre-trained models available under the NVIDIA Open Model License at https://github.com/nvidia-cosmos/cosmos-reason1.
♻ ☆ Meta ControlNet: Enhancing Task Adaptation via Meta Learning
Diffusion-based image synthesis has attracted extensive attention recently. In particular, ControlNet that uses image-based prompts exhibits powerful capability in image tasks such as canny edge detection and generates images well aligned with these prompts. However, vanilla ControlNet generally requires extensive training of around 5000 steps to achieve a desirable control for a single task. Recent context-learning approaches have improved its adaptability, but mainly for edge-based tasks, and rely on paired examples. Thus, two important open issues are yet to be addressed to reach the full potential of ControlNet: (i) zero-shot control for certain tasks and (ii) faster adaptation for non-edge-based tasks. In this paper, we introduce a novel Meta ControlNet method, which adopts the task-agnostic meta learning technique and features a new layer freezing design. Meta ControlNet significantly reduces learning steps to attain control ability from 5000 to 1000. Further, Meta ControlNet exhibits direct zero-shot adaptability in edge-based tasks without any finetuning, and achieves control within only 100 finetuning steps in more complex non-edge tasks such as Human Pose, outperforming all existing methods. The codes is available in https://github.com/JunjieYang97/Meta-ControlNet.
comment: Codebase link: https://github.com/JunjieYang97/Meta-ControlNet
♻ ☆ DreamScape: 3D Scene Creation via Gaussian Splatting joint Correlation Modeling
Recent advances in text-to-3D creation integrate the potent prior of Diffusion Models from text-to-image generation into 3D domain. Nevertheless, generating 3D scenes with multiple objects remains challenging. Therefore, we present DreamScape, a method for generating 3D scenes from text. Utilizing Gaussian Splatting for 3D representation, DreamScape introduces 3D Gaussian Guide that encodes semantic primitives, spatial transformations and relationships from text using LLMs, enabling local-to-global optimization. Progressive scale control is tailored during local object generation, addressing training instability issue arising from simple blending in the global optimization stage. Collision relationships between objects are modeled at the global level to mitigate biases in LLMs priors, ensuring physical correctness. Additionally, to generate pervasive objects like rain and snow distributed extensively across the scene, we design specialized sparse initialization and densification strategy. Experiments demonstrate that DreamScape achieves state-of-the-art performance, enabling high-fidelity, controllable 3D scene generation.
♻ ☆ EVOS: Efficient Implicit Neural Training via EVOlutionary Selector CVPR 2025
We propose EVOlutionary Selector (EVOS), an efficient training paradigm for accelerating Implicit Neural Representation (INR). Unlike conventional INR training that feeds all samples through the neural network in each iteration, our approach restricts training to strategically selected points, reducing computational overhead by eliminating redundant forward passes. Specifically, we treat each sample as an individual in an evolutionary process, where only those fittest ones survive and merit inclusion in training, adaptively evolving with the neural network dynamics. While this is conceptually similar to Evolutionary Algorithms, their distinct objectives (selection for acceleration vs. iterative solution optimization) require a fundamental redefinition of evolutionary mechanisms for our context. In response, we design sparse fitness evaluation, frequency-guided crossover, and augmented unbiased mutation to comprise EVOS. These components respectively guide sample selection with reduced computational cost, enhance performance through frequency-domain balance, and mitigate selection bias from cached evaluation. Extensive experiments demonstrate that our method achieves approximately 48%-66% reduction in training time while ensuring superior convergence without additional cost, establishing state-of-the-art acceleration among recent sampling-based strategies.
comment: Accepted by CVPR 2025
♻ ☆ SaRA: High-Efficient Diffusion Model Fine-tuning with Progressive Sparse Low-Rank Adaptation ICLR 2025
In recent years, the development of diffusion models has led to significant progress in image and video generation tasks, with pre-trained models like the Stable Diffusion series playing a crucial role. Inspired by model pruning which lightens large pre-trained models by removing unimportant parameters, we propose a novel model fine-tuning method to make full use of these ineffective parameters and enable the pre-trained model with new task-specified capabilities. In this work, we first investigate the importance of parameters in pre-trained diffusion models, and discover that the smallest 10% to 20% of parameters by absolute values do not contribute to the generation process. Based on this observation, we propose a method termed SaRA that re-utilizes these temporarily ineffective parameters, equating to optimizing a sparse weight matrix to learn the task-specific knowledge. To mitigate overfitting, we propose a nuclear-norm-based low-rank sparse training scheme for efficient fine-tuning. Furthermore, we design a new progressive parameter adjustment strategy to make full use of the re-trained/finetuned parameters. Finally, we propose a novel unstructural backpropagation strategy, which significantly reduces memory costs during fine-tuning. Our method enhances the generative capabilities of pre-trained models in downstream applications and outperforms traditional fine-tuning methods like LoRA in maintaining model's generalization ability. We validate our approach through fine-tuning experiments on SD models, demonstrating significant improvements. SaRA also offers a practical advantage that requires only a single line of code modification for efficient implementation and is seamlessly compatible with existing methods.
comment: Accepted by ICLR 2025
♻ ☆ Enhancing Implicit Neural Representations via Symmetric Power Transformation AAAI 2025
We propose symmetric power transformation to enhance the capacity of Implicit Neural Representation~(INR) from the perspective of data transformation. Unlike prior work utilizing random permutation or index rearrangement, our method features a reversible operation that does not require additional storage consumption. Specifically, we first investigate the characteristics of data that can benefit the training of INR, proposing the Range-Defined Symmetric Hypothesis, which posits that specific range and symmetry can improve the expressive ability of INR. Based on this hypothesis, we propose a nonlinear symmetric power transformation to achieve both range-defined and symmetric properties simultaneously. We use the power coefficient to redistribute data to approximate symmetry within the target range. To improve the robustness of the transformation, we further design deviation-aware calibration and adaptive soft boundary to address issues of extreme deviation boosting and continuity breaking. Extensive experiments are conducted to verify the performance of the proposed method, demonstrating that our transformation can reliably improve INR compared with other data transformations. We also conduct 1D audio, 2D image and 3D video fitting tasks to demonstrate the effectiveness and applicability of our method.
comment: Accepted by AAAI 2025
♻ ☆ Target-Aware Video Diffusion Models
We present a target-aware video diffusion model that generates videos from an input image in which an actor interacts with a specified target while performing a desired action. The target is defined by a segmentation mask and the desired action is described via a text prompt. Unlike existing controllable image-to-video diffusion models that often rely on dense structural or motion cues to guide the actor's movements toward the target, our target-aware model requires only a simple mask to indicate the target, leveraging the generalization capabilities of pretrained models to produce plausible actions. This makes our method particularly effective for human-object interaction (HOI) scenarios, where providing precise action guidance is challenging, and further enables the use of video diffusion models for high-level action planning in applications such as robotics. We build our target-aware model by extending a baseline model to incorporate the target mask as an additional input. To enforce target awareness, we introduce a special token that encodes the target's spatial information within the text prompt. We then fine-tune the model with our curated dataset using a novel cross-attention loss that aligns the cross-attention maps associated with this token with the input target mask. To further improve performance, we selectively apply this loss to the most semantically relevant transformer blocks and attention regions. Experimental results show that our target-aware model outperforms existing solutions in generating videos where actors interact accurately with the specified targets. We further demonstrate its efficacy in two downstream applications: video content creation and zero-shot 3D HOI motion synthesis.
comment: The project page is available at https://taeksuu.github.io/tavid/
♻ ☆ Denoising Functional Maps: Diffusion Models for Shape Correspondence CVPR 2025
Estimating correspondences between pairs of deformable shapes remains a challenging problem. Despite substantial progress, existing methods lack broad generalization capabilities and require category-specific training data. To address these limitations, we propose a fundamentally new approach to shape correspondence based on denoising diffusion models. In our method, a diffusion model learns to directly predict the functional map, a low-dimensional representation of a point-wise map between shapes. We use a large dataset of synthetic human meshes for training and employ two steps to reduce the number of functional maps that need to be learned. First, the maps refer to a template rather than shape pairs. Second, the functional map is defined in a basis of eigenvectors of the Laplacian, which is not unique due to sign ambiguity. Therefore, we introduce an unsupervised approach to select a specific basis by correcting the signs of eigenvectors based on surface features. Our model achieves competitive performance on standard human datasets, meshes with anisotropic connectivity, non-isometric humanoid shapes, as well as animals compared to existing descriptor-based and large-scale shape deformation methods. See our project page for the source code and the datasets.
comment: CVPR 2025; Project page: https://alekseizhuravlev.github.io/denoising-functional-maps/
♻ ☆ CoMM: A Coherent Interleaved Image-Text Dataset for Multimodal Understanding and Generation CVPR 2025
Interleaved image-text generation has emerged as a crucial multimodal task, aiming at creating sequences of interleaved visual and textual content given a query. Despite notable advancements in recent multimodal large language models (MLLMs), generating integrated image-text sequences that exhibit narrative coherence and entity and style consistency remains challenging due to poor training data quality. To address this gap, we introduce CoMM, a high-quality Coherent interleaved image-text MultiModal dataset designed to enhance the coherence, consistency, and alignment of generated multimodal content. Initially, CoMM harnesses raw data from diverse sources, focusing on instructional content and visual storytelling, establishing a foundation for coherent and consistent content. To further refine the data quality, we devise a multi-perspective filter strategy that leverages advanced pre-trained models to ensure the development of sentences, consistency of inserted images, and semantic alignment between them. Various quality evaluation metrics are designed to prove the high quality of the filtered dataset. Meanwhile, extensive few-shot experiments on various downstream tasks demonstrate CoMM's effectiveness in significantly enhancing the in-context learning capabilities of MLLMs. Moreover, we propose four new tasks to evaluate MLLMs' interleaved generation abilities, supported by a comprehensive evaluation framework. We believe CoMM opens a new avenue for advanced MLLMs with superior multimodal in-context learning and understanding ability.
comment: 22 pages, Accepted by CVPR 2025
♻ ☆ DLFR-VAE: Dynamic Latent Frame Rate VAE for Video Generation
In this paper, we propose the Dynamic Latent Frame Rate VAE (DLFR-VAE), a training-free paradigm that can make use of adaptive temporal compression in latent space. While existing video generative models apply fixed compression rates via pretrained VAE, we observe that real-world video content exhibits substantial temporal non-uniformity, with high-motion segments containing more information than static scenes. Based on this insight, DLFR-VAE dynamically adjusts the latent frame rate according to the content complexity. Specifically, DLFR-VAE comprises two core innovations: (1) A Dynamic Latent Frame Rate Scheduler that partitions videos into temporal chunks and adaptively determines optimal frame rates based on information-theoretic content complexity, and (2) A training-free adaptation mechanism that transforms pretrained VAE architectures into a dynamic VAE that can process features with variable frame rates. Our simple but effective DLFR-VAE can function as a plug-and-play module, seamlessly integrating with existing video generation models and accelerating the video generation process.
♻ ☆ Why Autonomous Vehicles Are Not Ready Yet: A Multi-Disciplinary Review of Problems, Attempted Solutions, and Future Directions
Personal autonomous vehicles are cars, trucks and bikes capable of sensing their surrounding environment, planning their route, and driving with little or no involvement of human drivers. Despite the impressive technological achievements made by the industry in recent times and the hopeful announcements made by leading entrepreneurs, to date no personal vehicle is approved for road circulation in a 'fully' or 'semi' autonomous mode (autonomy levels 4 and 5) and it is still unclear when such vehicles will eventually be mature enough to receive this kind of approval. The present review adopts an integrative and multidisciplinary approach to investigate the major challenges faced by the automative sector, with the aim to identify the problems that still trouble and delay the commercialization of autonomous vehicles. The review examines the limitations and risks associated with current technologies and the most promising solutions devised by the researchers. This negative assessment methodology is not motivated by pessimism, but by the aspiration to raise critical awareness about the technology's state-of-the-art, the industry's quality standards, and the society's demands and expectations. While the survey primarily focuses on the applications of artificial intelligence for perception and navigation, it also aims to offer an enlarged picture that links the purely technological aspects with the relevant human-centric aspects, including, cultural attitudes, conceptual assumptions, and normative (ethico-legal) frameworks. Examining the broader context serves to highlight problems that have a cross-disciplinary scope and identify solutions that may benefit from a holistic consideration.
comment: This manuscript extends the work "Applications of Computer Vision in Autonomous Vehicles: Methods, Challenges, and Future Directions." We have added several sections to explore autonomous vehicles from a multidisciplinary perspective. We propose changing the arXiv category to cs.RO, as the expanded content addresses broader autonomous vehicle topics aligning more closely with the Robotics domain
♻ ☆ Towards Physically Plausible Video Generation via VLM Planning
Video diffusion models (VDMs) have advanced significantly in recent years, enabling the generation of highly realistic videos and drawing the attention of the community in their potential as world simulators. However, despite their capabilities, VDMs often fail to produce physically plausible videos due to an inherent lack of understanding of physics, resulting in incorrect dynamics and event sequences. To address this limitation, we propose a novel two-stage image-to-video generation framework that explicitly incorporates physics. In the first stage, we employ a Vision Language Model (VLM) as a coarse-grained motion planner, integrating chain-of-thought and physics-aware reasoning to predict a rough motion trajectories/changes that approximate real-world physical dynamics while ensuring the inter-frame consistency. In the second stage, we use the predicted motion trajectories/changes to guide the video generation of a VDM. As the predicted motion trajectories/changes are rough, noise is added during inference to provide freedom to the VDM in generating motion with more fine details. Extensive experimental results demonstrate that our framework can produce physically plausible motion, and comparative evaluations highlight the notable superiority of our approach over existing methods. More video results are available on our Project Page: https://madaoer.github.io/projects/physically_plausible_video_generation.
comment: 18 pages, 11 figures
♻ ☆ FriendNet: Detection-Friendly Dehazing Network
Adverse weather conditions often impair the quality of captured images, inevitably inducing cutting-edge object detection models for advanced driver assistance systems (ADAS) and autonomous driving. In this paper, we raise an intriguing question: can the combination of image restoration and object detection enhance detection performance in adverse weather conditions? To answer it, we propose an effective architecture that bridges image dehazing and object detection together via guidance information and task-driven learning to achieve detection-friendly dehazing, termed FriendNet. FriendNet aims to deliver both high-quality perception and high detection capacity. Different from existing efforts that intuitively treat image dehazing as pre-processing, FriendNet establishes a positive correlation between these two tasks. Clean features generated by the dehazing network potentially contribute to improvements in object detection performance. Conversely, object detection crucially guides the learning process of the image dehazing network under the task-driven learning scheme. We shed light on how downstream tasks can guide upstream dehazing processes, considering both network architecture and learning objectives. We design Guidance Fusion Block (GFB) and Guidance Attention Block (GAB) to facilitate the integration of detection information into the network. Furthermore, the incorporation of the detection task loss aids in refining the optimization process. Additionally, we introduce a new Physics-aware Feature Enhancement Block (PFEB), which integrates physics-based priors to enhance the feature extraction and representation capabilities. Extensive experiments on synthetic and real-world datasets demonstrate the superiority of our method over state-of-the-art methods on both image quality and detection precision. Our source code is available at https://github.com/fanyihua0309/FriendNet.
comment: We identified a fundamental flaw in the theoretical framework of this submission, rendering the main argument unsound. To maintain academic rigor, we request withdrawal and will submit a revised version after thorough validation
♻ ☆ Dinomaly: The Less Is More Philosophy in Multi-Class Unsupervised Anomaly Detection CVPR 2025
Recent studies highlighted a practical setting of unsupervised anomaly detection (UAD) that builds a unified model for multi-class images. Despite various advancements addressing this challenging task, the detection performance under the multi-class setting still lags far behind state-of-the-art class-separated models. Our research aims to bridge this substantial performance gap. In this paper, we introduce a minimalistic reconstruction-based anomaly detection framework, namely Dinomaly, which leverages pure Transformer architectures without relying on complex designs, additional modules, or specialized tricks. Given this powerful framework consisted of only Attentions and MLPs, we found four simple components that are essential to multi-class anomaly detection: (1) Foundation Transformers that extracts universal and discriminative features, (2) Noisy Bottleneck where pre-existing Dropouts do all the noise injection tricks, (3) Linear Attention that naturally cannot focus, and (4) Loose Reconstruction that does not force layer-to-layer and point-by-point reconstruction. Extensive experiments are conducted across popular anomaly detection benchmarks including MVTec-AD, VisA, and Real-IAD. Our proposed Dinomaly achieves impressive image-level AUROC of 99.6%, 98.7%, and 89.3% on the three datasets respectively, which is not only superior to state-of-the-art multi-class UAD methods, but also achieves the most advanced class-separated UAD records.
comment: IEEE/CVF CVPR 2025
♻ ☆ Scale-adaptive UAV Geo-localization via Height-aware Partition Learning
UAV Geo-Localization faces significant challenges due to the drastic appearance discrepancy between dronecaptured images and satellite views. Existing methods typically assume a consistent scaling factor across views and rely on predefined partition alignment to extract viewpoint-invariant representations through part-level feature construction. However, this scaling assumption often fails in real-world scenarios, where variations in drone flight states lead to scale mismatches between cross-view images, resulting in severe performance degradation. To address this issue, we propose a scale-adaptive partition learning framework that leverages known drone flight height to predict scale factors and dynamically adjust feature extraction. Our key contribution is a height-aware adjustment strategy, which calculates the relative height ratio between drone and satellite views, dynamically adjusting partition sizes to explicitly align semantic information between partition pairs. This strategy is integrated into a Scale-adaptive Local Partition Network (SaLPN), building upon an existing square partition strategy to extract both finegrained and global features. Additionally, we propose a saliencyguided refinement strategy to enhance part-level features, further improving retrieval accuracy. Extensive experiments validate that our height-aware, scale-adaptive approach achieves stateof-the-art geo-localization accuracy in various scale-inconsistent scenarios and exhibits strong robustness against scale variations. The code will be made publicly available.
comment: In Peer Review
♻ ☆ SAV-SE: Scene-aware Audio-Visual Speech Enhancement with Selective State Space Model
Speech enhancement plays an essential role in various applications, and the integration of visual information has been demonstrated to bring substantial advantages. However, the majority of current research concentrates on the examination of facial and lip movements, which can be compromised or entirely inaccessible in scenarios where occlusions occur or when the camera view is distant. Whereas contextual visual cues from the surrounding environment have been overlooked: for example, when we see a dog bark, our brain has the innate ability to discern and filter out the barking noise. To this end, in this paper, we introduce a novel task, i.e. SAV-SE. To our best knowledge, this is the first proposal to use rich contextual information from synchronized video as auxiliary cues to indicate the type of noise, which eventually improves the speech enhancement performance. Specifically, we propose the VC-S$^2$E method, which incorporates the Conformer and Mamba modules for their complementary strengths. Extensive experiments are conducted on public MUSIC, AVSpeech and AudioSet datasets, where the results demonstrate the superiority of VC-S$^2$E over other competitive methods. We will make the source code publicly available. Project demo page: https://AVSEPage.github.io/
comment: accepted by IEEE Journal of Selected Topics in Signal Processing
♻ ☆ Efficient 3D Recognition with Event-driven Spike Sparse Convolution AAAI 2025
Spiking Neural Networks (SNNs) provide an energy-efficient way to extract 3D spatio-temporal features. Point clouds are sparse 3D spatial data, which suggests that SNNs should be well-suited for processing them. However, when applying SNNs to point clouds, they often exhibit limited performance and fewer application scenarios. We attribute this to inappropriate preprocessing and feature extraction methods. To address this issue, we first introduce the Spike Voxel Coding (SVC) scheme, which encodes the 3D point clouds into a sparse spike train space, reducing the storage requirements and saving time on point cloud preprocessing. Then, we propose a Spike Sparse Convolution (SSC) model for efficiently extracting 3D sparse point cloud features. Combining SVC and SSC, we design an efficient 3D SNN backbone (E-3DSNN), which is friendly with neuromorphic hardware. For instance, SSC can be implemented on neuromorphic chips with only minor modifications to the addressing function of vanilla spike convolution. Experiments on ModelNet40, KITTI, and Semantic KITTI datasets demonstrate that E-3DSNN achieves state-of-the-art (SOTA) results with remarkable efficiency. Notably, our E-3DSNN (1.87M) obtained 91.7\% top-1 accuracy on ModelNet40, surpassing the current best SNN baselines (14.3M) by 3.0\%. To our best knowledge, it is the first direct training 3D SNN backbone that can simultaneously handle various 3D computer vision tasks (e.g., classification, detection, and segmentation) with an event-driven nature. Code is available: https://github.com/bollossom/E-3DSNN/.
comment: Accepted by AAAI 2025
♻ ☆ Efficient Alignment of Unconditioned Action Prior for Language-conditioned Pick and Place in Clutter
We study the task of language-conditioned pick and place in clutter, where a robot should grasp a target object in open clutter and move it to a specified place. Some approaches learn end-to-end policies with features from vision foundation models, requiring large datasets. Others combine foundation models in a zero-shot setting, suffering from cascading errors. In addition, they primarily leverage vision and language foundation models, focusing less on action priors. In this paper, we aim to develop an effective policy by integrating foundation priors from vision, language, and action. We propose A$^2$, an action prior alignment method that aligns unconditioned action priors with 3D vision-language priors by learning one attention layer. The alignment formulation enables our policy to train with less data and preserve zero-shot generalization capabilities. We show that a shared policy for both pick and place actions enhances the performance for each task, and introduce a policy adaptation scheme to accommodate the multi-modal nature of actions. Extensive experiments in simulation and the real-world show that our policy achieves higher task success rates with fewer steps for both pick and place tasks in clutter, effectively generalizing to unseen objects and language instructions. Videos and codes are available at https://xukechun.github.io/papers/A2.
♻ ☆ FortisAVQA and MAVEN: a Benchmark Dataset and Debiasing Framework for Robust Multimodal Reasoning
Audio-Visual Question Answering (AVQA) is a challenging multimodal reasoning task requiring intelligent systems to answer natural language queries based on paired audio-video inputs accurately. However, existing AVQA approaches often suffer from overfitting to dataset biases, leading to poor robustness. Moreover, current datasets may not effectively diagnose these methods. To address these challenges, we first introduce a novel dataset, FortisAVQA, constructed in two stages: (1) rephrasing questions in the test split of the public MUSIC-AVQA dataset and (2) introducing distribution shifts across questions. The first stage expands the test space with greater diversity, while the second enables a refined robustness evaluation across rare, frequent, and overall question distributions. Second, we introduce a robust Multimodal Audio-Visual Epistemic Network (MAVEN) that leverages a multifaceted cycle collaborative debiasing strategy to mitigate bias learning. Experimental results demonstrate that our architecture achieves state-of-the-art performance on FortisAVQA, with a notable improvement of 7.81\%. Extensive ablation studies on both datasets validate the effectiveness of our debiasing components. Additionally, our evaluation reveals the limited robustness of existing multimodal QA methods. We also verify the plug-and-play capability of our strategy by integrating it with various baseline models across both datasets. Our dataset and code are available at https://github.com/reml-group/fortisavqa.
comment: Under Review
♻ ☆ Underwater Camouflaged Object Tracking Meets Vision-Language SAM2
Over the past decade, significant progress has been made in visual object tracking, largely due to the availability of large-scale datasets. However, these datasets have primarily focused on open-air scenarios and have largely overlooked underwater animal tracking-especially the complex challenges posed by camouflaged marine animals. To bridge this gap, we take a step forward by proposing the first large-scale multi-modal underwater camouflaged object tracking dataset, namely UW-COT220. Based on the proposed dataset, this work first comprehensively evaluates current advanced visual object tracking methods, including SAM- and SAM2-based trackers, in challenging underwater environments, \eg, coral reefs. Our findings highlight the improvements of SAM2 over SAM, demonstrating its enhanced ability to handle the complexities of underwater camouflaged objects. Furthermore, we propose a novel vision-language tracking framework called VL-SAM2, based on the video foundation model SAM2. Experimental results demonstrate that our VL-SAM2 achieves state-of-the-art performance on the UW-COT220 dataset. The dataset and codes are available at~\href{https://github.com/983632847/Awesome-Multimodal-Object-Tracking}{\color{magenta}{here}}.
comment: Preprint. https://github.com/983632847/Awesome-Multimodal-Object-Tracking
♻ ☆ Divide and Merge: Motion and Semantic Learning in End-to-End Autonomous Driving
Perceiving the environment and its changes over time corresponds to two fundamental yet heterogeneous types of information: semantics and motion. Previous end-to-end autonomous driving works represent both types of information in a single feature vector. However, including motion related tasks, such as prediction and planning, impairs detection and tracking performance, a phenomenon known as negative transfer in multi-task learning. To address this issue, we propose Neural-Bayes motion decoding, a novel parallel detection, tracking, and prediction method that separates semantic and motion learning. Specifically, we employ a set of learned motion queries that operate in parallel with detection and tracking queries, sharing a unified set of recursively updated reference points. Moreover, we employ interactive semantic decoding to enhance information exchange in semantic tasks, promoting positive transfer. Experiments on the nuScenes dataset with UniAD and SparseDrive confirm the effectiveness of our divide and merge approach, resulting in performance improvements across perception, prediction, and planning. Our code is available at https://github.com/shenyinzhe/DMAD.
♻ ☆ Autonomous AI for Multi-Pathology Detection in Chest X-Rays: A Multi-Site Study in the Indian Healthcare System
Study Design: The study outlines the development of an autonomous AI system for chest X-ray (CXR) interpretation, trained on a vast dataset of over 5 million X rays sourced from healthcare systems across India. This AI system integrates advanced architectures including Vision Transformers, Faster R-CNN, and various U Net models (such as Attention U-Net, U-Net++, and Dense U-Net) to enable comprehensive classification, detection, and segmentation of 75 distinct pathologies. To ensure robustness, the study design includes subgroup analyses across age, gender, and equipment type, validating the model's adaptability and performance across diverse patient demographics and imaging environments. Performance: The AI system achieved up to 98% precision and over 95% recall for multi pathology classification, with stable performance across demographic and equipment subgroups. For normal vs. abnormal classification, it reached 99.8% precision, 99.6% recall, and 99.9% negative predictive value (NPV). It was deployed in 17 major healthcare systems in India including diagnostic centers, large hospitals, and government hospitals. Over the deployment period, the system processed over 150,000 scans, averaging 2,000 chest X rays daily, resulting in reduced reporting times and improved diagnostic accuracy. Conclusion: The high precision and recall validate the AI's capability as a reliable tool for autonomous normal abnormal classification, pathology localization, and segmentation. This scalable AI model addresses diagnostic gaps in underserved areas, optimizing radiology workflows and enhancing patient care across diverse healthcare settings in India.
comment: 27 pages , 8 figures
♻ ☆ Muographic Image Upsampling with Machine Learning for Built Infrastructure Applications
The civil engineering industry faces a critical need for innovative non-destructive evaluation methods, particularly for ageing critical infrastructure, such as bridges, where current techniques fall short. Muography, a non-invasive imaging technique, constructs three-dimensional density maps by detecting interactions of naturally occurring cosmic-ray muons within the scanned volume. Cosmic-ray muons provide deep penetration and inherent safety due to their high momenta and natural source. However, the technology's reliance on this source results in constrained muon flux, leading to prolonged acquisition times, noisy reconstructions and image interpretation challenges. To address these limitations, we developed a two-model deep learning approach. First, we employed a conditional Wasserstein generative adversarial network with gradient penalty (cWGAN-GP) to perform predictive upsampling of undersampled muography images. Using the Structural Similarity Index Measure (SSIM), 1-day sampled images matched the perceptual qualities of a 21-day image, while the Peak Signal-to-Noise Ratio (PSNR) indicated noise improvement equivalent to 31 days of sampling. A second cWGAN-GP model, trained for semantic segmentation, quantitatively assessed the upsampling model's impact on concrete sample features. This model achieved segmentation of rebar grids and tendon ducts, with Dice-S{\o}rensen accuracy coefficients of 0.8174 and 0.8663. Notably, it could mitigate or remove z-plane smearing artifacts caused by muography's inverse imaging problem. Both models were trained on a comprehensive Geant4 Monte-Carlo simulation dataset reflecting realistic civil infrastructure scenarios. Our results demonstrate significant improvements in acquisition speed and image quality, marking a substantial step toward making muography more practical for reinforced concrete infrastructure monitoring applications.
♻ ☆ Pairwise-Constrained Implicit Functions for 3D Human Heart Modelling
Accurate 3D models of the human heart require not only correct outer surfaces but also realistic inner structures, such as the ventricles, atria, and myocardial layers. Approaches relying on implicit surfaces, such as signed distance functions (SDFs), are primarily designed for single watertight surfaces, making them ill-suited for multi-layered anatomical structures. They often produce gaps or overlaps in shared boundaries. Unsigned distance functions (UDFs) can model non-watertight geometries but are harder to optimize, while voxel-based methods are limited in resolution and struggle to produce smooth, anatomically realistic surfaces. We introduce a pairwise-constrained SDF approach that models the heart as a set of interdependent SDFs, each representing a distinct anatomical component. By enforcing proper contact between adjacent SDFs, we ensure that they form anatomically correct shared walls, preserving the internal structure of the heart and preventing overlaps, or unwanted gaps. Our method significantly improves inner structure accuracy over single-SDF, UDF-based, voxel-based, and segmentation-based reconstructions. We further demonstrate its generalizability by applying it to a vertebrae dataset, preventing unwanted contact between structures.
♻ ☆ AnySat: One Earth Observation Model for Many Resolutions, Scales, and Modalities
Geospatial models must adapt to the diversity of Earth observation data in terms of resolutions, scales, and modalities. However, existing approaches expect fixed input configurations, which limits their practical applicability. We propose AnySat, a multimodal model based on joint embedding predictive architecture (JEPA) and scale-adaptive spatial encoders, allowing us to train a single model on highly heterogeneous data in a self-supervised manner. To demonstrate the advantages of this unified approach, we compile GeoPlex, a collection of $5$ multimodal datasets with varying characteristics and $11$ distinct sensors. We then train a single powerful model on these diverse datasets simultaneously. Once fine-tuned or probed, we reach state-of-the-art results on the test sets of GeoPlex and for $6$ external datasets across various environment monitoring tasks: land cover mapping, tree species identification, crop type classification, change detection, climate type classification, and segmentation of flood, burn scar, and deforestation. The code and models are available at https://github.com/gastruc/AnySat.
♻ ☆ Sparse Dictionary Learning for Image Recovery by Iterative Shrinkage
In this paper we study the sparse coding problem in the context of sparse dictionary learning for image recovery. To this end, we consider and compare several state-of-the-art sparse optimization methods constructed using the shrinkage operation. As the mathematical setting of these methods, we consider an online approach as algorithmical basis together with the basis pursuit denoising problem that arises by the convex optimization approach to the dictionary learning problem. By a dedicated construction of datasets and corresponding dictionaries, we study the effect of enlarging the underlying learning database on reconstruction quality making use of several error measures. Our study illuminates that the choice of the optimization method may be practically important in the context of availability of training data. In the context of different settings for training data as may be considered part of our study, we illuminate the computational efficiency of the assessed optimization methods.
comment: 19 pages, 5 Figures, IntelliSys 2025
♻ ☆ SAM-REF: Introducing Image-Prompt Synergy during Interaction for Detail Enhancement in the Segment Anything Model
Interactive segmentation is to segment the mask of the target object according to the user's interactive prompts. There are two mainstream strategies: early fusion and late fusion. Current specialist models utilize the early fusion strategy that encodes the combination of images and prompts to target the prompted objects, yet repetitive complex computations on the images result in high latency. Late fusion models extract image embeddings once and merge them with the prompts in later interactions. This strategy avoids redundant image feature extraction and improves efficiency significantly. A recent milestone is the Segment Anything Model (SAM). However, this strategy limits the models' ability to extract detailed information from the prompted target zone. To address this issue, we propose SAM-REF, a two-stage refinement framework that fully integrates images and prompts by using a lightweight refiner into the interaction of late fusion, which combines the accuracy of early fusion and maintains the efficiency of late fusion. Through extensive experiments, we show that our SAM-REF model outperforms the current state-of-the-art method in most metrics on segmentation quality without compromising efficiency.
♻ ☆ Loong: Generating Minute-level Long Videos with Autoregressive Language Models
It is desirable but challenging to generate content-rich long videos in the scale of minutes. Autoregressive large language models (LLMs) have achieved great success in generating coherent and long sequences of tokens in the domain of natural language processing, while the exploration of autoregressive LLMs for video generation is limited to generating short videos of several seconds. In this work, we conduct a deep analysis of the challenges that prevent autoregressive LLM-based video generators from generating long videos. Based on the observations and analysis, we propose Loong, a new autoregressive LLM-based video generator that can generate minute-long videos. Specifically, we model the text tokens and video tokens as a unified sequence for autoregressive LLMs and train the model from scratch. We propose progressive short-to-long training with a loss re-weighting scheme to mitigate the loss imbalance problem for long video training. We further investigate inference strategies, including video token re-encoding and sampling strategies, to diminish error accumulation during inference. Our proposed Loong can be trained on 10-second videos and be extended to generate minute-level long videos conditioned on text prompts, as demonstrated by the results. More samples are available at: https://yuqingwang1029.github.io/Loong-video.
comment: Project page: https://yuqingwang1029.github.io/Loong-video
♻ ☆ Dynamic Proxy Domain Generalizes the Crowd Localization by Better Binary Segmentation
Crowd localization targets on predicting each instance precise location within an image. Current advanced methods propose the pixel-wise binary classification to tackle the congested prediction, in which the pixel-level thresholds binarize the prediction confidence of being the pedestrian head. Since the crowd scenes suffer from extremely varying contents, counts and scales, the confidence-threshold learner is fragile and under-generalized encountering domain knowledge shift. Moreover, at the most time, the target domain is agnostic in training. Hence, it is imperative to exploit how to enhance the generalization of confidence-threshold locator to the latent target domain. In this paper, we propose a Dynamic Proxy Domain (DPD) method to generalize the learner under domain shift. Concretely, based on the theoretical analysis to the generalization error risk upper bound on the latent target domain to a binary classifier, we propose to introduce a generated proxy domain to facilitate generalization. Then, based on the theory, we design a DPD algorithm which is composed by a training paradigm and proxy domain generator to enhance the domain generalization of the confidence-threshold learner. Besides, we conduct our method on five kinds of domain shift scenarios, demonstrating the effectiveness on generalizing the crowd localization. Our code will be available at https://github.com/zhangda1018/DPD.
♻ ☆ Parallelized Autoregressive Visual Generation CVPR 2025
Autoregressive models have emerged as a powerful approach for visual generation but suffer from slow inference speed due to their sequential token-by-token prediction process. In this paper, we propose a simple yet effective approach for parallelized autoregressive visual generation that improves generation efficiency while preserving the advantages of autoregressive modeling. Our key insight is that parallel generation depends on visual token dependencies-tokens with weak dependencies can be generated in parallel, while strongly dependent adjacent tokens are difficult to generate together, as their independent sampling may lead to inconsistencies. Based on this observation, we develop a parallel generation strategy that generates distant tokens with weak dependencies in parallel while maintaining sequential generation for strongly dependent local tokens. Our approach can be seamlessly integrated into standard autoregressive models without modifying the architecture or tokenizer. Experiments on ImageNet and UCF-101 demonstrate that our method achieves a 3.6x speedup with comparable quality and up to 9.5x speedup with minimal quality degradation across both image and video generation tasks. We hope this work will inspire future research in efficient visual generation and unified autoregressive modeling. Project page: https://yuqingwang1029.github.io/PAR-project.
comment: CVPR 2025 Accepted - Project Page: https://yuqingwang1029.github.io/PAR-project
♻ ☆ Adapting Video Diffusion Models for Time-Lapse Microscopy
We present a domain adaptation of video diffusion models to generate highly realistic time-lapse microscopy videos of cell division in HeLa cells. Although state-of-the-art generative video models have advanced significantly for natural videos, they remain underexplored in microscopy domains. To address this gap, we fine-tune a pretrained video diffusion model on microscopy-specific sequences, exploring three conditioning strategies: (1) text prompts derived from numeric phenotypic measurements (e.g., proliferation rates, migration speeds, cell-death frequencies), (2) direct numeric embeddings of phenotype scores, and (3) image-conditioned generation, where an initial microscopy frame is extended into a complete video sequence. Evaluation using biologically meaningful morphological, proliferation, and migration metrics demonstrates that fine-tuning substantially improves realism and accurately captures critical cellular behaviors such as mitosis and migration. Notably, the fine-tuned model also generalizes beyond the training horizon, generating coherent cell dynamics even in extended sequences. However, precisely controlling specific phenotypic characteristics remains challenging, highlighting opportunities for future work to enhance conditioning methods. Our results demonstrate the potential for domain-specific fine-tuning of generative video models to produce biologically plausible synthetic microscopy data, supporting applications such as in-silico hypothesis testing and data augmentation.
♻ ☆ Can DeepSeek Reason Like a Surgeon? An Empirical Evaluation for Vision-Language Understanding in Robotic-Assisted Surgery
DeepSeek series have demonstrated outstanding performance in general scene understanding, question-answering (QA), and text generation tasks, owing to its efficient training paradigm and strong reasoning capabilities. In this study, we investigate the dialogue capabilities of the DeepSeek model in robotic surgery scenarios, focusing on tasks such as Single Phrase QA, Visual QA, and Detailed Description. The Single Phrase QA tasks further include sub-tasks such as surgical instrument recognition, action understanding, and spatial position analysis. We conduct extensive evaluations using publicly available datasets, including EndoVis18 and CholecT50, along with their corresponding dialogue data. Our comprehensive evaluation results indicate that, when provided with specific prompts, DeepSeek-V3 performs well in surgical instrument and tissue recognition tasks However, DeepSeek-V3 exhibits significant limitations in spatial position analysis and struggles to understand surgical actions accurately. Additionally, our findings reveal that, under general prompts, DeepSeek-V3 lacks the ability to effectively analyze global surgical concepts and fails to provide detailed insights into surgical scenarios. Based on our observations, we argue that the DeepSeek-V3 is not ready for vision-language tasks in surgical contexts without fine-tuning on surgery-specific datasets.
comment: Technical Report
♻ ☆ Cyclic Contrastive Knowledge Transfer for Open-Vocabulary Object Detection ICLR 2025
In pursuit of detecting unstinted objects that extend beyond predefined categories, prior arts of open-vocabulary object detection (OVD) typically resort to pretrained vision-language models (VLMs) for base-to-novel category generalization. However, to mitigate the misalignment between upstream image-text pretraining and downstream region-level perception, additional supervisions are indispensable, eg, image-text pairs or pseudo annotations generated via self-training strategies. In this work, we propose CCKT-Det trained without any extra supervision. The proposed framework constructs a cyclic and dynamic knowledge transfer from language queries and visual region features extracted from VLMs, which forces the detector to closely align with the visual-semantic space of VLMs. Specifically, 1) we prefilter and inject semantic priors to guide the learning of queries, and 2) introduce a regional contrastive loss to improve the awareness of queries on novel objects. CCKT-Det can consistently improve performance as the scale of VLMs increases, all while requiring the detector at a moderate level of computation overhead. Comprehensive experimental results demonstrate that our method achieves performance gain of +2.9% and +10.2% AP50 over previous state-of-the-arts on the challenging COCO benchmark, both without and with a stronger teacher model.
comment: 10 pages, 5 figures, Published as a conference paper at ICLR 2025
♻ ☆ VGRP-Bench: Visual Grid Reasoning Puzzle Benchmark for Large Vision-Language Models
Large Vision-Language Models (LVLMs) struggle with puzzles, which require precise perception, rule comprehension, and logical reasoning. Assessing and enhancing their performance in this domain is crucial, as it reflects their ability to engage in structured reasoning - an essential skill for real-world problem-solving. However, existing benchmarks primarily evaluate pre-trained models without additional training or fine-tuning, often lack a dedicated focus on reasoning, and fail to establish a systematic evaluation framework. To address these limitations, we introduce VGRP-Bench, a Visual Grid Reasoning Puzzle Benchmark featuring 20 diverse puzzles. VGRP-Bench spans multiple difficulty levels, and includes extensive experiments not only on existing chat LVLMs (e.g., GPT-4o), but also on reasoning LVLMs (e.g., Gemini-Thinking). Our results reveal that even the state-of-the-art LVLMs struggle with these puzzles, highlighting fundamental limitations in their puzzle-solving capabilities. Most importantly, through systematic experiments, we identify and analyze key factors influencing LVLMs' puzzle-solving performance, including the number of clues, grid size, and rule complexity. Furthermore, we explore two Supervised Fine-Tuning (SFT) strategies that can be used in post-training: SFT on solutions (S-SFT) and SFT on synthetic reasoning processes (R-SFT). While both methods significantly improve performance on trained puzzles, they exhibit limited generalization to unseen ones. We will release VGRP-Bench to facilitate further research on LVLMs for complex, real-world problem-solving. Project page: https://yufan-ren.com/subpage/VGRP-Bench/.
comment: 8 pages; Project page: https://yufan-ren.com/subpage/VGRP-Bench/
♻ ☆ EmoHead: Emotional Talking Head via Manipulating Semantic Expression Parameters
Generating emotion-specific talking head videos from audio input is an important and complex challenge for human-machine interaction. However, emotion is highly abstract concept with ambiguous boundaries, and it necessitates disentangled expression parameters to generate emotionally expressive talking head videos. In this work, we present EmoHead to synthesize talking head videos via semantic expression parameters. To predict expression parameter for arbitrary audio input, we apply an audio-expression module that can be specified by an emotion tag. This module aims to enhance correlation from audio input across various emotions. Furthermore, we leverage pre-trained hyperplane to refine facial movements by probing along the vertical direction. Finally, the refined expression parameters regularize neural radiance fields and facilitate the emotion-consistent generation of talking head videos. Experimental results demonstrate that semantic expression parameters lead to better reconstruction quality and controllability.
♻ ☆ Towards Calibrated Deep Clustering Network ICLR 2025
Deep clustering has exhibited remarkable performance; however, the over confidence problem, i.e., the estimated confidence for a sample belonging to a particular cluster greatly exceeds its actual prediction accuracy, has been over looked in prior research. To tackle this critical issue, we pioneer the development of a calibrated deep clustering framework. Specifically, we propose a novel dual head (calibration head and clustering head) deep clustering model that can effectively calibrate the estimated confidence and the actual accuracy. The calibration head adjusts the overconfident predictions of the clustering head, generating prediction confidence that matches the model learning status. Then, the clustering head dynamically selects reliable high-confidence samples estimated by the calibration head for pseudo-label self-training. Additionally, we introduce an effective network initialization strategy that enhances both training speed and network robustness. The effectiveness of the proposed calibration approach and initialization strategy are both endorsed with solid theoretical guarantees. Extensive experiments demonstrate the proposed calibrated deep clustering model not only surpasses the state-of-the-art deep clustering methods by 5x on average in terms of expected calibration error, but also significantly outperforms them in terms of clustering accuracy. The code is available at https://github.com/ChengJianH/CDC.
comment: The paper is accepted by ICLR 2025
♻ ☆ ArchCAD-400K: An Open Large-Scale Architectural CAD Dataset and New Baseline for Panoptic Symbol Spotting
Recognizing symbols in architectural CAD drawings is critical for various advanced engineering applications. In this paper, we propose a novel CAD data annotation engine that leverages intrinsic attributes from systematically archived CAD drawings to automatically generate high-quality annotations, thus significantly reducing manual labeling efforts. Utilizing this engine, we construct ArchCAD-400K, a large-scale CAD dataset consisting of 413,062 chunks from 5538 highly standardized drawings, making it over 26 times larger than the largest existing CAD dataset. ArchCAD-400K boasts an extended drawing diversity and broader categories, offering line-grained annotations. Furthermore, we present a new baseline model for panoptic symbol spotting, termed Dual-Pathway Symbol Spotter (DPSS). It incorporates an adaptive fusion module to enhance primitive features with complementary image features, achieving state-of-the-art performance and enhanced robustness. Extensive experiments validate the effectiveness of DPSS, demonstrating the value of ArchCAD-400K and its potential to drive innovation in architectural design and construction.
♻ ☆ Augmenting Multimodal LLMs with Self-Reflective Tokens for Knowledge-based Visual Question Answering CVPR 2025
Multimodal LLMs (MLLMs) are the natural extension of large language models to handle multimodal inputs, combining text and image data. They have recently garnered attention due to their capability to address complex tasks involving both modalities. However, their effectiveness is limited to the knowledge acquired during training, which restricts their practical utility. In this work, we introduce a novel method to enhance the adaptability of MLLMs by integrating external knowledge sources. Our proposed model, Reflective LLaVA (ReflectiVA), utilizes reflective tokens to dynamically determine the need for external knowledge and predict the relevance of information retrieved from an external database. Tokens are trained following a two-stage two-model training recipe. This ultimately enables the MLLM to manage external knowledge while preserving fluency and performance on tasks where external knowledge is not needed. Through our experiments, we demonstrate the efficacy of ReflectiVA for knowledge-based visual question answering, highlighting its superior performance compared to existing methods. Source code and trained models are publicly available at https://aimagelab.github.io/ReflectiVA.
comment: CVPR 2025
♻ ☆ NVS-Solver: Video Diffusion Model as Zero-Shot Novel View Synthesizer ICLR 2025
By harnessing the potent generative capabilities of pre-trained large video diffusion models, we propose NVS-Solver, a new novel view synthesis (NVS) paradigm that operates \textit{without} the need for training. NVS-Solver adaptively modulates the diffusion sampling process with the given views to enable the creation of remarkable visual experiences from single or multiple views of static scenes or monocular videos of dynamic scenes. Specifically, built upon our theoretical modeling, we iteratively modulate the score function with the given scene priors represented with warped input views to control the video diffusion process. Moreover, by theoretically exploring the boundary of the estimation error, we achieve the modulation in an adaptive fashion according to the view pose and the number of diffusion steps. Extensive evaluations on both static and dynamic scenes substantiate the significant superiority of our NVS-Solver over state-of-the-art methods both quantitatively and qualitatively. \textit{ Source code in } \href{https://github.com/ZHU-Zhiyu/NVS_Solver}{https://github.com/ZHU-Zhiyu/NVS$\_$Solver}.
comment: ICLR 2025
♻ ☆ Modeling Visual Memorability Assessment with Autoencoders Reveals Characteristics of Memorable Images
Image memorability refers to the phenomenon where certain images are more likely to be remembered than others. It is a quantifiable and intrinsic image attribute, defined as the likelihood of an image being remembered upon a single exposure. Despite advances in understanding human visual perception and memory, it is unclear what features contribute to an image's memorability. To address this question, we propose a deep learning-based computational modeling approach. We employ an autoencoder-based approach built on VGG16 convolutional neural networks (CNNs) to learn latent representations of images. The model is trained in a single-epoch setting, mirroring human memory experiments that assess recall after a single exposure. We examine the relationship between autoencoder reconstruction error and memorability, analyze the distinctiveness of latent space representations, and develop a multi-layer perceptron (MLP) model for memorability prediction. Additionally, we perform interpretability analysis using Integrated Gradients (IG) to identify the key visual characteristics that contribute to memorability. Our results demonstrate a significant correlation between the images' memorability score and the autoencoder's reconstruction error, as well as the robust predictive performance of its latent representations. Distinctiveness in these representations correlated significantly with memorability. Additionally, certain visual characteristics were identified as features contributing to image memorability in our model. These findings suggest that autoencoder-based representations capture fundamental aspects of image memorability, providing new insights into the computational modeling of human visual memory.
♻ ☆ Adversarial Example Soups: Improving Transferability and Stealthiness for Free
Transferable adversarial examples cause practical security risks since they can mislead a target model without knowing its internal knowledge. A conventional recipe for maximizing transferability is to keep only the optimal adversarial example from all those obtained in the optimization pipeline. In this paper, for the first time, we revisit this convention and demonstrate that those discarded, sub-optimal adversarial examples can be reused to boost transferability. Specifically, we propose ``Adversarial Example Soups'' (AES), with AES-tune for averaging discarded adversarial examples in hyperparameter tuning and AES-rand for stability testing. In addition, our AES is inspired by ``model soups'', which averages weights of multiple fine-tuned models for improved accuracy without increasing inference time. Extensive experiments validate the global effectiveness of our AES, boosting 10 state-of-the-art transfer attacks and their combinations by up to 13\% against 10 diverse (defensive) target models. We also show the possibility of generalizing AES to other types, \textit{e.g.}, directly averaging multiple in-the-wild adversarial examples that yield comparable success. A promising byproduct of AES is the improved stealthiness of adversarial examples since the perturbation variances are naturally reduced.
comment: Accepted by TIFS 2025
♻ ☆ Repurposing SAM for User-Defined Semantics Aware Segmentation
The Segment Anything Model (SAM) excels at generating precise object masks from input prompts but lacks semantic awareness, failing to associate its generated masks with specific object categories. To address this limitation, we propose U-SAM, a novel framework that imbibes semantic awareness into SAM, enabling it to generate targeted masks for user-specified object categories. Given only object class names as input from the user, U-SAM provides pixel-level semantic annotations for images without requiring any labeled/unlabeled samples from the test data distribution. Our approach leverages synthetically generated or web crawled images to accumulate semantic information about the desired object classes. We then learn a mapping function between SAM's mask embeddings and object class labels, effectively enhancing SAM with granularity-specific semantic recognition capabilities. As a result, users can obtain meaningful and targeted segmentation masks for specific objects they request, rather than generic and unlabeled masks. We evaluate U-SAM on PASCAL VOC 2012 and MSCOCO-80, achieving significant mIoU improvements of +17.95% and +5.20%, respectively, over state-of-the-art methods. By transforming SAM into a semantically aware segmentation model, U-SAM offers a practical and flexible solution for pixel-level annotation across diverse and unseen domains in a resource-constrained environment.
♻ ☆ Modeling Multiple Normal Action Representations for Error Detection in Procedural Tasks
Error detection in procedural activities is essential for consistent and correct outcomes in AR-assisted and robotic systems. Existing methods often focus on temporal ordering errors or rely on static prototypes to represent normal actions. However, these approaches typically overlook the common scenario where multiple, distinct actions are valid following a given sequence of executed actions. This leads to two issues: (1) the model cannot effectively detect errors using static prototypes when the inference environment or action execution distribution differs from training; and (2) the model may also use the wrong prototypes to detect errors if the ongoing action label is not the same as the predicted one. To address this problem, we propose an Adaptive Multiple Normal Action Representation (AMNAR) framework. AMNAR predicts all valid next actions and reconstructs their corresponding normal action representations, which are compared against the ongoing action to detect errors. Extensive experiments demonstrate that AMNAR achieves state-of-the-art performance, highlighting the effectiveness of AMNAR and the importance of modeling multiple valid next actions in error detection. The code is available at https://github.com/iSEE-Laboratory/AMNAR.
♻ ☆ Distilling Multi-view Diffusion Models into 3D Generators
We introduce DD3G, a formulation that Distills a multi-view Diffusion model (MV-DM) into a 3D Generator using gaussian splatting. DD3G compresses and integrates extensive visual and spatial geometric knowledge from the MV-DM by simulating its ordinary differential equation (ODE) trajectory, ensuring the distilled generator generalizes better than those trained solely on 3D data. Unlike previous amortized optimization approaches, we align the MV-DM and 3D generator representation spaces to transfer the teacher's probabilistic flow to the student, thus avoiding inconsistencies in optimization objectives caused by probabilistic sampling. The introduction of probabilistic flow and the coupling of various attributes in 3D Gaussians introduce challenges in the generation process. To tackle this, we propose PEPD, a generator consisting of Pattern Extraction and Progressive Decoding phases, which enables efficient fusion of probabilistic flow and converts a single image into 3D Gaussians within 0.06 seconds. Furthermore, to reduce knowledge loss and overcome sparse-view supervision, we design a joint optimization objective that ensures the quality of generated samples through explicit supervision and implicit verification. Leveraging existing 2D generation models, we compile 120k high-quality RGBA images for distillation. Experiments on synthetic and public datasets demonstrate the effectiveness of our method. Our project is available at: https://qinbaigao.github.io/DD3G_project/
♻ ☆ STEREO: A Two-Stage Framework for Adversarially Robust Concept Erasing from Text-to-Image Diffusion Models CVPR-2025
The rapid proliferation of large-scale text-to-image diffusion (T2ID) models has raised serious concerns about their potential misuse in generating harmful content. Although numerous methods have been proposed for erasing undesired concepts from T2ID models, they often provide a false sense of security; concept-erased models (CEMs) can still be manipulated via adversarial attacks to regenerate the erased concept. While a few robust concept erasure methods based on adversarial training have emerged recently, they compromise on utility (generation quality for benign concepts) to achieve robustness and/or remain vulnerable to advanced embedding space attacks. These limitations stem from the failure of robust CEMs to thoroughly search for "blind spots" in the embedding space. To bridge this gap, we propose STEREO, a novel two-stage framework that employs adversarial training as a first step rather than the only step for robust concept erasure. In the first stage, STEREO employs adversarial training as a vulnerability identification mechanism to search thoroughly enough. In the second robustly erase once stage, STEREO introduces an anchor-concept-based compositional objective to robustly erase the target concept in a single fine-tuning stage, while minimizing the degradation of model utility. We benchmark STEREO against seven state-of-the-art concept erasure methods, demonstrating its superior robustness to both white-box and black-box attacks, while largely preserving utility.
comment: Accepted to CVPR-2025. Code: https://github.com/koushiksrivats/robust-concept-erasing
♻ ☆ VidCRAFT3: Camera, Object, and Lighting Control for Image-to-Video Generation
Recent image-to-video generation methods have demonstrated success in enabling control over one or two visual elements, such as camera motion or object motion. However, these methods are unable to offer control over multiple visual elements due to limitations in data and network efficacy. In this paper, we introduce VidCRAFT3, a novel framework for precise image-to-video generation that enables control over camera motion, object motion, and lighting direction simultaneously. VidCRAFT3 integrates three core components: Image2Cloud generates 3D point cloud from a reference image; ObjMotionNet encodes sparse object trajectories using multi-scale optical flow features; and Spatial Triple-Attention Transformer incorporates lighting direction embeddings via parallel cross-attention modules. Additionally, we introduce the VideoLightingDirection dataset, providing synthetic yet realistic video clips with accurate per-frame lighting direction annotations, effectively mitigating the lack of annotated real-world datasets. We further adopt a three-stage training strategy, ensuring robust learning even without joint multi-element annotations. Extensive experiments show that VidCRAFT3 produces high-quality video content, outperforming state-of-the-art methods in control granularity and visual coherence. Code and data will be publicly available.
♻ ☆ A-MESS: Anchor based Multimodal Embedding with Semantic Synchronization for Multimodal Intent Recognition ICME2025
In the domain of multimodal intent recognition (MIR), the objective is to recognize human intent by integrating a variety of modalities, such as language text, body gestures, and tones. However, existing approaches face difficulties adequately capturing the intrinsic connections between the modalities and overlooking the corresponding semantic representations of intent. To address these limitations, we present the Anchor-based Multimodal Embedding with Semantic Synchronization (A-MESS) framework. We first design an Anchor-based Multimodal Embedding (A-ME) module that employs an anchor-based embedding fusion mechanism to integrate multimodal inputs. Furthermore, we develop a Semantic Synchronization (SS) strategy with the Triplet Contrastive Learning pipeline, which optimizes the process by synchronizing multimodal representation with label descriptions produced by the large language model. Comprehensive experiments indicate that our A-MESS achieves state-of-the-art and provides substantial insight into multimodal representation and downstream tasks.
comment: Accepted by ICME2025
♻ ☆ Lux Post Facto: Learning Portrait Performance Relighting with Conditional Video Diffusion and a Hybrid Dataset CVPR 2025
Video portrait relighting remains challenging because the results need to be both photorealistic and temporally stable. This typically requires a strong model design that can capture complex facial reflections as well as intensive training on a high-quality paired video dataset, such as dynamic one-light-at-a-time (OLAT). In this work, we introduce Lux Post Facto, a novel portrait video relighting method that produces both photorealistic and temporally consistent lighting effects. From the model side, we design a new conditional video diffusion model built upon state-of-the-art pre-trained video diffusion model, alongside a new lighting injection mechanism to enable precise control. This way we leverage strong spatial and temporal generative capability to generate plausible solutions to the ill-posed relighting problem. Our technique uses a hybrid dataset consisting of static expression OLAT data and in-the-wild portrait performance videos to jointly learn relighting and temporal modeling. This avoids the need to acquire paired video data in different lighting conditions. Our extensive experiments show that our model produces state-of-the-art results both in terms of photorealism and temporal consistency.
comment: CVPR 2025
Machine Learning 133
Diffusion-Guided Gaussian Splatting for Large-Scale Unconstrained 3D Reconstruction and Novel View Synthesis WACV
Recent advancements in 3D Gaussian Splatting (3DGS) and Neural Radiance Fields (NeRF) have achieved impressive results in real-time 3D reconstruction and novel view synthesis. However, these methods struggle in large-scale, unconstrained environments where sparse and uneven input coverage, transient occlusions, appearance variability, and inconsistent camera settings lead to degraded quality. We propose GS-Diff, a novel 3DGS framework guided by a multi-view diffusion model to address these limitations. By generating pseudo-observations conditioned on multi-view inputs, our method transforms under-constrained 3D reconstruction problems into well-posed ones, enabling robust optimization even with sparse data. GS-Diff further integrates several enhancements, including appearance embedding, monocular depth priors, dynamic object modeling, anisotropy regularization, and advanced rasterization techniques, to tackle geometric and photometric challenges in real-world settings. Experiments on four benchmarks demonstrate that GS-Diff consistently outperforms state-of-the-art baselines by significant margins.
comment: WACV ULTRRA Workshop 2025
☆ Deep Representation Learning for Unsupervised Clustering of Myocardial Fiber Trajectories in Cardiac Diffusion Tensor Imaging MICCAI 2025
Understanding the complex myocardial architecture is critical for diagnosing and treating heart disease. However, existing methods often struggle to accurately capture this intricate structure from Diffusion Tensor Imaging (DTI) data, particularly due to the lack of ground truth labels and the ambiguous, intertwined nature of fiber trajectories. We present a novel deep learning framework for unsupervised clustering of myocardial fibers, providing a data-driven approach to identifying distinct fiber bundles. We uniquely combine a Bidirectional Long Short-Term Memory network to capture local sequential information along fibers, with a Transformer autoencoder to learn global shape features, with pointwise incorporation of essential anatomical context. Clustering these representations using a density-based algorithm identifies 33 to 62 robust clusters, successfully capturing the subtle distinctions in fiber trajectories with varying levels of granularity. Our framework offers a new, flexible, and quantitative way to analyze myocardial structure, achieving a level of delineation that, to our knowledge, has not been previously achieved, with potential applications in improving surgical planning, characterizing disease-related remodeling, and ultimately, advancing personalized cardiac care.
comment: 10 pages, 5 figures. Submitted to MICCAI 2025 (under review)
Efficient Federated Learning Tiny Language Models for Mobile Network Feature Prediction
In telecommunications, Autonomous Networks (ANs) automatically adjust configurations based on specific requirements (e.g., bandwidth) and available resources. These networks rely on continuous monitoring and intelligent mechanisms for self-optimization, self-repair, and self-protection, nowadays enhanced by Neural Networks (NNs) to enable predictive modeling and pattern recognition. Here, Federated Learning (FL) allows multiple AN cells - each equipped with NNs - to collaboratively train models while preserving data privacy. However, FL requires frequent transmission of large neural data and thus an efficient, standardized compression strategy for reliable communication. To address this, we investigate NNCodec, a Fraunhofer implementation of the ISO/IEC Neural Network Coding (NNC) standard, within a novel FL framework that integrates tiny language models (TLMs) for various mobile network feature prediction (e.g., ping, SNR or band frequency). Our experimental results on the Berlin V2X dataset demonstrate that NNCodec achieves transparent compression (i.e., negligible performance loss) while reducing communication overhead to below 1%, showing the effectiveness of combining NNC with FL in collaboratively learned autonomous mobile networks.
comment: Accepted at 2025 EuCNC & 6G Summit Poster Session
☆ A Unified Approach to Analysis and Design of Denoising Markov Models
Probabilistic generative models based on measure transport, such as diffusion and flow-based models, are often formulated in the language of Markovian stochastic dynamics, where the choice of the underlying process impacts both algorithmic design choices and theoretical analysis. In this paper, we aim to establish a rigorous mathematical foundation for denoising Markov models, a broad class of generative models that postulate a forward process transitioning from the target distribution to a simple, easy-to-sample distribution, alongside a backward process particularly constructed to enable efficient sampling in the reverse direction. Leveraging deep connections with nonequilibrium statistical mechanics and generalized Doob's $h$-transform, we propose a minimal set of assumptions that ensure: (1) explicit construction of the backward generator, (2) a unified variational objective directly minimizing the measure transport discrepancy, and (3) adaptations of the classical score-matching approach across diverse dynamics. Our framework unifies existing formulations of continuous and discrete diffusion models, identifies the most general form of denoising Markov models under certain regularity assumptions on forward generators, and provides a systematic recipe for designing denoising Markov models driven by arbitrary L\'evy-type processes. We illustrate the versatility and practical effectiveness of our approach through novel denoising Markov models employing geometric Brownian motion and jump processes as forward dynamics, highlighting the framework's potential flexibility and capability in modeling complex distributions.
☆ Hessian-aware Training for Enhancing DNNs Resilience to Parameter Corruptions
Deep neural networks are not resilient to parameter corruptions: even a single-bitwise error in their parameters in memory can cause an accuracy drop of over 10%, and in the worst cases, up to 99%. This susceptibility poses great challenges in deploying models on computing platforms, where adversaries can induce bit-flips through software or bitwise corruptions may occur naturally. Most prior work addresses this issue with hardware or system-level approaches, such as integrating additional hardware components to verify a model's integrity at inference. However, these methods have not been widely deployed as they require infrastructure or platform-wide modifications. In this paper, we propose a new approach to addressing this issue: training models to be more resilient to bitwise corruptions to their parameters. Our approach, Hessian-aware training, promotes models with $flatter$ loss surfaces. We show that, while there have been training methods, designed to improve generalization through Hessian-based approaches, they do not enhance resilience to parameter corruptions. In contrast, models trained with our method demonstrate increased resilience to parameter corruptions, particularly with a 20$-$50% reduction in the number of bits whose individual flipping leads to a 90$-$100% accuracy drop. Moreover, we show the synergy between ours and existing hardware and system-level defenses.
comment: Pre-print
☆ Is the Reversal Curse a Binding Problem? Uncovering Limitations of Transformers from a Basic Generalization Failure
Despite their impressive capabilities, LLMs exhibit a basic generalization failure known as the Reversal Curse, where they struggle to learn reversible factual associations. Understanding why this occurs could help identify weaknesses in current models and advance their generalization and robustness. In this paper, we conjecture that the Reversal Curse in LLMs is a manifestation of the long-standing binding problem in cognitive science, neuroscience and AI. Specifically, we identify two primary causes of the Reversal Curse stemming from transformers' limitations in conceptual binding: the inconsistency and entanglements of concept representations. We perform a series of experiments that support these conjectures. Our exploration leads to a model design based on JEPA (Joint-Embedding Predictive Architecture) that for the first time breaks the Reversal Curse without side-stepping it with specialized data augmentation or non-causal masking, and moreover, generalization could be further improved by incorporating special memory layers that support disentangled concept representations. We demonstrate that the skill of reversal unlocks a new kind of memory integration that enables models to solve large-scale arithmetic reasoning problems via parametric forward-chaining, outperforming frontier LLMs based on non-parametric memory and prolonged explicit reasoning.
comment: Code and data: https://github.com/OSU-NLP-Group/reversal-curse-binding
☆ Gen-C: Populating Virtual Worlds with Generative Crowds
Over the past two decades, researchers have made significant advancements in simulating human crowds, yet these efforts largely focus on low-level tasks like collision avoidance and a narrow range of behaviors such as path following and flocking. However, creating compelling crowd scenes demands more than just functional movement-it requires capturing high-level interactions between agents, their environment, and each other over time. To address this issue, we introduce Gen-C, a generative model to automate the task of authoring high-level crowd behaviors. Gen-C bypasses the labor-intensive and challenging task of collecting and annotating real crowd video data by leveraging a large language model (LLM) to generate a limited set of crowd scenarios, which are subsequently expanded and generalized through simulations to construct time-expanded graphs that model the actions and interactions of virtual agents. Our method employs two Variational Graph Auto-Encoders guided by a condition prior network: one dedicated to learning a latent space for graph structures (agent interactions) and the other for node features (agent actions and navigation). This setup enables the flexible generation of dynamic crowd interactions. The trained model can be conditioned on natural language, empowering users to synthesize novel crowd behaviors from text descriptions. We demonstrate the effectiveness of our approach in two scenarios, a University Campus and a Train Station, showcasing its potential for populating diverse virtual environments with agents exhibiting varied and dynamic behaviors that reflect complex interactions and high-level decision-making patterns.
comment: 11 pages
☆ Client Selection in Federated Learning with Data Heterogeneity and Network Latencies
Federated learning (FL) is a distributed machine learning paradigm where multiple clients conduct local training based on their private data, then the updated models are sent to a central server for global aggregation. The practical convergence of FL is challenged by multiple factors, with the primary hurdle being the heterogeneity among clients. This heterogeneity manifests as data heterogeneity concerning local data distribution and latency heterogeneity during model transmission to the server. While prior research has introduced various efficient client selection methods to alleviate the negative impacts of either of these heterogeneities individually, efficient methods to handle real-world settings where both these heterogeneities exist simultaneously do not exist. In this paper, we propose two novel theoretically optimal client selection schemes that can handle both these heterogeneities. Our methods involve solving simple optimization problems every round obtained by minimizing the theoretical runtime to convergence. Empirical evaluations on 9 datasets with non-iid data distributions, 2 practical delay distributions, and non-convex neural network models demonstrate that our algorithms are at least competitive to and at most 20 times better than best existing baselines.
☆ Representing Flow Fields with Divergence-Free Kernels for Reconstruction
Accurately reconstructing continuous flow fields from sparse or indirect measurements remains an open challenge, as existing techniques often suffer from oversmoothing artifacts, reliance on heterogeneous architectures, and the computational burden of enforcing physics-informed losses in implicit neural representations (INRs). In this paper, we introduce a novel flow field reconstruction framework based on divergence-free kernels (DFKs), which inherently enforce incompressibility while capturing fine structures without relying on hierarchical or heterogeneous representations. Through qualitative analysis and quantitative ablation studies, we identify the matrix-valued radial basis functions derived from Wendland's $\mathcal{C}^4$ polynomial (DFKs-Wen4) as the optimal form of analytically divergence-free approximation for velocity fields, owing to their favorable numerical properties, including compact support, positive definiteness, and second-order differentiablility. Experiments across various reconstruction tasks, spanning data compression, inpainting, super-resolution, and time-continuous flow inference, has demonstrated that DFKs-Wen4 outperform INRs and other divergence-free representations in both reconstruction accuracy and computational efficiency while requiring the fewest trainable parameters.
☆ Benchmarking Synthetic Tabular Data: A Multi-Dimensional Evaluation Framework
Evaluating the quality of synthetic data remains a key challenge for ensuring privacy and utility in data-driven research. In this work, we present an evaluation framework that quantifies how well synthetic data replicates original distributional properties while ensuring privacy. The proposed approach employs a holdout-based benchmarking strategy that facilitates quantitative assessment through low- and high-dimensional distribution comparisons, embedding-based similarity measures, and nearest-neighbor distance metrics. The framework supports various data types and structures, including sequential and contextual information, and enables interpretable quality diagnostics through a set of standardized metrics. These contributions aim to support reproducibility and methodological consistency in benchmarking of synthetic data generation techniques. The code of the framework is available at https://github.com/mostly-ai/mostlyai-qa.
comment: 16 pages, 7 figures, 1 table
☆ Accelerating IoV Intrusion Detection: Benchmarking GPU-Accelerated vs CPU-Based ML Libraries
The Internet of Vehicles (IoV) may face challenging cybersecurity attacks that may require sophisticated intrusion detection systems, necessitating a rapid development and response system. This research investigates the performance advantages of GPU-accelerated libraries (cuML) compared to traditional CPU-based implementations (scikit-learn), focusing on the speed and efficiency required for machine learning models used in IoV threat detection environments. The comprehensive evaluations conducted employ four machine learning approaches (Random Forest, KNN, Logistic Regression, XGBoost) across three distinct IoV security datasets (OTIDS, GIDS, CICIoV2024). Our findings demonstrate that GPU-accelerated implementations dramatically improved computational efficiency, with training times reduced by a factor of up to 159 and prediction speeds accelerated by up to 95 times compared to traditional CPU processing, all while preserving detection accuracy. This remarkable performance breakthrough empowers researchers and security specialists to harness GPU acceleration for creating faster, more effective threat detection systems that meet the urgent real-time security demands of today's connected vehicle networks.
comment: CIIT 2025 22nd International Conference on Informatics and Information Technologies (CIIT)
☆ Graphically Speaking: Unmasking Abuse in Social Media with Conversation Insights
Detecting abusive language in social media conversations poses significant challenges, as identifying abusiveness often depends on the conversational context, characterized by the content and topology of preceding comments. Traditional Abusive Language Detection (ALD) models often overlook this context, which can lead to unreliable performance metrics. Recent Natural Language Processing (NLP) methods that integrate conversational context often depend on limited and simplified representations, and report inconsistent results. In this paper, we propose a novel approach that utilize graph neural networks (GNNs) to model social media conversations as graphs, where nodes represent comments, and edges capture reply structures. We systematically investigate various graph representations and context windows to identify the optimal configuration for ALD. Our GNN model outperform both context-agnostic baselines and linear context-aware methods, achieving significant improvements in F1 scores. These findings demonstrate the critical role of structured conversational context and establish GNNs as a robust framework for advancing context-aware abusive language detection.
☆ Analysis of an Idealized Stochastic Polyak Method and its Application to Black-Box Model Distillation
We provide a general convergence theorem of an idealized stochastic Polyak step size called SPS$^*$. Besides convexity, we only assume a local expected gradient bound, that includes locally smooth and locally Lipschitz losses as special cases. We refer to SPS$^*$ as idealized because it requires access to the loss for every training batch evaluated at a solution. It is also ideal, in that it achieves the optimal lower bound for globally Lipschitz function, and is the first Polyak step size to have an $O(1/\sqrt{t})$ anytime convergence in the smooth setting. We show how to combine SPS$^*$ with momentum to achieve the same favorable rates for the last iterate. We conclude with several experiments to validate our theory, and a more practical setting showing how we can distill a teacher GPT-2 model into a smaller student model without any hyperparameter tuning.
comment: 44 pages, 7 figures
☆ Multi-fidelity Parameter Estimation Using Conditional Diffusion Models
We present a multi-fidelity method for uncertainty quantification of parameter estimates in complex systems, leveraging generative models trained to sample the target conditional distribution. In the Bayesian inference setting, traditional parameter estimation methods rely on repeated simulations of potentially expensive forward models to determine the posterior distribution of the parameter values, which may result in computationally intractable workflows. Furthermore, methods such as Markov Chain Monte Carlo (MCMC) necessitate rerunning the entire algorithm for each new data observation, further increasing the computational burden. Hence, we propose a novel method for efficiently obtaining posterior distributions of parameter estimates for high-fidelity models given data observations of interest. The method first constructs a low-fidelity, conditional generative model capable of amortized Bayesian inference and hence rapid posterior density approximation over a wide-range of data observations. When higher accuracy is needed for a specific data observation, the method employs adaptive refinement of the density approximation. It uses outputs from the low-fidelity generative model to refine the parameter sampling space, ensuring efficient use of the computationally expensive high-fidelity solver. Subsequently, a high-fidelity, unconditional generative model is trained to achieve greater accuracy in the target posterior distribution. Both low- and high- fidelity generative models enable efficient sampling from the target posterior and do not require repeated simulation of the high-fidelity forward model. We demonstrate the effectiveness of the proposed method on several numerical examples, including cases with multi-modal densities, as well as an application in plasma physics for a runaway electron simulation model.
☆ CoRAG: Collaborative Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) models excel in knowledge-intensive tasks, especially under few-shot learning constraints. We introduce CoRAG, a framework extending RAG to collaborative settings, where clients jointly train a shared model using a collaborative passage store. To evaluate CoRAG, we introduce CRAB, a benchmark for collaborative homogeneous open-domain question answering. Our experiments demonstrate that CoRAG consistently outperforms both parametric collaborative learning methods and locally trained RAG models in low-resource scenarios. Further analysis reveals the critical importance of relevant passages within the shared store, the surprising benefits of incorporating irrelevant passages, and the potential for hard negatives to negatively impact performance. This introduces a novel consideration in collaborative RAG: the trade-off between leveraging a collectively enriched knowledge base and the potential risk of incorporating detrimental passages from other clients. Our findings underscore the viability of CoRAG, while also highlighting key design challenges and promising avenues for future research.
comment: NAACL 2024
☆ CO-DEFEND: Continuous Decentralized Federated Learning for Secure DoH-Based Threat Detection
The use of DNS over HTTPS (DoH) tunneling by an attacker to hide malicious activity within encrypted DNS traffic poses a serious threat to network security, as it allows malicious actors to bypass traditional monitoring and intrusion detection systems while evading detection by conventional traffic analysis techniques. Machine Learning (ML) techniques can be used to detect DoH tunnels; however, their effectiveness relies on large datasets containing both benign and malicious traffic. Sharing such datasets across entities is challenging due to privacy concerns. In this work, we propose CO-DEFEND (Continuous Decentralized Federated Learning for Secure DoH-Based Threat Detection), a Decentralized Federated Learning (DFL) framework that enables multiple entities to collaboratively train a classification machine learning model while preserving data privacy and enhancing resilience against single points of failure. The proposed DFL framework, which is scalable and privacy-preserving, is based on a federation process that allows multiple entities to train online their local models using incoming DoH flows in real time as they are processed by the entity. In addition, we adapt four classical machine learning algorithms, Support Vector Machines (SVM), Logistic Regression (LR), Decision Trees (DT), and Random Forest (RF), for federated scenarios, comparing their results with more computationally complex alternatives such as neural networks. We compare our proposed method by using the dataset CIRA-CIC-DoHBrw-2020 with existing machine learning approaches to demonstrate its effectiveness in detecting malicious DoH tunnels and the benefits it brings.
comment: 15 pages, 8 figures, 4 tables
☆ Architect Your Landscape Approach (AYLA) for Optimizations in Deep Learning
Stochastic Gradient Descent (SGD) and its variants, such as ADAM, are foundational to deep learning optimization, adjusting model parameters using fixed or adaptive learning rates based on loss function gradients. However, these methods often face challenges in balancing adaptability and efficiency in non-convex, high-dimensional settings. This paper introduces AYLA, a novel optimization technique that enhances training dynamics through loss function transformations. By applying a tunable power-law transformation, AYLA preserves critical points while scaling loss values to amplify gradient sensitivity, accelerating convergence. We further propose a dynamic (effective) learning rate that adapts to the transformed loss, improving optimization efficiency. Empirical tests on finding minimum of a synthetic non-convex polynomial, a non-convex curve-fitting dataset, and digit classification (MNIST) demonstrate that AYLA surpasses SGD and ADAM in convergence speed and stability. This approach redefines the loss landscape for better optimization outcomes, offering a promising advancement for deep neural networks and can be applied to any optimization method and potentially improve the performance of it.
☆ Interpreting Emergent Planning in Model-Free Reinforcement Learning ICLR 2025
We present the first mechanistic evidence that model-free reinforcement learning agents can learn to plan. This is achieved by applying a methodology based on concept-based interpretability to a model-free agent in Sokoban -- a commonly used benchmark for studying planning. Specifically, we demonstrate that DRC, a generic model-free agent introduced by Guez et al. (2019), uses learned concept representations to internally formulate plans that both predict the long-term effects of actions on the environment and influence action selection. Our methodology involves: (1) probing for planning-relevant concepts, (2) investigating plan formation within the agent's representations, and (3) verifying that discovered plans (in the agent's representations) have a causal effect on the agent's behavior through interventions. We also show that the emergence of these plans coincides with the emergence of a planning-like property: the ability to benefit from additional test-time compute. Finally, we perform a qualitative analysis of the planning algorithm learned by the agent and discover a strong resemblance to parallelized bidirectional search. Our findings advance understanding of the internal mechanisms underlying planning behavior in agents, which is important given the recent trend of emergent planning and reasoning capabilities in LLMs through RL
comment: ICLR 2025 oral
☆ Corner-Grasp: Multi-Action Grasp Detection and Active Gripper Adaptation for Grasping in Cluttered Environments
Robotic grasping is an essential capability, playing a critical role in enabling robots to physically interact with their surroundings. Despite extensive research, challenges remain due to the diverse shapes and properties of target objects, inaccuracies in sensing, and potential collisions with the environment. In this work, we propose a method for effectively grasping in cluttered bin-picking environments where these challenges intersect. We utilize a multi-functional gripper that combines both suction and finger grasping to handle a wide range of objects. We also present an active gripper adaptation strategy to minimize collisions between the gripper hardware and the surrounding environment by actively leveraging the reciprocating suction cup and reconfigurable finger motion. To fully utilize the gripper's capabilities, we built a neural network that detects suction and finger grasp points from a single input RGB-D image. This network is trained using a larger-scale synthetic dataset generated from simulation. In addition to this, we propose an efficient approach to constructing a real-world dataset that facilitates grasp point detection on various objects with diverse characteristics. Experiment results show that the proposed method can grasp objects in cluttered bin-picking scenarios and prevent collisions with environmental constraints such as a corner of the bin. Our proposed method demonstrated its effectiveness in the 9th Robotic Grasping and Manipulation Competition (RGMC) held at ICRA 2024.
comment: 11 pages, 14 figures
☆ Enhanced Diffusion Sampling via Extrapolation with Multiple ODE Solutions ICLR 2025
Diffusion probabilistic models (DPMs), while effective in generating high-quality samples, often suffer from high computational costs due to their iterative sampling process. To address this, we propose an enhanced ODE-based sampling method for DPMs inspired by Richardson extrapolation, which reduces numerical error and improves convergence rates. Our method, RX-DPM, leverages multiple ODE solutions at intermediate time steps to extrapolate the denoised prediction in DPMs. This significantly enhances the accuracy of estimations for the final sample while maintaining the number of function evaluations (NFEs). Unlike standard Richardson extrapolation, which assumes uniform discretization of the time grid, we develop a more general formulation tailored to arbitrary time step scheduling, guided by local truncation error derived from a baseline sampling method. The simplicity of our approach facilitates accurate estimation of numerical solutions without significant computational overhead, and allows for seamless and convenient integration into various DPMs and solvers. Additionally, RX-DPM provides explicit error estimates, effectively demonstrating the faster convergence as the leading error term's order increases. Through a series of experiments, we show that the proposed method improves the quality of generated samples without requiring additional sampling iterations.
comment: ICLR 2025
☆ An Approach to Technical AGI Safety and Security
Artificial General Intelligence (AGI) promises transformative benefits but also presents significant risks. We develop an approach to address the risk of harms consequential enough to significantly harm humanity. We identify four areas of risk: misuse, misalignment, mistakes, and structural risks. Of these, we focus on technical approaches to misuse and misalignment. For misuse, our strategy aims to prevent threat actors from accessing dangerous capabilities, by proactively identifying dangerous capabilities, and implementing robust security, access restrictions, monitoring, and model safety mitigations. To address misalignment, we outline two lines of defense. First, model-level mitigations such as amplified oversight and robust training can help to build an aligned model. Second, system-level security measures such as monitoring and access control can mitigate harm even if the model is misaligned. Techniques from interpretability, uncertainty estimation, and safer design patterns can enhance the effectiveness of these mitigations. Finally, we briefly outline how these ingredients could be combined to produce safety cases for AGI systems.
☆ shapr: Explaining Machine Learning Models with Conditional Shapley Values in R and Python
This paper introduces the shapr package, a versatile tool for generating Shapley value explanations for machine learning and statistical regression models in both R and Python. The package emphasizes conditional Shapley value estimates, providing a comprehensive range of approaches for accurately capturing feature dependencies, which is crucial for correct model interpretation and lacking in similar software. In addition to regular tabular data, the shapr R-package includes specialized functionality for explaining time series forecasts. The package offers a minimal set of user functions with sensible defaults for most use cases while providing extensive flexibility for advanced users to fine-tune computations. Additional features include parallelized computations, iterative estimation with convergence detection, and rich visualization tools. shapr also extends its functionality to compute causal and asymmetric Shapley values when causal information is available. In addition, we introduce the shaprpy Python library, which brings core capabilities of shapr to the Python ecosystem. Overall, the package aims to enhance the interpretability of predictive models within a powerful and user-friendly framework.
☆ A Randomized Zeroth-Order Hierarchical Framework for Heterogeneous Federated Learning
Heterogeneity in federated learning (FL) is a critical and challenging aspect that significantly impacts model performance and convergence. In this paper, we propose a novel framework by formulating heterogeneous FL as a hierarchical optimization problem. This new framework captures both local and global training process through a bilevel formulation and is capable of the following: (i) addressing client heterogeneity through a personalized learning framework; (ii) capturing pre-training process on server's side; (iii) updating global model through nonstandard aggregation; (iv) allowing for nonidentical local steps; and (v) capturing clients' local constraints. We design and analyze an implicit zeroth-order FL method (ZO-HFL), provided with nonasymptotic convergence guarantees for both the server-agent and the individual client-agents, and asymptotic guarantees for both the server-agent and client-agents in an almost sure sense. Notably, our method does not rely on standard assumptions in heterogeneous FL, such as the bounded gradient dissimilarity condition. We implement our method on image classification tasks and compare with other methods under different heterogeneous settings.
☆ Autonomous optical navigation for DESTINY+: Enhancing misalignment robustness in flyby observations with a rotating telescope
DESTINY+ is an upcoming JAXA Epsilon medium-class mission to flyby multiple asteroids including Phaethon. As an asteroid flyby observation instrument, a telescope mechanically capable of single-axis rotation, named TCAP, is mounted on the spacecraft to track and observe the target asteroids during flyby. As in past flyby missions utilizing rotating telescopes, TCAP is also used as a navigation camera for autonomous optical navigation during the closest-approach phase. To mitigate the degradation of the navigation accuracy, past missions performed calibration of the navigation camera's alignment before starting optical navigation. However, such calibration requires significant operational time to complete and imposes constraints on the operation sequence. From the above background, the DESTINY+ team has studied the possibility of reducing operational costs by allowing TCAP alignment errors to remain. This paper describes an autonomous optical navigation algorithm robust to the misalignment of rotating telescopes, proposed in this context. In the proposed method, the misalignment of the telescope is estimated simultaneously with the spacecraft's orbit relative to the flyby target. To deal with the nonlinearity between the misalignment and the observation value, the proposed method utilizes the unscented Kalman filter, instead of the extended Kalman filter widely used in past studies. The proposed method was evaluated with numerical simulations on a PC and with hardware-in-the-loop simulation, taking the Phaethon flyby in the DESTINY+ mission as an example. The validation results suggest that the proposed method can mitigate the misalignment-induced degradation of the optical navigation accuracy with reasonable computational costs suited for onboard computers.
comment: 19 pages, 25 figures, submitted to Acta Astronautica
☆ Inference of hidden common driver dynamics by anisotropic self-organizing neural networks
We are introducing a novel approach to infer the underlying dynamics of hidden common drivers, based on analyzing time series data from two driven dynamical systems. The inference relies on time-delay embedding, estimation of the intrinsic dimension of the observed systems, and their mutual dimension. A key component of our approach is a new anisotropic training technique applied to Kohonen's self-organizing map, which effectively learns the attractor of the driven system and separates it into submanifolds corresponding to the self-dynamics and shared dynamics. To demonstrate the effectiveness of our method, we conducted simulated experiments using different chaotic maps in a setup, where two chaotic maps were driven by a third map with nonlinear coupling. The inferred time series exhibited high correlation with the time series of the actual hidden common driver, in contrast to the observed systems. The quality of our reconstruction were compared and shown to be superior to several other methods that are intended to find the common features behind the observed time series, including linear methods like PCA and ICA as well as nonlinear methods like dynamical component analysis, canonical correlation analysis and even deep canonical correlation analysis.
☆ Barrier Certificates for Unknown Systems with Latent States and Polynomial Dynamics using Bayesian Inference
Certifying safety in dynamical systems is crucial, but barrier certificates - widely used to verify that system trajectories remain within a safe region - typically require explicit system models. When dynamics are unknown, data-driven methods can be used instead, yet obtaining a valid certificate requires rigorous uncertainty quantification. For this purpose, existing methods usually rely on full-state measurements, limiting their applicability. This paper proposes a novel approach for synthesizing barrier certificates for unknown systems with latent states and polynomial dynamics. A Bayesian framework is employed, where a prior in state-space representation is updated using input-output data via a targeted marginal Metropolis-Hastings sampler. The resulting samples are used to construct a candidate barrier certificate through a sum-of-squares program. It is shown that if the candidate satisfies the required conditions on a test set of additional samples, it is also valid for the true, unknown system with high probability. The approach and its probabilistic guarantees are illustrated through a numerical simulation.
comment: Submitted to the 64th IEEE Conference on Decision and Control
☆ A Novel Approach To Implementing Knowledge Distillation In Tsetlin Machines
The Tsetlin Machine (TM) is a propositional logic based model that uses conjunctive clauses to learn patterns from data. As with typical neural networks, the performance of a Tsetlin Machine is largely dependent on its parameter count, with a larger number of parameters producing higher accuracy but slower execution. Knowledge distillation in neural networks transfers information from an already-trained teacher model to a smaller student model to increase accuracy in the student without increasing execution time. We propose a novel approach to implementing knowledge distillation in Tsetlin Machines by utilizing the probability distributions of each output sample in the teacher to provide additional context to the student. Additionally, we propose a novel clause-transfer algorithm that weighs the importance of each clause in the teacher and initializes the student with only the most essential data. We find that our algorithm can significantly improve performance in the student model without negatively impacting latency in the tested domains of image recognition and text classification.
comment: Master's Thesis. 75 pages, 30 figures
☆ Rethinking industrial artificial intelligence: a unified foundation framework
Recent advancement in industrial artificial intelligence (AI) is reshaping the industry, driving smarter manufacturing, predictive maintenance, and intelligent decision-making. However, existing approaches often focus primarily on algorithms and models, overlooking the importance of systematically integrating domain knowledge, data, and models to ensure more comprehensive and effective AI solutions. Therefore, the effective development and deployment of Industrial AI solutions require a more comprehensive and systematic approach. To address this gap, this paper summarizes previous research and rethinks the role of industrial AI and presents a unified industrial AI foundation framework comprising three core modules: knowledge module, data module, and model module. These modules help to extend and enhance the industrial AI methodology platform, supporting various industrial applications. In addition, a case study on rotating machinery diagnosis demonstrates the framework's effectiveness, and several future directions are highlighted for the development of the industrial AI foundation framework.
comment: The paper submitted to IJAMD, the International Journal of AI for Materials and Design, has been accepted
☆ BlenderGym: Benchmarking Foundational Model Systems for Graphics Editing CVPR 2025
3D graphics editing is crucial in applications like movie production and game design, yet it remains a time-consuming process that demands highly specialized domain expertise. Automating this process is challenging because graphical editing requires performing a variety of tasks, each requiring distinct skill sets. Recently, vision-language models (VLMs) have emerged as a powerful framework for automating the editing process, but their development and evaluation are bottlenecked by the lack of a comprehensive benchmark that requires human-level perception and presents real-world editing complexity. In this work, we present BlenderGym, the first comprehensive VLM system benchmark for 3D graphics editing. BlenderGym evaluates VLM systems through code-based 3D reconstruction tasks. We evaluate closed- and open-source VLM systems and observe that even the state-of-the-art VLM system struggles with tasks relatively easy for human Blender users. Enabled by BlenderGym, we study how inference scaling techniques impact VLM's performance on graphics editing tasks. Notably, our findings reveal that the verifier used to guide the scaling of generation can itself be improved through inference scaling, complementing recent insights on inference scaling of LLM generation in coding and math tasks. We further show that inference compute is not uniformly effective and can be optimized by strategically distributing it between generation and verification.
comment: CVPR 2025 Accepted
☆ CLaP -- State Detection from Time Series
The ever-growing amount of sensor data from machines, smart devices, and the environment leads to an abundance of high-resolution, unannotated time series (TS). These recordings encode the recognizable properties of latent states and transitions from physical phenomena that can be modelled as abstract processes. The unsupervised localization and identification of these states and their transitions is the task of time series state detection (TSSD). We introduce CLaP, a new, highly accurate and efficient algorithm for TSSD. It leverages the predictive power of time series classification for TSSD in an unsupervised setting by applying novel self-supervision techniques to detect whether data segments emerge from the same state or not. To this end, CLaP cross-validates a classifier with segment-labelled subsequences to quantify confusion between segments. It merges labels from segments with high confusion, representing the same latent state, if this leads to an increase in overall classification quality. We conducted an experimental evaluation using 391 TS from four benchmarks and found CLaP to be significantly more precise in detecting states than five state-of-the-art competitors. It achieves the best accuracy-runtime tradeoff and is scalable to large TS. We provide a Python implementation of CLaP, which can be deployed in TS analysis workflows.
☆ Enhancing Interpretability in Generative AI Through Search-Based Data Influence Analysis
Generative AI models offer powerful capabilities but often lack transparency, making it difficult to interpret their output. This is critical in cases involving artistic or copyrighted content. This work introduces a search-inspired approach to improve the interpretability of these models by analysing the influence of training data on their outputs. Our method provides observational interpretability by focusing on a model's output rather than on its internal state. We consider both raw data and latent-space embeddings when searching for the influence of data items in generated content. We evaluate our method by retraining models locally and by demonstrating the method's ability to uncover influential subsets in the training data. This work lays the groundwork for future extensions, including user-based evaluations with domain experts, which is expected to improve observational interpretability further.
☆ Learning with Imperfect Models: When Multi-step Prediction Mitigates Compounding Error
Compounding error, where small prediction mistakes accumulate over time, presents a major challenge in learning-based control. For example, this issue often limits the performance of model-based reinforcement learning and imitation learning. One common approach to mitigate compounding error is to train multi-step predictors directly, rather than relying on autoregressive rollout of a single-step model. However, it is not well understood when the benefits of multi-step prediction outweigh the added complexity of learning a more complicated model. In this work, we provide a rigorous analysis of this trade-off in the context of linear dynamical systems. We show that when the model class is well-specified and accurately captures the system dynamics, single-step models achieve lower asymptotic prediction error. On the other hand, when the model class is misspecified due to partial observability, direct multi-step predictors can significantly reduce bias and thus outperform single-step approaches. These theoretical results are supported by numerical experiments, wherein we also (a) empirically evaluate an intermediate strategy which trains a single-step model using a multi-step loss and (b) evaluate performance of single step and multi-step predictors in a closed loop control setting.
☆ KD$^{2}$M: An unifying framework for feature knowledge distillation
Knowledge Distillation (KD) seeks to transfer the knowledge of a teacher, towards a student neural net. This process is often done by matching the networks' predictions (i.e., their output), but, recently several works have proposed to match the distributions of neural nets' activations (i.e., their features), a process known as \emph{distribution matching}. In this paper, we propose an unifying framework, Knowledge Distillation through Distribution Matching (KD$^{2}$M), which formalizes this strategy. Our contributions are threefold. We i) provide an overview of distribution metrics used in distribution matching, ii) benchmark on computer vision datasets, and iii) derive new theoretical results for KD.
comment: 8 pages, 2 figures, 1 table, under review
☆ A Two-Timescale Approach for Wireless Federated Learning with Parameter Freezing and Power Control
Federated learning (FL) enables distributed devices to train a shared machine learning (ML) model collaboratively while protecting their data privacy. However, the resource-limited mobile devices suffer from intensive computation-and-communication costs of model parameters. In this paper, we observe the phenomenon that the model parameters tend to be stabilized long before convergence during training process. Based on this observation, we propose a two-timescale FL framework by joint optimization of freezing stabilized parameters and controlling transmit power for the unstable parameters to balance the energy consumption and convergence. First, we analyze the impact of model parameter freezing and unreliable transmission on the convergence rate. Next, we formulate a two-timescale optimization problem of parameter freezing percentage and transmit power to minimize the model convergence error subject to the energy budget. To solve this problem, we decompose it into parallel sub-problems and decompose each sub-problem into two different timescales problems using the Lyapunov optimization method. The optimal parameter freezing and power control strategies are derived in an online fashion. Experimental results demonstrate the superiority of the proposed scheme compared with the benchmark schemes.
comment: 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, including reprinting, republishing, or reuse in other works. This work has been accepted to IEEE Transactions on Mobile Computing
☆ High Dimensional Bayesian Optimization using Lasso Variable Selection
Bayesian optimization (BO) is a leading method for optimizing expensive black-box optimization and has been successfully applied across various scenarios. However, BO suffers from the curse of dimensionality, making it challenging to scale to high-dimensional problems. Existing work has adopted a variable selection strategy to select and optimize only a subset of variables iteratively. Although this approach can mitigate the high-dimensional challenge in BO, it still leads to sample inefficiency. To address this issue, we introduce a novel method that identifies important variables by estimating the length scales of Gaussian process kernels. Next, we construct an effective search region consisting of multiple subspaces and optimize the acquisition function within this region, focusing on only the important variables. We demonstrate that our proposed method achieves cumulative regret with a sublinear growth rate in the worst case while maintaining computational efficiency. Experiments on high-dimensional synthetic functions and real-world problems show that our method achieves state-of-the-art performance.
comment: Accepted at The 28th International Conference on Artificial Intelligence and Statistics
☆ Stable Structure Learning with HC-Stable and Tabu-Stable Algorithms
Many Bayesian Network structure learning algorithms are unstable, with the learned graph sensitive to arbitrary dataset artifacts, such as the ordering of columns (i.e., variable order). PC-Stable attempts to address this issue for the widely-used PC algorithm, prompting researchers to use the "stable" version instead. However, this problem seems to have been overlooked for score-based algorithms. In this study, we show that some widely-used score-based algorithms, as well as hybrid and constraint-based algorithms, including PC-Stable, suffer from the same issue. We propose a novel solution for score-based greedy hill-climbing that eliminates instability by determining a stable node order, leading to consistent results regardless of variable ordering. Two implementations, HC-Stable and Tabu-Stable, are introduced. Tabu-Stable achieves the highest BIC scores across all networks, and the highest accuracy for categorical networks. These results highlight the importance of addressing instability in structure learning and provide a robust and practical approach for future applications. This extends the scope and impact of our previous work presented at Probabilistic Graphical Models 2024 by incorporating continuous variables. The implementation, along with usage instructions, is freely available on GitHub at https://github.com/causal-iq/discovery.
☆ Enlightenment Period Improving DNN Performance
In the early stage of deep neural network training, the loss decreases rapidly before gradually leveling off. Extensive research has shown that during this stage, the model parameters undergo significant changes and their distribution is largely established. Existing studies suggest that the introduction of noise during early training can degrade model performance. We identify a critical "enlightenment period" encompassing up to the first 4% of the training cycle (1--20 epochs for 500-epoch training schedules), a phase characterized by intense parameter fluctuations and heightened noise sensitivity. Our findings reveal that strategically reducing noise during this brief phase--by disabling data augmentation techniques such as Mixup or removing high-loss samples--leads to statistically significant improvements in model performance. This work opens new avenues for exploring the relationship between the enlightenment period and network training dynamics across diverse model architectures and tasks.
☆ Beyond Non-Expert Demonstrations: Outcome-Driven Action Constraint for Offline Reinforcement Learning
We address the challenge of offline reinforcement learning using realistic data, specifically non-expert data collected through sub-optimal behavior policies. Under such circumstance, the learned policy must be safe enough to manage \textit{distribution shift} while maintaining sufficient flexibility to deal with non-expert (bad) demonstrations from offline data.To tackle this issue, we introduce a novel method called Outcome-Driven Action Flexibility (ODAF), which seeks to reduce reliance on the empirical action distribution of the behavior policy, hence reducing the negative impact of those bad demonstrations.To be specific, a new conservative reward mechanism is developed to deal with {\it distribution shift} by evaluating actions according to whether their outcomes meet safety requirements - remaining within the state support area, rather than solely depending on the actions' likelihood based on offline data.Besides theoretical justification, we provide empirical evidence on widely used MuJoCo and various maze benchmarks, demonstrating that our ODAF method, implemented using uncertainty quantification techniques, effectively tolerates unseen transitions for improved "trajectory stitching," while enhancing the agent's ability to learn from realistic non-expert data.
☆ TransforMerger: Transformer-based Voice-Gesture Fusion for Robust Human-Robot Communication
As human-robot collaboration advances, natural and flexible communication methods are essential for effective robot control. Traditional methods relying on a single modality or rigid rules struggle with noisy or misaligned data as well as with object descriptions that do not perfectly fit the predefined object names (e.g. 'Pick that red object'). We introduce TransforMerger, a transformer-based reasoning model that infers a structured action command for robotic manipulation based on fused voice and gesture inputs. Our approach merges multimodal data into a single unified sentence, which is then processed by the language model. We employ probabilistic embeddings to handle uncertainty and we integrate contextual scene understanding to resolve ambiguous references (e.g., gestures pointing to multiple objects or vague verbal cues like "this"). We evaluate TransforMerger in simulated and real-world experiments, demonstrating its robustness to noise, misalignment, and missing information. Our results show that TransforMerger outperforms deterministic baselines, especially in scenarios requiring more contextual knowledge, enabling more robust and flexible human-robot communication. Code and datasets are available at: http://imitrob.ciirc.cvut.cz/publications/transformerger.
comment: 8 pages, 7 figures
☆ Sky of Unlearning (SoUL): Rewiring Federated Machine Unlearning via Selective Pruning
The Internet of Drones (IoD), where drones collaborate in data collection and analysis, has become essential for applications such as surveillance and environmental monitoring. Federated learning (FL) enables drones to train machine learning models in a decentralized manner while preserving data privacy. However, FL in IoD networks is susceptible to attacks like data poisoning and model inversion. Federated unlearning (FU) mitigates these risks by eliminating adversarial data contributions, preventing their influence on the model. This paper proposes sky of unlearning (SoUL), a federated unlearning framework that efficiently removes the influence of unlearned data while maintaining model performance. A selective pruning algorithm is designed to identify and remove neurons influential in unlearning but minimally impact the overall performance of the model. Simulations demonstrate that SoUL outperforms existing unlearning methods, achieves accuracy comparable to full retraining, and reduces computation and communication overhead, making it a scalable and efficient solution for resource-constrained IoD networks.
comment: 6 pages, 6 figures, IEEE International Conference on Communications (ICC 2025)
☆ A Causal Inference Framework for Data Rich Environments
We propose a formal model for counterfactual estimation with unobserved confounding in "data-rich" settings, i.e., where there are a large number of units and a large number of measurements per unit. Our model provides a bridge between the structural causal model view of causal inference common in the graphical models literature with that of the latent factor model view common in the potential outcomes literature. We show how classic models for potential outcomes and treatment assignments fit within our framework. We provide an identification argument for the average treatment effect, the average treatment effect on the treated, and the average treatment effect on the untreated. For any estimator that has a fast enough estimation error rate for a certain nuisance parameter, we establish it is consistent for these various causal parameters. We then show principal component regression is one such estimator that leads to consistent estimation, and we analyze the minimal smoothness required of the potential outcomes function for consistency.
☆ Satellite Edge Artificial Intelligence with Large Models: Architectures and Technologies
Driven by the growing demand for intelligent remote sensing applications, large artificial intelligence (AI) models pre-trained on large-scale unlabeled datasets and fine-tuned for downstream tasks have significantly improved learning performance for various downstream tasks due to their generalization capabilities. However, many specific downstream tasks, such as extreme weather nowcasting (e.g., downburst and tornado), disaster monitoring, and battlefield surveillance, require real-time data processing. Traditional methods via transferring raw data to ground stations for processing often cause significant issues in terms of latency and trustworthiness. To address these challenges, satellite edge AI provides a paradigm shift from ground-based to on-board data processing by leveraging the integrated communication-and-computation capabilities in space computing power networks (Space-CPN), thereby enhancing the timeliness, effectiveness, and trustworthiness for remote sensing downstream tasks. Moreover, satellite edge large AI model (LAM) involves both the training (i.e., fine-tuning) and inference phases, where a key challenge lies in developing computation task decomposition principles to support scalable LAM deployment in resource-constrained space networks with time-varying topologies. In this article, we first propose a satellite federated fine-tuning architecture to split and deploy the modules of LAM over space and ground networks for efficient LAM fine-tuning. We then introduce a microservice-empowered satellite edge LAM inference architecture that virtualizes LAM components into lightweight microservices tailored for multi-task multimodal inference. Finally, we discuss the future directions for enhancing the efficiency and scalability of satellite edge LAM, including task-oriented communication, brain-inspired computing, and satellite edge AI network optimization.
comment: 15 pages, 5 figures; submitted to SCIENCE CHINA Information Sciences for possible publication
☆ Sparse Gaussian Neural Processes
Despite significant recent advances in probabilistic meta-learning, it is common for practitioners to avoid using deep learning models due to a comparative lack of interpretability. Instead, many practitioners simply use non-meta-models such as Gaussian processes with interpretable priors, and conduct the tedious procedure of training their model from scratch for each task they encounter. While this is justifiable for tasks with a limited number of data points, the cubic computational cost of exact Gaussian process inference renders this prohibitive when each task has many observations. To remedy this, we introduce a family of models that meta-learn sparse Gaussian process inference. Not only does this enable rapid prediction on new tasks with sparse Gaussian processes, but since our models have clear interpretations as members of the neural process family, it also allows manual elicitation of priors in a neural process for the first time. In meta-learning regimes for which the number of observed tasks is small or for which expert domain knowledge is available, this offers a crucial advantage.
comment: Proceedings of the 7th Symposium on Advances in Approximate Bayesian Inference, PMLR, 2025. 25 pages, 6 figures, 5 tables
☆ Multi-Relation Graph-Kernel Strengthen Network for Graph-Level Clustering
Graph-level clustering is a fundamental task of data mining, aiming at dividing unlabeled graphs into distinct groups. However, existing deep methods that are limited by pooling have difficulty extracting diverse and complex graph structure features, while traditional graph kernel methods rely on exhaustive substructure search, unable to adaptive handle multi-relational data. This limitation hampers producing robust and representative graph-level embeddings. To address this issue, we propose a novel Multi-Relation Graph-Kernel Strengthen Network for Graph-Level Clustering (MGSN), which integrates multi-relation modeling with graph kernel techniques to fully leverage their respective advantages. Specifically, MGSN constructs multi-relation graphs to capture diverse semantic relationships between nodes and graphs, which employ graph kernel methods to extract graph similarity features, enriching the representation space. Moreover, a relation-aware representation refinement strategy is designed, which adaptively aligns multi-relation information across views while enhancing graph-level features through a progressive fusion process. Extensive experiments on multiple benchmark datasets demonstrate the superiority of MGSN over state-of-the-art methods. The results highlight its ability to leverage multi-relation structures and graph kernel features, establishing a new paradigm for robust graph-level clustering.
☆ Pro-DG: Procedural Diffusion Guidance for Architectural Facade Generation
We present Pro-DG, a framework for procedurally controllable photo-realistic facade generation that combines a procedural shape grammar with diffusion-based image synthesis. Starting from a single input image, we reconstruct its facade layout using grammar rules, then edit that structure through user-defined transformations. As facades are inherently multi-hierarchical structures, we introduce hierarchical matching procedure that aligns facade structures at different levels which is used to introduce control maps to guide a generative diffusion pipeline. This approach retains local appearance fidelity while accommodating large-scale edits such as floor duplication or window rearrangement. We provide a thorough evaluation, comparing Pro-DG against inpainting-based baselines and synthetic ground truths. Our user study and quantitative measurements indicate improved preservation of architectural identity and higher edit accuracy. Our novel method is the first to integrate neuro-symbolically derived shape-grammars for modeling with modern generative model and highlights the broader potential of such approaches for precise and controllable image manipulation.
comment: 12 pages, 13 figures
☆ Density estimation via mixture discrepancy and moments
With the aim of generalizing histogram statistics to higher dimensional cases, density estimation via discrepancy based sequential partition (DSP) has been proposed [D. Li, K. Yang, W. Wong, Advances in Neural Information Processing Systems (2016) 1099-1107] to learn an adaptive piecewise constant approximation defined on a binary sequential partition of the underlying domain, where the star discrepancy is adopted to measure the uniformity of particle distribution. However, the calculation of the star discrepancy is NP-hard and it does not satisfy the reflection invariance and rotation invariance either. To this end, we use the mixture discrepancy and the comparison of moments as a replacement of the star discrepancy, leading to the density estimation via mixture discrepancy based sequential partition (DSP-mix) and density estimation via moments based sequential partition (MSP), respectively. Both DSP-mix and MSP are computationally tractable and exhibit the reflection and rotation invariance. Numerical experiments in reconstructing the $d$-D mixture of Gaussians and Betas with $d=2, 3, \dots, 6$ demonstrate that DSP-mix and MSP both run approximately ten times faster than DSP while maintaining the same accuracy.
☆ Representation Bending for Large Language Model Safety
Large Language Models (LLMs) have emerged as powerful tools, but their inherent safety risks - ranging from harmful content generation to broader societal harms - pose significant challenges. These risks can be amplified by the recent adversarial attacks, fine-tuning vulnerabilities, and the increasing deployment of LLMs in high-stakes environments. Existing safety-enhancing techniques, such as fine-tuning with human feedback or adversarial training, are still vulnerable as they address specific threats and often fail to generalize across unseen attacks, or require manual system-level defenses. This paper introduces RepBend, a novel approach that fundamentally disrupts the representations underlying harmful behaviors in LLMs, offering a scalable solution to enhance (potentially inherent) safety. RepBend brings the idea of activation steering - simple vector arithmetic for steering model's behavior during inference - to loss-based fine-tuning. Through extensive evaluation, RepBend achieves state-of-the-art performance, outperforming prior methods such as Circuit Breaker, RMU, and NPO, with up to 95% reduction in attack success rates across diverse jailbreak benchmarks, all with negligible reduction in model usability and general capabilities.
☆ AI-Newton: A Concept-Driven Physical Law Discovery System without Prior Physical Knowledge
Current limitations in human scientific discovery necessitate a new research paradigm. While advances in artificial intelligence (AI) offer a highly promising solution, enabling AI to emulate human-like scientific discovery remains an open challenge. To address this, we propose AI-Newton, a concept-driven discovery system capable of autonomously deriving physical laws from raw data -- without supervision or prior physical knowledge. The system integrates a knowledge base and knowledge representation centered on physical concepts, along with an autonomous discovery workflow. As a proof of concept, we apply AI-Newton to a large set of Newtonian mechanics problems. Given experimental data with noise, the system successfully rediscovers fundamental laws, including Newton's second law, energy conservation and law of gravitation, using autonomously defined concepts. This achievement marks a significant step toward AI-driven autonomous scientific discovery.
comment: 31 pages, 5 figures
☆ Incorporating Coupling Knowledge into Echo State Networks for Learning Spatiotemporally Chaotic Dynamics
Machine learning methods have shown promise in learning chaotic dynamical systems, enabling model-free short-term prediction and attractor reconstruction. However, when applied to large-scale, spatiotemporally chaotic systems, purely data-driven machine learning methods often suffer from inefficiencies, as they require a large learning model size and a massive amount of training data to achieve acceptable performance. To address this challenge, we incorporate the spatial coupling structure of the target system as an inductive bias in the network design. Specifically, we introduce physics-guided clustered echo state networks, leveraging the efficiency of the echo state networks as a base model. Experimental results on benchmark chaotic systems demonstrate that our physics-informed method outperforms existing echo state network models in learning the target chaotic systems. Additionally, our models exhibit robustness to noise in training data and remain effective even when prior coupling knowledge is imperfect. This approach has the potential to enhance other machine learning methods.
comment: 16 pages, 12 figures
☆ DRAN: A Distribution and Relation Adaptive Network for Spatio-temporal Forecasting
Accurate predictions of spatio-temporal systems' states are crucial for tasks such as system management, control, and crisis prevention. However, the inherent time variance of spatio-temporal systems poses challenges to achieving accurate predictions whenever stationarity is not granted. To address non-stationarity frameworks, we propose a Distribution and Relation Adaptive Network (DRAN) capable of dynamically adapting to relation and distribution changes over time. While temporal normalization and de-normalization are frequently used techniques to adapt to distribution shifts, this operation is not suitable for the spatio-temporal context as temporal normalization scales the time series of nodes and possibly disrupts the spatial relations among nodes. In order to address this problem, we develop a Spatial Factor Learner (SFL) module that enables the normalization and de-normalization process in spatio-temporal systems. To adapt to dynamic changes in spatial relationships among sensors, we propose a Dynamic-Static Fusion Learner (DSFL) module that effectively integrates features learned from both dynamic and static relations through an adaptive fusion ratio mechanism. Furthermore, we introduce a Stochastic Learner to capture the noisy components of spatio-temporal representations. Our approach outperforms state of the art methods in weather prediction and traffic flows forecasting tasks. Experimental results show that our SFL efficiently preserves spatial relationships across various temporal normalization operations. Visualizations of the learned dynamic and static relations demonstrate that DSFL can capture both local and distant relationships between nodes. Moreover, ablation studies confirm the effectiveness of each component.
comment: 15 pages, 9 figures
☆ Domain Guidance: A Simple Transfer Approach for a Pre-trained Diffusion Model
Recent advancements in diffusion models have revolutionized generative modeling. However, the impressive and vivid outputs they produce often come at the cost of significant model scaling and increased computational demands. Consequently, building personalized diffusion models based on off-the-shelf models has emerged as an appealing alternative. In this paper, we introduce a novel perspective on conditional generation for transferring a pre-trained model. From this viewpoint, we propose *Domain Guidance*, a straightforward transfer approach that leverages pre-trained knowledge to guide the sampling process toward the target domain. Domain Guidance shares a formulation similar to advanced classifier-free guidance, facilitating better domain alignment and higher-quality generations. We provide both empirical and theoretical analyses of the mechanisms behind Domain Guidance. Our experimental results demonstrate its substantial effectiveness across various transfer benchmarks, achieving over a 19.6% improvement in FID and a 23.4% improvement in FD$_\text{DINOv2}$ compared to standard fine-tuning. Notably, existing fine-tuned models can seamlessly integrate Domain Guidance to leverage these benefits, without additional training.
☆ UAKNN: Label Distribution Learning via Uncertainty-Aware KNN
Label Distribution Learning (LDL) aims to characterize the polysemy of an instance by building a set of descriptive degrees corresponding to the instance. In recent years, researchers seek to model to obtain an accurate label distribution by using low-rank, label relations, expert experiences, and label uncertainty estimation. In general, these methods are based on algorithms with parameter learning in a linear (including kernel functions) or deep learning framework. However, these methods are difficult to deploy and update online due to high training costs, limited scalability, and outlier sensitivity. To address this problem, we design a novel LDL method called UAKNN, which has the advantages of the KNN algorithm with the benefits of uncertainty modeling. In addition, we provide solutions to the dilemma of existing work on extremely label distribution spaces. Extensive experiments demonstrate that our method is significantly competitive on 12 benchmarks and that the inference speed of the model is well-suited for industrial-level applications.
☆ MLKV: Efficiently Scaling up Large Embedding Model Training with Disk-based Key-Value Storage ICDE 2025
Many modern machine learning (ML) methods rely on embedding models to learn vector representations (embeddings) for a set of entities (embedding tables). As increasingly diverse ML applications utilize embedding models and embedding tables continue to grow in size and number, there has been a surge in the ad-hoc development of specialized frameworks targeted to train large embedding models for specific tasks. Although the scalability issues that arise in different embedding model training tasks are similar, each of these frameworks independently reinvents and customizes storage components for specific tasks, leading to substantial duplicated engineering efforts in both development and deployment. This paper presents MLKV, an efficient, extensible, and reusable data storage framework designed to address the scalability challenges in embedding model training, specifically data stall and staleness. MLKV augments disk-based key-value storage by democratizing optimizations that were previously exclusive to individual specialized frameworks and provides easy-to-use interfaces for embedding model training tasks. Extensive experiments on open-source workloads, as well as applications in eBay's payment transaction risk detection and seller payment risk detection, show that MLKV outperforms offloading strategies built on top of industrial-strength key-value stores by 1.6-12.6x. MLKV is open-source at https://github.com/llm-db/MLKV.
comment: To appear in ICDE 2025
☆ Approximate Agreement Algorithms for Byzantine Collaborative Learning
In Byzantine collaborative learning, $n$ clients in a peer-to-peer network collectively learn a model without sharing their data by exchanging and aggregating stochastic gradient estimates. Byzantine clients can prevent others from collecting identical sets of gradient estimates. The aggregation step thus needs to be combined with an efficient (approximate) agreement subroutine to ensure convergence of the training process. In this work, we study the geometric median aggregation rule for Byzantine collaborative learning. We show that known approaches do not provide theoretical guarantees on convergence or gradient quality in the agreement subroutine. To satisfy these theoretical guarantees, we present a hyperbox algorithm for geometric median aggregation. We practically evaluate our algorithm in both centralized and decentralized settings under Byzantine attacks on non-i.i.d. data. We show that our geometric median-based approaches can tolerate sign-flip attacks better than known mean-based approaches from the literature.
☆ A Robust Model-Based Approach for Continuous-Time Policy Evaluation with Unknown Lévy Process Dynamics
This paper develops a model-based framework for continuous-time policy evaluation (CTPE) in reinforcement learning, incorporating both Brownian and L\'evy noise to model stochastic dynamics influenced by rare and extreme events. Our approach formulates the policy evaluation problem as solving a partial integro-differential equation (PIDE) for the value function with unknown coefficients. A key challenge in this setting is accurately recovering the unknown coefficients in the stochastic dynamics, particularly when driven by L\'evy processes with heavy tail effects. To address this, we propose a robust numerical approach that effectively handles both unbiased and censored trajectory datasets. This method combines maximum likelihood estimation with an iterative tail correction mechanism, improving the stability and accuracy of coefficient recovery. Additionally, we establish a theoretical bound for the policy evaluation error based on coefficient recovery error. Through numerical experiments, we demonstrate the effectiveness and robustness of our method in recovering heavy-tailed L\'evy dynamics and verify the theoretical error analysis in policy evaluation.
comment: 27 pages, 9 figures
☆ Identifying Obfuscated Code through Graph-Based Semantic Analysis of Binary Code
Protecting sensitive program content is a critical issue in various situations, ranging from legitimate use cases to unethical contexts. Obfuscation is one of the most used techniques to ensure such protection. Consequently, attackers must first detect and characterize obfuscation before launching any attack against it. This paper investigates the problem of function-level obfuscation detection using graph-based approaches, comparing algorithms, from elementary baselines to promising techniques like GNN (Graph Neural Networks), on different feature choices. We consider various obfuscation types and obfuscators, resulting in two complex datasets. Our findings demonstrate that GNNs need meaningful features that capture aspects of function semantics to outperform baselines. Our approach shows satisfactory results, especially in a challenging 11-class classification task and in a practical malware analysis example.
comment: The 13th International Conference on Complex Networks and their Applications, Dec 2024, Istabul, Turkey
☆ A Prefixed Patch Time Series Transformer for Two-Point Boundary Value Problems in Three-Body Problems
Two-point boundary value problems for cislunar trajectories present significant challenges in circler restricted three body problem, making traditional analytical methods like Lambert's problem inapplicable. This study proposes a novel approach using a prefixed patch time series Transformer model that automates the solution of two-point boundary value problems from lunar flyby to arbitrary terminal conditions. Using prefix tokens of terminal conditions in our deep generative model enables solving boundary value problems in three-body dynamics. The training dataset consists of trajectories obtained through forward propagation rather than solving boundary value problems directly. The model demonstrates potential practical utility for preliminary trajectory design in cislunar mission scenarios.
☆ Probabilistic Curriculum Learning for Goal-Based Reinforcement Learning
Reinforcement learning (RL) -- algorithms that teach artificial agents to interact with environments by maximising reward signals -- has achieved significant success in recent years. These successes have been facilitated by advances in algorithms (e.g., deep Q-learning, deep deterministic policy gradients, proximal policy optimisation, trust region policy optimisation, and soft actor-critic) and specialised computational resources such as GPUs and TPUs. One promising research direction involves introducing goals to allow multimodal policies, commonly through hierarchical or curriculum reinforcement learning. These methods systematically decompose complex behaviours into simpler sub-tasks, analogous to how humans progressively learn skills (e.g. we learn to run before we walk, or we learn arithmetic before calculus). However, fully automating goal creation remains an open challenge. We present a novel probabilistic curriculum learning algorithm to suggest goals for reinforcement learning agents in continuous control and navigation tasks.
☆ BiSeg-SAM: Weakly-Supervised Post-Processing Framework for Boosting Binary Segmentation in Segment Anything Models
Accurate segmentation of polyps and skin lesions is essential for diagnosing colorectal and skin cancers. While various segmentation methods for polyps and skin lesions using fully supervised deep learning techniques have been developed, the pixel-level annotation of medical images by doctors is both time-consuming and costly. Foundational vision models like the Segment Anything Model (SAM) have demonstrated superior performance; however, directly applying SAM to medical segmentation may not yield satisfactory results due to the lack of domain-specific medical knowledge. In this paper, we propose BiSeg-SAM, a SAM-guided weakly supervised prompting and boundary refinement network for the segmentation of polyps and skin lesions. Specifically, we fine-tune SAM combined with a CNN module to learn local features. We introduce a WeakBox with two functions: automatically generating box prompts for the SAM model and using our proposed Multi-choice Mask-to-Box (MM2B) transformation for rough mask-to-box conversion, addressing the mismatch between coarse labels and precise predictions. Additionally, we apply scale consistency (SC) loss for prediction scale alignment. Our DetailRefine module enhances boundary precision and segmentation accuracy by refining coarse predictions using a limited amount of ground truth labels. This comprehensive approach enables BiSeg-SAM to achieve excellent multi-task segmentation performance. Our method demonstrates significant superiority over state-of-the-art (SOTA) methods when tested on five polyp datasets and one skin cancer dataset.
comment: 2024 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
☆ CASCADE Your Datasets for Cross-Mode Knowledge Retrieval of Language Models
Language models often struggle with cross-mode knowledge retrieval -- the ability to access knowledge learned in one format (mode) when queried in another. We demonstrate that models trained on multiple data sources (e.g., Wikipedia and TinyStories) exhibit significantly reduced accuracy when retrieving knowledge in a format different from its original training mode. This paper quantitatively investigates this phenomenon through a controlled study of random token sequence memorization across different modes. We first explore dataset rewriting as a solution, revealing that effective cross-mode retrieval requires prohibitively extensive rewriting efforts that follow a sigmoid-like relationship. As an alternative, we propose CASCADE, a novel pretraining algorithm that uses cascading datasets with varying sequence lengths to capture knowledge at different scales. Our experiments demonstrate that CASCADE outperforms dataset rewriting approaches, even when compressed into a single model with a unified loss function. This work provides both qualitative evidence of cross-mode retrieval limitations and a practical solution to enhance language models' ability to access knowledge independently of its presentational format.
☆ LLM-VPRF: Large Language Model Based Vector Pseudo Relevance Feedback
Vector Pseudo Relevance Feedback (VPRF) has shown promising results in improving BERT-based dense retrieval systems through iterative refinement of query representations. This paper investigates the generalizability of VPRF to Large Language Model (LLM) based dense retrievers. We introduce LLM-VPRF and evaluate its effectiveness across multiple benchmark datasets, analyzing how different LLMs impact the feedback mechanism. Our results demonstrate that VPRF's benefits successfully extend to LLM architectures, establishing it as a robust technique for enhancing dense retrieval performance regardless of the underlying models. This work bridges the gap between VPRF with traditional BERT-based dense retrievers and modern LLMs, while providing insights into their future directions.
☆ Solving Time-Fractional Partial Integro-Differential Equations Using Tensor Neural Networks
In this paper, we propose a novel machine learning method based on adaptive tensor neural network subspace to solve linear time-fractional diffusion-wave equations and nonlinear time-fractional partial integro-differential equations. In this framework, the tensor neural network and Gauss-Jacobi quadrature are effectively combined to construct a universal numerical scheme for the temporal Caputo derivative with orders spanning $ (0,1)$ and $(1,2)$. Specifically, in order to effectively utilize Gauss-Jacobi quadrature to discretize Caputo derivatives, we design the tensor neural network function multiplied by the function $t^{\mu}$ where the power $\mu$ is selected according to the parameters of the equations at hand. Finally, some numerical examples are provided to validate the efficiency and accuracy of the proposed tensor neural network-based machine learning method.
☆ Multi-convex Programming for Discrete Latent Factor Models Prototyping
Discrete latent factor models (DLFMs) are widely used in various domains such as machine learning, economics, neuroscience, psychology, etc. Currently, fitting a DLFM to some dataset relies on a customized solver for individual models, which requires lots of effort to implement and is limited to the targeted specific instance of DLFMs. In this paper, we propose a generic framework based on CVXPY, which allows users to specify and solve the fitting problem of a wide range of DLFMs, including both regression and classification models, within a very short script. Our framework is flexible and inherently supports the integration of regularization terms and constraints on the DLFM parameters and latent factors, such that the users can easily prototype the DLFM structure according to their dataset and application scenario. We introduce our open-source Python implementation and illustrate the framework in several examples.
☆ On the Role of Priors in Bayesian Causal Learning
In this work, we investigate causal learning of independent causal mechanisms from a Bayesian perspective. Confirming previous claims from the literature, we show in a didactically accessible manner that unlabeled data (i.e., cause realizations) do not improve the estimation of the parameters defining the mechanism. Furthermore, we observe the importance of choosing an appropriate prior for the cause and mechanism parameters, respectively. Specifically, we show that a factorized prior results in a factorized posterior, which resonates with Janzing and Sch\"olkopf's definition of independent causal mechanisms via the Kolmogorov complexity of the involved distributions and with the concept of parameter independence of Heckerman et al.
comment: 7 pages, 3 figures, accepted for publication in IEEE Transactions on Artificial Intelligence
☆ Teaching Robots to Handle Nuclear Waste: A Teleoperation-Based Learning Approach<
This paper presents a Learning from Teleoperation (LfT) framework that integrates human expertise with robotic precision to enable robots to autonomously perform skills learned from human operators. The proposed framework addresses challenges in nuclear waste handling tasks, which often involve repetitive and meticulous manipulation operations. By capturing operator movements and manipulation forces during teleoperation, the framework utilizes this data to train machine learning models capable of replicating and generalizing human skills. We validate the effectiveness of the LfT framework through its application to a power plug insertion task, selected as a representative scenario that is repetitive yet requires precise trajectory and force control. Experimental results highlight significant improvements in task efficiency, while reducing reliance on continuous operator involvement.
comment: Waste Management Symposia 2025
☆ ToolACE-R: Tool Learning with Adaptive Self-Refinement
Tool learning, which allows Large Language Models (LLMs) to leverage external tools for solving complex user tasks, has emerged as a promising avenue for extending model capabilities. However, current approaches primarily focus on data synthesis for fine-tuning LLMs to invoke tools effectively, largely ignoring how to fully stimulate the potential of the model. In this paper, we propose ToolACE-R, a novel method that introduces adaptive self-refinement for tool invocations. Our approach features a model-aware iterative training procedure that progressively incorporates more training samples based on the model's evolving capabilities. Additionally, it allows LLMs to iteratively refine their tool calls, optimizing performance without requiring external feedback. To further enhance computational efficiency, we integrate an adaptive mechanism when scaling the inference time, enabling the model to autonomously determine when to stop the refinement process. We conduct extensive experiments across several benchmark datasets, showing that ToolACE-R achieves competitive performance compared to advanced API-based models, even without any refinement. Furthermore, its performance can be further improved efficiently through adaptive self-refinement. Our results demonstrate the effectiveness of the proposed method, which is compatible with base models of various sizes, offering a promising direction for more efficient tool learning.
☆ Leveraging Generalizability of Image-to-Image Translation for Enhanced Adversarial Defense
In the rapidly evolving field of artificial intelligence, machine learning emerges as a key technology characterized by its vast potential and inherent risks. The stability and reliability of these models are important, as they are frequent targets of security threats. Adversarial attacks, first rigorously defined by Ian Goodfellow et al. in 2013, highlight a critical vulnerability: they can trick machine learning models into making incorrect predictions by applying nearly invisible perturbations to images. Although many studies have focused on constructing sophisticated defensive mechanisms to mitigate such attacks, they often overlook the substantial time and computational costs of training and maintaining these models. Ideally, a defense method should be able to generalize across various, even unseen, adversarial attacks with minimal overhead. Building on our previous work on image-to-image translation-based defenses, this study introduces an improved model that incorporates residual blocks to enhance generalizability. The proposed method requires training only a single model, effectively defends against diverse attack types, and is well-transferable between different target models. Experiments show that our model can restore the classification accuracy from near zero to an average of 72\% while maintaining competitive performance compared to state-of-the-art methods.
☆ Cause or Trigger? From Philosophy to Causal Modeling
Not much has been written about the role of triggers in the literature on causal reasoning, causal modeling, or philosophy. In this paper, we focus on describing triggers and causes in the metaphysical sense and on characterizations that differentiate them from each other. We carry out a philosophical analysis of these differences. From this, we formulate a definition that clearly differentiates triggers from causes and can be used for causal reasoning in natural sciences. We propose a mathematical model and the Cause-Trigger algorithm, which, based on given data to observable processes, is able to determine whether a process is a cause or a trigger of an effect. The possibility to distinguish triggers from causes directly from data makes the algorithm a useful tool in natural sciences using observational data, but also for real-world scenarios. For example, knowing the processes that trigger causes of a tropical storm could give politicians time to develop actions such as evacuation the population. Similarly, knowing the triggers of processes that cause global warming could help politicians focus on effective actions. We demonstrate our algorithm on the climatological data of two recent cyclones, Freddy and Zazu. The Cause-Trigger algorithm detects processes that trigger high wind speed in both storms during their cyclogenesis. The findings obtained agree with expert knowledge.
☆ De Novo Molecular Design Enabled by Direct Preference Optimization and Curriculum Learning
De novo molecular design has extensive applications in drug discovery and materials science. The vast chemical space renders direct molecular searches computationally prohibitive, while traditional experimental screening is both time- and labor-intensive. Efficient molecular generation and screening methods are therefore essential for accelerating drug discovery and reducing costs. Although reinforcement learning (RL) has been applied to optimize molecular properties via reward mechanisms, its practical utility is limited by issues in training efficiency, convergence, and stability. To address these challenges, we adopt Direct Preference Optimization (DPO) from NLP, which uses molecular score-based sample pairs to maximize the likelihood difference between high- and low-quality molecules, effectively guiding the model toward better compounds. Moreover, integrating curriculum learning further boosts training efficiency and accelerates convergence. A systematic evaluation of the proposed method on the GuacaMol Benchmark yielded excellent scores. For instance, the method achieved a score of 0.883 on the Perindopril MPO task, representing a 6\% improvement over competing models. And subsequent target protein binding experiments confirmed its practical efficacy. These results demonstrate the strong potential of DPO for molecular design tasks and highlight its effectiveness as a robust and efficient solution for data-driven drug discovery.
☆ UniFault: A Fault Diagnosis Foundation Model from Bearing Data
Machine fault diagnosis (FD) is a critical task for predictive maintenance, enabling early fault detection and preventing unexpected failures. Despite its importance, existing FD models are operation-specific with limited generalization across diverse datasets. Foundation models (FM) have demonstrated remarkable potential in both visual and language domains, achieving impressive generalization capabilities even with minimal data through few-shot or zero-shot learning. However, translating these advances to FD presents unique hurdles. Unlike the large-scale, cohesive datasets available for images and text, FD datasets are typically smaller and more heterogeneous, with significant variations in sampling frequencies and the number of channels across different systems and applications. This heterogeneity complicates the design of a universal architecture capable of effectively processing such diverse data while maintaining robust feature extraction and learning capabilities. In this paper, we introduce UniFault, a foundation model for fault diagnosis that systematically addresses these issues. Specifically, the model incorporates a comprehensive data harmonization pipeline featuring two key innovations. First, a unification scheme transforms multivariate inputs into standardized univariate sequences while retaining local inter-channel relationships. Second, a novel cross-domain temporal fusion strategy mitigates distribution shifts and enriches sample diversity and count, improving the model generalization across varying conditions. UniFault is pretrained on over 9 billion data points spanning diverse FD datasets, enabling superior few-shot performance. Extensive experiments on real-world FD datasets demonstrate that UniFault achieves SoTA performance, setting a new benchmark for fault diagnosis models and paving the way for more scalable and robust predictive maintenance solutions.
☆ xML-workFlow: an end-to-end explainable scikit-learn workflow for rapid biomedical experimentation
Motivation: Building and iterating machine learning models is often a resource-intensive process. In biomedical research, scientific codebases can lack scalability and are not easily transferable to work beyond what they were intended. xML-workFlow addresses this issue by providing a rapid, robust, and traceable end-to-end workflow that can be adapted to any ML project with minimal code rewriting. Results: We show a practical, end-to-end workflow that integrates scikit-learn, MLflow, and SHAP. This template significantly reduces the time and effort required to build and iterate on ML models, addressing the common challenges of scalability and reproducibility in biomedical research. Adapting our template may save bioinformaticians time in development and enables biomedical researchers to deploy ML projects. Availability and implementation: xML-workFlow is available at https://github.com/MedicalGenomicsLab/xML-workFlow.
comment: Technical Note, 8 pages, 1 figure
☆ GTR: Graph-Table-RAG for Cross-Table Question Answering
Beyond pure text, a substantial amount of knowledge is stored in tables. In real-world scenarios, user questions often require retrieving answers that are distributed across multiple tables. GraphRAG has recently attracted much attention for enhancing LLMs' reasoning capabilities by organizing external knowledge to address ad-hoc and complex questions, exemplifying a promising direction for cross-table question answering. In this paper, to address the current gap in available data, we first introduce a multi-table benchmark, MutliTableQA, comprising 60k tables and 25k user queries collected from real-world sources. Then, we propose the first Graph-Table-RAG framework, namely GTR, which reorganizes table corpora into a heterogeneous graph, employs a hierarchical coarse-to-fine retrieval process to extract the most relevant tables, and integrates graph-aware prompting for downstream LLMs' tabular reasoning. Extensive experiments show that GTR exhibits superior cross-table question-answering performance while maintaining high deployment efficiency, demonstrating its real-world practical applicability.
comment: 20 pages, 7 figures
☆ Breaking BERT: Gradient Attack on Twitter Sentiment Analysis for Targeted Misclassification
Social media platforms like Twitter have increasingly relied on Natural Language Processing NLP techniques to analyze and understand the sentiments expressed in the user generated content. One such state of the art NLP model is Bidirectional Encoder Representations from Transformers BERT which has been widely adapted in sentiment analysis. BERT is susceptible to adversarial attacks. This paper aims to scrutinize the inherent vulnerabilities of such models in Twitter sentiment analysis. It aims to formulate a framework for constructing targeted adversarial texts capable of deceiving these models, while maintaining stealth. In contrast to conventional methodologies, such as Importance Reweighting, this framework core idea resides in its reliance on gradients to prioritize the importance of individual words within the text. It uses a whitebox approach to attain fine grained sensitivity, pinpointing words that exert maximal influence on the classification outcome. This paper is organized into three interdependent phases. It starts with fine-tuning a pre-trained BERT model on Twitter data. It then analyzes gradients of the model to rank words on their importance, and iteratively replaces those with feasible candidates until an acceptable solution is found. Finally, it evaluates the effectiveness of the adversarial text against the custom trained sentiment classification model. This assessment would help in gauging the capacity of the adversarial text to successfully subvert classification without raising any alarm.
☆ FlowMotion: Target-Predictive Flow Matching for Realistic Text-Driven Human Motion Generation
Achieving highly diverse and perceptually consistent 3D character animations with natural motion and low computational costs remains a challenge in computer animation. Existing methods often struggle to provide the nuanced complexity of human movement, resulting in perceptual inconsistencies and motion artifacts. To tackle these issues, we introduce FlowMotion, a novel approach that leverages Conditional Flow Matching (CFM) for improved motion synthesis. FlowMotion incorporates an innovative training objective that more accurately predicts target motion, reducing the inherent jitter associated with CFM while enhancing stability, realism, and computational efficiency in generating animations. This direct prediction approach enhances the perceptual quality of animations by reducing erratic motion and aligning the training more closely with the dynamic characteristics of human movement. Our experimental results demonstrate that FlowMotion achieves higher balance between motion smoothness and generalization capability while maintaining the computational efficiency inherent in flow matching compared to state-of-the-art methods.
☆ Advancing MoE Efficiency: A Collaboration-Constrained Routing (C2R) Strategy for Better Expert Parallelism Design
Mixture-of-Experts (MoE) has successfully scaled up models while maintaining nearly constant computing costs. By employing a gating network to route input tokens, it selectively activates a subset of expert networks to process the corresponding token embeddings. However, in practice, the efficiency of MoE is challenging to achieve due to two key reasons: imbalanced expert activation, which leads to substantial idle time during model or expert parallelism, and insufficient capacity utilization; massive communication overhead, induced by numerous expert routing combinations in expert parallelism at the system level. Previous works typically formulate it as the load imbalance issue characterized by the gating network favoring certain experts over others or attribute it to static execution which fails to adapt to the dynamic expert workload at runtime. In this paper, we exploit it from a brand new perspective, a higher-order view and analysis of MoE routing policies: expert collaboration and specialization where some experts tend to activate broadly with others (collaborative), while others are more likely to activate only with a specific subset of experts (specialized). Our experiments reveal that most experts tend to be overly collaborative, leading to increased communication overhead from repeatedly sending tokens to different accelerators. To this end, we propose a novel collaboration-constrained routing (C2R) strategy to encourage more specialized expert groups, as well as to improve expert utilization, and present an efficient implementation of MoE that further leverages expert specialization. We achieve an average performance improvement of 0.51% and 0.33% on LLaMA-MoE and Qwen-MoE respectively across ten downstream NLP benchmarks, and reduce the all2all communication costs between GPUs, bringing an extra 20%-30% total running time savings on top of the existing SoTA, i.e. MegaBlocks.
comment: NAACL 2025
☆ Inverse RL Scene Dynamics Learning for Nonlinear Predictive Control in Autonomous Vehicles
This paper introduces the Deep Learning-based Nonlinear Model Predictive Controller with Scene Dynamics (DL-NMPC-SD) method for autonomous navigation. DL-NMPC-SD uses an a-priori nominal vehicle model in combination with a scene dynamics model learned from temporal range sensing information. The scene dynamics model is responsible for estimating the desired vehicle trajectory, as well as to adjust the true system model used by the underlying model predictive controller. We propose to encode the scene dynamics model within the layers of a deep neural network, which acts as a nonlinear approximator for the high order state-space of the operating conditions. The model is learned based on temporal sequences of range sensing observations and system states, both integrated by an Augmented Memory component. We use Inverse Reinforcement Learning and the Bellman optimality principle to train our learning controller with a modified version of the Deep Q-Learning algorithm, enabling us to estimate the desired state trajectory as an optimal action-value function. We have evaluated DL-NMPC-SD against the baseline Dynamic Window Approach (DWA), as well as against two state-of-the-art End2End and reinforcement learning methods, respectively. The performance has been measured in three experiments: i) in our GridSim virtual environment, ii) on indoor and outdoor navigation tasks using our RovisLab AMTU (Autonomous Mobile Test Unit) platform and iii) on a full scale autonomous test vehicle driving on public roads.
comment: 21 pages, 14 figures, journal paper
☆ Flexible and Explainable Graph Analysis for EEG-based Alzheimer's Disease Classification
Alzheimer's Disease is a progressive neurological disorder that is one of the most common forms of dementia. It leads to a decline in memory, reasoning ability, and behavior, especially in older people. The cause of Alzheimer's Disease is still under exploration and there is no all-inclusive theory that can explain the pathologies in each individual patient. Nevertheless, early intervention has been found to be effective in managing symptoms and slowing down the disease's progression. Recent research has utilized electroencephalography (EEG) data to identify biomarkers that distinguish Alzheimer's Disease patients from healthy individuals. Prior studies have used various machine learning methods, including deep learning and graph neural networks, to examine electroencephalography-based signals for identifying Alzheimer's Disease patients. In our research, we proposed a Flexible and Explainable Gated Graph Convolutional Network (GGCN) with Multi-Objective Tree-Structured Parzen Estimator (MOTPE) hyperparameter tuning. This provides a flexible solution that efficiently identifies the optimal number of GGCN blocks to achieve the optimized precision, specificity, and recall outcomes, as well as the optimized area under the Receiver Operating Characteristic (AUC). Our findings demonstrated a high efficacy with an over 0.9 Receiver Operating Characteristic score, alongside precision, specificity, and recall scores in distinguishing health control with Alzheimer's Disease patients in Moderate to Severe Dementia using the power spectrum density (PSD) of electroencephalography signals across various frequency bands. Moreover, our research enhanced the interpretability of the embedded adjacency matrices, revealing connectivity differences in frontal and parietal brain regions between Alzheimer's patients and healthy individuals.
☆ Scaling Test-Time Inference with Policy-Optimized, Dynamic Retrieval-Augmented Generation via KV Caching and Decoding
We present a comprehensive framework for enhancing Retrieval-Augmented Generation (RAG) systems through dynamic retrieval strategies and reinforcement fine-tuning. This approach significantly improves large language models on knowledge-intensive tasks, including opendomain question answering and complex reasoning. Our framework integrates two complementary techniques: Policy-Optimized RetrievalAugmented Generation (PORAG), which optimizes the use of retrieved information, and Adaptive Token-Layer Attention Scoring (ATLAS), which dynamically determines retrieval timing and content based on contextual needs. Together, these techniques enhance both the utilization and relevance of retrieved content, improving factual accuracy and response quality. Designed as a lightweight solution compatible with any Transformer-based LLM without requiring additional training, our framework excels in knowledge-intensive tasks, boosting output accuracy in RAG settings. We further propose CRITIC, a novel method to selectively compress key-value caches by token importance, mitigating memory bottlenecks in long-context applications. The framework also incorporates test-time scaling techniques to dynamically balance reasoning depth and computational resources, alongside optimized decoding strategies for faster inference. Experiments on benchmark datasets show that our framework reduces hallucinations, strengthens domain-specific reasoning, and achieves significant efficiency and scalability gains over traditional RAG systems. This integrated approach advances the development of robust, efficient, and scalable RAG systems across diverse applications.
☆ FLAMES: A Hybrid Spiking-State Space Model for Adaptive Memory Retention in Event-Based Learning
We propose \textbf{FLAMES (Fast Long-range Adaptive Memory for Event-based Systems)}, a novel hybrid framework integrating structured state-space dynamics with event-driven computation. At its core, the \textit{Spike-Aware HiPPO (SA-HiPPO) mechanism} dynamically adjusts memory retention based on inter-spike intervals, preserving both short- and long-range dependencies. To maintain computational efficiency, we introduce a normal-plus-low-rank (NPLR) decomposition, reducing complexity from $\mathcal{O}(N^2)$ to $\mathcal{O}(Nr)$. FLAMES achieves state-of-the-art results on the Long Range Arena benchmark and event datasets like HAR-DVS and Celex-HAR. By bridging neuromorphic computing and structured sequence modeling, FLAMES enables scalable long-range reasoning in event-driven systems.
comment: 9 pages, 6 figures
♻ ☆ Large Language Models for Code Generation: A Comprehensive Survey of Challenges, Techniques, Evaluation, and Applications
Large Language Models (LLMs) have demonstrated their remarkable capabilities in numerous fields. This survey focuses on how LLMs empower users, regardless of their technical background, to use human languages to automatically generate executable code. We begin with understanding LLMs' limitations and challenges in automated code generation. Subsequently, we review various fine-tuning techniques designed to enhance both the performance and adaptability of LLMs in code generation tasks. We then review the existing metrics and benchmarks for evaluations to assess model performance based on fine-tuning techniques. Finally, we explore the applications of LLMs (e.g. CodeLlama, GitHub Copilot, ToolGen) in code generation tasks to illustrate their roles and functionalities. This survey provides a comprehensive overview of LLMs for code generation, helps researchers in diverse fields better understand the current state-of-the-art technologies, and offers the potential of effectively leveraging LLMs for code generation tasks.
♻ ☆ Evaluating the Application of SOLID Principles in Modern AI Framework Architectures
This research evaluates the extent to which modern AI frameworks, specifically TensorFlow and scikit-learn, adhere to the SOLID design principles - Single Responsibility, Open/Closed, Liskov Substitution, Interface Segregation, and Dependency Inversion. Analyzing the frameworks architectural documentation and design philosophies, this research investigates architectural trade-offs when balancing software engineering best practices with AI-specific needs. I examined each frameworks documentation, source code, and architectural components to evaluate their adherence to these principles. The results show that both frameworks adopt certain aspects of SOLID design principles but make intentional trade-offs to address performance, scalability, and the experimental nature of AI development. TensorFlow focuses on performance and scalability, sometimes sacrificing strict adherence to principles like Single Responsibility and Interface Segregation. While scikit-learns design philosophy aligns more closely with SOLID principles through consistent interfaces and composition principles, sticking closer to SOLID guidelines but with occasional deviations for performance optimizations and scalability. This research discovered that applying SOLID principles in AI frameworks depends on context, as performance, scalability, and flexibility often require deviations from traditional software engineering principles. This research contributes to understanding how domain-specific constraints influence architectural decisions in modern AI frameworks and how these frameworks strategically adapted design choices to effectively balance these contradicting requirements.
comment: 5 pages, 1 figure, 12 references
♻ ☆ Limits to Analog Reservoir Learning
Reservoir computation is a recurrent framework for learning and predicting time series data, that benefits from extremely simple training and interpretability, often as the the dynamics of a physical system. In this paper, we will study the impact of noise on the learning capabilities of analog reservoir computers. Recent work on reservoir computation has shown that the information processing capacity (IPC) is a useful metric for quantifying the degradation of the performance due to noise. We further this analysis and demonstrate that this degradation of the IPC limits the possible features that can be meaningfully constructed in an analog reservoir computing setting. We borrow a result from quantum complexity theory that relates the circuit model of computation to a continuous time model, and demonstrate an exponential reduction in the accessible volume of reservoir configurations. We conclude by relating this degradation in the IPC to the fat-shattering dimension of a family of functions describing the reservoir dynamics, which allows us to express our result in terms of a classification task. We conclude that any physical, analog reservoir computer that is exposed to noise can only be used to perform a polynomial amount of learning, despite the exponentially large latent space, even with an exponential amount of post-processing.
comment: 10 pages, 1 figure
♻ ☆ Cosmos-Reason1: From Physical Common Sense To Embodied Reasoning
Physical AI systems need to perceive, understand, and perform complex actions in the physical world. In this paper, we present the Cosmos-Reason1 models that can understand the physical world and generate appropriate embodied decisions (e.g., next step action) in natural language through long chain-of-thought reasoning processes. We begin by defining key capabilities for Physical AI reasoning, with a focus on physical common sense and embodied reasoning. To represent physical common sense, we use a hierarchical ontology that captures fundamental knowledge about space, time, and physics. For embodied reasoning, we rely on a two-dimensional ontology that generalizes across different physical embodiments. Building on these capabilities, we develop two multimodal large language models, Cosmos-Reason1-8B and Cosmos-Reason1-56B. We curate data and train our models in four stages: vision pre-training, general supervised fine-tuning (SFT), Physical AI SFT, and Physical AI reinforcement learning (RL) as the post-training. To evaluate our models, we build comprehensive benchmarks for physical common sense and embodied reasoning according to our ontologies. Evaluation results show that Physical AI SFT and reinforcement learning bring significant improvements. To facilitate the development of Physical AI, we will make our code and pre-trained models available under the NVIDIA Open Model License at https://github.com/nvidia-cosmos/cosmos-reason1.
♻ ☆ DEPT: Decoupled Embeddings for Pre-training Language Models
Language Model pre-training uses broad data mixtures to enhance performance across domains and languages. However, training on such heterogeneous text corpora requires extensive and expensive efforts. Since these data sources vary significantly in lexical, syntactic, and semantic aspects, they cause negative interference or the ``curse of multilinguality''. To address these challenges we propose a communication-efficient pre-training framework, DEPT. Our method decouples embeddings from the transformer body while simultaneously training the latter on multiple data sources without requiring a shared vocabulary. DEPT can: (1) train robustly and effectively under significant data heterogeneity, (2) minimize token embedding parameters to only what the data source vocabulary requires, while cutting communication costs in direct proportion to both the communication frequency and the reduction in parameters, (3) enhance transformer body plasticity and generalization, improving both average perplexity (up to 20%) and downstream task performance, and (4) enable training with custom optimized vocabularies per data source. We demonstrate DEPT's potential via the first vocabulary-agnostic federated pre-training of billion-scale models, reducing communication costs by orders of magnitude and embedding memory by 4-5x.
♻ ☆ Meta ControlNet: Enhancing Task Adaptation via Meta Learning
Diffusion-based image synthesis has attracted extensive attention recently. In particular, ControlNet that uses image-based prompts exhibits powerful capability in image tasks such as canny edge detection and generates images well aligned with these prompts. However, vanilla ControlNet generally requires extensive training of around 5000 steps to achieve a desirable control for a single task. Recent context-learning approaches have improved its adaptability, but mainly for edge-based tasks, and rely on paired examples. Thus, two important open issues are yet to be addressed to reach the full potential of ControlNet: (i) zero-shot control for certain tasks and (ii) faster adaptation for non-edge-based tasks. In this paper, we introduce a novel Meta ControlNet method, which adopts the task-agnostic meta learning technique and features a new layer freezing design. Meta ControlNet significantly reduces learning steps to attain control ability from 5000 to 1000. Further, Meta ControlNet exhibits direct zero-shot adaptability in edge-based tasks without any finetuning, and achieves control within only 100 finetuning steps in more complex non-edge tasks such as Human Pose, outperforming all existing methods. The codes is available in https://github.com/JunjieYang97/Meta-ControlNet.
comment: Codebase link: https://github.com/JunjieYang97/Meta-ControlNet
♻ ☆ Sim-and-Real Co-Training: A Simple Recipe for Vision-Based Robotic Manipulation
Large real-world robot datasets hold great potential to train generalist robot models, but scaling real-world human data collection is time-consuming and resource-intensive. Simulation has great potential in supplementing large-scale data, especially with recent advances in generative AI and automated data generation tools that enable scalable creation of robot behavior datasets. However, training a policy solely in simulation and transferring it to the real world often demands substantial human effort to bridge the reality gap. A compelling alternative is to co-train the policy on a mixture of simulation and real-world datasets. Preliminary studies have recently shown this strategy to substantially improve the performance of a policy over one trained on a limited amount of real-world data. Nonetheless, the community lacks a systematic understanding of sim-and-real co-training and what it takes to reap the benefits of simulation data for real-robot learning. This work presents a simple yet effective recipe for utilizing simulation data to solve vision-based robotic manipulation tasks. We derive this recipe from comprehensive experiments that validate the co-training strategy on various simulation and real-world datasets. Using two domains--a robot arm and a humanoid--across diverse tasks, we demonstrate that simulation data can enhance real-world task performance by an average of 38%, even with notable differences between the simulation and real-world data. Videos and additional results can be found at https://co-training.github.io/
comment: Project website: https://co-training.github.io/
♻ ☆ Efficient Imitation under Misspecification ICLR 2025
We consider the problem of imitation learning under misspecification: settings where the learner is fundamentally unable to replicate expert behavior everywhere. This is often true in practice due to differences in observation space and action space expressiveness (e.g. perceptual or morphological differences between robots and humans). Given the learner must make some mistakes in the misspecified setting, interaction with the environment is fundamentally required to figure out which mistakes are particularly costly and lead to compounding errors. However, given the computational cost and safety concerns inherent in interaction, we'd like to perform as little of it as possible while ensuring we've learned a strong policy. Accordingly, prior work has proposed a flavor of efficient inverse reinforcement learning algorithms that merely perform a computationally efficient local search procedure with strong guarantees in the realizable setting. We first prove that under a novel structural condition we term reward-agnostic policy completeness, these sorts of local-search based IRL algorithms are able to avoid compounding errors. We then consider the question of where we should perform local search in the first place, given the learner may not be able to "walk on a tightrope" as well as the expert in the misspecified setting. We prove that in the misspecified setting, it is beneficial to broaden the set of states on which local search is performed to include those reachable by good policies the learner can actually play. We then experimentally explore a variety of sources of misspecification and how offline data can be used to effectively broaden where we perform local search from.
comment: 38 pages, 6 figures. Published as a conference paper at ICLR 2025
♻ ☆ SeizureTransformer: Scaling U-Net with Transformer for Simultaneous Time-Step Level Seizure Detection from Long EEG Recordings
Epilepsy is a common neurological disorder that affects around 65 million people worldwide. Detecting seizures quickly and accurately is vital, given the prevalence and severity of the associated complications. Recently, deep learning-based automated seizure detection methods have emerged as solutions; however, most existing methods require extensive post-processing and do not effectively handle the crucial long-range patterns in EEG data. In this work, we propose SeizureTransformer, a simple model comprised of (i) a deep encoder comprising 1D convolutions (ii) a residual CNN stack and a transformer encoder to embed previous output into high-level representation with contextual information, and (iii) streamlined decoder which converts these features into a sequence of probabilities, directly indicating the presence or absence of seizures at every time step. Extensive experiments on public and private EEG seizure detection datasets demonstrate that our model significantly outperforms existing approaches (ranked in the first place in the 2025 "seizure detection challenge" organized in the International Conference on Artificial Intelligence in Epilepsy and Other Neurological Disorders), underscoring its potential for real-time, precise seizure detection.
♻ ☆ Automate Strategy Finding with LLM in Quant Investment
Despite significant progress in deep learning for financial trading, existing models often face instability and high uncertainty, hindering their practical application. Leveraging advancements in Large Language Models (LLMs) and multi-agent architectures, we propose a novel framework for quantitative stock investment in portfolio management and alpha mining. Our framework addresses these issues by integrating LLMs to generate diversified alphas and employing a multi-agent approach to dynamically evaluate market conditions. This paper proposes a framework where large language models (LLMs) mine alpha factors from multimodal financial data, ensuring a comprehensive understanding of market dynamics. The first module extracts predictive signals by integrating numerical data, research papers, and visual charts. The second module uses ensemble learning to construct a diverse pool of trading agents with varying risk preferences, enhancing strategy performance through a broader market analysis. In the third module, a dynamic weight-gating mechanism selects and assigns weights to the most relevant agents based on real-time market conditions, enabling the creation of an adaptive and context-aware composite alpha formula. Extensive experiments on the Chinese stock markets demonstrate that this framework significantly outperforms state-of-the-art baselines across multiple financial metrics. The results underscore the efficacy of combining LLM-generated alphas with a multi-agent architecture to achieve superior trading performance and stability. This work highlights the potential of AI-driven approaches in enhancing quantitative investment strategies and sets a new benchmark for integrating advanced machine learning techniques in financial trading can also be applied on diverse markets.
♻ ☆ Flavors of Margin: Implicit Bias of Steepest Descent in Homogeneous Neural Networks ICLR 2025
We study the implicit bias of the general family of steepest descent algorithms with infinitesimal learning rate in deep homogeneous neural networks. We show that: (a) an algorithm-dependent geometric margin starts increasing once the networks reach perfect training accuracy, and (b) any limit point of the training trajectory corresponds to a KKT point of the corresponding margin-maximization problem. We experimentally zoom into the trajectories of neural networks optimized with various steepest descent algorithms, highlighting connections to the implicit bias of popular adaptive methods (Adam and Shampoo).
comment: The earlier conference version (ICLR 2025) of this paper showed a bias towards KKT points of the max-margin problem only in the case of 'smooth' norms. The current version (submitted to JMLR) proves that this holds true for any norm. It also includes new experiments on the implicit bias of the Shampoo algorithm
♻ ☆ Groningen: Spatial Prediction of Rock Gas Saturation by Leveraging Selected and Augmented Well and Seismic Data with Classifier Ensembles
This paper presents a proof of concept for spatial prediction of rock saturation probability using classifier ensemble methods on the example of the giant Groningen gas field. The stages of generating 1481 seismic field attributes and selecting 63 significant attributes are described. The effectiveness of the proposed method of augmentation of well and seismic data is shown, which increased the training sample by 9 times. On a test sample of 42 wells (blind well test), the results demonstrate good accuracy in predicting the ensemble of classifiers: the Matthews correlation coefficient is 0.7689, and the F1-score for the "gas reservoir" class is 0.7949. Prediction of gas reservoir thicknesses within the field and adjacent areas is made.
comment: 19 pages, 9 figures, 7 tables
♻ ☆ Non-Determinism of "Deterministic" LLM Settings
LLM (large language model) practitioners commonly notice that outputs can vary for the same inputs under settings expected to be deterministic. Yet the questions of how pervasive this is, and with what impact on results, have not to our knowledge been systematically investigated. We investigate non-determinism in five LLMs configured to be deterministic when applied to eight common tasks in across 10 runs, in both zero-shot and few-shot settings. We see accuracy variations up to 15% across naturally occurring runs with a gap of best possible performance to worst possible performance up to 70%. In fact, none of the LLMs consistently delivers repeatable accuracy across all tasks, much less identical output strings. Sharing preliminary results with insiders has revealed that non-determinism perhaps essential to the efficient use of compute resources via co-mingled data in input buffers so this issue is not going away anytime soon. To better quantify our observations, we introduce metrics focused on quantifying determinism, TARr@N for the total agreement rate at N runs over raw output, and TARa@N for total agreement rate of parsed-out answers. Our code and data are publicly available at https://github.com/breckbaldwin/llm-stability.
♻ ☆ Batch, match, and patch: low-rank approximations for score-based variational inference AISTATS 2025
Black-box variational inference (BBVI) scales poorly to high-dimensional problems when it is used to estimate a multivariate Gaussian approximation with a full covariance matrix. In this paper, we extend the batch-and-match (BaM) framework for score-based BBVI to problems where it is prohibitively expensive to store such covariance matrices, let alone to estimate them. Unlike classical algorithms for BBVI, which use stochastic gradient descent to minimize the reverse Kullback-Leibler divergence, BaM uses more specialized updates to match the scores of the target density and its Gaussian approximation. We extend the updates for BaM by integrating them with a more compact parameterization of full covariance matrices. In particular, borrowing ideas from factor analysis, we add an extra step to each iteration of BaM--a patch--that projects each newly updated covariance matrix into a more efficiently parameterized family of diagonal plus low rank matrices. We evaluate this approach on a variety of synthetic target distributions and real-world problems in high-dimensional inference.
comment: Accepted in AISTATS 2025
♻ ☆ Plane-Wave Decomposition and Randomised Training; a Novel Path to Generalised PINNs for SHM
In this paper, we introduce a formulation of Physics-Informed Neural Networks (PINNs), based on learning the form of the Fourier decomposition, and a training methodology based on a spread of randomly chosen boundary conditions. By training in this way we produce a PINN that generalises; after training it can be used to correctly predict the solution for an arbitrary set of boundary conditions and interpolate this solution between the samples that spanned the training domain. We demonstrate for a toy system of two coupled oscillators that this gives the PINN formulation genuine predictive capability owing to an effective reduction of the training to evaluation times ratio due to this decoupling of the solution from specific boundary conditions.
comment: 17 pages, 17 figures; corrected author listing metadata, added references for section II, typos corrected
♻ ☆ Deep Learning for VWAP Execution in Crypto Markets: Beyond the Volume Curve
Volume-Weighted Average Price (VWAP) is arguably the most prevalent benchmark for trade execution as it provides an unbiased standard for comparing performance across market participants. However, achieving VWAP is inherently challenging due to its dependence on two dynamic factors, volumes and prices. Traditional approaches typically focus on forecasting the market's volume curve, an assumption that may hold true under steady conditions but becomes suboptimal in more volatile environments or markets such as cryptocurrency where prediction error margins are higher. In this study, I propose a deep learning framework that directly optimizes the VWAP execution objective by bypassing the intermediate step of volume curve prediction. Leveraging automatic differentiation and custom loss functions, my method calibrates order allocation to minimize VWAP slippage, thereby fully addressing the complexities of the execution problem. My results demonstrate that this direct optimization approach consistently achieves lower VWAP slippage compared to conventional methods, even when utilizing a naive linear model presented in arXiv:2410.21448. They validate the observation that strategies optimized for VWAP performance tend to diverge from accurate volume curve predictions and thus underscore the advantage of directly modeling the execution objective. This research contributes a more efficient and robust framework for VWAP execution in volatile markets, illustrating the potential of deep learning in complex financial systems where direct objective optimization is crucial. Although my empirical analysis focuses on cryptocurrency markets, the underlying principles of the framework are readily applicable to other asset classes such as equities.
♻ ☆ Rethinking Synthetic Data definitions: A privacy driven approach
Synthetic data is gaining traction as a cost-effective solution for the increasing data demands of AI development and can be generated either from existing knowledge or derived data captured from real-world events. The source of the synthetic data generation and the technique used significantly impacts its residual privacy risk and therefore its opportunity for sharing. Traditional classification of synthetic data types no longer fit the newer generation techniques and there is a need to better align the classification with practical needs. We suggest a new way of grouping synthetic data types that better supports privacy evaluations to aid regulatory policymaking. Our novel classification provides flexibility to new advancements like deep generative methods and offers a more practical framework for future applications.
♻ ☆ Early Classification of Time Series: Taxonomy and Benchmark
In many situations, the measurements of a studied phenomenon are provided sequentially, and the prediction of its class needs to be made as early as possible so as not to incur too high a time penalty, but not too early and risk paying the cost of misclassification. This problem has been particularly studied in the case of time series, and is known as Early Classification of Time Series (ECTS). Although it has been the subject of a growing body of literature, there is still a lack of a systematic, shared evaluation protocol to compare the relative merits of the various existing methods. This document begins by situating these methods within a principle-based taxonomy. It defines dimensions for organizing their evaluation, and then reports the results of a very extensive set of experiments along these dimensions involving nine state-of-the art ECTS algorithms. In addition, these and other experiments can be carried out using an open-source library in which most of the existing ECTS algorithms have been implemented (see https://github.com/ML-EDM/ml_edm).
♻ ☆ Hyper-Compression: Model Compression via Hyperfunction
The rapid growth of large models' size has far outpaced that of computing resources. To bridge this gap, encouraged by the parsimonious relationship between genotype and phenotype in the brain's growth and development, we propose the so-called hyper-compression that turns the model compression into the issue of parameter representation via a hyperfunction. Specifically, it is known that the trajectory of some low-dimensional dynamic systems can fill the high-dimensional space eventually. Thus, hyper-compression, using these dynamic systems as the hyperfunctions, represents the parameters of the target network by their corresponding composition number or trajectory length. This suggests a novel mechanism for model compression, substantially different from the existing pruning, quantization, distillation, and decomposition. Along this direction, we methodologically identify a suitable dynamic system with the irrational winding as the hyperfunction and theoretically derive its associated error bound. Next, guided by our theoretical insights, we propose several engineering twists to make the hyper-compression pragmatic and effective. Lastly, systematic and comprehensive experiments confirm that hyper-compression enjoys the following \textbf{PNAS} merits: 1) \textbf{P}referable compression ratio; 2) \textbf{N}o post-hoc retraining; 3) \textbf{A}ffordable inference time; and 4) \textbf{S}hort compression time. It compresses LLaMA2-7B in an hour and achieves close-to-int4-quantization performance, without retraining and with a performance drop of less than 1\%. We have open-sourced our code in https://github.com/Juntongkuki/Hyper-Compression.git for free download and evaluation.
♻ ☆ Exploring Data Scaling Trends and Effects in Reinforcement Learning from Human Feedback
Reinforcement Learning from Human Feedback (RLHF) is crucial for aligning large language models with human preferences. While recent research has focused on algorithmic improvements, the importance of prompt-data construction has been overlooked. This paper addresses this gap by exploring data-driven bottlenecks in RLHF performance scaling, particularly reward hacking and decreasing response diversity. We introduce a hybrid reward system combining reasoning task verifiers (RTV) and a generative reward model (GenRM) to mitigate reward hacking. We also propose a novel prompt-selection method, Pre-PPO, to maintain response diversity and enhance learning effectiveness. Additionally, we find that prioritizing mathematical and coding tasks early in RLHF training significantly improves performance. Experiments across two model sizes validate our methods' effectiveness and scalability. Results show that RTV is most resistant to reward hacking, followed by GenRM with ground truth, and then GenRM with SFT Best-of-N responses. Our strategies enable rapid capture of subtle task-specific distinctions, leading to substantial improvements in overall RLHF performance. This work highlights the importance of careful data construction and provides practical methods to overcome performance barriers in RLHF.
♻ ☆ Interpretable Steering of Large Language Models with Feature Guided Activation Additions
Effective and reliable control over large language model (LLM) behavior is a significant challenge. While activation steering methods, which add steering vectors to a model's hidden states, are a promising approach, existing techniques often lack precision and interpretability in how they influence model outputs. We introduce Feature Guided Activation Additions (FGAA), a novel activation steering method that leverages insights from Contrastive Activation Addition (CAA) and Sparse Autoencoder-Targeted Steering (SAE-TS). By operating in the latent space of a Sparse Autoencoder (SAE) and employing optimization techniques to select desired SAE features, FGAA constructs precise steering vectors that provide better steering effects while maintaining coherence of steered model outputs. In this regard, evaluations on Gemma-2-2B and Gemma-2-9B models across various steering tasks demonstrate that FGAA outperforms existing steering methods of CAA, SAE decoder steering, and SAE-TS. Our results also highlight important trade-offs between steering scale and general model capabilities that are consistent across all tested steering methods.
comment: 9 maintext pages, 13 appendix pages
♻ ☆ Graph Representation Learning via Causal Diffusion for Out-of-Distribution Recommendation WWW2025
Graph Neural Networks (GNNs)-based recommendation algorithms typically assume that training and testing data are drawn from independent and identically distributed (IID) spaces. However, this assumption often fails in the presence of out-of-distribution (OOD) data, resulting in significant performance degradation. In this study, we construct a Structural Causal Model (SCM) to analyze interaction data, revealing that environmental confounders (e.g., the COVID-19 pandemic) lead to unstable correlations in GNN-based models, thus impairing their generalization to OOD data. To address this issue, we propose a novel approach, graph representation learning via causal diffusion (CausalDiffRec) for OOD recommendation. This method enhances the model's generalization on OOD data by eliminating environmental confounding factors and learning invariant graph representations. Specifically, we use backdoor adjustment and variational inference to infer the real environmental distribution, thereby eliminating the impact of environmental confounders. This inferred distribution is then used as prior knowledge to guide the representation learning in the reverse phase of the diffusion process to learn the invariant representation. In addition, we provide a theoretical derivation that proves optimizing the objective function of CausalDiffRec can encourage the model to learn environment-invariant graph representations, thereby achieving excellent generalization performance in recommendations under distribution shifts. Our extensive experiments validate the effectiveness of CausalDiffRec in improving the generalization of OOD data, and the average improvement is up to 10.69% on Food, 18.83% on KuaiRec, 22.41% on Yelp2018, and 11.65% on Douban datasets.
comment: 14 pages, accepted by WWW2025
♻ ☆ Discriminative Subspace Emersion from learning feature relevances across different populations
In a given classification task, the accuracy of the learner is often hampered by finiteness of the training set, high-dimensionality of the feature space and severe overlap between classes. In the context of interpretable learners, with (piecewise) linear separation boundaries, these issues can be mitigated by careful construction of optimization procedures and/or estimation of relevant features for the task. However, when the task is shared across two disjoint populations the main interest is shifted towards estimating a set of features that discriminate the most between the two, when performing classification. We propose a new Discriminative Subspace Emersion (DSE) method to extend subspace learning toward a general relevance learning framework. DSE allows us to identify the most relevant features in distinguishing the classification task across two populations, even in cases of high overlap between classes. The proposed methodology is designed to work with multiple sets of labels and is derived in principle without being tied to a specific choice of base learner. Theoretical and empirical investigations over synthetic and real-world datasets indicate that DSE accurately identifies a common subspace for the classification across different populations. This is shown to be true for a surprisingly high degree of overlap between classes.
♻ ☆ Fundamental computational limits of weak learnability in high-dimensional multi-index models
Multi-index models - functions which only depend on the covariates through a non-linear transformation of their projection on a subspace - are a useful benchmark for investigating feature learning with neural nets. This paper examines the theoretical boundaries of efficient learnability in this hypothesis class, focusing on the minimum sample complexity required for weakly recovering their low-dimensional structure with first-order iterative algorithms, in the high-dimensional regime where the number of samples $n\!=\!\alpha d$ is proportional to the covariate dimension $d$. Our findings unfold in three parts: (i) we identify under which conditions a trivial subspace can be learned with a single step of a first-order algorithm for any $\alpha\!>\!0$; (ii) if the trivial subspace is empty, we provide necessary and sufficient conditions for the existence of an easy subspace where directions that can be learned only above a certain sample complexity $\alpha\!>\!\alpha_c$, where $\alpha_{c}$ marks a computational phase transition. In a limited but interesting set of really hard directions -- akin to the parity problem -- $\alpha_c$ is found to diverge. Finally, (iii) we show that interactions between different directions can result in an intricate hierarchical learning phenomenon, where directions can be learned sequentially when coupled to easier ones. We discuss in detail the grand staircase picture associated to these functions (and contrast it with the original staircase one). Our theory builds on the optimality of approximate message-passing among first-order iterative methods, delineating the fundamental learnability limit across a broad spectrum of algorithms, including neural networks trained with gradient descent, which we discuss in this context.
♻ ☆ Machine Learning-assisted High-speed Combinatorial Optimization with Ising Machines for Dynamically Changing Problems
Quantum or quantum-inspired Ising machines have recently shown promise in solving combinatorial optimization problems in a short time. Real-world applications, such as time division multiple access (TDMA) scheduling for wireless multi-hop networks and financial trading, require solving those problems sequentially where the size and characteristics change dynamically. However, using Ising machines involves challenges to shorten system-wide latency due to the transfer of large Ising model or the cloud access and to determine the parameters for each problem. Here we show a combinatorial optimization method using embedded Ising machines, which enables solving diverse problems at high speed without runtime parameter tuning. We customize the algorithm and circuit architecture of the simulated bifurcation-based Ising machine to compress the Ising model and accelerate computation and then built a machine learning model to estimate appropriate parameters using extensive training data. In TDMA scheduling for wireless multi-hop networks, our demonstration has shown that the sophisticated system can adapt to changes in the problem and showed that it has a speed advantage over conventional methods.
♻ ☆ Why risk matters for protein binder design ICLR 2025
Bayesian optimization (BO) has recently become more prevalent in protein engineering applications and hence has become a fruitful target of benchmarks. However, current BO comparisons often overlook real-world considerations like risk and cost constraints. In this work, we compare 72 model combinations of encodings, surrogate models, and acquisition functions on 11 protein binder fitness landscapes, specifically from this perspective. Drawing from the portfolio optimization literature, we adopt metrics to quantify the cold-start performance relative to a random baseline, to assess the risk of an optimization campaign, and to calculate the overall budget required to reach a fitness threshold. Our results suggest the existence of Pareto-optimal models on the risk-performance axis, the shift of this preference depending on the landscape explored, and the robust correlation between landscape properties such as epistasis with the average and worst-case model performance. They also highlight that rigorous model selection requires substantial computational and statistical efforts.
comment: 10 pages, 5 figures, 1 table, to be presented at ICLR 2025 GEM Workshop https://www.gembio.ai/
♻ ☆ Streamlined optical training of large-scale modern deep learning architectures with direct feedback alignment
Modern deep learning relies nearly exclusively on dedicated electronic hardware accelerators. Photonic approaches, with low consumption and high operation speed, are increasingly considered for inference but, to date, remain mostly limited to relatively basic tasks. Simultaneously, the problem of training deep and complex neural networks, overwhelmingly performed through backpropagation, remains a significant limitation to the size and, consequently, the performance of current architectures and a major compute and energy bottleneck. Here, we experimentally implement a versatile and scalable training algorithm, called direct feedback alignment, on a hybrid electronic-photonic platform. An optical processing unit performs large-scale random matrix multiplications, which is the central operation of this algorithm, at speeds up to 1500 TeraOPS under 30 Watts of power. We perform optical training of modern deep learning architectures, including Transformers, with more than 1B parameters, and obtain good performances on language, vision, and diffusion-based generative tasks. We study the scaling of the training time, and demonstrate a potential advantage of our hybrid opto-electronic approach for ultra-deep and wide neural networks, thus opening a promising route to sustain the exponential growth of modern artificial intelligence beyond traditional von Neumann approaches.
comment: 20 pages, 4 figures; Additional experiments conducted;
♻ ☆ Are Convex Optimization Curves Convex?
In this paper, we study when we might expect the optimization curve induced by gradient descent to be \emph{convex} -- precluding, for example, an initial plateau followed by a sharp decrease, making it difficult to decide when optimization should stop. Although such undesirable behavior can certainly occur when optimizing general functions, might it also occur in the benign and well-studied case of smooth convex functions? As far as we know, this question has not been tackled in previous work. We show, perhaps surprisingly, that the answer crucially depends on the choice of the step size. In particular, for the range of step sizes which are known to result in monotonic convergence to an optimal value, we characterize a regime where the optimization curve will be provably convex, and a regime where the curve can be non-convex. We also extend our results to gradient flow, and to the closely-related but different question of whether the gradient norm decreases monotonically.
comment: 14 pages
♻ ☆ ACT-JEPA: Novel Joint-Embedding Predictive Architecture for Efficient Policy Representation Learning
Learning efficient representations for decision-making policies is a challenge in imitation learning (IL). Current IL methods require expert demonstrations, which are expensive to collect. Consequently, they often have underdeveloped world models. Self-supervised learning (SSL) offers an alternative by allowing models to learn from diverse, unlabeled data, including failures. However, SSL methods often operate in raw input space, making them inefficient. In this work, we propose ACT-JEPA, a novel architecture that integrates IL and SSL to enhance policy representations. We train a policy to predict (1) action sequences and (2) abstract observation sequences. The first objective uses action chunking to improve action prediction and reduce compounding errors. The second objective extends this idea of chunking by predicting abstract observation sequences. We utilize Joint-Embedding Predictive Architecture to predict in abstract representation space, allowing the model to filter out irrelevant details, improve efficiency, and develop a robust world model. Our experiments show that ACT-JEPA improves the quality of representations by learning temporal environment dynamics. Additionally, the model's ability to predict abstract observation sequences results in representations that effectively generalize to action sequence prediction. ACT-JEPA performs on par with established baselines across a range of decision-making tasks.
♻ ☆ NeuRaLaTeX: A machine learning library written in pure LaTeX
In this paper, we introduce NeuRaLaTeX, which we believe to be the first deep learning library written entirely in LaTeX. As part of your LaTeX document you can specify the architecture of a neural network and its loss functions, define how to generate or load training data, and specify training hyperparameters and experiments. When the document is compiled, the LaTeX compiler will generate or load training data, train the network, run experiments, and generate figures. This paper generates a random 100 point spiral dataset, trains a two layer MLP on it, evaluates on a different random spiral dataset, produces plots and tables of results. The paper took 48 hours to compile and the entire source code for NeuRaLaTeX is contained within the source code of the paper. We propose two new metrics: the Written In Latex (WIL) metric measures the proportion of a machine learning library that is written in pure LaTeX, while the Source Code Of Method in Source Code of Paper (SCOMISCOP) metric measures the proportion of a paper's implementation that is contained within the paper source. We are state-of-the-art for both metrics, outperforming the ResNet and Transformer papers, as well as the PyTorch and Tensorflow libraries. Source code, documentation, videos, crypto scams and an invitation to invest in the commercialisation of NeuRaLaTeX are available at https://www.neuralatex.com
♻ ☆ Detecting Localized Density Anomalies in Multivariate Data via Coin-Flip Statistics
Detecting localized density differences in multivariate data is a crucial task in computational science. Such anomalies can indicate a critical system failure, lead to a groundbreaking scientific discovery, or reveal unexpected changes in data distribution. We introduce EagleEye, an anomaly detection method to compare two multivariate datasets with the aim of identifying local density anomalies, namely over- or under-densities affecting only localised regions of the feature space. Anomalies are detected by modelling, for each point, the ordered sequence of its neighbours' membership label as a coin-flipping process and monitoring deviations from the expected behaviour of such process. A unique advantage of our method is its ability to provide an accurate, entirely unsupervised estimate of the local signal purity. We demonstrate its effectiveness through experiments on both synthetic and real-world datasets. In synthetic data, EagleEye accurately detects anomalies in multiple dimensions even when they affect a tiny fraction of the data. When applied to a challenging resonant anomaly detection benchmark task in simulated Large Hadron Collider data, EagleEye successfully identifies particle decay events present in just 0.3% of the dataset. In global temperature data, EagleEye uncovers previously unidentified, geographically localised changes in temperature fields that occurred in the most recent years. Thanks to its key advantages of conceptual simplicity, computational efficiency, trivial parallelisation, and scalability, EagleEye is widely applicable across many fields.
comment: Code Availability: The code used to generate the results of this study is available at GitHub via the link: https://github.com/sspring137/EagleEye
♻ ☆ An All-digital 8.6-nJ/Frame 65-nm Tsetlin Machine Image Classification Accelerator
We present an all-digital programmable machine learning accelerator chip for image classification, underpinning on the Tsetlin machine (TM) principles. The TM is an emerging machine learning algorithm founded on propositional logic, utilizing sub-pattern recognition expressions called clauses. The accelerator implements the coalesced TM version with convolution, and classifies booleanized images of 28$\times$28 pixels with 10 categories. A configuration with 128 clauses is used in a highly parallel architecture. Fast clause evaluation is achieved by keeping all clause weights and Tsetlin automata (TA) action signals in registers. The chip is implemented in a 65 nm low-leakage CMOS technology, and occupies an active area of 2.7 mm$^2$. At a clock frequency of 27.8 MHz, the accelerator achieves 60.3k classifications per second, and consumes 8.6 nJ per classification. This demonstrates the energy-efficiency of the TM, which was the main motivation for developing this chip. The latency for classifying a single image is 25.4 $\mu$s which includes system timing overhead. The accelerator achieves 97.42%, 84.54% and 82.55% test accuracies for the datasets MNIST, Fashion-MNIST and Kuzushiji-MNIST, respectively, matching the TM software models.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ An Exponential Separation Between Quantum and Quantum-Inspired Classical Algorithms for Linear Systems
Achieving a provable exponential quantum speedup for an important machine learning task has been a central research goal since the seminal HHL quantum algorithm for solving linear systems and the subsequent quantum recommender systems algorithm by Kerenidis and Prakash. These algorithms were initially believed to be strong candidates for exponential speedups, but a lower bound ruling out similar classical improvements remained absent. In breakthrough work by Tang, it was demonstrated that this lack of progress in classical lower bounds was for good reasons. Concretely, she gave a classical counterpart of the quantum recommender systems algorithm, reducing the quantum advantage to a mere polynomial. Her approach is quite general and was named quantum-inspired classical algorithms. Since then, almost all the initially exponential quantum machine learning speedups have been reduced to polynomial via new quantum-inspired classical algorithms. From the current state-of-affairs, it is unclear whether we can hope for exponential quantum speedups for any natural machine learning task. In this work, we present the first such provable exponential separation between quantum and quantum-inspired classical algorithms for the basic problem of solving a linear system when the input matrix is well-conditioned and has sparse rows and columns.
♻ ☆ Epistemic Monte Carlo Tree Search
The AlphaZero/MuZero (A/MZ) family of algorithms has achieved remarkable success across various challenging domains by integrating Monte Carlo Tree Search (MCTS) with learned models. Learned models introduce epistemic uncertainty, which is caused by learning from limited data and is useful for exploration in sparse reward environments. MCTS does not account for the propagation of this uncertainty however. To address this, we introduce Epistemic MCTS (EMCTS): a theoretically motivated approach to account for the epistemic uncertainty in search and harness the search for deep exploration. In the challenging sparse-reward task of writing code in the Assembly language {\sc subleq}, AZ paired with our method achieves significantly higher sample efficiency over baseline AZ. Search with EMCTS solves variations of the commonly used hard-exploration benchmark Deep Sea - which baseline A/MZ are practically unable to solve - much faster than an otherwise equivalent method that does not use search for uncertainty estimation, demonstrating significant benefits from search for epistemic uncertainty estimation.
♻ ☆ AverageTime: Enhance Long-Term Time Series Forecasting with Simple Averaging
Long-term time series forecasting focuses on leveraging historical data to predict future trends. The core challenge lies in effectively modeling dependencies both within sequences and channels. Convolutional Neural Networks and Linear models often excel in sequence modeling but frequently fall short in capturing complex channel dependencies. In contrast, Transformer-based models, with their attention mechanisms applied to both sequences and channels, have demonstrated strong predictive performance. Our research proposes a new approach for capturing sequence and channel dependencies: AverageTime, an exceptionally simple yet effective structure. By employing mixed channel embedding and averaging operations, AverageTime separately captures correlations for sequences and channels through channel mapping and result averaging. In addition, we integrate clustering methods to further accelerate the model's training process. Experiments on real-world datasets demonstrate that AverageTime surpasses state-of-the-art models in predictive performance while maintaining efficiency comparable to lightweight linear models. This provides a new and effective framework for modeling long time series.
♻ ☆ Medical Spoken Named Entity Recognition
Spoken Named Entity Recognition (NER) aims to extract named entities from speech and categorise them into types like person, location, organization, etc. In this work, we present VietMed-NER - the first spoken NER dataset in the medical domain. To our knowledge, our Vietnamese real-world dataset is the largest spoken NER dataset in the world regarding the number of entity types, featuring 18 distinct types. Furthermore, we present baseline results using various state-of-the-art pre-trained models: encoder-only and sequence-to-sequence; and conduct quantitative and qualitative error analysis. We found that pre-trained multilingual models generally outperform monolingual models on reference text and ASR output and encoders outperform sequence-to-sequence models in NER tasks. By translating the transcripts, the dataset can also be utilised for text NER in the medical domain in other languages than Vietnamese. All code, data and models are publicly available: https://github.com/leduckhai/MultiMed/tree/master/VietMed-NER.
comment: NAACL 2025, 60 pages
♻ ☆ Linear Representations of Political Perspective Emerge in Large Language Models ICLR 2025
Large language models (LLMs) have demonstrated the ability to generate text that realistically reflects a range of different subjective human perspectives. This paper studies how LLMs are seemingly able to reflect more liberal versus more conservative viewpoints among other political perspectives in American politics. We show that LLMs possess linear representations of political perspectives within activation space, wherein more similar perspectives are represented closer together. To do so, we probe the attention heads across the layers of three open transformer-based LLMs (Llama-2-7b-chat, Mistral-7b-instruct, Vicuna-7b). We first prompt models to generate text from the perspectives of different U.S. lawmakers. We then identify sets of attention heads whose activations linearly predict those lawmakers' DW-NOMINATE scores, a widely-used and validated measure of political ideology. We find that highly predictive heads are primarily located in the middle layers, often speculated to encode high-level concepts and tasks. Using probes only trained to predict lawmakers' ideology, we then show that the same probes can predict measures of news outlets' slant from the activations of models prompted to simulate text from those news outlets. These linear probes allow us to visualize, interpret, and monitor ideological stances implicitly adopted by an LLM as it generates open-ended responses. Finally, we demonstrate that by applying linear interventions to these attention heads, we can steer the model outputs toward a more liberal or conservative stance. Overall, our research suggests that LLMs possess a high-level linear representation of American political ideology and that by leveraging recent advances in mechanistic interpretability, we can identify, monitor, and steer the subjective perspective underlying generated text.
comment: Published as a conference paper at ICLR 2025 https://openreview.net/forum?id=rwqShzb9li
♻ ☆ Automated Filtering of Human Feedback Data for Aligning Text-to-Image Diffusion Models ICLR 2025
Fine-tuning text-to-image diffusion models with human feedback is an effective method for aligning model behavior with human intentions. However, this alignment process often suffers from slow convergence due to the large size and noise present in human feedback datasets. In this work, we propose FiFA, a novel automated data filtering algorithm designed to enhance the fine-tuning of diffusion models using human feedback datasets with direct preference optimization (DPO). Specifically, our approach selects data by solving an optimization problem to maximize three components: preference margin, text quality, and text diversity. The concept of preference margin is used to identify samples that are highly informative in addressing the noisy nature of feedback dataset, which is calculated using a proxy reward model. Additionally, we incorporate text quality, assessed by large language models to prevent harmful contents, and consider text diversity through a k-nearest neighbor entropy estimator to improve generalization. Finally, we integrate all these components into an optimization process, with approximating the solution by assigning importance score to each data pair and selecting the most important ones. As a result, our method efficiently filters data automatically, without the need for manual intervention, and can be applied to any large-scale dataset. Experimental results show that FiFA significantly enhances training stability and achieves better performance, being preferred by humans 17% more, while using less than 0.5% of the full data and thus 1% of the GPU hours compared to utilizing full human feedback datasets.
comment: ICLR 2025; Project Page available at : https://sprain02.github.io/FiFA/
♻ ☆ Adversarial Curriculum Graph-Free Knowledge Distillation for Graph Neural Networks
Data-free Knowledge Distillation (DFKD) is a method that constructs pseudo-samples using a generator without real data, and transfers knowledge from a teacher model to a student by enforcing the student to overcome dimensional differences and learn to mimic the teacher's outputs on these pseudo-samples. In recent years, various studies in the vision domain have made notable advancements in this area. However, the varying topological structures and non-grid nature of graph data render the methods from the vision domain ineffective. Building upon prior research into differentiable methods for graph neural networks, we propose a fast and high-quality data-free knowledge distillation approach in this paper. Without compromising distillation quality, the proposed graph-free KD method (ACGKD) significantly reduces the spatial complexity of pseudo-graphs by leveraging the Binary Concrete distribution to model the graph structure and introducing a spatial complexity tuning parameter. This approach enables efficient gradient computation for the graph structure, thereby accelerating the overall distillation process. Additionally, ACGKD eliminates the dimensional ambiguity between the student and teacher models by increasing the student's dimensions and reusing the teacher's classifier. Moreover, it equips graph knowledge distillation with a CL-based strategy to ensure the student learns graph structures progressively. Extensive experiments demonstrate that ACGKD achieves state-of-the-art performance in distilling knowledge from GNNs without training data.
♻ ☆ TRA: Better Length Generalisation with Threshold Relative Attention
Transformers struggle with length generalisation, displaying poor performance even on basic tasks. We test whether these limitations can be explained through two key failures of the self-attention mechanism. The first is the inability to fully remove irrelevant information. The second is tied to position, even if the dot product between a key and query is highly negative (i.e. an irrelevant key) learned positional biases may unintentionally up-weight such information - dangerous when distances become out of distribution. Put together, these two failure cases lead to compounding generalisation difficulties. We test whether they can be mitigated through the combination of a) selective sparsity - completely removing irrelevant keys from the attention softmax and b) contextualised relative distance - distance is only considered as between the query and the keys that matter. We show how refactoring the attention mechanism with these two mitigations in place can substantially improve generalisation capabilities of decoder only transformers.
♻ ☆ AgentForge: A Flexible Low-Code Platform for Reinforcement Learning Agent Design
Developing a reinforcement learning (RL) agent often involves identifying values for numerous parameters, covering the policy, reward function, environment, and agent-internal architecture. Since these parameters are interrelated in complex ways, optimizing them is a black-box problem that proves especially challenging for nonexperts. Although existing optimization-as-a-service platforms (e.g., Vizier and Optuna) can handle such problems, they are impractical for RL systems, since the need for manual user mapping of each parameter to distinct components makes the effort cumbersome. It also requires understanding of the optimization process, limiting the systems' application beyond the machine learning field and restricting access in areas such as cognitive science, which models human decision-making. To tackle these challenges, the paper presents AgentForge, a flexible low-code platform to optimize any parameter set across an RL system. Available at https://github.com/feferna/AgentForge, it allows an optimization problem to be defined in a few lines of code and handed to any of the interfaced optimizers. With AgentForge, the user can optimize the parameters either individually or jointly. The paper presents an evaluation of its performance for a challenging vision-based RL problem.
comment: This paper has been accepted at the 17th International Conference on Agents and Artificial Intelligence (ICAART 2025)
♻ ☆ Making Large Language Models Better Knowledge Miners for Online Marketing with Progressive Prompting Augmentation ICDE 2025
Nowadays, the rapid development of mobile economy has promoted the flourishing of online marketing campaigns, whose success greatly hinges on the efficient matching between user preferences and desired marketing campaigns where a well-established Marketing-oriented Knowledge Graph (dubbed as MoKG) could serve as the critical "bridge" for preference propagation. In this paper, we seek to carefully prompt a Large Language Model (LLM) with domain-level knowledge as a better marketing-oriented knowledge miner for marketing-oriented knowledge graph construction, which is however non-trivial, suffering from several inevitable issues in real-world marketing scenarios, i.e., uncontrollable relation generation of LLMs,insufficient prompting ability of a single prompt, the unaffordable deployment cost of LLMs. To this end, we propose PAIR, a novel Progressive prompting Augmented mIning fRamework for harvesting marketing-oriented knowledge graph with LLMs. In particular, we reduce the pure relation generation to an LLM based adaptive relation filtering process through the knowledge-empowered prompting technique. Next, we steer LLMs for entity expansion with progressive prompting augmentation,followed by a reliable aggregation with comprehensive consideration of both self-consistency and semantic relatedness. In terms of online serving, we specialize in a small and white-box PAIR (i.e.,LightPAIR),which is fine-tuned with a high-quality corpus provided by a strong teacher-LLM. Extensive experiments and practical applications in audience targeting verify the effectiveness of the proposed (Light)PAIR.
comment: Accepted by ICDE 2025, new version paper title: Effectively PAIRing LLMs with Online Marketing via Progressive Prompting Augmentation
♻ ☆ FAN: Fourier Analysis Networks
Despite the remarkable successes of general-purpose neural networks, such as MLPs and Transformers, we find that they exhibit notable shortcomings in modeling and reasoning about periodic phenomena, achieving only marginal performance within the training domain and failing to generalize effectively to out-of-domain (OOD) scenarios. Periodicity is ubiquitous throughout nature and science. Therefore, neural networks should be equipped with the essential ability to model and handle periodicity. In this work, we propose FAN, a novel general-purpose neural network that offers broad applicability similar to MLP while effectively addressing periodicity modeling challenges. Periodicity is naturally integrated into FAN's structure and computational processes by introducing the Fourier Principle. Unlike existing Fourier-based networks, which possess particular periodicity modeling abilities but are typically designed for specific tasks, our approach maintains the general-purpose modeling capability. Therefore, FAN can seamlessly replace MLP in various model architectures with fewer parameters and FLOPs. Through extensive experiments, we demonstrate the superiority of FAN in periodicity modeling tasks and the effectiveness and generalizability of FAN across a range of real-world tasks, e.g., symbolic formula representation, time series forecasting, language modeling, and image recognition.
♻ ☆ Revisiting Prefix-tuning: Statistical Benefits of Reparameterization among Prompts ICLR 2025
Prompt-based techniques, such as prompt-tuning and prefix-tuning, have gained prominence for their efficiency in fine-tuning large pre-trained models. Despite their widespread adoption, the theoretical foundations of these methods remain limited. For instance, in prefix-tuning, we observe that a key factor in achieving performance parity with full fine-tuning lies in the reparameterization strategy. However, the theoretical principles underpinning the effectiveness of this approach have yet to be thoroughly examined. Our study demonstrates that reparameterization is not merely an engineering trick but is grounded in deep theoretical foundations. Specifically, we show that the reparameterization strategy implicitly encodes a shared structure between prefix key and value vectors. Building on recent insights into the connection between prefix-tuning and mixture of experts models, we further illustrate that this shared structure significantly improves sample efficiency in parameter estimation compared to non-shared alternatives. The effectiveness of prefix-tuning across diverse tasks is empirically confirmed to be enhanced by the shared structure, through extensive experiments in both visual and language domains. Additionally, we uncover similar structural benefits in prompt-tuning, offering new perspectives on its success. Our findings provide theoretical and empirical contributions, advancing the understanding of prompt-based methods and their underlying mechanisms.
comment: Accepted to ICLR 2025. 42 pages, 8 tables, 3 figures
♻ ☆ VidCRAFT3: Camera, Object, and Lighting Control for Image-to-Video Generation
Recent image-to-video generation methods have demonstrated success in enabling control over one or two visual elements, such as camera motion or object motion. However, these methods are unable to offer control over multiple visual elements due to limitations in data and network efficacy. In this paper, we introduce VidCRAFT3, a novel framework for precise image-to-video generation that enables control over camera motion, object motion, and lighting direction simultaneously. VidCRAFT3 integrates three core components: Image2Cloud generates 3D point cloud from a reference image; ObjMotionNet encodes sparse object trajectories using multi-scale optical flow features; and Spatial Triple-Attention Transformer incorporates lighting direction embeddings via parallel cross-attention modules. Additionally, we introduce the VideoLightingDirection dataset, providing synthetic yet realistic video clips with accurate per-frame lighting direction annotations, effectively mitigating the lack of annotated real-world datasets. We further adopt a three-stage training strategy, ensuring robust learning even without joint multi-element annotations. Extensive experiments show that VidCRAFT3 produces high-quality video content, outperforming state-of-the-art methods in control granularity and visual coherence. Code and data will be publicly available.
♻ ☆ MrT5: Dynamic Token Merging for Efficient Byte-level Language Models
Models that rely on subword tokenization have significant drawbacks, such as sensitivity to character-level noise like spelling errors and inconsistent compression rates across different languages and scripts. While character- or byte-level models like ByT5 attempt to address these concerns, they have not gained widespread adoption -- processing raw byte streams without tokenization results in significantly longer sequence lengths, making training and inference inefficient. This work introduces MrT5 (MergeT5), a more efficient variant of ByT5 that integrates a token deletion mechanism in its encoder to dynamically shorten the input sequence length. After processing through a fixed number of encoder layers, a learned delete gate determines which tokens are to be removed and which are to be retained for subsequent layers. MrT5 effectively "merges" critical information from deleted tokens into a more compact sequence, leveraging contextual information from the remaining tokens. In continued pre-training experiments, we find that MrT5 can achieve significant gains in inference runtime with minimal effect on performance, as measured by bits-per-byte. Additionally, with multilingual training, MrT5 adapts to the orthographic characteristics of each language, learning language-specific compression rates. Furthermore, MrT5 shows comparable accuracy to ByT5 on downstream evaluations such as XNLI, TyDi QA, and character-level tasks while reducing sequence lengths by up to 75%. Our approach presents a solution to the practical limitations of existing byte-level models.
♻ ☆ On the Implicit Relation Between Low-Rank Adaptation and Differential Privacy
A significant approach in natural language processing involves large-scale pre-training of models on general domain data followed by their adaptation to specific tasks or domains. As models grow in size, full fine-tuning all of their parameters becomes increasingly impractical. To address this, some methods for low-rank task adaptation of language models have been proposed, e.g., LoRA and FLoRA. These methods keep the pre-trained model weights fixed and incorporate trainable low-rank decomposition matrices into some layers of the transformer architecture, called adapters. This approach significantly reduces the number of trainable parameters required for downstream tasks compared to full fine-tuning all parameters. In this work, we look at low-rank adaptation from the lens of data privacy. We show theoretically that the low-rank adaptation used in LoRA and FLoRA leads to the injection of some random noise into the batch gradients w.r.t the adapter parameters. We quantify the variance of the injected noise and show that the smaller the adaptation rank, the larger the noise variance. By establishing a Berry-Esseen type bound on the total variation distance between distribution of the injected noise and a Gaussian distribution with the same variance, we show that the dynamics of low-rank adaptation is close to that of differentially private fine-tuning of the adapters. Finally, using Johnson-Lindenstrauss lemma, we show that when augmented with gradient scaling, low-rank adaptation is very close to performing DPSGD algorithm with a fixed noise scale to fine-tune the adapters. Suggested by our theoretical findings and approved by our experimental results, we show that low-rank adaptation, besides mitigating the space and computational complexities, implicitly provides a privacy protection w.r.t the fine-tuning data, without inducing the high space complexity of DPSGD.
♻ ☆ A Unified Framework for Forward and Inverse Problems in Subsurface Imaging using Latent Space Translations ICLR 2025
In subsurface imaging, learning the mapping from velocity maps to seismic waveforms (forward problem) and waveforms to velocity (inverse problem) is important for several applications. While traditional techniques for solving forward and inverse problems are computationally prohibitive, there is a growing interest in leveraging recent advances in deep learning to learn the mapping between velocity maps and seismic waveform images directly from data. Despite the variety of architectures explored in previous works, several open questions still remain unanswered such as the effect of latent space sizes, the importance of manifold learning, the complexity of translation models, and the value of jointly solving forward and inverse problems. We propose a unified framework to systematically characterize prior research in this area termed the Generalized Forward-Inverse (GFI) framework, building on the assumption of manifolds and latent space translations. We show that GFI encompasses previous works in deep learning for subsurface imaging, which can be viewed as specific instantiations of GFI. We also propose two new model architectures within the framework of GFI: Latent U-Net and Invertible X-Net, leveraging the power of U-Nets for domain translation and the ability of IU-Nets to simultaneously learn forward and inverse translations, respectively. We show that our proposed models achieve state-of-the-art (SOTA) performance for forward and inverse problems on a wide range of synthetic datasets, and also investigate their zero-shot effectiveness on two real-world-like datasets. Our code is available at https://github.com/KGML-lab/Generalized-Forward-Inverse-Framework-for-DL4SI
comment: Accepted at ICLR 2025
♻ ☆ Learning Graph Quantized Tokenizers ICLR 2025
Transformers serve as the backbone architectures of Foundational Models, where domain-specific tokenizers allow them to adapt to various domains. Graph Transformers (GTs) have recently emerged as leading models in geometric deep learning, outperforming Graph Neural Networks (GNNs) in various graph learning tasks. However, the development of tokenizers for graphs has lagged behind other modalities. To address this, we introduce GQT (\textbf{G}raph \textbf{Q}uantized \textbf{T}okenizer), which decouples tokenizer training from Transformer training by leveraging multi-task graph self-supervised learning, yielding robust and generalizable graph tokens. Furthermore, the GQT utilizes Residual Vector Quantization (RVQ) to learn hierarchical discrete tokens, resulting in significantly reduced memory requirements and improved generalization capabilities. By combining the GQT with token modulation, a Transformer encoder achieves state-of-the-art performance on 20 out of 22 benchmarks, including large-scale homophilic and heterophilic datasets.
comment: ICLR 2025
♻ ☆ Data Driven Decision Making with Time Series and Spatio-temporal Data ICDE 2025
Time series data captures properties that change over time. Such data occurs widely, ranging from the scientific and medical domains to the industrial and environmental domains. When the properties in time series exhibit spatial variations, we often call the data spatio-temporal. As part of the continued digitalization of processes throughout society, increasingly large volumes of time series and spatio-temporal data are available. In this tutorial, we focus on data-driven decision making with such data, e.g., enabling greener and more efficient transportation based on traffic time series forecasting. The tutorial adopts the holistic paradigm of ``data-governance-analytics-decision.'' We first introduce the data foundation of time series and spatio-temporal data, which is often heterogeneous. Next, we discuss data governance methods that aim to improve data quality. We then cover data analytics, focusing on the ``AGREE'' principles: Automation, Generalization, Robustness, Explainability, and Efficiency. We finally cover data-driven decision making strategies and briefly discuss promising research directions. We hope that the tutorial will serve as a primary resource for researchers and practitioners who are interested in value creation from time series and spatio-temporal data.
comment: This paper is accepted by ICDE 2025
♻ ☆ Learning Koopman-based Stability Certificates for Unknown Nonlinear Systems
Koopman operator theory has gained significant attention in recent years for identifying discrete-time nonlinear systems by embedding them into an infinite-dimensional linear vector space. However, providing stability guarantees while learning the continuous-time dynamics, especially under conditions of relatively low observation frequency, remains a challenge within the existing Koopman-based learning frameworks. To address this challenge, we propose an algorithmic framework to simultaneously learn the vector field and Lyapunov functions for unknown nonlinear systems, using a limited amount of data sampled across the state space and along the trajectories at a relatively low sampling frequency. The proposed framework builds upon recently developed high-accuracy Koopman generator learning for capturing transient system transitions and physics-informed neural networks for training Lyapunov functions. We show that the learned Lyapunov functions can be formally verified using a satisfiability modulo theories (SMT) solver and provide less conservative estimates of the region of attraction compared to existing methods.
♻ ☆ Recurrent Stochastic Configuration Networks for Temporal Data Analytics
Temporal data modelling techniques with neural networks are useful in many domain applications, including time-series forecasting and control engineering. This paper aims at developing a recurrent version of stochastic configuration networks (RSCNs) for problem solving, where we have no underlying assumption on the dynamic orders of the input variables. Given a collection of historical data, we first build an initial RSCN model in the light of a supervisory mechanism, followed by an online update of the output weights by using a projection algorithm. Some theoretical results are established, including the echo state property, the universal approximation property of RSCNs for both the offline and online learnings, and the convergence of the output weights. The proposed RSCN model is remarkably distinguished from the well-known echo state networks (ESNs) in terms of the way of assigning the input random weight matrix and a special structure of the random feedback matrix. A comprehensive comparison study among the long short-term memory (LSTM) network, the original ESN, and several state-of-the-art ESN methods such as the simple cycle reservoir (SCR), the polynomial ESN (PESN), the leaky-integrator ESN (LIESN) and RSCN is carried out. Numerical results clearly indicate that the proposed RSCN performs favourably over all of the datasets.
♻ ☆ Calibrating Expressions of Certainty ICLR
We present a novel approach to calibrating linguistic expressions of certainty, e.g., "Maybe" and "Likely". Unlike prior work that assigns a single score to each certainty phrase, we model uncertainty as distributions over the simplex to capture their semantics more accurately. To accommodate this new representation of certainty, we generalize existing measures of miscalibration and introduce a novel post-hoc calibration method. Leveraging these tools, we analyze the calibration of both humans (e.g., radiologists) and computational models (e.g., language models) and provide interpretable suggestions to improve their calibration.
comment: International Conference on Learning Representations (ICLR), 2025
♻ ☆ What is Left After Distillation? How Knowledge Transfer Impacts Fairness and Bias
Knowledge Distillation is a commonly used Deep Neural Network (DNN) compression method, which often maintains overall generalization performance. However, we show that even for balanced image classification datasets, such as CIFAR-100, Tiny ImageNet and ImageNet, as many as 41% of the classes are statistically significantly affected by distillation when comparing class-wise accuracy (i.e. class bias) between a teacher/distilled student or distilled student/non-distilled student model. Changes in class bias are not necessarily an undesirable outcome when considered outside of the context of a model's usage. Using two common fairness metrics, Demographic Parity Difference (DPD) and Equalized Odds Difference (EOD) on models trained with the CelebA, Trifeature, and HateXplain datasets, our results suggest that increasing the distillation temperature improves the distilled student model's fairness, and the distilled student fairness can even surpass the fairness of the teacher model at high temperatures. Additionally, we examine individual fairness, ensuring similar instances receive similar predictions. Our results confirm that higher temperatures also improve the distilled student model's individual fairness. This study highlights the uneven effects of distillation on certain classes and its potentially significant role in fairness, emphasizing that caution is warranted when using distilled models for sensitive application domains.
comment: Published in Transactions on Machine Learning Research (TMLR), March 2024. https://openreview.net/forum?id=xBbj46Y2fN
Computer Vision and Pattern Recognition 198
☆ FUSION: Frequency-guided Underwater Spatial Image recOnstructioN
Underwater images suffer from severe degradations, including color distortions, reduced visibility, and loss of structural details due to wavelength-dependent attenuation and scattering. Existing enhancement methods primarily focus on spatial-domain processing, neglecting the frequency domain's potential to capture global color distributions and long-range dependencies. To address these limitations, we propose FUSION, a dual-domain deep learning framework that jointly leverages spatial and frequency domain information. FUSION independently processes each RGB channel through multi-scale convolutional kernels and adaptive attention mechanisms in the spatial domain, while simultaneously extracting global structural information via FFT-based frequency attention. A Frequency Guided Fusion module integrates complementary features from both domains, followed by inter-channel fusion and adaptive channel recalibration to ensure balanced color distributions. Extensive experiments on benchmark datasets (UIEB, EUVP, SUIM-E) demonstrate that FUSION achieves state-of-the-art performance, consistently outperforming existing methods in reconstruction fidelity (highest PSNR of 23.717 dB and SSIM of 0.883 on UIEB), perceptual quality (lowest LPIPS of 0.112 on UIEB), and visual enhancement metrics (best UIQM of 3.414 on UIEB), while requiring significantly fewer parameters (0.28M) and lower computational complexity, demonstrating its suitability for real-time underwater imaging applications.
☆ TenAd: A Tensor-based Low-rank Black Box Adversarial Attack for Video Classification
Deep learning models have achieved remarkable success in computer vision but remain vulnerable to adversarial attacks, particularly in black-box settings where model details are unknown. Existing adversarial attack methods(even those works with key frames) often treat video data as simple vectors, ignoring their inherent multi-dimensional structure, and require a large number of queries, making them inefficient and detectable. In this paper, we propose \textbf{TenAd}, a novel tensor-based low-rank adversarial attack that leverages the multi-dimensional properties of video data by representing videos as fourth-order tensors. By exploiting low-rank attack, our method significantly reduces the search space and the number of queries needed to generate adversarial examples in black-box settings. Experimental results on standard video classification datasets demonstrate that \textbf{TenAd} effectively generates imperceptible adversarial perturbations while achieving higher attack success rates and query efficiency compared to state-of-the-art methods. Our approach outperforms existing black-box adversarial attacks in terms of success rate, query efficiency, and perturbation imperceptibility, highlighting the potential of tensor-based methods for adversarial attacks on video models.
☆ A Conformal Risk Control Framework for Granular Word Assessment and Uncertainty Calibration of CLIPScore Quality Estimates
This study explores current limitations of learned image captioning evaluation metrics, specifically the lack of granular assessment for individual word misalignments within captions, and the reliance on single-point quality estimates without considering uncertainty. To address these limitations, we propose a simple yet effective strategy for generating and calibrating CLIPScore distributions. Leveraging a model-agnostic conformal risk control framework, we calibrate CLIPScore values for task-specific control variables, to tackle the aforementioned two limitations. Experimental results demonstrate that using conformal risk control, over the distributions produced with simple methods such as input masking, can achieve competitive performance compared to more complex approaches. Our method effectively detects misaligned words, while providing formal guarantees aligned with desired risk levels, and improving the correlation between uncertainty estimations and prediction errors, thus enhancing the overall reliability of caption evaluation metrics.
☆ rPPG-SysDiaGAN: Systolic-Diastolic Feature Localization in rPPG Using Generative Adversarial Network with Multi-Domain Discriminator
Remote photoplethysmography (rPPG) offers a novel approach to noninvasive monitoring of vital signs, such as respiratory rate, utilizing a camera. Although several supervised and self-supervised methods have been proposed, they often fail to accurately reconstruct the PPG signal, particularly in distinguishing between systolic and diastolic components. Their primary focus tends to be solely on extracting heart rate, which may not accurately represent the complete PPG signal. To address this limitation, this paper proposes a novel deep learning architecture using Generative Adversarial Networks by introducing multi-discriminators to extract rPPG signals from facial videos. These discriminators focus on the time domain, the frequency domain, and the second derivative of the original time domain signal. The discriminator integrates four loss functions: variance loss to mitigate local minima caused by noise; dynamic time warping loss to address local minima induced by alignment and sequences of variable lengths; Sparsity Loss for heart rate adjustment, and Variance Loss to ensure a uniform distribution across the desired frequency domain and time interval between systolic and diastolic phases of the PPG signal.
☆ Prompting Forgetting: Unlearning in GANs via Textual Guidance
State-of-the-art generative models exhibit powerful image-generation capabilities, introducing various ethical and legal challenges to service providers hosting these models. Consequently, Content Removal Techniques (CRTs) have emerged as a growing area of research to control outputs without full-scale retraining. Recent work has explored the use of Machine Unlearning in generative models to address content removal. However, the focus of such research has been on diffusion models, and unlearning in Generative Adversarial Networks (GANs) has remained largely unexplored. We address this gap by proposing Text-to-Unlearn, a novel framework that selectively unlearns concepts from pre-trained GANs using only text prompts, enabling feature unlearning, identity unlearning, and fine-grained tasks like expression and multi-attribute removal in models trained on human faces. Leveraging natural language descriptions, our approach guides the unlearning process without requiring additional datasets or supervised fine-tuning, offering a scalable and efficient solution. To evaluate its effectiveness, we introduce an automatic unlearning assessment method adapted from state-of-the-art image-text alignment metrics, providing a comprehensive analysis of the unlearning methodology. To our knowledge, Text-to-Unlearn is the first cross-modal unlearning framework for GANs, representing a flexible and efficient advancement in managing generative model behavior.
☆ PolygoNet: Leveraging Simplified Polygonal Representation for Effective Image Classification
Deep learning models have achieved significant success in various image related tasks. However, they often encounter challenges related to computational complexity and overfitting. In this paper, we propose an efficient approach that leverages polygonal representations of images using dominant points or contour coordinates. By transforming input images into these compact forms, our method significantly reduces computational requirements, accelerates training, and conserves resources making it suitable for real time and resource constrained applications. These representations inherently capture essential image features while filtering noise, providing a natural regularization effect that mitigates overfitting. The resulting lightweight models achieve performance comparable to state of the art methods using full resolution images while enabling deployment on edge devices. Extensive experiments on benchmark datasets validate the effectiveness of our approach in reducing complexity, improving generalization, and facilitating edge computing applications. This work demonstrates the potential of polygonal representations in advancing efficient and scalable deep learning solutions for real world scenarios. The code for the experiments of the paper is provided in https://github.com/salimkhazem/PolygoNet.
☆ GRU-AUNet: A Domain Adaptation Framework for Contactless Fingerprint Presentation Attack Detection
Although contactless fingerprints offer user comfort, they are more vulnerable to spoofing. The current solution for anti-spoofing in the area of contactless fingerprints relies on domain adaptation learning, limiting their generalization and scalability. To address these limitations, we introduce GRU-AUNet, a domain adaptation approach that integrates a Swin Transformer-based UNet architecture with GRU-enhanced attention mechanisms, a Dynamic Filter Network in the bottleneck, and a combined Focal and Contrastive Loss function. Trained in both genuine and spoof fingerprint images, GRU-AUNet demonstrates robust resilience against presentation attacks, achieving an average BPCER of 0.09\% and APCER of 1.2\% in the CLARKSON, COLFISPOOF, and IIITD datasets, outperforming state-of-the-art domain adaptation methods.
Lightweight Deep Models for Dermatological Disease Detection: A Study on Instance Selection and Channel Optimization
The identification of dermatological disease is an important problem in Mexico according with different studies. Several works in literature use the datasets of different repositories without applying a study of the data behavior, especially in medical images domain. In this work, we propose a methodology to preprocess dermaMNIST dataset in order to improve its quality for the classification stage, where we use lightweight convolutional neural networks. In our results, we reduce the number of instances for the neural network training obtaining a similar performance of models as ResNet.
comment: Submitted to Mexican Conference on Pattern Recognition 2025
☆ Articulated Kinematics Distillation from Video Diffusion Models
We present Articulated Kinematics Distillation (AKD), a framework for generating high-fidelity character animations by merging the strengths of skeleton-based animation and modern generative models. AKD uses a skeleton-based representation for rigged 3D assets, drastically reducing the Degrees of Freedom (DoFs) by focusing on joint-level control, which allows for efficient, consistent motion synthesis. Through Score Distillation Sampling (SDS) with pre-trained video diffusion models, AKD distills complex, articulated motions while maintaining structural integrity, overcoming challenges faced by 4D neural deformation fields in preserving shape consistency. This approach is naturally compatible with physics-based simulation, ensuring physically plausible interactions. Experiments show that AKD achieves superior 3D consistency and motion quality compared with existing works on text-to-4D generation. Project page: https://research.nvidia.com/labs/dir/akd/
☆ RipVIS: Rip Currents Video Instance Segmentation Benchmark for Beach Monitoring and Safety
Rip currents are strong, localized and narrow currents of water that flow outwards into the sea, causing numerous beach-related injuries and fatalities worldwide. Accurate identification of rip currents remains challenging due to their amorphous nature and the lack of annotated data, which often requires expert knowledge. To address these issues, we present RipVIS, a large-scale video instance segmentation benchmark explicitly designed for rip current segmentation. RipVIS is an order of magnitude larger than previous datasets, featuring $184$ videos ($212,328$ frames), of which $150$ videos ($163,528$ frames) are with rip currents, collected from various sources, including drones, mobile phones, and fixed beach cameras. Our dataset encompasses diverse visual contexts, such as wave-breaking patterns, sediment flows, and water color variations, across multiple global locations, including USA, Mexico, Costa Rica, Portugal, Italy, Greece, Romania, Sri Lanka, Australia and New Zealand. Most videos are annotated at $5$ FPS to ensure accuracy in dynamic scenarios, supplemented by an additional $34$ videos ($48,800$ frames) without rip currents. We conduct comprehensive experiments with Mask R-CNN, Cascade Mask R-CNN, SparseInst and YOLO11, fine-tuning these models for the task of rip current segmentation. Results are reported in terms of multiple metrics, with a particular focus on the $F_2$ score to prioritize recall and reduce false negatives. To enhance segmentation performance, we introduce a novel post-processing step based on Temporal Confidence Aggregation (TCA). RipVIS aims to set a new standard for rip current segmentation, contributing towards safer beach environments. We offer a benchmark website to share data, models, and results with the research community, encouraging ongoing collaboration and future contributions, at https://ripvis.ai.
☆ ShieldGemma 2: Robust and Tractable Image Content Moderation
We introduce ShieldGemma 2, a 4B parameter image content moderation model built on Gemma 3. This model provides robust safety risk predictions across the following key harm categories: Sexually Explicit, Violence \& Gore, and Dangerous Content for synthetic images (e.g. output of any image generation model) and natural images (e.g. any image input to a Vision-Language Model). We evaluated on both internal and external benchmarks to demonstrate state-of-the-art performance compared to LlavaGuard \citep{helff2024llavaguard}, GPT-4o mini \citep{hurst2024gpt}, and the base Gemma 3 model \citep{gemma_2025} based on our policies. Additionally, we present a novel adversarial data generation pipeline which enables a controlled, diverse, and robust image generation. ShieldGemma 2 provides an open image moderation tool to advance multimodal safety and responsible AI development.
☆ Shot-by-Shot: Film-Grammar-Aware Training-Free Audio Description Generation
Our objective is the automatic generation of Audio Descriptions (ADs) for edited video material, such as movies and TV series. To achieve this, we propose a two-stage framework that leverages "shots" as the fundamental units of video understanding. This includes extending temporal context to neighbouring shots and incorporating film grammar devices, such as shot scales and thread structures, to guide AD generation. Our method is compatible with both open-source and proprietary Visual-Language Models (VLMs), integrating expert knowledge from add-on modules without requiring additional training of the VLMs. We achieve state-of-the-art performance among all prior training-free approaches and even surpass fine-tuned methods on several benchmarks. To evaluate the quality of predicted ADs, we introduce a new evaluation measure -- an action score -- specifically targeted to assessing this important aspect of AD. Additionally, we propose a novel evaluation protocol that treats automatic frameworks as AD generation assistants and asks them to generate multiple candidate ADs for selection.
comment: Project Page: https://www.robots.ox.ac.uk/vgg/research/shot-by-shot/
☆ MixerMDM: Learnable Composition of Human Motion Diffusion Models CVPR 2025
Generating human motion guided by conditions such as textual descriptions is challenging due to the need for datasets with pairs of high-quality motion and their corresponding conditions. The difficulty increases when aiming for finer control in the generation. To that end, prior works have proposed to combine several motion diffusion models pre-trained on datasets with different types of conditions, thus allowing control with multiple conditions. However, the proposed merging strategies overlook that the optimal way to combine the generation processes might depend on the particularities of each pre-trained generative model and also the specific textual descriptions. In this context, we introduce MixerMDM, the first learnable model composition technique for combining pre-trained text-conditioned human motion diffusion models. Unlike previous approaches, MixerMDM provides a dynamic mixing strategy that is trained in an adversarial fashion to learn to combine the denoising process of each model depending on the set of conditions driving the generation. By using MixerMDM to combine single- and multi-person motion diffusion models, we achieve fine-grained control on the dynamics of every person individually, and also on the overall interaction. Furthermore, we propose a new evaluation technique that, for the first time in this task, measures the interaction and individual quality by computing the alignment between the mixed generated motions and their conditions as well as the capabilities of MixerMDM to adapt the mixing throughout the denoising process depending on the motions to mix.
comment: CVPR 2025 Accepted - Project Page: https://pabloruizponce.com/papers/MixerMDM
Scaling Language-Free Visual Representation Learning
Visual Self-Supervised Learning (SSL) currently underperforms Contrastive Language-Image Pretraining (CLIP) in multimodal settings such as Visual Question Answering (VQA). This multimodal gap is often attributed to the semantics introduced by language supervision, even though visual SSL and CLIP models are often trained on different data. In this work, we ask the question: "Do visual self-supervised approaches lag behind CLIP due to the lack of language supervision, or differences in the training data?" We study this question by training both visual SSL and CLIP models on the same MetaCLIP data, and leveraging VQA as a diverse testbed for vision encoders. In this controlled setup, visual SSL models scale better than CLIP models in terms of data and model capacity, and visual SSL performance does not saturate even after scaling up to 7B parameters. Consequently, we observe visual SSL methods achieve CLIP-level performance on a wide range of VQA and classic vision benchmarks. These findings demonstrate that pure visual SSL can match language-supervised visual pretraining at scale, opening new opportunities for vision-centric representation learning.
comment: Project page at https://davidfan.io/webssl/
☆ GeometryCrafter: Consistent Geometry Estimation for Open-world Videos with Diffusion Priors
Despite remarkable advancements in video depth estimation, existing methods exhibit inherent limitations in achieving geometric fidelity through the affine-invariant predictions, limiting their applicability in reconstruction and other metrically grounded downstream tasks. We propose GeometryCrafter, a novel framework that recovers high-fidelity point map sequences with temporal coherence from open-world videos, enabling accurate 3D/4D reconstruction, camera parameter estimation, and other depth-based applications. At the core of our approach lies a point map Variational Autoencoder (VAE) that learns a latent space agnostic to video latent distributions for effective point map encoding and decoding. Leveraging the VAE, we train a video diffusion model to model the distribution of point map sequences conditioned on the input videos. Extensive evaluations on diverse datasets demonstrate that GeometryCrafter achieves state-of-the-art 3D accuracy, temporal consistency, and generalization capability.
comment: Project webpage: https://geometrycrafter.github.io/
☆ AnimeGamer: Infinite Anime Life Simulation with Next Game State Prediction
Recent advancements in image and video synthesis have opened up new promise in generative games. One particularly intriguing application is transforming characters from anime films into interactive, playable entities. This allows players to immerse themselves in the dynamic anime world as their favorite characters for life simulation through language instructions. Such games are defined as infinite game since they eliminate predetermined boundaries and fixed gameplay rules, where players can interact with the game world through open-ended language and experience ever-evolving storylines and environments. Recently, a pioneering approach for infinite anime life simulation employs large language models (LLMs) to translate multi-turn text dialogues into language instructions for image generation. However, it neglects historical visual context, leading to inconsistent gameplay. Furthermore, it only generates static images, failing to incorporate the dynamics necessary for an engaging gaming experience. In this work, we propose AnimeGamer, which is built upon Multimodal Large Language Models (MLLMs) to generate each game state, including dynamic animation shots that depict character movements and updates to character states, as illustrated in Figure 1. We introduce novel action-aware multimodal representations to represent animation shots, which can be decoded into high-quality video clips using a video diffusion model. By taking historical animation shot representations as context and predicting subsequent representations, AnimeGamer can generate games with contextual consistency and satisfactory dynamics. Extensive evaluations using both automated metrics and human evaluations demonstrate that AnimeGamer outperforms existing methods in various aspects of the gaming experience. Codes and checkpoints are available at https://github.com/TencentARC/AnimeGamer.
comment: Project released at: https://howe125.github.io/AnimeGamer.github.io/
☆ A YOLO-Based Semi-Automated Labeling Approach to Improve Fault Detection Efficiency in Railroad Videos
Manual labeling for large-scale image and video datasets is often time-intensive, error-prone, and costly, posing a significant barrier to efficient machine learning workflows in fault detection from railroad videos. This study introduces a semi-automated labeling method that utilizes a pre-trained You Only Look Once (YOLO) model to streamline the labeling process and enhance fault detection accuracy in railroad videos. By initiating the process with a small set of manually labeled data, our approach iteratively trains the YOLO model, using each cycle's output to improve model accuracy and progressively reduce the need for human intervention. To facilitate easy correction of model predictions, we developed a system to export YOLO's detection data as an editable text file, enabling rapid adjustments when detections require refinement. This approach decreases labeling time from an average of 2 to 4 minutes per image to 30 seconds to 2 minutes, effectively minimizing labor costs and labeling errors. Unlike costly AI based labeling solutions on paid platforms, our method provides a cost-effective alternative for researchers and practitioners handling large datasets in fault detection and other detection based machine learning applications.
comment: Published on American Society of Engineering Education (ASEE) North Central Section Conference, 2025
☆ GECKO: Gigapixel Vision-Concept Contrastive Pretraining in Histopathology
Pretraining a Multiple Instance Learning (MIL) aggregator enables the derivation of Whole Slide Image (WSI)-level embeddings from patch-level representations without supervision. While recent multimodal MIL pretraining approaches leveraging auxiliary modalities have demonstrated performance gains over unimodal WSI pretraining, the acquisition of these additional modalities necessitates extensive clinical profiling. This requirement increases costs and limits scalability in existing WSI datasets lacking such paired modalities. To address this, we propose Gigapixel Vision-Concept Knowledge Contrastive pretraining (GECKO), which aligns WSIs with a Concept Prior derived from the available WSIs. First, we derive an inherently interpretable concept prior by computing the similarity between each WSI patch and textual descriptions of predefined pathology concepts. GECKO then employs a dual-branch MIL network: one branch aggregates patch embeddings into a WSI-level deep embedding, while the other aggregates the concept prior into a corresponding WSI-level concept embedding. Both aggregated embeddings are aligned using a contrastive objective, thereby pretraining the entire dual-branch MIL model. Moreover, when auxiliary modalities such as transcriptomics data are available, GECKO seamlessly integrates them. Across five diverse tasks, GECKO consistently outperforms prior unimodal and multimodal pretraining approaches while also delivering clinically meaningful interpretability that bridges the gap between computational models and pathology expertise. Code is made available at https://github.com/bmi-imaginelab/GECKO
☆ IntrinsiX: High-Quality PBR Generation using Image Priors
We introduce IntrinsiX, a novel method that generates high-quality intrinsic images from text description. In contrast to existing text-to-image models whose outputs contain baked-in scene lighting, our approach predicts physically-based rendering (PBR) maps. This enables the generated outputs to be used for content creation scenarios in core graphics applications that facilitate re-lighting, editing, and texture generation tasks. In order to train our generator, we exploit strong image priors, and pre-train separate models for each PBR material component (albedo, roughness, metallic, normals). We then align these models with a new cross-intrinsic attention formulation that concatenates key and value features in a consistent fashion. This allows us to exchange information between each output modality and to obtain semantically coherent PBR predictions. To ground each intrinsic component, we propose a rendering loss which provides image-space signals to constrain the model, thus facilitating sharp details also in the output BRDF properties. Our results demonstrate detailed intrinsic generation with strong generalization capabilities that outperforms existing intrinsic image decomposition methods used with generated images by a significant margin. Finally, we show a series of applications, including re-lighting, editing, and text-conditioned room-scale PBR texture generation.
comment: Project page: https://peter-kocsis.github.io/IntrinsiX/ Video: https://youtu.be/b0wVA44R93Y
☆ Enhancing 3T BOLD fMRI SNR using Unpaired 7T Data with Schrödinger Bridge Diffusion
High spatial and temporal resolution, coupled with a strong signal-to-noise ratio (SNR), has made BOLD 7 Tesla fMRI an invaluable tool for understanding how the brain processes visual stimuli. However, the limited availability of 7T MRI systems means that most research relies on 3T MRI systems, which offer lower spatial and temporal resolution and SNR. This naturally raises the question: Can we enhance the spatiotemporal resolution and SNR of 3T BOLD fMRI data to approximate 7T quality? In this study, we propose a novel framework that aligns 7T and 3T fMRI data from different subjects and datasets in a shared parametric domain. We then apply an unpaired Brain Disk Schr\"odinger Bridge diffusion model to enhance the spatiotemporal resolution and SNR of the 3T data. Our approach addresses the challenge of limited 7T data by improving the 3T scan quality. We demonstrate its effectiveness by testing it on two distinct fMRI retinotopy datasets (one 7T and one 3T), as well as synthetic data. The results show that our method significantly improves the SNR and goodness-of-fit of the population receptive field (pRF) model in the enhanced 3T data, making it comparable to 7T quality. The codes will be available at Github.
☆ MergeVQ: A Unified Framework for Visual Generation and Representation with Disentangled Token Merging and Quantization CVPR2025
Masked Image Modeling (MIM) with Vector Quantization (VQ) has achieved great success in both self-supervised pre-training and image generation. However, most existing methods struggle to address the trade-off in shared latent space for generation quality vs. representation learning and efficiency. To push the limits of this paradigm, we propose MergeVQ, which incorporates token merging techniques into VQ-based generative models to bridge the gap between image generation and visual representation learning in a unified architecture. During pre-training, MergeVQ decouples top-k semantics from latent space with the token merge module after self-attention blocks in the encoder for subsequent Look-up Free Quantization (LFQ) and global alignment and recovers their fine-grained details through cross-attention in the decoder for reconstruction. As for the second-stage generation, we introduce MergeAR, which performs KV Cache compression for efficient raster-order prediction. Extensive experiments on ImageNet verify that MergeVQ as an AR generative model achieves competitive performance in both visual representation learning and image generation tasks while maintaining favorable token efficiency and inference speed. The code and model will be available at https://apexgen-x.github.io/MergeVQ.
comment: CVPR2025 (in process for more analysis and extension)
☆ TurboFill: Adapting Few-step Text-to-image Model for Fast Image Inpainting
This paper introduces TurboFill, a fast image inpainting model that enhances a few-step text-to-image diffusion model with an inpainting adapter for high-quality and efficient inpainting. While standard diffusion models generate high-quality results, they incur high computational costs. We overcome this by training an inpainting adapter on a few-step distilled text-to-image model, DMD2, using a novel 3-step adversarial training scheme to ensure realistic, structurally consistent, and visually harmonious inpainted regions. To evaluate TurboFill, we propose two benchmarks: DilationBench, which tests performance across mask sizes, and HumanBench, based on human feedback for complex prompts. Experiments show that TurboFill outperforms both multi-step BrushNet and few-step inpainting methods, setting a new benchmark for high-performance inpainting tasks. Our project page: https://liangbinxie.github.io/projects/TurboFill/
comment: Project webpage available at https://liangbinxie.github.io/projects/TurboFill/
☆ SuperDec: 3D Scene Decomposition with Superquadric Primitives
We present SuperDec, an approach for creating compact 3D scene representations via decomposition into superquadric primitives. While most recent works leverage geometric primitives to obtain photorealistic 3D scene representations, we propose to leverage them to obtain a compact yet expressive representation. We propose to solve the problem locally on individual objects and leverage the capabilities of instance segmentation methods to scale our solution to full 3D scenes. In doing that, we design a new architecture which efficiently decompose point clouds of arbitrary objects in a compact set of superquadrics. We train our architecture on ShapeNet and we prove its generalization capabilities on object instances extracted from the ScanNet++ dataset as well as on full Replica scenes. Finally, we show how a compact representation based on superquadrics can be useful for a diverse range of downstream applications, including robotic tasks and controllable visual content generation and editing.
☆ WorldScore: A Unified Evaluation Benchmark for World Generation
We introduce the WorldScore benchmark, the first unified benchmark for world generation. We decompose world generation into a sequence of next-scene generation tasks with explicit camera trajectory-based layout specifications, enabling unified evaluation of diverse approaches from 3D and 4D scene generation to video generation models. The WorldScore benchmark encompasses a curated dataset of 3,000 test examples that span diverse worlds: static and dynamic, indoor and outdoor, photorealistic and stylized. The WorldScore metrics evaluate generated worlds through three key aspects: controllability, quality, and dynamics. Through extensive evaluation of 19 representative models, including both open-source and closed-source ones, we reveal key insights and challenges for each category of models. Our dataset, evaluation code, and leaderboard can be found at https://haoyi-duan.github.io/WorldScore/
comment: Project website: https://haoyi-duan.github.io/WorldScore/ The first two authors contributed equally
☆ IDMR: Towards Instance-Driven Precise Visual Correspondence in Multimodal Retrieval
Multimodal retrieval systems are becoming increasingly vital for cutting-edge AI technologies, such as embodied AI and AI-driven digital content industries. However, current multimodal retrieval tasks lack sufficient complexity and demonstrate limited practical application value. It spires us to design Instance-Driven Multimodal Image Retrieval (IDMR), a novel task that requires models to retrieve images containing the same instance as a query image while matching a text-described scenario. Unlike existing retrieval tasks focused on global image similarity or category-level matching, IDMR demands fine-grained instance-level consistency across diverse contexts. To benchmark this capability, we develop IDMR-bench using real-world object tracking and first-person video data. Addressing the scarcity of training data, we propose a cross-domain synthesis method that creates 557K training samples by cropping objects from standard detection datasets. Our Multimodal Large Language Model (MLLM) based retrieval model, trained on 1.2M samples, outperforms state-of-the-art approaches on both traditional benchmarks and our zero-shot IDMR-bench. Experimental results demonstrate previous models' limitations in instance-aware retrieval and highlight the potential of MLLM for advanced retrieval applications. The whole training dataset, codes and models, with wide ranges of sizes, are available at https://github.com/BwLiu01/IDMR.
☆ Personalized Federated Training of Diffusion Models with Privacy Guarantees
The scarcity of accessible, compliant, and ethically sourced data presents a considerable challenge to the adoption of artificial intelligence (AI) in sensitive fields like healthcare, finance, and biomedical research. Furthermore, access to unrestricted public datasets is increasingly constrained due to rising concerns over privacy, copyright, and competition. Synthetic data has emerged as a promising alternative, and diffusion models -- a cutting-edge generative AI technology -- provide an effective solution for generating high-quality and diverse synthetic data. In this paper, we introduce a novel federated learning framework for training diffusion models on decentralized private datasets. Our framework leverages personalization and the inherent noise in the forward diffusion process to produce high-quality samples while ensuring robust differential privacy guarantees. Our experiments show that our framework outperforms non-collaborative training methods, particularly in settings with high data heterogeneity, and effectively reduces biases and imbalances in synthetic data, resulting in fairer downstream models.
comment: 18 pages, 4 figures
☆ Neural Pruning for 3D Scene Reconstruction: Efficient NeRF Acceleration
Neural Radiance Fields (NeRF) have become a popular 3D reconstruction approach in recent years. While they produce high-quality results, they also demand lengthy training times, often spanning days. This paper studies neural pruning as a strategy to address these concerns. We compare pruning approaches, including uniform sampling, importance-based methods, and coreset-based techniques, to reduce the model size and speed up training. Our findings show that coreset-driven pruning can achieve a 50% reduction in model size and a 35% speedup in training, with only a slight decrease in accuracy. These results suggest that pruning can be an effective method for improving the efficiency of NeRF models in resource-limited settings.
comment: 12 pages, 4 figures, accepted by International Conference on the AI Revolution: Research, Ethics, and Society (AIR-RES 2025)
☆ GKAN: Explainable Diagnosis of Alzheimer's Disease Using Graph Neural Network with Kolmogorov-Arnold Networks
Alzheimer's Disease (AD) is a progressive neurodegenerative disorder that poses significant diagnostic challenges due to its complex etiology. Graph Convolutional Networks (GCNs) have shown promise in modeling brain connectivity for AD diagnosis, yet their reliance on linear transformations limits their ability to capture intricate nonlinear patterns in neuroimaging data. To address this, we propose GCN-KAN, a novel single-modal framework that integrates Kolmogorov-Arnold Networks (KAN) into GCNs to enhance both diagnostic accuracy and interpretability. Leveraging structural MRI data, our model employs learnable spline-based transformations to better represent brain region interactions. Evaluated on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset, GCN-KAN outperforms traditional GCNs by 4-8% in classification accuracy while providing interpretable insights into key brain regions associated with AD. This approach offers a robust and explainable tool for early AD diagnosis.
comment: 12 pages, 4 figures, under review of The Southwest Data Science Conference (SDSC 2025)
☆ Graph Classification and Radiomics Signature for Identification of Tuberculous Meningitis
Introduction: Tuberculous meningitis (TBM) is a serious brain infection caused by Mycobacterium tuberculosis, characterized by inflammation of the meninges covering the brain and spinal cord. Diagnosis often requires invasive lumbar puncture (LP) and cerebrospinal fluid (CSF) analysis. Objectives: This study aims to classify TBM patients using T1-weighted (T1w) non-contrast Magnetic Resonance Imaging (MRI) scans. We hypothesize that specific brain regions, such as the interpeduncular cisterns, bone, and corpus callosum, contain visual markers that can non-invasively distinguish TBM patients from healthy controls. We propose a novel Pixel-array Graphs Classifier (PAG-Classifier) that leverages spatial relationships between neighbouring 3D pixels in a graph-based framework to extract significant features through eigen decomposition. These features are then used to train machine learning classifiers for effective patient classification. We validate our approach using a radiomics-based methodology, classifying TBM patients based on relevant radiomics features. Results: We utilized an internal dataset consisting of 52 scans, 32 from confirmed TBM patients based on mycobacteria detection in CSF, and 20 from healthy individuals. We achieved a 5-fold cross-validated average F1 score of 85.71% for cistern regions with our PAG-Classifier and 92.85% with the radiomics features classifier, surpassing current state-of-the-art benchmarks by 15% and 22%, respectively. However, bone and corpus callosum regions showed poor classification effectiveness, with average F1 scores below 50%. Conclusion: Our study suggests that algorithms like the PAG-Classifier serve as effective tools for non-invasive TBM analysis, particularly by targeting the interpeduncular cistern. Findings indicate that the bone and corpus callosum regions lack distinctive patterns for differentiation.
comment: 19 pages, 6 figures, 3 tables
☆ WikiVideo: Article Generation from Multiple Videos
We present the challenging task of automatically creating a high-level Wikipedia-style article that aggregates information from multiple diverse videos about real-world events, such as natural disasters or political elections. Videos are intuitive sources for retrieval-augmented generation (RAG), but most contemporary RAG workflows focus heavily on text and existing methods for video-based summarization focus on low-level scene understanding rather than high-level event semantics. To close this gap, we introduce WikiVideo, a benchmark consisting of expert-written articles and densely annotated videos that provide evidence for articles' claims, facilitating the integration of video into RAG pipelines and enabling the creation of in-depth content that is grounded in multimodal sources. We further propose Collaborative Article Generation (CAG), a novel interactive method for article creation from multiple videos. CAG leverages an iterative interaction between an r1-style reasoning model and a VideoLLM to draw higher level inferences about the target event than is possible with VideoLLMs alone, which fixate on low-level visual features. We benchmark state-of-the-art VideoLLMs and CAG in both oracle retrieval and RAG settings and find that CAG consistently outperforms alternative methods, while suggesting intriguing avenues for future work.
comment: Repo can be found here: https://github.com/alexmartin1722/wikivideo
☆ DBF-UNet: A Two-Stage Framework for Carotid Artery Segmentation with Pseudo-Label Generation
Medical image analysis faces significant challenges due to limited annotation data, particularly in three-dimensional carotid artery segmentation tasks, where existing datasets exhibit spatially discontinuous slice annotations with only a small portion of expert-labeled slices in complete 3D volumetric data. To address this challenge, we propose a two-stage segmentation framework. First, we construct continuous vessel centerlines by interpolating between annotated slice centroids and propagate labels along these centerlines to generate interpolated annotations for unlabeled slices. The slices with expert annotations are used for fine-tuning SAM-Med2D, while the interpolated labels on unlabeled slices serve as prompts to guide segmentation during inference. In the second stage, we propose a novel Dense Bidirectional Feature Fusion UNet (DBF-UNet). This lightweight architecture achieves precise segmentation of complete 3D vascular structures. The network incorporates bidirectional feature fusion in the encoder and integrates multi-scale feature aggregation with dense connectivity for effective feature reuse. Experimental validation on public datasets demonstrates that our proposed method effectively addresses the sparse annotation challenge in carotid artery segmentation while achieving superior performance compared to existing approaches. The source code is available at https://github.com/Haoxuanli-Thu/DBF-UNet.
☆ Agent S2: A Compositional Generalist-Specialist Framework for Computer Use Agents
Computer use agents automate digital tasks by directly interacting with graphical user interfaces (GUIs) on computers and mobile devices, offering significant potential to enhance human productivity by completing an open-ended space of user queries. However, current agents face significant challenges: imprecise grounding of GUI elements, difficulties with long-horizon task planning, and performance bottlenecks from relying on single generalist models for diverse cognitive tasks. To this end, we introduce Agent S2, a novel compositional framework that delegates cognitive responsibilities across various generalist and specialist models. We propose a novel Mixture-of-Grounding technique to achieve precise GUI localization and introduce Proactive Hierarchical Planning, dynamically refining action plans at multiple temporal scales in response to evolving observations. Evaluations demonstrate that Agent S2 establishes new state-of-the-art (SOTA) performance on three prominent computer use benchmarks. Specifically, Agent S2 achieves 18.9% and 32.7% relative improvements over leading baseline agents such as Claude Computer Use and UI-TARS on the OSWorld 15-step and 50-step evaluation. Moreover, Agent S2 generalizes effectively to other operating systems and applications, surpassing previous best methods by 52.8% on WindowsAgentArena and by 16.52% on AndroidWorld relatively. Code available at https://github.com/simular-ai/Agent-S.
comment: 18 pages, 13 figures, 8 tables
☆ A Decade of Deep Learning for Remote Sensing Spatiotemporal Fusion: Advances, Challenges, and Opportunities
Hardware limitations and satellite launch costs make direct acquisition of high temporal-spatial resolution remote sensing imagery challenging. Remote sensing spatiotemporal fusion (STF) technology addresses this problem by merging high temporal but low spatial resolution imagery with high spatial but low temporal resolution imagery to efficiently generate high spatiotemporal resolution satellite images. STF provides unprecedented observational capabilities for land surface change monitoring, agricultural management, and environmental research. Deep learning (DL) methods have revolutionized the remote sensing spatiotemporal fusion field over the past decade through powerful automatic feature extraction and nonlinear modeling capabilities, significantly outperforming traditional methods in handling complex spatiotemporal data. Despite the rapid development of DL-based remote sensing STF, the community lacks a systematic review of this quickly evolving field. This paper comprehensively reviews DL developments in remote sensing STF over the last decade, analyzing key research trends, method classifications, commonly used datasets, and evaluation metrics. It discusses major challenges in existing research and identifies promising future research directions as references for researchers in this field to inspire new ideas. The specific models, datasets, and other information mentioned in this article have been collected in: https://github.com/yc-cui/Deep-Learning-Spatiotemporal-Fusion-Survey.
☆ Improved Visual-Spatial Reasoning via R1-Zero-Like Training
Increasing attention has been placed on improving the reasoning capacities of multi-modal large language models (MLLMs). As the cornerstone for AI agents that function in the physical realm, video-based visual-spatial intelligence (VSI) emerges as one of the most pivotal reasoning capabilities of MLLMs. This work conducts a first, in-depth study on improving the visual-spatial reasoning of MLLMs via R1-Zero-like training. Technically, we first identify that the visual-spatial reasoning capacities of small- to medium-sized Qwen2-VL models cannot be activated via Chain of Thought (CoT) prompts. We then incorporate GRPO training for improved visual-spatial reasoning, using the carefully curated VSI-100k dataset, following DeepSeek-R1-Zero. During the investigation, we identify the necessity to keep the KL penalty (even with a small value) in GRPO. With just 120 GPU hours, our vsGRPO-2B model, fine-tuned from Qwen2-VL-2B, can outperform the base model by 12.1% and surpass GPT-4o. Moreover, our vsGRPO-7B model, fine-tuned from Qwen2-VL-7B, achieves performance comparable to that of the best open-source model LLaVA-NeXT-Video-72B. Additionally, we compare vsGRPO to supervised fine-tuning and direct preference optimization baselines and observe strong performance superiority. The code and dataset will be available soon.
☆ WISE-TTT:Worldwide Information Segmentation Enhancement
Video multi-target segmentation remains a major challenge in long sequences, mainly due to the inherent limitations of existing architectures in capturing global temporal dependencies. We introduce WISE-TTT, a synergistic architecture integrating Test-Time Training (TTT) mechanisms with the Transformer architecture through co-design. The TTT layer systematically compresses historical temporal data to generate hidden states containing worldwide information(Lossless memory to maintain long contextual integrity), while achieving multi-stage contextual aggregation through splicing. Crucially, our framework provides the first empirical validation that implementing worldwide information across multiple network layers is essential for optimal dependency utilization.Ablation studies show TTT modules at high-level features boost global modeling. This translates to 3.1% accuracy improvement(J&F metric) on Davis2017 long-term benchmarks -- the first proof of hierarchical context superiority in video segmentation. We provide the first systematic evidence that worldwide information critically impacts segmentation performance.
☆ Data-free Knowledge Distillation with Diffusion Models ICME2025
Recently Data-Free Knowledge Distillation (DFKD) has garnered attention and can transfer knowledge from a teacher neural network to a student neural network without requiring any access to training data. Although diffusion models are adept at synthesizing high-fidelity photorealistic images across various domains, existing methods cannot be easiliy implemented to DFKD. To bridge that gap, this paper proposes a novel approach based on diffusion models, DiffDFKD. Specifically, DiffDFKD involves targeted optimizations in two key areas. Firstly, DiffDFKD utilizes valuable information from teacher models to guide the pre-trained diffusion models' data synthesis, generating datasets that mirror the training data distribution and effectively bridge domain gaps. Secondly, to reduce computational burdens, DiffDFKD introduces Latent CutMix Augmentation, an efficient technique, to enhance the diversity of diffusion model-generated images for DFKD while preserving key attributes for effective knowledge transfer. Extensive experiments validate the efficacy of DiffDFKD, yielding state-of-the-art results exceeding existing DFKD approaches. We release our code at https://github.com/xhqi0109/DiffDFKD.
comment: Accepted by ICME2025
☆ Feature-Preserving Mesh Decimation for Normal Integration
Normal integration reconstructs 3D surfaces from normal maps obtained e.g. by photometric stereo. These normal maps capture surface details down to the pixel level but require large computational resources for integration at high resolutions. In this work, we replace the dense pixel grid with a sparse anisotropic triangle mesh prior to normal integration. We adapt the triangle mesh to the local geometry in the case of complex surface structures and remove oversampling from flat featureless regions. For high-resolution images, the resulting compression reduces normal integration runtimes from hours to minutes while maintaining high surface accuracy. Our main contribution is the derivation of the well-known quadric error measure from mesh decimation for screen space applications and its combination with optimal Delaunay triangulation.
☆ Balancing Multi-Target Semi-Supervised Medical Image Segmentation with Collaborative Generalist and Specialists
Despite the promising performance achieved by current semi-supervised models in segmenting individual medical targets, many of these models suffer a notable decrease in performance when tasked with the simultaneous segmentation of multiple targets. A vital factor could be attributed to the imbalanced scales among different targets: during simultaneously segmenting multiple targets, large targets dominate the loss, leading to small targets being misclassified as larger ones. To this end, we propose a novel method, which consists of a Collaborative Generalist and several Specialists, termed CGS. It is centered around the idea of employing a specialist for each target class, thus avoiding the dominance of larger targets. The generalist performs conventional multi-target segmentation, while each specialist is dedicated to distinguishing a specific target class from the remaining target classes and the background. Based on a theoretical insight, we demonstrate that CGS can achieve a more balanced training. Moreover, we develop cross-consistency losses to foster collaborative learning between the generalist and the specialists. Lastly, regarding their intrinsic relation that the target class of any specialized head should belong to the remaining classes of the other heads, we introduce an inter-head error detection module to further enhance the quality of pseudo-labels. Experimental results on three popular benchmarks showcase its superior performance compared to state-of-the-art methods.
☆ NeuRadar: Neural Radiance Fields for Automotive Radar Point Clouds
Radar is an important sensor for autonomous driving (AD) systems due to its robustness to adverse weather and different lighting conditions. Novel view synthesis using neural radiance fields (NeRFs) has recently received considerable attention in AD due to its potential to enable efficient testing and validation but remains unexplored for radar point clouds. In this paper, we present NeuRadar, a NeRF-based model that jointly generates radar point clouds, camera images, and lidar point clouds. We explore set-based object detection methods such as DETR, and propose an encoder-based solution grounded in the NeRF geometry for improved generalizability. We propose both a deterministic and a probabilistic point cloud representation to accurately model the radar behavior, with the latter being able to capture radar's stochastic behavior. We achieve realistic reconstruction results for two automotive datasets, establishing a baseline for NeRF-based radar point cloud simulation models. In addition, we release radar data for ZOD's Sequences and Drives to enable further research in this field. To encourage further development of radar NeRFs, we release the source code for NeuRadar.
☆ Exploring Personalized Federated Learning Architectures for Violence Detection in Surveillance Videos
The challenge of detecting violent incidents in urban surveillance systems is compounded by the voluminous and diverse nature of video data. This paper presents a targeted approach using Personalized Federated Learning (PFL) to address these issues, specifically employing the Federated Learning with Personalization Layers method within the Flower framework. Our methodology adapts learning models to the unique data characteristics of each surveillance node, effectively managing the heterogeneous and non-IID nature of surveillance video data. Through rigorous experiments conducted on balanced and imbalanced datasets, our PFL models demonstrated enhanced accuracy and efficiency, achieving up to 99.3% accuracy. This study underscores the potential of PFL to significantly improve the scalability and effectiveness of surveillance systems, offering a robust, privacy-preserving solution for violence detection in complex urban environments.
comment: 7 pages, 5 figures, 4 tables
☆ Global Intervention and Distillation for Federated Out-of-Distribution Generalization
Attribute skew in federated learning leads local models to focus on learning non-causal associations, guiding them towards inconsistent optimization directions, which inevitably results in performance degradation and unstable convergence. Existing methods typically leverage data augmentation to enhance sample diversity or employ knowledge distillation to learn invariant representations. However, the instability in the quality of generated data and the lack of domain information limit their performance on unseen samples. To address these issues, this paper presents a global intervention and distillation method, termed FedGID, which utilizes diverse attribute features for backdoor adjustment to break the spurious association between background and label. It includes two main modules, where the global intervention module adaptively decouples objects and backgrounds in images, injects background information into random samples to intervene in the sample distribution, which links backgrounds to all categories to prevent the model from treating background-label associations as causal. The global distillation module leverages a unified knowledge base to guide the representation learning of client models, preventing local models from overfitting to client-specific attributes. Experimental results on three datasets demonstrate that FedGID enhances the model's ability to focus on the main subjects in unseen data and outperforms existing methods in collaborative modeling.
☆ Zero-Shot 4D Lidar Panoptic Segmentation
Zero-shot 4D segmentation and recognition of arbitrary objects in Lidar is crucial for embodied navigation, with applications ranging from streaming perception to semantic mapping and localization. However, the primary challenge in advancing research and developing generalized, versatile methods for spatio-temporal scene understanding in Lidar lies in the scarcity of datasets that provide the necessary diversity and scale of annotations.To overcome these challenges, we propose SAL-4D (Segment Anything in Lidar--4D), a method that utilizes multi-modal robotic sensor setups as a bridge to distill recent developments in Video Object Segmentation (VOS) in conjunction with off-the-shelf Vision-Language foundation models to Lidar. We utilize VOS models to pseudo-label tracklets in short video sequences, annotate these tracklets with sequence-level CLIP tokens, and lift them to the 4D Lidar space using calibrated multi-modal sensory setups to distill them to our SAL-4D model. Due to temporal consistent predictions, we outperform prior art in 3D Zero-Shot Lidar Panoptic Segmentation (LPS) over $5$ PQ, and unlock Zero-Shot 4D-LPS.
☆ PRISM-0: A Predicate-Rich Scene Graph Generation Framework for Zero-Shot Open-Vocabulary Tasks
In Scene Graphs Generation (SGG) one extracts structured representation from visual inputs in the form of objects nodes and predicates connecting them. This facilitates image-based understanding and reasoning for various downstream tasks. Although fully supervised SGG approaches showed steady performance improvements, they suffer from a severe training bias. This is caused by the availability of only small subsets of curated data and exhibits long-tail predicate distribution issues with a lack of predicate diversity adversely affecting downstream tasks. To overcome this, we introduce PRISM-0, a framework for zero-shot open-vocabulary SGG that bootstraps foundation models in a bottom-up approach to capture the whole spectrum of diverse, open-vocabulary predicate prediction. Detected object pairs are filtered and passed to a Vision Language Model (VLM) that generates descriptive captions. These are used to prompt an LLM to generate fine-andcoarse-grained predicates for the pair. The predicates are then validated using a VQA model to provide a final SGG. With the modular and dataset-independent PRISM-0, we can enrich existing SG datasets such as Visual Genome (VG). Experiments illustrate that PRIMS-0 generates semantically meaningful graphs that improve downstream tasks such as Image Captioning and Sentence-to-Graph Retrieval with a performance on par to the best fully supervised methods.
☆ The study of non-complete-ring positron emission tomography (PET) detection method
Positron Emission Tomography (PET) is a vital molecular imaging tool widely used in medical diagnosis and treatment evaluation. Traditional PET systems typically rely on complete detector rings to achieve full angular coverage for uniform and statistically robust sampling of coincidence events. However, incomplete-ring PET scanners have emerged in various scenarios due to hardware failures, cost constraints, or specific clinical needs. In such cases, conventional reconstruction algorithms often suffer from performance degradation due to reduced data completeness and geometric inconsistencies. This thesis proposes a coarse-to-fine reconstruction framework for incomplete-ring PET scanners. The framework first employs an Attention U-Net model to recover complete sinograms from incomplete ones, then uses the OSEM algorithm for preliminary reconstruction, and finally applies a two-stage architecture comprising a Coarse Prediction Module (CPM) and an Iterative Refinement Module (IRM) for fine reconstruction. Our approach utilizes neighboring axial slices and spectral transform features as auxiliary guidance at the input level to ensure spatial and frequency domain consistency, and integrates a contrastive diffusion strategy at the output level to improve correspondence between low-quality PET inputs and refined PET outputs. Experimental results on public and in-house brain PET datasets demonstrate that the proposed method significantly outperforms existing approaches in metrics such as PSNR (35.6421 dB) and SSIM (0.9588), successfully preserving key anatomical structures and tracer distribution features, thus providing an effective solution for incomplete-ring PET imaging.
comment: 18 pages, 14 pages
☆ Scaling Prompt Instructed Zero Shot Composed Image Retrieval with Image-Only Data
Composed Image Retrieval (CIR) is the task of retrieving images matching a reference image augmented with a text, where the text describes changes to the reference image in natural language. Traditionally, models designed for CIR have relied on triplet data containing a reference image, reformulation text, and a target image. However, curating such triplet data often necessitates human intervention, leading to prohibitive costs. This challenge has hindered the scalability of CIR model training even with the availability of abundant unlabeled data. With the recent advances in foundational models, we advocate a shift in the CIR training paradigm where human annotations can be efficiently replaced by large language models (LLMs). Specifically, we demonstrate the capability of large captioning and language models in efficiently generating data for CIR only relying on unannotated image collections. Additionally, we introduce an embedding reformulation architecture that effectively combines image and text modalities. Our model, named InstructCIR, outperforms state-of-the-art methods in zero-shot composed image retrieval on CIRR and FashionIQ datasets. Furthermore, we demonstrate that by increasing the amount of generated data, our zero-shot model gets closer to the performance of supervised baselines.
☆ CellVTA: Enhancing Vision Foundation Models for Accurate Cell Segmentation and Classification
Cell instance segmentation is a fundamental task in digital pathology with broad clinical applications. Recently, vision foundation models, which are predominantly based on Vision Transformers (ViTs), have achieved remarkable success in pathology image analysis. However, their improvements in cell instance segmentation remain limited. A key challenge arises from the tokenization process in ViTs, which substantially reduces the spatial resolution of input images, leading to suboptimal segmentation quality, especially for small and densely packed cells. To address this problem, we propose CellVTA (Cell Vision Transformer with Adapter), a novel method that improves the performance of vision foundation models for cell instance segmentation by incorporating a CNN-based adapter module. This adapter extracts high-resolution spatial information from input images and injects it into the ViT through a cross-attention mechanism. Our method preserves the core architecture of ViT, ensuring seamless integration with pretrained foundation models. Extensive experiments show that CellVTA achieves 0.538 mPQ on the CoNIC dataset and 0.506 mPQ on the PanNuke dataset, which significantly outperforms the state-of-the-art cell segmentation methods. Ablation studies confirm the superiority of our approach over other fine-tuning strategies, including decoder-only fine-tuning and full fine-tuning. Our code and models are publicly available at https://github.com/JieZheng-ShanghaiTech/CellVTA.
☆ Visual Environment-Interactive Planning for Embodied Complex-Question Answering
This study focuses on Embodied Complex-Question Answering task, which means the embodied robot need to understand human questions with intricate structures and abstract semantics. The core of this task lies in making appropriate plans based on the perception of the visual environment. Existing methods often generate plans in a once-for-all manner, i.e., one-step planning. Such approach rely on large models, without sufficient understanding of the environment. Considering multi-step planning, the framework for formulating plans in a sequential manner is proposed in this paper. To ensure the ability of our framework to tackle complex questions, we create a structured semantic space, where hierarchical visual perception and chain expression of the question essence can achieve iterative interaction. This space makes sequential task planning possible. Within the framework, we first parse human natural language based on a visual hierarchical scene graph, which can clarify the intention of the question. Then, we incorporate external rules to make a plan for current step, weakening the reliance on large models. Every plan is generated based on feedback from visual perception, with multiple rounds of interaction until an answer is obtained. This approach enables continuous feedback and adjustment, allowing the robot to optimize its action strategy. To test our framework, we contribute a new dataset with more complex questions. Experimental results demonstrate that our approach performs excellently and stably on complex tasks. And also, the feasibility of our approach in real-world scenarios has been established, indicating its practical applicability.
☆ DropGaussian: Structural Regularization for Sparse-view Gaussian Splatting CVPR 2025
Recently, 3D Gaussian splatting (3DGS) has gained considerable attentions in the field of novel view synthesis due to its fast performance while yielding the excellent image quality. However, 3DGS in sparse-view settings (e.g., three-view inputs) often faces with the problem of overfitting to training views, which significantly drops the visual quality of novel view images. Many existing approaches have tackled this issue by using strong priors, such as 2D generative contextual information and external depth signals. In contrast, this paper introduces a prior-free method, so-called DropGaussian, with simple changes in 3D Gaussian splatting. Specifically, we randomly remove Gaussians during the training process in a similar way of dropout, which allows non-excluded Gaussians to have larger gradients while improving their visibility. This makes the remaining Gaussians to contribute more to the optimization process for rendering with sparse input views. Such simple operation effectively alleviates the overfitting problem and enhances the quality of novel view synthesis. By simply applying DropGaussian to the original 3DGS framework, we can achieve the competitive performance with existing prior-based 3DGS methods in sparse-view settings of benchmark datasets without any additional complexity. The code and model are publicly available at: https://github.com/DCVL-3D/DropGaussian release.
comment: Accepted by CVPR 2025
☆ Multi-Task Neural Architecture Search Using Architecture Embedding and Transfer Rank
Multi-task neural architecture search (NAS) enables transferring architectural knowledge among different tasks. However, ranking disorder between the source task and the target task degrades the architecture performance on the downstream task. We propose KTNAS, an evolutionary cross-task NAS algorithm, to enhance transfer efficiency. Our data-agnostic method converts neural architectures into graphs and uses architecture embedding vectors for the subsequent architecture performance prediction. The concept of transfer rank, an instance-based classifier, is introduced into KTNAS to address the performance degradation issue. We verify the search efficiency on NASBench-201 and transferability to various vision tasks on Micro TransNAS-Bench-101. The scalability of our method is demonstrated on DARTs search space including CIFAR-10/100, MNIST/Fashion-MNIST, MedMNIST. Experimental results show that KTNAS outperforms peer multi-task NAS algorithms in search efficiency and downstream task performance. Ablation studies demonstrate the vital importance of transfer rank for transfer performance.
☆ UnIRe: Unsupervised Instance Decomposition for Dynamic Urban Scene Reconstruction
Reconstructing and decomposing dynamic urban scenes is crucial for autonomous driving, urban planning, and scene editing. However, existing methods fail to perform instance-aware decomposition without manual annotations, which is crucial for instance-level scene editing.We propose UnIRe, a 3D Gaussian Splatting (3DGS) based approach that decomposes a scene into a static background and individual dynamic instances using only RGB images and LiDAR point clouds. At its core, we introduce 4D superpoints, a novel representation that clusters multi-frame LiDAR points in 4D space, enabling unsupervised instance separation based on spatiotemporal correlations. These 4D superpoints serve as the foundation for our decomposed 4D initialization, i.e., providing spatial and temporal initialization to train a dynamic 3DGS for arbitrary dynamic classes without requiring bounding boxes or object templates.Furthermore, we introduce a smoothness regularization strategy in both 2D and 3D space, further improving the temporal stability.Experiments on benchmark datasets show that our method outperforms existing methods in decomposed dynamic scene reconstruction while enabling accurate and flexible instance-level editing, making it a practical solution for real-world applications.
☆ MSSFC-Net:Enhancing Building Interpretation with Multi-Scale Spatial-Spectral Feature Collaboration
Building interpretation from remote sensing imagery primarily involves two fundamental tasks: building extraction and change detection. However, most existing methods address these tasks independently, overlooking their inherent correlation and failing to exploit shared feature representations for mutual enhancement. Furthermore, the diverse spectral,spatial, and scale characteristics of buildings pose additional challenges in jointly modeling spatial-spectral multi-scale features and effectively balancing precision and recall. The limited synergy between spatial and spectral representations often results in reduced detection accuracy and incomplete change localization.To address these challenges, we propose a Multi-Scale Spatial-Spectral Feature Cooperative Dual-Task Network (MSSFC-Net) for joint building extraction and change detection in remote sensing images. The framework integrates both tasks within a unified architecture, leveraging their complementary nature to simultaneously extract building and change features. Specifically,a Dual-branch Multi-scale Feature Extraction module (DMFE) with Spatial-Spectral Feature Collaboration (SSFC) is designed to enhance multi-scale representation learning, effectively capturing shallow texture details and deep semantic information, thus improving building extraction performance. For temporal feature aggregation, we introduce a Multi-scale Differential Fusion Module (MDFM) that explicitly models the interaction between differential and dual-temporal features. This module refines the network's capability to detect large-area changes and subtle structural variations in buildings. Extensive experiments conducted on three benchmark datasets demonstrate that MSSFC-Net achieves superior performance in both building extraction and change detection tasks, effectively improving detection accuracy while maintaining completeness.
☆ CAPE: Connectivity-Aware Path Enforcement Loss for Curvilinear Structure Delineation
Promoting the connectivity of curvilinear structures, such as neuronal processes in biomedical scans and blood vessels in CT images, remains a key challenge in semantic segmentation. Traditional pixel-wise loss functions, including cross-entropy and Dice losses, often fail to capture high-level topological connectivity, resulting in topological mistakes in graphs obtained from prediction maps. In this paper, we propose CAPE (Connectivity-Aware Path Enforcement), a novel loss function designed to enforce connectivity in graphs obtained from segmentation maps by optimizing a graph connectivity metric. CAPE uses the graph representation of the ground truth to select node pairs and determine their corresponding paths within the predicted segmentation through a shortest-path algorithm. Using this, we penalize both disconnections and false positive connections, effectively promoting the model to preserve topological correctness. Experiments on 2D and 3D datasets, including neuron and blood vessel tracing demonstrate that CAPE significantly improves topology-aware metrics and outperforms state-of-the-art methods.
☆ Knowledge-Base based Semantic Image Transmission Using CLIP
This paper proposes a novel knowledge-Base (KB) assisted semantic communication framework for image transmission. At the receiver, a Facebook AI Similarity Search (FAISS) based vector database is constructed by extracting semantic embeddings from images using the Contrastive Language-Image Pre-Training (CLIP) model. During transmission, the transmitter first extracts a 512-dimensional semantic feature using the CLIP model, then compresses it with a lightweight neural network for transmission. After receiving the signal, the receiver reconstructs the feature back to 512 dimensions and performs similarity matching from the KB to retrieve the most semantically similar image. Semantic transmission success is determined by category consistency between the transmitted and retrieved images, rather than traditional metrics like Peak Signal-to-Noise Ratio (PSNR). The proposed system prioritizes semantic accuracy, offering a new evaluation paradigm for semantic-aware communication systems. Experimental validation on CIFAR100 demonstrates the effectiveness of the framework in achieving semantic image transmission.
☆ Scaling Up Resonate-and-Fire Networks for Fast Deep Learning
Spiking neural networks (SNNs) present a promising computing paradigm for neuromorphic processing of event-based sensor data. The resonate-and-fire (RF) neuron, in particular, appeals through its biological plausibility, complex dynamics, yet computational simplicity. Despite theoretically predicted benefits, challenges in parameter initialization and efficient learning inhibited the implementation of RF networks, constraining their use to a single layer. In this paper, we address these shortcomings by deriving the RF neuron as a structured state space model (SSM) from the HiPPO framework. We introduce S5-RF, a new SSM layer comprised of RF neurons based on the S5 model, that features a generic initialization scheme and fast training within a deep architecture. S5-RF scales for the first time a RF network to a deep SNN with up to four layers and achieves with 78.8% a new state-of-the-art result for recurrent SNNs on the Spiking Speech Commands dataset in under three hours of training time. Moreover, compared to the reference SNNs that solve our benchmarking tasks, it achieves similar performance with much fewer spiking operations. Our code is publicly available at https://github.com/ThomasEHuber/s5-rf.
comment: 19 pages, 3 figures
☆ Orientation Scores should be a Piece of Cake
We axiomatically derive a family of wavelets for an orientation score, lifting from position space $\mathbb{R}^2$ to position and orientation space $\mathbb{R}^2\times S^1$, with fast reconstruction property, that minimise position-orientation uncertainty. We subsequently show that these minimum uncertainty states are well-approximated by cake wavelets: for standard parameters, the uncertainty gap of cake wavelets is less than 1.1, and in the limit, we prove the uncertainty gap tends to the minimum of 1. Next, we complete a previous theoretical argument that one does not have to train the lifting layer in (PDE-)G-CNNs, but can instead use cake wavelets. Finally, we show experimentally that in this way we can reduce the network complexity and improve the interpretability of (PDE-)G-CNNs, with only a slight impact on the model's performance.
comment: Submitted to the 7th International Conference on Geometric Science of Information
☆ ToVE: Efficient Vision-Language Learning via Knowledge Transfer from Vision Experts ICLR 2025
Vision-language (VL) learning requires extensive visual perception capabilities, such as fine-grained object recognition and spatial perception. Recent works typically rely on training huge models on massive datasets to develop these capabilities. As a more efficient alternative, this paper proposes a new framework that Transfers the knowledge from a hub of Vision Experts (ToVE) for efficient VL learning, leveraging pre-trained vision expert models to promote visual perception capability. Specifically, building on a frozen CLIP encoder that provides vision tokens for image-conditioned language generation, ToVE introduces a hub of multiple vision experts and a token-aware gating network that dynamically routes expert knowledge to vision tokens. In the transfer phase, we propose a "residual knowledge transfer" strategy, which not only preserves the generalizability of the vision tokens but also allows detachment of low-contributing experts to improve inference efficiency. Further, we explore to merge these expert knowledge to a single CLIP encoder, creating a knowledge-merged CLIP that produces more informative vision tokens without expert inference during deployment. Experiment results across various VL tasks demonstrate that the proposed ToVE achieves competitive performance with two orders of magnitude fewer training data.
comment: Accepted to ICLR 2025
☆ Monocular and Generalizable Gaussian Talking Head Animation CVPR 2025
In this work, we introduce Monocular and Generalizable Gaussian Talking Head Animation (MGGTalk), which requires monocular datasets and generalizes to unseen identities without personalized re-training. Compared with previous 3D Gaussian Splatting (3DGS) methods that requires elusive multi-view datasets or tedious personalized learning/inference, MGGtalk enables more practical and broader applications. However, in the absence of multi-view and personalized training data, the incompleteness of geometric and appearance information poses a significant challenge. To address these challenges, MGGTalk explores depth information to enhance geometric and facial symmetry characteristics to supplement both geometric and appearance features. Initially, based on the pixel-wise geometric information obtained from depth estimation, we incorporate symmetry operations and point cloud filtering techniques to ensure a complete and precise position parameter for 3DGS. Subsequently, we adopt a two-stage strategy with symmetric priors for predicting the remaining 3DGS parameters. We begin by predicting Gaussian parameters for the visible facial regions of the source image. These parameters are subsequently utilized to improve the prediction of Gaussian parameters for the non-visible regions. Extensive experiments demonstrate that MGGTalk surpasses previous state-of-the-art methods, achieving superior performance across various metrics.
comment: Accepted by CVPR 2025
☆ QG-VTC: Question-Guided Visual Token Compression in MLLMs for Efficient VQA
Recent advances in Multi-modal Large Language Models (MLLMs) have shown significant progress in open-world Visual Question Answering (VQA). However, integrating visual information increases the number of processed tokens, leading to higher GPU memory usage and computational overhead. Images often contain more redundant information than text, and not all visual details are pertinent to specific questions. To address these challenges, we propose QG-VTC, a novel question-guided visual token compression method for MLLM-based VQA tasks. QG-VTC employs a pretrained text encoder and a learnable feed-forward layer to embed user questions into the vision encoder's feature space then computes correlation scores between the question embeddings and visual tokens. By selecting the most relevant tokens and softly compressing others, QG-VTC ensures fine-tuned relevance to user needs. Additionally, a progressive strategy applies this compression across different vision encoder layers, gradually reducing token numbers. This approach maximizes retention of question-relevant information while discarding irrelevant details. Experimental results show that our method achieves performance on par with uncompressed models using just 1/8 of the visual tokens. The code and model will be publicly available on GitHub.
☆ FDDet: Frequency-Decoupling for Boundary Refinement in Temporal Action Detection
Temporal action detection aims to locate and classify actions in untrimmed videos. While recent works focus on designing powerful feature processors for pre-trained representations, they often overlook the inherent noise and redundancy within these features. Large-scale pre-trained video encoders tend to introduce background clutter and irrelevant semantics, leading to context confusion and imprecise boundaries. To address this, we propose a frequency-aware decoupling network that improves action discriminability by filtering out noisy semantics captured by pre-trained models. Specifically, we introduce an adaptive temporal decoupling scheme that suppresses irrelevant information while preserving fine-grained atomic action details, yielding more task-specific representations. In addition, we enhance inter-frame modeling by capturing temporal variations to better distinguish actions from background redundancy. Furthermore, we present a long-short-term category-aware relation network that jointly models local transitions and long-range dependencies, improving localization precision. The refined atomic features and frequency-guided dynamics are fed into a standard detection head to produce accurate action predictions. Extensive experiments on THUMOS14, HACS, and ActivityNet-1.3 show that our method, powered by InternVideo2-6B features, achieves state-of-the-art performance on temporal action detection benchmarks.
☆ POPEN: Preference-Based Optimization and Ensemble for LVLM-Based Reasoning Segmentation CVPR2025
Existing LVLM-based reasoning segmentation methods often suffer from imprecise segmentation results and hallucinations in their text responses. This paper introduces POPEN, a novel framework designed to address these issues and achieve improved results. POPEN includes a preference-based optimization method to finetune the LVLM, aligning it more closely with human preferences and thereby generating better text responses and segmentation results. Additionally, POPEN introduces a preference-based ensemble method for inference, which integrates multiple outputs from the LVLM using a preference-score-based attention mechanism for refinement. To better adapt to the segmentation task, we incorporate several task-specific designs in our POPEN framework, including a new approach for collecting segmentation preference data with a curriculum learning mechanism, and a novel preference optimization loss to refine the segmentation capability of the LVLM. Experiments demonstrate that our method achieves state-of-the-art performance in reasoning segmentation, exhibiting minimal hallucination in text responses and the highest segmentation accuracy compared to previous advanced methods like LISA and PixelLM. Project page is https://lanyunzhu.site/POPEN/
comment: CVPR2025
Coca-Splat: Collaborative Optimization for Camera Parameters and 3D Gaussians
In this work, we introduce Coca-Splat, a novel approach to addressing the challenges of sparse view pose-free scene reconstruction and novel view synthesis (NVS) by jointly optimizing camera parameters with 3D Gaussians. Inspired by deformable DEtection TRansformer, we design separate queries for 3D Gaussians and camera parameters and update them layer by layer through deformable Transformer layers, enabling joint optimization in a single network. This design demonstrates better performance because to accurately render views that closely approximate ground-truth images relies on precise estimation of both 3D Gaussians and camera parameters. In such a design, the centers of 3D Gaussians are projected onto each view by camera parameters to get projected points, which are regarded as 2D reference points in deformable cross-attention. With camera-aware multi-view deformable cross-attention (CaMDFA), 3D Gaussians and camera parameters are intrinsically connected by sharing the 2D reference points. Additionally, 2D reference point determined rays (RayRef) defined from camera centers to the reference points assist in modeling relationship between 3D Gaussians and camera parameters through RQ-decomposition on an overdetermined system of equations derived from the rays, enhancing the relationship between 3D Gaussians and camera parameters. Extensive evaluation shows that our approach outperforms previous methods, both pose-required and pose-free, on RealEstate10K and ACID within the same pose-free setting.
☆ Bi-Grid Reconstruction for Image Anomaly Detection
In image anomaly detection, significant advancements have been made using un- and self-supervised methods with datasets containing only normal samples. However, these approaches often struggle with fine-grained anomalies. This paper introduces \textbf{GRAD}: Bi-\textbf{G}rid \textbf{R}econstruction for Image \textbf{A}nomaly \textbf{D}etection, which employs two continuous grids to enhance anomaly detection from both normal and abnormal perspectives. In this work: 1) Grids as feature repositories that improve generalization and mitigate the Identical Shortcut (IS) issue; 2) An abnormal feature grid that refines normal feature boundaries, boosting detection of fine-grained defects; 3) The Feature Block Paste (FBP) module, which synthesizes various anomalies at the feature level for quick abnormal grid deployment. GRAD's robust representation capabilities also allow it to handle multiple classes with a single model. Evaluations on datasets like MVTecAD, VisA, and GoodsAD show significant performance improvements in fine-grained anomaly detection. GRAD excels in overall accuracy and in discerning subtle differences, demonstrating its superiority over existing methods.
☆ Sample-level Adaptive Knowledge Distillation for Action Recognition
Knowledge Distillation (KD) compresses neural networks by learning a small network (student) via transferring knowledge from a pre-trained large network (teacher). Many endeavours have been devoted to the image domain, while few works focus on video analysis which desires training much larger model making it be hardly deployed in resource-limited devices. However, traditional methods neglect two important problems, i.e., 1) Since the capacity gap between the teacher and the student exists, some knowledge w.r.t. difficult-to-transfer samples cannot be correctly transferred, or even badly affects the final performance of student, and 2) As training progresses, difficult-to-transfer samples may become easier to learn, and vice versa. To alleviate the two problems, we propose a Sample-level Adaptive Knowledge Distillation (SAKD) framework for action recognition. In particular, it mainly consists of the sample distillation difficulty evaluation module and the sample adaptive distillation module. The former applies the temporal interruption to frames, i.e., randomly dropout or shuffle the frames during training, which increases the learning difficulty of samples during distillation, so as to better discriminate their distillation difficulty. The latter module adaptively adjusts distillation ratio at sample level, such that KD loss dominates the training with easy-to-transfer samples while vanilla loss dominates that with difficult-to-transfer samples. More importantly, we only select those samples with both low distillation difficulty and high diversity to train the student model for reducing computational cost. Experimental results on two video benchmarks and one image benchmark demonstrate the superiority of the proposed method by striking a good balance between performance and efficiency.
☆ Continual Cross-Modal Generalization
Cross-modal generalization aims to learn a shared discrete representation space from multimodal pairs, enabling knowledge transfer across unannotated modalities. However, achieving a unified representation for all modality pairs requires extensive paired data, which is often impractical. Inspired by the availability of abundant bimodal data (e.g., in ImageBind), we explore a continual learning approach that incrementally maps new modalities into a shared discrete codebook via a mediator modality. We propose the Continual Mixture of Experts Adapter (CMoE-Adapter) to project diverse modalities into a unified space while preserving prior knowledge. To align semantics across stages, we introduce a Pseudo-Modality Replay (PMR) mechanism with a dynamically expanding codebook, enabling the model to adaptively incorporate new modalities using learned ones as guidance. Extensive experiments on image-text, audio-text, video-text, and speech-text show that our method achieves strong performance on various cross-modal generalization tasks. Code is provided in the supplementary material.
☆ AttentiveGRU: Recurrent Spatio-Temporal Modeling for Advanced Radar-Based BEV Object Detection
Bird's-eye view (BEV) object detection has become important for advanced automotive 3D radar-based perception systems. However, the inherently sparse and non-deterministic nature of radar data limits the effectiveness of traditional single-frame BEV paradigms. In this paper, we addresses this limitation by introducing AttentiveGRU, a novel attention-based recurrent approach tailored for radar constraints, which extracts individualized spatio-temporal context for objects by dynamically identifying and fusing temporally correlated structures across present and memory states. By leveraging the consistency of object's latent representation over time, our approach exploits temporal relations to enrich feature representations for both stationary and moving objects, thereby enhancing detection performance and eliminating the need for externally providing or estimating any information about ego vehicle motion. Our experimental results on the public nuScenes dataset show a significant increase in mAP for the car category by 21% over the best radar-only submission. Further evaluations on an additional dataset demonstrate notable improvements in object detection capabilities, underscoring the applicability and effectiveness of our method.
☆ Archival Faces: Detection of Faces in Digitized Historical Documents
When digitizing historical archives, it is necessary to search for the faces of celebrities and ordinary people, especially in newspapers, link them to the surrounding text, and make them searchable. Existing face detectors on datasets of scanned historical documents fail remarkably -- current detection tools only achieve around $24\%$ mAP at $50:90\%$ IoU. This work compensates for this failure by introducing a new manually annotated domain-specific dataset in the style of the popular Wider Face dataset, containing 2.2k new images from digitized historical newspapers from the $19^{th}$ to $20^{th}$ century, with 11k new bounding-box annotations and associated facial landmarks. This dataset allows existing detectors to be retrained to bring their results closer to the standard in the field of face detection in the wild. We report several experimental results comparing different families of fine-tuned detectors against publicly available pre-trained face detectors and ablation studies of multiple detector sizes with comprehensive detection and landmark prediction performance results.
comment: 15 pages, 6 figures, 6 tables
Efficient LLaMA-3.2-Vision by Trimming Cross-attended Visual Features CVPR 2025
Visual token reduction lowers inference costs caused by extensive image features in large vision-language models (LVLMs). Unlike relevant studies that prune tokens in self-attention-only LVLMs, our work uniquely addresses cross-attention-based models, which achieve superior performance. We identify that the key-value (KV) cache size for image tokens in cross-attention layers significantly exceeds that of text tokens in self-attention layers, posing a major compute bottleneck. To mitigate this issue, we exploit the sparse nature in cross-attention maps to selectively prune redundant visual features. Our Trimmed Llama effectively reduces KV cache demands without requiring additional training. By benefiting from 50%-reduced visual features, our model can reduce inference latency and memory usage while achieving benchmark parity.
comment: accepted at CVPR 2025 Workshop on ELVM
☆ Generalization-aware Remote Sensing Change Detection via Domain-agnostic Learning
Change detection has essential significance for the region's development, in which pseudo-changes between bitemporal images induced by imaging environmental factors are key challenges. Existing transformation-based methods regard pseudo-changes as a kind of style shift and alleviate it by transforming bitemporal images into the same style using generative adversarial networks (GANs). However, their efforts are limited by two drawbacks: 1) Transformed images suffer from distortion that reduces feature discrimination. 2) Alignment hampers the model from learning domain-agnostic representations that degrades performance on scenes with domain shifts from the training data. Therefore, oriented from pseudo-changes caused by style differences, we present a generalizable domain-agnostic difference learning network (DonaNet). For the drawback 1), we argue for local-level statistics as style proxies to assist against domain shifts. For the drawback 2), DonaNet learns domain-agnostic representations by removing domain-specific style of encoded features and highlighting the class characteristics of objects. In the removal, we propose a domain difference removal module to reduce feature variance while preserving discriminative properties and propose its enhanced version to provide possibilities for eliminating more style by decorrelating the correlation between features. In the highlighting, we propose a cross-temporal generalization learning strategy to imitate latent domain shifts, thus enabling the model to extract feature representations more robust to shifts actively. Extensive experiments conducted on three public datasets demonstrate that DonaNet outperforms existing state-of-the-art methods with a smaller model size and is more robust to domain shift.
☆ SMILE: Infusing Spatial and Motion Semantics in Masked Video Learning CVPR 2025
Masked video modeling, such as VideoMAE, is an effective paradigm for video self-supervised learning (SSL). However, they are primarily based on reconstructing pixel-level details on natural videos which have substantial temporal redundancy, limiting their capability for semantic representation and sufficient encoding of motion dynamics. To address these issues, this paper introduces a novel SSL approach for video representation learning, dubbed as SMILE, by infusing both spatial and motion semantics. In SMILE, we leverage image-language pretrained models, such as CLIP, to guide the learning process with their high-level spatial semantics. We enhance the representation of motion by introducing synthetic motion patterns in the training data, allowing the model to capture more complex and dynamic content. Furthermore, using SMILE, we establish a new self-supervised video learning paradigm capable of learning strong video representations without requiring any natural video data. We have carried out extensive experiments on 7 datasets with various downstream scenarios. SMILE surpasses current state-of-the-art SSL methods, showcasing its effectiveness in learning more discriminative and generalizable video representations. Code is available: https://github.com/fmthoker/SMILE
comment: Accepted to CVPR 2025
☆ High-Quality Pseudo-Label Generation Based on Visual Prompt Assisted Cloud Model Update
Generating high-quality pseudo-labels on the cloud is crucial for cloud-edge object detection, especially in dynamic traffic monitoring where data distributions evolve. Existing methods often assume reliable cloud models, neglecting potential errors or struggling with complex distribution shifts. This paper proposes Cloud-Adaptive High-Quality Pseudo-label generation (CA-HQP), addressing these limitations by incorporating a learnable Visual Prompt Generator (VPG) and dual feature alignment into cloud model updates. The VPG enables parameter-efficient adaptation by injecting visual prompts, enhancing flexibility without extensive fine-tuning. CA-HQP mitigates domain discrepancies via two feature alignment techniques: global Domain Query Feature Alignment (DQFA) capturing scene-level shifts, and fine-grained Temporal Instance-Aware Feature Embedding Alignment (TIAFA) addressing instance variations. Experiments on the Bellevue traffic dataset demonstrate that CA-HQP significantly improves pseudo-label quality compared to existing methods, leading to notable performance gains for the edge model and showcasing CA-HQP's adaptation effectiveness. Ablation studies validate each component (DQFA, TIAFA, VPG) and the synergistic effect of combined alignment strategies, highlighting the importance of adaptive cloud updates and domain adaptation for robust object detection in evolving scenarios. CA-HQP provides a promising solution for enhancing cloud-edge object detection systems in real-world applications.
comment: IJCNN'25
☆ Robust LiDAR-Camera Calibration with 2D Gaussian Splatting
LiDAR-camera systems have become increasingly popular in robotics recently. A critical and initial step in integrating the LiDAR and camera data is the calibration of the LiDAR-camera system. Most existing calibration methods rely on auxiliary target objects, which often involve complex manual operations, whereas targetless methods have yet to achieve practical effectiveness. Recognizing that 2D Gaussian Splatting (2DGS) can reconstruct geometric information from camera image sequences, we propose a calibration method that estimates LiDAR-camera extrinsic parameters using geometric constraints. The proposed method begins by reconstructing colorless 2DGS using LiDAR point clouds. Subsequently, we update the colors of the Gaussian splats by minimizing the photometric loss. The extrinsic parameters are optimized during this process. Additionally, we address the limitations of the photometric loss by incorporating the reprojection and triangulation losses, thereby enhancing the calibration robustness and accuracy.
comment: Accepted in IEEE Robotics and Automation Letters. Code available at: https://github.com/ShuyiZhou495/RobustCalibration
☆ Training Frozen Feature Pyramid DINOv2 for Eyelid Measurements with Infinite Encoding and Orthogonal Regularization
Accurate measurement of eyelid parameters such as Margin Reflex Distances (MRD1, MRD2) and Levator Function (LF) is critical in oculoplastic diagnostics but remains limited by manual, inconsistent methods. This study evaluates deep learning models: SE-ResNet, EfficientNet, and the vision transformer-based DINOv2 for automating these measurements using smartphone-acquired images. We assess performance across frozen and fine-tuned settings, using MSE, MAE, and R2 metrics. DINOv2, pretrained through self-supervised learning, demonstrates superior scalability and robustness, especially under frozen conditions ideal for mobile deployment. Lightweight regressors such as MLP and Deep Ensemble offer high precision with minimal computational overhead. To address class imbalance and improve generalization, we integrate focal loss, orthogonal regularization, and binary encoding strategies. Our results show that DINOv2 combined with these enhancements delivers consistent, accurate predictions across all tasks, making it a strong candidate for real-world, mobile-friendly clinical applications. This work highlights the potential of foundation models in advancing AI-powered ophthalmic care.
☆ ShortV: Efficient Multimodal Large Language Models by Freezing Visual Tokens in Ineffective Layers
Multimodal Large Language Models (MLLMs) suffer from high computational costs due to their massive size and the large number of visual tokens. In this paper, we investigate layer-wise redundancy in MLLMs by introducing a novel metric, Layer Contribution (LC), which quantifies the impact of a layer's transformations on visual and text tokens, respectively. The calculation of LC involves measuring the divergence in model output that results from removing the layer's transformations on the specified tokens. Our pilot experiment reveals that many layers of MLLMs exhibit minimal contribution during the processing of visual tokens. Motivated by this observation, we propose ShortV, a training-free method that leverages LC to identify ineffective layers, and freezes visual token updates in these layers. Experiments show that ShortV can freeze visual token in approximately 60\% of the MLLM layers, thereby dramatically reducing computational costs related to updating visual tokens. For example, it achieves a 50\% reduction in FLOPs on LLaVA-NeXT-13B while maintaining superior performance. The code will be publicly available at https://github.com/icip-cas/ShortV
comment: Project page: https://github.com/icip-cas/ShortV
☆ Learned Image Compression with Dictionary-based Entropy Model CVPR 2025
Learned image compression methods have attracted great research interest and exhibited superior rate-distortion performance to the best classical image compression standards of the present. The entropy model plays a key role in learned image compression, which estimates the probability distribution of the latent representation for further entropy coding. Most existing methods employed hyper-prior and auto-regressive architectures to form their entropy models. However, they only aimed to explore the internal dependencies of latent representation while neglecting the importance of extracting prior from training data. In this work, we propose a novel entropy model named Dictionary-based Cross Attention Entropy model, which introduces a learnable dictionary to summarize the typical structures occurring in the training dataset to enhance the entropy model. Extensive experimental results have demonstrated that the proposed model strikes a better balance between performance and latency, achieving state-of-the-art results on various benchmark datasets.
comment: Accepted to CVPR 2025
☆ SCFANet: Style Distribution Constraint Feature Alignment Network For Pathological Staining Translation
Immunohistochemical (IHC) staining serves as a valuable technique for detecting specific antigens or proteins through antibody-mediated visualization. However, the IHC staining process is both time-consuming and costly. To address these limitations, the application of deep learning models for direct translation of cost-effective Hematoxylin and Eosin (H&E) stained images into IHC stained images has emerged as an efficient solution. Nevertheless, the conversion from H&E to IHC images presents significant challenges, primarily due to alignment discrepancies between image pairs and the inherent diversity in IHC staining style patterns. To overcome these challenges, we propose the Style Distribution Constraint Feature Alignment Network (SCFANet), which incorporates two innovative modules: the Style Distribution Constrainer (SDC) and Feature Alignment Learning (FAL). The SDC ensures consistency between the generated and target images' style distributions while integrating cycle consistency loss to maintain structural consistency. To mitigate the complexity of direct image-to-image translation, the FAL module decomposes the end-to-end translation task into two subtasks: image reconstruction and feature alignment. Furthermore, we ensure pathological consistency between generated and target images by maintaining pathological pattern consistency and Optical Density (OD) uniformity. Extensive experiments conducted on the Breast Cancer Immunohistochemical (BCI) dataset demonstrate that our SCFANet model outperforms existing methods, achieving precise transformation of H&E-stained images into their IHC-stained counterparts. The proposed approach not only addresses the technical challenges in H&E to IHC image translation but also provides a robust framework for accurate and efficient stain conversion in pathological analysis.
☆ SViQA: A Unified Speech-Vision Multimodal Model for Textless Visual Question Answering
Multimodal models integrating speech and vision hold significant potential for advancing human-computer interaction, particularly in Speech-Based Visual Question Answering (SBVQA) where spoken questions about images require direct audio-visual understanding. Existing approaches predominantly focus on text-visual integration, leaving speech-visual modality gaps underexplored due to their inherent heterogeneity. To this end, we introduce SViQA, a unified speech-vision model that directly processes spoken questions without text transcription. Building upon the LLaVA architecture, our framework bridges auditory and visual modalities through two key innovations: (1) end-to-end speech feature extraction eliminating intermediate text conversion, and (2) cross-modal alignment optimization enabling effective fusion of speech signals with visual content. Extensive experimental results on the SBVQA benchmark demonstrate the proposed SViQA's state-of-the-art performance, achieving 75.62% accuracy, and competitive multimodal generalization. Leveraging speech-text mixed input boosts performance to 78.85%, a 3.23% improvement over pure speech input, highlighting SViQA's enhanced robustness and effective cross-modal attention alignment.
☆ Hierarchical Attention Networks for Lossless Point Cloud Attribute Compression
In this paper, we propose a deep hierarchical attention context model for lossless attribute compression of point clouds, leveraging a multi-resolution spatial structure and residual learning. A simple and effective Level of Detail (LoD) structure is introduced to yield a coarse-to-fine representation. To enhance efficiency, points within the same refinement level are encoded in parallel, sharing a common context point group. By hierarchically aggregating information from neighboring points, our attention model learns contextual dependencies across varying scales and densities, enabling comprehensive feature extraction. We also adopt normalization for position coordinates and attributes to achieve scale-invariant compression. Additionally, we segment the point cloud into multiple slices to facilitate parallel processing, further optimizing time complexity. Experimental results demonstrate that the proposed method offers better coding performance than the latest G-PCC for color and reflectance attributes while maintaining more efficient encoding and decoding runtimes.
comment: Accepted by DCC 2025
☆ FSSUWNet: Mitigating the Fragility of Pre-trained Models with Feature Enhancement for Few-Shot Semantic Segmentation in Underwater Images
Few-Shot Semantic Segmentation (FSS), which focuses on segmenting new classes in images using only a limited number of annotated examples, has recently progressed in data-scarce domains. However, in this work, we show that the existing FSS methods often struggle to generalize to underwater environments. Specifically, the prior features extracted by pre-trained models used as feature extractors are fragile due to the unique challenges of underwater images. To address this, we propose FSSUWNet, a tailored FSS framework for underwater images with feature enhancement. FSSUWNet exploits the integration of complementary features, emphasizing both low-level and high-level image characteristics. In addition to employing a pre-trained model as the primary encoder, we propose an auxiliary encoder called Feature Enhanced Encoder which extracts complementary features to better adapt to underwater scene characteristics. Furthermore, a simple and effective Feature Alignment Module aims to provide global prior knowledge and align low-level features with high-level features in dimensions. Given the scarcity of underwater images, we introduce a cross-validation dataset version based on the Segmentation of Underwater Imagery dataset. Extensive experiments on public underwater segmentation datasets demonstrate that our approach achieves state-of-the-art performance. For example, our method outperforms the previous best method by 2.8% and 2.6% in terms of the mean Intersection over Union metric for 1-shot and 5-shot scenarios in the datasets, respectively. Our implementation is available at https://github.com/lizhh268/FSSUWNet.
☆ 4th PVUW MeViS 3rd Place Report: Sa2VA
Referring video object segmentation (RVOS) is a challenging task that requires the model to segment the object in a video given the language description. MeViS is a recently proposed dataset that contains motion expressions of the target objects, leading to a challenging benchmark, compared with existing RVOS benchmarks. On the other hand, for referring expression tasks, a new trend is to adopt multi-modal large language model (MLLM) to achieve better image and text alignment. In this report, we show that with a simple modification to the test time inference method on stronger MLLMs, we can lead to stronger results on MeVIS. In particular, we adopt the recent method Sa2VA, a unified model for dense grounded understanding of both images and videos. By enlarging the scope of key frames, without any further training, we can achieve the 3rd place in the 4th PVUW workshop.
comment: Technical Report, 4 pages, Code: https://github.com/magic-research/Sa2VA
☆ Less is More: Efficient Black-box Attribution via Minimal Interpretable Subset Selection
To develop a trustworthy AI system, which aim to identify the input regions that most influence the models decisions. The primary task of existing attribution methods lies in efficiently and accurately identifying the relationships among input-prediction interactions. Particularly when the input data is discrete, such as images, analyzing the relationship between inputs and outputs poses a significant challenge due to the combinatorial explosion. In this paper, we propose a novel and efficient black-box attribution mechanism, LiMA (Less input is More faithful for Attribution), which reformulates the attribution of important regions as an optimization problem for submodular subset selection. First, to accurately assess interactions, we design a submodular function that quantifies subset importance and effectively captures their impact on decision outcomes. Then, efficiently ranking input sub-regions by their importance for attribution, we improve optimization efficiency through a novel bidirectional greedy search algorithm. LiMA identifies both the most and least important samples while ensuring an optimal attribution boundary that minimizes errors. Extensive experiments on eight foundation models demonstrate that our method provides faithful interpretations with fewer regions and exhibits strong generalization, shows an average improvement of 36.3% in Insertion and 39.6% in Deletion. Our method also outperforms the naive greedy search in attribution efficiency, being 1.6 times faster. Furthermore, when explaining the reasons behind model prediction errors, the average highest confidence achieved by our method is, on average, 86.1% higher than that of state-of-the-art attribution algorithms. The code is available at https://github.com/RuoyuChen10/LIMA.
☆ Exploring the Collaborative Advantage of Low-level Information on Generalizable AI-Generated Image Detection
Existing state-of-the-art AI-Generated image detection methods mostly consider extracting low-level information from RGB images to help improve the generalization of AI-Generated image detection, such as noise patterns. However, these methods often consider only a single type of low-level information, which may lead to suboptimal generalization. Through empirical analysis, we have discovered a key insight: different low-level information often exhibits generalization capabilities for different types of forgeries. Furthermore, we found that simple fusion strategies are insufficient to leverage the detection advantages of each low-level and high-level information for various forgery types. Therefore, we propose the Adaptive Low-level Experts Injection (ALEI) framework. Our approach introduces Lora Experts, enabling the backbone network, which is trained with high-level semantic RGB images, to accept and learn knowledge from different low-level information. We utilize a cross-attention method to adaptively fuse these features at intermediate layers. To prevent the backbone network from losing the modeling capabilities of different low-level features during the later stages of modeling, we developed a Low-level Information Adapter that interacts with the features extracted by the backbone network. Finally, we propose Dynamic Feature Selection, which dynamically selects the most suitable features for detecting the current image to maximize generalization detection capability. Extensive experiments demonstrate that our method, finetuned on only four categories of mainstream ProGAN data, performs excellently and achieves state-of-the-art results on multiple datasets containing unseen GAN and Diffusion methods.
☆ Mixture-of-Attack-Experts with Class Regularization for Unified Physical-Digital Face Attack Detection AAAI-2025
Facial recognition systems in real-world scenarios are susceptible to both digital and physical attacks. Previous methods have attempted to achieve classification by learning a comprehensive feature space. However, these methods have not adequately accounted for the inherent characteristics of physical and digital attack data, particularly the large intra class variation in attacks and the small inter-class variation between live and fake faces. To address these limitations, we propose the Fine-Grained MoE with Class-Aware Regularization CLIP framework (FG-MoE-CLIP-CAR), incorporating key improvements at both the feature and loss levels. At the feature level, we employ a Soft Mixture of Experts (Soft MoE) architecture to leverage different experts for specialized feature processing. Additionally, we refine the Soft MoE to capture more subtle differences among various types of fake faces. At the loss level, we introduce two constraint modules: the Disentanglement Module (DM) and the Cluster Distillation Module (CDM). The DM enhances class separability by increasing the distance between the centers of live and fake face classes. However, center-to-center constraints alone are insufficient to ensure distinctive representations for individual features. Thus, we propose the CDM to further cluster features around their respective class centers while maintaining separation from other classes. Moreover, specific attacks that significantly deviate from common attack patterns are often overlooked. To address this issue, our distance calculation prioritizes more distant features. Experimental results on two unified physical-digital attack datasets demonstrate that the proposed method achieves state-of-the-art (SOTA) performance.
comment: 9 pages, 5 figures, accepted by AAAI-2025 (Oral)
☆ FA^{3}-CLIP: Frequency-Aware Cues Fusion and Attack-Agnostic Prompt Learning for Unified Face Attack Detection
Facial recognition systems are vulnerable to physical (e.g., printed photos) and digital (e.g., DeepFake) face attacks. Existing methods struggle to simultaneously detect physical and digital attacks due to: 1) significant intra-class variations between these attack types, and 2) the inadequacy of spatial information alone to comprehensively capture live and fake cues. To address these issues, we propose a unified attack detection model termed Frequency-Aware and Attack-Agnostic CLIP (FA\textsuperscript{3}-CLIP), which introduces attack-agnostic prompt learning to express generic live and fake cues derived from the fusion of spatial and frequency features, enabling unified detection of live faces and all categories of attacks. Specifically, the attack-agnostic prompt module generates generic live and fake prompts within the language branch to extract corresponding generic representations from both live and fake faces, guiding the model to learn a unified feature space for unified attack detection. Meanwhile, the module adaptively generates the live/fake conditional bias from the original spatial and frequency information to optimize the generic prompts accordingly, reducing the impact of intra-class variations. We further propose a dual-stream cues fusion framework in the vision branch, which leverages frequency information to complement subtle cues that are difficult to capture in the spatial domain. In addition, a frequency compression block is utilized in the frequency stream, which reduces redundancy in frequency features while preserving the diversity of crucial cues. We also establish new challenging protocols to facilitate unified face attack detection effectiveness. Experimental results demonstrate that the proposed method significantly improves performance in detecting physical and digital face attacks, achieving state-of-the-art results.
comment: 12 pages, 5 figures
☆ How does Watermarking Affect Visual Language Models in Document Understanding?
Visual Language Models (VLMs) have become foundational models for document understanding tasks, widely used in the processing of complex multimodal documents across domains such as finance, law, and academia. However, documents often contain noise-like information, such as watermarks, which inevitably leads us to inquire: \emph{Do watermarks degrade the performance of VLMs in document understanding?} To address this, we propose a novel evaluation framework to investigate the effect of visible watermarks on VLMs performance. We takes into account various factors, including different types of document data, the positions of watermarks within documents and variations in watermark content. Our experimental results reveal that VLMs performance can be significantly compromised by watermarks, with performance drop rates reaching up to 36\%. We discover that \emph{scattered} watermarks cause stronger interference than centralized ones, and that \emph{semantic contents} in watermarks creates greater disruption than simple visual occlusion. Through attention mechanism analysis and embedding similarity examination, we find that the performance drops are mainly attributed to that watermarks 1) force widespread attention redistribution, and 2) alter semantic representation in the embedding space. Our research not only highlights significant challenges in deploying VLMs for document understanding, but also provides insights towards developing robust inference mechanisms on watermarked documents.
☆ Suite-IN++: A FlexiWear BodyNet Integrating Global and Local Motion Features from Apple Suite for Robust Inertial Navigation
The proliferation of wearable technology has established multi-device ecosystems comprising smartphones, smartwatches, and headphones as critical enablers for ubiquitous pedestrian localization. However, traditional pedestrian dead reckoning (PDR) struggles with diverse motion modes, while data-driven methods, despite improving accuracy, often lack robustness due to their reliance on a single-device setup. Therefore, a promising solution is to fully leverage existing wearable devices to form a flexiwear bodynet for robust and accurate pedestrian localization. This paper presents Suite-IN++, a deep learning framework for flexiwear bodynet-based pedestrian localization. Suite-IN++ integrates motion data from wearable devices on different body parts, using contrastive learning to separate global and local motion features. It fuses global features based on the data reliability of each device to capture overall motion trends and employs an attention mechanism to uncover cross-device correlations in local features, extracting motion details helpful for accurate localization. To evaluate our method, we construct a real-life flexiwear bodynet dataset, incorporating Apple Suite (iPhone, Apple Watch, and AirPods) across diverse walking modes and device configurations. Experimental results demonstrate that Suite-IN++ achieves superior localization accuracy and robustness, significantly outperforming state-of-the-art models in real-life pedestrian tracking scenarios.
comment: 15 pages,10 figures
☆ ADGaussian: Generalizable Gaussian Splatting for Autonomous Driving with Multi-modal Inputs
We present a novel approach, termed ADGaussian, for generalizable street scene reconstruction. The proposed method enables high-quality rendering from single-view input. Unlike prior Gaussian Splatting methods that primarily focus on geometry refinement, we emphasize the importance of joint optimization of image and depth features for accurate Gaussian prediction. To this end, we first incorporate sparse LiDAR depth as an additional input modality, formulating the Gaussian prediction process as a joint learning framework of visual information and geometric clue. Furthermore, we propose a multi-modal feature matching strategy coupled with a multi-scale Gaussian decoding model to enhance the joint refinement of multi-modal features, thereby enabling efficient multi-modal Gaussian learning. Extensive experiments on two large-scale autonomous driving datasets, Waymo and KITTI, demonstrate that our ADGaussian achieves state-of-the-art performance and exhibits superior zero-shot generalization capabilities in novel-view shifting.
comment: The project page can be found at https://maggiesong7.github.io/research/ADGaussian/
☆ DecoFuse: Decomposing and Fusing the "What", "Where", and "How" for Brain-Inspired fMRI-to-Video Decoding
Decoding visual experiences from brain activity is a significant challenge. Existing fMRI-to-video methods often focus on semantic content while overlooking spatial and motion information. However, these aspects are all essential and are processed through distinct pathways in the brain. Motivated by this, we propose DecoFuse, a novel brain-inspired framework for decoding videos from fMRI signals. It first decomposes the video into three components - semantic, spatial, and motion - then decodes each component separately before fusing them to reconstruct the video. This approach not only simplifies the complex task of video decoding by decomposing it into manageable sub-tasks, but also establishes a clearer connection between learned representations and their biological counterpart, as supported by ablation studies. Further, our experiments show significant improvements over previous state-of-the-art methods, achieving 82.4% accuracy for semantic classification, 70.6% accuracy in spatial consistency, a 0.212 cosine similarity for motion prediction, and 21.9% 50-way accuracy for video generation. Additionally, neural encoding analyses for semantic and spatial information align with the two-streams hypothesis, further validating the distinct roles of the ventral and dorsal pathways. Overall, DecoFuse provides a strong and biologically plausible framework for fMRI-to-video decoding. Project page: https://chongjg.github.io/DecoFuse/.
☆ Enhancing Fundus Image-based Glaucoma Screening via Dynamic Global-Local Feature Integration
With the advancements in medical artificial intelligence (AI), fundus image classifiers are increasingly being applied to assist in ophthalmic diagnosis. While existing classification models have achieved high accuracy on specific fundus datasets, they struggle to address real-world challenges such as variations in image quality across different imaging devices, discrepancies between training and testing images across different racial groups, and the uncertain boundaries due to the characteristics of glaucomatous cases. In this study, we aim to address the above challenges posed by image variations by highlighting the importance of incorporating comprehensive fundus image information, including the optic cup (OC) and optic disc (OD) regions, and other key image patches. Specifically, we propose a self-adaptive attention window that autonomously determines optimal boundaries for enhanced feature extraction. Additionally, we introduce a multi-head attention mechanism to effectively fuse global and local features via feature linear readout, improving the model's discriminative capability. Experimental results demonstrate that our method achieves superior accuracy and robustness in glaucoma classification.
☆ Data Synthesis with Diverse Styles for Face Recognition via 3DMM-Guided Diffusion CVPR 2025
Identity-preserving face synthesis aims to generate synthetic face images of virtual subjects that can substitute real-world data for training face recognition models. While prior arts strive to create images with consistent identities and diverse styles, they face a trade-off between them. Identifying their limitation of treating style variation as subject-agnostic and observing that real-world persons actually have distinct, subject-specific styles, this paper introduces MorphFace, a diffusion-based face generator. The generator learns fine-grained facial styles, e.g., shape, pose and expression, from the renderings of a 3D morphable model (3DMM). It also learns identities from an off-the-shelf recognition model. To create virtual faces, the generator is conditioned on novel identities of unlabeled synthetic faces, and novel styles that are statistically sampled from a real-world prior distribution. The sampling especially accounts for both intra-subject variation and subject distinctiveness. A context blending strategy is employed to enhance the generator's responsiveness to identity and style conditions. Extensive experiments show that MorphFace outperforms the best prior arts in face recognition efficacy.
comment: CVPR 2025
☆ Unleashing the Power of Pre-trained Encoders for Universal Adversarial Attack Detection
Adversarial attacks pose a critical security threat to real-world AI systems by injecting human-imperceptible perturbations into benign samples to induce misclassification in deep learning models. While existing detection methods, such as Bayesian uncertainty estimation and activation pattern analysis, have achieved progress through feature engineering, their reliance on handcrafted feature design and prior knowledge of attack patterns limits generalization capabilities and incurs high engineering costs. To address these limitations, this paper proposes a lightweight adversarial detection framework based on the large-scale pre-trained vision-language model CLIP. Departing from conventional adversarial feature characterization paradigms, we innovatively adopt an anomaly detection perspective. By jointly fine-tuning CLIP's dual visual-text encoders with trainable adapter networks and learnable prompts, we construct a compact representation space tailored for natural images. Notably, our detection architecture achieves substantial improvements in generalization capability across both known and unknown attack patterns compared to traditional methods, while significantly reducing training overhead. This study provides a novel technical pathway for establishing a parameter-efficient and attack-agnostic defense paradigm, markedly enhancing the robustness of vision systems against evolving adversarial threats.
☆ Can LLMs Assist Computer Education? an Empirical Case Study of DeepSeek
This study presents an empirical case study to assess the efficacy and reliability of DeepSeek-V3, an emerging large language model, within the context of computer education. The evaluation employs both CCNA simulation questions and real-world inquiries concerning computer network security posed by Chinese network engineers. To ensure a thorough evaluation, diverse dimensions are considered, encompassing role dependency, cross-linguistic proficiency, and answer reproducibility, accompanied by statistical analysis. The findings demonstrate that the model performs consistently, regardless of whether prompts include a role definition or not. In addition, its adaptability across languages is confirmed by maintaining stable accuracy in both original and translated datasets. A distinct contrast emerges between its performance on lower-order factual recall tasks and higher-order reasoning exercises, which underscores its strengths in retrieving information and its limitations in complex analytical tasks. Although DeepSeek-V3 offers considerable practical value for network security education, challenges remain in its capability to process multimodal data and address highly intricate topics. These results provide valuable insights for future refinement of large language models in specialized professional environments.
♻ ☆ Self-Supervised Pretraining for Aerial Road Extraction
Deep neural networks for aerial image segmentation require large amounts of labeled data, but high-quality aerial datasets with precise annotations are scarce and costly to produce. To address this limitation, we propose a self-supervised pretraining method that improves segmentation performance while reducing reliance on labeled data. Our approach uses inpainting-based pretraining, where the model learns to reconstruct missing regions in aerial images, capturing their inherent structure before being fine-tuned for road extraction. This method improves generalization, enhances robustness to domain shifts, and is invariant to model architecture and dataset choice. Experiments show that our pretraining significantly boosts segmentation accuracy, especially in low-data regimes, making it a scalable solution for aerial image analysis.
comment: Accepted at 36th IEEE Intelligent Vehicles Symposium (IV) 2025 Joint Workshop on Safety, Metrics and Benchmarks for Autonomous Driving
♻ ☆ Image as an IMU: Estimating Camera Motion from a Single Motion-Blurred Image
In many robotics and VR/AR applications, fast camera motions cause a high level of motion blur, causing existing camera pose estimation methods to fail. In this work, we propose a novel framework that leverages motion blur as a rich cue for motion estimation rather than treating it as an unwanted artifact. Our approach works by predicting a dense motion flow field and a monocular depth map directly from a single motion-blurred image. We then recover the instantaneous camera velocity by solving a linear least squares problem under the small motion assumption. In essence, our method produces an IMU-like measurement that robustly captures fast and aggressive camera movements. To train our model, we construct a large-scale dataset with realistic synthetic motion blur derived from ScanNet++v2 and further refine our model by training end-to-end on real data using our fully differentiable pipeline. Extensive evaluations on real-world benchmarks demonstrate that our method achieves state-of-the-art angular and translational velocity estimates, outperforming current methods like MASt3R and COLMAP.
comment: Project page: https://jerredchen.github.io/image-as-imu/
♻ ☆ Visual Acoustic Fields
Objects produce different sounds when hit, and humans can intuitively infer how an object might sound based on its appearance and material properties. Inspired by this intuition, we propose Visual Acoustic Fields, a framework that bridges hitting sounds and visual signals within a 3D space using 3D Gaussian Splatting (3DGS). Our approach features two key modules: sound generation and sound localization. The sound generation module leverages a conditional diffusion model, which takes multiscale features rendered from a feature-augmented 3DGS to generate realistic hitting sounds. Meanwhile, the sound localization module enables querying the 3D scene, represented by the feature-augmented 3DGS, to localize hitting positions based on the sound sources. To support this framework, we introduce a novel pipeline for collecting scene-level visual-sound sample pairs, achieving alignment between captured images, impact locations, and corresponding sounds. To the best of our knowledge, this is the first dataset to connect visual and acoustic signals in a 3D context. Extensive experiments on our dataset demonstrate the effectiveness of Visual Acoustic Fields in generating plausible impact sounds and accurately localizing impact sources. Our project page is at https://yuelei0428.github.io/projects/Visual-Acoustic-Fields/.
♻ ☆ A Comparative Study of Scanpath Models in Graph-Based Visualization
Information Visualization (InfoVis) systems utilize visual representations to enhance data interpretation. Understanding how visual attention is allocated is essential for optimizing interface design. However, collecting Eye-tracking (ET) data presents challenges related to cost, privacy, and scalability. Computational models provide alternatives for predicting gaze patterns, thereby advancing InfoVis research. In our study, we conducted an ET experiment with 40 participants who analyzed graphs while responding to questions of varying complexity within the context of digital forensics. We compared human scanpaths with synthetic ones generated by models such as DeepGaze, UMSS, and Gazeformer. Our research evaluates the accuracy of these models and examines how question complexity and number of nodes influence performance. This work contributes to the development of predictive modeling in visual analytics, offering insights that can enhance the design and effectiveness of InfoVis systems.
♻ ☆ HumanDreamer: Generating Controllable Human-Motion Videos via Decoupled Generation
Human-motion video generation has been a challenging task, primarily due to the difficulty inherent in learning human body movements. While some approaches have attempted to drive human-centric video generation explicitly through pose control, these methods typically rely on poses derived from existing videos, thereby lacking flexibility. To address this, we propose HumanDreamer, a decoupled human video generation framework that first generates diverse poses from text prompts and then leverages these poses to generate human-motion videos. Specifically, we propose MotionVid, the largest dataset for human-motion pose generation. Based on the dataset, we present MotionDiT, which is trained to generate structured human-motion poses from text prompts. Besides, a novel LAMA loss is introduced, which together contribute to a significant improvement in FID by 62.4%, along with respective enhancements in R-precision for top1, top2, and top3 by 41.8%, 26.3%, and 18.3%, thereby advancing both the Text-to-Pose control accuracy and FID metrics. Our experiments across various Pose-to-Video baselines demonstrate that the poses generated by our method can produce diverse and high-quality human-motion videos. Furthermore, our model can facilitate other downstream tasks, such as pose sequence prediction and 2D-3D motion lifting.
comment: Project Page: https://humandreamer.github.io
♻ ☆ Local Information Matters: Inference Acceleration For Grounded Conversation Generation Models Through Adaptive Local-Aware Token Pruning
Grounded Conversation Generation (GCG) is an emerging vision-language task that requires models to generate natural language responses seamlessly intertwined with corresponding object segmentation masks. Recent models, such as GLaMM and OMG-LLaVA, achieve pixel-level grounding but incur significant computational costs due to processing a large number of visual tokens. Existing token pruning methods, like FastV and PyramidDrop, fail to preserve the local visual features critical for accurate grounding, leading to substantial performance drops in GCG tasks. To address this, we propose Adaptive Local-Aware Token Pruning (ALTP), a simple yet effective framework that accelerates GCG models by prioritizing local object information. ALTP introduces two key components: (1) Detail Density Capture (DDC), which uses superpixel segmentation to retain tokens in object-centric regions, preserving fine-grained details, and (2) Dynamic Density Formation (DDF), which dynamically allocates tokens based on information density, ensuring higher retention in semantically rich areas. Extensive experiments on the GranDf dataset demonstrate that ALTP significantly outperforms existing token pruning methods, such as FastV and PyramidDrop, on both GLaMM and OMG-LLaVA models. Notably, when applied to GLaMM, ALTP achieves a 90% reduction in visual tokens with a 4.9% improvement in AP50 and a 5.0% improvement in Recall compared to PyramidDrop. Similarly, on OMG-LLaVA, ALTP improves AP by 2.1% and mIOU by 3.0% at a 90% token reduction compared with PDrop.
♻ ☆ Learned Image Compression and Restoration for Digital Pathology
Digital pathology images play a crucial role in medical diagnostics, but their ultra-high resolution and large file sizes pose significant challenges for storage, transmission, and real-time visualization. To address these issues, we propose CLERIC, a novel deep learning-based image compression framework designed specifically for whole slide images (WSIs). CLERIC integrates a learnable lifting scheme and advanced convolutional techniques to enhance compression efficiency while preserving critical pathological details. Our framework employs a lifting-scheme transform in the analysis stage to decompose images into low- and high-frequency components, enabling more structured latent representations. These components are processed through parallel encoders incorporating Deformable Residual Blocks (DRB) and Recurrent Residual Blocks (R2B) to improve feature extraction and spatial adaptability. The synthesis stage applies an inverse lifting transform for effective image reconstruction, ensuring high-fidelity restoration of fine-grained tissue structures. We evaluate CLERIC on a digital pathology image dataset and compare its performance against state-of-the-art learned image compression (LIC) models. Experimental results demonstrate that CLERIC achieves superior rate-distortion (RD) performance, significantly reducing storage requirements while maintaining high diagnostic image quality. Our study highlights the potential of deep learning-based compression in digital pathology, facilitating efficient data management and long-term storage while ensuring seamless integration into clinical workflows and AI-assisted diagnostic systems. Code and models are available at: https://github.com/pnu-amilab/CLERIC.
♻ ☆ Controllable Human Image Generation with Personalized Multi-Garments CVPR 2025
We present BootComp, a novel framework based on text-to-image diffusion models for controllable human image generation with multiple reference garments. Here, the main bottleneck is data acquisition for training: collecting a large-scale dataset of high-quality reference garment images per human subject is quite challenging, i.e., ideally, one needs to manually gather every single garment photograph worn by each human. To address this, we propose a data generation pipeline to construct a large synthetic dataset, consisting of human and multiple-garment pairs, by introducing a model to extract any reference garment images from each human image. To ensure data quality, we also propose a filtering strategy to remove undesirable generated data based on measuring perceptual similarities between the garment presented in human image and extracted garment. Finally, by utilizing the constructed synthetic dataset, we train a diffusion model having two parallel denoising paths that use multiple garment images as conditions to generate human images while preserving their fine-grained details. We further show the wide-applicability of our framework by adapting it to different types of reference-based generation in the fashion domain, including virtual try-on, and controllable human image generation with other conditions, e.g., pose, face, etc.
comment: CVPR 2025. Project page: https://omnious.github.io/BootComp
♻ ☆ On-device Sora: Enabling Training-Free Diffusion-based Text-to-Video Generation for Mobile Devices
We present On-device Sora, the first model training-free solution for diffusion-based on-device text-to-video generation that operates efficiently on smartphone-grade devices. To address the challenges of diffusion-based text-to-video generation on computation- and memory-limited mobile devices, the proposed On-device Sora applies three novel techniques to pre-trained video generative models. First, Linear Proportional Leap (LPL) reduces the excessive denoising steps required in video diffusion through an efficient leap-based approach. Second, Temporal Dimension Token Merging (TDTM) minimizes intensive token-processing computation in attention layers by merging consecutive tokens along the temporal dimension. Third, Concurrent Inference with Dynamic Loading (CI-DL) dynamically partitions large models into smaller blocks and loads them into memory for concurrent model inference, effectively addressing the challenges of limited device memory. We implement On-device Sora on the iPhone 15 Pro, and the experimental evaluations show that it is capable of generating high-quality videos on the device, comparable to those produced by high-end GPUs. These results show that On-device Sora enables efficient and high-quality video generation on resource-constrained mobile devices. We envision the proposed On-device Sora as a significant first step toward democratizing state-of-the-art generative technologies, enabling video generation on commodity mobile and embedded devices without resource-intensive re-training for model optimization (compression). The code implementation is available at a GitHub repository(https://github.com/eai-lab/On-device-Sora).
comment: Replicated Submission. arXiv:2502.04363 submitted as second version of the paper
♻ ☆ WaveFormer: A 3D Transformer with Wavelet-Driven Feature Representation for Efficient Medical Image Segmentation
Transformer-based architectures have advanced medical image analysis by effectively modeling long-range dependencies, yet they often struggle in 3D settings due to substantial memory overhead and insufficient capture of fine-grained local features. We address these limitations with WaveFormer, a novel 3D-transformer that: i) leverages the fundamental frequency-domain properties of features for contextual representation, and ii) is inspired by the top-down mechanism of the human visual recognition system, making it a biologically motivated architecture. By employing discrete wavelet transformations (DWT) at multiple scales, WaveFormer preserves both global context and high-frequency details while replacing heavy upsampling layers with efficient wavelet-based summarization and reconstruction. This significantly reduces the number of parameters, which is critical for real-world deployment where computational resources and training times are constrained. Furthermore, the model is generic and easily adaptable to diverse applications. Evaluations on BraTS2023, FLARE2021, and KiTS2023 demonstrate performance on par with state-of-the-art methods while offering substantially lower computational complexity.
♻ ☆ Introducing the Short-Time Fourier Kolmogorov Arnold Network: A Dynamic Graph CNN Approach for Tree Species Classification in 3D Point Clouds
Accurate classification of tree species based on Terrestrial Laser Scanning (TLS) and Airborne Laser Scanning (ALS) is essential for biodiversity conservation. While advanced deep learning models for 3D point cloud classification have demonstrated strong performance in this domain, their high complexity often hinders the development of efficient, low-computation architectures. In this paper, we introduce STFT-KAN, a novel Kolmogorov-Arnold network that integrates the Short-Time Fourier Transform (STFT), which can replace the standard linear layer with activation. We implemented STFT-KAN within a lightweight version of DGCNN, called liteDGCNN, to classify tree species using the TLS data. Our experiments show that STFT-KAN outperforms existing KAN variants by effectively balancing model complexity and performance with parameter count reduction, achieving competitive results compared to MLP-based models. Additionally, we evaluated a hybrid architecture that combines MLP in edge convolution with STFT-KAN in other layers, achieving comparable performance to MLP models while reducing the parameter count by 50% and 75% compared to other KAN-based variants. Furthermore, we compared our model to leading 3D point cloud learning approaches, demonstrating that STFT-KAN delivers competitive results compared to the state-of-the-art method PointMLP lite with an 87% reduction in parameter count.
♻ ☆ TextCrafter: Accurately Rendering Multiple Texts in Complex Visual Scenes
This paper explores the task of Complex Visual Text Generation (CVTG), which centers on generating intricate textual content distributed across diverse regions within visual images. In CVTG, image generation models often rendering distorted and blurred visual text or missing some visual text. To tackle these challenges, we propose TextCrafter, a novel multi-visual text rendering method. TextCrafter employs a progressive strategy to decompose complex visual text into distinct components while ensuring robust alignment between textual content and its visual carrier. Additionally, it incorporates a token focus enhancement mechanism to amplify the prominence of visual text during the generation process. TextCrafter effectively addresses key challenges in CVTG tasks, such as text confusion, omissions, and blurriness. Moreover, we present a new benchmark dataset, CVTG-2K, tailored to rigorously evaluate the performance of generative models on CVTG tasks. Extensive experiments demonstrate that our method surpasses state-of-the-art approaches.
♻ ☆ Convolutional Neural Networks Can (Meta-)Learn the Same-Different Relation
While convolutional neural networks (CNNs) have come to match and exceed human performance in many settings, the tasks these models optimize for are largely constrained to the level of individual objects, such as classification and captioning. Humans remain vastly superior to CNNs in visual tasks involving relations, including the ability to identify two objects as `same' or `different'. A number of studies have shown that while CNNs can be coaxed into learning the same-different relation in some settings, they tend to generalize poorly to other instances of this relation. In this work we show that the same CNN architectures that fail to generalize the same-different relation with conventional training are able to succeed when trained via meta-learning, which explicitly encourages abstraction and generalization across tasks.
♻ ☆ OncoReg: Medical Image Registration for Oncological Challenges
In modern cancer research, the vast volume of medical data generated is often underutilised due to challenges related to patient privacy. The OncoReg Challenge addresses this issue by enabling researchers to develop and validate image registration methods through a two-phase framework that ensures patient privacy while fostering the development of more generalisable AI models. Phase one involves working with a publicly available dataset, while phase two focuses on training models on a private dataset within secure hospital networks. OncoReg builds upon the foundation established by the Learn2Reg Challenge by incorporating the registration of interventional cone-beam computed tomography (CBCT) with standard planning fan-beam CT (FBCT) images in radiotherapy. Accurate image registration is crucial in oncology, particularly for dynamic treatment adjustments in image-guided radiotherapy, where precise alignment is necessary to minimise radiation exposure to healthy tissues while effectively targeting tumours. This work details the methodology and data behind the OncoReg Challenge and provides a comprehensive analysis of the competition entries and results. Findings reveal that feature extraction plays a pivotal role in this registration task. A new method emerging from this challenge demonstrated its versatility, while established approaches continue to perform comparably to newer techniques. Both deep learning and classical approaches still play significant roles in image registration, with the combination of methods - particularly in feature extraction - proving most effective.
comment: 26 pages, 6 figures
♻ ☆ ActiveGAMER: Active GAussian Mapping through Efficient Rendering CVPR2025
We introduce ActiveGAMER, an active mapping system that utilizes 3D Gaussian Splatting (3DGS) to achieve high-quality, real-time scene mapping and exploration. Unlike traditional NeRF-based methods, which are computationally demanding and restrict active mapping performance, our approach leverages the efficient rendering capabilities of 3DGS, allowing effective and efficient exploration in complex environments. The core of our system is a rendering-based information gain module that dynamically identifies the most informative viewpoints for next-best-view planning, enhancing both geometric and photometric reconstruction accuracy. ActiveGAMER also integrates a carefully balanced framework, combining coarse-to-fine exploration, post-refinement, and a global-local keyframe selection strategy to maximize reconstruction completeness and fidelity. Our system autonomously explores and reconstructs environments with state-of-the-art geometric and photometric accuracy and completeness, significantly surpassing existing approaches in both aspects. Extensive evaluations on benchmark datasets such as Replica and MP3D highlight ActiveGAMER's effectiveness in active mapping tasks.
comment: Accepted to CVPR2025
♻ ☆ NTSEBENCH: Cognitive Reasoning Benchmark for Vision Language Models
Cognitive textual and visual reasoning tasks, including puzzles, series, and analogies, demand the ability to quickly reason, decipher, and evaluate patterns both textually and spatially. Due to extensive training on vast amounts of human-curated data, LLMs and VLMs excel in common-sense reasoning tasks, however still struggle with more complex reasoning that demands deeper cognitive understanding. We introduce NTSEBench, a new dataset designed to evaluate cognitive multi-modal reasoning and problem-solving skills of large models. The dataset contains 2728 multiple-choice questions, accompanied by a total of 4,642 images, categorized into 26 different types. These questions are drawn from the nationwide NTSE examination in India and feature a mix of visual and textual general aptitude challenges, designed to assess intelligence and critical thinking skills beyond mere rote learning. We establish baselines on the dataset using state-of-the-art LLMs and VLMs. To facilitate a comparison between open source and propriety models, we propose four distinct modeling strategies to handle different modalities -- text and images -- in the dataset instances.
comment: 28 pages, 3 figures, 12 tables
♻ ☆ Rehearsal-free Federated Domain-incremental Learning
We introduce a rehearsal-free federated domain incremental learning framework, RefFiL, based on a global prompt-sharing paradigm to alleviate catastrophic forgetting challenges in federated domain-incremental learning, where unseen domains are continually learned. Typical methods for mitigating forgetting, such as the use of additional datasets and the retention of private data from earlier tasks, are not viable in federated learning (FL) due to devices' limited resources. Our method, RefFiL, addresses this by learning domain-invariant knowledge and incorporating various domain-specific prompts from the domains represented by different FL participants. A key feature of RefFiL is the generation of local fine-grained prompts by our domain adaptive prompt generator, which effectively learns from local domain knowledge while maintaining distinctive boundaries on a global scale. We also introduce a domain-specific prompt contrastive learning loss that differentiates between locally generated prompts and those from other domains, enhancing RefFiL's precision and effectiveness. Compared to existing methods, RefFiL significantly alleviates catastrophic forgetting without requiring extra memory space, making it ideal for privacy-sensitive and resource-constrained devices.
comment: Camera ready version. Accepted by the IEEE ICDCS, 2025
♻ ☆ DetailGen3D: Generative 3D Geometry Enhancement via Data-Dependent Flow
Modern 3D generation methods can rapidly create shapes from sparse or single views, but their outputs often lack geometric detail due to computational constraints. We present DetailGen3D, a generative approach specifically designed to enhance these generated 3D shapes. Our key insight is to model the coarse-to-fine transformation directly through data-dependent flows in latent space, avoiding the computational overhead of large-scale 3D generative models. We introduce a token matching strategy that ensures accurate spatial correspondence during refinement, enabling local detail synthesis while preserving global structure. By carefully designing our training data to match the characteristics of synthesized coarse shapes, our method can effectively enhance shapes produced by various 3D generation and reconstruction approaches, from single-view to sparse multi-view inputs. Extensive experiments demonstrate that DetailGen3D achieves high-fidelity geometric detail synthesis while maintaining efficiency in training.
♻ ☆ IDArb: Intrinsic Decomposition for Arbitrary Number of Input Views and Illuminations ICLR 2025
Capturing geometric and material information from images remains a fundamental challenge in computer vision and graphics. Traditional optimization-based methods often require hours of computational time to reconstruct geometry, material properties, and environmental lighting from dense multi-view inputs, while still struggling with inherent ambiguities between lighting and material. On the other hand, learning-based approaches leverage rich material priors from existing 3D object datasets but face challenges with maintaining multi-view consistency. In this paper, we introduce IDArb, a diffusion-based model designed to perform intrinsic decomposition on an arbitrary number of images under varying illuminations. Our method achieves accurate and multi-view consistent estimation on surface normals and material properties. This is made possible through a novel cross-view, cross-domain attention module and an illumination-augmented, view-adaptive training strategy. Additionally, we introduce ARB-Objaverse, a new dataset that provides large-scale multi-view intrinsic data and renderings under diverse lighting conditions, supporting robust training. Extensive experiments demonstrate that IDArb outperforms state-of-the-art methods both qualitatively and quantitatively. Moreover, our approach facilitates a range of downstream tasks, including single-image relighting, photometric stereo, and 3D reconstruction, highlighting its broad applications in realistic 3D content creation.
comment: ICLR 2025. Project Page: https://lizb6626.github.io/IDArb/
♻ ☆ Oriented Object Detection in Optical Remote Sensing Images using Deep Learning: A Survey
Oriented object detection is one of the most fundamental and challenging tasks in remote sensing, aiming to locate and classify objects with arbitrary orientations. Recent advancements in deep learning have significantly enhanced the capabilities of oriented object detection. Given the rapid development of this field, this paper presents a comprehensive survey of recent advances in oriented object detection. To be specific, we begin by tracing the technical evolution from horizontal object detection to oriented object detection and highlighting the specific challenges, including feature misalignment, spatial misalignment, and oriented bounding box (OBB) regression problems. Subsequently, we further categorize existing methods into detection framework, OBB regression, and feature representations, and provide an in-depth discussion on how these approaches address the above challenges. In addition, we cover several publicly available datasets and evaluation protocols. Furthermore, we provide a comprehensive comparison and analysis of state-of-the-art methods. Toward the end of this paper, we identify several future directions for oriented object detection.
♻ ☆ Mixture of Experts Made Personalized: Federated Prompt Learning for Vision-Language Models ICLR 2025
Federated prompt learning benefits federated learning with CLIP-like Vision-Language Model's (VLM's) robust representation learning ability through prompt learning. However, current federated prompt learning methods are habitually restricted to the traditional FL paradigm, where the participating clients are generally only allowed to download a single globally aggregated model from the server. While justifiable for training full-sized models under federated settings, in this work, we argue that this paradigm is ill-suited for lightweight prompts. By facilitating the clients to download multiple pre-aggregated prompts as fixed non-local experts, we propose Personalized Federated Mixture of Adaptive Prompts (pFedMoAP), a novel FL framework that personalizes the prompt learning process through the lens of Mixture of Experts (MoE). pFedMoAP implements a local attention-based gating network that learns to generate enhanced text features for better alignment with local image data, benefiting from both local and downloaded non-local adaptive prompt experts. Extensive experiments on 9 datasets under various federated settings demonstrate the efficacy of the proposed pFedMoAP algorithm. The code is available at https://github.com/ljaiverson/pFedMoAP.
comment: ICLR 2025
♻ ☆ HCMA-UNet: A Hybrid CNN-Mamba UNet with Axial Self-Attention for Efficient Breast Cancer Segmentation
Breast cancer lesion segmentation in DCE-MRI remains challenging due to heterogeneous tumor morphology and indistinct boundaries. To address these challenges, this study proposes a novel hybrid segmentation network, HCMA-UNet, for lesion segmentation of breast cancer. Our network consists of a lightweight CNN backbone and a Multi-view Axial Self-Attention Mamba (MISM) module. The MISM module integrates Visual State Space Block (VSSB) and Axial Self-Attention (ASA) mechanism, effectively reducing parameters through Asymmetric Split Channel (ASC) strategy to achieve efficient tri-directional feature extraction. Our lightweight model achieves superior performance with 2.87M parameters and 126.44 GFLOPs. A Feature-guided Region-aware loss function (FRLoss) is proposed to enhance segmentation accuracy. Extensive experiments on one private and two public DCE-MRI breast cancer datasets demonstrate that our approach achieves state-of-the-art performance while maintaining computational efficiency. FRLoss also exhibits good cross-architecture generalization capabilities. The source code is available at https://github.com/Haoxuanli-Thu/HCMA-UNet.
♻ ☆ HyperSIGMA: Hyperspectral Intelligence Comprehension Foundation Model
Accurate hyperspectral image (HSI) interpretation is critical for providing valuable insights into various earth observation-related applications such as urban planning, precision agriculture, and environmental monitoring. However, existing HSI processing methods are predominantly task-specific and scene-dependent, which severely limits their ability to transfer knowledge across tasks and scenes, thereby reducing the practicality in real-world applications. To address these challenges, we present HyperSIGMA, a vision transformer-based foundation model that unifies HSI interpretation across tasks and scenes, scalable to over one billion parameters. To overcome the spectral and spatial redundancy inherent in HSIs, we introduce a novel sparse sampling attention (SSA) mechanism, which effectively promotes the learning of diverse contextual features and serves as the basic block of HyperSIGMA. HyperSIGMA integrates spatial and spectral features using a specially designed spectral enhancement module. In addition, we construct a large-scale hyperspectral dataset, HyperGlobal-450K, for pre-training, which contains about 450K hyperspectral images, significantly surpassing existing datasets in scale. Extensive experiments on various high-level and low-level HSI tasks demonstrate HyperSIGMA's versatility and superior representational capability compared to current state-of-the-art methods. Moreover, HyperSIGMA shows significant advantages in scalability, robustness, cross-modal transferring capability, real-world applicability, and computational efficiency. The code and models will be released at https://github.com/WHU-Sigma/HyperSIGMA.
comment: Accepted by IEEE TPAMI. Project website: https://whu-sigma.github.io/HyperSIGMA
♻ ☆ Mind the GAP: Glimpse-based Active Perception improves generalization and sample efficiency of visual reasoning
Human capabilities in understanding visual relations are far superior to those of AI systems, especially for previously unseen objects. For example, while AI systems struggle to determine whether two such objects are visually the same or different, humans can do so with ease. Active vision theories postulate that the learning of visual relations is grounded in actions that we take to fixate objects and their parts by moving our eyes. In particular, the low-dimensional spatial information about the corresponding eye movements is hypothesized to facilitate the representation of relations between different image parts. Inspired by these theories, we develop a system equipped with a novel Glimpse-based Active Perception (GAP) that sequentially glimpses at the most salient regions of the input image and processes them at high resolution. Importantly, our system leverages the locations stemming from the glimpsing actions, along with the visual content around them, to represent relations between different parts of the image. The results suggest that the GAP is essential for extracting visual relations that go beyond the immediate visual content. Our approach reaches state-of-the-art performance on several visual reasoning tasks being more sample-efficient, and generalizing better to out-of-distribution visual inputs than prior models.
comment: 10 pages of main text and 8 pages appendices
♻ ☆ RedMotion: Motion Prediction via Redundancy Reduction
We introduce RedMotion, a transformer model for motion prediction in self-driving vehicles that learns environment representations via redundancy reduction. Our first type of redundancy reduction is induced by an internal transformer decoder and reduces a variable-sized set of local road environment tokens, representing road graphs and agent data, to a fixed-sized global embedding. The second type of redundancy reduction is obtained by self-supervised learning and applies the redundancy reduction principle to embeddings generated from augmented views of road environments. Our experiments reveal that our representation learning approach outperforms PreTraM, Traj-MAE, and GraphDINO in a semi-supervised setting. Moreover, RedMotion achieves competitive results compared to HPTR or MTR++ in the Waymo Motion Prediction Challenge. Our open-source implementation is available at: https://github.com/kit-mrt/future-motion
comment: TMLR published version
♻ ☆ Fine-Grained Behavior and Lane Constraints Guided Trajectory Prediction Method
Trajectory prediction, as a critical component of autonomous driving systems, has attracted the attention of many researchers. Existing prediction algorithms focus on extracting more detailed scene features or selecting more reasonable trajectory destinations. However, in the face of dynamic and evolving future movements of the target vehicle, these algorithms cannot provide a fine-grained and continuous description of future behaviors and lane constraints, which degrades the prediction accuracy. To address this challenge, we present BLNet, a novel dualstream architecture that synergistically integrates behavioral intention recognition and lane constraint modeling through parallel attention mechanisms. The framework generates fine-grained behavior state queries (capturing spatial-temporal movement patterns) and lane queries (encoding lane topology constraints), supervised by two auxiliary losses, respectively. Subsequently, a two-stage decoder first produces trajectory proposals, then performs point-level refinement by jointly incorporating both the continuity of passed lanes and future motion features. Extensive experiments on two large datasets, nuScenes and Argoverse, show that our network exhibits significant performance gains over existing direct regression and goal-based algorithms.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ RePoseD: Efficient Relative Pose Estimation With Known Depth Information
Recent advances in monocular depth estimation methods (MDE) and their improved accuracy open new possibilities for their applications. In this paper, we investigate how monocular depth estimates can be used for relative pose estimation. In particular, we are interested in answering the question whether using MDEs improves results over traditional point-based methods. We propose a novel framework for estimating the relative pose of two cameras from point correspondences with associated monocular depths. Since depth predictions are typically defined up to an unknown scale or even both unknown scale and shift parameters, our solvers jointly estimate the scale or both the scale and shift parameters along with the relative pose. We derive efficient solvers considering different types of depths for three camera configurations: (1) two calibrated cameras, (2) two cameras with an unknown shared focal length, and (3) two cameras with unknown different focal lengths. Our new solvers outperform state-of-the-art depth-aware solvers in terms of speed and accuracy. In extensive real experiments on multiple datasets and with various MDEs, we discuss which depth-aware solvers are preferable in which situation. The code will be made publicly available.
comment: 18 pages
♻ ☆ Enhanced Controllability of Diffusion Models via Feature Disentanglement and Realism-Enhanced Sampling Methods ECCV 2024
As Diffusion Models have shown promising performance, a lot of efforts have been made to improve the controllability of Diffusion Models. However, how to train Diffusion Models to have the disentangled latent spaces and how to naturally incorporate the disentangled conditions during the sampling process have been underexplored. In this paper, we present a training framework for feature disentanglement of Diffusion Models (FDiff). We further propose two sampling methods that can boost the realism of our Diffusion Models and also enhance the controllability. Concisely, we train Diffusion Models conditioned on two latent features, a spatial content mask, and a flattened style embedding. We rely on the inductive bias of the denoising process of Diffusion Models to encode pose/layout information in the content feature and semantic/style information in the style feature. Regarding the sampling methods, we first generalize Composable Diffusion Models (GCDM) by breaking the conditional independence assumption to allow for some dependence between conditional inputs, which is shown to be effective in realistic generation in our experiments. Second, we propose timestep-dependent weight scheduling for content and style features to further improve the performance. We also observe better controllability of our proposed methods compared to existing methods in image manipulation and image translation.
comment: ECCV 2024; Code will be opened after a patent application is granted
♻ ☆ Att-Adapter: A Robust and Precise Domain-Specific Multi-Attributes T2I Diffusion Adapter via Conditional Variational Autoencoder
Text-to-Image (T2I) Diffusion Models have achieved remarkable performance in generating high quality images. However, enabling precise control of continuous attributes, especially multiple attributes simultaneously, in a new domain (e.g., numeric values like eye openness or car width) with text-only guidance remains a significant challenge. To address this, we introduce the Attribute (Att) Adapter, a novel plug-and-play module designed to enable fine-grained, multi-attributes control in pretrained diffusion models. Our approach learns a single control adapter from a set of sample images that can be unpaired and contain multiple visual attributes. The Att-Adapter leverages the decoupled cross attention module to naturally harmonize the multiple domain attributes with text conditioning. We further introduce Conditional Variational Autoencoder (CVAE) to the Att-Adapter to mitigate overfitting, matching the diverse nature of the visual world. Evaluations on two public datasets show that Att-Adapter outperforms all LoRA-based baselines in controlling continuous attributes. Additionally, our method enables a broader control range and also improves disentanglement across multiple attributes, surpassing StyleGAN-based techniques. Notably, Att-Adapter is flexible, requiring no paired synthetic data for training, and is easily scalable to multiple attributes within a single model.
♻ ☆ MSCMNet: Multi-scale Semantic Correlation Mining for Visible-Infrared Person Re-Identification
The main challenge in the Visible-Infrared Person Re-Identification (VI-ReID) task lies in how to extract discriminative features from different modalities for matching purposes. While the existing well works primarily focus on minimizing the modal discrepancies, the modality information can not thoroughly be leveraged. To solve this problem, a Multi-scale Semantic Correlation Mining network (MSCMNet) is proposed to comprehensively exploit semantic features at multiple scales and simultaneously reduce modality information loss as small as possible in feature extraction. The proposed network contains three novel components. Firstly, after taking into account the effective utilization of modality information, the Multi-scale Information Correlation Mining Block (MIMB) is designed to explore semantic correlations across multiple scales. Secondly, in order to enrich the semantic information that MIMB can utilize, a quadruple-stream feature extractor (QFE) with non-shared parameters is specifically designed to extract information from different dimensions of the dataset. Finally, the Quadruple Center Triplet Loss (QCT) is further proposed to address the information discrepancy in the comprehensive features. Extensive experiments on the SYSU-MM01, RegDB, and LLCM datasets demonstrate that the proposed MSCMNet achieves the greatest accuracy.
♻ ☆ Efficient Semantic Segmentation via Lightweight Multiple-Information Interaction Network
Recently, integrating the local modeling capabilities of Convolutional Neural Networks (CNNs) with the global dependency strengths of Transformers has created a sensation in the semantic segmentation community. However, substantial computational workloads and high hardware memory demands remain major obstacles to their further application in real-time scenarios. In this work, we propose a Lightweight Multiple-Information Interaction Network (LMIINet) for real-time semantic segmentation, which effectively combines CNNs and Transformers while reducing redundant computations and memory footprints. It features Lightweight Feature Interaction Bottleneck (LFIB) modules comprising efficient convolutions that enhance context integration. Additionally, improvements are made to the Flatten Transformer by enhancing local and global feature interaction to capture detailed semantic information. Incorporating a combination coefficient learning scheme in both LFIB and Transformer blocks facilitates improved feature interaction. Extensive experiments demonstrate that LMIINet excels in balancing accuracy and efficiency. With only 0.72M parameters and 11.74G FLOPs (Floating Point Operations Per Second), LMIINet achieves 72.0\% mIoU at 100 FPS (Frames Per Second) on the Cityscapes test set and 69.94\% mIoU (mean Intersection over Union) at 160 FPS on the CamVid test dataset using a single RTX2080Ti GPU.
comment: 10 pages, 6 figures, 9 tables
♻ ☆ ConsistencyDet: A Few-step Denoising Framework for Object Detection Using the Consistency Model
Object detection, a quintessential task in the realm of perceptual computing, can be tackled using a generative methodology. In the present study, we introduce a novel framework designed to articulate object detection as a denoising diffusion process, which operates on the perturbed bounding boxes of annotated entities. This framework, termed \textbf{ConsistencyDet}, leverages an innovative denoising concept known as the Consistency Model. The hallmark of this model is its self-consistency feature, which empowers the model to map distorted information from any time step back to its pristine state, thereby realizing a \textbf{``few-step denoising''} mechanism. Such an attribute markedly elevates the operational efficiency of the model, setting it apart from the conventional Diffusion Model. Throughout the training phase, ConsistencyDet initiates the diffusion sequence with noise-infused boxes derived from the ground-truth annotations and conditions the model to perform the denoising task. Subsequently, in the inference stage, the model employs a denoising sampling strategy that commences with bounding boxes randomly sampled from a normal distribution. Through iterative refinement, the model transforms an assortment of arbitrarily generated boxes into definitive detections. Comprehensive evaluations employing standard benchmarks, such as MS-COCO and LVIS, corroborate that ConsistencyDet surpasses other leading-edge detectors in performance metrics. Our code is available at https://anonymous.4open.science/r/ConsistencyDet-37D5.
♻ ☆ SVInvNet: A Densely Connected Encoder-Decoder Architecture for Seismic Velocity Inversion
This study presents a deep learning-based approach to seismic velocity inversion problem, focusing on both noisy and noiseless training datasets of varying sizes. Our Seismic Velocity Inversion Network (SVInvNet) introduces a novel architecture that contains a multi-connection encoder-decoder structure enhanced with dense blocks. This design is specifically tuned to effectively process time series data, which is essential for addressing the challenges of non-linear seismic velocity inversion. For training and testing, we created diverse seismic velocity models, including multi-layered, faulty, and salt dome categories. We also investigated how different kinds of ambient noise, both coherent and stochastic, and the size of the training dataset affect learning outcomes. SVInvNet is trained on datasets ranging from 750 to 6,000 samples and is tested using a large benchmark dataset of 12,000 samples. Despite its fewer parameters compared to the baseline model, SVInvNet achieves superior performance with this dataset. The performance of SVInvNet was further evaluated using the OpenFWI dataset and Marmousi-derived velocity models. The comparative analysis clearly reveals the effectiveness of the proposed model.
comment: This is the preprint of the accepted manuscript to appear in IEEE Transactions on Geoscience and Remote Sensing
♻ ☆ DG-TTA: Out-of-domain Medical Image Segmentation through Augmentation and Descriptor-driven Domain Generalization and Test-Time Adaptation
Purpose: Applying pre-trained medical deep learning segmentation models on out-of-domain images often yields predictions of insufficient quality. In this study, we propose to use a powerful generalizing descriptor along with augmentation to enable domain-generalized pre-training and test-time adaptation, achieving high-quality segmentation in unseen domains. Materials and Methods: In this retrospective study five different publicly available datasets (2012 to 2022) including 3D CT and MRI images are used to evaluate segmentation performance in out-of-domain scenarios. The settings include abdominal, spine, and cardiac imaging. The data is randomly split into training and test samples. Domain-generalized pre-training on source data is used to obtain the best initial performance in the target domain. We introduce the combination of the generalizing SSC descriptor and GIN intensity augmentation for optimal generalization. Segmentation results are subsequently optimized at test time, where we propose to adapt the pre-trained models for every unseen scan with a consistency scheme using the same augmentation-descriptor combination. The segmentation is evaluated using Dice similarity and Hausdorff distance and the significance of improvements is tested with the Wilcoxon signed-rank test. Results: The proposed generalized pre-training and subsequent test-time adaptation improves model performance significantly in CT to MRI cross-domain prediction for abdominal (+46.2% and +28.2% Dice), spine (+72.9%), and cardiac (+14.2% and +55.7% Dice) scenarios (p<0.001). Conclusion: Our method enables optimal, independent usage of medical image source and target data and bridges domain gaps successfully with a compact and efficient methodology. Open-source code available at: https://github.com/multimodallearning/DG-TTA
♻ ☆ Nonhuman Primate Brain Tissue Segmentation Using a Transfer Learning Approach
Non-human primates (NHPs) serve as critical models for understanding human brain function and neurological disorders due to their close evolutionary relationship with humans. Accurate brain tissue segmentation in NHPs is critical for understanding neurological disorders, but challenging due to the scarcity of annotated NHP brain MRI datasets, the small size of the NHP brain, the limited resolution of available imaging data and the anatomical differences between human and NHP brains. To address these challenges, we propose a novel approach utilizing STU-Net with transfer learning to leverage knowledge transferred from human brain MRI data to enhance segmentation accuracy in the NHP brain MRI, particularly when training data is limited. The combination of STU-Net and transfer learning effectively delineates complex tissue boundaries and captures fine anatomical details specific to NHP brains. Notably, our method demonstrated improvement in segmenting small subcortical structures such as putamen and thalamus that are challenging to resolve with limited spatial resolution and tissue contrast, and achieved DSC of over 0.88, IoU over 0.8 and HD95 under 7. This study introduces a robust method for multi-class brain tissue segmentation in NHPs, potentially accelerating research in evolutionary neuroscience and preclinical studies of neurological disorders relevant to human health.
♻ ☆ Exploring Scene Affinity for Semi-Supervised LiDAR Semantic Segmentation CVPR2025
This paper explores scene affinity (AIScene), namely intra-scene consistency and inter-scene correlation, for semi-supervised LiDAR semantic segmentation in driving scenes. Adopting teacher-student training, AIScene employs a teacher network to generate pseudo-labeled scenes from unlabeled data, which then supervise the student network's learning. Unlike most methods that include all points in pseudo-labeled scenes for forward propagation but only pseudo-labeled points for backpropagation, AIScene removes points without pseudo-labels, ensuring consistency in both forward and backward propagation within the scene. This simple point erasure strategy effectively prevents unsupervised, semantically ambiguous points (excluded in backpropagation) from affecting the learning of pseudo-labeled points. Moreover, AIScene incorporates patch-based data augmentation, mixing multiple scenes at both scene and instance levels. Compared to existing augmentation techniques that typically perform scene-level mixing between two scenes, our method enhances the semantic diversity of labeled (or pseudo-labeled) scenes, thereby improving the semi-supervised performance of segmentation models. Experiments show that AIScene outperforms previous methods on two popular benchmarks across four settings, achieving notable improvements of 1.9% and 2.1% in the most challenging 1% labeled data.
comment: Accepted by CVPR2025
♻ ☆ Exploiting Mixture-of-Experts Redundancy Unlocks Multimodal Generative Abilities
In this work, we undertake the challenge of augmenting the existing generative capabilities of pre-trained text-only large language models (LLMs) with multi-modal generation capability while satisfying two core constraints: C1 preserving the preservation of original language generative capabilities with negligible performance degradation, and C2 adhering to a small parameter budget to learn the new modality, ensuring scalability and efficiency. In contrast to current approaches that add dedicated modules, thereby significantly increasing the parameter count, we propose a method that leverages the underutilized capacity inherent in deep models. Specifically, we exploit the parameter redundancy within Mixture-of-Experts (MoEs) as a source of additional capacity for learning a new modality, enabling better parameter efficiency (C1). Moreover, we preserve the original language generation capabilities by applying low-rank adaptation exclusively to the tokens of the new modality (C2). Furthermore, we introduce a novel parameter initialization scheme based on the Gromov-Wasserstein distance to improve convergence and training stability. Through an extensive analysis of the routing mechanism, we uncover the emergence of modality-specific pathways and decreased redundancy within the experts that can efficiently unlock multi-modal generative capabilities. Overall, our method can be seamlessly applied to a wide range of contemporary LLMs, providing a new pathway for transitioning from uni-modal to multi-modal architectures.
♻ ☆ DoubleDiffusion: Combining Heat Diffusion with Denoising Diffusion for Texture Generation on 3D Meshes
This paper addresses the problem of generating textures for 3D mesh assets. Existing approaches often rely on image diffusion models to generate multi-view image observations, which are then transformed onto the mesh surface to produce a single texture. However, due to the gap between multi-view images and 3D space, such process is susceptible to arange of issues such as geometric inconsistencies, visibility occlusion, and baking artifacts. To overcome this problem, we propose a novel approach that directly generates texture on 3D meshes. Our approach leverages heat dissipation diffusion, which serves as an efficient operator that propagates features on the geometric surface of a mesh, while remaining insensitive to the specific layout of the wireframe. By integrating this technique into a generative diffusion pipeline, we significantly improve the efficiency of texture generation compared to existing texture generation methods. We term our approach DoubleDiffusion, as it combines heat dissipation diffusion with denoising diffusion to enable native generative learning on 3D mesh surfaces.
comment: Codes: https://github.com/Wxyxixixi/DoubleDiffusion_3D_Mesh
♻ ☆ Attention-Guided Multi-scale Interaction Network for Face Super-Resolution
Recently, CNN and Transformer hybrid networks demonstrated excellent performance in face super-resolution (FSR) tasks. Since numerous features at different scales in hybrid networks, how to fuse these multi-scale features and promote their complementarity is crucial for enhancing FSR. However, existing hybrid network-based FSR methods ignore this, only simply combining the Transformer and CNN. To address this issue, we propose an attention-guided Multi-scale interaction network (AMINet), which contains local and global feature interactions and encoder-decoder phase feature interactions. Specifically, we propose a Local and Global Feature Interaction Module (LGFI) to promote fusions of global features and different receptive fields' local features extracted by our Residual Depth Feature Extraction Module (RDFE). Additionally, we propose a Selective Kernel Attention Fusion Module (SKAF) to adaptively select fusions of different features within LGFI and encoder-decoder phases. Our above design allows the free flow of multi-scale features from within modules and between encoder and decoder, which can promote the complementarity of different scale features to enhance FSR. Comprehensive experiments confirm that our method consistently performs well with less computational consumption and faster inference.
comment: 13 pages, 11 figures, 10 tables
UniGS: Modeling Unitary 3D Gaussians for Novel View Synthesis from Sparse-view Images
In this work, we introduce UniGS, a novel 3D Gaussian reconstruction and novel view synthesis model that predicts a high-fidelity representation of 3D Gaussians from arbitrary number of posed sparse-view images. Previous methods often regress 3D Gaussians locally on a per-pixel basis for each view and then transfer them to world space and merge them through point concatenation. In contrast, Our approach involves modeling unitary 3D Gaussians in world space and updating them layer by layer. To leverage information from multi-view inputs for updating the unitary 3D Gaussians, we develop a DETR (DEtection TRansformer)-like framework, which treats 3D Gaussians as queries and updates their parameters by performing multi-view cross-attention (MVDFA) across multiple input images, which are treated as keys and values. This approach effectively avoids `ghosting' issue and allocates more 3D Gaussians to complex regions. Moreover, since the number of 3D Gaussians used as decoder queries is independent of the number of input views, our method allows arbitrary number of multi-view images as input without causing memory explosion or requiring retraining. Extensive experiments validate the advantages of our approach, showcasing superior performance over existing methods quantitatively (improving PSNR by 4.2 dB when trained on Objaverse and tested on the GSO benchmark) and qualitatively. The code will be released at https://github.com/jwubz123/UNIG.
♻ ☆ Think or Not Think: A Study of Explicit Thinking inRule-Based Visual Reinforcement Fine-Tuning
This paper investigates rule-based reinforcement learning (RL) fine-tuning for visual classification using multi-modal large language models (MLLMs) and the role of the thinking process. We begin by exploring \textit{CLS-RL}, a method that leverages verifiable signals as rewards to encourage MLLMs to 'think' before classifying. Our experiments across \textbf{eleven} datasets demonstrate that CLS-RL achieves significant improvements over supervised fine-tuning (SFT) in both base-to-new generalization and few-shot learning scenarios. Notably, we observe a 'free-lunch' phenomenon where fine-tuning on one dataset unexpectedly enhances performance on others, suggesting that RL effectively teaches fundamental classification skills. However, we question whether the explicit thinking, a critical aspect of rule-based RL, is always beneficial or indispensable. Challenging the conventional assumption that complex reasoning enhances performance, we introduce \textit{No-Thinking-RL}, a novel approach that minimizes the model's thinking during fine-tuning by utilizing an equality accuracy reward. Our experiments reveal that No-Thinking-RL achieves superior in-domain performance and generalization capabilities compared to CLS-RL, while requiring significantly less fine-tuning time. This underscores that, contrary to prevailing assumptions, reducing the thinking process can lead to more efficient and effective MLLM fine-tuning for some visual tasks. Furthermore, No-Thinking-RL demonstrates enhanced performance on other visual benchmarks, such as a 6.4\% improvement on CVBench. We hope our findings provides insights into the impact of thinking in RL-based fine-tuning.
comment: Preprint, work in progress. Add results on CVBench
♻ ☆ PhyT2V: LLM-Guided Iterative Self-Refinement for Physics-Grounded Text-to-Video Generation
Text-to-video (T2V) generation has been recently enabled by transformer-based diffusion models, but current T2V models lack capabilities in adhering to the real-world common knowledge and physical rules, due to their limited understanding of physical realism and deficiency in temporal modeling. Existing solutions are either data-driven or require extra model inputs, but cannot be generalizable to out-of-distribution domains. In this paper, we present PhyT2V, a new data-independent T2V technique that expands the current T2V model's capability of video generation to out-of-distribution domains, by enabling chain-of-thought and step-back reasoning in T2V prompting. Our experiments show that PhyT2V improves existing T2V models' adherence to real-world physical rules by 2.3x, and achieves 35% improvement compared to T2V prompt enhancers. The source codes are available at: https://github.com/pittisl/PhyT2V.
comment: 28 pages
♻ ☆ FisherTune: Fisher-Guided Robust Tuning of Vision Foundation Models for Domain Generalized Segmentation
Vision Foundation Models (VFMs) excel in generalization due to large-scale pretraining, but fine-tuning them for Domain Generalized Semantic Segmentation (DGSS) while maintaining this ability remains challenging. Existing approaches either selectively fine-tune parameters or freeze the VFMs and update only the adapters, both of which may underutilize the VFMs' full potential in DGSS tasks. We observe that domain-sensitive parameters in VFMs, arising from task and distribution differences, can hinder generalization. To address this, we propose \textbf{FisherTune}, a robust fine-tuning method guided by the Domain-Related Fisher Information Matrix (DR-FIM). DR-FIM measures parameter sensitivity across tasks and domains, enabling selective updates that preserve generalization and enhance DGSS adaptability. FisherTune incorporates variational inference to stabilize DR-FIM estimation, treating parameters as Gaussian-distributed variables and leveraging pre-trained priors. Extensive experiments show that FisherTune achieves superior cross-domain segmentation while maintaining generalization, outperforming selective-parameter and adapter-based methods.
♻ ☆ Lie Detector: Unified Backdoor Detection via Cross-Examination Framework
Institutions with limited data and computing resources often outsource model training to third-party providers in a semi-honest setting, assuming adherence to prescribed training protocols with pre-defined learning paradigm (e.g., supervised or semi-supervised learning). However, this practice can introduce severe security risks, as adversaries may poison the training data to embed backdoors into the resulting model. Existing detection approaches predominantly rely on statistical analyses, which often fail to maintain universally accurate detection accuracy across different learning paradigms. To address this challenge, we propose a unified backdoor detection framework in the semi-honest setting that exploits cross-examination of model inconsistencies between two independent service providers. Specifically, we integrate central kernel alignment to enable robust feature similarity measurements across different model architectures and learning paradigms, thereby facilitating precise recovery and identification of backdoor triggers. We further introduce backdoor fine-tuning sensitivity analysis to distinguish backdoor triggers from adversarial perturbations, substantially reducing false positives. Extensive experiments demonstrate that our method achieves superior detection performance, improving accuracy by 5.4%, 1.6%, and 11.9% over SoTA baselines across supervised, semi-supervised, and autoregressive learning tasks, respectively. Notably, it is the first to effectively detect backdoors in multimodal large language models, further highlighting its broad applicability and advancing secure deep learning.
♻ ☆ An End-to-End Robust Point Cloud Semantic Segmentation Network with Single-Step Conditional Diffusion Models
Existing conditional Denoising Diffusion Probabilistic Models (DDPMs) with a Noise-Conditional Framework (NCF) remain challenging for 3D scene understanding tasks, as the complex geometric details in scenes increase the difficulty of fitting the gradients of the data distribution (the scores) from semantic labels. This also results in longer training and inference time for DDPMs compared to non-DDPMs. From a different perspective, we delve deeply into the model paradigm dominated by the Conditional Network. In this paper, we propose an end-to-end robust semantic Segmentation Network based on a Conditional-Noise Framework (CNF) of DDPMs, named CDSegNet. Specifically, CDSegNet models the Noise Network (NN) as a learnable noise-feature generator. This enables the Conditional Network (CN) to understand 3D scene semantics under multi-level feature perturbations, enhancing the generalization in unseen scenes. Meanwhile, benefiting from the noise system of DDPMs, CDSegNet exhibits strong noise and sparsity robustness in experiments. Moreover, thanks to CNF, CDSegNet can generate the semantic labels in a single-step inference like non-DDPMs, due to avoiding directly fitting the scores from semantic labels in the dominant network of CDSegNet. On public indoor and outdoor benchmarks, CDSegNet significantly outperforms existing methods, achieving state-of-the-art performance.
♻ ☆ MambaPEFT: Exploring Parameter-Efficient Fine-Tuning for Mamba ICLR2025
An ecosystem of Transformer-based models has been established by building large models with extensive data. Parameter-efficient fine-tuning (PEFT) is a crucial technology for deploying these models to downstream tasks with minimal cost while achieving effective performance. Recently, Mamba, a State Space Model (SSM)-based model, has attracted attention as a potential alternative to Transformers. While many large-scale Mamba-based models have been proposed, efficiently adapting pre-trained Mamba-based models to downstream tasks remains unexplored. In this paper, we conduct an exploratory analysis of PEFT methods for Mamba. We investigate the effectiveness of existing PEFT methods for Transformers when applied to Mamba. We also modify these methods to better align with the Mamba architecture. Additionally, we propose new Mamba-specific PEFT methods that leverage the distinctive structure of Mamba. Our experiments indicate that PEFT performs more effectively for Mamba than Transformers. Lastly, we demonstrate how to effectively combine multiple PEFT methods and provide a framework that outperforms previous works. To ensure reproducibility, we will release the code after publication.
comment: Accepted to ICLR2025
♻ ☆ Stable-Makeup: When Real-World Makeup Transfer Meets Diffusion Model
Current makeup transfer methods are limited to simple makeup styles, making them difficult to apply in real-world scenarios. In this paper, we introduce Stable-Makeup, a novel diffusion-based makeup transfer method capable of robustly transferring a wide range of real-world makeup, onto user-provided faces. Stable-Makeup is based on a pre-trained diffusion model and utilizes a Detail-Preserving (D-P) makeup encoder to encode makeup details. It also employs content and structural control modules to preserve the content and structural information of the source image. With the aid of our newly added makeup cross-attention layers in U-Net, we can accurately transfer the detailed makeup to the corresponding position in the source image. After content-structure decoupling training, Stable-Makeup can maintain content and the facial structure of the source image. Moreover, our method has demonstrated strong robustness and generalizability, making it applicable to varioustasks such as cross-domain makeup transfer, makeup-guided text-to-image generation and so on. Extensive experiments have demonstrated that our approach delivers state-of-the-art (SOTA) results among existing makeup transfer methods and exhibits a highly promising with broad potential applications in various related fields. Code released: https://github.com/Xiaojiu-z/Stable-Makeup
♻ ☆ Mr. DETR: Instructive Multi-Route Training for Detection Transformers CVPR 2025
Existing methods enhance the training of detection transformers by incorporating an auxiliary one-to-many assignment. In this work, we treat the model as a multi-task framework, simultaneously performing one-to-one and one-to-many predictions. We investigate the roles of each component in the transformer decoder across these two training targets, including self-attention, cross-attention, and feed-forward network. Our empirical results demonstrate that any independent component in the decoder can effectively learn both targets simultaneously, even when other components are shared. This finding leads us to propose a multi-route training mechanism, featuring a primary route for one-to-one prediction and two auxiliary training routes for one-to-many prediction. We enhance the training mechanism with a novel instructive self-attention that dynamically and flexibly guides object queries for one-to-many prediction. The auxiliary routes are removed during inference, ensuring no impact on model architecture or inference cost. We conduct extensive experiments on various baselines, achieving consistent improvements as shown in Figure 1. Project page: https://visual-ai.github.io/mrdetr
comment: Accepted by CVPR 2025, Project page: https://visual-ai.github.io/mrdetr
♻ ☆ ControlSR: Taming Diffusion Models for Consistent Real-World Image Super Resolution
We present ControlSR, a new method that can tame Diffusion Models for consistent real-world image super-resolution (Real-ISR). Previous Real-ISR models mostly focus on how to activate more generative priors of text-to-image diffusion models to make the output high-resolution (HR) images look better. However, since these methods rely too much on the generative priors, the content of the output images is often inconsistent with the input LR ones. To mitigate the above issue, in this work, we tame Diffusion Models by effectively utilizing LR information to impose stronger constraints on the control signals from ControlNet in the latent space. We show that our method can produce higher-quality control signals, which enables the super-resolution results to be more consistent with the LR image and leads to clearer visual results. In addition, we also propose an inference strategy that imposes constraints in the latent space using LR information, allowing for the simultaneous improvement of fidelity and generative ability. Experiments demonstrate that our model can achieve better performance across multiple metrics on several test sets and generate more consistent SR results with LR images than existing methods. Our code is available at https://github.com/HVision-NKU/ControlSR.
♻ ☆ StarGen: A Spatiotemporal Autoregression Framework with Video Diffusion Model for Scalable and Controllable Scene Generation
Recent advances in large reconstruction and generative models have significantly improved scene reconstruction and novel view generation. However, due to compute limitations, each inference with these large models is confined to a small area, making long-range consistent scene generation challenging. To address this, we propose StarGen, a novel framework that employs a pre-trained video diffusion model in an autoregressive manner for long-range scene generation. The generation of each video clip is conditioned on the 3D warping of spatially adjacent images and the temporally overlapping image from previously generated clips, improving spatiotemporal consistency in long-range scene generation with precise pose control. The spatiotemporal condition is compatible with various input conditions, facilitating diverse tasks, including sparse view interpolation, perpetual view generation, and layout-conditioned city generation. Quantitative and qualitative evaluations demonstrate StarGen's superior scalability, fidelity, and pose accuracy compared to state-of-the-art methods. Project page: https://zju3dv.github.io/StarGen.
♻ ☆ AnyTouch: Learning Unified Static-Dynamic Representation across Multiple Visuo-tactile Sensors ICLR 2025
Visuo-tactile sensors aim to emulate human tactile perception, enabling robots to precisely understand and manipulate objects. Over time, numerous meticulously designed visuo-tactile sensors have been integrated into robotic systems, aiding in completing various tasks. However, the distinct data characteristics of these low-standardized visuo-tactile sensors hinder the establishment of a powerful tactile perception system. We consider that the key to addressing this issue lies in learning unified multi-sensor representations, thereby integrating the sensors and promoting tactile knowledge transfer between them. To achieve unified representation of this nature, we introduce TacQuad, an aligned multi-modal multi-sensor tactile dataset from four different visuo-tactile sensors, which enables the explicit integration of various sensors. Recognizing that humans perceive the physical environment by acquiring diverse tactile information such as texture and pressure changes, we further propose to learn unified multi-sensor representations from both static and dynamic perspectives. By integrating tactile images and videos, we present AnyTouch, a unified static-dynamic multi-sensor representation learning framework with a multi-level structure, aimed at both enhancing comprehensive perceptual abilities and enabling effective cross-sensor transfer. This multi-level architecture captures pixel-level details from tactile data via masked modeling and enhances perception and transferability by learning semantic-level sensor-agnostic features through multi-modal alignment and cross-sensor matching. We provide a comprehensive analysis of multi-sensor transferability, and validate our method on various datasets and in the real-world pouring task. Experimental results show that our method outperforms existing methods, exhibits outstanding static and dynamic perception capabilities across various sensors.
comment: Accepted by ICLR 2025
♻ ☆ RainyGS: Efficient Rain Synthesis with Physically-Based Gaussian Splatting CVPR 2025
We consider the problem of adding dynamic rain effects to in-the-wild scenes in a physically-correct manner. Recent advances in scene modeling have made significant progress, with NeRF and 3DGS techniques emerging as powerful tools for reconstructing complex scenes. However, while effective for novel view synthesis, these methods typically struggle with challenging scene editing tasks, such as physics-based rain simulation. In contrast, traditional physics-based simulations can generate realistic rain effects, such as raindrops and splashes, but they often rely on skilled artists to carefully set up high-fidelity scenes. This process lacks flexibility and scalability, limiting its applicability to broader, open-world environments. In this work, we introduce RainyGS, a novel approach that leverages the strengths of both physics-based modeling and 3DGS to generate photorealistic, dynamic rain effects in open-world scenes with physical accuracy. At the core of our method is the integration of physically-based raindrop and shallow water simulation techniques within the fast 3DGS rendering framework, enabling realistic and efficient simulations of raindrop behavior, splashes, and reflections. Our method supports synthesizing rain effects at over 30 fps, offering users flexible control over rain intensity -- from light drizzles to heavy downpours. We demonstrate that RainyGS performs effectively for both real-world outdoor scenes and large-scale driving scenarios, delivering more photorealistic and physically-accurate rain effects compared to state-of-the-art methods. Project page can be found at https://pku-vcl-geometry.github.io/RainyGS/
comment: CVPR 2025
♻ ☆ VFX Creator: Animated Visual Effect Generation with Controllable Diffusion Transformer
Crafting magic and illusions is one of the most thrilling aspects of filmmaking, with visual effects (VFX) serving as the powerhouse behind unforgettable cinematic experiences. While recent advances in generative artificial intelligence have driven progress in generic image and video synthesis, the domain of controllable VFX generation remains relatively underexplored. In this work, we propose a novel paradigm for animated VFX generation as image animation, where dynamic effects are generated from user-friendly textual descriptions and static reference images. Our work makes two primary contributions: (i) Open-VFX, the first high-quality VFX video dataset spanning 15 diverse effect categories, annotated with textual descriptions, instance segmentation masks for spatial conditioning, and start-end timestamps for temporal control. (ii) VFX Creator, a simple yet effective controllable VFX generation framework based on a Video Diffusion Transformer. The model incorporates a spatial and temporal controllable LoRA adapter, requiring minimal training videos. Specifically, a plug-and-play mask control module enables instance-level spatial manipulation, while tokenized start-end motion timestamps embedded in the diffusion process, alongside the text encoder, allow precise temporal control over effect timing and pace. Extensive experiments on the Open-VFX test set demonstrate the superiority of the proposed system in generating realistic and dynamic effects, achieving state-of-the-art performance and generalization ability in both spatial and temporal controllability. Furthermore, we introduce a specialized metric to evaluate the precision of temporal control. By bridging traditional VFX techniques with generative approaches, VFX Creator unlocks new possibilities for efficient and high-quality video effect generation, making advanced VFX accessible to a broader audience.
♻ ☆ GaussianRoom: Improving 3D Gaussian Splatting with SDF Guidance and Monocular Cues for Indoor Scene Reconstruction
Embodied intelligence requires precise reconstruction and rendering to simulate large-scale real-world data. Although 3D Gaussian Splatting (3DGS) has recently demonstrated high-quality results with real-time performance, it still faces challenges in indoor scenes with large, textureless regions, resulting in incomplete and noisy reconstructions due to poor point cloud initialization and underconstrained optimization. Inspired by the continuity of signed distance field (SDF), which naturally has advantages in modeling surfaces, we propose a unified optimization framework that integrates neural signed distance fields (SDFs) with 3DGS for accurate geometry reconstruction and real-time rendering. This framework incorporates a neural SDF field to guide the densification and pruning of Gaussians, enabling Gaussians to model scenes accurately even with poor initialized point clouds. Simultaneously, the geometry represented by Gaussians improves the efficiency of the SDF field by piloting its point sampling. Additionally, we introduce two regularization terms based on normal and edge priors to resolve geometric ambiguities in textureless areas and enhance detail accuracy. Extensive experiments in ScanNet and ScanNet++ show that our method achieves state-of-the-art performance in both surface reconstruction and novel view synthesis.
♻ ☆ Content-decoupled Contrastive Learning-based Implicit Degradation Modeling for Blind Image Super-Resolution
Implicit degradation modeling-based blind super-resolution (SR) has attracted more increasing attention in the community due to its excellent generalization to complex degradation scenarios and wide application range. How to extract more discriminative degradation representations and fully adapt them to specific image features is the key to this task. In this paper, we propose a new Content-decoupled Contrastive Learning-based blind image super-resolution (CdCL) framework following the typical blind SR pipeline. This framework introduces negative-free contrastive learning technique for the first time to model the implicit degradation representation, in which a new cyclic shift sampling strategy is designed to ensure decoupling between content features and degradation features from the data perspective, thereby improving the purity and discriminability of the learned implicit degradation space. In addition, we propose a detail-aware implicit degradation adapting module that can better adapt degradation representations to specific LR features by enhancing the basic adaptation unit's perception of image details, significantly reducing the overall SR model complexity. Extensive experiments on synthetic and real data show that our method achieves highly competitive quantitative and qualitative results in various degradation settings while obviously reducing parameters and computational costs, validating the feasibility of designing practical and lightweight blind SR tools.
♻ ☆ Video-T1: Test-Time Scaling for Video Generation
With the scale capability of increasing training data, model size, and computational cost, video generation has achieved impressive results in digital creation, enabling users to express creativity across various domains. Recently, researchers in Large Language Models (LLMs) have expanded the scaling to test-time, which can significantly improve LLM performance by using more inference-time computation. Instead of scaling up video foundation models through expensive training costs, we explore the power of Test-Time Scaling (TTS) in video generation, aiming to answer the question: if a video generation model is allowed to use non-trivial amount of inference-time compute, how much can it improve generation quality given a challenging text prompt. In this work, we reinterpret the test-time scaling of video generation as a searching problem to sample better trajectories from Gaussian noise space to the target video distribution. Specifically, we build the search space with test-time verifiers to provide feedback and heuristic algorithms to guide searching process. Given a text prompt, we first explore an intuitive linear search strategy by increasing noise candidates at inference time. As full-step denoising all frames simultaneously requires heavy test-time computation costs, we further design a more efficient TTS method for video generation called Tree-of-Frames (ToF) that adaptively expands and prunes video branches in an autoregressive manner. Extensive experiments on text-conditioned video generation benchmarks demonstrate that increasing test-time compute consistently leads to significant improvements in the quality of videos. Project page: https://liuff19.github.io/Video-T1
comment: Project page: https://liuff19.github.io/Video-T1
♻ ☆ Vision-Language Models for Acute Tuberculosis Diagnosis: A Multimodal Approach Combining Imaging and Clinical Data
Background: This study introduces a Vision-Language Model (VLM) leveraging SIGLIP and Gemma-3b architectures for automated acute tuberculosis (TB) screening. By integrating chest X-ray images and clinical notes, the model aims to enhance diagnostic accuracy and efficiency, particularly in resource-limited settings. Methods: The VLM combines visual data from chest X-rays with clinical context to generate detailed, context-aware diagnostic reports. The architecture employs SIGLIP for visual encoding and Gemma-3b for decoding, ensuring effective representation of acute TB-specific pathologies and clinical insights. Results: Key acute TB pathologies, including consolidation, cavities, and nodules, were detected with high precision (97percent) and recall (96percent). The model demonstrated strong spatial localization capabilities and robustness in distinguishing TB-positive cases, making it a reliable tool for acute TB diagnosis. Conclusion: The multimodal capability of the VLM reduces reliance on radiologists, providing a scalable solution for acute TB screening. Future work will focus on improving the detection of subtle pathologies and addressing dataset biases to enhance its generalizability and application in diverse global healthcare settings.
comment: 11 pages, 3 figures
♻ ☆ Generalizable Prompt Learning of CLIP: A Brief Overview
Existing vision-language models (VLMs) such as CLIP have showcased an impressive capability to generalize well across various downstream tasks. These models leverage the synergy between visual and textual information, enabling them to understand and reason about the content present in images and text in a unified manner. This article provides a brief overview of CLIP based on few-shot prompt learning, including experimental data and technical characteristics of some methods. The purpose of this review is to provide a reference for researchers who have just started their research in generalizable prompting of CLIP through few-shot training for classification across 15 datasets and also to facilitate the integration of this field by researchers in other downstream tasks.
♻ ☆ ALLVB: All-in-One Long Video Understanding Benchmark AAAI 2025
From image to video understanding, the capabilities of Multi-modal LLMs (MLLMs) are increasingly powerful. However, most existing video understanding benchmarks are relatively short, which makes them inadequate for effectively evaluating the long-sequence modeling capabilities of MLLMs. This highlights the urgent need for a comprehensive and integrated long video understanding benchmark to assess the ability of MLLMs thoroughly. To this end, we propose ALLVB (ALL-in-One Long Video Understanding Benchmark). ALLVB's main contributions include: 1) It integrates 9 major video understanding tasks. These tasks are converted into video QA formats, allowing a single benchmark to evaluate 9 different video understanding capabilities of MLLMs, highlighting the versatility, comprehensiveness, and challenging nature of ALLVB. 2) A fully automated annotation pipeline using GPT-4o is designed, requiring only human quality control, which facilitates the maintenance and expansion of the benchmark. 3) It contains 1,376 videos across 16 categories, averaging nearly 2 hours each, with a total of 252k QAs. To the best of our knowledge, it is the largest long video understanding benchmark in terms of the number of videos, average duration, and number of QAs. We have tested various mainstream MLLMs on ALLVB, and the results indicate that even the most advanced commercial models have significant room for improvement. This reflects the benchmark's challenging nature and demonstrates the substantial potential for development in long video understanding.
comment: AAAI 2025
♻ ☆ Zero-Shot Visual Concept Blending Without Text Guidance
We propose a novel, zero-shot image generation technique called "Visual Concept Blending" that provides fine-grained control over which features from multiple reference images are transferred to a source image. If only a single reference image is available, it is difficult to isolate which specific elements should be transferred. However, using multiple reference images, the proposed approach distinguishes between common and unique features by selectively incorporating them into a generated output. By operating within a partially disentangled Contrastive Language-Image Pre-training (CLIP) embedding space (from IP-Adapter), our method enables the flexible transfer of texture, shape, motion, style, and more abstract conceptual transformations without requiring additional training or text prompts. We demonstrate its effectiveness across a diverse range of tasks, including style transfer, form metamorphosis, and conceptual transformations, showing how subtle or abstract attributes (e.g., brushstroke style, aerodynamic lines, and dynamism) can be seamlessly combined into a new image. In a user study, participants accurately recognized which features were intended to be transferred. Its simplicity, flexibility, and high-level control make Visual Concept Blending valuable for creative fields such as art, design, and content creation, where combining specific visual qualities from multiple inspirations is crucial.
♻ ☆ Feed-Forward Bullet-Time Reconstruction of Dynamic Scenes from Monocular Videos
Recent advancements in static feed-forward scene reconstruction have demonstrated significant progress in high-quality novel view synthesis. However, these models often struggle with generalizability across diverse environments and fail to effectively handle dynamic content. We present BTimer (short for BulletTimer), the first motion-aware feed-forward model for real-time reconstruction and novel view synthesis of dynamic scenes. Our approach reconstructs the full scene in a 3D Gaussian Splatting representation at a given target ('bullet') timestamp by aggregating information from all the context frames. Such a formulation allows BTimer to gain scalability and generalization by leveraging both static and dynamic scene datasets. Given a casual monocular dynamic video, BTimer reconstructs a bullet-time scene within 150ms while reaching state-of-the-art performance on both static and dynamic scene datasets, even compared with optimization-based approaches.
comment: Project website: https://research.nvidia.com/labs/toronto-ai/bullet-timer/
♻ ☆ Diffusion Models in 3D Vision: A Survey
In recent years, 3D vision has become a crucial field within computer vision, powering a wide range of applications such as autonomous driving, robotics, augmented reality, and medical imaging. This field relies on accurate perception, understanding, and reconstruction of 3D scenes from 2D images or text data sources. Diffusion models, originally designed for 2D generative tasks, offer the potential for more flexible, probabilistic methods that can better capture the variability and uncertainty present in real-world 3D data. In this paper, we review the state-of-the-art methods that use diffusion models for 3D visual tasks, including but not limited to 3D object generation, shape completion, point-cloud reconstruction, and scene construction. We provide an in-depth discussion of the underlying mathematical principles of diffusion models, outlining their forward and reverse processes, as well as the various architectural advancements that enable these models to work with 3D datasets. We also discuss the key challenges in applying diffusion models to 3D vision, such as handling occlusions and varying point densities, and the computational demands of high-dimensional data. Finally, we discuss potential solutions, including improving computational efficiency, enhancing multimodal fusion, and exploring the use of large-scale pretraining for better generalization across 3D tasks. This paper serves as a foundation for future exploration and development in this rapidly evolving field.
♻ ☆ Unveiling the Mist over 3D Vision-Language Understanding: Object-centric Evaluation with Chain-of-Analysis CVPR 2025
Existing 3D vision-language (3D-VL) benchmarks fall short in evaluating 3D-VL models, creating a "mist" that obscures rigorous insights into model capabilities and 3D-VL tasks. This mist persists due to three key limitations. First, flawed test data, like ambiguous referential text in the grounding task, can yield incorrect and unreliable test results. Second, oversimplified metrics such as simply averaging accuracy per question answering (QA) pair, cannot reveal true model capability due to their vulnerability to language variations. Third, existing benchmarks isolate the grounding and QA tasks, disregarding the underlying coherence that QA should be based on solid grounding capabilities. To unveil the "mist", we propose Beacon3D, a benchmark for 3D-VL grounding and QA tasks, delivering a perspective shift in the evaluation of 3D-VL understanding. Beacon3D features (i) high-quality test data with precise and natural language, (ii) object-centric evaluation with multiple tests per object to ensure robustness, and (iii) a novel chain-of-analysis paradigm to address language robustness and model performance coherence across grounding and QA. Our evaluation of state-of-the-art 3D-VL models on Beacon3D reveals that (i) object-centric evaluation elicits true model performance and particularly weak generalization in QA; (ii) grounding-QA coherence remains fragile in current 3D-VL models, and (iii) incorporating large language models (LLMs) to 3D-VL models, though as a prevalent practice, hinders grounding capabilities and has yet to elevate QA capabilities. We hope Beacon3D and our comprehensive analysis could benefit the 3D-VL community towards faithful developments.
comment: CVPR 2025. Project page: https://beacon-3d.github.io
♻ ☆ MagicPose4D: Crafting Articulated Models with Appearance and Motion Control
With the success of 2D and 3D visual generative models, there is growing interest in generating 4D content. Existing methods primarily rely on text prompts to produce 4D content, but they often fall short of accurately defining complex or rare motions. To address this limitation, we propose MagicPose4D, a novel framework for refined control over both appearance and motion in 4D generation. Unlike current 4D generation methods, MagicPose4D accepts monocular videos or mesh sequences as motion prompts, enabling precise and customizable motion control. MagicPose4D comprises two key modules: (i) Dual-Phase 4D Reconstruction Module, which operates in two phases. The first phase focuses on capturing the model's shape using accurate 2D supervision and less accurate but geometrically informative 3D pseudo-supervision without imposing skeleton constraints. The second phase extracts the 3D motion (skeleton poses) using more accurate pseudo-3D supervision, obtained in the first phase and introduces kinematic chain-based skeleton constraints to ensure physical plausibility. Additionally, we propose a Global-local Chamfer loss that aligns the overall distribution of predicted mesh vertices with the supervision while maintaining part-level alignment without extra annotations. (ii) Cross-category Motion Transfer Module, which leverages the extracted motion from the 4D reconstruction module and uses a kinematic-chain-based skeleton to achieve cross-category motion transfer. It ensures smooth transitions between frames through dynamic rigidity, facilitating robust generalization without additional training. Through extensive experiments, we demonstrate that MagicPose4D significantly improves the accuracy and consistency of 4D content generation, outperforming existing methods in various benchmarks.
comment: Project Page: https://magicpose4d.github.io/
♻ ☆ Phase-shifted remote photoplethysmography for estimating heart rate and blood pressure from facial video
Human health can be critically affected by cardiovascular diseases, such as hypertension, arrhythmias, and stroke. Heart rate and blood pressure are important biometric information for the monitoring of cardiovascular system and early diagnosis of cardiovascular diseases. Existing methods for estimating the heart rate are based on electrocardiography and photoplethyomography, which require contacting the sensor to the skin surface. Moreover, catheter and cuff-based methods for measuring blood pressure cause inconvenience and have limited applicability. Therefore, in this thesis, we propose a vision-based method for estimating the heart rate and blood pressure. This thesis proposes a 2-stage deep learning framework consisting of a dual remote photoplethysmography network (DRP-Net) and bounded blood pressure network (BBP-Net). In the first stage, DRP-Net infers remote photoplethysmography (rPPG) signals for the acral and facial regions, and these phase-shifted rPPG signals are utilized to estimate the heart rate. In the second stage, BBP-Net integrates temporal features and analyzes phase discrepancy between the acral and facial rPPG signals to estimate SBP and DBP values. To improve the accuracy of estimating the heart rate, we employed a data augmentation method based on a frame interpolation model. Moreover, we designed BBP-Net to infer blood pressure within a predefined range by incorporating a scaled sigmoid function. Our method resulted in estimating the heart rate with the mean absolute error (MAE) of 1.78 BPM, reducing the MAE by 34.31 % compared to the recent method, on the MMSE-HR dataset. The MAE for estimating the systolic blood pressure (SBP) and diastolic blood pressure (DBP) were 10.19 mmHg and 7.09 mmHg. On the V4V dataset, the MAE for the heart rate, SBP, and DBP were 3.83 BPM, 13.64 mmHg, and 9.4 mmHg, respectively.
comment: 13 pages, 10 figures
♻ ☆ VRM: Knowledge Distillation via Virtual Relation Matching
Knowledge distillation (KD) aims to transfer the knowledge of a more capable yet cumbersome teacher model to a lightweight student model. In recent years, relation-based KD methods have fallen behind, as their instance-matching counterparts dominate in performance. In this paper, we revive relational KD by identifying and tackling several key issues in relation-based methods, including their susceptibility to overfitting and spurious responses. Specifically, we transfer novelly constructed affinity graphs that compactly encapsulate a wealth of beneficial inter-sample, inter-class, and inter-view correlations by exploiting virtual views and relations as a new kind of knowledge. As a result, the student has access to richer guidance signals and stronger regularisation throughout the distillation process. To further mitigate the adverse impact of spurious responses, we prune the affinity graphs by dynamically detaching redundant and unreliable edges. Extensive experiments on CIFAR-100 and ImageNet datasets demonstrate the superior performance of the proposed virtual relation matching (VRM) method over a range of models, architectures, and set-ups. For instance, VRM for the first time hits 74.0% accuracy for ResNet50-to-MobileNetV2 distillation on ImageNet, and improves DeiT-T by 14.44% on CIFAR-100 with a ResNet56 teacher. Thorough analyses are also conducted to gauge the soundness, properties, and complexity of our designs. Code and models will be released.
♻ ☆ VisRL: Intention-Driven Visual Perception via Reinforced Reasoning
Visual understanding is inherently intention-driven - humans selectively focus on different regions of a scene based on their goals. Recent advances in large multimodal models (LMMs) enable flexible expression of such intentions through natural language, allowing queries to guide visual reasoning processes. Frameworks like Visual Chain-of-Thought have demonstrated the benefit of incorporating explicit reasoning steps, where the model predicts a focus region before answering a query. However, existing approaches rely heavily on supervised training with annotated intermediate bounding boxes, which severely limits scalability due to the combinatorial explosion of intention-region pairs. To overcome this limitation, we propose VisRL, the first framework that applies reinforcement learning (RL) to the problem of intention-driven visual perception. VisRL optimizes the entire visual reasoning process using only reward signals. By treating intermediate focus selection as an internal decision optimized through trial-and-error, our method eliminates the need for costly region annotations while aligning more closely with how humans learn to perceive the world. Extensive experiments across multiple benchmarks show that VisRL consistently outperforms strong baselines, demonstrating both its effectiveness and its strong generalization across different LMMs. Our code is available at https://github.com/zhangquanchen/VisRL.
comment: 18pages,11 figures
♻ ☆ Diffusion State-Guided Projected Gradient for Inverse Problems ICLR 2025
Recent advancements in diffusion models have been effective in learning data priors for solving inverse problems. They leverage diffusion sampling steps for inducing a data prior while using a measurement guidance gradient at each step to impose data consistency. For general inverse problems, approximations are needed when an unconditionally trained diffusion model is used since the measurement likelihood is intractable, leading to inaccurate posterior sampling. In other words, due to their approximations, these methods fail to preserve the generation process on the data manifold defined by the diffusion prior, leading to artifacts in applications such as image restoration. To enhance the performance and robustness of diffusion models in solving inverse problems, we propose Diffusion State-Guided Projected Gradient (DiffStateGrad), which projects the measurement gradient onto a subspace that is a low-rank approximation of an intermediate state of the diffusion process. DiffStateGrad, as a module, can be added to a wide range of diffusion-based inverse solvers to improve the preservation of the diffusion process on the prior manifold and filter out artifact-inducing components. We highlight that DiffStateGrad improves the robustness of diffusion models in terms of the choice of measurement guidance step size and noise while improving the worst-case performance. Finally, we demonstrate that DiffStateGrad improves upon the state-of-the-art on linear and nonlinear image restoration inverse problems. Our code is available at https://github.com/Anima-Lab/DiffStateGrad.
comment: Published as a conference paper at ICLR 2025. RZ and BT have equal contributions
♻ ☆ Retrieval-augmented Few-shot Medical Image Segmentation with Foundation Models
Medical image segmentation is crucial for clinical decision-making, but the scarcity of annotated data presents significant challenges. Few-shot segmentation (FSS) methods show promise but often require training on the target domain and struggle to generalize across different modalities. Similarly, adapting foundation models like the Segment Anything Model (SAM) for medical imaging has limitations, including the need for finetuning and domain-specific adaptation. To address these issues, we propose a novel method that adapts DINOv2 and Segment Anything Model 2 (SAM 2) for retrieval-augmented few-shot medical image segmentation. Our approach uses DINOv2's feature as query to retrieve similar samples from limited annotated data, which are then encoded as memories and stored in memory bank. With the memory attention mechanism of SAM 2, the model leverages these memories as conditions to generate accurate segmentation of the target image. We evaluated our framework on three medical image segmentation tasks, demonstrating superior performance and generalizability across various modalities without the need for any retraining or finetuning. Overall, this method offers a practical and effective solution for few-shot medical image segmentation and holds significant potential as a valuable annotation tool in clinical applications.
♻ ☆ VideoMind: A Chain-of-LoRA Agent for Long Video Reasoning
Videos, with their unique temporal dimension, demand precise grounded understanding, where answers are directly linked to visual, interpretable evidence. Despite significant breakthroughs in reasoning capabilities within Large Language Models, multi-modal reasoning - especially for videos - remains unexplored. In this work, we introduce VideoMind, a novel video-language agent designed for temporal-grounded video understanding. VideoMind incorporates two key innovations: (i) We identify essential capabilities for video temporal reasoning and develop a role-based agentic workflow, including a planner for coordinating different roles, a grounder for temporal localization, a verifier to assess temporal interval accuracy, and an answerer for question-answering. (ii) To efficiently integrate these diverse roles, we propose a novel Chain-of-LoRA strategy, enabling seamless role-switching via lightweight LoRA adaptors while avoiding the overhead of multiple models, thus balancing efficiency and flexibility. Extensive experiments on 14 public benchmarks, including 3 on grounded video question-answering (Grounded VideoQA), 6 on video temporal grounding (VTG), and 5 on general video question-answering (VideoQA), verify that our agent achieves state-of-the-art performance on diverse video understanding tasks, underscoring its effectiveness in advancing video agent and long-form temporal reasoning.
comment: Project Page: https://videomind.github.io/
♻ ☆ Without Paired Labeled Data: An End-to-End Self-Supervised Paradigm for UAV-View Geo-Localization
UAV-View Geo-Localization (UVGL) aims to achieve accurate localization of unmanned aerial vehicles (UAVs) by retrieving the most relevant GPS-tagged satellite images. However, existing methods heavily rely on pre-paired UAV-satellite images for supervised learning. Such dependency not only incurs high annotation costs but also severely limits scalability and practical deployment in open-world UVGL scenarios. To address these limitations, we propose an end-to-end self-supervised UVGL method. Our method leverages a shallow backbone network to extract initial features, employs clustering to generate pseudo labels, and adopts a dual-path contrastive learning architecture to learn discriminative intra-view representations. Furthermore, our method incorporates two core modules, the dynamic hierarchical memory learning module and the information consistency evolution learning module. The dynamic hierarchical memory learning module combines short-term and long-term memory to enhance intra-view feature consistency and discriminability. Meanwhile, the information consistency evolution learning module leverages a neighborhood-driven dynamic constraint mechanism to systematically capture implicit cross-view semantic correlations, thereby improving cross-view feature alignment. To further stabilize and strengthen the self-supervised training process, a pseudo-label enhancement strategy is introduced, which refines the quality of pseudo supervision. Our method ultimately constructs a unified cross-view feature representation space under self-supervised settings. Extensive experiments on three public benchmark datasets demonstrate that the proposed method consistently outperforms existing self-supervised methods and even surpasses several state-of-the-art supervised methods. Our code is available at https://github.com/ISChenawei/DMNIL.
♻ ☆ Data-Free Group-Wise Fully Quantized Winograd Convolution via Learnable Scales CVPR 2025
Despite the revolutionary breakthroughs of large-scale text-to-image diffusion models for complex vision and downstream tasks, their extremely high computational and storage costs limit their usability. Quantization of diffusion models has been explored in recent works to reduce compute costs and memory bandwidth usage. To further improve inference time, fast convolution algorithms such as Winograd can be used for convolution layers, which account for a significant portion of computations in diffusion models. However, the significant quality loss of fully quantized Winograd using existing coarser-grained post-training quantization methods, combined with the complexity and cost of finetuning the Winograd transformation matrices for such large models to recover quality, makes them unsuitable for large-scale foundation models. Motivated by the presence of a large range of values in them, we investigate the impact of finer-grained group-wise quantization in quantizing diffusion models. While group-wise quantization can largely handle the fully quantized Winograd convolution, it struggles to deal with the large distribution imbalance in a sizable portion of the Winograd domain computation. To reduce range differences in the Winograd domain, we propose finetuning only the scale parameters of the Winograd transform matrices without using any domain-specific training data. Because our method does not depend on any training data, the generalization performance of quantized diffusion models is safely guaranteed. For text-to-image generation task, the 8-bit fully-quantized diffusion model with Winograd provides near-lossless quality (FID and CLIP scores) in comparison to the full-precision model. For image classification, our method outperforms the state-of-the-art Winograd PTQ method by 1.62% and 2.56% in top-1 ImageNet accuracy on ResNet18 and ResNet-34, respectively, with Winograd F(6, 3).
comment: Accepted by CVPR 2025
♻ ☆ Astrea: A MOE-based Visual Understanding Model with Progressive Alignment
Vision-Language Models (VLMs) based on Mixture-of-Experts (MoE) architectures have emerged as a pivotal paradigm in multimodal understanding, offering a powerful framework for integrating visual and linguistic information. However, the increasing complexity and diversity of tasks present significant challenges in coordinating load balancing across heterogeneous visual experts, where optimizing one specialist's performance often compromises others' capabilities. To address task heterogeneity and expert load imbalance, we propose Astrea, a novel multi-expert collaborative VLM architecture based on progressive pre-alignment. Astrea introduces three key innovations: 1) A heterogeneous expert coordination mechanism that integrates four specialized models (detection, segmentation, classification, captioning) into a comprehensive expert matrix covering essential visual comprehension elements; 2) A dynamic knowledge fusion strategy featuring progressive pre-alignment to harmonize experts within the VLM latent space through contrastive learning, complemented by probabilistically activated stochastic residual connections to preserve knowledge continuity; 3) An enhanced optimization framework utilizing momentum contrastive learning for long-range dependency modeling and adaptive weight allocators for real-time expert contribution calibration. Extensive evaluations across 12 benchmark tasks spanning VQA, image captioning, and cross-modal retrieval demonstrate Astrea's superiority over state-of-the-art models, achieving an average performance gain of +4.7\%. This study provides the first empirical demonstration that progressive pre-alignment strategies enable VLMs to overcome task heterogeneity limitations, establishing new methodological foundations for developing general-purpose multimodal agents.
♻ ☆ 4D LangSplat: 4D Language Gaussian Splatting via Multimodal Large Language Models CVPR 2025
Learning 4D language fields to enable time-sensitive, open-ended language queries in dynamic scenes is essential for many real-world applications. While LangSplat successfully grounds CLIP features into 3D Gaussian representations, achieving precision and efficiency in 3D static scenes, it lacks the ability to handle dynamic 4D fields as CLIP, designed for static image-text tasks, cannot capture temporal dynamics in videos. Real-world environments are inherently dynamic, with object semantics evolving over time. Building a precise 4D language field necessitates obtaining pixel-aligned, object-wise video features, which current vision models struggle to achieve. To address these challenges, we propose 4D LangSplat, which learns 4D language fields to handle time-agnostic or time-sensitive open-vocabulary queries in dynamic scenes efficiently. 4D LangSplat bypasses learning the language field from vision features and instead learns directly from text generated from object-wise video captions via Multimodal Large Language Models (MLLMs). Specifically, we propose a multimodal object-wise video prompting method, consisting of visual and text prompts that guide MLLMs to generate detailed, temporally consistent, high-quality captions for objects throughout a video. These captions are encoded using a Large Language Model into high-quality sentence embeddings, which then serve as pixel-aligned, object-specific feature supervision, facilitating open-vocabulary text queries through shared embedding spaces. Recognizing that objects in 4D scenes exhibit smooth transitions across states, we further propose a status deformable network to model these continuous changes over time effectively. Our results across multiple benchmarks demonstrate that 4D LangSplat attains precise and efficient results for both time-sensitive and time-agnostic open-vocabulary queries.
comment: CVPR 2025. Project Page: https://4d-langsplat.github.io
♻ ☆ EventMamba: Enhancing Spatio-Temporal Locality with State Space Models for Event-Based Video Reconstruction
Leveraging its robust linear global modeling capability, Mamba has notably excelled in computer vision. Despite its success, existing Mamba-based vision models have overlooked the nuances of event-driven tasks, especially in video reconstruction. Event-based video reconstruction (EBVR) demands spatial translation invariance and close attention to local event relationships in the spatio-temporal domain. Unfortunately, conventional Mamba algorithms apply static window partitions and standard reshape scanning methods, leading to significant losses in local connectivity. To overcome these limitations, we introduce EventMamba--a specialized model designed for EBVR tasks. EventMamba innovates by incorporating random window offset (RWO) in the spatial domain, moving away from the restrictive fixed partitioning. Additionally, it features a new consistent traversal serialization approach in the spatio-temporal domain, which maintains the proximity of adjacent events both spatially and temporally. These enhancements enable EventMamba to retain Mamba's robust modeling capabilities while significantly preserving the spatio-temporal locality of event data. Comprehensive testing on multiple datasets shows that EventMamba markedly enhances video reconstruction, drastically improving computation speed while delivering superior visual quality compared to Transformer-based methods.
♻ ☆ Where am I? Cross-View Geo-localization with Natural Language Descriptions
Cross-view geo-localization identifies the locations of street-view images by matching them with geo-tagged satellite images or OSM. However, most existing studies focus on image-to-image retrieval, with fewer addressing text-guided retrieval, a task vital for applications like pedestrian navigation and emergency response. In this work, we introduce a novel task for cross-view geo-localization with natural language descriptions, which aims to retrieve corresponding satellite images or OSM database based on scene text descriptions. To support this task, we construct the CVG-Text dataset by collecting cross-view data from multiple cities and employing a scene text generation approach that leverages the annotation capabilities of Large Multimodal Models to produce high-quality scene text descriptions with localization details. Additionally, we propose a novel text-based retrieval localization method, CrossText2Loc, which improves recall by 10% and demonstrates excellent long-text retrieval capabilities. In terms of explainability, it not only provides similarity scores but also offers retrieval reasons. More information can be found at https://yejy53.github.io/CVG-Text/ .
comment: 11 pages, 6 figures
♻ ☆ Alleviating Hallucinations in Large Vision-Language Models through Hallucination-Induced Optimization NeurIPS 2024
Although Large Visual Language Models (LVLMs) have demonstrated exceptional abilities in understanding multimodal data, they invariably suffer from hallucinations, leading to a disconnect between the generated text and the corresponding images. Almost all current visual contrastive decoding methods attempt to mitigate these hallucinations by introducing visual uncertainty information that appropriately widens the contrastive logits gap between hallucinatory and targeted ones. However, due to uncontrollable nature of the global visual uncertainty, they struggle to precisely induce the hallucinatory tokens, which severely limits their effectiveness in mitigating hallucinations and may even lead to the generation of undesired hallucinations. To tackle this issue, we conducted the theoretical analysis to promote the effectiveness of contrast decoding. Building on this insight, we introduce a novel optimization strategy named Hallucination-Induced Optimization (HIO). This strategy seeks to amplify the contrast between hallucinatory and targeted tokens relying on a fine-tuned theoretical preference model (i.e., Contrary Bradley-Terry Model), thereby facilitating efficient contrast decoding to alleviate hallucinations in LVLMs. Extensive experimental research demonstrates that our HIO strategy can effectively reduce hallucinations in LVLMs, outperforming state-of-the-art methods across various benchmarks.
comment: Accepted by NeurIPS 2024
♻ ☆ A novel algorithm for optimizing bundle adjustment in image sequence alignment
The Bundle Adjustment (BA) model is commonly optimized using a nonlinear least squares method, with the Levenberg-Marquardt (L-M) algorithm being a typical choice. However, despite the L-M algorithm's effectiveness, its sensitivity to initial conditions often results in slower convergence when applied to poorly conditioned datasets, motivating the exploration of alternative optimization strategies. This paper introduces a novel algorithm for optimizing the BA model in the context of image sequence alignment for cryo-electron tomography, utilizing optimal control theory to directly optimize general nonlinear functions. The proposed Optimal Control Algorithm (OCA) exhibits superior convergence rates and effectively mitigates the oscillatory behavior frequently observed in L-M algorithm. Extensive experiments on both synthetic and real-world datasets were conducted to evaluate the algorithm's performance. The results demonstrate that the OCA achieves faster convergence compared to the L-M algorithm. Moreover, the incorporation of a bisection-based update procedure significantly enhances the OCA's performance, particularly in poorly initialized datasets. These findings indicate that the OCA can substantially improve the efficiency of 3D reconstructions in cryo-electron tomography.
♻ ☆ A Comparative Tutorial of the Histogram-based Image Segmentation Methods
The histogram of an image is the accurate graphical representation of the numerical grayscale distribution and it is also an estimate of the probability distribution of image pixels. Therefore, histogram has been widely adopted to calculate the clustering means and partitioning thresholds for image segmentation. There have been many classical histogram-based image segmentation methods proposed and played important roles in both academics and industry. In this tutorial, the histories and recent advances of the histogram-based image segmentation techniques are first reviewed and then they are divided into four categories: (1) the means-based method, (2) the Gaussian-mixture-model-based method, (3) the entropy-based method and (4) the feature-points-based method. The purpose of this tutorial is threefold: 1) to teach the principles of the classical histogram-based image segmentation methods to the interested readers; 2) to evaluate the advantages and disadvantages of these classical histogram-based image segmentation methods objectively; 3) to compare the performances of these classical histogram-based image segmentation methods with state-of-the-art deep learning based methods objectively.
♻ ☆ LVAgent: Long Video Understanding by Multi-Round Dynamical Collaboration of MLLM Agents
Existing Multimodal Large Language Models (MLLMs) encounter significant challenges in modeling the temporal context within long videos. Currently, mainstream Agent-based methods use external tools (e.g., search engine, memory banks, OCR, retrieval models) to assist a single MLLM in answering long video questions. Despite such tool-based support, a solitary MLLM still offers only a partial understanding of long videos, resulting in limited performance. In order to better address long video tasks, we introduce LVAgent, the first framework enabling multi-round dynamic collaboration of MLLM agents in long video understanding. Our methodology consists of four key steps: 1. Selection: We pre-select appropriate agents from the model library to form optimal agent teams based on different tasks. 2. Perception: We design an effective retrieval scheme for long videos, improving the coverage of critical temporal segments while maintaining computational efficiency. 3. Action: Agents answer long video-related questions and exchange reasons. 4. Reflection: We evaluate the performance of each agent in each round of discussion and optimize the agent team for dynamic collaboration. The agents iteratively refine their answers by multi-round dynamical collaboration of MLLM agents. LVAgent is the first agent system method that outperforms all closed-source models (including GPT-4o) and open-source models (including InternVL-2.5 and Qwen2-VL) in the long video understanding tasks. Our LVAgent achieves an accuracy of 80% on four mainstream long video understanding tasks. Notably, on the LongVideoBench dataset, LVAgent improves accuracy by up to 13.3% compared with SOTA.
♻ ☆ RG-Attn: Radian Glue Attention for Multi-modality Multi-agent Cooperative Perception
Cooperative perception offers an optimal solution to overcome the perception limitations of single-agent systems by leveraging Vehicle-to-Everything (V2X) communication for data sharing and fusion across multiple agents. However, most existing approaches focus on single-modality data exchange, limiting the potential of both homogeneous and heterogeneous fusion across agents. This overlooks the opportunity to utilize multi-modality data per agent, restricting the system's performance. In the automotive industry, manufacturers adopt diverse sensor configurations, resulting in heterogeneous combinations of sensor modalities across agents. To harness the potential of every possible data source for optimal performance, we design a robust LiDAR and camera cross-modality fusion module, Radian-Glue-Attention (RG-Attn), applicable to both intra-agent cross-modality fusion and inter-agent cross-modality fusion scenarios, owing to the convenient coordinate conversion by transformation matrix and the unified sampling/inversion mechanism. We also propose two different architectures, named Paint-To-Puzzle (PTP) and Co-Sketching-Co-Coloring (CoS-CoCo), for conducting cooperative perception. PTP aims for maximum precision performance and achieves smaller data packet size by limiting cross-agent fusion to a single instance, but requiring all participants to be equipped with LiDAR. In contrast, CoS-CoCo supports agents with any configuration-LiDAR-only, camera-only, or LiDAR-camera-both, presenting more generalization ability. Our approach achieves state-of-the-art (SOTA) performance on both real and simulated cooperative perception datasets. The code is now available at GitHub.
♻ ☆ PSF-4D: A Progressive Sampling Framework for View Consistent 4D Editing
Instruction-guided generative models, especially those using text-to-image (T2I) and text-to-video (T2V) diffusion frameworks, have advanced the field of content editing in recent years. To extend these capabilities to 4D scene, we introduce a progressive sampling framework for 4D editing (PSF-4D) that ensures temporal and multi-view consistency by intuitively controlling the noise initialization during forward diffusion. For temporal coherence, we design a correlated Gaussian noise structure that links frames over time, allowing each frame to depend meaningfully on prior frames. Additionally, to ensure spatial consistency across views, we implement a cross-view noise model, which uses shared and independent noise components to balance commonalities and distinct details among different views. To further enhance spatial coherence, PSF-4D incorporates view-consistent iterative refinement, embedding view-aware information into the denoising process to ensure aligned edits across frames and views. Our approach enables high-quality 4D editing without relying on external models, addressing key challenges in previous methods. Through extensive evaluation on multiple benchmarks and multiple editing aspects (e.g., style transfer, multi-attribute editing, object removal, local editing, etc.), we show the effectiveness of our proposed method. Experimental results demonstrate that our proposed method outperforms state-of-the-art 4D editing methods in diverse benchmarks.
comment: 9 pages, 7 figures
♻ ☆ Rerouting Connection: Hybrid Computer Vision Analysis Reveals Visual Similarity Between Indus and Tibetan-Yi Corridor Writing Systems
This thesis employs a hybrid CNN-Transformer architecture, in conjunction with a detailed anthropological framework, to investigate potential historical connections between the visual morphology of the Indus Valley script and pictographic systems of the Tibetan-Yi Corridor. Through an ensemble methodology of three target scripts across 15 independently trained models, we demonstrate that Tibetan-Yi Corridor scripts exhibit approximately six-fold higher visual similarity to the Indus script (61.7%-63.5%) than to the Bronze Age Proto-Cuneiform (10.2%-10.9%) or Proto-Elamite (7.6%-8.7%) systems. Additionally and contrarily to our current understanding of the networks of the Indus Valley Civilization, the Indus script unexpectedly maps closer to Tibetan-Yi Corridor scripts, with a mean cosine similarity of 0.629, than to the aforementioned contemporaneous West Asian signaries, both of which recorded mean cosine similarities of 0.104 and 0.080 despite their close geographic proximity and evident trade relations. Across various dimensionality reduction practices and clustering methodologies, the Indus script consistently clusters closest to Tibetan-Yi Corridor scripts. Our computational results align with qualitative observations of specific pictorial parallels in numeral systems, gender markers, and key iconographic elements; this is further supported by archaeological evidence of sustained contact networks along the ancient Shu-Shendu road in tandem with the Indus Valley Civilization's decline, providing a plausible transmission pathway. While alternative explanations cannot be ruled out, the specificity and consistency of observed similarities challenge conventional narratives of isolated script development and suggest more complex ancient cultural transmission networks between South and East Asia than previously recognized.
comment: 106 pages (42 main text, 6 references, 58 appendices). 21 figures, 4 tables in main text; 106 figures, 8 tables total. Code: https://github.com/oohalakkadi/ivc2tyc. Undergraduate thesis at Duke Kunshan University. Accepted for presentation at the 52nd International Conference for Computer Applications & Quantitative Methods in Archaeology (CAA 2025), Athens, Greece
♻ ☆ Devils in Middle Layers of Large Vision-Language Models: Interpreting, Detecting and Mitigating Object Hallucinations via Attention Lens
Hallucinations in Large Vision-Language Models (LVLMs) significantly undermine their reliability, motivating researchers to explore the causes of hallucination. However, most studies primarily focus on the language aspect rather than the visual. In this paper, we address how LVLMs process visual information and whether this process causes hallucination. Firstly, we use the attention lens to identify the stages at which LVLMs handle visual data, discovering that the middle layers are crucial. Moreover, we find that these layers can be further divided into two stages: ''visual information enrichment'' and ''semantic refinement'' which respectively propagate visual data to object tokens and interpret it through text. By analyzing attention patterns during the visual information enrichment stage, we find that real tokens consistently receive higher attention weights than hallucinated ones, serving as a strong indicator of hallucination. Further examination of multi-head attention maps reveals that hallucination tokens often result from heads interacting with inconsistent objects. Based on these insights, we propose a simple inference-time method that adjusts visual attention by integrating information across various heads. Extensive experiments demonstrate that this approach effectively mitigates hallucinations in mainstream LVLMs without additional training costs. Code is available at https://github.com/ZhangqiJiang07/middle_layers_indicating_hallucinations.
♻ ☆ View-Invariant Pixelwise Anomaly Detection in Multi-object Scenes with Adaptive View Synthesis
Visual anomaly detection in the built environment is a valuable tool for applications such as infrastructure assessment, construction monitoring, security surveillance, and urban planning. Anomaly detection approaches are typically unsupervised and work by detecting deviations from an expected state where no assumptions are made exact type of deviation. Unsupervised pixel-level anomaly detection methods have been developed to successfully recognize and segment anomalies; however, existing techniques are designed for industrial settings with a fixed camera position. In the built environment, images are periodically captured by a camera operated manually or mounted on aerial or ground vehicles. The camera pose between successive collections may vary widely voiding a fundamental assumption in existing anomaly detection approaches. To address this gap, we introduce the problem of Scene Anomaly Detection (Scene AD), where the goal is to detect anomalies from two sets of images: one set without anomalies and one set that may or may not contain anomalies. No labeled semantic segmentation data are provided for training. We propose a novel network, OmniAD, to tackle Scene AD by refining the reverse distillation anomaly detection method, leading to a 40\% improvement in pixel-level anomaly detection. Additionally, we introduce two new data augmentation strategies that leverage novel view synthesis and camera localization to enhance generalization. We evaluate our approach both qualitatively and quantitatively on a new dataset, ToyCity the first Scene AD dataset featuring multiple objects as well as on the established single object centric dataset, MAD. Our method demonstrates marked improvement over baseline approaches, paving the way for robust anomaly detection in scenes with real-world camera pose variations commonly observed in the built environment. https://drags99.github.io/OmniAD/
♻ ☆ Enhancing Domain Adaptation through Prompt Gradient Alignment NeurIPS 2024
Prior Unsupervised Domain Adaptation (UDA) methods often aim to train a domain-invariant feature extractor, which may hinder the model from learning sufficiently discriminative features. To tackle this, a line of works based on prompt learning leverages the power of large-scale pre-trained vision-language models to learn both domain-invariant and specific features through a set of domain-agnostic and domain-specific learnable prompts. Those studies typically enforce invariant constraints on representation, output, or prompt space to learn such prompts. In contrast, we cast UDA as a multiple-objective optimization problem in which each objective is represented by a domain loss. Under this new framework, we propose to align per-objective gradients to foster consensus between them. Additionally, to prevent potential overfitting when fine-tuning this deep learning architecture, we penalize the norm of these gradients. To achieve these goals, we devise a practical gradient update procedure that can work under both single-source and multi-source UDA. Empirically, our method consistently outperforms other vision-language model adaptation methods. The implementation is available at https://github.com/VietHoang1512/PGA.
comment: Accepted to NeurIPS 2024
♻ ☆ Disentangling Safe and Unsafe Corruptions via Anisotropy and Locality
State-of-the-art machine learning systems are vulnerable to small perturbations to their input, where ``small'' is defined according to a threat model that assigns a positive threat to each perturbation. Most prior works define a task-agnostic, isotropic, and global threat, like the $\ell_p$ norm, where the magnitude of the perturbation fully determines the degree of the threat and neither the direction of the attack nor its position in space matter. However, common corruptions in computer vision, such as blur, compression, or occlusions, are not well captured by such threat models. This paper proposes a novel threat model called \texttt{Projected Displacement} (PD) to study robustness beyond existing isotropic and global threat models. The proposed threat model measures the threat of a perturbation via its alignment with \textit{unsafe directions}, defined as directions in the input space along which a perturbation of sufficient magnitude changes the ground truth class label. Unsafe directions are identified locally for each input based on observed training data. In this way, the PD threat model exhibits anisotropy and locality. Experiments on Imagenet-1k data indicate that, for any input, the set of perturbations with small PD threat includes \textit{safe} perturbations of large $\ell_p$ norm that preserve the true label, such as noise, blur and compression, while simultaneously excluding \textit{unsafe} perturbations that alter the true label. Unlike perceptual threat models based on embeddings of large-vision models, the PD threat model can be readily computed for arbitrary classification tasks without pre-training or finetuning. Further additional task annotation such as sensitivity to image regions or concept hierarchies can be easily integrated into the assessment of threat and thus the PD threat model presents practitioners with a flexible, task-driven threat specification.
comment: Published at IEEE/CVF Conference on Computer Vision and Pattern Recognition 2025. Updated Acknowledgements
♻ ☆ EditRoom: LLM-parameterized Graph Diffusion for Composable 3D Room Layout Editing
Given the steep learning curve of professional 3D software and the time-consuming process of managing large 3D assets, language-guided 3D scene editing has significant potential in fields such as virtual reality, augmented reality, and gaming. However, recent approaches to language-guided 3D scene editing either require manual interventions or focus only on appearance modifications without supporting comprehensive scene layout changes. In response, we propose EditRoom, a unified framework capable of executing a variety of layout edits through natural language commands, without requiring manual intervention. Specifically, EditRoom leverages Large Language Models (LLMs) for command planning and generates target scenes using a diffusion-based method, enabling six types of edits: rotate, translate, scale, replace, add, and remove. To address the lack of data for language-guided 3D scene editing, we have developed an automatic pipeline to augment existing 3D scene synthesis datasets and introduced EditRoom-DB, a large-scale dataset with 83k editing pairs, for training and evaluation. Our experiments demonstrate that our approach consistently outperforms other baselines across all metrics, indicating higher accuracy and coherence in language-guided scene layout editing.
♻ ☆ Emotion estimation from video footage with LSTM
Emotion estimation in general is a field that has been studied for a long time, and several approaches exist using machine learning. in this paper, we present an LSTM model, that processes the blend-shapes produced by the library MediaPipe, for a face detected in a live stream of a camera, to estimate the main emotion from the facial expressions, this model is trained on the FER2013 dataset and delivers a result of 71% accuracy and 62% f1-score which meets the accuracy benchmark of the FER2013 dataset, with significantly reduced computation costs. https://github.com/Samir-atra/Emotion_estimation_from_video_footage_with_LSTM_ML_algorithm
comment: 12 pages, 5 figures, 34 references, 4 tables, 3 equations
♻ ☆ VizFlyt: Perception-centric Pedagogical Framework For Autonomous Aerial Robots ICRA 2025
Autonomous aerial robots are becoming commonplace in our lives. Hands-on aerial robotics courses are pivotal in training the next-generation workforce to meet the growing market demands. Such an efficient and compelling course depends on a reliable testbed. In this paper, we present VizFlyt, an open-source perception-centric Hardware-In-The-Loop (HITL) photorealistic testing framework for aerial robotics courses. We utilize pose from an external localization system to hallucinate real-time and photorealistic visual sensors using 3D Gaussian Splatting. This enables stress-free testing of autonomy algorithms on aerial robots without the risk of crashing into obstacles. We achieve over 100Hz of system update rate. Lastly, we build upon our past experiences of offering hands-on aerial robotics courses and propose a new open-source and open-hardware curriculum based on VizFlyt for the future. We test our framework on various course projects in real-world HITL experiments and present the results showing the efficacy of such a system and its large potential use cases. Code, datasets, hardware guides and demo videos are available at https://pear.wpi.edu/research/vizflyt.html
comment: Accepted at ICRA 2025. Projected Page: https://pear.wpi.edu/research/vizflyt.html
♻ ☆ MaterialFusion: Enhancing Inverse Rendering with Material Diffusion Priors 3DV 2025
Recent works in inverse rendering have shown promise in using multi-view images of an object to recover shape, albedo, and materials. However, the recovered components often fail to render accurately under new lighting conditions due to the intrinsic challenge of disentangling albedo and material properties from input images. To address this challenge, we introduce MaterialFusion, an enhanced conventional 3D inverse rendering pipeline that incorporates a 2D prior on texture and material properties. We present StableMaterial, a 2D diffusion model prior that refines multi-lit data to estimate the most likely albedo and material from given input appearances. This model is trained on albedo, material, and relit image data derived from a curated dataset of approximately ~12K artist-designed synthetic Blender objects called BlenderVault. we incorporate this diffusion prior with an inverse rendering framework where we use score distillation sampling (SDS) to guide the optimization of the albedo and materials, improving relighting performance in comparison with previous work. We validate MaterialFusion's relighting performance on 4 datasets of synthetic and real objects under diverse illumination conditions, showing our diffusion-aided approach significantly improves the appearance of reconstructed objects under novel lighting conditions. We intend to publicly release our BlenderVault dataset to support further research in this field.
comment: 3DV 2025. Project Page, Data, & Code: https://yehonathanlitman.github.io/material_fusion
♻ ☆ Assessing the Role of Datasets in the Generalization of Motion Deblurring Methods to Real Images
Successfully training end-to-end deep networks for real motion deblurring requires datasets of sharp/blurred image pairs that are realistic and diverse enough to achieve generalization to real blurred images. Obtaining such datasets remains a challenging task. In this paper, we first review the limitations of existing deblurring benchmark datasets and analyze the underlying causes for deblurring networks' lack of generalization to blurry images in the wild. Based on this analysis, we propose an efficient procedural methodology to generate sharp/blurred image pairs based on a simple yet effective model. This allows for generating virtually unlimited diverse training pairs mimicking realistic blur properties. We demonstrate the effectiveness of the proposed dataset by training existing deblurring architectures on the simulated pairs and performing cross-dataset evaluation on three standard datasets of real blurred images. When training with the proposed method, we observed superior generalization performance for the ultimate task of deblurring real motion-blurred photos of dynamic scenes.
♻ ☆ Cosmos-Transfer1: Conditional World Generation with Adaptive Multimodal Control
We introduce Cosmos-Transfer, a conditional world generation model that can generate world simulations based on multiple spatial control inputs of various modalities such as segmentation, depth, and edge. In the design, the spatial conditional scheme is adaptive and customizable. It allows weighting different conditional inputs differently at different spatial locations. This enables highly controllable world generation and finds use in various world-to-world transfer use cases, including Sim2Real. We conduct extensive evaluations to analyze the proposed model and demonstrate its applications for Physical AI, including robotics Sim2Real and autonomous vehicle data enrichment. We further demonstrate an inference scaling strategy to achieve real-time world generation with an NVIDIA GB200 NVL72 rack. To help accelerate research development in the field, we open-source our models and code at https://github.com/nvidia-cosmos/cosmos-transfer1.
♻ ☆ Olympus: A Universal Task Router for Computer Vision Tasks CVPR 2025
We introduce Olympus, a new approach that transforms Multimodal Large Language Models (MLLMs) into a unified framework capable of handling a wide array of computer vision tasks. Utilizing a controller MLLM, Olympus delegates over 20 specialized tasks across images, videos, and 3D objects to dedicated modules. This instruction-based routing enables complex workflows through chained actions without the need for training heavy generative models. Olympus easily integrates with existing MLLMs, expanding their capabilities with comparable performance. Experimental results demonstrate that Olympus achieves an average routing accuracy of 94.75% across 20 tasks and precision of 91.82% in chained action scenarios, showcasing its effectiveness as a universal task router that can solve a diverse range of computer vision tasks. Project page: http://yuanze-lin.me/Olympus_page/
comment: Accepted to CVPR 2025, Project webpage: http://yuanze-lin.me/Olympus_page/
♻ ☆ Towards a Trustworthy Anomaly Detection for Critical Applications through Approximated Partial AUC Loss
Anomaly Detection is a crucial step for critical applications such in the industrial, medical or cybersecurity domains. These sectors share the same requirement of handling differently the different types of classification errors. Indeed, even if false positives are acceptable, false negatives are not, because it would reflect a missed detection of a quality issue, a disease or a cyber threat. To fulfill this requirement, we propose a method that dynamically applies a trustworthy approximated partial AUC ROC loss (tapAUC). A binary classifier is trained to optimize the specific range of the AUC ROC curve that prevents the True Positive Rate (TPR) to reach 100% while minimizing the False Positive Rate (FPR). The optimal threshold that does not trigger any false negative is then kept and used at the test step. The results show a TPR of 92.52% at a 20.43% FPR for an average across 6 datasets, representing a TPR improvement of 4.3% for a FPR cost of 12.2% against other state-of-the-art methods. The code is available at https://github.com/ArnaudBougaham/tapAUC.
♻ ☆ V2V-LLM: Vehicle-to-Vehicle Cooperative Autonomous Driving with Multi-Modal Large Language Models
Current autonomous driving vehicles rely mainly on their individual sensors to understand surrounding scenes and plan for future trajectories, which can be unreliable when the sensors are malfunctioning or occluded. To address this problem, cooperative perception methods via vehicle-to-vehicle (V2V) communication have been proposed, but they have tended to focus on perception tasks like detection or tracking. How those approaches contribute to overall cooperative planning performance is still under-explored. Inspired by recent progress using Large Language Models (LLMs) to build autonomous driving systems, we propose a novel problem setting that integrates a Multi-Modal LLM into cooperative autonomous driving, with the proposed Vehicle-to-Vehicle Question-Answering (V2V-QA) dataset and benchmark. We also propose our baseline method Vehicle-to-Vehicle Multi-Modal Large Language Model (V2V-LLM), which uses an LLM to fuse perception information from multiple connected autonomous vehicles (CAVs) and answer various types of driving-related questions: grounding, notable object identification, and planning. Experimental results show that our proposed V2V-LLM can be a promising unified model architecture for performing various tasks in cooperative autonomous driving, and outperforms other baseline methods that use different fusion approaches. Our work also creates a new research direction that can improve the safety of future autonomous driving systems. The code and data will be released to the public to facilitate open-source research in this field. Our project website: https://eddyhkchiu.github.io/v2vllm.github.io/ .
comment: Our project website: https://eddyhkchiu.github.io/v2vllm.github.io/
♻ ☆ Leveraging GANs For Active Appearance Models Optimized Model Fitting
Active Appearance Models (AAMs) are a well-established technique for fitting deformable models to images, but they are limited by linear appearance assumptions and can struggle with complex variations. In this paper, we explore if the AAM fitting process can benefit from a Generative Adversarial Network (GAN). We uses a U-Net based generator and a PatchGAN discriminator for GAN-augmented framework in an attempt to refine the appearance model during fitting. This approach attempts to addresses challenges such as non-linear appearance variations and occlusions that traditional AAM optimization methods may fail to handle. Limited experiments on face alignment datasets demonstrate that the GAN-enhanced AAM can achieve higher accuracy and faster convergence than classic approaches with some manual interventions. These results establish feasibility of GANs as a tool for improving deformable model fitting in challenging conditions while maintaining efficient performance, and establishes the need for more future work to evaluate this approach at scale.
comment: 7 pages, new version adds missed citations, improves literature overview, adds differentiating elements, adds more specifics in implementation details, adds limitations found since first version, future work cited is in progress
♻ ☆ BIOMEDICA: An Open Biomedical Image-Caption Archive, Dataset, and Vision-Language Models Derived from Scientific Literature
The development of vision-language models (VLMs) is driven by large-scale and diverse multimodal datasets. However, progress toward generalist biomedical VLMs is limited by the lack of annotated, publicly accessible datasets across biology and medicine. Existing efforts are restricted to narrow domains, missing the full diversity of biomedical knowledge encoded in scientific literature. To address this gap, we introduce BIOMEDICA, a scalable, open-source framework to extract, annotate, and serialize the entirety of the PubMed Central Open Access subset into an easy-to-use, publicly accessible dataset. Our framework produces a comprehensive archive with over 24 million unique image-text pairs from over 6 million articles. Metadata and expert-guided annotations are also provided. We demonstrate the utility and accessibility of our resource by releasing BMCA-CLIP, a suite of CLIP-style models continuously pre-trained on the BIOMEDICA dataset via streaming, eliminating the need to download 27 TB of data locally. On average, our models achieve state-of-the-art performance across 40 tasks - spanning pathology, radiology, ophthalmology, dermatology, surgery, molecular biology, parasitology, and cell biology - excelling in zero-shot classification with a 6.56% average improvement (as high as 29.8% and 17.5% in dermatology and ophthalmology, respectively), and stronger image-text retrieval, all while using 10x less compute. To foster reproducibility and collaboration, we release our codebase and dataset for the broader research community.
♻ ☆ Consistency-Guided Asynchronous Contrastive Tuning for Few-Shot Class-Incremental Tuning of Foundation Models
We propose Consistency-guided Asynchronous Contrastive Tuning (CoACT), a novel method for continuously tuning foundation models to learn new classes in few-shot settings. CoACT consists of three key components:(i) asynchronous contrastive tuning, which learns new classes by including LoRA modules in the pre-trained encoder while enforcing consistency between two asynchronous encoders; (ii) controlled fine-tuning, which facilitates effective tuning of a subset of the foundation model; and (iii) consistency-guided incremental tuning, which enforces additional regularization during later sessions to reduce forgetting of the learned classes. We evaluate our proposed solution on Few-Shot Class-Incremental Learning (FSCIL) as well as a new and more challenging setup called Few-Shot Class-Incremental Tuning (FSCIT), which facilitates the continual tuning of vision foundation models to learn new classes with only a few samples per class. Unlike traditional FSCIL, FSCIT does not require a large in-distribution base session for initial fully supervised training prior to the incremental few-shot sessions. We conduct extensive evaluations across 16 diverse datasets, demonstrating the effectiveness of CoACT in both FSCIL and FSCIT setups. CoACT outperforms existing methods by up to 5.02% in FSCIL and up to 12.51% in FSCIT for individual datasets, with an average improvement of 2.47%. Furthermore, CoACT exhibits reduced forgetting and enhanced robustness in low-shot experiments. Detailed ablation and sensitivity studies highlight the contribution of each component of CoACT. We make our code publicly available at https://github.com/ShuvenduRoy/CoACT-FSCIL.
comment: Accepted in Transactions on Machine Learning Research (TMLR)
♻ ☆ Transfer Your Perspective: Controllable 3D Generation from Any Viewpoint in a Driving Scene CVPR 2025
Self-driving cars relying solely on ego-centric perception face limitations in sensing, often failing to detect occluded, faraway objects. Collaborative autonomous driving (CAV) seems like a promising direction, but collecting data for development is non-trivial. It requires placing multiple sensor-equipped agents in a real-world driving scene, simultaneously! As such, existing datasets are limited in locations and agents. We introduce a novel surrogate to the rescue, which is to generate realistic perception from different viewpoints in a driving scene, conditioned on a real-world sample - the ego-car's sensory data. This surrogate has huge potential: it could potentially turn any ego-car dataset into a collaborative driving one to scale up the development of CAV. We present the very first solution, using a combination of simulated collaborative data and real ego-car data. Our method, Transfer Your Perspective (TYP), learns a conditioned diffusion model whose output samples are not only realistic but also consistent in both semantics and layouts with the given ego-car data. Empirical results demonstrate TYP's effectiveness in aiding in a CAV setting. In particular, TYP enables us to (pre-)train collaborative perception algorithms like early and late fusion with little or no real-world collaborative data, greatly facilitating downstream CAV applications.
comment: Accepted to CVPR 2025
♻ ☆ Dual Diffusion for Unified Image Generation and Understanding
Diffusion models have gained tremendous success in text-to-image generation, yet still lag behind with visual understanding tasks, an area dominated by autoregressive vision-language models. We propose a large-scale and fully end-to-end diffusion model for multi-modal understanding and generation that significantly improves on existing diffusion-based multimodal models, and is the first of its kind to support the full suite of vision-language modeling capabilities. Inspired by the multimodal diffusion transformer (MM-DiT) and recent advances in discrete diffusion language modeling, we leverage a cross-modal maximum likelihood estimation framework that simultaneously trains the conditional likelihoods of both images and text jointly under a single loss function, which is back-propagated through both branches of the diffusion transformer. The resulting model is highly flexible and capable of a wide range of tasks including image generation, captioning, and visual question answering. Our model attained competitive performance compared to recent unified image understanding and generation models, demonstrating the potential of multimodal diffusion modeling as a promising alternative to autoregressive next-token prediction models.
♻ ☆ DivPrune: Diversity-based Visual Token Pruning for Large Multimodal Models CVPR 2025
Large Multimodal Models (LMMs) have emerged as powerful models capable of understanding various data modalities, including text, images, and videos. LMMs encode both text and visual data into tokens that are then combined and processed by an integrated Large Language Model (LLM). Including visual tokens substantially increases the total token count, often by thousands. The increased input length for LLM significantly raises the complexity of inference, resulting in high latency in LMMs. To address this issue, token pruning methods, which remove part of the visual tokens, are proposed. The existing token pruning methods either require extensive calibration and fine-tuning or rely on suboptimal importance metrics which results in increased redundancy among the retained tokens. In this paper, we first formulate token pruning as Max-Min Diversity Problem (MMDP) where the goal is to select a subset such that the diversity among the selected {tokens} is maximized. Then, we solve the MMDP to obtain the selected subset and prune the rest. The proposed method, DivPrune, reduces redundancy and achieves the highest diversity of the selected tokens. By ensuring high diversity, the selected tokens better represent the original tokens, enabling effective performance even at high pruning ratios without requiring fine-tuning. Extensive experiments with various LMMs show that DivPrune achieves state-of-the-art accuracy over 16 image- and video-language datasets. Additionally, DivPrune reduces both the end-to-end latency and GPU memory usage for the tested models. The code is available $\href{https://github.com/vbdi/divprune}{\text{here}}$.
comment: Accepted to CVPR 2025
♻ ☆ TraceNet: Segment one thing efficiently
Efficient single instance segmentation is essential for unlocking features in the mobile imaging applications, such as capture or editing. Existing on-the-fly mobile imaging applications scope the segmentation task to portraits or the salient subject due to the computational constraints. Instance segmentation, despite its recent developments towards efficient networks, is still heavy due to the cost of computation on the entire image to identify all instances. To address this, we propose and formulate a one tap driven single instance segmentation task that segments a single instance selected by a user via a positive tap. This task, in contrast to the broader task of segmenting anything as suggested in the Segment Anything Model \cite{sam}, focuses on efficient segmentation of a single instance specified by the user. To solve this problem, we present TraceNet, which explicitly locates the selected instance by way of receptive field tracing. TraceNet identifies image regions that are related to the user tap and heavy computations are only performed on selected regions of the image. Therefore overall computation cost and memory consumption are reduced during inference. We evaluate the performance of TraceNet on instance IoU average over taps and the proportion of the region that a user tap can fall into for a high-quality single-instance mask. Experimental results on MS-COCO and LVIS demonstrate the effectiveness and efficiency of the proposed approach. TraceNet can jointly achieve the efficiency and interactivity, filling in the gap between needs for efficient mobile inference and recent research trend towards multimodal and interactive segmentation models.
♻ ☆ Machine Vision-Based Assessment of Fall Color Changes and its Relationship with Leaf Nitrogen Concentration
Apple(\textit{Malus domestica} Borkh.) trees are deciduous, shedding leaves each year. This process is preceded by a gradual change in leaf color from green to yellow as chlorophyll is degraded prior to abscission. The initiation and rate of this color change are affected by many factors including leaf nitrogen (N) concentration. We predict that leaf color during this transition may be indicative of the nitrogen status of apple trees. This study assesses a machine vision-based system for quantifying the change in leaf color and its correlation with leaf nitrogen content. An image dataset was collected in color and 3D over five weeks in the fall of 2021 and 2023 at a commercial orchard using a ground vehicle-based stereovision sensor. Trees in the foreground were segmented from the point cloud using color and depth thresholding methods. Then, to estimate the proportion of yellow leaves per canopy, the color information of the segmented canopy area was quantified using a custom-defined metric, \textit{yellowness index} (a normalized ratio of yellow to green foliage in the tree) that varied from -1 to +1 (-1 being completely green and +1 being completely yellow). Both K-means-based methods and gradient boosting methods were used to estimate the \textit{yellowness index}. The gradient boosting based method proposed in this study was better than the K-means-based method (both in terms of computational time and accuracy), achieving an $R^2$ of 0.72 in estimating the \textit{yellowness index}. The metric was able to capture the gradual color transition from green to yellow over the study duration. Trees with lower leaf nitrogen showed the color transition to yellow earlier than the trees with higher nitrogen. Keywords: Fruit Tree Nitrogen Management, Machine Vision, Point Cloud Segmentation, Precision Nitrogen Management
♻ ☆ Hallucination of Multimodal Large Language Models: A Survey
This survey presents a comprehensive analysis of the phenomenon of hallucination in multimodal large language models (MLLMs), also known as Large Vision-Language Models (LVLMs), which have demonstrated significant advancements and remarkable abilities in multimodal tasks. Despite these promising developments, MLLMs often generate outputs that are inconsistent with the visual content, a challenge known as hallucination, which poses substantial obstacles to their practical deployment and raises concerns regarding their reliability in real-world applications. This problem has attracted increasing attention, prompting efforts to detect and mitigate such inaccuracies. We review recent advances in identifying, evaluating, and mitigating these hallucinations, offering a detailed overview of the underlying causes, evaluation benchmarks, metrics, and strategies developed to address this issue. Additionally, we analyze the current challenges and limitations, formulating open questions that delineate potential pathways for future research. By drawing the granular classification and landscapes of hallucination causes, evaluation benchmarks, and mitigation methods, this survey aims to deepen the understanding of hallucinations in MLLMs and inspire further advancements in the field. Through our thorough and in-depth review, we contribute to the ongoing dialogue on enhancing the robustness and reliability of MLLMs, providing valuable insights and resources for researchers and practitioners alike. Resources are available at: https://github.com/showlab/Awesome-MLLM-Hallucination.
comment: 228 references
♻ ☆ Stable Virtual Camera: Generative View Synthesis with Diffusion Models
We present Stable Virtual Camera (Seva), a generalist diffusion model that creates novel views of a scene, given any number of input views and target cameras. Existing works struggle to generate either large viewpoint changes or temporally smooth samples, while relying on specific task configurations. Our approach overcomes these limitations through simple model design, optimized training recipe, and flexible sampling strategy that generalize across view synthesis tasks at test time. As a result, our samples maintain high consistency without requiring additional 3D representation-based distillation, thus streamlining view synthesis in the wild. Furthermore, we show that our method can generate high-quality videos lasting up to half a minute with seamless loop closure. Extensive benchmarking demonstrates that Seva outperforms existing methods across different datasets and settings. Project page with code and model: https://stable-virtual-camera.github.io/.
♻ ☆ The DeepSpeak Dataset
We describe a large-scale dataset - DeepSpeak - of real and deepfake footage of people talking and gesturing in front of their webcams. The real videos in this dataset consist of a total of 50 hours of footage from 500 diverse individuals. Constituting more than 50 hours of footage, the fake videos consist of a range of different state-of-the-art avatar, face-swap, and lip-sync deepfakes with natural and AI-generated voices. We are regularly releasing updated versions of this dataset with the latest deepfake technologies. This preprint describes the construction of versions 1.0, 1.1, and 2.0. This dataset is made freely available for research and non-commercial uses; requests for commercial use will be considered.
Machine Learning 202
☆ R2DN: Scalable Parameterization of Contracting and Lipschitz Recurrent Deep Networks
This paper presents the Robust Recurrent Deep Network (R2DN), a scalable parameterization of robust recurrent neural networks for machine learning and data-driven control. We construct R2DNs as a feedback interconnection of a linear time-invariant system and a 1-Lipschitz deep feedforward network, and directly parameterize the weights so that our models are stable (contracting) and robust to small input perturbations (Lipschitz) by design. Our parameterization uses a structure similar to the previously-proposed recurrent equilibrium networks (RENs), but without the requirement to iteratively solve an equilibrium layer at each time-step. This speeds up model evaluation and backpropagation on GPUs, and makes it computationally feasible to scale up the network size, batch size, and input sequence length in comparison to RENs. We compare R2DNs to RENs on three representative problems in nonlinear system identification, observer design, and learning-based feedback control and find that training and inference are both up to an order of magnitude faster with similar test set performance, and that training/inference times scale more favorably with respect to model expressivity.
☆ Automated Factual Benchmarking for In-Car Conversational Systems using Large Language Models
In-car conversational systems bring the promise to improve the in-vehicle user experience. Modern conversational systems are based on Large Language Models (LLMs), which makes them prone to errors such as hallucinations, i.e., inaccurate, fictitious, and therefore factually incorrect information. In this paper, we present an LLM-based methodology for the automatic factual benchmarking of in-car conversational systems. We instantiate our methodology with five LLM-based methods, leveraging ensembling techniques and diverse personae to enhance agreement and minimize hallucinations. We use our methodology to evaluate CarExpert, an in-car retrieval-augmented conversational question answering system, with respect to the factual correctness to a vehicle's manual. We produced a novel dataset specifically created for the in-car domain, and tested our methodology against an expert evaluation. Our results show that the combination of GPT-4 with the Input Output Prompting achieves over 90 per cent factual correctness agreement rate with expert evaluations, other than being the most efficient approach yielding an average response time of 4.5s. Our findings suggest that LLM-based testing constitutes a viable approach for the validation of conversational systems regarding their factual correctness.
comment: Accepted in IEEE Intelligent Vehicles Symposium Conference (IV 2025)
☆ Dynamic Graph Structure Estimation for Learning Multivariate Point Process using Spiking Neural Networks
Modeling and predicting temporal point processes (TPPs) is critical in domains such as neuroscience, epidemiology, finance, and social sciences. We introduce the Spiking Dynamic Graph Network (SDGN), a novel framework that leverages the temporal processing capabilities of spiking neural networks (SNNs) and spike-timing-dependent plasticity (STDP) to dynamically estimate underlying spatio-temporal functional graphs. Unlike existing methods that rely on predefined or static graph structures, SDGN adapts to any dataset by learning dynamic spatio-temporal dependencies directly from the event data, enhancing generalizability and robustness. While SDGN offers significant improvements over prior methods, we acknowledge its limitations in handling dense graphs and certain non-Gaussian dependencies, providing opportunities for future refinement. Our evaluations, conducted on both synthetic and real-world datasets including NYC Taxi, 911, Reddit, and Stack Overflow, demonstrate that SDGN achieves superior predictive accuracy while maintaining computational efficiency. Furthermore, we include ablation studies to highlight the contributions of its core components.
comment: 18 pages, 3 figures
☆ FUSION: Frequency-guided Underwater Spatial Image recOnstructioN
Underwater images suffer from severe degradations, including color distortions, reduced visibility, and loss of structural details due to wavelength-dependent attenuation and scattering. Existing enhancement methods primarily focus on spatial-domain processing, neglecting the frequency domain's potential to capture global color distributions and long-range dependencies. To address these limitations, we propose FUSION, a dual-domain deep learning framework that jointly leverages spatial and frequency domain information. FUSION independently processes each RGB channel through multi-scale convolutional kernels and adaptive attention mechanisms in the spatial domain, while simultaneously extracting global structural information via FFT-based frequency attention. A Frequency Guided Fusion module integrates complementary features from both domains, followed by inter-channel fusion and adaptive channel recalibration to ensure balanced color distributions. Extensive experiments on benchmark datasets (UIEB, EUVP, SUIM-E) demonstrate that FUSION achieves state-of-the-art performance, consistently outperforming existing methods in reconstruction fidelity (highest PSNR of 23.717 dB and SSIM of 0.883 on UIEB), perceptual quality (lowest LPIPS of 0.112 on UIEB), and visual enhancement metrics (best UIQM of 3.414 on UIEB), while requiring significantly fewer parameters (0.28M) and lower computational complexity, demonstrating its suitability for real-time underwater imaging applications.
☆ Explainable post-training bias mitigation with distribution-based fairness metrics
We develop a novel optimization framework with distribution-based fairness constraints for efficiently producing demographically blind, explainable models across a wide range of fairness levels. This is accomplished through post-processing, avoiding the need for retraining. Our framework, which is based on stochastic gradient descent, can be applied to a wide range of model types, with a particular emphasis on the post-processing of gradient-boosted decision trees. Additionally, we design a broad class of interpretable global bias metrics compatible with our method by building on previous work. We empirically test our methodology on a variety of datasets and compare it to other methods.
comment: 37 pages, 6 figures
☆ AutoML Benchmark with shorter time constraints and early stopping ICLR 2025
Automated Machine Learning (AutoML) automatically builds machine learning (ML) models on data. The de facto standard for evaluating new AutoML frameworks for tabular data is the AutoML Benchmark (AMLB). AMLB proposed to evaluate AutoML frameworks using 1- and 4-hour time budgets across 104 tasks. We argue that shorter time constraints should be considered for the benchmark because of their practical value, such as when models need to be retrained with high frequency, and to make AMLB more accessible. This work considers two ways in which to reduce the overall computation used in the benchmark: smaller time constraints and the use of early stopping. We conduct evaluations of 11 AutoML frameworks on 104 tasks with different time constraints and find the relative ranking of AutoML frameworks is fairly consistent across time constraints, but that using early-stopping leads to a greater variety in model performance.
comment: Workshop on the Future of Machine Learning Data Practices and Repositories, ICLR 2025
☆ Gradient-free Continual Learning
Continual learning (CL) presents a fundamental challenge in training neural networks on sequential tasks without experiencing catastrophic forgetting. Traditionally, the dominant approach in CL has been gradient-based optimization, where updates to the network parameters are performed using stochastic gradient descent (SGD) or its variants. However, a major limitation arises when previous data is no longer accessible, as is often assumed in CL settings. In such cases, there is no gradient information available for past data, leading to uncontrolled parameter changes and consequently severe forgetting of previously learned tasks. By shifting focus from data availability to gradient availability, this work opens up new avenues for addressing forgetting in CL. We explore the hypothesis that gradient-free optimization methods can provide a robust alternative to conventional gradient-based continual learning approaches. We discuss the theoretical underpinnings of such method, analyze their potential advantages and limitations, and present empirical evidence supporting their effectiveness. By reconsidering the fundamental cause of forgetting, this work aims to contribute a fresh perspective to the field of continual learning and inspire novel research directions.
☆ Prompting Forgetting: Unlearning in GANs via Textual Guidance
State-of-the-art generative models exhibit powerful image-generation capabilities, introducing various ethical and legal challenges to service providers hosting these models. Consequently, Content Removal Techniques (CRTs) have emerged as a growing area of research to control outputs without full-scale retraining. Recent work has explored the use of Machine Unlearning in generative models to address content removal. However, the focus of such research has been on diffusion models, and unlearning in Generative Adversarial Networks (GANs) has remained largely unexplored. We address this gap by proposing Text-to-Unlearn, a novel framework that selectively unlearns concepts from pre-trained GANs using only text prompts, enabling feature unlearning, identity unlearning, and fine-grained tasks like expression and multi-attribute removal in models trained on human faces. Leveraging natural language descriptions, our approach guides the unlearning process without requiring additional datasets or supervised fine-tuning, offering a scalable and efficient solution. To evaluate its effectiveness, we introduce an automatic unlearning assessment method adapted from state-of-the-art image-text alignment metrics, providing a comprehensive analysis of the unlearning methodology. To our knowledge, Text-to-Unlearn is the first cross-modal unlearning framework for GANs, representing a flexible and efficient advancement in managing generative model behavior.
☆ Detecting PTSD in Clinical Interviews: A Comparative Analysis of NLP Methods and Large Language Models
Post-Traumatic Stress Disorder (PTSD) remains underdiagnosed in clinical settings, presenting opportunities for automated detection to identify patients. This study evaluates natural language processing approaches for detecting PTSD from clinical interview transcripts. We compared general and mental health-specific transformer models (BERT/RoBERTa), embedding-based methods (SentenceBERT/LLaMA), and large language model prompting strategies (zero-shot/few-shot/chain-of-thought) using the DAIC-WOZ dataset. Domain-specific models significantly outperformed general models (Mental-RoBERTa F1=0.643 vs. RoBERTa-base 0.485). LLaMA embeddings with neural networks achieved the highest performance (F1=0.700). Zero-shot prompting using DSM-5 criteria yielded competitive results without training data (F1=0.657). Performance varied significantly across symptom severity and comorbidity status, with higher accuracy for severe PTSD cases and patients with comorbid depression. Our findings highlight the potential of domain-adapted embeddings and LLMs for scalable screening while underscoring the need for improved detection of nuanced presentations and offering insights for developing clinically viable AI tools for PTSD assessment.
comment: 10 pages, 4 tables, 1 figure
☆ PolygoNet: Leveraging Simplified Polygonal Representation for Effective Image Classification
Deep learning models have achieved significant success in various image related tasks. However, they often encounter challenges related to computational complexity and overfitting. In this paper, we propose an efficient approach that leverages polygonal representations of images using dominant points or contour coordinates. By transforming input images into these compact forms, our method significantly reduces computational requirements, accelerates training, and conserves resources making it suitable for real time and resource constrained applications. These representations inherently capture essential image features while filtering noise, providing a natural regularization effect that mitigates overfitting. The resulting lightweight models achieve performance comparable to state of the art methods using full resolution images while enabling deployment on edge devices. Extensive experiments on benchmark datasets validate the effectiveness of our approach in reducing complexity, improving generalization, and facilitating edge computing applications. This work demonstrates the potential of polygonal representations in advancing efficient and scalable deep learning solutions for real world scenarios. The code for the experiments of the paper is provided in https://github.com/salimkhazem/PolygoNet.
☆ Cooper: A Library for Constrained Optimization in Deep Learning
Cooper is an open-source package for solving constrained optimization problems involving deep learning models. Cooper implements several Lagrangian-based first-order update schemes, making it easy to combine constrained optimization algorithms with high-level features of PyTorch such as automatic differentiation, and specialized deep learning architectures and optimizers. Although Cooper is specifically designed for deep learning applications where gradients are estimated based on mini-batches, it is suitable for general non-convex continuous constrained optimization. Cooper's source code is available at https://github.com/cooper-org/cooper.
☆ Global explainability of a deep abstaining classifier
We present a global explainability method to characterize sources of errors in the histology prediction task of our real-world multitask convolutional neural network (MTCNN)-based deep abstaining classifier (DAC), for automated annotation of cancer pathology reports from NCI-SEER registries. Our classifier was trained and evaluated on 1.04 million hand-annotated samples and makes simultaneous predictions of cancer site, subsite, histology, laterality, and behavior for each report. The DAC framework enables the model to abstain on ambiguous reports and/or confusing classes to achieve a target accuracy on the retained (non-abstained) samples, but at the cost of decreased coverage. Requiring 97% accuracy on the histology task caused our model to retain only 22% of all samples, mostly the less ambiguous and common classes. Local explainability with the GradInp technique provided a computationally efficient way of obtaining contextual reasoning for thousands of individual predictions. Our method, involving dimensionality reduction of approximately 13000 aggregated local explanations, enabled global identification of sources of errors as hierarchical complexity among classes, label noise, insufficient information, and conflicting evidence. This suggests several strategies such as exclusion criteria, focused annotation, and reduced penalties for errors involving hierarchically related classes to iteratively improve our DAC in this complex real-world implementation.
☆ Value Iteration for Learning Concurrently Executable Robotic Control Tasks AAMAS 2025
Many modern robotic systems such as multi-robot systems and manipulators exhibit redundancy, a property owing to which they are capable of executing multiple tasks. This work proposes a novel method, based on the Reinforcement Learning (RL) paradigm, to train redundant robots to be able to execute multiple tasks concurrently. Our approach differs from typical multi-objective RL methods insofar as the learned tasks can be combined and executed in possibly time-varying prioritized stacks. We do so by first defining a notion of task independence between learned value functions. We then use our definition of task independence to propose a cost functional that encourages a policy, based on an approximated value function, to accomplish its control objective while minimally interfering with the execution of higher priority tasks. This allows us to train a set of control policies that can be executed simultaneously. We also introduce a version of fitted value iteration to learn to approximate our proposed cost functional efficiently. We demonstrate our approach on several scenarios and robotic systems.
comment: To be published in AAMAS 2025 conference: https://aamas2025.org/
☆ Neural Approaches to SAT Solving: Design Choices and Interpretability
In this contribution, we provide a comprehensive evaluation of graph neural networks applied to Boolean satisfiability problems, accompanied by an intuitive explanation of the mechanisms enabling the model to generalize to different instances. We introduce several training improvements, particularly a novel closest assignment supervision method that dynamically adapts to the model's current state, significantly enhancing performance on problems with larger solution spaces. Our experiments demonstrate the suitability of variable-clause graph representations with recurrent neural network updates, which achieve good accuracy on SAT assignment prediction while reducing computational demands. We extend the base graph neural network into a diffusion model that facilitates incremental sampling and can be effectively combined with classical techniques like unit propagation. Through analysis of embedding space patterns and optimization trajectories, we show how these networks implicitly perform a process very similar to continuous relaxations of MaxSAT, offering an interpretable view of their reasoning process. This understanding guides our design choices and explains the ability of recurrent architectures to scale effectively at inference time beyond their training distribution, which we demonstrate with test-time scaling experiments.
Efficient n-body simulations using physics informed graph neural networks
This paper presents a novel approach for accelerating n-body simulations by integrating a physics-informed graph neural networks (GNN) with traditional numerical methods. Our method implements a leapfrog-based simulation engine to generate datasets from diverse astrophysical scenarios which are then transformed into graph representations. A custom-designed GNN is trained to predict particle accelerations with high precision. Experiments, conducted on 60 training and 6 testing simulations spanning from 3 to 500 bodies over 1000 time steps, demonstrate that the proposed model achieves extremely low prediction errors-loss values while maintaining robust long-term stability, with accumulated errors in position, velocity, and acceleration remaining insignificant. Furthermore, our method yields a modest speedup of approximately 17% over conventional simulation techniques. These results indicate that the integration of deep learning with traditional physical simulation methods offers a promising pathway to significantly enhance computational efficiency without compromising accuracy.
comment: 10 pages, 6 figures, 3 tables, accepted in conference MAEB 2025 (more info at https://www.uik.eus/es/curso/xvi-congreso-espanol-metaheuristicas-algoritmos-evolutivos-bioinspirados)
☆ Catch Me if You Search: When Contextual Web Search Results Affect the Detection of Hallucinations
While we increasingly rely on large language models (LLMs) for various tasks, these models are known to produce inaccurate content or 'hallucinations' with potentially disastrous consequences. The recent integration of web search results into LLMs prompts the question of whether people utilize them to verify the generated content, thereby avoiding falling victim to hallucinations. This study (N = 560) investigated how the provision of search results, either static (fixed search results) or dynamic (participant-driven searches), affect participants' perceived accuracy and confidence in evaluating LLM-generated content (i.e., genuine, minor hallucination, major hallucination), compared to the control condition (no search results). Findings indicate that participants in both static and dynamic conditions (vs. control) rated hallucinated content to be less accurate. However, those in the dynamic condition rated genuine content as more accurate and demonstrated greater overall confidence in their assessments than those in the static or control conditions. In addition, those higher in need for cognition (NFC) rated major hallucinations to be less accurate than low NFC participants, with no corresponding difference for genuine content or minor hallucinations. These results underscore the potential benefits of integrating web search results into LLMs for the detection of hallucinations, as well as the need for a more nuanced approach when developing human-centered systems, taking user characteristics into account.
☆ Performative Drift Resistant Classification Using Generative Domain Adversarial Networks
Performative Drift is a special type of Concept Drift that occurs when a model's predictions influence the future instances the model will encounter. In these settings, retraining is not always feasible. In this work, we instead focus on drift understanding as a method for creating drift-resistant classifiers. To achieve this, we introduce the Generative Domain Adversarial Network (GDAN) which combines both Domain and Generative Adversarial Networks. Using GDAN, domain-invariant representations of incoming data are created and a generative network is used to reverse the effects of performative drift. Using semi-real and synthetic data generators, we empirically evaluate GDAN's ability to provide drift-resistant classification. Initial results are promising with GDAN limiting performance degradation over several timesteps. Additionally, GDAN's generative network can be used in tandem with other models to limit their performance degradation in the presence of performative drift. Lastly, we highlight the relationship between model retraining and the unpredictability of performative drift, providing deeper insights into the challenges faced when using traditional Concept Drift mitigation strategies in the performative setting.
comment: 11 pages, 4 figures, 5 tables. Accepted at Symposium on Intelligent Data Analysis (IDA) 2025
☆ ffstruc2vec: Flat, Flexible and Scalable Learning of Node Representations from Structural Identities
Node embedding refers to techniques that generate low-dimensional vector representations of nodes in a graph while preserving specific properties of the nodes. A key challenge in the field is developing scalable methods that can preserve structural properties suitable for the required types of structural patterns of a given downstream application task. While most existing methods focus on preserving node proximity, those that do preserve structural properties often lack the flexibility to preserve various types of structural patterns required by downstream application tasks. This paper introduces ffstruc2vec, a scalable deep-learning framework for learning node embedding vectors that preserve structural identities. Its flat, efficient architecture allows high flexibility in capturing diverse types of structural patterns, enabling broad adaptability to various downstream application tasks. The proposed framework significantly outperforms existing approaches across diverse unsupervised and supervised tasks in practical applications. Moreover, ffstruc2vec enables explainability by quantifying how individual structural patterns influence task outcomes, providing actionable interpretation. To our knowledge, no existing framework combines this level of flexibility, scalability, and structural interpretability, underscoring its unique capabilities.
☆ Uncovering the Limitations of Query Performance Prediction: Failures, Insights, and Implications for Selective Query Processing
Query Performance Prediction (QPP) estimates retrieval systems effectiveness for a given query, offering valuable insights for search effectiveness and query processing. Despite extensive research, QPPs face critical challenges in generalizing across diverse retrieval paradigms and collections. This paper provides a comprehensive evaluation of state-of-the-art QPPs (e.g. NQC, UQC), LETOR-based features, and newly explored dense-based predictors. Using diverse sparse rankers (BM25, DFree without and with query expansion) and hybrid or dense (SPLADE and ColBert) rankers and diverse test collections ROBUST, GOV2, WT10G, and MS MARCO; we investigate the relationships between predicted and actual performance, with a focus on generalization and robustness. Results show significant variability in predictors accuracy, with collections as the main factor and rankers next. Some sparse predictors perform somehow on some collections (TREC ROBUST and GOV2) but do not generalise to other collections (WT10G and MS-MARCO). While some predictors show promise in specific scenarios, their overall limitations constrain their utility for applications. We show that QPP-driven selective query processing offers only marginal gains, emphasizing the need for improved predictors that generalize across collections, align with dense retrieval architectures and are useful for downstream applications.
comment: 18 pages, 4 figures
☆ Repetitions are not all alike: distinct mechanisms sustain repetition in language models
Text generated by language models (LMs) can degrade into repetitive cycles, where identical word sequences are persistently repeated one after another. Prior research has typically treated repetition as a unitary phenomenon. However, repetitive sequences emerge under diverse tasks and contexts, raising the possibility that it may be driven by multiple underlying factors. Here, we experimentally explore the hypothesis that repetition in LMs can result from distinct mechanisms, reflecting different text generation strategies used by the model. We examine the internal working of LMs under two conditions that prompt repetition: one in which repeated sequences emerge naturally after human-written text, and another where repetition is explicitly induced through an in-context learning (ICL) setup. Our analysis reveals key differences between the two conditions: the model exhibits varying levels of confidence, relies on different attention heads, and shows distinct pattens of change in response to controlled perturbations. These findings suggest that distinct internal mechanisms can interact to drive repetition, with implications for its interpretation and mitigation strategies. More broadly, our results highlight that the same surface behavior in LMs may be sustained by different underlying processes, acting independently or in combination.
☆ Hard-constraining Neumann boundary conditions in physics-informed neural networks via Fourier feature embeddings
We present a novel approach to hard-constrain Neumann boundary conditions in physics-informed neural networks (PINNs) using Fourier feature embeddings. Neumann boundary conditions are used to described critical processes in various application, yet they are more challenging to hard-constrain in PINNs than Dirichlet conditions. Our method employs specific Fourier feature embeddings to directly incorporate Neumann boundary conditions into the neural network's architecture instead of learning them. The embedding can be naturally extended by high frequency modes to better capture high frequency phenomena. We demonstrate the efficacy of our approach through experiments on a diffusion problem, for which our method outperforms existing hard-constraining methods and classical PINNs, particularly in multiscale and high frequency scenarios.
comment: 13 pages, 3 figures, 3 tables
☆ Initial Conditions from Galaxies: Machine-Learning Subgrid Correction to Standard Reconstruction
We present a hybrid method for reconstructing the primordial density from late-time halos and galaxies. Our approach involves two steps: (1) apply standard Baryon Acoustic Oscillation (BAO) reconstruction to recover the large-scale features in the primordial density field and (2) train a deep learning model to learn small-scale corrections on partitioned subgrids of the full volume. At inference, this correction is then convolved across the full survey volume, enabling scaling to large survey volumes. We train our method on both mock halo catalogs and mock galaxy catalogs in both configuration and redshift space from the Quijote $1(h^{-1}\,\mathrm{Gpc})^3$ simulation suite. When evaluated on held-out simulations, our combined approach significantly improves the reconstruction cross-correlation coefficient with the true initial density field and remains robust to moderate model misspecification. Additionally, we show that models trained on $1(h^{-1}\,\mathrm{Gpc})^3$ can be applied to larger boxes--e.g., $(3h^{-1}\,\mathrm{Gpc})^3$--without retraining. Finally, we perform a Fisher analysis on our method's recovery of the BAO peak, and find that it significantly improves the error on the acoustic scale relative to standard BAO reconstruction. Ultimately, this method robustly captures nonlinearities and bias without sacrificing large-scale accuracy, and its flexibility to handle arbitrarily large volumes without escalating computational requirements makes it especially promising for large-volume surveys like DESI.
☆ MPCritic: A plug-and-play MPC architecture for reinforcement learning
The reinforcement learning (RL) and model predictive control (MPC) communities have developed vast ecosystems of theoretical approaches and computational tools for solving optimal control problems. Given their conceptual similarities but differing strengths, there has been increasing interest in synergizing RL and MPC. However, existing approaches tend to be limited for various reasons, including computational cost of MPC in an RL algorithm and software hurdles towards seamless integration of MPC and RL tools. These challenges often result in the use of "simple" MPC schemes or RL algorithms, neglecting the state-of-the-art in both areas. This paper presents MPCritic, a machine learning-friendly architecture that interfaces seamlessly with MPC tools. MPCritic utilizes the loss landscape defined by a parameterized MPC problem, focusing on "soft" optimization over batched training steps; thereby updating the MPC parameters while avoiding costly minimization and parametric sensitivities. Since the MPC structure is preserved during training, an MPC agent can be readily used for online deployment, where robust constraint satisfaction is paramount. We demonstrate the versatility of MPCritic, in terms of MPC architectures and RL algorithms that it can accommodate, on classic control benchmarks.
comment: Preprint for CDC 2025
☆ Data-Driven Safety Verification using Barrier Certificates and Matrix Zonotopes
Ensuring safety in cyber-physical systems (CPSs) is a critical challenge, especially when system models are difficult to obtain or cannot be fully trusted due to uncertainty, modeling errors, or environmental disturbances. Traditional model-based approaches rely on precise system dynamics, which may not be available in real-world scenarios. To address this, we propose a data-driven safety verification framework that leverages matrix zonotopes and barrier certificates to verify system safety directly from noisy data. Instead of trusting a single unreliable model, we construct a set of models that capture all possible system dynamics that align with the observed data, ensuring that the true system model is always contained within this set. This model set is compactly represented using matrix zonotopes, enabling efficient computation and propagation of uncertainty. By integrating this representation into a barrier certificate framework, we establish rigorous safety guarantees without requiring an explicit system model. Numerical experiments demonstrate the effectiveness of our approach in verifying safety for dynamical systems with unknown models, showcasing its potential for real-world CPS applications.
comment: Submitted to CDC 2025
☆ When To Solve, When To Verify: Compute-Optimal Problem Solving and Generative Verification for LLM Reasoning
Scaling test-time compute has emerged as a key strategy for enhancing the reasoning capabilities of large language models (LLMs), particularly in tasks like mathematical problem-solving. A traditional approach, Self-Consistency (SC), generates multiple solutions to a problem and selects the most common answer via majority voting. Another common method involves scoring each solution with a reward model (verifier) and choosing the best one. Recent advancements in Generative Reward Models (GenRM) reframe verification as a next-token prediction task, enabling inference-time scaling along a new axis. Specifically, GenRM generates multiple verification chains-of-thought to score each solution. Under a limited inference budget, this introduces a fundamental trade-off: should you spend the budget on scaling solutions via SC or generate fewer solutions and allocate compute to verification via GenRM? To address this, we evaluate GenRM against SC under a fixed inference budget. Interestingly, we find that SC is more compute-efficient than GenRM for most practical inference budgets across diverse models and datasets. For instance, GenRM first matches SC after consuming up to 8x the inference compute and requires significantly more compute to outperform it. Furthermore, we derive inference scaling laws for the GenRM paradigm, revealing that compute-optimal inference favors scaling solution generation more aggressively than scaling the number of verifications. Our work provides practical guidance on optimizing test-time scaling by balancing solution generation and verification. The code is available at https://github.com/nishadsinghi/sc-genrm-scaling.
comment: 29 pages
☆ SentenceKV: Efficient LLM Inference via Sentence-Level Semantic KV Caching
Large language models face significant computational and memory challenges when processing long contexts. During inference, efficient management of the key-value (KV) cache, which stores intermediate activations for autoregressive generation, is critical to reducing memory overhead and improving computational efficiency. Traditional token-level efficient KV caching methods overlook semantic information, treating tokens independently without considering their semantic relationships. Meanwhile, existing semantic-preserving KV cache management approaches often suffer from substantial memory usage and high time-to-first-token. To address these limitations, we propose SentenceKV, a novel sentence-level semantic KV caching approach designed to enhance inference efficiency while preserving semantic coherence. During prefilling, SentenceKV groups tokens based on sentence-level semantic similarity, compressing sentence representations into concise semantic vectors stored directly on the GPU, while individual KV pairs are offloaded to CPU. During decoding, SentenceKV generates tokens by selectively retrieving semantically relevant sentence-level KV entries, leveraging the semantic similarity between the prefilling-stage semantic vectors and decoding-stage queries. This ensures efficient and contextually accurate predictions, minimizing the loading of redundant or irrelevant data into GPU memory and significantly reducing memory overhead while maintaining stable inference latency, even for extremely long contexts. Extensive evaluations on benchmarks including PG-19, LongBench, and Needle-In-A-Haystack demonstrate that SentenceKV significantly outperforms state-of-the-art methods in both efficiency and memory usage, without compromising model accuracy.
☆ Enabling Efficient Processing of Spiking Neural Networks with On-Chip Learning on Commodity Neuromorphic Processors for Edge AI Systems
The rising demand for energy-efficient edge AI systems (e.g., mobile agents/robots) has increased the interest in neuromorphic computing, since it offers ultra-low power/energy AI computation through spiking neural network (SNN) algorithms on neuromorphic processors. However, their efficient implementation strategy has not been comprehensively studied, hence limiting SNN deployments for edge AI systems. Toward this, we propose a design methodology to enable efficient SNN processing on commodity neuromorphic processors. To do this, we first study the key characteristics of targeted neuromorphic hardware (e.g., memory and compute budgets), and leverage this information to perform compatibility analysis for network selection. Afterward, we employ a mapping strategy for efficient SNN implementation on the targeted processor. Furthermore, we incorporate an efficient on-chip learning mechanism to update the systems' knowledge for adapting to new input classes and dynamic environments. The experimental results show that the proposed methodology leads the system to achieve low latency of inference (i.e., less than 50ms for image classification, less than 200ms for real-time object detection in video streaming, and less than 1ms in keyword recognition) and low latency of on-chip learning (i.e., less than 2ms for keyword recognition), while incurring less than 250mW of processing power and less than 15mJ of energy consumption across the respective different applications and scenarios. These results show the potential of the proposed methodology in enabling efficient edge AI systems for diverse application use-cases.
comment: Accepted at the International Joint Conference on Neural Networks (IJCNN) 2025 in Rome, Italy
☆ Personalized Federated Training of Diffusion Models with Privacy Guarantees
The scarcity of accessible, compliant, and ethically sourced data presents a considerable challenge to the adoption of artificial intelligence (AI) in sensitive fields like healthcare, finance, and biomedical research. Furthermore, access to unrestricted public datasets is increasingly constrained due to rising concerns over privacy, copyright, and competition. Synthetic data has emerged as a promising alternative, and diffusion models -- a cutting-edge generative AI technology -- provide an effective solution for generating high-quality and diverse synthetic data. In this paper, we introduce a novel federated learning framework for training diffusion models on decentralized private datasets. Our framework leverages personalization and the inherent noise in the forward diffusion process to produce high-quality samples while ensuring robust differential privacy guarantees. Our experiments show that our framework outperforms non-collaborative training methods, particularly in settings with high data heterogeneity, and effectively reduces biases and imbalances in synthetic data, resulting in fairer downstream models.
comment: 18 pages, 4 figures
☆ QSViT: A Methodology for Quantizing Spiking Vision Transformers
Vision Transformer (ViT)-based models have shown state-of-the-art performance (e.g., accuracy) in vision-based AI tasks. However, realizing their capability in resource-constrained embedded AI systems is challenging due to their inherent large memory footprints and complex computations, thereby incurring high power/energy consumption. Recently, Spiking Vision Transformer (SViT)-based models have emerged as alternate low-power ViT networks. However, their large memory footprints still hinder their applicability for resource-constrained embedded AI systems. Therefore, there is a need for a methodology to compress SViT models without degrading the accuracy significantly. To address this, we propose QSViT, a novel design methodology to compress the SViT models through a systematic quantization strategy across different network layers. To do this, our QSViT employs several key steps: (1) investigating the impact of different precision levels in different network layers, (2) identifying the appropriate base quantization settings for guiding bit precision reduction, (3) performing a guided quantization strategy based on the base settings to select the appropriate quantization setting, and (4) developing an efficient quantized network based on the selected quantization setting. The experimental results demonstrate that, our QSViT methodology achieves 22.75% memory saving and 21.33% power saving, while also maintaining high accuracy within 2.1% from that of the original non-quantized SViT model on the ImageNet dataset. These results highlight the potential of QSViT methodology to pave the way toward the efficient SViT deployments on resource-constrained embedded AI systems.
comment: Accepted at the International Joint Conference on Neural Networks (IJCNN) 2025 in Rome, Italy
Diffusion-model approach to flavor models: A case study for $S_4^\prime$ modular flavor model
We propose a numerical method of searching for parameters with experimental constraints in generic flavor models by utilizing diffusion models, which are classified as a type of generative artificial intelligence (generative AI). As a specific example, we consider the $S_4^\prime$ modular flavor model and construct a neural network that reproduces quark masses, the CKM matrix, and the Jarlskog invariant by treating free parameters in the flavor model as generating targets. By generating new parameters with the trained network, we find various phenomenologically interesting parameter regions where an analytical evaluation of the $S_4^\prime$ model is challenging. Additionally, we confirm that the spontaneous CP violation occurs in the $S_4^\prime$ model. The diffusion model enables an inverse problem approach, allowing the machine to provide a series of plausible model parameters from given experimental data. Moreover, it can serve as a versatile analytical tool for extracting new physical predictions from flavor models.
comment: 19 pages, 2 figures
☆ AI Judges in Design: Statistical Perspectives on Achieving Human Expert Equivalence With Vision-Language Models
The subjective evaluation of early stage engineering designs, such as conceptual sketches, traditionally relies on human experts. However, expert evaluations are time-consuming, expensive, and sometimes inconsistent. Recent advances in vision-language models (VLMs) offer the potential to automate design assessments, but it is crucial to ensure that these AI ``judges'' perform on par with human experts. However, no existing framework assesses expert equivalence. This paper introduces a rigorous statistical framework to determine whether an AI judge's ratings match those of human experts. We apply this framework in a case study evaluating four VLM-based judges on key design metrics (uniqueness, creativity, usefulness, and drawing quality). These AI judges employ various in-context learning (ICL) techniques, including uni- vs. multimodal prompts and inference-time reasoning. The same statistical framework is used to assess three trained novices for expert-equivalence. Results show that the top-performing AI judge, using text- and image-based ICL with reasoning, achieves expert-level agreement for uniqueness and drawing quality and outperforms or matches trained novices across all metrics. In 6/6 runs for both uniqueness and creativity, and 5/6 runs for both drawing quality and usefulness, its agreement with experts meets or exceeds that of the majority of trained novices. These findings suggest that reasoning-supported VLM models can achieve human-expert equivalence in design evaluation. This has implications for scaling design evaluation in education and practice, and provides a general statistical framework for validating AI judges in other domains requiring subjective content evaluation.
comment: 21 pages, 8 tables, 6 figures, 8 tables in the appendix
☆ CFIRE: A General Method for Combining Local Explanations
We propose a novel eXplainable AI algorithm to compute faithful, easy-to-understand, and complete global decision rules from local explanations for tabular data by combining XAI methods with closed frequent itemset mining. Our method can be used with any local explainer that indicates which dimensions are important for a given sample for a given black-box decision. This property allows our algorithm to choose among different local explainers, addressing the disagreement problem, \ie the observation that no single explanation method consistently outperforms others across models and datasets. Unlike usual experimental methodology, our evaluation also accounts for the Rashomon effect in model explainability. To this end, we demonstrate the robustness of our approach in finding suitable rules for nearly all of the 700 black-box models we considered across 14 benchmark datasets. The results also show that our method exhibits improved runtime, high precision and F1-score while generating compact and complete rules.
☆ Benchmarking Federated Machine Unlearning methods for Tabular Data
Machine unlearning, which enables a model to forget specific data upon request, is increasingly relevant in the era of privacy-centric machine learning, particularly within federated learning (FL) environments. This paper presents a pioneering study on benchmarking machine unlearning methods within a federated setting for tabular data, addressing the unique challenges posed by cross-silo FL where data privacy and communication efficiency are paramount. We explore unlearning at the feature and instance levels, employing both machine learning, random forest and logistic regression models. Our methodology benchmarks various unlearning algorithms, including fine-tuning and gradient-based approaches, across multiple datasets, with metrics focused on fidelity, certifiability, and computational efficiency. Experiments demonstrate that while fidelity remains high across methods, tree-based models excel in certifiability, ensuring exact unlearning, whereas gradient-based methods show improved computational efficiency. This study provides critical insights into the design and selection of unlearning algorithms tailored to the FL environment, offering a foundation for further research in privacy-preserving machine learning.
☆ Provably accurate adaptive sampling for collocation points in physics-informed neural networks
Despite considerable scientific advances in numerical simulation, efficiently solving PDEs remains a complex and often expensive problem. Physics-informed Neural Networks (PINN) have emerged as an efficient way to learn surrogate solvers by embedding the PDE in the loss function and minimizing its residuals using automatic differentiation at so-called collocation points. Originally uniformly sampled, the choice of the latter has been the subject of recent advances leading to adaptive sampling refinements for PINNs. In this paper, leveraging a new quadrature method for approximating definite integrals, we introduce a provably accurate sampling method for collocation points based on the Hessian of the PDE residuals. Comparative experiments conducted on a set of 1D and 2D PDEs demonstrate the benefits of our method.
comment: 20 pages. Comments are welcome
☆ Agent S2: A Compositional Generalist-Specialist Framework for Computer Use Agents
Computer use agents automate digital tasks by directly interacting with graphical user interfaces (GUIs) on computers and mobile devices, offering significant potential to enhance human productivity by completing an open-ended space of user queries. However, current agents face significant challenges: imprecise grounding of GUI elements, difficulties with long-horizon task planning, and performance bottlenecks from relying on single generalist models for diverse cognitive tasks. To this end, we introduce Agent S2, a novel compositional framework that delegates cognitive responsibilities across various generalist and specialist models. We propose a novel Mixture-of-Grounding technique to achieve precise GUI localization and introduce Proactive Hierarchical Planning, dynamically refining action plans at multiple temporal scales in response to evolving observations. Evaluations demonstrate that Agent S2 establishes new state-of-the-art (SOTA) performance on three prominent computer use benchmarks. Specifically, Agent S2 achieves 18.9% and 32.7% relative improvements over leading baseline agents such as Claude Computer Use and UI-TARS on the OSWorld 15-step and 50-step evaluation. Moreover, Agent S2 generalizes effectively to other operating systems and applications, surpassing previous best methods by 52.8% on WindowsAgentArena and by 16.52% on AndroidWorld relatively. Code available at https://github.com/simular-ai/Agent-S.
comment: 18 pages, 13 figures, 8 tables
☆ Explorable INR: An Implicit Neural Representation for Ensemble Simulation Enabling Efficient Spatial and Parameter Exploration
With the growing computational power available for high-resolution ensemble simulations in scientific fields such as cosmology and oceanology, storage and computational demands present significant challenges. Current surrogate models fall short in the flexibility of point- or region-based predictions as the entire field reconstruction is required for each parameter setting, hence hindering the efficiency of parameter space exploration. Limitations exist in capturing physical attribute distributions and pinpointing optimal parameter configurations. In this work, we propose Explorable INR, a novel implicit neural representation-based surrogate model, designed to facilitate exploration and allow point-based spatial queries without computing full-scale field data. In addition, to further address computational bottlenecks of spatial exploration, we utilize probabilistic affine forms (PAFs) for uncertainty propagation through Explorable INR to obtain statistical summaries, facilitating various ensemble analysis and visualization tasks that are expensive with existing models. Furthermore, we reformulate the parameter exploration problem as optimization tasks using gradient descent and KL divergence minimization that ensures scalability. We demonstrate that the Explorable INR with the proposed approach for spatial and parameter exploration can significantly reduce computation and memory costs while providing effective ensemble analysis.
comment: Accepted by IEEE Transactions on Visualization and Computer Graphics (TVCG)
☆ Role and Use of Race in AI/ML Models Related to Health
The role and use of race within health-related artificial intelligence and machine learning (AI/ML) models has sparked increasing attention and controversy. Despite the complexity and breadth of related issues, a robust and holistic framework to guide stakeholders in their examination and resolution remains lacking. This perspective provides a broad-based, systematic, and cross-cutting landscape analysis of race-related challenges, structured around the AI/ML lifecycle and framed through "points to consider" to support inquiry and decision-making.
☆ Privacy-Preserving Transfer Learning for Community Detection using Locally Distributed Multiple Networks
This paper develops a new spectral clustering-based method called TransNet for transfer learning in community detection of network data. Our goal is to improve the clustering performance of the target network using auxiliary source networks, which are heterogeneous, privacy-preserved, and locally stored across various sources. The edges of each locally stored network are perturbed using the randomized response mechanism to achieve differential privacy. Notably, we allow the source networks to have distinct privacy-preserving and heterogeneity levels as often desired in practice. To better utilize the information from the source networks, we propose a novel adaptive weighting method to aggregate the eigenspaces of the source networks multiplied by adaptive weights chosen to incorporate the effects of privacy and heterogeneity. We propose a regularization method that combines the weighted average eigenspace of the source networks with the eigenspace of the target network to achieve an optimal balance between them. Theoretically, we show that the adaptive weighting method enjoys the error-bound-oracle property in the sense that the error bound of the estimated eigenspace only depends on informative source networks. We also demonstrate that TransNet performs better than the estimator using only the target network and the estimator using only the weighted source networks.
Spectral Architecture Search for Neural Networks
Architecture design and optimization are challenging problems in the field of artificial neural networks. Working in this context, we here present SPARCS (SPectral ARchiteCture Search), a novel architecture search protocol which exploits the spectral attributes of the inter-layer transfer matrices. SPARCS allows one to explore the space of possible architectures by spanning continuous and differentiable manifolds, thus enabling for gradient-based optimization algorithms to be eventually employed. With reference to simple benchmark models, we show that the newly proposed method yields a self-emerging architecture with a minimal degree of expressivity to handle the task under investigation and with a reduced parameter count as compared to other viable alternatives.
☆ CrackSQL: A Hybrid SQL Dialect Translation System Powered by Large Language Models
Dialect translation plays a key role in enabling seamless interaction across heterogeneous database systems. However, translating SQL queries between different dialects (e.g., from PostgreSQL to MySQL) remains a challenging task due to syntactic discrepancies and subtle semantic variations. Existing approaches including manual rewriting, rule-based systems, and large language model (LLM)-based techniques often involve high maintenance effort (e.g., crafting custom translation rules) or produce unreliable results (e.g., LLM generates non-existent functions), especially when handling complex queries. In this demonstration, we present CrackSQL, the first hybrid SQL dialect translation system that combines rule and LLM-based methods to overcome these limitations. CrackSQL leverages the adaptability of LLMs to minimize manual intervention, while enhancing translation accuracy by segmenting lengthy complex SQL via functionality-based query processing. To further improve robustness, it incorporates a novel cross-dialect syntax embedding model for precise syntax alignment, as well as an adaptive local-to-global translation strategy that effectively resolves interdependent query operations. CrackSQL supports three translation modes and offers multiple deployment and access options including a web console interface, a PyPI package, and a command-line prompt, facilitating adoption across a variety of real-world use cases
comment: Extension of our SIGMOD 2025 paper. Please refer to source code available at: https://github.com/weAIDB/CrackSQL
☆ Detection of Anomalous Vehicular Traffic and Sensor Failures Using Data Clustering Techniques
The increasing availability of traffic data from sensor networks has created new opportunities for understanding vehicular dynamics and identifying anomalies. In this study, we employ clustering techniques to analyse traffic flow data with the dual objective of uncovering meaningful traffic patterns and detecting anomalies, including sensor failures and irregular congestion events. We explore multiple clustering approaches, i.e partitioning and hierarchical methods, combined with various time-series representations and similarity measures. Our methodology is applied to real-world data from highway sensors, enabling us to assess the impact of different clustering frameworks on traffic pattern recognition. We also introduce a clustering-driven anomaly detection methodology that identifies deviations from expected traffic behaviour based on distance-based anomaly scores. Results indicate that hierarchical clustering with symbolic representations provides robust segmentation of traffic patterns, while partitioning methods such as k-means and fuzzy c-means yield meaningful results when paired with Dynamic Time Warping. The proposed anomaly detection strategy successfully identifies sensor malfunctions and abnormal traffic conditions with minimal false positives, demonstrating its practical utility for real-time monitoring. Real-world vehicular traffic data are provided by Autostrade Alto Adriatico S.p.A.
☆ P2NIA: Privacy-Preserving Non-Iterative Auditing
The emergence of AI legislation has increased the need to assess the ethical compliance of high-risk AI systems. Traditional auditing methods rely on platforms' application programming interfaces (APIs), where responses to queries are examined through the lens of fairness requirements. However, such approaches put a significant burden on platforms, as they are forced to maintain APIs while ensuring privacy, facing the possibility of data leaks. This lack of proper collaboration between the two parties, in turn, causes a significant challenge to the auditor, who is subject to estimation bias as they are unaware of the data distribution of the platform. To address these two issues, we present P2NIA, a novel auditing scheme that proposes a mutually beneficial collaboration for both the auditor and the platform. Extensive experiments demonstrate P2NIA's effectiveness in addressing both issues. In summary, our work introduces a privacy-preserving and non-iterative audit scheme that enhances fairness assessments using synthetic or local data, avoiding the challenges associated with traditional API-based audits.
comment: 19 pages, 8 figures
☆ Investigating the Capabilities and Limitations of Machine Learning for Identifying Bias in English Language Data with Information and Heritage Professionals
Despite numerous efforts to mitigate their biases, ML systems continue to harm already-marginalized people. While predominant ML approaches assume bias can be removed and fair models can be created, we show that these are not always possible, nor desirable, goals. We reframe the problem of ML bias by creating models to identify biased language, drawing attention to a dataset's biases rather than trying to remove them. Then, through a workshop, we evaluated the models for a specific use case: workflows of information and heritage professionals. Our findings demonstrate the limitations of ML for identifying bias due to its contextual nature, the way in which approaches to mitigating it can simultaneously privilege and oppress different communities, and its inevitability. We demonstrate the need to expand ML approaches to bias and fairness, providing a mixed-methods approach to investigating the feasibility of removing bias or achieving fairness in a given ML use case.
comment: Accepted to the 2025 CHI Conference on Human Factors in Computing Systems (CHI '25)
☆ Whispering Under the Eaves: Protecting User Privacy Against Commercial and LLM-powered Automatic Speech Recognition Systems
The widespread application of automatic speech recognition (ASR) supports large-scale voice surveillance, raising concerns about privacy among users. In this paper, we concentrate on using adversarial examples to mitigate unauthorized disclosure of speech privacy thwarted by potential eavesdroppers in speech communications. While audio adversarial examples have demonstrated the capability to mislead ASR models or evade ASR surveillance, they are typically constructed through time-intensive offline optimization, restricting their practicality in real-time voice communication. Recent work overcame this limitation by generating universal adversarial perturbations (UAPs) and enhancing their transferability for black-box scenarios. However, they introduced excessive noise that significantly degrades audio quality and affects human perception, thereby limiting their effectiveness in practical scenarios. To address this limitation and protect live users' speech against ASR systems, we propose a novel framework, AudioShield. Central to this framework is the concept of Transferable Universal Adversarial Perturbations in the Latent Space (LS-TUAP). By transferring the perturbations to the latent space, the audio quality is preserved to a large extent. Additionally, we propose target feature adaptation to enhance the transferability of UAPs by embedding target text features into the perturbations. Comprehensive evaluation on four commercial ASR APIs (Google, Amazon, iFlytek, and Alibaba), three voice assistants, two LLM-powered ASR and one NN-based ASR demonstrates the protection superiority of AudioShield over existing competitors, and both objective and subjective evaluations indicate that AudioShield significantly improves the audio quality. Moreover, AudioShield also shows high effectiveness in real-time end-to-end scenarios, and demonstrates strong resilience against adaptive countermeasures.
comment: Accept to USENIX Security 2025
☆ ReaLitE: Enrichment of Relation Embeddings in Knowledge Graphs using Numeric Literals
Most knowledge graph embedding (KGE) methods tailored for link prediction focus on the entities and relations in the graph, giving little attention to other literal values, which might encode important information. Therefore, some literal-aware KGE models attempt to either integrate numerical values into the embeddings of the entities or convert these numerics into entities during preprocessing, leading to information loss. Other methods concerned with creating relation-specific numerical features assume completeness of numerical data, which does not apply to real-world graphs. In this work, we propose ReaLitE, a novel relation-centric KGE model that dynamically aggregates and merges entities' numerical attributes with the embeddings of the connecting relations. ReaLitE is designed to complement existing conventional KGE methods while supporting multiple variations for numerical aggregations, including a learnable method. We comprehensively evaluated the proposed relation-centric embedding using several benchmarks for link prediction and node classification tasks. The results showed the superiority of ReaLitE over the state of the art in both tasks.
comment: Accepted at ESWC 2025
☆ Generalized Tensor-based Parameter-Efficient Fine-Tuning via Lie Group Transformations
Adapting pre-trained foundation models for diverse downstream tasks is a core practice in artificial intelligence. However, the wide range of tasks and high computational costs make full fine-tuning impractical. To overcome this, parameter-efficient fine-tuning (PEFT) methods like LoRA have emerged and are becoming a growing research focus. Despite the success of these methods, they are primarily designed for linear layers, focusing on two-dimensional matrices while largely ignoring higher-dimensional parameter spaces like convolutional kernels. Moreover, directly applying these methods to higher-dimensional parameter spaces often disrupts their structural relationships. Given the rapid advancements in matrix-based PEFT methods, rather than designing a specialized strategy, we propose a generalization that extends matrix-based PEFT methods to higher-dimensional parameter spaces without compromising their structural properties. Specifically, we treat parameters as elements of a Lie group, with updates modeled as perturbations in the corresponding Lie algebra. These perturbations are mapped back to the Lie group through the exponential map, ensuring smooth, consistent updates that preserve the inherent structure of the parameter space. Extensive experiments on computer vision and natural language processing validate the effectiveness and versatility of our approach, demonstrating clear improvements over existing methods.
☆ Logical perspectives on learning statistical objects
We consider the relationship between learnability of a ``base class'' of functions on a set X and learnability of a class of statistical functions derived from the base class. For example, we refine results showing that learnability of a family of functions implies learnability of the family of functions mapping a function in the class to its expectation under a distribution. We will look at both Probably Approximately Correct (PAC) learning, where example inputs and outputs are chosen at random, and online learning, where the examples are chosen adversarially. We establish improved bounds on the sample complexity of learning for statistical classes, stated in terms of combinatorial dimensions of the base class. We do this by adapting techniques introduced in model theory for ``randomizing a structure''. We give particular attention to classes derived from logical formulas, and relate learnability of the statistical classes to properties of the formula. Finally, we provide bounds on the complexity of learning the statistical classes built on top of a logic-based hypothesis class.
☆ PRISM-0: A Predicate-Rich Scene Graph Generation Framework for Zero-Shot Open-Vocabulary Tasks
In Scene Graphs Generation (SGG) one extracts structured representation from visual inputs in the form of objects nodes and predicates connecting them. This facilitates image-based understanding and reasoning for various downstream tasks. Although fully supervised SGG approaches showed steady performance improvements, they suffer from a severe training bias. This is caused by the availability of only small subsets of curated data and exhibits long-tail predicate distribution issues with a lack of predicate diversity adversely affecting downstream tasks. To overcome this, we introduce PRISM-0, a framework for zero-shot open-vocabulary SGG that bootstraps foundation models in a bottom-up approach to capture the whole spectrum of diverse, open-vocabulary predicate prediction. Detected object pairs are filtered and passed to a Vision Language Model (VLM) that generates descriptive captions. These are used to prompt an LLM to generate fine-andcoarse-grained predicates for the pair. The predicates are then validated using a VQA model to provide a final SGG. With the modular and dataset-independent PRISM-0, we can enrich existing SG datasets such as Visual Genome (VG). Experiments illustrate that PRIMS-0 generates semantically meaningful graphs that improve downstream tasks such as Image Captioning and Sentence-to-Graph Retrieval with a performance on par to the best fully supervised methods.
☆ Spingarn's Method and Progressive Decoupling Beyond Elicitable Monotonicity
Spingarn's method of partial inverses and the progressive decoupling algorithm address inclusion problems involving the sum of an operator and the normal cone of a linear subspace, known as linkage problems. Despite their success, existing convergence results are limited to the so-called elicitable monotone setting, where nonmonotonicity is allowed only on the orthogonal complement of the linkage subspace. In this paper, we introduce progressive decoupling+, a generalized version of standard progressive decoupling that incorporates separate relaxation parameters for the linkage subspace and its orthogonal complement. We prove convergence under conditions that link the relaxation parameters to the nonmonotonicity of their respective subspaces and show that the special cases of Spingarn's method and standard progressive decoupling also extend beyond the elicitable monotone setting. Our analysis hinges upon an equivalence between progressive decoupling+ and the preconditioned proximal point algorithm, for which we develop a general local convergence analysis in a certain nonmonotone setting.
☆ Deep Generative Models: Complexity, Dimensionality, and Approximation
Generative networks have shown remarkable success in learning complex data distributions, particularly in generating high-dimensional data from lower-dimensional inputs. While this capability is well-documented empirically, its theoretical underpinning remains unclear. One common theoretical explanation appeals to the widely accepted manifold hypothesis, which suggests that many real-world datasets, such as images and signals, often possess intrinsic low-dimensional geometric structures. Under this manifold hypothesis, it is widely believed that to approximate a distribution on a $d$-dimensional Riemannian manifold, the latent dimension needs to be at least $d$ or $d+1$. In this work, we show that this requirement on the latent dimension is not necessary by demonstrating that generative networks can approximate distributions on $d$-dimensional Riemannian manifolds from inputs of any arbitrary dimension, even lower than $d$, taking inspiration from the concept of space-filling curves. This approach, in turn, leads to a super-exponential complexity bound of the deep neural networks through expanded neurons. Our findings thus challenge the conventional belief on the relationship between input dimensionality and the ability of generative networks to model data distributions. This novel insight not only corroborates the practical effectiveness of generative networks in handling complex data structures, but also underscores a critical trade-off between approximation error, dimensionality, and model complexity.
☆ Mixture-of-Experts for Distributed Edge Computing with Channel-Aware Gating Function
In a distributed mixture-of-experts (MoE) system, a server collaborates with multiple specialized expert clients to perform inference. The server extracts features from input data and dynamically selects experts based on their areas of specialization to produce the final output. Although MoE models are widely valued for their flexibility and performance benefits, adapting distributed MoEs to operate effectively in wireless networks has remained unexplored. In this work, we introduce a novel channel-aware gating function for wireless distributed MoE, which incorporates channel conditions into the MoE gating mechanism. To train the channel-aware gating, we simulate various signal-to-noise ratios (SNRs) for each expert's communication channel and add noise to the features distributed to the experts based on these SNRs. The gating function then utilizes both features and SNRs to optimize expert selection. Unlike conventional MoE models which solely consider the alignment of features with the specializations of experts, our approach additionally considers the impact of channel conditions on expert performance. Experimental results demonstrate that the proposed channel-aware gating scheme outperforms traditional MoE models.
comment: 6 pages, 6 figures, published to ICC 2025
☆ Conditional Temporal Neural Processes with Covariance Loss
We introduce a novel loss function, Covariance Loss, which is conceptually equivalent to conditional neural processes and has a form of regularization so that is applicable to many kinds of neural networks. With the proposed loss, mappings from input variables to target variables are highly affected by dependencies of target variables as well as mean activation and mean dependencies of input and target variables. This nature enables the resulting neural networks to become more robust to noisy observations and recapture missing dependencies from prior information. In order to show the validity of the proposed loss, we conduct extensive sets of experiments on real-world datasets with state-of-the-art models and discuss the benefits and drawbacks of the proposed Covariance Loss.
comment: 11 pages, 18 figures
☆ FeatInsight: An Online ML Feature Management System on 4Paradigm Sage-Studio Platform
Feature management is essential for many online machine learning applications and can often become the performance bottleneck (e.g., taking up to 70% of the overall latency in sales prediction service). Improper feature configurations (e.g., introducing too many irrelevant features) can severely undermine the model's generalization capabilities. However, managing online ML features is challenging due to (1) large-scale, complex raw data (e.g., the 2018 PHM dataset contains 17 tables and dozens to hundreds of columns), (2) the need for high-performance, consistent computation of interdependent features with complex patterns, and (3) the requirement for rapid updates and deployments to accommodate real-time data changes. In this demo, we present FeatInsight, a system that supports the entire feature lifecycle, including feature design, storage, visualization, computation, verification, and lineage management. FeatInsight (with OpenMLDB as the execution engine) has been deployed in over 100 real-world scenarios on 4Paradigm's Sage Studio platform, handling up to a trillion-dimensional feature space and enabling millisecond-level feature updates. We demonstrate how FeatInsight enhances feature design efficiency (e.g., for online product recommendation) and improve feature computation performance (e.g., for online fraud detection). The code is available at https://github.com/4paradigm/FeatInsight.
☆ CellVTA: Enhancing Vision Foundation Models for Accurate Cell Segmentation and Classification
Cell instance segmentation is a fundamental task in digital pathology with broad clinical applications. Recently, vision foundation models, which are predominantly based on Vision Transformers (ViTs), have achieved remarkable success in pathology image analysis. However, their improvements in cell instance segmentation remain limited. A key challenge arises from the tokenization process in ViTs, which substantially reduces the spatial resolution of input images, leading to suboptimal segmentation quality, especially for small and densely packed cells. To address this problem, we propose CellVTA (Cell Vision Transformer with Adapter), a novel method that improves the performance of vision foundation models for cell instance segmentation by incorporating a CNN-based adapter module. This adapter extracts high-resolution spatial information from input images and injects it into the ViT through a cross-attention mechanism. Our method preserves the core architecture of ViT, ensuring seamless integration with pretrained foundation models. Extensive experiments show that CellVTA achieves 0.538 mPQ on the CoNIC dataset and 0.506 mPQ on the PanNuke dataset, which significantly outperforms the state-of-the-art cell segmentation methods. Ablation studies confirm the superiority of our approach over other fine-tuning strategies, including decoder-only fine-tuning and full fine-tuning. Our code and models are publicly available at https://github.com/JieZheng-ShanghaiTech/CellVTA.
☆ Automated Explanation of Machine Learning Models of Footballing Actions in Words
While football analytics has changed the way teams and analysts assess performance, there remains a communication gap between machine learning practice and how coaching staff talk about football. Coaches and practitioners require actionable insights, which are not always provided by models. To bridge this gap, we show how to build wordalizations (a novel approach that leverages large language models) for shots in football. Specifically, we first build an expected goals model using logistic regression. We then use the co-efficients of this regression model to write sentences describing how factors (such as distance, angle and defensive pressure) contribute to the model's prediction. Finally, we use large language models to give an entertaining description of the shot. We describe our approach in a model card and provide an interactive open-source application describing shots in recent tournaments. We discuss how shot wordalisations might aid communication in coaching and football commentary, and give a further example of how the same approach can be applied to other actions in football.
☆ TAMIS: Tailored Membership Inference Attacks on Synthetic Data
Membership Inference Attacks (MIA) enable to empirically assess the privacy of a machine learning algorithm. In this paper, we propose TAMIS, a novel MIA against differentially-private synthetic data generation methods that rely on graphical models. This attack builds upon MAMA-MIA, a recently-published state-of-the-art method. It lowers its computational cost and requires less attacker knowledge. Our attack is the product of a two-fold improvement. First, we recover the graphical model having generated a synthetic dataset by using solely that dataset, rather than shadow-modeling over an auxiliary one. This proves less costly and more performant. Second, we introduce a more mathematically-grounded attack score, that provides a natural threshold for binary predictions. In our experiments, TAMIS achieves better or similar performance as MAMA-MIA on replicas of the SNAKE challenge.
☆ Integrating Fourier Neural Operators with Diffusion Models to improve Spectral Representation of Synthetic Earthquake Ground Motion Response
Nuclear reactor buildings must be designed to withstand the dynamic load induced by strong ground motion earthquakes. For this reason, their structural behavior must be assessed in multiple realistic ground shaking scenarios (e.g., the Maximum Credible Earthquake). However, earthquake catalogs and recorded seismograms may not always be available in the region of interest. Therefore, synthetic earthquake ground motion is progressively being employed, although with some due precautions: earthquake physics is sometimes not well enough understood to be accurately reproduced with numerical tools, and the underlying epistemic uncertainties lead to prohibitive computational costs related to model calibration. In this study, we propose an AI physics-based approach to generate synthetic ground motion, based on the combination of a neural operator that approximates the elastodynamics Green's operator in arbitrary source-geology setups, enhanced by a denoising diffusion probabilistic model. The diffusion model is trained to correct the ground motion time series generated by the neural operator. Our results show that such an approach promisingly enhances the realism of the generated synthetic seismograms, with frequency biases and Goodness-Of-Fit (GOF) scores being improved by the diffusion model. This indicates that the latter is capable to mitigate the mid-frequency spectral falloff observed in the time series generated by the neural operator. Our method showcases fast and cheap inference in different site and source conditions.
☆ Automated Feature Labeling with Token-Space Gradient Descent ICLR 2025
We present a novel approach to feature labeling using gradient descent in token-space. While existing methods typically use language models to generate hypotheses about feature meanings, our method directly optimizes label representations by using a language model as a discriminator to predict feature activations. We formulate this as a multi-objective optimization problem in token-space, balancing prediction accuracy, entropy minimization, and linguistic naturalness. Our proof-of-concept experiments demonstrate successful convergence to interpretable single-token labels across diverse domains, including features for detecting animals, mammals, Chinese text, and numbers. Although our current implementation is constrained to single-token labels and relatively simple features, the results suggest that token-space gradient descent could become a valuable addition to the interpretability researcher's toolkit.
comment: 10 pages, 4 figures, Building Trust Workshop ICLR 2025
☆ $C^2$AV-TSE: Context and Confidence-aware Audio Visual Target Speaker Extraction
Audio-Visual Target Speaker Extraction (AV-TSE) aims to mimic the human ability to enhance auditory perception using visual cues. Although numerous models have been proposed recently, most of them estimate target signals by primarily relying on local dependencies within acoustic features, underutilizing the human-like capacity to infer unclear parts of speech through contextual information. This limitation results in not only suboptimal performance but also inconsistent extraction quality across the utterance, with some segments exhibiting poor quality or inadequate suppression of interfering speakers. To close this gap, we propose a model-agnostic strategy called the Mask-And-Recover (MAR). It integrates both inter- and intra-modality contextual correlations to enable global inference within extraction modules. Additionally, to better target challenging parts within each sample, we introduce a Fine-grained Confidence Score (FCS) model to assess extraction quality and guide extraction modules to emphasize improvement on low-quality segments. To validate the effectiveness of our proposed model-agnostic training paradigm, six popular AV-TSE backbones were adopted for evaluation on the VoxCeleb2 dataset, demonstrating consistent performance improvements across various metrics.
comment: Accepted by IEEE Journal of Selected Topics in Signal Processing (JSTSP)
☆ Detection of Disease on Nasal Breath Sound by New Lightweight Architecture: Using COVID-19 as An Example
Background. Infectious diseases, particularly COVID-19, continue to be a significant global health issue. Although many countries have reduced or stopped large-scale testing measures, the detection of such diseases remains a propriety. Objective. This study aims to develop a novel, lightweight deep neural network for efficient, accurate, and cost-effective detection of COVID-19 using a nasal breathing audio data collected via smartphones. Methodology. Nasal breathing audio from 128 patients diagnosed with the Omicron variant was collected. Mel-Frequency Cepstral Coefficients (MFCCs), a widely used feature in speech and sound analysis, were employed for extracting important characteristics from the audio signals. Additional feature selection was performed using Random Forest (RF) and Principal Component Analysis (PCA) for dimensionality reduction. A Dense-ReLU-Dropout model was trained with K-fold cross-validation (K=3), and performance metrics like accuracy, precision, recall, and F1-score were used to evaluate the model. Results. The proposed model achieved 97% accuracy in detecting COVID-19 from nasal breathing sounds, outperforming state-of-the-art methods such as those by [23] and [13]. Our Dense-ReLU-Dropout model, using RF and PCA for feature selection, achieves high accuracy with greater computational efficiency compared to existing methods that require more complex models or larger datasets. Conclusion. The findings suggest that the proposed method holds significant potential for clinical implementation, advancing smartphone-based diagnostics in infectious diseases. The Dense-ReLU-Dropout model, combined with innovative feature processing techniques, offers a promising approach for efficient and accurate COVID-19 detection, showcasing the capabilities of mobile device-based diagnostics
comment: 14 pages, 5 figures, 6 tables
☆ EMO: Edge Model Overlays to Scale Model Size in Federated Learning
Federated Learning (FL) trains machine learning models on edge devices with distributed data. However, the computational and memory limitations of these devices restrict the training of large models using FL. Split Federated Learning (SFL) addresses this challenge by distributing the model across the device and server, but it introduces a tightly coupled data flow, leading to computational bottlenecks and high communication costs. We propose EMO as a solution to enable the training of large models in FL while mitigating the challenges of SFL. EMO introduces Edge Model Overlay(s) between the device and server, enabling the creation of a larger ensemble model without modifying the FL workflow. The key innovation in EMO is Augmented Federated Learning (AFL), which builds an ensemble model by connecting the original (smaller) FL model with model(s) trained in the overlay(s) to facilitate horizontal or vertical scaling. This is accomplished through three key modules: a hierarchical activation replay cache to decouple AFL from FL, a convergence-aware communication controller to optimize communication overhead, and an ensemble inference module. Evaluations on a real-world prototype show that EMO improves accuracy by up to 17.77% compared to FL, and reduces communication costs by up to 7.17x and decreases training time by up to 6.9x compared to SFL.
comment: Poster accepted at IEEE ICDCS 2025
☆ Communication-Efficient l_0 Penalized Least Square
In this paper, we propose a communication-efficient penalized regression algorithm for high-dimensional sparse linear regression models with massive data. This approach incorporates an optimized distributed system communication algorithm, named CESDAR algorithm, based on the Enhanced Support Detection and Root finding algorithm. The CESDAR algorithm leverages data distributed across multiple machines to compute and update the active set and introduces the communication-efficient surrogate likelihood framework to approximate the optimal solution for the full sample on the active set, resulting in the avoidance of raw data transmission, which enhances privacy and data security, while significantly improving algorithm execution speed and substantially reducing communication costs. Notably, this approach achieves the same statistical accuracy as the global estimator. Furthermore, this paper explores an extended version of CESDAR and an adaptive version of CESDAR to enhance algorithmic speed and optimize parameter selection, respectively. Simulations and real data benchmarks experiments demonstrate the efficiency and accuracy of the CESDAR algorithm.
☆ Alleviating Performance Disparity in Adversarial Spatiotemporal Graph Learning Under Zero-Inflated Distribution
Spatiotemporal Graph Learning (SGL) under Zero-Inflated Distribution (ZID) is crucial for urban risk management tasks, including crime prediction and traffic accident profiling. However, SGL models are vulnerable to adversarial attacks, compromising their practical utility. While adversarial training (AT) has been widely used to bolster model robustness, our study finds that traditional AT exacerbates performance disparities between majority and minority classes under ZID, potentially leading to irreparable losses due to underreporting critical risk events. In this paper, we first demonstrate the smaller top-k gradients and lower separability of minority class are key factors contributing to this disparity. To address these issues, we propose MinGRE, a framework for Minority Class Gradients and Representations Enhancement. MinGRE employs a multi-dimensional attention mechanism to reweight spatiotemporal gradients, minimizing the gradient distribution discrepancies across classes. Additionally, we introduce an uncertainty-guided contrastive loss to improve the inter-class separability and intra-class compactness of minority representations with higher uncertainty. Extensive experiments demonstrate that the MinGRE framework not only significantly reduces the performance disparity across classes but also achieves enhanced robustness compared to existing baselines. These findings underscore the potential of our method in fostering the development of more equitable and robust models.
Spectral Normalization and Voigt-Reuss net: A universal approach to microstructure-property forecasting with physical guarantees
Heterogeneous materials are crucial to producing lightweight components, functional components, and structures composed of them. A crucial step in the design process is the rapid evaluation of their effective mechanical, thermal, or, in general, constitutive properties. The established procedure is to use forward models that accept microstructure geometry and local constitutive properties as inputs. The classical simulation-based approach, which uses, e.g., finite elements and FFT-based solvers, can require substantial computational resources. At the same time, simulation-based models struggle to provide gradients with respect to the microstructure and the constitutive parameters. Such gradients are, however, of paramount importance for microstructure design and for inverting the microstructure-property mapping. Machine learning surrogates can excel in these situations. However, they can lead to unphysical predictions that violate essential bounds on the constitutive response, such as the upper (Voigt-like) or the lower (Reuss-like) bound in linear elasticity. Therefore, we propose a novel spectral normalization scheme that a priori enforces these bounds. The approach is fully agnostic with respect to the chosen microstructural features and the utilized surrogate model. All of these will automatically and strictly predict outputs that obey the upper and lower bounds by construction. The technique can be used for any constitutive tensor that is symmetric and where upper and lower bounds (in the L\"owner sense) exist, i.e., for permeability, thermal conductivity, linear elasticity, and many more. We demonstrate the use of spectral normalization in the Voigt-Reuss net using a simple neural network. Numerical examples on truly extensive datasets illustrate the improved accuracy, robustness, and independence of the type of input features in comparison to much-used neural networks.
☆ GraphMaster: Automated Graph Synthesis via LLM Agents in Data-Limited Environments
The era of foundation models has revolutionized AI research, yet Graph Foundation Models (GFMs) remain constrained by the scarcity of large-scale graph corpora. Traditional graph data synthesis techniques primarily focus on simplistic structural operations, lacking the capacity to generate semantically rich nodes with meaningful textual attributes: a critical limitation for real-world applications. While large language models (LLMs) demonstrate exceptional text generation capabilities, their direct application to graph synthesis is impeded by context window limitations, hallucination phenomena, and structural consistency challenges. To address these issues, we introduce GraphMaster, the first multi-agent framework specifically designed for graph data synthesis in data-limited environments. GraphMaster orchestrates four specialized LLM agents (Manager, Perception, Enhancement, and Evaluation) that collaboratively optimize the synthesis process through iterative refinement, ensuring both semantic coherence and structural integrity. To rigorously evaluate our approach, we create new data-limited "Sub" variants of six standard graph benchmarks, specifically designed to test synthesis capabilities under realistic constraints. Additionally, we develop a novel interpretability assessment framework that combines human evaluation with a principled Grassmannian manifold-based analysis, providing both qualitative and quantitative measures of semantic coherence. Experimental results demonstrate that GraphMaster significantly outperforms traditional synthesis methods across multiple datasets, establishing a strong foundation for advancing GFMs in data-scarce environments.
☆ Science Autonomy using Machine Learning for Astrobiology
In recent decades, artificial intelligence (AI) including machine learning (ML) have become vital for space missions enabling rapid data processing, advanced pattern recognition, and enhanced insight extraction. These tools are especially valuable in astrobiology applications, where models must distinguish biotic patterns from complex abiotic backgrounds. Advancing the integration of autonomy through AI and ML into space missions is a complex challenge, and we believe that by focusing on key areas, we can make significant progress and offer practical recommendations for tackling these obstacles.
comment: 8 pages (expanded citations compared to 5 page submitted version for DARES white papers), a white paper for the 2025 NASA Decadal Astrobiology Research and Exploration Strategy (DARES)
☆ Energy Weighted Learning Progress Guided Interleaved Multi-Task Learning
Humans can continuously acquire new skills and knowledge by exploiting existing ones for improved learning, without forgetting them. Similarly, 'continual learning' in machine learning aims to learn new information while preserving the previously acquired knowledge. Existing research often overlooks the nature of human learning, where tasks are interleaved due to human choice or environmental constraints. So, almost never do humans master one task before switching to the next. To investigate to what extent human-like learning can benefit the learner, we propose a method that interleaves tasks based on their 'learning progress' and energy consumption. From a machine learning perspective, our approach can be seen as a multi-task learning system that balances learning performance with energy constraints while mimicking ecologically realistic human task learning. To assess the validity of our approach, we consider a robot learning setting in simulation, where the robot learns the effect of its actions in different contexts. The conducted experiments show that our proposed method achieves better performance than sequential task learning and reduces energy consumption for learning the tasks.
comment: 15 pages, 8 figures
☆ Command A: An Enterprise-Ready Large Language Model
In this report we describe the development of Command A, a powerful large language model purpose-built to excel at real-world enterprise use cases. Command A is an agent-optimised and multilingual-capable model, with support for 23 languages of global business, and a novel hybrid architecture balancing efficiency with top of the range performance. It offers best-in-class Retrieval Augmented Generation (RAG) capabilities with grounding and tool use to automate sophisticated business processes. These abilities are achieved through a decentralised training approach, including self-refinement algorithms and model merging techniques. We also include results for Command R7B which shares capability and architectural similarities to Command A. Weights for both models have been released for research purposes. This technical report details our original training pipeline and presents an extensive evaluation of our models across a suite of enterprise-relevant tasks and public benchmarks, demonstrating excellent performance and efficiency.
comment: 55 pages
☆ On Benchmarking Code LLMs for Android Malware Analysis
Large Language Models (LLMs) have demonstrated strong capabilities in various code intelligence tasks. However, their effectiveness for Android malware analysis remains underexplored. Decompiled Android code poses unique challenges for analysis, primarily due to its large volume of functions and the frequent absence of meaningful function names. This paper presents Cama, a benchmarking framework designed to systematically evaluate the effectiveness of Code LLMs in Android malware analysis tasks. Cama specifies structured model outputs (comprising function summaries, refined function names, and maliciousness scores) to support key malware analysis tasks, including malicious function identification and malware purpose summarization. Built on these, it integrates three domain-specific evaluation metrics, consistency, fidelity, and semantic relevance, enabling rigorous stability and effectiveness assessment and cross-model comparison. We construct a benchmark dataset consisting of 118 Android malware samples, encompassing over 7.5 million distinct functions, and use Cama to evaluate four popular open-source models. Our experiments provide insights into how Code LLMs interpret decompiled code and quantify the sensitivity to function renaming, highlighting both the potential and current limitations of Code LLMs in malware analysis tasks.
☆ Sim-is-More: Randomizing HW-NAS with Synthetic Devices
Existing hardware-aware NAS (HW-NAS) methods typically assume access to precise information circa the target device, either via analytical approximations of the post-compilation latency model, or through learned latency predictors. Such approximate approaches risk introducing estimation errors that may prove detrimental in risk-sensitive applications. In this work, we propose a two-stage HW-NAS framework, in which we first learn an architecture controller on a distribution of synthetic devices, and then directly deploy the controller on a target device. At test-time, our network controller deploys directly to the target device without relying on any pre-collected information, and only exploits direct interactions. In particular, the pre-training phase on synthetic devices enables the controller to design an architecture for the target device by interacting with it through a small number of high-fidelity latency measurements. To guarantee accessibility of our method, we only train our controller with training-free accuracy proxies, allowing us to scale the meta-training phase without incurring the overhead of full network training. We benchmark on HW-NATS-Bench, demonstrating that our method generalizes to unseen devices and searches for latency-efficient architectures by in-context adaptation using only a few real-world latency evaluations at test-time.
☆ Learning to Normalize on the SPD Manifold under Bures-Wasserstein Geometry CVPR 2025
Covariance matrices have proven highly effective across many scientific fields. Since these matrices lie within the Symmetric Positive Definite (SPD) manifold - a Riemannian space with intrinsic non-Euclidean geometry, the primary challenge in representation learning is to respect this underlying geometric structure. Drawing inspiration from the success of Euclidean deep learning, researchers have developed neural networks on the SPD manifolds for more faithful covariance embedding learning. A notable advancement in this area is the implementation of Riemannian batch normalization (RBN), which has been shown to improve the performance of SPD network models. Nonetheless, the Riemannian metric beneath the existing RBN might fail to effectively deal with the ill-conditioned SPD matrices (ICSM), undermining the effectiveness of RBN. In contrast, the Bures-Wasserstein metric (BWM) demonstrates superior performance for ill-conditioning. In addition, the recently introduced Generalized BWM (GBWM) parameterizes the vanilla BWM via an SPD matrix, allowing for a more nuanced representation of vibrant geometries of the SPD manifold. Therefore, we propose a novel RBN algorithm based on the GBW geometry, incorporating a learnable metric parameter. Moreover, the deformation of GBWM by matrix power is also introduced to further enhance the representational capacity of GBWM-based RBN. Experimental results on different datasets validate the effectiveness of our proposed method.
comment: Accepted by CVPR 2025
☆ Impact of Data Duplication on Deep Neural Network-Based Image Classifiers: Robust vs. Standard Models
The accuracy and robustness of machine learning models against adversarial attacks are significantly influenced by factors such as training data quality, model architecture, the training process, and the deployment environment. In recent years, duplicated data in training sets, especially in language models, has attracted considerable attention. It has been shown that deduplication enhances both training performance and model accuracy in language models. While the importance of data quality in training image classifier Deep Neural Networks (DNNs) is widely recognized, the impact of duplicated images in the training set on model generalization and performance has received little attention. In this paper, we address this gap and provide a comprehensive study on the effect of duplicates in image classification. Our analysis indicates that the presence of duplicated images in the training set not only negatively affects the efficiency of model training but also may result in lower accuracy of the image classifier. This negative impact of duplication on accuracy is particularly evident when duplicated data is non-uniform across classes or when duplication, whether uniform or non-uniform, occurs in the training set of an adversarially trained model. Even when duplicated samples are selected in a uniform way, increasing the amount of duplication does not lead to a significant improvement in accuracy.
☆ Feature Subset Weighting for Distance-based Supervised Learning through Choquet Integration
This paper introduces feature subset weighting using monotone measures for distance-based supervised learning. The Choquet integral is used to define a distance metric that incorporates these weights. This integration enables the proposed distances to effectively capture non-linear relationships and account for interactions both between conditional and decision attributes and among conditional attributes themselves, resulting in a more flexible distance measure. In particular, we show how this approach ensures that the distances remain unaffected by the addition of duplicate and strongly correlated features. Another key point of this approach is that it makes feature subset weighting computationally feasible, since only $m$ feature subset weights should be calculated each time instead of calculating all feature subset weights ($2^m$), where $m$ is the number of attributes. Next, we also examine how the use of the Choquet integral for measuring similarity leads to a non-equivalent definition of distance. The relationship between distance and similarity is further explored through dual measures. Additionally, symmetric Choquet distances and similarities are proposed, preserving the classical symmetry between similarity and distance. Finally, we introduce a concrete feature subset weighting distance, evaluate its performance in a $k$-nearest neighbors (KNN) classification setting, and compare it against Mahalanobis distances and weighted distance methods.
☆ Deep Learning Model Predictive Control for Deep Brain Stimulation in Parkinson's Disease
We present a nonlinear data-driven Model Predictive Control (MPC) algorithm for deep brain stimulation (DBS) for the treatment of Parkinson's disease (PD). Although DBS is typically implemented in open-loop, closed-loop DBS (CLDBS) uses the amplitude of neural oscillations in specific frequency bands (e.g. beta 13-30 Hz) as a feedback signal, resulting in improved treatment outcomes with reduced side effects and slower rates of patient habituation to stimulation. To date, CLDBS has only been implemented in vivo with simple control algorithms, such as proportional or proportional-integral control. Our approach employs a multi-step predictor based on differences of input-convex neural networks to model the future evolution of beta oscillations. The use of a multi-step predictor enhances prediction accuracy over the optimization horizon and simplifies online computation. In tests using a simulated model of beta-band activity response and data from PD patients, we achieve reductions of more than 20% in both tracking error and control activity in comparison with existing CLDBS algorithms. The proposed control strategy provides a generalizable data-driven technique that can be applied to the treatment of PD and other diseases targeted by CLDBS, as well as to other neuromodulation techniques.
☆ Bi-Grid Reconstruction for Image Anomaly Detection
In image anomaly detection, significant advancements have been made using un- and self-supervised methods with datasets containing only normal samples. However, these approaches often struggle with fine-grained anomalies. This paper introduces \textbf{GRAD}: Bi-\textbf{G}rid \textbf{R}econstruction for Image \textbf{A}nomaly \textbf{D}etection, which employs two continuous grids to enhance anomaly detection from both normal and abnormal perspectives. In this work: 1) Grids as feature repositories that improve generalization and mitigate the Identical Shortcut (IS) issue; 2) An abnormal feature grid that refines normal feature boundaries, boosting detection of fine-grained defects; 3) The Feature Block Paste (FBP) module, which synthesizes various anomalies at the feature level for quick abnormal grid deployment. GRAD's robust representation capabilities also allow it to handle multiple classes with a single model. Evaluations on datasets like MVTecAD, VisA, and GoodsAD show significant performance improvements in fine-grained anomaly detection. GRAD excels in overall accuracy and in discerning subtle differences, demonstrating its superiority over existing methods.
☆ Data Cleansing for GANs
As the application of generative adversarial networks (GANs) expands, it becomes increasingly critical to develop a unified approach that improves performance across various generative tasks. One effective strategy that applies to any machine learning task is identifying harmful instances, whose removal improves the performance. While previous studies have successfully estimated these harmful training instances in supervised settings, their approaches are not easily applicable to GANs. The challenge lies in two requirements of the previous approaches that do not apply to GANs. First, previous approaches require that the absence of a training instance directly affects the parameters. However, in the training for GANs, the instances do not directly affect the generator's parameters since they are only fed into the discriminator. Second, previous approaches assume that the change in loss directly quantifies the harmfulness of the instance to a model's performance, while common types of GAN losses do not always reflect the generative performance. To overcome the first challenge, we propose influence estimation methods that use the Jacobian of the generator's gradient with respect to the discriminator's parameters (and vice versa). Such a Jacobian represents the indirect effect between two models: how removing an instance from the discriminator's training changes the generator's parameters. Second, we propose an instance evaluation scheme that measures the harmfulness of each training instance based on how a GAN evaluation metric (e.g., Inception score) is expected to change by the instance's removal. Furthermore, we demonstrate that removing the identified harmful instances significantly improves the generative performance on various GAN evaluation metrics.
comment: Accepted for IEEE Transactions on Neural Networks and Learning Systems (TNNLS, 2025). Journal extention of https://openreview.net/forum?id=opHLcXxYTC_
☆ Near Field Localization via AI-Aided Subspace Methods
The increasing demands for high-throughput and energy-efficient wireless communications are driving the adoption of extremely large antennas operating at high-frequency bands. In these regimes, multiple users will reside in the radiative near-field, and accurate localization becomes essential. Unlike conventional far-field systems that rely solely on DOA estimation, near-field localization exploits spherical wavefront propagation to recover both DOA and range information. While subspace-based methods, such as MUSIC and its extensions, offer high resolution and interpretability for near-field localization, their performance is significantly impacted by model assumptions, including non-coherent sources, well-calibrated arrays, and a sufficient number of snapshots. To address these limitations, this work proposes AI-aided subspace methods for near-field localization that enhance robustness to real-world challenges. Specifically, we introduce NF-SubspaceNet, a deep learning-augmented 2D MUSIC algorithm that learns a surrogate covariance matrix to improve localization under challenging conditions, and DCD-MUSIC, a cascaded AI-aided approach that decouples angle and range estimation to reduce computational complexity. We further develop a novel model-order-aware training method to accurately estimate the number of sources, that is combined with casting of near field subspace methods as AI models for learning. Extensive simulations demonstrate that the proposed methods outperform classical and existing deep-learning-based localization techniques, providing robust near-field localization even under coherent sources, miscalibrations, and few snapshots.
comment: Under review for publication in the IEEE Transactions on Wireless Communications
☆ NeuraLUT-Assemble: Hardware-aware Assembling of Sub-Neural Networks for Efficient LUT Inference
Efficient neural networks (NNs) leveraging lookup tables (LUTs) have demonstrated significant potential for emerging AI applications, particularly when deployed on field-programmable gate arrays (FPGAs) for edge computing. These architectures promise ultra-low latency and reduced resource utilization, broadening neural network adoption in fields such as particle physics. However, existing LUT-based designs suffer from accuracy degradation due to the large fan-in required by neurons being limited by the exponential scaling of LUT resources with input width. In practice, in prior work this tension has resulted in the reliance on extremely sparse models. We present NeuraLUT-Assemble, a novel framework that addresses these limitations by combining mixed-precision techniques with the assembly of larger neurons from smaller units, thereby increasing connectivity while keeping the number of inputs of any given LUT manageable. Additionally, we introduce skip-connections across entire LUT structures to improve gradient flow. NeuraLUT-Assemble closes the accuracy gap between LUT-based methods and (fully-connected) MLP-based models, achieving competitive accuracy on tasks such as network intrusion detection, digit classification, and jet classification, demonstrating up to $8.42\times$ reduction in the area-delay product compared to the state-of-the-art at the time of the publication.
Efficient Annotator Reliablity Assessment with EffiARA
Data annotation is an essential component of the machine learning pipeline; it is also a costly and time-consuming process. With the introduction of transformer-based models, annotation at the document level is increasingly popular; however, there is no standard framework for structuring such tasks. The EffiARA annotation framework is, to our knowledge, the first project to support the whole annotation pipeline, from understanding the resources required for an annotation task to compiling the annotated dataset and gaining insights into the reliability of individual annotators as well as the dataset as a whole. The framework's efficacy is supported by two previous studies: one improving classification performance through annotator-reliability-based soft label aggregation and sample weighting, and the other increasing the overall agreement among annotators through removing identifying and replacing an unreliable annotator. This work introduces the EffiARA Python package and its accompanying webtool, which provides an accessible graphical user interface for the system. We open-source the EffiARA Python package at https://github.com/MiniEggz/EffiARA and the webtool is publicly accessible at https://effiara.gate.ac.uk.
☆ Geometric Median Matching for Robust k-Subset Selection from Noisy Data
Data pruning -- the combinatorial task of selecting a small and representative subset from a large dataset, is crucial for mitigating the enormous computational costs associated with training data-hungry modern deep learning models at scale. Since large scale data collections are invariably noisy, developing data pruning strategies that remain robust even in the presence of corruption is critical in practice. However, existing data pruning methods often fail under high corruption rates due to their reliance on empirical mean estimation, which is highly sensitive to outliers. In response, we propose Geometric Median (GM) Matching, a novel k-subset selection strategy that leverages Geometric Median -- a robust estimator with an optimal breakdown point of 1/2; to enhance resilience against noisy data. Our method iteratively selects a k-subset such that the mean of the subset approximates the GM of the (potentially) noisy dataset, ensuring robustness even under arbitrary corruption. We provide theoretical guarantees, showing that GM Matching enjoys an improved O(1/k) convergence rate -- a quadratic improvement over random sampling, even under arbitrary corruption. Extensive experiments across image classification and image generation tasks demonstrate that GM Matching consistently outperforms existing pruning approaches, particularly in high-corruption settings and at high pruning rates; making it a strong baseline for robust data pruning.
Efficient LLaMA-3.2-Vision by Trimming Cross-attended Visual Features CVPR 2025
Visual token reduction lowers inference costs caused by extensive image features in large vision-language models (LVLMs). Unlike relevant studies that prune tokens in self-attention-only LVLMs, our work uniquely addresses cross-attention-based models, which achieve superior performance. We identify that the key-value (KV) cache size for image tokens in cross-attention layers significantly exceeds that of text tokens in self-attention layers, posing a major compute bottleneck. To mitigate this issue, we exploit the sparse nature in cross-attention maps to selectively prune redundant visual features. Our Trimmed Llama effectively reduces KV cache demands without requiring additional training. By benefiting from 50%-reduced visual features, our model can reduce inference latency and memory usage while achieving benchmark parity.
comment: accepted at CVPR 2025 Workshop on ELVM
☆ MARIOH: Multiplicity-Aware Hypergraph Reconstruction ICDE '25
Hypergraphs offer a powerful framework for modeling higher-order interactions that traditional pairwise graphs cannot fully capture. However, practical constraints often lead to their simplification into projected graphs, resulting in substantial information loss and ambiguity in representing higher-order relationships. In this work, we propose MARIOH, a supervised approach for reconstructing the original hypergraph from its projected graph by leveraging edge multiplicity. To overcome the difficulties posed by the large search space, MARIOH integrates several key ideas: (a) identifying provable size-2 hyperedges, which reduces the candidate search space, (b) predicting the likelihood of candidates being hyperedges by utilizing both structural and multiplicity-related features, and (c) not only targeting promising hyperedge candidates but also examining less confident ones to explore alternative possibilities. Together, these ideas enable MARIOH to efficiently and effectively explore the search space. In our experiments using 10 real-world datasets, MARIOH achieves up to 74.51% higher reconstruction accuracy compared to state-of-the-art methods.
comment: to be published in the 41st IEEE International Conference on Data Engineering (ICDE '25)
☆ SCRec: A Scalable Computational Storage System with Statistical Sharding and Tensor-train Decomposition for Recommendation Models
Deep Learning Recommendation Models (DLRMs) play a crucial role in delivering personalized content across web applications such as social networking and video streaming. However, with improvements in performance, the parameter size of DLRMs has grown to terabyte (TB) scales, accompanied by memory bandwidth demands exceeding TB/s levels. Furthermore, the workload intensity within the model varies based on the target mechanism, making it difficult to build an optimized recommendation system. In this paper, we propose SCRec, a scalable computational storage recommendation system that can handle TB-scale industrial DLRMs while guaranteeing high bandwidth requirements. SCRec utilizes a software framework that features a mixed-integer programming (MIP)-based cost model, efficiently fetching data based on data access patterns and adaptively configuring memory-centric and compute-centric cores. Additionally, SCRec integrates hardware acceleration cores to enhance DLRM computations, particularly allowing for the high-performance reconstruction of approximated embedding vectors from extremely compressed tensor-train (TT) format. By combining its software framework and hardware accelerators, while eliminating data communication overhead by being implemented on a single server, SCRec achieves substantial improvements in DLRM inference performance. It delivers up to 55.77$\times$ speedup compared to a CPU-DRAM system with no loss in accuracy and up to 13.35$\times$ energy efficiency gains over a multi-GPU system.
comment: 14 pages, 12 figures
♻ ☆ Self-Supervised Pretraining for Aerial Road Extraction
Deep neural networks for aerial image segmentation require large amounts of labeled data, but high-quality aerial datasets with precise annotations are scarce and costly to produce. To address this limitation, we propose a self-supervised pretraining method that improves segmentation performance while reducing reliance on labeled data. Our approach uses inpainting-based pretraining, where the model learns to reconstruct missing regions in aerial images, capturing their inherent structure before being fine-tuned for road extraction. This method improves generalization, enhances robustness to domain shifts, and is invariant to model architecture and dataset choice. Experiments show that our pretraining significantly boosts segmentation accuracy, especially in low-data regimes, making it a scalable solution for aerial image analysis.
comment: Accepted at 36th IEEE Intelligent Vehicles Symposium (IV) 2025 Joint Workshop on Safety, Metrics and Benchmarks for Autonomous Driving
♻ ☆ Evaluating machine learning models for predicting pesticides toxicity to honey bees
Small molecules play a critical role in the biomedical, environmental, and agrochemical domains, each with distinct physicochemical requirements and success criteria. Although biomedical research benefits from extensive datasets and established benchmarks, agrochemical data remain scarce, particularly with respect to species-specific toxicity. This work focuses on ApisTox, the most comprehensive dataset of experimentally validated chemical toxicity to the honey bee (Apis mellifera), an ecologically vital pollinator. We evaluate ApisTox using a diverse suite of machine learning approaches, including molecular fingerprints, graph kernels, and graph neural networks, as well as pretrained models. Comparative analysis with medicinal datasets from the MoleculeNet benchmark reveals that ApisTox represents a distinct chemical space. Performance degradation on non-medicinal datasets, such as ApisTox, demonstrates their limited generalizability of current state-of-the-art algorithms trained solely on biomedical data. Our study highlights the need for more diverse datasets and for targeted model development geared toward the agrochemical domain.
♻ ☆ Innovative LSGTime Model for Crime Spatiotemporal Prediction Based on MindSpore Framework
With the acceleration of urbanization, the spatiotemporal characteristics of criminal activities have become increasingly complex. Accurate prediction of crime distribution is crucial for optimizing the allocation of police resources and preventing crime. This paper proposes LGSTime, a crime spatiotemporal prediction model that integrates Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and the Multi-head Sparse Self-attention mechanism. LSTM and GRU capture long-term dependencies in crime time series, such as seasonality and periodicity, through their unique gating mechanisms. The Multi-head Sparse Self-attention mechanism, on the other hand, focuses on both temporal and spatial features of criminal events simultaneously through parallel processing and sparsification techniques, significantly improving computational efficiency and prediction accuracy. The integrated model leverages the strengths of each technique to better handle complex spatiotemporal data. Experimental findings demonstrate that the model attains optimal performance across four real - world crime datasets. In comparison to the CNN model, it exhibits performance enhancements of 2.8\%, 1.9\%, and 1.4\% in the Mean Squared Error (MSE), Mean Absolute Error (MAE), and Root Mean Squared Error (RMSE) metrics respectively. These results offer a valuable reference for tackling the challenges in crime prediction.
♻ ☆ PharMolixFM: All-Atom Foundation Models for Molecular Modeling and Generation
Structural biology relies on accurate three-dimensional biomolecular structures to advance our understanding of biological functions, disease mechanisms, and therapeutics. While recent advances in deep learning have enabled the development of all-atom foundation models for molecular modeling and generation, existing approaches face challenges in generalization due to the multi-modal nature of atomic data and the lack of comprehensive analysis of training and sampling strategies. To address these limitations, we propose PharMolixFM, a unified framework for constructing all-atom foundation models based on multi-modal generative techniques. Our framework includes three variants using state-of-the-art multi-modal generative models. By formulating molecular tasks as a generalized denoising process with task-specific priors, PharMolixFM achieves robust performance across various structural biology applications. Experimental results demonstrate that PharMolixFM-Diff achieves competitive prediction accuracy in protein-small-molecule docking (83.9% vs. 90.2% RMSD < 2{\AA}, given pocket) with significantly improved inference speed. Moreover, we explore the empirical inference scaling law by introducing more sampling repeats or steps. Our code and model are available at https://github.com/PharMolix/OpenBioMed.
♻ ☆ When Counterfactual Reasoning Fails: Chaos and Real-World Complexity
Counterfactual reasoning, a cornerstone of human cognition and decision-making, is often seen as the 'holy grail' of causal learning, with applications ranging from interpreting machine learning models to promoting algorithmic fairness. While counterfactual reasoning has been extensively studied in contexts where the underlying causal model is well-defined, real-world causal modeling is often hindered by model and parameter uncertainty, observational noise, and chaotic behavior. The reliability of counterfactual analysis in such settings remains largely unexplored. In this work, we investigate the limitations of counterfactual reasoning within the framework of Structural Causal Models. Specifically, we empirically investigate \emph{counterfactual sequence estimation} and highlight cases where it becomes increasingly unreliable. We find that realistic assumptions, such as low degrees of model uncertainty or chaotic dynamics, can result in counterintuitive outcomes, including dramatic deviations between predicted and true counterfactual trajectories. This work urges caution when applying counterfactual reasoning in settings characterized by chaos and uncertainty. Furthermore, it raises the question of whether certain systems may pose fundamental limitations on the ability to answer counterfactual questions about their behavior.
♻ ☆ Time-Series Forecasting via Topological Information Supervised Framework with Efficient Topological Feature Learning
Topological Data Analysis (TDA) has emerged as a powerful tool for extracting meaningful features from complex data structures, driving significant advancements in fields such as neuroscience, biology, machine learning, and financial modeling. Despite its success, the integration of TDA with time-series prediction remains underexplored due to three primary challenges: the limited utilization of temporal dependencies within topological features, computational bottlenecks associated with persistent homology, and the deterministic nature of TDA pipelines restricting generalized feature learning. This study addresses these challenges by proposing the Topological Information Supervised (TIS) Prediction framework, which leverages neural networks and Conditional Generative Adversarial Networks (CGANs) to generate synthetic topological features, preserving their distribution while significantly reducing computational time. We propose a novel training strategy that integrates topological consistency loss to improve the predictive accuracy of deep learning models. Specifically, we introduce two state-of-the-art models, TIS-BiGRU and TIS-Informer, designed to capture short-term and long-term temporal dependencies, respectively. Comparative experimental results demonstrate the superior performance of TIS models over conventional predictors, validating the effectiveness of integrating topological information. This work not only advances TDA-based time-series prediction but also opens new avenues for utilizing topological features in deep learning architectures.
comment: The experiments are incomplete
♻ ☆ Self-Vocabularizing Training for Neural Machine Translation
Past vocabulary learning techniques identify relevant vocabulary before training, relying on statistical and entropy-based assumptions that largely neglect the role of model training. Empirically, we observe that trained translation models are induced to use a byte-pair encoding (BPE) vocabulary subset distinct from the original BPE vocabulary, leading to performance improvements when retrained with the induced vocabulary. In this paper, we analyze this discrepancy in neural machine translation by examining vocabulary and entropy shifts during self-training--where each iteration generates a labeled dataset by pairing source sentences with the model's predictions to define a new vocabulary. Building on these insights, we propose self-vocabularizing training, an iterative method that self-selects a smaller, more optimal vocabulary, yielding up to a 1.49 BLEU improvement. Moreover, we find that deeper model architectures lead to both an increase in unique token usage and a 6-8% reduction in vocabulary size.
comment: Accepted to NAACL SRW 2025
♻ ☆ $p$-Adic Polynomial Regression as Alternative to Neural Network for Approximating $p$-Adic Functions of Many Variables
A method for approximating continuous functions $\mathbb{Z}_{p}^{n}\rightarrow\mathbb{Z}_{p}$ by a linear superposition of continuous functions $\mathbb{Z}_{p}\rightarrow\mathbb{Z}_{p}$ is presented and a polynomial regression model is constructed that allows approximating such functions with any degree of accuracy. A physical interpretation of such a model is given and possible methods for its training are discussed. The proposed model can be considered as a simple alternative to possible $p$-adic models based on neural network architecture.
comment: 10 pages
♻ ☆ Convolutional Neural Networks Can (Meta-)Learn the Same-Different Relation
While convolutional neural networks (CNNs) have come to match and exceed human performance in many settings, the tasks these models optimize for are largely constrained to the level of individual objects, such as classification and captioning. Humans remain vastly superior to CNNs in visual tasks involving relations, including the ability to identify two objects as `same' or `different'. A number of studies have shown that while CNNs can be coaxed into learning the same-different relation in some settings, they tend to generalize poorly to other instances of this relation. In this work we show that the same CNN architectures that fail to generalize the same-different relation with conventional training are able to succeed when trained via meta-learning, which explicitly encourages abstraction and generalization across tasks.
♻ ☆ Reasoning-SQL: Reinforcement Learning with SQL Tailored Partial Rewards for Reasoning-Enhanced Text-to-SQL
Text-to-SQL is a challenging task involving multiple reasoning-intensive subtasks, including natural language understanding, database schema comprehension, and precise SQL query formulation. Existing approaches often rely on handcrafted reasoning paths with inductive biases that can limit their overall effectiveness. Motivated by the recent success of reasoning-enhanced models such as DeepSeek R1 and OpenAI o1, which effectively leverage reward-driven self-exploration to enhance reasoning capabilities and generalization, we propose a novel set of partial rewards tailored specifically for the Text-to-SQL task. Our reward set includes schema-linking, AI feedback, n-gram similarity, and syntax check, explicitly designed to address the reward sparsity issue prevalent in reinforcement learning (RL). Leveraging group relative policy optimization (GRPO), our approach explicitly encourages large language models (LLMs) to develop intrinsic reasoning skills necessary for accurate SQL query generation. With models of different sizes, we demonstrate that RL-only training with our proposed rewards consistently achieves higher accuracy and superior generalization compared to supervised fine-tuning (SFT). Remarkably, our RL-trained 14B-parameter model significantly outperforms larger proprietary models, e.g. o3-mini by 4% and Gemini-1.5-Pro-002 by 3% on the BIRD benchmark. These highlight the efficacy of our proposed RL-training framework with partial rewards for enhancing both accuracy and reasoning capabilities in Text-to-SQL tasks.
comment: Mohammadreza Pourreza and Shayan Talaei contributed equally to this work
♻ ☆ Low-Rank Thinning
The goal in thinning is to summarize a dataset using a small set of representative points. Remarkably, sub-Gaussian thinning algorithms like Kernel Halving and Compress can match the quality of uniform subsampling while substantially reducing the number of summary points. However, existing guarantees cover only a restricted range of distributions and kernel-based quality measures and suffer from pessimistic dimension dependence. To address these deficiencies, we introduce a new low-rank analysis of sub-Gaussian thinning that applies to any distribution and any kernel, guaranteeing high-quality compression whenever the kernel or data matrix is approximately low-rank. To demonstrate the broad applicability of the techniques, we design practical sub-Gaussian thinning approaches that improve upon the best known guarantees for approximating attention in transformers, accelerating stochastic gradient training through reordering, and distinguishing distributions in near-linear time.
♻ ☆ Scalable Mechanistic Neural Networks for Differential Equations and Machine Learning ICLR 2025
We propose Scalable Mechanistic Neural Network (S-MNN), an enhanced neural network framework designed for scientific machine learning applications involving long temporal sequences. By reformulating the original Mechanistic Neural Network (MNN) (Pervez et al., 2024), we reduce the computational time and space complexities from cubic and quadratic with respect to the sequence length, respectively, to linear. This significant improvement enables efficient modeling of long-term dynamics without sacrificing accuracy or interpretability. Extensive experiments demonstrate that S-MNN matches the original MNN in precision while substantially reducing computational resources. Consequently, S-MNN can drop-in replace the original MNN in applications, providing a practical and efficient tool for integrating mechanistic bottlenecks into neural network models of complex dynamical systems. Source code is available at https://github.com/IST-DASLab/ScalableMNN.
comment: Published as a conference paper at the Thirteenth International Conference on Learning Representations (ICLR 2025): https://openreview.net/forum?id=Oazgf8A24z
♻ ☆ Large-Scale Multi-omic Biosequence Transformers for Modeling Protein-Nucleic Acid Interactions
The transformer architecture has revolutionized bioinformatics and driven progress in the understanding and prediction of the properties of biomolecules. Almost all research on large-scale biosequence transformers has focused on one domain at a time (single-omic), usually DNA/RNA or proteins. These models have seen incredible success in downstream tasks in each domain, and have achieved particularly noteworthy breakthroughs in sequence modeling and structural modeling. However, these single-omic models are naturally incapable of efficiently modeling multi-omic tasks, one of the most biologically critical being protein-nucleic acid interactions. We present our work training the largest open-source multi-omic foundation model to date. We show that these multi-omic models (MOMs) can learn joint representations between various single-omic distributions that are emergently consistent with the Central Dogma of molecular biology despite only being trained on unlabeled biosequences. We further demonstrate that MOMs can be fine-tuned to achieve state-of-the-art results on protein-nucleic acid interaction tasks, namely predicting the change in Gibbs free energy ($\Delta G$) of the binding interaction between a given nucleic acid and protein. Remarkably, we show that multi-omic biosequence transformers emergently learn useful structural information without any \textit{a priori} structural training, allowing us to predict which protein residues are most involved in the protein-nucleic acid binding interaction. Lastly, we provide evidence that multi-omic biosequence models are in many cases superior to foundation models trained on single-omics distributions, both in performance-per-FLOP and absolute performance, suggesting a more generalized or foundational approach to building these models for biology.
comment: 39 pages, 5 figures
♻ ☆ Rehearsal-free Federated Domain-incremental Learning
We introduce a rehearsal-free federated domain incremental learning framework, RefFiL, based on a global prompt-sharing paradigm to alleviate catastrophic forgetting challenges in federated domain-incremental learning, where unseen domains are continually learned. Typical methods for mitigating forgetting, such as the use of additional datasets and the retention of private data from earlier tasks, are not viable in federated learning (FL) due to devices' limited resources. Our method, RefFiL, addresses this by learning domain-invariant knowledge and incorporating various domain-specific prompts from the domains represented by different FL participants. A key feature of RefFiL is the generation of local fine-grained prompts by our domain adaptive prompt generator, which effectively learns from local domain knowledge while maintaining distinctive boundaries on a global scale. We also introduce a domain-specific prompt contrastive learning loss that differentiates between locally generated prompts and those from other domains, enhancing RefFiL's precision and effectiveness. Compared to existing methods, RefFiL significantly alleviates catastrophic forgetting without requiring extra memory space, making it ideal for privacy-sensitive and resource-constrained devices.
comment: Camera ready version. Accepted by the IEEE ICDCS, 2025
♻ ☆ Identifying Predictions That Influence the Future: Detecting Performative Concept Drift in Data Streams AAAI2025
Concept Drift has been extensively studied within the context of Stream Learning. However, it is often assumed that the deployed model's predictions play no role in the concept drift the system experiences. Closer inspection reveals that this is not always the case. Automated trading might be prone to self-fulfilling feedback loops. Likewise, malicious entities might adapt to evade detectors in the adversarial setting resulting in a self-negating feedback loop that requires the deployed models to constantly retrain. Such settings where a model may induce concept drift are called performative. In this work, we investigate this phenomenon. Our contributions are as follows: First, we define performative drift within a stream learning setting and distinguish it from other causes of drift. We introduce a novel type of drift detection task, aimed at identifying potential performative concept drift in data streams. We propose a first such performative drift detection approach, called CheckerBoard Performative Drift Detection (CB-PDD). We apply CB-PDD to both synthetic and semi-synthetic datasets that exhibit varying degrees of self-fulfilling feedback loops. Results are positive with CB-PDD showing high efficacy, low false detection rates, resilience to intrinsic drift, comparability to other drift detection techniques, and an ability to effectively detect performative drift in semi-synthetic datasets. Secondly, we highlight the role intrinsic (traditional) drift plays in obfuscating performative drift and discuss the implications of these findings as well as the limitations of CB-PDD.
comment: 21 pages, 17 figures. Extended version of paper with the same name accepted to AAAI2025 v2.0 updated the figures and text to more align with conference paper. Acknowledgements Section added
♻ ☆ A Survey on Unlearnable Data
Unlearnable data (ULD) has emerged as an innovative defense technique to prevent machine learning models from learning meaningful patterns from specific data, thus protecting data privacy and security. By introducing perturbations to the training data, ULD degrades model performance, making it difficult for unauthorized models to extract useful representations. Despite the growing significance of ULD, existing surveys predominantly focus on related fields, such as adversarial attacks and machine unlearning, with little attention given to ULD as an independent area of study. This survey fills that gap by offering a comprehensive review of ULD, examining unlearnable data generation methods, public benchmarks, evaluation metrics, theoretical foundations and practical applications. We compare and contrast different ULD approaches, analyzing their strengths, limitations, and trade-offs related to unlearnability, imperceptibility, efficiency and robustness. Moreover, we discuss key challenges, such as balancing perturbation imperceptibility with model degradation and the computational complexity of ULD generation. Finally, we highlight promising future research directions to advance the effectiveness and applicability of ULD, underscoring its potential to become a crucial tool in the evolving landscape of data protection in machine learning.
comment: 31 pages, 3 figures, Code in https://github.com/LiJiahao-Alex/Awesome-UnLearnable-Data
♻ ☆ Optimal generalisation and learning transition in extensive-width shallow neural networks near interpolation
We consider a teacher-student model of supervised learning with a fully-trained two-layer neural network whose width $k$ and input dimension $d$ are large and proportional. We provide an effective theory for approximating the Bayes-optimal generalisation error of the network for any activation function in the regime of sample size $n$ scaling quadratically with the input dimension, i.e., around the interpolation threshold where the number of trainable parameters $kd+k$ and of data $n$ are comparable. Our analysis tackles generic weight distributions. We uncover a discontinuous phase transition separating a "universal" phase from a "specialisation" phase. In the first, the generalisation error is independent of the weight distribution and decays slowly with the sampling rate $n/d^2$, with the student learning only some non-linear combinations of the teacher weights. In the latter, the error is weight distribution-dependent and decays faster due to the alignment of the student towards the teacher network. We thus unveil the existence of a highly predictive solution near interpolation, which is however potentially hard to find by practical algorithms.
comment: v2: 9 pages + appendix, 10 figures, 3 tables; added discussion on Gaussian inner weights (Fig. 2, 5 + Appendix H); added discussion on algorithmic complexity of specialisation (Appendix I and figures therein)
♻ ☆ NNsight and NDIF: Democratizing Access to Open-Weight Foundation Model Internals
We introduce NNsight and NDIF, technologies that work in tandem to enable scientific study of the representations and computations learned by very large neural networks. NNsight is an open-source system that extends PyTorch to introduce deferred remote execution. The National Deep Inference Fabric (NDIF) is a scalable inference service that executes NNsight requests, allowing users to share GPU resources and pretrained models. These technologies are enabled by the Intervention Graph, an architecture developed to decouple experimental design from model runtime. Together, this framework provides transparent and efficient access to the internals of deep neural networks such as very large language models (LLMs) without imposing the cost or complexity of hosting customized models individually. We conduct a quantitative survey of the machine learning literature that reveals a growing gap in the study of the internals of large-scale AI. We demonstrate the design and use of our framework to address this gap by enabling a range of research methods on huge models. Finally, we conduct benchmarks to compare performance with previous approaches. Code, documentation, and tutorials are available at https://nnsight.net/.
comment: Code at https://nnsight.net
♻ ☆ Optimizing Posterior Samples for Bayesian Optimization via Rootfinding ICLR 2025
Bayesian optimization devolves the global optimization of a costly objective function to the global optimization of a sequence of acquisition functions. This inner-loop optimization can be catastrophically difficult if it involves posterior sample paths, especially in higher dimensions. We introduce an efficient global optimization strategy for posterior samples based on global rootfinding. It provides gradient-based optimizers with two sets of judiciously selected starting points, designed to combine exploration and exploitation. The number of starting points can be kept small without sacrificing optimization quality. Remarkably, even with just one point from each set, the global optimum is discovered most of the time. The algorithm scales practically linearly to high dimensions, breaking the curse of dimensionality. For Gaussian process Thompson sampling (GP-TS), we demonstrate remarkable improvement in both inner- and outer-loop optimization, surprisingly outperforming alternatives like EI and GP-UCB in most cases. Our approach also improves the performance of other posterior sample-based acquisition functions, such as variants of entropy search. Furthermore, we propose a sample-average formulation of GP-TS, which has a parameter to explicitly control exploitation and can be computed at the cost of one posterior sample. Our implementation is available at https://github.com/UQUH/TSRoots .
comment: Published at the Thirteenth International Conference on Learning Representations (ICLR 2025)
♻ ☆ Mixture of Experts Made Personalized: Federated Prompt Learning for Vision-Language Models ICLR 2025
Federated prompt learning benefits federated learning with CLIP-like Vision-Language Model's (VLM's) robust representation learning ability through prompt learning. However, current federated prompt learning methods are habitually restricted to the traditional FL paradigm, where the participating clients are generally only allowed to download a single globally aggregated model from the server. While justifiable for training full-sized models under federated settings, in this work, we argue that this paradigm is ill-suited for lightweight prompts. By facilitating the clients to download multiple pre-aggregated prompts as fixed non-local experts, we propose Personalized Federated Mixture of Adaptive Prompts (pFedMoAP), a novel FL framework that personalizes the prompt learning process through the lens of Mixture of Experts (MoE). pFedMoAP implements a local attention-based gating network that learns to generate enhanced text features for better alignment with local image data, benefiting from both local and downloaded non-local adaptive prompt experts. Extensive experiments on 9 datasets under various federated settings demonstrate the efficacy of the proposed pFedMoAP algorithm. The code is available at https://github.com/ljaiverson/pFedMoAP.
comment: ICLR 2025
♻ ☆ FastLloyd: Federated, Accurate, Secure, and Tunable $k$-Means Clustering with Differential Privacy
We study the problem of privacy-preserving $k$-means clustering in the horizontally federated setting. Existing federated approaches using secure computation suffer from substantial overheads and do not offer output privacy. At the same time, differentially private (DP) $k$-means algorithms either assume a trusted central curator or significantly degrade utility by adding noise in the local DP model. Naively combining the secure and central DP solutions results in a protocol with impractical overhead. Instead, our work provides enhancements to both the DP and secure computation components, resulting in a design that is faster, more private, and more accurate than previous work. By utilizing the computational DP model, we design a lightweight, secure aggregation-based approach that achieves five orders of magnitude speed-up over state-of-the-art related work. Furthermore, we not only maintain the utility of the state-of-the-art in the central model of DP, but we improve the utility further by designing a new DP clustering mechanism.
♻ ☆ Optimal or Greedy Decision Trees? Revisiting their Objectives, Tuning, and Performance
Recently there has been a surge of interest in optimal decision tree (ODT) methods that globally optimize accuracy directly, in contrast to traditional approaches that locally optimize an impurity or information metric. However, the value of optimal methods is not well understood yet, as the literature provides conflicting results, with some demonstrating superior out-of-sample performance of ODTs over greedy approaches, while others show the opposite. Through a novel extensive experimental study, we provide new insights into the design and behavior of learning decision trees. In particular, we identify and analyze two relatively unexplored aspects of ODTs: the objective function used in training trees, and tuning techniques. Thus, we address these three questions: what objective to optimize in ODTs; how to tune ODTs; and how do optimal and greedy methods compare? Our experimental evaluation examines 11 objective functions, six tuning methods, and six claims from the literature on optimal and greedy methods on 180 real and synthetic data sets. Through our analysis, both conceptually and experimentally, we show the effect of (non-)concave objectives in greedy and optimal approaches; we highlight the importance of proper tuning of ODTs; support and refute several claims from the literature; provide clear recommendations for researchers and practitioners on the usage of greedy and optimal methods; and code for future comparisons.
♻ ☆ One Policy to Run Them All: an End-to-end Learning Approach to Multi-Embodiment Locomotion
Deep Reinforcement Learning techniques are achieving state-of-the-art results in robust legged locomotion. While there exists a wide variety of legged platforms such as quadruped, humanoids, and hexapods, the field is still missing a single learning framework that can control all these different embodiments easily and effectively and possibly transfer, zero or few-shot, to unseen robot embodiments. We introduce URMA, the Unified Robot Morphology Architecture, to close this gap. Our framework brings the end-to-end Multi-Task Reinforcement Learning approach to the realm of legged robots, enabling the learned policy to control any type of robot morphology. The key idea of our method is to allow the network to learn an abstract locomotion controller that can be seamlessly shared between embodiments thanks to our morphology-agnostic encoders and decoders. This flexible architecture can be seen as a potential first step in building a foundation model for legged robot locomotion. Our experiments show that URMA can learn a locomotion policy on multiple embodiments that can be easily transferred to unseen robot platforms in simulation and the real world.
♻ ☆ Explainable Bayesian Optimization
Manual parameter tuning of cyber-physical systems is a common practice, but it is labor-intensive. Bayesian Optimization (BO) offers an automated alternative, yet its black-box nature reduces trust and limits human-BO collaborative system tuning. Experts struggle to interpret BO recommendations due to the lack of explanations. This paper addresses the post-hoc BO explainability problem for cyber-physical systems. We introduce TNTRules (Tune-No-Tune Rules), a novel algorithm that provides both global and local explanations for BO recommendations. TNTRules generates actionable rules and visual graphs, identifying optimal solution bounds and ranges, as well as potential alternative solutions. Unlike existing explainable AI (XAI) methods, TNTRules is tailored specifically for BO, by encoding uncertainty via a variance pruning technique and hierarchical agglomerative clustering. A multi-objective optimization approach allows maximizing explanation quality. We evaluate TNTRules using established XAI metrics (Correctness, Completeness, and Compactness) and compare it against adapted baseline methods. The results demonstrate that TNTRules generates high-fidelity, compact, and complete explanations, significantly outperforming three baselines on 5 multi-objective testing functions and 2 hyperparameter tuning problems.
♻ ☆ Light-R1: Curriculum SFT, DPO and RL for Long COT from Scratch and Beyond
This paper introduces Light-R1, an open-source suite for training long reasoning models using reproducible and cost-effective methodology. Given the proprietary nature of data used in the DeepSeek-R1 series, we develop an alternative approach leveraging exclusively public data and models. Our curriculum training progressively increases data difficulty, combined with multi-staged post-training. Our Light-R1-32B model, trained from Qwen2.5-32B-Instruct, outperforms DeepSeek-R1-Distill-Qwen-32B in math reasoning. Experimental results show that this curriculum approach becomes more effective when distinct, diverse datasets are available for different training stages: fine-tuning DeepSeek-R1-Distilled models (pre-tuned by DeepSeek team on proprietary data) with 3,000 challenging examples from our curriculum dataset yielded state-of-the-art 7B and 14B models, while the 32B model, Light-R1-32B-DS performed comparably to QwQ-32B and DeepSeek-R1. Furthermore, we extend our work by applying GRPO on long reasoning models. Our final Light-R1-14B-DS achieves SOTA performance among 14B models in math, with AIME24 \& 25 scores of 74.0 and 60.2 respectively, surpassing many 32B models and DeepSeek-R1-Distill-Llama-70B. Despite math-focused training, Light-R1-14B-DS demonstrates strong cross-domain generalization. Light-R1 represents a significant advancement in making sophisticated reasoning models more accessible and implementable in real-world applications. Our models, training data and code have been made available at https://github.com/Qihoo360/Light-R1.
comment: v3: minor modifications; v2: better writing & format for later submission; all release at https://github.com/Qihoo360/Light-R1
♻ ☆ Modeling and Analyzing the Influence of Non-Item Pages on Sequential Next-Item Prediction
Analyzing sequences of interactions between users and items, sequential recommendation models can learn user intent and make predictions about the next item. Next to item interactions, most systems also have interactions with what we call non-item pages: these pages are not related to specific items but still can provide insights into the user's interests, as, for example, navigation pages. We therefore propose a general way to include these non-item pages in sequential recommendation models to enhance next-item prediction. First, we demonstrate the influence of non-item pages on following interactions using the hypotheses testing framework HypTrails and propose methods for representing non-item pages in sequential recommendation models. Subsequently, we adapt popular sequential recommender models to integrate non-item pages and investigate their performance with different item representation strategies as well as their ability to handle noisy data. To show the general capabilities of the models to integrate non-item pages, we create a synthetic dataset for a controlled setting and then evaluate the improvements from including non-item pages on two real-world datasets. Our results show that non-item pages are a valuable source of information, and incorporating them in sequential recommendation models increases the performance of next-item prediction across all analyzed model architectures.
comment: 40 pages, 19 figures; Accepted for ACM TORS Journal, Updated copyright information
♻ ☆ Hierarchical Procedural Framework for Low-latency Robot-Assisted Hand-Object Interaction
Advances in robotics have been driving the development of human-robot interaction (HRI) technologies. However, accurately perceiving human actions and achieving adaptive control remains a challenge in facilitating seamless coordination between human and robotic movements. In this paper, we propose a hierarchical procedural framework to enable dynamic robot-assisted hand-object interaction. An open-loop hierarchy leverages the computer vision (CV)-based 3D reconstruction of the human hand, based on which motion primitives have been designed to translate hand motions into robotic actions. The low-level coordination hierarchy fine-tunes the robot's action by using the continuously updated 3D hand models. Experimental validation demonstrates the effectiveness of the hierarchical control architecture. The adaptive coordination between human and robot behavior has achieved a delay of $\leq 0.3$ seconds in the tele-interaction scenario. A case study of ring-wearing tasks indicates the potential application of this work in assistive technologies such as healthcare and manufacturing.
comment: 6 pages, 5 figures
♻ ☆ Semantic Learning for Molecular Communication in Internet of Bio-Nano Things
Molecular communication (MC) provides a foundational framework for information transmission in the Internet of Bio-Nano Things (IoBNT), where efficiency and reliability are crucial. However, the inherent limitations of molecular channels, such as low transmission rates, noise, and intersymbol interference (ISI), limit their ability to support complex data transmission. This paper proposes an end-to-end semantic learning framework designed to optimize task-oriented molecular communication, with a focus on biomedical diagnostic tasks under resource-constrained conditions. The proposed framework employs a deep encoder-decoder architecture to efficiently extract, quantize, and decode semantic features, prioritizing taskrelevant semantic information to enhance diagnostic classification performance. Additionally, a probabilistic channel network is introduced to approximate molecular propagation dynamics, enabling gradient-based optimization for end-to-end learning. Experimental results demonstrate that the proposed semantic framework improves diagnostic accuracy by at least 25% compared to conventional JPEG compression with LDPC coding methods under resource-constrained communication scenarios.
comment: This work has been accepted as an abstract paper for presentation at the 9th Workshop on Molecular Communications (MolCom), April 2025
♻ ☆ Patient-specific prediction of glioblastoma growth via reduced order modeling and neural networks
Glioblastoma is among the most aggressive brain tumors in adults, characterized by patient-specific invasion patterns driven by the underlying brain microstructure. In this work, we present a proof-of-concept for a mathematical model of GBL growth, enabling real-time prediction and patient-specific parameter identification from longitudinal neuroimaging data. The framework exploits a diffuse-interface mathematical model to describe the tumor evolution and a reduced-order modeling strategy, relying on proper orthogonal decomposition, trained on synthetic data derived from patient-specific brain anatomies reconstructed from magnetic resonance imaging and diffusion tensor imaging. A neural network surrogate learns the inverse mapping from tumor evolution to model parameters, achieving significant computational speed-up while preserving high accuracy. To ensure robustness and interpretability, we perform both global and local sensitivity analyses, identifying the key biophysical parameters governing tumor dynamics and assessing the stability of the inverse problem solution. These results establish a methodological foundation for future clinical deployment of patient-specific digital twins in neuro-oncology.
♻ ☆ TOBUGraph: Knowledge Graph-Based Retrieval for Enhanced LLM Performance Beyond RAG
Retrieval-Augmented Generation (RAG) is one of the leading and most widely used techniques for enhancing LLM retrieval capabilities, but it still faces significant limitations in commercial use cases. RAG primarily relies on the query-chunk text-to-text similarity in the embedding space for retrieval and can fail to capture deeper semantic relationships across chunks, is highly sensitive to chunking strategies, and is prone to hallucinations. To address these challenges, we propose TOBUGraph, a graph-based retrieval framework that first constructs the knowledge graph from unstructured data dynamically and automatically. Using LLMs, TOBUGraph extracts structured knowledge and diverse relationships among data, going beyond RAG's text-to-text similarity. Retrieval is achieved through graph traversal, leveraging the extracted relationships and structures to enhance retrieval accuracy, eliminating the need for chunking configurations while reducing hallucination. We demonstrate TOBUGraph's effectiveness in TOBU, a real-world application in production for personal memory organization and retrieval. Our evaluation using real user data demonstrates that TOBUGraph outperforms multiple RAG implementations in both precision and recall, significantly improving user experience through improved retrieval accuracy.
♻ ☆ Improving Vector-Quantized Image Modeling with Latent Consistency-Matching Diffusion
By embedding discrete representations into a continuous latent space, we can leverage continuous-space latent diffusion models to handle generative modeling of discrete data. However, despite their initial success, most latent diffusion methods rely on fixed pretrained embeddings, limiting the benefits of joint training with the diffusion model. While jointly learning the embedding (via reconstruction loss) and the latent diffusion model (via score matching loss) could enhance performance, end-to-end training risks embedding collapse, degrading generation quality. To mitigate this issue, we introduce VQ-LCMD, a continuous-space latent diffusion framework within the embedding space that stabilizes training. VQ-LCMD uses a novel training objective combining the joint embedding-diffusion variational lower bound with a consistency-matching (CM) loss, alongside a shifted cosine noise schedule and random dropping strategy. Experiments on several benchmarks show that the proposed VQ-LCMD yields superior results on FFHQ, LSUN Churches, and LSUN Bedrooms compared to discrete-state latent diffusion models. In particular, VQ-LCMD achieves an FID of 6.81 for class-conditional image generation on ImageNet with 50 steps.
♻ ☆ Statistically Testing Training Data for Unwanted Error Patterns using Rule-Oriented Regression
Artificial intelligence models trained from data can only be as good as the underlying data is. Biases in training data propagating through to the output of a machine learning model are a well-documented and well-understood phenomenon, but the machinery to prevent these undesired effects is much less developed. Efforts to ensure data is clean during collection, such as using bias-aware sampling, are most effective when the entity controlling data collection also trains the AI. In cases where the data is already available, how do we find out if the data was already manipulated, i.e., ``poisoned'', so that an undesired behavior would be trained into a machine learning model? This is a challenge fundamentally different to (just) improving approximation accuracy or efficiency, and we provide a method to test training data for flaws, to establish a trustworthy ground-truth for a subsequent training of machine learning models (of any kind). Unlike the well-studied problem of approximating data using fuzzy rules that are generated from the data, our method hinges on a prior definition of rules to happen before seeing the data to be tested. Therefore, the proposed method can also discover hidden error patterns, which may also have substantial influence. Our approach extends the abilities of conventional statistical testing by letting the ``test-condition'' be any Boolean condition to describe a pattern in the data, whose presence we wish to determine. The method puts fuzzy inference into a regression model, to get the best of the two: explainability from fuzzy logic with statistical properties and diagnostics from the regression, and finally also being applicable to ``small data'', hence not requiring large datasets as deep learning methods do. We provide an open source implementation for demonstration and experiments.
♻ ☆ MSCMNet: Multi-scale Semantic Correlation Mining for Visible-Infrared Person Re-Identification
The main challenge in the Visible-Infrared Person Re-Identification (VI-ReID) task lies in how to extract discriminative features from different modalities for matching purposes. While the existing well works primarily focus on minimizing the modal discrepancies, the modality information can not thoroughly be leveraged. To solve this problem, a Multi-scale Semantic Correlation Mining network (MSCMNet) is proposed to comprehensively exploit semantic features at multiple scales and simultaneously reduce modality information loss as small as possible in feature extraction. The proposed network contains three novel components. Firstly, after taking into account the effective utilization of modality information, the Multi-scale Information Correlation Mining Block (MIMB) is designed to explore semantic correlations across multiple scales. Secondly, in order to enrich the semantic information that MIMB can utilize, a quadruple-stream feature extractor (QFE) with non-shared parameters is specifically designed to extract information from different dimensions of the dataset. Finally, the Quadruple Center Triplet Loss (QCT) is further proposed to address the information discrepancy in the comprehensive features. Extensive experiments on the SYSU-MM01, RegDB, and LLCM datasets demonstrate that the proposed MSCMNet achieves the greatest accuracy.
♻ ☆ Class-Dependent Perturbation Effects in Evaluating Time Series Attributions
As machine learning models become increasingly prevalent in time series applications, Explainable Artificial Intelligence (XAI) methods are essential for understanding their predictions. Within XAI, feature attribution methods aim to identify which input features contribute the most to a model's prediction, with their evaluation typically relying on perturbation-based metrics. Through systematic empirical analysis across multiple datasets, model architectures, and perturbation strategies, we reveal previously overlooked class-dependent effects in these metrics: they show varying effectiveness across classes, achieving strong results for some while remaining less sensitive to others. In particular, we find that the most effective perturbation strategies often demonstrate the most pronounced class differences. Our analysis suggests that these effects arise from the learned biases of classifiers, indicating that perturbation-based evaluation may reflect specific model behaviors rather than intrinsic attribution quality. We propose an evaluation framework with a class-aware penalty term to help assess and account for these effects in evaluating feature attributions, offering particular value for class-imbalanced datasets. Although our analysis focuses on time series classification, these class-dependent effects likely extend to other structured data domains where perturbation-based evaluation is common.
comment: Accepted at The World Conference on eXplainable Artificial Intelligence (XAI-2025)
♻ ☆ Optimization Insights into Deep Diagonal Linear Networks
Overparameterized models trained with (stochastic) gradient descent are ubiquitous in modern machine learning. These large models achieve unprecedented performance on test data, but their theoretical understanding is still limited. In this paper, we take a step towards filling this gap by adopting an optimization perspective. More precisely, we study the implicit regularization properties of the gradient flow "algorithm" for estimating the parameters of a deep diagonal neural network. Our main contribution is showing that this gradient flow induces a mirror flow dynamic on the model, meaning that it is biased towards a specific solution of the problem depending on the initialization of the network. Along the way, we prove several properties of the trajectory.
♻ ☆ A stochastic gradient descent algorithm with random search directions
Stochastic coordinate descent algorithms are efficient methods in which each iterate is obtained by fixing most coordinates at their values from the current iteration, and approximately minimizing the objective with respect to the remaining coordinates. However, this approach is usually restricted to canonical basis vectors of $\mathbb{R}^d$. In this paper, we develop a new class of stochastic gradient descent algorithms with random search directions which uses the directional derivative of the gradient estimate following more general random vectors. We establish the almost sure convergence of these algorithms with decreasing step. We further investigate their central limit theorem and pay particular attention to analyze the impact of the search distributions on the asymptotic covariance matrix. We also provide non-asymptotic $\mathbb{L}^p$ rates of convergence.
♻ ☆ Calibration Strategies for Robust Causal Estimation: Theoretical and Empirical Insights on Propensity Score Based Estimators
The partitioning of data for estimation and calibration critically impacts the performance of propensity score based estimators like inverse probability weighting (IPW) and double/debiased machine learning (DML) frameworks. We extend recent advances in calibration techniques for propensity score estimation, improving the robustness of propensity scores in challenging settings such as limited overlap, small sample sizes, or unbalanced data. Our contributions are twofold: First, we provide a theoretical analysis of the properties of calibrated estimators in the context of DML. To this end, we refine existing calibration frameworks for propensity score models, with a particular emphasis on the role of sample-splitting schemes in ensuring valid causal inference. Second, through extensive simulations, we show that calibration reduces variance of inverse-based propensity score estimators while also mitigating bias in IPW, even in small-sample regimes. Notably, calibration improves stability for flexible learners (e.g., gradient boosting) while preserving the doubly robust properties of DML. A key insight is that, even when methods perform well without calibration, incorporating a calibration step does not degrade performance, provided that an appropriate sample-splitting approach is chosen.
♻ ☆ Towards Robust and Parameter-Efficient Knowledge Unlearning for LLMs ICLR 2025
Large Language Models (LLMs) have demonstrated strong reasoning and memorization capabilities via pretraining on massive textual corpora. However, this poses risk of privacy and copyright violations, highlighting the need for efficient machine unlearning methods that remove sensitive data without retraining from scratch. While Gradient Ascent (GA) is commonly used to unlearn by reducing the likelihood of generating unwanted content, it leads to unstable optimization and catastrophic forgetting of retrained knowledge. We find that combining GA with low-rank adaptation results in poor trade-offs between computational cost and generative performance. To address these challenges, we propose Low-rank Knowledge Unlearning (LoKU), a novel framework that enables robust and efficient unlearning for LLMs. First, we introduce Inverted Hinge Loss, which suppresses unwanted tokens while maintaining fluency by boosting the probability of the next most likely token. Second, we develop a data-adaptive initialization for LoRA adapters via low-rank approximation weighted with relative Fisher information, thereby focusing updates on parameters critical for removing targeted knowledge. Experiments on the Training Data Extraction Challenge dataset using GPT-Neo models as well as on the TOFU benchmark with Phi-1.5B and Llama2-7B models demonstrate that our approach effectively removes sensitive information while maintaining reasoning and generative capabilities with minimal impact. Our implementation can be found in https://github.com/csm9493/efficient-llm-unlearning.
comment: ICLR 2025 camera-ready version
♻ ☆ Generative Data Assimilation of Sparse Weather Station Observations at Kilometer Scales
Data assimilation of observational data into full atmospheric states is essential for weather forecast model initialization. Recently, methods for deep generative data assimilation have been proposed which allow for using new input data without retraining the model. They could also dramatically accelerate the costly data assimilation process used in operational regional weather models. Here, in a central US testbed, we demonstrate the viability of score-based data assimilation in the context of realistically complex km-scale weather. We train an unconditional diffusion model to generate snapshots of a state-of-the-art km-scale analysis product, the High Resolution Rapid Refresh. Then, using score-based data assimilation to incorporate sparse weather station data, the model produces maps of precipitation and surface winds. The generated fields display physically plausible structures, such as gust fronts, and sensitivity tests confirm learnt physics through multivariate relationships. Preliminary skill analysis shows the approach already outperforms a naive baseline of the High-Resolution Rapid Refresh system itself. By incorporating observations from 40 weather stations, 10% lower RMSEs on left-out stations are attained. Despite some lingering imperfections such as insufficiently disperse ensemble DA estimates, we find the results overall an encouraging proof of concept, and the first at km-scale. It is a ripe time to explore extensions that combine increasingly ambitious regional state generators with an increasing set of in situ, ground-based, and satellite remote sensing data streams.
comment: 22 pages, 9 figures
♻ ☆ SVInvNet: A Densely Connected Encoder-Decoder Architecture for Seismic Velocity Inversion
This study presents a deep learning-based approach to seismic velocity inversion problem, focusing on both noisy and noiseless training datasets of varying sizes. Our Seismic Velocity Inversion Network (SVInvNet) introduces a novel architecture that contains a multi-connection encoder-decoder structure enhanced with dense blocks. This design is specifically tuned to effectively process time series data, which is essential for addressing the challenges of non-linear seismic velocity inversion. For training and testing, we created diverse seismic velocity models, including multi-layered, faulty, and salt dome categories. We also investigated how different kinds of ambient noise, both coherent and stochastic, and the size of the training dataset affect learning outcomes. SVInvNet is trained on datasets ranging from 750 to 6,000 samples and is tested using a large benchmark dataset of 12,000 samples. Despite its fewer parameters compared to the baseline model, SVInvNet achieves superior performance with this dataset. The performance of SVInvNet was further evaluated using the OpenFWI dataset and Marmousi-derived velocity models. The comparative analysis clearly reveals the effectiveness of the proposed model.
comment: This is the preprint of the accepted manuscript to appear in IEEE Transactions on Geoscience and Remote Sensing
♻ ☆ Sharp Rates in Dependent Learning Theory: Avoiding Sample Size Deflation for the Square Loss
In this work, we study statistical learning with dependent ($\beta$-mixing) data and square loss in a hypothesis class $\mathscr{F}\subset L_{\Psi_p}$ where $\Psi_p$ is the norm $\|f\|_{\Psi_p} \triangleq \sup_{m\geq 1} m^{-1/p} \|f\|_{L^m} $ for some $p\in [2,\infty]$. Our inquiry is motivated by the search for a sharp noise interaction term, or variance proxy, in learning with dependent data. Absent any realizability assumption, typical non-asymptotic results exhibit variance proxies that are deflated multiplicatively by the mixing time of the underlying covariates process. We show that whenever the topologies of $L^2$ and $\Psi_p$ are comparable on our hypothesis class $\mathscr{F}$ -- that is, $\mathscr{F}$ is a weakly sub-Gaussian class: $\|f\|_{\Psi_p} \lesssim \|f\|_{L^2}^\eta$ for some $\eta\in (0,1]$ -- the empirical risk minimizer achieves a rate that only depends on the complexity of the class and second order statistics in its leading term. Our result holds whether the problem is realizable or not and we refer to this as a \emph{near mixing-free rate}, since direct dependence on mixing is relegated to an additive higher order term. We arrive at our result by combining the above notion of a weakly sub-Gaussian class with mixed tail generic chaining. This combination allows us to compute sharp, instance-optimal rates for a wide range of problems. Examples that satisfy our framework include sub-Gaussian linear regression, more general smoothly parameterized function classes, finite hypothesis classes, and bounded smoothness classes.
♻ ☆ DG-TTA: Out-of-domain Medical Image Segmentation through Augmentation and Descriptor-driven Domain Generalization and Test-Time Adaptation
Purpose: Applying pre-trained medical deep learning segmentation models on out-of-domain images often yields predictions of insufficient quality. In this study, we propose to use a powerful generalizing descriptor along with augmentation to enable domain-generalized pre-training and test-time adaptation, achieving high-quality segmentation in unseen domains. Materials and Methods: In this retrospective study five different publicly available datasets (2012 to 2022) including 3D CT and MRI images are used to evaluate segmentation performance in out-of-domain scenarios. The settings include abdominal, spine, and cardiac imaging. The data is randomly split into training and test samples. Domain-generalized pre-training on source data is used to obtain the best initial performance in the target domain. We introduce the combination of the generalizing SSC descriptor and GIN intensity augmentation for optimal generalization. Segmentation results are subsequently optimized at test time, where we propose to adapt the pre-trained models for every unseen scan with a consistency scheme using the same augmentation-descriptor combination. The segmentation is evaluated using Dice similarity and Hausdorff distance and the significance of improvements is tested with the Wilcoxon signed-rank test. Results: The proposed generalized pre-training and subsequent test-time adaptation improves model performance significantly in CT to MRI cross-domain prediction for abdominal (+46.2% and +28.2% Dice), spine (+72.9%), and cardiac (+14.2% and +55.7% Dice) scenarios (p<0.001). Conclusion: Our method enables optimal, independent usage of medical image source and target data and bridges domain gaps successfully with a compact and efficient methodology. Open-source code available at: https://github.com/multimodallearning/DG-TTA
♻ ☆ Reactive Diffusion Policy: Slow-Fast Visual-Tactile Policy Learning for Contact-Rich Manipulation
Humans can accomplish complex contact-rich tasks using vision and touch, with highly reactive capabilities such as quick adjustments to environmental changes and adaptive control of contact forces; however, this remains challenging for robots. Existing visual imitation learning (IL) approaches rely on action chunking to model complex behaviors, which lacks the ability to respond instantly to real-time tactile feedback during the chunk execution. Furthermore, most teleoperation systems struggle to provide fine-grained tactile / force feedback, which limits the range of tasks that can be performed. To address these challenges, we introduce TactAR, a low-cost teleoperation system that provides real-time tactile feedback through Augmented Reality (AR), along with Reactive Diffusion Policy (RDP), a novel slow-fast visual-tactile imitation learning algorithm for learning contact-rich manipulation skills. RDP employs a two-level hierarchy: (1) a slow latent diffusion policy for predicting high-level action chunks in latent space at low frequency, (2) a fast asymmetric tokenizer for closed-loop tactile feedback control at high frequency. This design enables both complex trajectory modeling and quick reactive behavior within a unified framework. Through extensive evaluation across three challenging contact-rich tasks, RDP significantly improves performance compared to state-of-the-art visual IL baselines through rapid response to tactile / force feedback. Furthermore, experiments show that RDP is applicable across different tactile / force sensors. Code and videos are available on https://reactive-diffusion-policy.github.io.
♻ ☆ Nonhuman Primate Brain Tissue Segmentation Using a Transfer Learning Approach
Non-human primates (NHPs) serve as critical models for understanding human brain function and neurological disorders due to their close evolutionary relationship with humans. Accurate brain tissue segmentation in NHPs is critical for understanding neurological disorders, but challenging due to the scarcity of annotated NHP brain MRI datasets, the small size of the NHP brain, the limited resolution of available imaging data and the anatomical differences between human and NHP brains. To address these challenges, we propose a novel approach utilizing STU-Net with transfer learning to leverage knowledge transferred from human brain MRI data to enhance segmentation accuracy in the NHP brain MRI, particularly when training data is limited. The combination of STU-Net and transfer learning effectively delineates complex tissue boundaries and captures fine anatomical details specific to NHP brains. Notably, our method demonstrated improvement in segmenting small subcortical structures such as putamen and thalamus that are challenging to resolve with limited spatial resolution and tissue contrast, and achieved DSC of over 0.88, IoU over 0.8 and HD95 under 7. This study introduces a robust method for multi-class brain tissue segmentation in NHPs, potentially accelerating research in evolutionary neuroscience and preclinical studies of neurological disorders relevant to human health.
♻ ☆ Exact full-RSB SAT/UNSAT transition in infinitely wide two-layer neural networks
We analyze the problem of storing random pattern-label associations using two classes of continuous non-convex weights models, namely the perceptron with negative margin and an infinite-width two-layer neural network with non-overlapping receptive fields and generic activation function. Using a full-RSB ansatz we compute the exact value of the SAT/UNSAT transition. Furthermore, in the case of the negative perceptron we show that the overlap distribution of typical states displays an overlap gap (a disconnected support) in certain regions of the phase diagram defined by the value of the margin and the density of patterns to be stored. This implies that some recent theorems that ensure convergence of Approximate Message Passing (AMP) based algorithms to capacity are not applicable. Finally, we show that Gradient Descent is not able to reach the maximal capacity, irrespectively of the presence of an overlap gap for typical states. This finding, similarly to what occurs in binary weight models, suggests that gradient-based algorithms are biased towards highly atypical states, whose inaccessibility determines the algorithmic threshold.
comment: 39 pages, 12 figures
♻ ☆ Illuminating the Diversity-Fitness Trade-Off in Black-Box Optimization
In real-world applications, users often favor structurally diverse design choices over one high-quality solution. It is hence important to consider more solutions that decision makers can compare and further explore based on additional criteria. Alongside the existing approaches of evolutionary diversity optimization, quality diversity, and multimodal optimization, this paper presents a fresh perspective on this challenge by considering the problem of identifying a fixed number of solutions with a pairwise distance above a specified threshold while maximizing their average quality. We obtain first insight into these objectives by performing a subset selection on the search trajectories of different well-established search heuristics, whether they have been specifically designed with diversity in mind or not. We emphasize that the main goal of our work is not to present a new algorithm but to understand the capability of off-the-shelf algorithms to quantify the trade-off between the minimum pairwise distance within batches of solutions and their average quality. We also analyze how this trade-off depends on the properties of the underlying optimization problem. A possibly surprising outcome of our empirical study is the observation that naive uniform random sampling establishes a very strong baseline for our problem, hardly ever outperformed by the search trajectories of the considered heuristics. We interpret these results as a motivation to develop algorithms tailored to produce diverse solutions of high average quality.
♻ ☆ Machine Unlearning Fails to Remove Data Poisoning Attacks ICLR 2025
We revisit the efficacy of several practical methods for approximate machine unlearning developed for large-scale deep learning. In addition to complying with data deletion requests, one often-cited potential application for unlearning methods is to remove the effects of poisoned data. We experimentally demonstrate that, while existing unlearning methods have been demonstrated to be effective in a number of settings, they fail to remove the effects of data poisoning across a variety of types of poisoning attacks (indiscriminate, targeted, and a newly-introduced Gaussian poisoning attack) and models (image classifiers and LLMs); even when granted a relatively large compute budget. In order to precisely characterize unlearning efficacy, we introduce new evaluation metrics for unlearning based on data poisoning. Our results suggest that a broader perspective, including a wider variety of evaluations, are required to avoid a false sense of confidence in machine unlearning procedures for deep learning without provable guarantees. Moreover, while unlearning methods show some signs of being useful to efficiently remove poisoned data without having to retrain, our work suggests that these methods are not yet ``ready for prime time,'' and currently provide limited benefit over retraining.
comment: Published at ICLR 2025
♻ ☆ Causal Concept Graph Models: Beyond Causal Opacity in Deep Learning
Causal opacity denotes the difficulty in understanding the "hidden" causal structure underlying the decisions of deep neural network (DNN) models. This leads to the inability to rely on and verify state-of-the-art DNN-based systems, especially in high-stakes scenarios. For this reason, circumventing causal opacity in DNNs represents a key open challenge at the intersection of deep learning, interpretability, and causality. This work addresses this gap by introducing Causal Concept Graph Models (Causal CGMs), a class of interpretable models whose decision-making process is causally transparent by design. Our experiments show that Causal CGMs can: (i) match the generalisation performance of causally opaque models, (ii) enable human-in-the-loop corrections to mispredicted intermediate reasoning steps, boosting not just downstream accuracy after corrections but also the reliability of the explanations provided for specific instances, and (iii) support the analysis of interventional and counterfactual scenarios, thereby improving the model's causal interpretability and supporting the effective verification of its reliability and fairness.
♻ ☆ Leveraging Joint Predictive Embedding and Bayesian Inference in Graph Self Supervised Learning
Graph representation learning has emerged as a cornerstone for tasks like node classification and link prediction, yet prevailing self-supervised learning (SSL) methods face challenges such as computational inefficiency, reliance on contrastive objectives, and representation collapse. Existing approaches often depend on feature reconstruction, negative sampling, or complex decoders, which introduce training overhead and hinder generalization. Further, current techniques which address such limitations fail to account for the contribution of node embeddings to a certain prediction in the absence of labeled nodes. To address these limitations, we propose a novel joint embedding predictive framework for graph SSL that eliminates contrastive objectives and negative sampling while preserving semantic and structural information. Additionally, we introduce a semantic-aware objective term that incorporates pseudo-labels derived from Gaussian Mixture Models (GMMs), enhancing node discriminability by evaluating latent feature contributions. Extensive experiments demonstrate that our framework outperforms state-of-the-art graph SSL methods across benchmarks, achieving superior performance without contrastive loss or complex decoders. Key innovations include (1) a non-contrastive, view-invariant joint embedding predictive architecture, (2) Leveraging single context and multiple targets relationship between subgraphs, and (3) GMM-based pseudo-label scoring to capture semantic contributions. This work advances graph SSL by offering a computationally efficient, collapse-resistant paradigm that bridges spatial and semantic graph features for downstream tasks. The code for our paper can be found at https://github.com/Deceptrax123/JPEB-GSSL
comment: Preprint. Under Review
♻ ☆ ExMAG: Learning of Maximally Ancestral Graphs
As one transitions from statistical to causal learning, one is seeking the most appropriate causal model. Dynamic Bayesian networks are a popular model, where a weighted directed acyclic graph represents the causal relationships. Stochastic processes are represented by its vertices, and weighted oriented edges suggest the strength of the causal relationships. When there are confounders, one would like to utilize both oriented edges (when the direction of causality is clear) and edges that are not oriented (when there is a confounder or not a relationship), yielding mixed graphs. A little-studied extension of acyclicity to this mixed-graph setting is known as maximally ancestral graphs with consideration of confounders. We propose a score-based learning algorithm for learning maximally ancestral graphs. A mixed-integer quadratic program is formulated, and an algorithmic approach is proposed, in which the pre-generation of exponentially many constraints is avoided by generating only violated constraints in the so-called branch-and-cut (``lazy constraint'') method. Comparing the novel approach to the state-of-the-art, we show that the proposed approach turns out to produce more accurate results when applied to small and medium-sized synthetic instances containing up to 25 variables.
♻ ☆ MTL-LoRA: Low-Rank Adaptation for Multi-Task Learning
Parameter-efficient fine-tuning (PEFT) has been widely employed for domain adaptation, with LoRA being one of the most prominent methods due to its simplicity and effectiveness. However, in multi-task learning (MTL) scenarios, LoRA tends to obscure the distinction between tasks by projecting sparse high-dimensional features from different tasks into the same dense low-dimensional intrinsic space. This leads to task interference and suboptimal performance for LoRA and its variants. To tackle this challenge, we propose MTL-LoRA, which retains the advantages of low-rank adaptation while significantly enhancing MTL capabilities. MTL-LoRA augments LoRA by incorporating additional task-adaptive parameters that differentiate task-specific information and capture shared knowledge across various tasks within low-dimensional spaces. This approach enables pre-trained models to jointly adapt to different target domains with a limited number of trainable parameters. Comprehensive experimental results, including evaluations on public academic benchmarks for natural language understanding, commonsense reasoning, and image-text understanding, as well as real-world industrial text Ads relevance datasets, demonstrate that MTL-LoRA outperforms LoRA and its various variants with comparable or even fewer learnable parameters in MTL setting.
comment: 12 Pages, 4 Figures
♻ ☆ FedECA: A Federated External Control Arm Method for Causal Inference with Time-To-Event Data in Distributed Settings
External control arms (ECA) can inform the early clinical development of experimental drugs and provide efficacy evidence for regulatory approval. However, the main challenge in implementing ECA lies in accessing real-world or historical clinical trials data. Indeed, regulations protecting patients' rights by strictly controlling data processing make pooling data from multiple sources in a central server often difficult. To address these limitations, we develop a new method, 'FedECA' that leverages federated learning (FL) to enable inverse probability of treatment weighting (IPTW) for time-to-event outcomes on separate cohorts without needing to pool data. To showcase the potential of FedECA, we apply it in different settings of increasing complexity culminating with a real-world use-case in which FedECA is used to compare the treatment effect of two approved chemotherapy regimens using data from three separate cohorts of patients with metastatic pancreatic cancer. By sharing our code, we hope FedECA will foster the creation of federated research networks and thus accelerate drug development.
comment: code available at: https://github.com/owkin/fedeca, bug in SMD computation present in v1 and v2 fixed, many experiments on real data added + fix in YODA experiments using imputed data instead of raw data (v3->v4) + affiliations fix + more precise wording for acknowledgments, real-world experiment results fixed by excluding data with bias + text polished (v5->v6) + updating abstract(v6->v7)
♻ ☆ Lie Detector: Unified Backdoor Detection via Cross-Examination Framework
Institutions with limited data and computing resources often outsource model training to third-party providers in a semi-honest setting, assuming adherence to prescribed training protocols with pre-defined learning paradigm (e.g., supervised or semi-supervised learning). However, this practice can introduce severe security risks, as adversaries may poison the training data to embed backdoors into the resulting model. Existing detection approaches predominantly rely on statistical analyses, which often fail to maintain universally accurate detection accuracy across different learning paradigms. To address this challenge, we propose a unified backdoor detection framework in the semi-honest setting that exploits cross-examination of model inconsistencies between two independent service providers. Specifically, we integrate central kernel alignment to enable robust feature similarity measurements across different model architectures and learning paradigms, thereby facilitating precise recovery and identification of backdoor triggers. We further introduce backdoor fine-tuning sensitivity analysis to distinguish backdoor triggers from adversarial perturbations, substantially reducing false positives. Extensive experiments demonstrate that our method achieves superior detection performance, improving accuracy by 5.4%, 1.6%, and 11.9% over SoTA baselines across supervised, semi-supervised, and autoregressive learning tasks, respectively. Notably, it is the first to effectively detect backdoors in multimodal large language models, further highlighting its broad applicability and advancing secure deep learning.
♻ ☆ FedORGP: Guiding Heterogeneous Federated Learning with Orthogonality Regularization on Global Prototypes
Federated Learning (FL) has emerged as an essential framework for distributed machine learning, especially with its potential for privacy-preserving data processing. However, existing FL frameworks struggle to address statistical and model heterogeneity, which severely impacts model performance. While Heterogeneous Federated Learning (HtFL) introduces prototype-based strategies to address the challenges, current approaches face limitations in achieving optimal separation of prototypes. This paper presents FedORGP, a novel HtFL algorithm designed to improve global prototype separation through orthogonality regularization, which not only encourages intra-class prototype similarity but also significantly expands the inter-class angular separation. With the guidance of the global prototype, each client keeps its embeddings aligned with the corresponding prototype in the feature space, promoting directional independence that integrates seamlessly with the cross-entropy (CE) loss. We provide theoretical proof of FedORGP's convergence under non-convex conditions. Extensive experiments demonstrate that FedORGP outperforms seven state-of-the-art baselines, achieving up to 10.12\% accuracy improvement in scenarios where statistical and model heterogeneity coexist.
♻ ☆ MambaPEFT: Exploring Parameter-Efficient Fine-Tuning for Mamba ICLR2025
An ecosystem of Transformer-based models has been established by building large models with extensive data. Parameter-efficient fine-tuning (PEFT) is a crucial technology for deploying these models to downstream tasks with minimal cost while achieving effective performance. Recently, Mamba, a State Space Model (SSM)-based model, has attracted attention as a potential alternative to Transformers. While many large-scale Mamba-based models have been proposed, efficiently adapting pre-trained Mamba-based models to downstream tasks remains unexplored. In this paper, we conduct an exploratory analysis of PEFT methods for Mamba. We investigate the effectiveness of existing PEFT methods for Transformers when applied to Mamba. We also modify these methods to better align with the Mamba architecture. Additionally, we propose new Mamba-specific PEFT methods that leverage the distinctive structure of Mamba. Our experiments indicate that PEFT performs more effectively for Mamba than Transformers. Lastly, we demonstrate how to effectively combine multiple PEFT methods and provide a framework that outperforms previous works. To ensure reproducibility, we will release the code after publication.
comment: Accepted to ICLR2025
♻ ☆ Prior Learning in Introspective VAEs
Variational Autoencoders (VAEs) are a popular framework for unsupervised learning and data generation. A plethora of methods have been proposed focusing on improving VAEs, with the incorporation of adversarial objectives and the integration of prior learning mechanisms being prominent directions. When it comes to the former, an indicative instance is the recently introduced family of Introspective VAEs aiming at ensuring that a low likelihood is assigned to unrealistic samples. In this study, we focus on the Soft-IntroVAE (S-IntroVAE) and investigate the implication of incorporating a multimodal and learnable prior into this framework. Namely, we formulate the prior as a third player and show that when trained in cooperation with the decoder constitutes an effective way for prior learning, which shares the Nash Equilibrium with the vanilla S-IntroVAE. Furthermore, based on a modified formulation of the optimal ELBO in S-IntroVAE, we develop theoretically motivated regularizations, that is (i) adaptive variance clipping to stabilize training when learning the prior and (ii) responsibility regularization to discourage the formation of inactive prior mode. Finally, we perform a series of targeted experiments on a 2D density estimation benchmark and in an image generation setting comprised of the (F)-MNIST and CIFAR-10 datasets demonstrating the benefit of prior learning in S-IntroVAE in generation and representation learning.
♻ ☆ AnyTouch: Learning Unified Static-Dynamic Representation across Multiple Visuo-tactile Sensors ICLR 2025
Visuo-tactile sensors aim to emulate human tactile perception, enabling robots to precisely understand and manipulate objects. Over time, numerous meticulously designed visuo-tactile sensors have been integrated into robotic systems, aiding in completing various tasks. However, the distinct data characteristics of these low-standardized visuo-tactile sensors hinder the establishment of a powerful tactile perception system. We consider that the key to addressing this issue lies in learning unified multi-sensor representations, thereby integrating the sensors and promoting tactile knowledge transfer between them. To achieve unified representation of this nature, we introduce TacQuad, an aligned multi-modal multi-sensor tactile dataset from four different visuo-tactile sensors, which enables the explicit integration of various sensors. Recognizing that humans perceive the physical environment by acquiring diverse tactile information such as texture and pressure changes, we further propose to learn unified multi-sensor representations from both static and dynamic perspectives. By integrating tactile images and videos, we present AnyTouch, a unified static-dynamic multi-sensor representation learning framework with a multi-level structure, aimed at both enhancing comprehensive perceptual abilities and enabling effective cross-sensor transfer. This multi-level architecture captures pixel-level details from tactile data via masked modeling and enhances perception and transferability by learning semantic-level sensor-agnostic features through multi-modal alignment and cross-sensor matching. We provide a comprehensive analysis of multi-sensor transferability, and validate our method on various datasets and in the real-world pouring task. Experimental results show that our method outperforms existing methods, exhibits outstanding static and dynamic perception capabilities across various sensors.
comment: Accepted by ICLR 2025
♻ ☆ A Clustering Method with Graph Maximum Decoding Information
The clustering method based on graph models has garnered increased attention for its widespread applicability across various knowledge domains. Its adaptability to integrate seamlessly with other relevant applications endows the graph model-based clustering analysis with the ability to robustly extract "natural associations" or "graph structures" within datasets, facilitating the modelling of relationships between data points. Despite its efficacy, the current clustering method utilizing the graph-based model overlooks the uncertainty associated with random walk access between nodes and the embedded structural information in the data. To address this gap, we present a novel Clustering method for Maximizing Decoding Information within graph-based models, named CMDI. CMDI innovatively incorporates two-dimensional structural information theory into the clustering process, consisting of two phases: graph structure extraction and graph vertex partitioning. Within CMDI, graph partitioning is reformulated as an abstract clustering problem, leveraging maximum decoding information to minimize uncertainty associated with random visits to vertices. Empirical evaluations on three real-world datasets demonstrate that CMDI outperforms classical baseline methods, exhibiting a superior decoding information ratio (DI-R). Furthermore, CMDI showcases heightened efficiency, particularly when considering prior knowledge (PK). These findings underscore the effectiveness of CMDI in enhancing decoding information quality and computational efficiency, positioning it as a valuable tool in graph-based clustering analyses.
comment: 9 pages, 9 figures, IJCNN 2024
♻ ☆ ResNLS: An Improved Model for Stock Price Forecasting
Stock prices forecasting has always been a challenging task. Although many research projects try to address the problem, few of them pay attention to the varying degrees of dependencies between stock prices. In this paper, we introduce a hybrid model that improves the prediction of stock prices by emphasizing the dependencies between adjacent stock prices. The proposed model, ResNLS, is mainly composed of two neural architectures, ResNet and LSTM. ResNet serves as a feature extractor to identify dependencies between stock prices, while LSTM analyzes the initial time series data with the combination of dependencies, which are considered as residuals. Our experiment reveals that when the closing price data for the previous 5 consecutive trading days is used as input, the performance of the model (ResNLS-5) is optimal compared to those with other inputs. Furthermore, ResNLS-5 demonstrates at least a 20% improvement over current state-of-the-art baselines. To verify whether ResNLS-5 can help clients effectively avoid risks and earn profits in the stock market, we construct a quantitative trading framework for back testing. The result shows that the trading strategy based on ResNLS-5 predictions can successfully mitigate losses during declining stock prices and generate profits in periods of rising stock prices. The relevant code is publicly available on GitHub.
comment: Accepted by Computational Intelligence 2023
♻ ☆ Holistic analysis on the sustainability of Federated Learning across AI product lifecycle
In light of emerging legal requirements and policies focused on privacy protection, there is a growing trend of companies across various industries adopting Federated Learning (FL). This decentralized approach involves multiple clients or silos, collaboratively training a global model under the coordination of a central server while utilizing their private local data. Unlike traditional methods that necessitate data sharing and transmission, Cross-Silo FL allows clients to share model updates rather than raw data, thereby enhancing privacy. Despite its growing adoption, the carbon impact associated with Cross-Silo FL remains poorly understood due to the limited research in this area. This study seeks to bridge this gap by evaluating the sustainability of Cross-Silo FL throughout the entire AI product lifecycle, extending the analysis beyond the model training phase alone. We systematically compare this decentralized method with traditional centralized approaches and present a robust quantitative framework for assessing the costs and CO2 emissions in real-world Cross-Silo FL environments. Our findings indicate that the energy consumption and costs of model training are comparable between Cross-Silo Federated Learning and Centralized Learning. However, the additional data transfer and storage requirements inherent in Centralized Learning can result in significant, often overlooked CO2 emissions. Moreover, we introduce an innovative data and application management system that integrates Cross-Silo FL and analytics, aiming at improving the sustainability and economic efficiency of IT enterprises.
comment: Presented in Sophia Summit 2023
♻ ☆ Vision-Language Models for Acute Tuberculosis Diagnosis: A Multimodal Approach Combining Imaging and Clinical Data
Background: This study introduces a Vision-Language Model (VLM) leveraging SIGLIP and Gemma-3b architectures for automated acute tuberculosis (TB) screening. By integrating chest X-ray images and clinical notes, the model aims to enhance diagnostic accuracy and efficiency, particularly in resource-limited settings. Methods: The VLM combines visual data from chest X-rays with clinical context to generate detailed, context-aware diagnostic reports. The architecture employs SIGLIP for visual encoding and Gemma-3b for decoding, ensuring effective representation of acute TB-specific pathologies and clinical insights. Results: Key acute TB pathologies, including consolidation, cavities, and nodules, were detected with high precision (97percent) and recall (96percent). The model demonstrated strong spatial localization capabilities and robustness in distinguishing TB-positive cases, making it a reliable tool for acute TB diagnosis. Conclusion: The multimodal capability of the VLM reduces reliance on radiologists, providing a scalable solution for acute TB screening. Future work will focus on improving the detection of subtle pathologies and addressing dataset biases to enhance its generalizability and application in diverse global healthcare settings.
comment: 11 pages, 3 figures
♻ ☆ 1-2-3-Go! Policy Synthesis for Parameterized Markov Decision Processes via Decision-Tree Learning and Generalization
Despite the advances in probabilistic model checking, the scalability of the verification methods remains limited. In particular, the state space often becomes extremely large when instantiating parameterized Markov decision processes (MDPs) even with moderate values. Synthesizing policies for such \emph{huge} MDPs is beyond the reach of available tools. We propose a learning-based approach to obtain a reasonable policy for such huge MDPs. The idea is to generalize optimal policies obtained by model-checking small instances to larger ones using decision-tree learning. Consequently, our method bypasses the need for explicit state-space exploration of large models, providing a practical solution to the state-space explosion problem. We demonstrate the efficacy of our approach by performing extensive experimentation on the relevant models from the quantitative verification benchmark set. The experimental results indicate that our policies perform well, even when the size of the model is orders of magnitude beyond the reach of state-of-the-art analysis tools.
comment: Extended version of the paper accepted at VMCAI 2025
♻ ☆ Designing Heterogeneous GNNs with Desired Permutation Properties for Wireless Resource Allocation
Graph neural networks (GNNs) have been designed for learning a variety of wireless policies, i.e., the mappings from environment parameters to decision variables, thanks to their superior performance, and the potential in enabling scalability and size generalizability. These merits are rooted in leveraging permutation prior, i.e., satisfying the permutation property of the policy to be learned (referred to as desired permutation property). Many wireless policies are with complicated permutation properties. To satisfy these properties, heterogeneous GNNs (HetGNNs) should be used to learn such policies. There are two critical factors that enable a HetGNN to satisfy a desired permutation property: constructing an appropriate heterogeneous graph and judiciously designing the architecture of the HetGNN. However, both the graph and the HetGNN are designed heuristically so far. In this paper, we strive to provide a systematic approach for the design to satisfy the desired permutation property. We first propose a method for constructing a graph for a policy, where the edges and their types are defined for the sake of satisfying complicated permutation properties. Then, we provide and prove three sufficient conditions to design a HetGNN such that it can satisfy the desired permutation property when learning over an appropriate graph. These conditions suggest a method of designing the HetGNN with desired permutation property by sharing the processing, combining, and pooling functions according to the types of vertices and edges of the graph. We take power allocation and hybrid precoding policies as examples for demonstrating how to apply the proposed methods and validating the impact of the permutation prior by simulations.
♻ ☆ ZETA: Leveraging Z-order Curves for Efficient Top-k Attention ICLR
Over recent years, the Transformer has become a fundamental building block for sequence modeling architectures. Yet at its core is the use of self-attention, whose memory and computational cost grow quadratically with the sequence length $N$, rendering it prohibitively expensive for long sequences. A promising approach is top-$k$ attention, which selects only the $k$ most relevant tokens and achieves performance comparable to vanilla self-attention while significantly reducing space and computational demands. However, causal masks require the current query token to only attend to past tokens, preventing the existing top-$k$ attention method from efficiently searching for the most relevant tokens in parallel, thereby limiting training efficiency. In this work, we propose ZETA, leveraging \textbf{Z}-Order Curves for \textbf{E}fficient \textbf{T}op-$k$ \textbf{A}ttention, to enable parallel querying of past tokens for entire sequences. % in both space and time complexity of $\mathcal{O}(N \log N)$. We first theoretically show that the choice of key and query dimensions involves a trade-off between the curse of dimensionality and the preservation of relative distances after projection. In light of this insight, we propose reducing the dimensionality of keys and queries in contrast to values and further leverage $Z$-order curves to map low-dimensional keys and queries into \emph{one}-dimensional space, which permits parallel sorting, thereby largely improving the efficiency for top-$k$ token selection. Experimental results demonstrate that ZETA matches the performance of standard attention on the synthetic \textsc{Multi-Query Associative Recall} task and outperforms attention and its variants on \textsc{Long Range Arena} and \textsc{WikiText-103} language modeling.
comment: 25 pages, 4 figures, accepted in International Conference on Learning Representations (ICLR) 2025
♻ ☆ A predictive machine learning force field framework for liquid electrolyte development
Despite the widespread applications of machine learning force fields (MLFF) in solids and small molecules, there is a notable gap in applying MLFF to simulate liquid electrolyte, a critical component of the current commercial lithium-ion battery. In this work, we introduce BAMBOO (\textbf{B}yteDance \textbf{A}I \textbf{M}olecular Simulation \textbf{Boo}ster), a predictive framework for molecular dynamics (MD) simulations, with a demonstration of its capability in the context of liquid electrolyte for lithium batteries. We design a physics-inspired graph equivariant transformer architecture as the backbone of BAMBOO to learn from quantum mechanical simulations. Additionally, we introduce an ensemble knowledge distillation approach and apply it to MLFFs to reduce the fluctuation of observations from MD simulations. Finally, we propose a density alignment algorithm to align BAMBOO with experimental measurements. BAMBOO demonstrates state-of-the-art accuracy in predicting key electrolyte properties such as density, viscosity, and ionic conductivity across various solvents and salt combinations. The current model, trained on more than 15 chemical species, achieves the average density error of 0.01 g/cm$^3$ on various compositions compared with experiment.
comment: Figures provided as the tex source files
♻ ☆ Buyer-Initiated Auction Mechanism for Data Redemption in Machine Unlearning
The rapid growth of artificial intelligence (AI) has raised privacy concerns over user data, leading to regulations like the General Data Protection Regulation (GDPR) and the California Consumer Privacy Act (CCPA). With the essential toolbox provided by machine unlearning, AI service providers are now able to remove user data from their trained models as well as the training datasets, so as to comply with such regulations. However, extensive data redemption can be costly and degrade model accuracy. To balance the cost of unlearning and the privacy protection, we propose a buyer-initiated auction mechanism for data redemption, enabling the service provider to purchase data from willing users with appropriate compensation. This approach does not require the server to have any a priori knowledge about the users' privacy preference, and provides an efficient solution for maximizing the social welfare in the investigated problem.
comment: Submitted to IEEE GLOBECOM 2025
♻ ☆ Sparse identification of nonlinear dynamics and Koopman operators with Shallow Recurrent Decoder Networks
Modeling real-world spatio-temporal data is exceptionally difficult due to inherent high dimensionality, measurement noise, partial observations, and often expensive data collection procedures. In this paper, we present Sparse Identification of Nonlinear Dynamics with SHallow REcurrent Decoder networks (SINDy-SHRED), a method to jointly solve the sensing and model identification problems with simple implementation, efficient computation, and robust performance. SINDy-SHRED uses Gated Recurrent Units to model the temporal sequence of sparse sensor measurements along with a shallow decoder network to reconstruct the full spatio-temporal field from the latent state space. Our algorithm introduces a SINDy-based regularization for which the latent space progressively converges to a SINDy-class functional, provided the projection remains within the set. In restricting SINDy to a linear model, a Koopman-SHRED model is generated. SINDy-SHRED (i) learns a symbolic and interpretable generative model of a parsimonious and low-dimensional latent space for the complex spatio-temporal dynamics, (ii) discovers new physics models even for well-known physical systems, (iii) achieves provably robust convergence with an observed globally convex loss landscape, and (iv) achieves superior accuracy, data efficiency, and training time, all with fewer model parameters. We conduct systematic experimental studies on PDE data such as turbulent flows, real-world sensor measurements for sea surface temperature, and direct video data. The interpretable SINDy and Koopman models of latent state dynamics enable stable and accurate long-term video predictions, outperforming all current baseline deep learning models in accuracy, training time, and data requirements, including Convolutional LSTM, PredRNN, ResNet, and SimVP.
♻ ☆ Diffusion State-Guided Projected Gradient for Inverse Problems ICLR 2025
Recent advancements in diffusion models have been effective in learning data priors for solving inverse problems. They leverage diffusion sampling steps for inducing a data prior while using a measurement guidance gradient at each step to impose data consistency. For general inverse problems, approximations are needed when an unconditionally trained diffusion model is used since the measurement likelihood is intractable, leading to inaccurate posterior sampling. In other words, due to their approximations, these methods fail to preserve the generation process on the data manifold defined by the diffusion prior, leading to artifacts in applications such as image restoration. To enhance the performance and robustness of diffusion models in solving inverse problems, we propose Diffusion State-Guided Projected Gradient (DiffStateGrad), which projects the measurement gradient onto a subspace that is a low-rank approximation of an intermediate state of the diffusion process. DiffStateGrad, as a module, can be added to a wide range of diffusion-based inverse solvers to improve the preservation of the diffusion process on the prior manifold and filter out artifact-inducing components. We highlight that DiffStateGrad improves the robustness of diffusion models in terms of the choice of measurement guidance step size and noise while improving the worst-case performance. Finally, we demonstrate that DiffStateGrad improves upon the state-of-the-art on linear and nonlinear image restoration inverse problems. Our code is available at https://github.com/Anima-Lab/DiffStateGrad.
comment: Published as a conference paper at ICLR 2025. RZ and BT have equal contributions
♻ ☆ CodingTeachLLM: Empowering LLM's Coding Ability via AST Prior Knowledge
In this paper, we introduce CodingTeachLLM, a large language model (LLM) designed for coding teaching. Specially, we aim to enhance the coding ability of LLM and lead it to better teaching mode in education context. Thus, we propose an end-to-end prior-based three-phases supervised fine-tuned model, which is proved more competitive than traditional fine-tuning method. More specifically, our model realizes the structural disassembly and incremental guided output of educational knowledge. To this end, we robustify data classification of three types via a sampler and overlap estimation neural network, and inject the preprocessing datasets into pre-trained model in three batches for LORA fine-tuning. Then, we design a prior module couples system prompt, vector databases, and abstract syntax tree task segmentation. Finally, the compression method and regularization constraint are applied to the prior-based fine-tuned model, followed by text filter at the output end to obtain incremental guided results. Our model represents the first research effort to truly embody the tutor role with the features of abundant educational knowledge, step-by-step incremental guided outputs and non-disclosure of answers. Extensive experiments report that our model also achieves state-of-the-art in code abilities compared to open-source models, reaching an impressive 75.10% on the HumanEval (@pass 1) benchmark. Additionally, our model maintains strong conversational capabilities, with the 13B quantized version achieving scores of 56.34, 50.60, and 45.27 respectively on the MMLU, C-Eval, and AGIEval (5 shot) dialogue evaluation benchmarks.
comment: 9 pages, 2 figures
♻ ☆ Temporal and Semantic Evaluation Metrics for Foundation Models in Post-Hoc Analysis of Robotic Sub-tasks
Recent works in Task and Motion Planning (TAMP) show that training control policies on language-supervised robot trajectories with quality labeled data markedly improves agent task success rates. However, the scarcity of such data presents a significant hurdle to extending these methods to general use cases. To address this concern, we present an automated framework to decompose trajectory data into temporally bounded and natural language-based descriptive sub-tasks by leveraging recent prompting strategies for Foundation Models (FMs) including both Large Language Models (LLMs) and Vision Language Models (VLMs). Our framework provides both time-based and language-based descriptions for lower-level sub-tasks that comprise full trajectories. To rigorously evaluate the quality of our automatic labeling framework, we contribute an algorithm SIMILARITY to produce two novel metrics, temporal similarity and semantic similarity. The metrics measure the temporal alignment and semantic fidelity of language descriptions between two sub-task decompositions, namely an FM sub-task decomposition prediction and a ground-truth sub-task decomposition. We present scores for temporal similarity and semantic similarity above 90%, compared to 30% of a randomized baseline, for multiple robotic environments, demonstrating the effectiveness of our proposed framework. Our results enable building diverse, large-scale, language-supervised datasets for improved robotic TAMP.
comment: 8 pages, 3 figures. IROS 2024 Submission
♻ ☆ Data-Free Group-Wise Fully Quantized Winograd Convolution via Learnable Scales CVPR 2025
Despite the revolutionary breakthroughs of large-scale text-to-image diffusion models for complex vision and downstream tasks, their extremely high computational and storage costs limit their usability. Quantization of diffusion models has been explored in recent works to reduce compute costs and memory bandwidth usage. To further improve inference time, fast convolution algorithms such as Winograd can be used for convolution layers, which account for a significant portion of computations in diffusion models. However, the significant quality loss of fully quantized Winograd using existing coarser-grained post-training quantization methods, combined with the complexity and cost of finetuning the Winograd transformation matrices for such large models to recover quality, makes them unsuitable for large-scale foundation models. Motivated by the presence of a large range of values in them, we investigate the impact of finer-grained group-wise quantization in quantizing diffusion models. While group-wise quantization can largely handle the fully quantized Winograd convolution, it struggles to deal with the large distribution imbalance in a sizable portion of the Winograd domain computation. To reduce range differences in the Winograd domain, we propose finetuning only the scale parameters of the Winograd transform matrices without using any domain-specific training data. Because our method does not depend on any training data, the generalization performance of quantized diffusion models is safely guaranteed. For text-to-image generation task, the 8-bit fully-quantized diffusion model with Winograd provides near-lossless quality (FID and CLIP scores) in comparison to the full-precision model. For image classification, our method outperforms the state-of-the-art Winograd PTQ method by 1.62% and 2.56% in top-1 ImageNet accuracy on ResNet18 and ResNet-34, respectively, with Winograd F(6, 3).
comment: Accepted by CVPR 2025
♻ ☆ DC-SGD: Differentially Private SGD with Dynamic Clipping through Gradient Norm Distribution Estimation
Differentially Private Stochastic Gradient Descent (DP-SGD) is a widely adopted technique for privacy-preserving deep learning. A critical challenge in DP-SGD is selecting the optimal clipping threshold C, which involves balancing the trade-off between clipping bias and noise magnitude, incurring substantial privacy and computing overhead during hyperparameter tuning. In this paper, we propose Dynamic Clipping DP-SGD (DC-SGD), a framework that leverages differentially private histograms to estimate gradient norm distributions and dynamically adjust the clipping threshold C. Our framework includes two novel mechanisms: DC-SGD-P and DC-SGD-E. DC-SGD-P adjusts the clipping threshold based on a percentile of gradient norms, while DC-SGD-E minimizes the expected squared error of gradients to optimize C. These dynamic adjustments significantly reduce the burden of hyperparameter tuning C. The extensive experiments on various deep learning tasks, including image classification and natural language processing, show that our proposed dynamic algorithms achieve up to 9 times acceleration on hyperparameter tuning than DP-SGD. And DC-SGD-E can achieve an accuracy improvement of 10.62% on CIFAR10 than DP-SGD under the same privacy budget of hyperparameter tuning. We conduct rigorous theoretical privacy and convergence analyses, showing that our methods seamlessly integrate with the Adam optimizer. Our results highlight the robust performance and efficiency of DC-SGD, offering a practical solution for differentially private deep learning with reduced computational overhead and enhanced privacy guarantees.
comment: Accepted at IEEE Transactions on Information Forensics & Security
♻ ☆ Conditional Variable Flow Matching: Transforming Conditional Densities with Amortized Conditional Optimal Transport
Forecasting conditional stochastic nonlinear dynamical systems is a fundamental challenge repeatedly encountered across the biological and physical sciences. While flow-based models can impressively predict the temporal evolution of probability distributions representing possible outcomes of a specific process, existing frameworks cannot satisfactorily account for the impact of conditioning variables on these dynamics. Amongst several limitations, existing methods require training data with paired conditions and are developed for discrete conditioning variables. We propose Conditional Variable Flow Matching (CVFM), a framework for learning flows transforming conditional distributions with amortization across continuous conditioning variables - permitting predictions across the conditional density manifold. This is accomplished through several novel advances. In particular, simultaneous sample conditioned flows over the main and conditioning variables, alongside a conditional Wasserstein distance combined with a loss reweighting kernel facilitating conditional optimal transport. Collectively, these advances allow for learning system dynamics provided measurement data whose states and conditioning variables are not in correspondence. We demonstrate CVFM on a suite of increasingly challenging problems, including discrete and continuous conditional mapping benchmarks, image-to-image domain transfer, and modeling the temporal evolution of materials internal structure during manufacturing processes. We observe that CVFM results in improved performance and convergence characteristics over alternative conditional variants.
♻ ☆ Lean Formalization of Generalization Error Bound by Rademacher Complexity
We formalize the generalization error bound using Rademacher complexity in the Lean 4 theorem prover. Generalization error quantifies the gap between a learning machine's performance on given training data versus unseen test data, and Rademacher complexity serves as an estimate of this error based on the complexity of learning machines, or hypothesis class. Unlike traditional methods such as PAC learning and VC dimension, Rademacher complexity is applicable across diverse machine learning scenarios including deep learning and kernel methods. We formalize key concepts and theorems, including the empirical and population Rademacher complexities, and establish generalization error bounds through formal proofs of McDiarmid's inequality, Hoeffding's lemma, and symmetrization arguments.
comment: modified a typo in affiliation
♻ ☆ Assessing and improving reliability of neighbor embedding methods: a map-continuity perspective
Visualizing high-dimensional data is essential for understanding biomedical data and deep learning models. Neighbor embedding methods, such as t-SNE and UMAP, are widely used but can introduce misleading visual artifacts. We find that the manifold learning interpretations from many prior works are inaccurate and that the misuse stems from a lack of data-independent notions of embedding maps, which project high-dimensional data into a lower-dimensional space. Leveraging the leave-one-out principle, we introduce LOO-map, a framework that extends embedding maps beyond discrete points to the entire input space. We identify two forms of map discontinuity that distort visualizations: one exaggerates cluster separation and the other creates spurious local structures. As a remedy, we develop two types of point-wise diagnostic scores to detect unreliable embedding points and improve hyperparameter selection, which are validated on datasets from computer vision and single-cell omics.
comment: 49 pages, 20 figures
♻ ☆ Non-Determinism of "Deterministic" LLM Settings
LLM (large language model) practitioners commonly notice that outputs can vary for the same inputs under settings expected to be deterministic. Yet the questions of how pervasive this is, and with what impact on results, have not to our knowledge been systematically investigated. We investigate non-determinism in five LLMs configured to be deterministic when applied to eight common tasks in across 10 runs, in both zero-shot and few-shot settings. We see accuracy variations up to 15% across naturally occurring runs with a gap of best possible performance to worst possible performance up to 70%. In fact, none of the LLMs consistently delivers repeatable accuracy across all tasks, much less identical output strings. Sharing preliminary results with insiders has revealed that non-determinism perhaps essential to the efficient use of compute resources via co-mingled data in input buffers so this issue is not going away anytime soon. To better quantify our observations, we introduce metrics focused on quantifying determinism, TARr@N for the total agreement rate at N runs over raw output, and TARa@N for total agreement rate of parsed-out answers. Our code and data are publicly available at http://github.com/REDACTED.
♻ ☆ Rerouting Connection: Hybrid Computer Vision Analysis Reveals Visual Similarity Between Indus and Tibetan-Yi Corridor Writing Systems
This thesis employs a hybrid CNN-Transformer architecture, in conjunction with a detailed anthropological framework, to investigate potential historical connections between the visual morphology of the Indus Valley script and pictographic systems of the Tibetan-Yi Corridor. Through an ensemble methodology of three target scripts across 15 independently trained models, we demonstrate that Tibetan-Yi Corridor scripts exhibit approximately six-fold higher visual similarity to the Indus script (61.7%-63.5%) than to the Bronze Age Proto-Cuneiform (10.2%-10.9%) or Proto-Elamite (7.6%-8.7%) systems. Additionally and contrarily to our current understanding of the networks of the Indus Valley Civilization, the Indus script unexpectedly maps closer to Tibetan-Yi Corridor scripts, with a mean cosine similarity of 0.629, than to the aforementioned contemporaneous West Asian signaries, both of which recorded mean cosine similarities of 0.104 and 0.080 despite their close geographic proximity and evident trade relations. Across various dimensionality reduction practices and clustering methodologies, the Indus script consistently clusters closest to Tibetan-Yi Corridor scripts. Our computational results align with qualitative observations of specific pictorial parallels in numeral systems, gender markers, and key iconographic elements; this is further supported by archaeological evidence of sustained contact networks along the ancient Shu-Shendu road in tandem with the Indus Valley Civilization's decline, providing a plausible transmission pathway. While alternative explanations cannot be ruled out, the specificity and consistency of observed similarities challenge conventional narratives of isolated script development and suggest more complex ancient cultural transmission networks between South and East Asia than previously recognized.
comment: 106 pages (42 main text, 6 references, 58 appendices). 21 figures, 4 tables in main text; 106 figures, 8 tables total. Code: https://github.com/oohalakkadi/ivc2tyc. Undergraduate thesis at Duke Kunshan University. Accepted for presentation at the 52nd International Conference for Computer Applications & Quantitative Methods in Archaeology (CAA 2025), Athens, Greece
♻ ☆ Multi-objective Combinatorial Methodology for Nuclear Reactor Site Assessment: A Case Study for the United States
As clean energy demand grows to meet sustainability and net-zero goals, nuclear energy emerges as a reliable option. However, high capital costs remain a challenge for nuclear power plants (NPP), where repurposing coal power plant sites (CPP) with existing infrastructure is one way to reduce these costs. Additionally, Brownfield sites-previously developed or underutilized lands often impacted by industrial activity-present another compelling alternative. This study introduces a novel multi-objective optimization methodology, leveraging combinatorial search to evaluate over 30,000 potential NPP sites in the United States. Our approach addresses gaps in the current practice of assigning pre-determined weights to each site attribute that could lead to bias in the ranking. Each site is assigned a performance-based score, derived from a detailed combinatorial analysis of its site attributes. The methodology generates a comprehensive database comprising site locations (inputs), attributes (outputs), site score (outputs), and the contribution of each attribute to the site score. We then use this database to train a neural network model, enabling rapid predictions of nuclear siting suitability across any location in the United States. Our findings highlight that CPP sites are highly competitive for nuclear development, but some Brownfield sites are able to compete with them. Notably, four CPP sites in Ohio, North Carolina, and New Hampshire, and two Brownfield sites in Florida and California rank among the most promising locations. These results underscore the potential of integrating machine learning and optimization techniques to transform nuclear siting, paving the way for a cost-effective and sustainable energy future.
comment: 32 Pages, 7 Tables, 12 Figures
♻ ☆ UniFlow: A Foundation Model for Unified Urban Spatio-Temporal Flow Prediction
Urban spatio-temporal flow prediction, encompassing traffic flows and crowd flows, is crucial for optimizing city infrastructure and managing traffic and emergency responses. Traditional approaches have relied on separate models tailored to either grid-based data, representing cities as uniform cells, or graph-based data, modeling cities as networks of nodes and edges. In this paper, we build UniFlow, a foundational model for general urban flow prediction that unifies both grid-based and graphbased data. We first design a multi-view spatio-temporal patching mechanism to standardize different data into a consistent sequential format and then introduce a spatio-temporal transformer architecture to capture complex correlations and dynamics. To leverage shared spatio-temporal patterns across different data types and facilitate effective cross-learning, we propose SpatioTemporal Memory Retrieval Augmentation (ST-MRA). By creating structured memory modules to store shared spatio-temporal patterns, ST-MRA enhances predictions through adaptive memory retrieval. Extensive experiments demonstrate that UniFlow outperforms existing models in both grid-based and graph-based flow prediction, excelling particularly in scenarios with limited data availability, showcasing its superior performance and broad applicability. The datasets and code implementation have been released on https://github.com/YuanYuan98/UniFlow.
♻ ☆ Individualized Policy Evaluation and Learning under Clustered Network Interference
Although there is now a large literature on policy evaluation and learning, much of the prior work assumes that the treatment assignment of one unit does not affect the outcome of another unit. Unfortunately, ignoring interference can lead to biased policy evaluation and ineffective learned policies. For example, treating influential individuals who have many friends can generate positive spillover effects, thereby improving the overall performance of an individualized treatment rule (ITR). We consider the problem of evaluating and learning an optimal ITR under clustered network interference (also known as partial interference), where clusters of units are sampled from a population and units may influence one another within each cluster. Unlike previous methods that impose strong restrictions on spillover effects, such as anonymous interference, the proposed methodology only assumes a semiparametric structural model, where each unit's outcome is an additive function of individual treatments within the cluster. Under this model, we propose an estimator that can be used to evaluate the empirical performance of an ITR. We show that this estimator is substantially more efficient than the standard inverse probability weighting estimator, which does not impose any assumption about spillover effects. We derive the finite-sample regret bound for a learned ITR, showing that the use of our efficient evaluation estimator leads to the improved performance of learned policies. We consider both experimental and observational studies, and for the latter, we develop a doubly robust estimator that is semiparametrically efficient and yields an optimal regret bound. Finally, we conduct simulation and empirical studies to illustrate the advantages of the proposed methodology.
♻ ☆ Provably-Safe Neural Network Training Using Hybrid Zonotope Reachability Analysis
Even though neural networks are being increasingly deployed in safety-critical control applications, it remains difficult to enforce constraints on their output, meaning that it is hard to guarantee safety in such settings. While many existing methods seek to verify a neural network's satisfaction of safety constraints, few address how to correct an unsafe network. The handful of works that extract a training signal from verification cannot handle non-convex sets, and are either conservative or slow. To begin addressing these challenges, this work proposes a neural network training method that can encourage the exact image of a non-convex input set for a neural network with rectified linear unit (ReLU) nonlinearities to avoid a non-convex unsafe region. This is accomplished by reachability analysis with scaled hybrid zonotopes, a modification of the existing hybrid zonotope set representation that enables parameterized scaling of non-convex polytopic sets with a differentiable collision check via mixed-integer linear programs (MILPs). The proposed method was shown to be effective and fast for networks with up to 240 neurons, with the computational complexity dominated by inverse operations on matrices that scale linearly in size with the number of neurons and complexity of input and unsafe sets. We demonstrate the practicality of our method by training a forward-invariant neural network controller for a non-convex input set to an affine system, as well as generating safe reach-avoid plans for a black-box dynamical system.
comment: 8 pages, 3 figures
♻ ☆ Robust Bayesian Optimization via Localized Online Conformal Prediction
Bayesian optimization (BO) is a sequential approach for optimizing black-box objective functions using zeroth-order noisy observations. In BO, Gaussian processes (GPs) are employed as probabilistic surrogate models to estimate the objective function based on past observations, guiding the selection of future queries to maximize utility. However, the performance of BO heavily relies on the quality of these probabilistic estimates, which can deteriorate significantly under model misspecification. To address this issue, we introduce localized online conformal prediction-based Bayesian optimization (LOCBO), a BO algorithm that calibrates the GP model through localized online conformal prediction (CP). LOCBO corrects the GP likelihood based on predictive sets produced by LOCBO, and the corrected GP likelihood is then denoised to obtain a calibrated posterior distribution on the objective function. The likelihood calibration step leverages an input-dependent calibration threshold to tailor coverage guarantees to different regions of the input space. Under minimal noise assumptions, we provide theoretical performance guarantees for LOCBO's iterates that hold for the unobserved objective function. These theoretical findings are validated through experiments on synthetic and real-world optimization tasks, demonstrating that LOCBO consistently outperforms state-of-the-art BO algorithms in the presence of model misspecification.
♻ ☆ Enhancing Domain Adaptation through Prompt Gradient Alignment NeurIPS 2024
Prior Unsupervised Domain Adaptation (UDA) methods often aim to train a domain-invariant feature extractor, which may hinder the model from learning sufficiently discriminative features. To tackle this, a line of works based on prompt learning leverages the power of large-scale pre-trained vision-language models to learn both domain-invariant and specific features through a set of domain-agnostic and domain-specific learnable prompts. Those studies typically enforce invariant constraints on representation, output, or prompt space to learn such prompts. In contrast, we cast UDA as a multiple-objective optimization problem in which each objective is represented by a domain loss. Under this new framework, we propose to align per-objective gradients to foster consensus between them. Additionally, to prevent potential overfitting when fine-tuning this deep learning architecture, we penalize the norm of these gradients. To achieve these goals, we devise a practical gradient update procedure that can work under both single-source and multi-source UDA. Empirically, our method consistently outperforms other vision-language model adaptation methods. The implementation is available at https://github.com/VietHoang1512/PGA.
comment: Accepted to NeurIPS 2024
♻ ☆ Causal Dynamic Variational Autoencoder for Counterfactual Regression in Longitudinal Data
Estimating treatment effects over time is relevant in many real-world applications, such as precision medicine, epidemiology, economy, and marketing. Many state-of-the-art methods either assume the observations of all confounders or seek to infer the unobserved ones. We take a different perspective by assuming unobserved risk factors, i.e., adjustment variables that affect only the sequence of outcomes. Under unconfoundedness, we target the Individual Treatment Effect (ITE) estimation with unobserved heterogeneity in the treatment response due to missing risk factors. We address the challenges posed by time-varying effects and unobserved adjustment variables. Led by theoretical results over the validity of the learned adjustment variables and generalization bounds over the treatment effect, we devise Causal DVAE (CDVAE). This model combines a Dynamic Variational Autoencoder (DVAE) framework with a weighting strategy using propensity scores to estimate counterfactual responses. The CDVAE model allows for accurate estimation of ITE and captures the underlying heterogeneity in longitudinal data. Evaluations of our model show superior performance over state-of-the-art models.
♻ ☆ Independent and Decentralized Learning in Markov Potential Games
We study a multi-agent reinforcement learning dynamics, and analyze its asymptotic behavior in infinite-horizon discounted Markov potential games. We focus on the independent and decentralized setting, where players do not know the game parameters, and cannot communicate or coordinate. In each stage, players update their estimate of Q-function that evaluates their total contingent payoff based on the realized one-stage reward in an asynchronous manner. Then, players independently update their policies by incorporating an optimal one-stage deviation strategy based on the estimated Q-function. Inspired by the actor-critic algorithm in single-agent reinforcement learning, a key feature of our learning dynamics is that agents update their Q-function estimates at a faster timescale than the policies. Leveraging tools from two-timescale asynchronous stochastic approximation theory, we characterize the convergent set of learning dynamics.
comment: 43 pages, 1 figure
♻ ☆ Addressing pitfalls in implicit unobserved confounding synthesis using explicit block hierarchical ancestral sampling
Unbiased data synthesis is crucial for evaluating causal discovery algorithms in the presence of unobserved confounding, given the scarcity of real-world datasets. A common approach, implicit parameterization, encodes unobserved confounding by modifying the off-diagonal entries of the idiosyncratic covariance matrix while preserving positive definiteness. Within this approach, we identify that state-of-the-art protocols have two distinct issues that hinder unbiased sampling from the complete space of causal models: first, we give a detailed analysis of use of diagonally dominant constructions restricts the spectrum of partial correlation matrices; and second, the restriction of possible graphical structures when sampling bidirected edges, unnecessarily ruling out valid causal models. To address these limitations, we propose an improved explicit modeling approach for unobserved confounding, leveraging block-hierarchical ancestral generation of ground truth causal graphs. Algorithms for converting the ground truth DAG into ancestral graph is provided so that the output of causal discovery algorithms could be compared with. We draw connections between implicit and explicit parameterization, prove that our approach fully covers the space of causal models, including those generated by the implicit parameterization, thus enabling more robust evaluation of methods for causal discovery and inference.
♻ ☆ Disentangling Safe and Unsafe Corruptions via Anisotropy and Locality
State-of-the-art machine learning systems are vulnerable to small perturbations to their input, where ``small'' is defined according to a threat model that assigns a positive threat to each perturbation. Most prior works define a task-agnostic, isotropic, and global threat, like the $\ell_p$ norm, where the magnitude of the perturbation fully determines the degree of the threat and neither the direction of the attack nor its position in space matter. However, common corruptions in computer vision, such as blur, compression, or occlusions, are not well captured by such threat models. This paper proposes a novel threat model called \texttt{Projected Displacement} (PD) to study robustness beyond existing isotropic and global threat models. The proposed threat model measures the threat of a perturbation via its alignment with \textit{unsafe directions}, defined as directions in the input space along which a perturbation of sufficient magnitude changes the ground truth class label. Unsafe directions are identified locally for each input based on observed training data. In this way, the PD threat model exhibits anisotropy and locality. Experiments on Imagenet-1k data indicate that, for any input, the set of perturbations with small PD threat includes \textit{safe} perturbations of large $\ell_p$ norm that preserve the true label, such as noise, blur and compression, while simultaneously excluding \textit{unsafe} perturbations that alter the true label. Unlike perceptual threat models based on embeddings of large-vision models, the PD threat model can be readily computed for arbitrary classification tasks without pre-training or finetuning. Further additional task annotation such as sensitivity to image regions or concept hierarchies can be easily integrated into the assessment of threat and thus the PD threat model presents practitioners with a flexible, task-driven threat specification.
comment: Published at IEEE/CVF Conference on Computer Vision and Pattern Recognition 2025. Updated Acknowledgements
♻ ☆ Latent Covariate Shift: Unlocking Partial Identifiability for Multi-Source Domain Adaptation
Multi-source domain adaptation (MSDA) addresses the challenge of learning a label prediction function for an unlabeled target domain by leveraging both the labeled data from multiple source domains and the unlabeled data from the target domain. Conventional MSDA approaches often rely on covariate shift or conditional shift paradigms, which assume a consistent label distribution across domains. However, this assumption proves limiting in practical scenarios where label distributions do vary across domains, diminishing its applicability in real-world settings. For example, animals from different regions exhibit diverse characteristics due to varying diets and genetics. Motivated by this, we propose a novel paradigm called latent covariate shift (LCS), which introduces significantly greater variability and adaptability across domains. Notably, it provides a theoretical assurance for recovering the latent cause of the label variable, which we refer to as the latent content variable. Within this new paradigm, we present an intricate causal generative model by introducing latent noises across domains, along with a latent content variable and a latent style variable to achieve more nuanced rendering of observational data. We demonstrate that the latent content variable can be identified up to block identifiability due to its versatile yet distinct causal structure. We anchor our theoretical insights into a novel MSDA method, which learns the label distribution conditioned on the identifiable latent content variable, thereby accommodating more substantial distribution shifts. The proposed approach showcases exceptional performance and efficacy on both simulated and real-world datasets.
♻ ☆ Flash normalization: fast normalization for LLMs
RMSNorm is used by many LLMs such as Llama, Mistral, and OpenELM. This paper details FlashNorm, which is an exact but faster implementation of RMSNorm followed by linear layers. FlashNorm also speeds up Layer Normalization and its recently proposed replacement Dynamic Tanh (DyT) arXiv:2503.10622. See https://github.com/OpenMachine-ai/transformer-tricks for code and more transformer tricks.
comment: 7 pages, 8 figures
♻ ☆ Emotion estimation from video footage with LSTM
Emotion estimation in general is a field that has been studied for a long time, and several approaches exist using machine learning. in this paper, we present an LSTM model, that processes the blend-shapes produced by the library MediaPipe, for a face detected in a live stream of a camera, to estimate the main emotion from the facial expressions, this model is trained on the FER2013 dataset and delivers a result of 71% accuracy and 62% f1-score which meets the accuracy benchmark of the FER2013 dataset, with significantly reduced computation costs. https://github.com/Samir-atra/Emotion_estimation_from_video_footage_with_LSTM_ML_algorithm
comment: 12 pages, 5 figures, 34 references, 4 tables, 3 equations
♻ ☆ Amelia: A Large Dataset and Model for Airport Surface Movement Forecasting
The growing demand for air travel necessitates advancements in air traffic management technologies to ensure safe and efficient operations. Predictive models for terminal airspace can help anticipate future movements and traffic flows, enabling proactive planning for efficient coordination, collision risk assessment, taxi-out time prediction, departure metering, and emission estimations. Although data-driven predictive models have shown promise in tackling some of these challenges, the absence of large-scale curated surface movement datasets in the public domain has hindered the development of scalable and generalizable approaches. In this context, we propose the Amelia framework, which consists of four key contributions. First, Amelia-48, a large dataset of airport surface movement collected through the FAA's System Wide Information Management (SWIM) Program. This dataset includes over two years' worth of trajectory data (~70TB) across 48 US airports and map data. Second, we develop AmeliaTF, a large transformer-based baseline for multi-agent, multi-airport trajectory forecasting. Third, we propose Amelia-10, a training and evaluation benchmark consisting of 292 days of post-processed data from 10 different airports and a series of experiments to promote the development of foundation models in aviation. We provide baseline results across our benchmark using AmeliaTF. Finally, we release our framework and tools to encourage further aviation research in the forecasting domain and beyond at https://ameliacmu.github.io
comment: 25 pages, 9 figures, 8 tables
♻ ☆ Gaussian entropic optimal transport: Schrödinger bridges and the Sinkhorn algorithm
Entropic optimal transport problems are regularized versions of optimal transport problems. These models play an increasingly important role in machine learning and generative modelling. For finite spaces, these problems are commonly solved using Sinkhorn algorithm (a.k.a. iterative proportional fitting procedure). However, in more general settings the Sinkhorn iterations are based on nonlinear conditional/conjugate transformations and exact finite-dimensional solutions cannot be computed. This article presents a finite-dimensional recursive formulation of the iterative proportional fitting procedure for general Gaussian multivariate models. As expected, this recursive formulation is closely related to the celebrated Kalman filter and related Riccati matrix difference equations, and it yields algorithms that can be implemented in practical settings without further approximations. We extend this filtering methodology to develop a refined and self-contained convergence analysis of Gaussian Sinkhorn algorithms, including closed form expressions of entropic transport maps and Schr\"odinger bridges.
comment: 74 pages
♻ ☆ Global Framework for Emulation of Nuclear Calculations
We introduce a hierarchical framework that combines ab initio many-body calculations with a Bayesian neural network, developing emulators capable of accurately predicting nuclear properties across isotopic chains simultaneously and being applicable to different regions of the nuclear chart. We benchmark our developments using the oxygen isotopic chain, achieving accurate results for ground-state energies and nuclear charge radii, while providing robust uncertainty quantification. Our framework enables global sensitivity analysis of nuclear binding energies and charge radii with respect to the low-energy constants that describe the nuclear force.
♻ ☆ Posterior Covariance Structures in Gaussian Processes
In this paper, we present a comprehensive analysis of the posterior covariance field in Gaussian processes, with applications to the posterior covariance matrix. The analysis is based on the Gaussian prior covariance but the approach also applies to other covariance kernels. Our geometric analysis reveals how the Gaussian kernel's bandwidth parameter and the spatial distribution of the observations influence the posterior covariance as well as the corresponding covariance matrix, enabling straightforward identification of areas with high or low covariance in magnitude. Drawing inspiration from the a posteriori error estimation techniques in adaptive finite element methods, we also propose several estimators to efficiently measure the absolute posterior covariance field, which can be used for efficient covariance matrix approximation and preconditioning. We conduct a wide range of experiments to illustrate our theoretical findings and their practical applications.
comment: 28 pages
♻ ☆ CGKN: A Deep Learning Framework for Modeling Complex Dynamical Systems and Efficient Data Assimilation
Deep learning is widely used to predict complex dynamical systems in many scientific and engineering areas. However, the black-box nature of these deep learning models presents significant challenges for carrying out simultaneous data assimilation (DA), which is a crucial technique for state estimation, model identification, and reconstructing missing data. Integrating ensemble-based DA methods with nonlinear deep learning models is computationally expensive and may suffer from large sampling errors. To address these challenges, we introduce a deep learning framework designed to simultaneously provide accurate forecasts and efficient DA. It is named Conditional Gaussian Koopman Network (CGKN), which transforms general nonlinear systems into nonlinear neural differential equations with conditional Gaussian structures. CGKN aims to retain essential nonlinear components while applying systematic and minimal simplifications to facilitate the development of analytic formulae for nonlinear DA. This allows for seamless integration of DA performance into the deep learning training process, eliminating the need for empirical tuning as required in ensemble methods. CGKN compensates for structural simplifications by lifting the dimension of the system, which is motivated by Koopman theory. Nevertheless, CGKN exploits special nonlinear dynamics within the lifted space. This enables the model to capture extreme events and strong non-Gaussian features in joint and marginal distributions with appropriate uncertainty quantification. We demonstrate the effectiveness of CGKN for both prediction and DA on three strongly nonlinear and non-Gaussian turbulent systems: the projected stochastic Burgers-Sivashinsky equation, the Lorenz 96 system, and the El Ni\~no-Southern Oscillation. The results justify the robustness and computational efficiency of CGKN.
♻ ☆ TS-RAG: Retrieval-Augmented Generation based Time Series Foundation Models are Stronger Zero-Shot Forecaster
Recently, Large Language Models (LLMs) and Foundation Models (FMs) have become prevalent for time series forecasting tasks. However, fine-tuning large language models (LLMs) for forecasting enables the adaptation to specific domains but may not generalize well across diverse, unseen datasets. Meanwhile, existing time series foundation models (TSFMs) lack inherent mechanisms for domain adaptation and suffer from limited interpretability, making them suboptimal for zero-shot forecasting. To this end, we present TS-RAG, a retrieval-augmented generation based time series forecasting framework that enhances the generalization capability and interpretability of TSFMs. Specifically, TS-RAG leverages pre-trained time series encoders to retrieve semantically relevant time series segments from a dedicated knowledge database, incorporating contextual patterns for the given time series query. Next, we develop a learnable Mixture-of-Experts (MoE)-based augmentation module, which dynamically fuses retrieved time series patterns with the TSFM's representation of the input query, improving forecasting accuracy without requiring task-specific fine-tuning. Thorough empirical studies on seven public benchmark datasets demonstrate that TS-RAG achieves state-of-the-art zero-shot forecasting performance, outperforming TSFMs by up to 6.51% across diverse domains and showcasing desired interpretability.
♻ ☆ Cosmos-Transfer1: Conditional World Generation with Adaptive Multimodal Control
We introduce Cosmos-Transfer, a conditional world generation model that can generate world simulations based on multiple spatial control inputs of various modalities such as segmentation, depth, and edge. In the design, the spatial conditional scheme is adaptive and customizable. It allows weighting different conditional inputs differently at different spatial locations. This enables highly controllable world generation and finds use in various world-to-world transfer use cases, including Sim2Real. We conduct extensive evaluations to analyze the proposed model and demonstrate its applications for Physical AI, including robotics Sim2Real and autonomous vehicle data enrichment. We further demonstrate an inference scaling strategy to achieve real-time world generation with an NVIDIA GB200 NVL72 rack. To help accelerate research development in the field, we open-source our models and code at https://github.com/nvidia-cosmos/cosmos-transfer1.
♻ ☆ ComFairGNN: Community Fair Graph Neural Network PAKDD 2025
Graph Neural Networks (GNNs) have become the leading approach for addressing graph analytical problems in various real-world scenarios. However, GNNs may produce biased predictions against certain demographic subgroups due to node attributes and neighbors surrounding a node. Most current research on GNN fairness focuses predominantly on debiasing GNNs using oversimplified fairness evaluation metrics, which can give a misleading impression of fairness. Understanding the potential evaluation paradoxes due to the complicated nature of the graph structure is crucial for developing effective GNN debiasing mechanisms. In this paper, we examine the effectiveness of current GNN debiasing methods in terms of unfairness evaluation. Specifically, we introduce a community-level strategy to measure bias in GNNs and evaluate debiasing methods at this level. Further, We introduce ComFairGNN, a novel framework designed to mitigate community-level bias in GNNs. Our approach employs a learnable coreset-based debiasing function that addresses bias arising from diverse local neighborhood distributions during GNNs neighborhood aggregation. Comprehensive evaluations on three benchmark datasets demonstrate our model's effectiveness in both accuracy and fairness metrics.
comment: Published at PAKDD 2025
♻ ☆ Provable Guarantees for Nonlinear Feature Learning in Three-Layer Neural Networks
One of the central questions in the theory of deep learning is to understand how neural networks learn hierarchical features. The ability of deep networks to extract salient features is crucial to both their outstanding generalization ability and the modern deep learning paradigm of pretraining and finetuneing. However, this feature learning process remains poorly understood from a theoretical perspective, with existing analyses largely restricted to two-layer networks. In this work we show that three-layer neural networks have provably richer feature learning capabilities than two-layer networks. We analyze the features learned by a three-layer network trained with layer-wise gradient descent, and present a general purpose theorem which upper bounds the sample complexity and width needed to achieve low test error when the target has specific hierarchical structure. We instantiate our framework in specific statistical learning settings -- single-index models and functions of quadratic features -- and show that in the latter setting three-layer networks obtain a sample complexity improvement over all existing guarantees for two-layer networks. Crucially, this sample complexity improvement relies on the ability of three-layer networks to efficiently learn nonlinear features. We then establish a concrete optimization-based depth separation by constructing a function which is efficiently learnable via gradient descent on a three-layer network, yet cannot be learned efficiently by a two-layer network. Our work makes progress towards understanding the provable benefit of three-layer neural networks over two-layer networks in the feature learning regime.
comment: v3: Improved sample complexity and width dependence (see comment on page 1)
♻ ☆ Long-context Protein Language Modeling Using Bidirectional Mamba with Shared Projection Layers
Self-supervised training of language models (LMs) has seen great success for protein sequences in learning meaningful representations and for generative drug design. Most protein LMs are based on the Transformer architecture trained on individual proteins with short context lengths. Such protein LMs cannot extrapolate to longer proteins and protein complexes well. They also fail to account for the underlying biological mechanisms carried out by biomolecular interactions and dynamics i.e., proteins often interact with other proteins, molecules, and pathways in complex biological systems. In this work, we propose LC-PLM based on an alternative protein LM architecture, BiMamba-S, built upon selective structured state-space models, to learn high-quality universal protein representations at the amino acid token level using masked language modeling. We also introduce its graph-contextual variant, LC-PLM, which contextualizes protein-protein interaction (PPI) graphs for a second stage of training. LC-PLM demonstrates favorable neural scaling laws, better length extrapolation capability, and up to 30% and 16% improvements on protein downstream tasks compared to Transformer-based ESM-2 when trained with 100B and 1T tokens, respectively. LC-PLM-G further trained within the context of PPI graphs shows promising results on protein structure and function prediction tasks. Our study demonstrates the benefit of increasing the context size with computationally efficient LM architecture (e.g., structured state space models) in learning universal protein representations and incorporating molecular interaction contexts contained in biological graphs.
comment: model weights open-sourced at https://github.com/amazon-science/LC-PLM
♻ ☆ Data-Driven Knowledge Transfer in Batch $Q^*$ Learning
In data-driven decision-making in marketing, healthcare, and education, it is desirable to utilize a large amount of data from existing ventures to navigate high-dimensional feature spaces and address data scarcity in new ventures. We explore knowledge transfer in dynamic decision-making by concentrating on batch stationary environments and formally defining task discrepancies through the lens of Markov decision processes (MDPs). We propose a framework of Transferred Fitted $Q$-Iteration algorithm with general function approximation, enabling the direct estimation of the optimal action-state function $Q^*$ using both target and source data. We establish the relationship between statistical performance and MDP task discrepancy under sieve approximation, shedding light on the impact of source and target sample sizes and task discrepancy on the effectiveness of knowledge transfer. We show that the final learning error of the $Q^*$ function is significantly improved from the single task rate both theoretically and empirically.
♻ ☆ Learning Actionable Counterfactual Explanations in Large State Spaces
Recourse generators provide actionable insights, often through feature-based counterfactual explanations (CFEs), to help negatively classified individuals understand how to adjust their input features to achieve a positive classification. These feature-based CFEs, which we refer to as \emph{low-level} CFEs, are overly specific (e.g., coding experience: $4 \to 5+$ years) and often recommended in feature space that doesn't straightforwardly align with real-world actions. To bridge this gap, we introduce three novel recourse types grounded in real-world actions: high-level continuous (\emph{hl-continuous}), high-level discrete (\emph{hl-discrete}), and high-level ID (\emph{hl-id}) CFEs. We formulate single-agent CFE generation methods, where we model the hl-discrete CFE as a solution to a weighted set cover problem and the hl-continuous CFE as a solution to an integer linear program. Since these methods require costly optimization per agent, we propose data-driven CFE generation approaches that, given instances of agents and their optimal CFEs, learn a CFE generator that quickly provides optimal CFEs for new agents. This approach, also viewed as one of learning an optimal policy in a family of large but deterministic MDPs, considers several problem formulations, including formulations in which the actions and their effects are unknown, and therefore addresses informational and computational challenges. Through extensive empirical evaluation using publicly available healthcare datasets (BRFSS, Foods, and NHANES), we compare the proposed forms of recourse to low-level CFEs and assess the effectiveness of our data-driven approaches. Empirical results show that the proposed data-driven CFE generators are accurate and resource-efficient, and the proposed forms of recourse have various advantages over the low-level CFEs.
♻ ☆ Active teacher selection for reinforcement learning from human feedback
Reinforcement learning from human feedback (RLHF) enables machine learning systems to learn objectives from human feedback. A core limitation of these systems is their assumption that all feedback comes from a single human teacher, despite querying a range of distinct teachers. We propose the Hidden Utility Bandit (HUB) framework to model differences in teacher rationality, expertise, and costliness, formalizing the problem of learning from multiple teachers. We develop a variety of solution algorithms and apply them to two real-world domains: paper recommendation systems and COVID-19 vaccine testing. We find that the Active Teacher Selection (ATS) algorithm outperforms baseline algorithms by actively selecting when and which teacher to query. The HUB framework and ATS algorithm demonstrate the importance of leveraging differences between teachers to learn accurate reward models, facilitating future research on active teacher selection for robust reward modeling.
♻ ☆ Towards a Trustworthy Anomaly Detection for Critical Applications through Approximated Partial AUC Loss
Anomaly Detection is a crucial step for critical applications such in the industrial, medical or cybersecurity domains. These sectors share the same requirement of handling differently the different types of classification errors. Indeed, even if false positives are acceptable, false negatives are not, because it would reflect a missed detection of a quality issue, a disease or a cyber threat. To fulfill this requirement, we propose a method that dynamically applies a trustworthy approximated partial AUC ROC loss (tapAUC). A binary classifier is trained to optimize the specific range of the AUC ROC curve that prevents the True Positive Rate (TPR) to reach 100% while minimizing the False Positive Rate (FPR). The optimal threshold that does not trigger any false negative is then kept and used at the test step. The results show a TPR of 92.52% at a 20.43% FPR for an average across 6 datasets, representing a TPR improvement of 4.3% for a FPR cost of 12.2% against other state-of-the-art methods. The code is available at https://github.com/ArnaudBougaham/tapAUC.
♻ ☆ Improving Mapper's Robustness by Varying Resolution According to Lens-Space Density
We propose a modification of the Mapper algorithm that removes the assumption of a single resolution scale across semantic space and improves the robustness of the results under change of parameters. Our work is motivated by datasets where the density in the image of the Morse-type function (the lens-space density) varies widely. For such datasets, tuning the resolution parameter of Mapper is difficult because small changes can lead to significant variations in the output. By improving the robustness of the output under these variations, our method makes it easier to tune the resolution for datasets with highly variable lens-space density. This improvement is achieved by generalising the type of permitted cover for Mapper and incorporating the lens-space density into the cover. Furthermore, we prove that for covers satisfying natural assumptions, the graph produced by Mapper still converges in bottleneck distance to the Reeb graph of the Rips complex of the data, while possibly capturing more topological features than a standard Mapper cover. Finally, we discuss implementation details and present the results of computational experiments. We also provide an accompanying reference implementation.
comment: 35 pages, 9 figures
♻ ☆ IR2: Information Regularization for Information Retrieval
Effective information retrieval (IR) in settings with limited training data, particularly for complex queries, remains a challenging task. This paper introduces IR2, Information Regularization for Information Retrieval, a technique for reducing overfitting during synthetic data generation. This approach, representing a novel application of regularization techniques in synthetic data creation for IR, is tested on three recent IR tasks characterized by complex queries: DORIS-MAE, ArguAna, and WhatsThatBook. Experimental results indicate that our regularization techniques not only outperform previous synthetic query generation methods on the tasks considered but also reduce cost by up to 50%. Furthermore, this paper categorizes and explores three regularization methods at different stages of the query synthesis pipeline-input, prompt, and output-each offering varying degrees of performance improvement compared to models where no regularization is applied. This provides a systematic approach for optimizing synthetic data generation in data-limited, complex-query IR scenarios. All code, prompts and synthetic data are available at https://github.com/Info-Regularization/Information-Regularization.
comment: Accepted by LREC-COLING 2024 - The 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation
♻ ☆ Stochastic Reservoir Computers
Reservoir computing is a form of machine learning that utilizes nonlinear dynamical systems to perform complex tasks in a cost-effective manner when compared to typical neural networks. Many recent advancements in reservoir computing, in particular quantum reservoir computing, make use of reservoirs that are inherently stochastic. However, the theoretical justification for using these systems has not yet been well established. In this paper, we investigate the universality of stochastic reservoir computers, in which we use a stochastic system for reservoir computing using the probabilities of each reservoir state as the readout instead of the states themselves. In stochastic reservoir computing, the number of distinct states of the entire reservoir computer can potentially scale exponentially with the size of the reservoir hardware, offering the advantage of compact device size. We prove that classes of stochastic echo state networks, and therefore the class of all stochastic reservoir computers, are universal approximating classes. We also investigate the performance of two practical examples of stochastic reservoir computers in classification and chaotic time series prediction. While shot noise is a limiting factor in the performance of stochastic reservoir computing, we show significantly improved performance compared to a deterministic reservoir computer with similar hardware in cases where the effects of noise are small.
comment: 34 pages, 8 figures
♻ ☆ Leveraging GANs For Active Appearance Models Optimized Model Fitting
Active Appearance Models (AAMs) are a well-established technique for fitting deformable models to images, but they are limited by linear appearance assumptions and can struggle with complex variations. In this paper, we explore if the AAM fitting process can benefit from a Generative Adversarial Network (GAN). We uses a U-Net based generator and a PatchGAN discriminator for GAN-augmented framework in an attempt to refine the appearance model during fitting. This approach attempts to addresses challenges such as non-linear appearance variations and occlusions that traditional AAM optimization methods may fail to handle. Limited experiments on face alignment datasets demonstrate that the GAN-enhanced AAM can achieve higher accuracy and faster convergence than classic approaches with some manual interventions. These results establish feasibility of GANs as a tool for improving deformable model fitting in challenging conditions while maintaining efficient performance, and establishes the need for more future work to evaluate this approach at scale.
comment: 7 pages, new version adds missed citations, improves literature overview, adds differentiating elements, adds more specifics in implementation details, adds limitations found since first version, future work cited is in progress
♻ ☆ ResKoopNet: Learning Koopman Representations for Complex Dynamics with Spectral Residuals
Analyzing long-term behaviors in high-dimensional nonlinear dynamical systems remains challenging, with the Koopman operator framework providing a powerful global linearization approach, though existing methods for approximating its spectral components often suffer from theoretical limitations and reliance on predefined dictionaries. While Residual Dynamic Mode Decomposition (ResDMD) introduced the spectral residual to assess the accuracy of Koopman operator approximation, its only filters precomputed spectra, which prevents it from fully discovering the Koopman operator's complete spectral information (a limitation sometimes referred to as the 'spectral inclusion' problem). We introduce ResKoopNet (Residual-based Koopman-learning Network), a novel method that addresses this limitation by explicitly minimizing the spectral residual to compute Koopman eigenpairs, which can identify a more precise and complete spectrum of the Koopman operator. This approach provides theoretical guarantees while maintaining computational adaptability through a neural network implementation. Experiments on physical and biological systems demonstrate ResKoopNet's superior accuracy in spectral approximation compared to existing methods, particularly for systems with continuous spectra and high dimensional, which makes it as an effective tool for analyzing complex dynamical systems.
♻ ☆ A Large-Scale Vision-Language Dataset Derived from Open Scientific Literature to Advance Biomedical Generalist AI
Despite the excitement behind biomedical artificial intelligence (AI), access to high-quality, diverse, and large-scale data - the foundation for modern AI systems - is still a bottleneck to unlocking its full potential. To address this gap, we introduce Biomedica, an open-source dataset derived from the PubMed Central Open Access subset, containing over 6 million scientific articles and 24 million image-text pairs, along with 27 metadata fields (including expert human annotations). To overcome the challenges of accessing our large-scale dataset, we provide scalable streaming and search APIs through a web server, facilitating seamless integration with AI systems. We demonstrate the utility of the Biomedica dataset by building embedding models, chat-style models, and retrieval-augmented chat agents. Notably, all our AI models surpass previous open systems in their respective categories, underscoring the critical role of diverse, high-quality, and large-scale biomedical data.
♻ ☆ Bridging conformal prediction and scenario optimization
Conformal prediction and scenario optimization constitute two important classes of statistical learning frameworks to certify decisions made using data. They have found numerous applications in control theory, machine learning and robotics. Despite intense research in both areas, and apparently similar results, a clear connection between these two frameworks has not been established. By focusing on the so-called vanilla conformal prediction, we show rigorously how to choose appropriate score functions and set predictor map to recover well-known bounds on the probability of constraint violation associated with scenario programs. We also show how to treat ranking of nonconformity scores as a one-dimensional scenario program with discarded constraints, and use such connection to recover vanilla conformal prediction guarantees on the validity of the set predictor. We also capitalize on the main developments of the scenario approach, and show how we could analyze calibration conditional conformal prediction under this lens. Our results establish a theoretical bridge between conformal prediction and scenario optimization.
♻ ☆ DeformTime: Capturing Variable Dependencies with Deformable Attention for Time Series Forecasting
In multivariable time series (MTS) forecasting, existing state-of-the-art deep learning approaches tend to focus on autoregressive formulations and often overlook the potential of using exogenous variables in enhancing the prediction of the target endogenous variable. To address this limitation, we present DeformTime, a neural network architecture that attempts to capture correlated temporal patterns from the input space, and hence, improve forecasting accuracy. It deploys two core operations performed by deformable attention blocks (DABs): learning dependencies across variables from different time steps (variable DAB), and preserving temporal dependencies in data from previous time steps (temporal DAB). Input data transformation is explicitly designed to enhance learning from the deformed series of information while passing through a DAB. We conduct extensive experiments on 6 MTS data sets, using previously established benchmarks as well as challenging infectious disease modelling tasks with more exogenous variables. The results demonstrate that DeformTime improves accuracy against previous competitive methods across the vast majority of MTS forecasting tasks, reducing the mean absolute error by 7.2% on average. Notably, performance gains remain consistent across longer forecasting horizons.
comment: Published in Transactions on Machine Learning Research (04/2025). The code is available at https://github.com/ClaudiaShu/DeformTime
♻ ☆ Dual Diffusion for Unified Image Generation and Understanding
Diffusion models have gained tremendous success in text-to-image generation, yet still lag behind with visual understanding tasks, an area dominated by autoregressive vision-language models. We propose a large-scale and fully end-to-end diffusion model for multi-modal understanding and generation that significantly improves on existing diffusion-based multimodal models, and is the first of its kind to support the full suite of vision-language modeling capabilities. Inspired by the multimodal diffusion transformer (MM-DiT) and recent advances in discrete diffusion language modeling, we leverage a cross-modal maximum likelihood estimation framework that simultaneously trains the conditional likelihoods of both images and text jointly under a single loss function, which is back-propagated through both branches of the diffusion transformer. The resulting model is highly flexible and capable of a wide range of tasks including image generation, captioning, and visual question answering. Our model attained competitive performance compared to recent unified image understanding and generation models, demonstrating the potential of multimodal diffusion modeling as a promising alternative to autoregressive next-token prediction models.
♻ ☆ DivPrune: Diversity-based Visual Token Pruning for Large Multimodal Models CVPR 2025
Large Multimodal Models (LMMs) have emerged as powerful models capable of understanding various data modalities, including text, images, and videos. LMMs encode both text and visual data into tokens that are then combined and processed by an integrated Large Language Model (LLM). Including visual tokens substantially increases the total token count, often by thousands. The increased input length for LLM significantly raises the complexity of inference, resulting in high latency in LMMs. To address this issue, token pruning methods, which remove part of the visual tokens, are proposed. The existing token pruning methods either require extensive calibration and fine-tuning or rely on suboptimal importance metrics which results in increased redundancy among the retained tokens. In this paper, we first formulate token pruning as Max-Min Diversity Problem (MMDP) where the goal is to select a subset such that the diversity among the selected {tokens} is maximized. Then, we solve the MMDP to obtain the selected subset and prune the rest. The proposed method, DivPrune, reduces redundancy and achieves the highest diversity of the selected tokens. By ensuring high diversity, the selected tokens better represent the original tokens, enabling effective performance even at high pruning ratios without requiring fine-tuning. Extensive experiments with various LMMs show that DivPrune achieves state-of-the-art accuracy over 16 image- and video-language datasets. Additionally, DivPrune reduces both the end-to-end latency and GPU memory usage for the tested models. The code is available $\href{https://github.com/vbdi/divprune}{\text{here}}$.
comment: Accepted to CVPR 2025
♻ ☆ No, of course I can! Refusal Mechanisms Can Be Exploited Using Harmless Fine-Tuning Data
Leading language model (LM) providers like OpenAI and Google offer fine-tuning APIs that allow customers to adapt LMs for specific use cases. To prevent misuse, these LM providers implement filtering mechanisms to block harmful fine-tuning data. Consequently, adversaries seeking to produce unsafe LMs via these APIs must craft adversarial training data that are not identifiably harmful. We make three contributions in this context: 1. We show that many existing attacks that use harmless data to create unsafe LMs rely on eliminating model refusals in the first few tokens of their responses. 2. We show that such prior attacks can be blocked by a simple defense that pre-fills the first few tokens from an aligned model before letting the fine-tuned model fill in the rest. 3. We describe a new data-poisoning attack, ``No, Of course I Can Execute'' (NOICE), which exploits an LM's formulaic refusal mechanism to elicit harmful responses. By training an LM to refuse benign requests on the basis of safety before fulfilling those requests regardless, we are able to jailbreak several open-source models and a closed-source model (GPT-4o). We show an attack success rate (ASR) of 57% against GPT-4o; our attack earned a Bug Bounty from OpenAI. Against open-source models protected by simple defenses, we improve ASRs by an average of 3.25 times compared to the best performing previous attacks that use only harmless data. NOICE demonstrates the exploitability of repetitive refusal mechanisms and broadens understanding of the threats closed-source models face from harmless data.
♻ ☆ Random feature-based double Vovk-Azoury-Warmuth algorithm for online multi-kernel learning
We introduce a novel multi-kernel learning algorithm, VAW$^2$, for online least squares regression in reproducing kernel Hilbert spaces (RKHS). VAW$^2$ leverages random Fourier feature-based functional approximation and the Vovk-Azoury-Warmuth (VAW) method in a two-level procedure: VAW is used to construct expert strategies from random features generated for each kernel at the first level, and then again to combine their predictions at the second level. A theoretical analysis yields a regret bound of $O(T^{1/2}\ln T)$ in expectation with respect to artificial randomness, when the number of random features scales as $T^{1/2}$. Empirical results on some benchmark datasets demonstrate that VAW$^2$ achieves superior performance compared to the existing online multi-kernel learning algorithms: Raker and OMKL-GF, and to other theoretically grounded method methods involving convex combination of expert predictions at the second level.
♻ ☆ Machine Vision-Based Assessment of Fall Color Changes and its Relationship with Leaf Nitrogen Concentration
Apple(\textit{Malus domestica} Borkh.) trees are deciduous, shedding leaves each year. This process is preceded by a gradual change in leaf color from green to yellow as chlorophyll is degraded prior to abscission. The initiation and rate of this color change are affected by many factors including leaf nitrogen (N) concentration. We predict that leaf color during this transition may be indicative of the nitrogen status of apple trees. This study assesses a machine vision-based system for quantifying the change in leaf color and its correlation with leaf nitrogen content. An image dataset was collected in color and 3D over five weeks in the fall of 2021 and 2023 at a commercial orchard using a ground vehicle-based stereovision sensor. Trees in the foreground were segmented from the point cloud using color and depth thresholding methods. Then, to estimate the proportion of yellow leaves per canopy, the color information of the segmented canopy area was quantified using a custom-defined metric, \textit{yellowness index} (a normalized ratio of yellow to green foliage in the tree) that varied from -1 to +1 (-1 being completely green and +1 being completely yellow). Both K-means-based methods and gradient boosting methods were used to estimate the \textit{yellowness index}. The gradient boosting based method proposed in this study was better than the K-means-based method (both in terms of computational time and accuracy), achieving an $R^2$ of 0.72 in estimating the \textit{yellowness index}. The metric was able to capture the gradual color transition from green to yellow over the study duration. Trees with lower leaf nitrogen showed the color transition to yellow earlier than the trees with higher nitrogen. Keywords: Fruit Tree Nitrogen Management, Machine Vision, Point Cloud Segmentation, Precision Nitrogen Management
♻ ☆ Scoring Verifiers: Evaluating Synthetic Verification for Code and Reasoning
Synthetic verification techniques such as generating test cases and reward modelling are common ways to enhance the coding capabilities of large language models (LLM) beyond predefined tests. Additionally, code verification has recently found great success as a critical component in improving reasoning capability of LLMs via reinforcement learning. In this paper, we propose a an approach which can transform existing coding benchmarks into scoring and ranking datasets to evaluate the effectiveness of synthetic verifiers. We also propose multiple metrics to measure different aspects of the synthetic verifiers with the proposed benchmarks. By employing the proposed approach, we release four new benchmarks (HE-R, HE-R+, MBPP-R, and MBPP-R+), and analyzed synthetic verification methods with standard, reasoning-based, and reward-based LLMs. Our experiments show that reasoning can significantly improve test case generation and that scaling the number of test cases enhances the verification accuracy.
♻ ☆ Toward Interpretable Sleep Stage Classification Using Cross-Modal Transformers
Accurate sleep stage classification is significant for sleep health assessment. In recent years, several machine-learning based sleep staging algorithms have been developed , and in particular, deep-learning based algorithms have achieved performance on par with human annotation. Despite improved performance, a limitation of most deep-learning based algorithms is their black-box behavior, which have limited their use in clinical settings. Here, we propose a cross-modal transformer, which is a transformer-based method for sleep stage classification. The proposed cross-modal transformer consists of a novel cross-modal transformer encoder architecture along with a multi-scale one-dimensional convolutional neural network for automatic representation learning. Our method outperforms the state-of-the-art methods and eliminates the black-box behavior of deep-learning models by utilizing the interpretability aspect of the attention modules. Furthermore, our method provides considerable reductions in the number of parameters and training time compared to the state-of-the-art methods. Our code is available at https://github.com/Jathurshan0330/Cross-Modal-Transformer. A demo of our work can be found at https://bit.ly/Cross_modal_transformer_demo.
comment: 11 pages, 7 figures, 6 tables
Computer Vision and Pattern Recognition 174
☆ Easi3R: Estimating Disentangled Motion from DUSt3R Without Training
Recent advances in DUSt3R have enabled robust estimation of dense point clouds and camera parameters of static scenes, leveraging Transformer network architectures and direct supervision on large-scale 3D datasets. In contrast, the limited scale and diversity of available 4D datasets present a major bottleneck for training a highly generalizable 4D model. This constraint has driven conventional 4D methods to fine-tune 3D models on scalable dynamic video data with additional geometric priors such as optical flow and depths. In this work, we take an opposite path and introduce Easi3R, a simple yet efficient training-free method for 4D reconstruction. Our approach applies attention adaptation during inference, eliminating the need for from-scratch pre-training or network fine-tuning. We find that the attention layers in DUSt3R inherently encode rich information about camera and object motion. By carefully disentangling these attention maps, we achieve accurate dynamic region segmentation, camera pose estimation, and 4D dense point map reconstruction. Extensive experiments on real-world dynamic videos demonstrate that our lightweight attention adaptation significantly outperforms previous state-of-the-art methods that are trained or finetuned on extensive dynamic datasets. Our code is publicly available for research purpose at https://easi3r.github.io/
comment: Page: https://easi3r.github.io/ Code: https://github.com/Inception3D/Easi3R
☆ SU-YOLO: Spiking Neural Network for Efficient Underwater Object Detection
Underwater object detection is critical for oceanic research and industrial safety inspections. However, the complex optical environment and the limited resources of underwater equipment pose significant challenges to achieving high accuracy and low power consumption. To address these issues, we propose Spiking Underwater YOLO (SU-YOLO), a Spiking Neural Network (SNN) model. Leveraging the lightweight and energy-efficient properties of SNNs, SU-YOLO incorporates a novel spike-based underwater image denoising method based solely on integer addition, which enhances the quality of feature maps with minimal computational overhead. In addition, we introduce Separated Batch Normalization (SeBN), a technique that normalizes feature maps independently across multiple time steps and is optimized for integration with residual structures to capture the temporal dynamics of SNNs more effectively. The redesigned spiking residual blocks integrate the Cross Stage Partial Network (CSPNet) with the YOLO architecture to mitigate spike degradation and enhance the model's feature extraction capabilities. Experimental results on URPC2019 underwater dataset demonstrate that SU-YOLO achieves mAP of 78.8% with 6.97M parameters and an energy consumption of 2.98 mJ, surpassing mainstream SNN models in both detection accuracy and computational efficiency. These results underscore the potential of SNNs for engineering applications. The code is available in https://github.com/lwxfight/snn-underwater.
☆ Consistent Subject Generation via Contrastive Instantiated Concepts
While text-to-image generative models can synthesize diverse and faithful contents, subject variation across multiple creations limits the application in long content generation. Existing approaches require time-consuming tuning, references for all subjects, or access to other creations. We introduce Contrastive Concept Instantiation (CoCoIns) to effectively synthesize consistent subjects across multiple independent creations. The framework consists of a generative model and a mapping network, which transforms input latent codes into pseudo-words associated with certain instances of concepts. Users can generate consistent subjects with the same latent codes. To construct such associations, we propose a contrastive learning approach that trains the network to differentiate the combination of prompts and latent codes. Extensive evaluations of human faces with a single subject show that CoCoIns performs comparably to existing methods while maintaining higher flexibility. We also demonstrate the potential of extending CoCoIns to multiple subjects and other object categories.
comment: Project page: https://contrastive-concept-instantiation.github.io
☆ Free360: Layered Gaussian Splatting for Unbounded 360-Degree View Synthesis from Extremely Sparse and Unposed Views CVPR 2025
Neural rendering has demonstrated remarkable success in high-quality 3D neural reconstruction and novel view synthesis with dense input views and accurate poses. However, applying it to extremely sparse, unposed views in unbounded 360{\deg} scenes remains a challenging problem. In this paper, we propose a novel neural rendering framework to accomplish the unposed and extremely sparse-view 3D reconstruction in unbounded 360{\deg} scenes. To resolve the spatial ambiguity inherent in unbounded scenes with sparse input views, we propose a layered Gaussian-based representation to effectively model the scene with distinct spatial layers. By employing a dense stereo reconstruction model to recover coarse geometry, we introduce a layer-specific bootstrap optimization to refine the noise and fill occluded regions in the reconstruction. Furthermore, we propose an iterative fusion of reconstruction and generation alongside an uncertainty-aware training approach to facilitate mutual conditioning and enhancement between these two processes. Comprehensive experiments show that our approach outperforms existing state-of-the-art methods in terms of rendering quality and surface reconstruction accuracy. Project page: https://zju3dv.github.io/free360/
comment: Accepted to CVPR 2025. Project Page: https://zju3dv.github.io/free360/
☆ UniOcc: A Unified Benchmark for Occupancy Forecasting and Prediction in Autonomous Driving
We introduce UniOcc, a comprehensive, unified benchmark for occupancy forecasting (i.e., predicting future occupancies based on historical information) and current-frame occupancy prediction from camera images. UniOcc unifies data from multiple real-world datasets (i.e., nuScenes, Waymo) and high-fidelity driving simulators (i.e., CARLA, OpenCOOD), which provides 2D/3D occupancy labels with per-voxel flow annotations and support for cooperative autonomous driving. In terms of evaluation, unlike existing studies that rely on suboptimal pseudo labels for evaluation, UniOcc incorporates novel metrics that do not depend on ground-truth occupancy, enabling robust assessment of additional aspects of occupancy quality. Through extensive experiments on state-of-the-art models, we demonstrate that large-scale, diverse training data and explicit flow information significantly enhance occupancy prediction and forecasting performance.
comment: 14 pages; Dataset: https://huggingface.co/datasets/tasl-lab/uniocc; Code: https://github.com/tasl-lab/UniOcc
☆ Any2Caption:Interpreting Any Condition to Caption for Controllable Video Generation
To address the bottleneck of accurate user intent interpretation within the current video generation community, we present Any2Caption, a novel framework for controllable video generation under any condition. The key idea is to decouple various condition interpretation steps from the video synthesis step. By leveraging modern multimodal large language models (MLLMs), Any2Caption interprets diverse inputs--text, images, videos, and specialized cues such as region, motion, and camera poses--into dense, structured captions that offer backbone video generators with better guidance. We also introduce Any2CapIns, a large-scale dataset with 337K instances and 407K conditions for any-condition-to-caption instruction tuning. Comprehensive evaluations demonstrate significant improvements of our system in controllability and video quality across various aspects of existing video generation models. Project Page: https://sqwu.top/Any2Cap/
comment: Project Page: https://sqwu.top/Any2Cap/
☆ Exploring the Effect of Reinforcement Learning on Video Understanding: Insights from SEED-Bench-R1
Recent advancements in Chain of Thought (COT) generation have significantly improved the reasoning capabilities of Large Language Models (LLMs), with reinforcement learning (RL) emerging as an effective post-training approach. Multimodal Large Language Models (MLLMs) inherit this reasoning potential but remain underexplored in tasks requiring both perception and logical reasoning. To address this, we introduce SEED-Bench-R1, a benchmark designed to systematically evaluate post-training methods for MLLMs in video understanding. It includes intricate real-world videos and complex everyday planning tasks in the format of multiple-choice questions, requiring sophisticated perception and reasoning. SEED-Bench-R1 assesses generalization through a three-level hierarchy: in-distribution, cross-environment, and cross-environment-task scenarios, equipped with a large-scale training dataset with easily verifiable ground-truth answers. Using Qwen2-VL-Instruct-7B as a base model, we compare RL with supervised fine-tuning (SFT), demonstrating RL's data efficiency and superior performance on both in-distribution and out-of-distribution tasks, even outperforming SFT on general video understanding benchmarks like LongVideoBench. Our detailed analysis reveals that RL enhances visual perception but often produces less logically coherent reasoning chains. We identify key limitations such as inconsistent reasoning and overlooked visual cues, and suggest future improvements in base model reasoning, reward modeling, and RL robustness against noisy signals.
comment: Technical Report (In Progress); Code released at: https://github.com/TencentARC/SEED-Bench-R1
☆ ERUPT: Efficient Rendering with Unposed Patch Transformer CVPR 2025
This work addresses the problem of novel view synthesis in diverse scenes from small collections of RGB images. We propose ERUPT (Efficient Rendering with Unposed Patch Transformer) a state-of-the-art scene reconstruction model capable of efficient scene rendering using unposed imagery. We introduce patch-based querying, in contrast to existing pixel-based queries, to reduce the compute required to render a target view. This makes our model highly efficient both during training and at inference, capable of rendering at 600 fps on commercial hardware. Notably, our model is designed to use a learned latent camera pose which allows for training using unposed targets in datasets with sparse or inaccurate ground truth camera pose. We show that our approach can generalize on large real-world data and introduce a new benchmark dataset (MSVS-1M) for latent view synthesis using street-view imagery collected from Mapillary. In contrast to NeRF and Gaussian Splatting, which require dense imagery and precise metadata, ERUPT can render novel views of arbitrary scenes with as few as five unposed input images. ERUPT achieves better rendered image quality than current state-of-the-art methods for unposed image synthesis tasks, reduces labeled data requirements by ~95\% and decreases computational requirements by an order of magnitude, providing efficient novel view synthesis for diverse real-world scenes.
comment: Accepted to CVPR 2025
☆ Adapting Vision Foundation Models for Real-time Ultrasound Image Segmentation
We propose a novel approach that adapts hierarchical vision foundation models for real-time ultrasound image segmentation. Existing ultrasound segmentation methods often struggle with adaptability to new tasks, relying on costly manual annotations, while real-time approaches generally fail to match state-of-the-art performance. To overcome these limitations, we introduce an adaptive framework that leverages the vision foundation model Hiera to extract multi-scale features, interleaved with DINOv2 representations to enhance visual expressiveness. These enriched features are then decoded to produce precise and robust segmentation. We conduct extensive evaluations on six public datasets and one in-house dataset, covering both cardiac and thyroid ultrasound segmentation. Experiments show that our approach outperforms state-of-the-art methods across multiple datasets and excels with limited supervision, surpassing nnUNet by over 20\% on average in the 1\% and 10\% data settings. Our method achieves $\sim$77 FPS inference speed with TensorRT on a single GPU, enabling real-time clinical applications.
☆ StochasticSplats: Stochastic Rasterization for Sorting-Free 3D Gaussian Splatting
3D Gaussian splatting (3DGS) is a popular radiance field method, with many application-specific extensions. Most variants rely on the same core algorithm: depth-sorting of Gaussian splats then rasterizing in primitive order. This ensures correct alpha compositing, but can cause rendering artifacts due to built-in approximations. Moreover, for a fixed representation, sorted rendering offers little control over render cost and visual fidelity. For example, and counter-intuitively, rendering a lower-resolution image is not necessarily faster. In this work, we address the above limitations by combining 3D Gaussian splatting with stochastic rasterization. Concretely, we leverage an unbiased Monte Carlo estimator of the volume rendering equation. This removes the need for sorting, and allows for accurate 3D blending of overlapping Gaussians. The number of Monte Carlo samples further imbues 3DGS with a way to trade off computation time and quality. We implement our method using OpenGL shaders, enabling efficient rendering on modern GPU hardware. At a reasonable visual quality, our method renders more than four times faster than sorted rasterization.
InstructRestore: Region-Customized Image Restoration with Human Instructions
Despite the significant progress in diffusion prior-based image restoration, most existing methods apply uniform processing to the entire image, lacking the capability to perform region-customized image restoration according to user instructions. In this work, we propose a new framework, namely InstructRestore, to perform region-adjustable image restoration following human instructions. To achieve this, we first develop a data generation engine to produce training triplets, each consisting of a high-quality image, the target region description, and the corresponding region mask. With this engine and careful data screening, we construct a comprehensive dataset comprising 536,945 triplets to support the training and evaluation of this task. We then examine how to integrate the low-quality image features under the ControlNet architecture to adjust the degree of image details enhancement. Consequently, we develop a ControlNet-like model to identify the target region and allocate different integration scales to the target and surrounding regions, enabling region-customized image restoration that aligns with user instructions. Experimental results demonstrate that our proposed InstructRestore approach enables effective human-instructed image restoration, such as images with bokeh effects and user-instructed local enhancement. Our work advances the investigation of interactive image restoration and enhancement techniques. Data, code, and models will be found at https://github.com/shuaizhengliu/InstructRestore.git.
☆ ORAL: Prompting Your Large-Scale LoRAs via Conditional Recurrent Diffusion
Parameter generation has emerged as a novel paradigm for neural network development, offering an alternative to traditional neural network training by synthesizing high-quality model weights directly. In the context of Low-Rank Adaptation (LoRA) for evolving ($\textit{i.e.}$, constantly updated) large language models (LLMs), this approach promises efficient adaptation without costly retraining. However, existing methods face critical limitations in simultaneously achieving scalability and controllability. In this paper, we introduce $\texttt{ORAL}$, a novel $\textbf{conditional recurrent diffusion}$ framework that addresses these challenges. $\texttt{ORAL}$ incorporates a novel conditioning mechanism that integrates model architecture and textual task specifications, enabling the generation of task-specific LoRA parameters that can seamlessly transfer across evolving foundation models. Our approach successfully scales to billions-of-parameter LLMs and maintains controllability. Through extensive experiments across seven language tasks, four vision tasks, and three multimodal tasks using five pre-trained LLMs, we demonstrate that $\texttt{ORAL}$ generates high-quality LoRA parameters that achieve comparable or superior performance to vanilla trained counterparts.
☆ PathOrchestra: A Comprehensive Foundation Model for Computational Pathology with Over 100 Diverse Clinical-Grade Tasks
The complexity and variability inherent in high-resolution pathological images present significant challenges in computational pathology. While pathology foundation models leveraging AI have catalyzed transformative advancements, their development demands large-scale datasets, considerable storage capacity, and substantial computational resources. Furthermore, ensuring their clinical applicability and generalizability requires rigorous validation across a broad spectrum of clinical tasks. Here, we present PathOrchestra, a versatile pathology foundation model trained via self-supervised learning on a dataset comprising 300K pathological slides from 20 tissue and organ types across multiple centers. The model was rigorously evaluated on 112 clinical tasks using a combination of 61 private and 51 public datasets. These tasks encompass digital slide preprocessing, pan-cancer classification, lesion identification, multi-cancer subtype classification, biomarker assessment, gene expression prediction, and the generation of structured reports. PathOrchestra demonstrated exceptional performance across 27,755 WSIs and 9,415,729 ROIs, achieving over 0.950 accuracy in 47 tasks, including pan-cancer classification across various organs, lymphoma subtype diagnosis, and bladder cancer screening. Notably, it is the first model to generate structured reports for high-incidence colorectal cancer and diagnostically complex lymphoma-areas that are infrequently addressed by foundational models but hold immense clinical potential. Overall, PathOrchestra exemplifies the feasibility and efficacy of a large-scale, self-supervised pathology foundation model, validated across a broad range of clinical-grade tasks. Its high accuracy and reduced reliance on extensive data annotation underline its potential for clinical integration, offering a pathway toward more efficient and high-quality medical services.
☆ Self-Supervised Pretraining for Aerial Road Extraction
Deep neural networks for aerial image segmentation require large amounts of labeled data, but high-quality aerial datasets with precise annotations are scarce and costly to produce. To address this limitation, we propose a self-supervised pretraining method that improves segmentation performance while reducing reliance on labeled data. Our approach uses inpainting-based pretraining, where the model learns to reconstruct missing regions in aerial images, capturing their inherent structure before being fine-tuned for road extraction. This method improves generalization, enhances robustness to domain shifts, and is invariant to model architecture and dataset choice. Experiments show that our pretraining significantly boosts segmentation accuracy, especially in low-data regimes, making it a scalable solution for aerial image analysis.
☆ Can Test-Time Scaling Improve World Foundation Model?
World foundation models, which simulate the physical world by predicting future states from current observations and inputs, have become central to many applications in physical intelligence, including autonomous driving and robotics. However, these models require substantial computational resources for pretraining and are further constrained by available data during post-training. As such, scaling computation at test time emerges as both a critical and practical alternative to traditional model enlargement or re-training. In this work, we introduce SWIFT, a test-time scaling framework tailored for WFMs. SWIFT integrates our extensible WFM evaluation toolkit with process-level inference strategies, including fast tokenization, probability-based Top-K pruning, and efficient beam search. Empirical results on the COSMOS model demonstrate that test-time scaling exists even in a compute-optimal way. Our findings reveal that test-time scaling laws hold for WFMs and that SWIFT provides a scalable and effective pathway for improving WFM inference without retraining or increasing model size. The code is available at https://github.com/Mia-Cong/SWIFT.git.
☆ Point Tracking in Surgery--The 2024 Surgical Tattoos in Infrared (STIR) Challenge
Understanding tissue motion in surgery is crucial to enable applications in downstream tasks such as segmentation, 3D reconstruction, virtual tissue landmarking, autonomous probe-based scanning, and subtask autonomy. Labeled data are essential to enabling algorithms in these downstream tasks since they allow us to quantify and train algorithms. This paper introduces a point tracking challenge to address this, wherein participants can submit their algorithms for quantification. The submitted algorithms are evaluated using a dataset named surgical tattoos in infrared (STIR), with the challenge aptly named the STIR Challenge 2024. The STIR Challenge 2024 comprises two quantitative components: accuracy and efficiency. The accuracy component tests the accuracy of algorithms on in vivo and ex vivo sequences. The efficiency component tests the latency of algorithm inference. The challenge was conducted as a part of MICCAI EndoVis 2024. In this challenge, we had 8 total teams, with 4 teams submitting before and 4 submitting after challenge day. This paper details the STIR Challenge 2024, which serves to move the field towards more accurate and efficient algorithms for spatial understanding in surgery. In this paper we summarize the design, submissions, and results from the challenge. The challenge dataset is available here: https://zenodo.org/records/14803158 , and the code for baseline models and metric calculation is available here: https://github.com/athaddius/STIRMetrics
☆ Order Matters: On Parameter-Efficient Image-to-Video Probing for Recognizing Nearly Symmetric Actions
We study parameter-efficient image-to-video probing for the unaddressed challenge of recognizing nearly symmetric actions - visually similar actions that unfold in opposite temporal order (e.g., opening vs. closing a bottle). Existing probing mechanisms for image-pretrained models, such as DinoV2 and CLIP, rely on attention mechanism for temporal modeling but are inherently permutation-invariant, leading to identical predictions regardless of frame order. To address this, we introduce Self-attentive Temporal Embedding Probing (STEP), a simple yet effective approach designed to enforce temporal sensitivity in parameter-efficient image-to-video transfer. STEP enhances self-attentive probing with three key modifications: (1) a learnable frame-wise positional encoding, explicitly encoding temporal order; (2) a single global CLS token, for sequence coherence; and (3) a simplified attention mechanism to improve parameter efficiency. STEP outperforms existing image-to-video probing mechanisms by 3-15% across four activity recognition benchmarks with only 1/3 of the learnable parameters. On two datasets, it surpasses all published methods, including fully fine-tuned models. STEP shows a distinct advantage in recognizing nearly symmetric actions, surpassing other probing mechanisms by 9-19%. and parameter-heavier PEFT-based transfer methods by 5-15%. Code and models will be made publicly available.
☆ Style Quantization for Data-Efficient GAN Training
Under limited data setting, GANs often struggle to navigate and effectively exploit the input latent space. Consequently, images generated from adjacent variables in a sparse input latent space may exhibit significant discrepancies in realism, leading to suboptimal consistency regularization (CR) outcomes. To address this, we propose \textit{SQ-GAN}, a novel approach that enhances CR by introducing a style space quantization scheme. This method transforms the sparse, continuous input latent space into a compact, structured discrete proxy space, allowing each element to correspond to a specific real data point, thereby improving CR performance. Instead of direct quantization, we first map the input latent variables into a less entangled ``style'' space and apply quantization using a learnable codebook. This enables each quantized code to control distinct factors of variation. Additionally, we optimize the optimal transport distance to align the codebook codes with features extracted from the training data by a foundation model, embedding external knowledge into the codebook and establishing a semantically rich vocabulary that properly describes the training dataset. Extensive experiments demonstrate significant improvements in both discriminator robustness and generation quality with our method.
☆ Learning Velocity and Acceleration: Self-Supervised Motion Consistency for Pedestrian Trajectory Prediction
Understanding human motion is crucial for accurate pedestrian trajectory prediction. Conventional methods typically rely on supervised learning, where ground-truth labels are directly optimized against predicted trajectories. This amplifies the limitations caused by long-tailed data distributions, making it difficult for the model to capture abnormal behaviors. In this work, we propose a self-supervised pedestrian trajectory prediction framework that explicitly models position, velocity, and acceleration. We leverage velocity and acceleration information to enhance position prediction through feature injection and a self-supervised motion consistency mechanism. Our model hierarchically injects velocity features into the position stream. Acceleration features are injected into the velocity stream. This enables the model to predict position, velocity, and acceleration jointly. From the predicted position, we compute corresponding pseudo velocity and acceleration, allowing the model to learn from data-generated pseudo labels and thus achieve self-supervised learning. We further design a motion consistency evaluation strategy grounded in physical principles; it selects the most reasonable predicted motion trend by comparing it with historical dynamics and uses this trend to guide and constrain trajectory generation. We conduct experiments on the ETH-UCY and Stanford Drone datasets, demonstrating that our method achieves state-of-the-art performance on both datasets.
☆ Visual Acoustic Fields
Objects produce different sounds when hit, and humans can intuitively infer how an object might sound based on its appearance and material properties. Inspired by this intuition, we propose Visual Acoustic Fields, a framework that bridges hitting sounds and visual signals within a 3D space using 3D Gaussian Splatting (3DGS). Our approach features two key modules: sound generation and sound localization. The sound generation module leverages a conditional diffusion model, which takes multiscale features rendered from a feature-augmented 3DGS to generate realistic hitting sounds. Meanwhile, the sound localization module enables querying the 3D scene, represented by the feature-augmented 3DGS, to localize hitting positions based on the sound sources. To support this framework, we introduce a novel pipeline for collecting scene-level visual-sound sample pairs, achieving alignment between captured images, impact locations, and corresponding sounds. To the best of our knowledge, this is the first dataset to connect visual and acoustic signals in a 3D context. Extensive experiments on our dataset demonstrate the effectiveness of Visual Acoustic Fields in generating plausible impact sounds and accurately localizing impact sources. Our project page is at https://yuelei0428.github.io/projects/Visual-Acoustic-Fields/.
☆ FakeScope: Large Multimodal Expert Model for Transparent AI-Generated Image Forensics
The rapid and unrestrained advancement of generative artificial intelligence (AI) presents a double-edged sword: while enabling unprecedented creativity, it also facilitates the generation of highly convincing deceptive content, undermining societal trust. As image generation techniques become increasingly sophisticated, detecting synthetic images is no longer just a binary task: it necessitates interpretable, context-aware methodologies that enhance trustworthiness and transparency. However, existing detection models primarily focus on classification, offering limited explanatory insights into image authenticity. In this work, we propose FakeScope, an expert multimodal model (LMM) tailored for AI-generated image forensics, which not only identifies AI-synthetic images with high accuracy but also provides rich, interpretable, and query-driven forensic insights. We first construct FakeChain dataset that contains linguistic authenticity reasoning based on visual trace evidence, developed through a novel human-machine collaborative framework. Building upon it, we further present FakeInstruct, the largest multimodal instruction tuning dataset containing 2 million visual instructions tailored to enhance forensic awareness in LMMs. FakeScope achieves state-of-the-art performance in both closed-ended and open-ended forensic scenarios. It can distinguish synthetic images with high accuracy while offering coherent and insightful explanations, free-form discussions on fine-grained forgery attributes, and actionable enhancement strategies. Notably, despite being trained exclusively on qualitative hard labels, FakeScope demonstrates remarkable zero-shot quantitative capability on detection, enabled by our proposed token-based probability estimation strategy. Furthermore, FakeScope exhibits strong generalization and in-the-wild ability, ensuring its applicability in real-world scenarios.
☆ Beyond a Single Mode: GAN Ensembles for Diverse Medical Data Generation
The advancement of generative AI, particularly in medical imaging, confronts the trilemma of ensuring high fidelity, diversity, and efficiency in synthetic data generation. While Generative Adversarial Networks (GANs) have shown promise across various applications, they still face challenges like mode collapse and insufficient coverage of real data distributions. This work explores the use of GAN ensembles to overcome these limitations, specifically in the context of medical imaging. By solving a multi-objective optimisation problem that balances fidelity and diversity, we propose a method for selecting an optimal ensemble of GANs tailored for medical data. The selected ensemble is capable of generating diverse synthetic medical images that are representative of true data distributions and computationally efficient. Each model in the ensemble brings a unique contribution, ensuring minimal redundancy. We conducted a comprehensive evaluation using three distinct medical datasets, testing 22 different GAN architectures with various loss functions and regularisation techniques. By sampling models at different training epochs, we crafted 110 unique configurations. The results highlight the capability of GAN ensembles to enhance the quality and utility of synthetic medical images, thereby improving the efficacy of downstream tasks such as diagnostic modelling.
☆ Pre-training with 3D Synthetic Data: Learning 3D Point Cloud Instance Segmentation from 3D Synthetic Scenes
In the recent years, the research community has witnessed growing use of 3D point cloud data for the high applicability in various real-world applications. By means of 3D point cloud, this modality enables to consider the actual size and spatial understanding. The applied fields include mechanical control of robots, vehicles, or other real-world systems. Along this line, we would like to improve 3D point cloud instance segmentation which has emerged as a particularly promising approach for these applications. However, the creation of 3D point cloud datasets entails enormous costs compared to 2D image datasets. To train a model of 3D point cloud instance segmentation, it is necessary not only to assign categories but also to provide detailed annotations for each point in the large-scale 3D space. Meanwhile, the increase of recent proposals for generative models in 3D domain has spurred proposals for using a generative model to create 3D point cloud data. In this work, we propose a pre-training with 3D synthetic data to train a 3D point cloud instance segmentation model based on generative model for 3D scenes represented by point cloud data. We directly generate 3D point cloud data with Point-E for inserting a generated data into a 3D scene. More recently in 2025, although there are other accurate 3D generation models, even using the Point-E as an early 3D generative model can effectively support the pre-training with 3D synthetic data. In the experimental section, we compare our pre-training method with baseline methods indicated improved performance, demonstrating the efficacy of 3D generative models for 3D point cloud instance segmentation.
☆ MB-ORES: A Multi-Branch Object Reasoner for Visual Grounding in Remote Sensing
We propose a unified framework that integrates object detection (OD) and visual grounding (VG) for remote sensing (RS) imagery. To support conventional OD and establish an intuitive prior for VG task, we fine-tune an open-set object detector using referring expression data, framing it as a partially supervised OD task. In the first stage, we construct a graph representation of each image, comprising object queries, class embeddings, and proposal locations. Then, our task-aware architecture processes this graph to perform the VG task. The model consists of: (i) a multi-branch network that integrates spatial, visual, and categorical features to generate task-aware proposals, and (ii) an object reasoning network that assigns probabilities across proposals, followed by a soft selection mechanism for final referring object localization. Our model demonstrates superior performance on the OPT-RSVG and DIOR-RSVG datasets, achieving significant improvements over state-of-the-art methods while retaining classical OD capabilities. The code will be available in our repository: \url{https://github.com/rd20karim/MB-ORES}.
☆ DiET-GS: Diffusion Prior and Event Stream-Assisted Motion Deblurring 3D Gaussian Splatting CVPR 2025
Reconstructing sharp 3D representations from blurry multi-view images are long-standing problem in computer vision. Recent works attempt to enhance high-quality novel view synthesis from the motion blur by leveraging event-based cameras, benefiting from high dynamic range and microsecond temporal resolution. However, they often reach sub-optimal visual quality in either restoring inaccurate color or losing fine-grained details. In this paper, we present DiET-GS, a diffusion prior and event stream-assisted motion deblurring 3DGS. Our framework effectively leverages both blur-free event streams and diffusion prior in a two-stage training strategy. Specifically, we introduce the novel framework to constraint 3DGS with event double integral, achieving both accurate color and well-defined details. Additionally, we propose a simple technique to leverage diffusion prior to further enhance the edge details. Qualitative and quantitative results on both synthetic and real-world data demonstrate that our DiET-GS is capable of producing significantly better quality of novel views compared to the existing baselines. Our project page is https://diet-gs.github.io
comment: CVPR 2025. Project Page: https://diet-gs.github.io
☆ CIBR: Cross-modal Information Bottleneck Regularization for Robust CLIP Generalization
Contrastive Language-Image Pretraining (CLIP) has achieved remarkable success in cross-modal tasks such as zero-shot image classification and text-image retrieval by effectively aligning visual and textual representations. However, the theoretical foundations underlying CLIP's strong generalization remain unclear. In this work, we address this gap by proposing the Cross-modal Information Bottleneck (CIB) framework. CIB offers a principled interpretation of CLIP's contrastive learning objective as an implicit Information Bottleneck optimization. Under this view, the model maximizes shared cross-modal information while discarding modality-specific redundancies, thereby preserving essential semantic alignment across modalities. Building on this insight, we introduce a Cross-modal Information Bottleneck Regularization (CIBR) method that explicitly enforces these IB principles during training. CIBR introduces a penalty term to discourage modality-specific redundancy, thereby enhancing semantic alignment between image and text features. We validate CIBR on extensive vision-language benchmarks, including zero-shot classification across seven diverse image datasets and text-image retrieval on MSCOCO and Flickr30K. The results show consistent performance gains over standard CLIP. These findings provide the first theoretical understanding of CLIP's generalization through the IB lens. They also demonstrate practical improvements, offering guidance for future cross-modal representation learning.
☆ Navi-plus: Managing Ambiguous GUI Navigation Tasks with Follow-up
Graphical user interfaces (GUI) automation agents are emerging as powerful tools, enabling humans to accomplish increasingly complex tasks on smart devices. However, users often inadvertently omit key information when conveying tasks, which hinders agent performance in the current agent paradigm that does not support immediate user intervention. To address this issue, we introduce a $\textbf{Self-Correction GUI Navigation}$ task that incorporates interactive information completion capabilities within GUI agents. We developed the $\textbf{Navi-plus}$ dataset with GUI follow-up question-answer pairs, alongside a $\textbf{Dual-Stream Trajectory Evaluation}$ method to benchmark this new capability. Our results show that agents equipped with the ability to ask GUI follow-up questions can fully recover their performance when faced with ambiguous user tasks.
☆ Foundation Models For Seismic Data Processing: An Extensive Review
Seismic processing plays a crucial role in transforming raw data into high-quality subsurface images, pivotal for various geoscience applications. Despite its importance, traditional seismic processing techniques face challenges such as noisy and damaged data and the reliance on manual, time-consuming workflows. The emergence of deep learning approaches has introduced effective and user-friendly alternatives, yet many of these deep learning approaches rely on synthetic datasets and specialized neural networks. Recently, foundation models have gained traction in the seismic domain, due to their success in natural imaging. This paper investigates the application of foundation models in seismic processing on the tasks: demultiple, interpolation, and denoising. It evaluates the impact of different model characteristics, such as pre-training technique and neural network architecture, on performance and efficiency. Rather than proposing a single seismic foundation model, this paper critically examines various natural image foundation models and suggest some promising candidates for future exploration.
☆ A Comparative Study of Scanpath Models in Graph-Based Visualization
Information Visualization (InfoVis) systems utilize visual representations to enhance data interpretation. Understanding how visual attention is allocated is essential for optimizing interface design. However, collecting Eye-tracking (ET) data presents challenges related to cost, privacy, and scalability. Computational models provide alternatives for predicting gaze patterns, thereby advancing InfoVis research. In our study, we conducted an ET experiment with 40 participants who analyzed graphs while responding to questions of varying complexity within the context of digital forensics. We compared human scanpaths with synthetic ones generated by models such as DeepGaze, UMSS, and Gazeformer. Our research evaluates the accuracy of these models and examines how question complexity and number of nodes influence performance. This work contributes to the development of predictive modeling in visual analytics, offering insights that can enhance the design and effectiveness of InfoVis systems.
☆ AI-Assisted Colonoscopy: Polyp Detection and Segmentation using Foundation Models
In colonoscopy, 80% of the missed polyps could be detected with the help of Deep Learning models. In the search for algorithms capable of addressing this challenge, foundation models emerge as promising candidates. Their zero-shot or few-shot learning capabilities, facilitate generalization to new data or tasks without extensive fine-tuning. A concept that is particularly advantageous in the medical imaging domain, where large annotated datasets for traditional training are scarce. In this context, a comprehensive evaluation of foundation models for polyp segmentation was conducted, assessing both detection and delimitation. For the study, three different colonoscopy datasets have been employed to compare the performance of five different foundation models, DINOv2, YOLO-World, GroundingDINO, SAM and MedSAM, against two benchmark networks, YOLOv8 and Mask R-CNN. Results show that the success of foundation models in polyp characterization is highly dependent on domain specialization. For optimal performance in medical applications, domain-specific models are essential, and generic models require fine-tuning to achieve effective results. Through this specialization, foundation models demonstrated superior performance compared to state-of-the-art detection and segmentation models, with some models even excelling in zero-shot evaluation; outperforming fine-tuned models on unseen data.
comment: This work has been submitted to the IEEE TMI for possible publication
PixelCAM: Pixel Class Activation Mapping for Histology Image Classification and ROI Localization
Weakly supervised object localization (WSOL) methods allow training models to classify images and localize ROIs. WSOL only requires low-cost image-class annotations yet provides a visually interpretable classifier, which is important in histology image analysis. Standard WSOL methods rely on class activation mapping (CAM) methods to produce spatial localization maps according to a single- or two-step strategy. While both strategies have made significant progress, they still face several limitations with histology images. Single-step methods can easily result in under- or over-activation due to the limited visual ROI saliency in histology images and the limited localization cues. They also face the well-known issue of asynchronous convergence between classification and localization tasks. The two-step approach is sub-optimal because it is tied to a frozen classifier, limiting the capacity for localization. Moreover, these methods also struggle when applied to out-of-distribution (OOD) datasets. In this paper, a multi-task approach for WSOL is introduced for simultaneous training of both tasks to address the asynchronous convergence problem. In particular, localization is performed in the pixel-feature space of an image encoder that is shared with classification. This allows learning discriminant features and accurate delineation of foreground/background regions to support ROI localization and image classification. We propose PixelCAM, a cost-effective foreground/background pixel-wise classifier in the pixel-feature space that allows for spatial object localization. PixelCAM is trained using pixel pseudo-labels collected from a pretrained WSOL model. Both image and pixel-wise classifiers are trained simultaneously using standard gradient descent. In addition, our pixel classifier can easily be integrated into CNN- and transformer-based architectures without any modifications.
comment: 32 pages, 20 figures, Medical Imaging with Deep Learning (MIDL 2025)
☆ It's a (Blind) Match! Towards Vision-Language Correspondence without Parallel Data CVPR 2025
The platonic representation hypothesis suggests that vision and language embeddings become more homogeneous as model and dataset sizes increase. In particular, pairwise distances within each modality become more similar. This suggests that as foundation models mature, it may become possible to match vision and language embeddings in a fully unsupervised fashion, i.e. without parallel data. We present the first feasibility study, and investigate conformity of existing vision and language foundation models in the context of unsupervised, or "blind", matching. First, we formulate unsupervised matching as a quadratic assignment problem and introduce a novel heuristic that outperforms previous solvers. We also develop a technique to find optimal matching problems, for which a non-trivial match is very likely. Second, we conduct an extensive study deploying a range of vision and language models on four datasets. Our analysis reveals that for many problem instances, vision and language representations can be indeed matched without supervision. This finding opens up the exciting possibility of embedding semantic knowledge into other modalities virtually annotation-free. As a proof of concept, we showcase an unsupervised classifier, which achieves non-trivial classification accuracy without any image-text annotation.
comment: Accepted to CVPR 2025, Project page: https://dominik-schnaus.github.io/itsamatch/
☆ IMPACT: A Generic Semantic Loss for Multimodal Medical Image Registration
Image registration is fundamental in medical imaging, enabling precise alignment of anatomical structures for diagnosis, treatment planning, image-guided treatment or longitudinal monitoring. This work introduces IMPACT (Image Metric with Pretrained model-Agnostic Comparison for Transmodality registration), a generic semantic similarity metric designed for seamless integration into diverse image registration frameworks (such as Elastix and Voxelmorph). It compares deep learning-based features extracted from medical images without requiring task-specific training, ensuring broad applicability across various modalities. By leveraging the features of the large-scale pretrained TotalSegmentator models and the ability to integrate Segment Anything Model (SAM) and other large-scale segmentation networks, this approach offers significant advantages. It provides robust, scalable, and efficient solutions for multimodal image registration. The IMPACT loss was evaluated on five challenging registration tasks involving thoracic CT/CBCT, and pelvic MR/CT datasets. Quantitative metrics, such as Target Registration Error and Dice Similarity Coefficient, demonstrated significant improvements in anatomical alignment compared to baseline methods. Qualitative analyses further confirmed the increased robustness of the proposed metric in the face of noise, artifacts, and modality variations. IMPACT's versatility and efficiency make it a valuable tool for advancing registration performance in clinical and research applications, addressing critical challenges in multimodal medical imaging.
comment: Submitted to IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI). This is a preprint version and has not been peer-reviewed
☆ PolypSegTrack: Unified Foundation Model for Colonoscopy Video Analysis
Early detection, accurate segmentation, classification and tracking of polyps during colonoscopy are critical for preventing colorectal cancer. Many existing deep-learning-based methods for analyzing colonoscopic videos either require task-specific fine-tuning, lack tracking capabilities, or rely on domain-specific pre-training. In this paper, we introduce \textit{PolypSegTrack}, a novel foundation model that jointly addresses polyp detection, segmentation, classification and unsupervised tracking in colonoscopic videos. Our approach leverages a novel conditional mask loss, enabling flexible training across datasets with either pixel-level segmentation masks or bounding box annotations, allowing us to bypass task-specific fine-tuning. Our unsupervised tracking module reliably associates polyp instances across frames using object queries, without relying on any heuristics. We leverage a robust vision foundation model backbone that is pre-trained unsupervisedly on natural images, thereby removing the need for domain-specific pre-training. Extensive experiments on multiple polyp benchmarks demonstrate that our method significantly outperforms existing state-of-the-art approaches in detection, segmentation, classification, and tracking.
☆ DANTE-AD: Dual-Vision Attention Network for Long-Term Audio Description
Audio Description is a narrated commentary designed to aid vision-impaired audiences in perceiving key visual elements in a video. While short-form video understanding has advanced rapidly, a solution for maintaining coherent long-term visual storytelling remains unresolved. Existing methods rely solely on frame-level embeddings, effectively describing object-based content but lacking contextual information across scenes. We introduce DANTE-AD, an enhanced video description model leveraging a dual-vision Transformer-based architecture to address this gap. DANTE-AD sequentially fuses both frame and scene level embeddings to improve long-term contextual understanding. We propose a novel, state-of-the-art method for sequential cross-attention to achieve contextual grounding for fine-grained audio description generation. Evaluated on a broad range of key scenes from well-known movie clips, DANTE-AD outperforms existing methods across traditional NLP metrics and LLM-based evaluations.
☆ 4D mmWave Radar in Adverse Environments for Autonomous Driving: A Survey
Autonomous driving systems require accurate and reliable perception. However, adverse environments, such as rain, snow, and fog, can significantly degrade the performance of LiDAR and cameras. In contrast, 4D millimeter-wave (mmWave) radar not only provides 3D sensing and additional velocity measurements but also maintains robustness in challenging conditions, making it increasingly valuable for autonomous driving. Recently, research on 4D mmWave radar under adverse environments has been growing, but a comprehensive survey is still lacking. To bridge this gap, this survey comprehensively reviews the current research on 4D mmWave radar under adverse environments. First, we present an overview of existing 4D mmWave radar datasets encompassing diverse weather and lighting scenarios. Next, we analyze methods and models according to different adverse conditions. Finally, the challenges faced in current studies and potential future directions are discussed for advancing 4D mmWave radar applications in harsh environments. To the best of our knowledge, this is the first survey specifically focusing on 4D mmWave radar in adverse environments for autonomous driving.
comment: 8 pages
☆ A Plasticity-Aware Method for Continual Self-Supervised Learning in Remote Sensing
Continual self-supervised learning (CSSL) methods have gained increasing attention in remote sensing (RS) due to their capability to learn new tasks sequentially from continuous streams of unlabeled data. Existing CSSL methods, while learning new tasks, focus on preventing catastrophic forgetting. To this end, most of them use regularization strategies to retain knowledge of previous tasks. This reduces the model's ability to adapt to the data of new tasks (i.e., learning plasticity), which can degrade performance. To address this problem, in this paper, we propose a novel CSSL method that aims to learn tasks sequentially, while achieving high learning plasticity. To this end, the proposed method uses a knowledge distillation strategy with an integrated decoupling mechanism. The decoupling is achieved by first dividing the feature dimensions into task-common and task-specific parts. Then, the task-common features are forced to be correlated to ensure memory stability while the task-specific features are forced to be de-correlated facilitating the learning of new features. Experimental results show the effectiveness of the proposed method compared to CaSSLe, which is a widely used CSSL framework, with improvements of up to 1.12% in average accuracy and 2.33% in intransigence in a task-incremental scenario, and 1.24% in average accuracy and 2.01% in intransigence in a class-incremental scenario.
comment: Accepted at IEEE International Geoscience and Remote Sensing Symposium 2025
☆ From Colors to Classes: Emergence of Concepts in Vision Transformers
Vision Transformers (ViTs) are increasingly utilized in various computer vision tasks due to their powerful representation capabilities. However, it remains understudied how ViTs process information layer by layer. Numerous studies have shown that convolutional neural networks (CNNs) extract features of increasing complexity throughout their layers, which is crucial for tasks like domain adaptation and transfer learning. ViTs, lacking the same inductive biases as CNNs, can potentially learn global dependencies from the first layers due to their attention mechanisms. Given the increasing importance of ViTs in computer vision, there is a need to improve the layer-wise understanding of ViTs. In this work, we present a novel, layer-wise analysis of concepts encoded in state-of-the-art ViTs using neuron labeling. Our findings reveal that ViTs encode concepts with increasing complexity throughout the network. Early layers primarily encode basic features such as colors and textures, while later layers represent more specific classes, including objects and animals. As the complexity of encoded concepts increases, the number of concepts represented in each layer also rises, reflecting a more diverse and specific set of features. Additionally, different pretraining strategies influence the quantity and category of encoded concepts, with finetuning to specific downstream tasks generally reducing the number of encoded concepts and shifting the concepts to more relevant categories.
comment: Preprint. Accepted at The 3rd World Conference on eXplainable Artificial Intelligence
☆ COSMO: Combination of Selective Memorization for Low-cost Vision-and-Language Navigation
Vision-and-Language Navigation (VLN) tasks have gained prominence within artificial intelligence research due to their potential application in fields like home assistants. Many contemporary VLN approaches, while based on transformer architectures, have increasingly incorporated additional components such as external knowledge bases or map information to enhance performance. These additions, while boosting performance, also lead to larger models and increased computational costs. In this paper, to achieve both high performance and low computational costs, we propose a novel architecture with the COmbination of Selective MemOrization (COSMO). Specifically, COSMO integrates state-space modules and transformer modules, and incorporates two VLN-customized selective state space modules: the Round Selective Scan (RSS) and the Cross-modal Selective State Space Module (CS3). RSS facilitates comprehensive inter-modal interactions within a single scan, while the CS3 module adapts the selective state space module into a dual-stream architecture, thereby enhancing the acquisition of cross-modal interactions. Experimental validations on three mainstream VLN benchmarks, REVERIE, R2R, and R2R-CE, not only demonstrate competitive navigation performance of our model but also show a significant reduction in computational costs.
☆ AMMSM: Adaptive Motion Magnification and Sparse Mamba for Micro-Expression Recognition ICME 2025
Micro-expressions are typically regarded as unconscious manifestations of a person's genuine emotions. However, their short duration and subtle signals pose significant challenges for downstream recognition. We propose a multi-task learning framework named the Adaptive Motion Magnification and Sparse Mamba (AMMSM) to address this. This framework aims to enhance the accurate capture of micro-expressions through self-supervised subtle motion magnification, while the sparse spatial selection Mamba architecture combines sparse activation with the advanced Visual Mamba model to model key motion regions and their valuable representations more effectively. Additionally, we employ evolutionary search to optimize the magnification factor and the sparsity ratios of spatial selection, followed by fine-tuning to improve performance further. Extensive experiments on two standard datasets demonstrate that the proposed AMMSM achieves state-of-the-art (SOTA) accuracy and robustness.
comment: Accepted by ICME 2025
☆ BBoxCut: A Targeted Data Augmentation Technique for Enhancing Wheat Head Detection Under Occlusions
Wheat plays a critical role in global food security, making it one of the most extensively studied crops. Accurate identification and measurement of key characteristics of wheat heads are essential for breeders to select varieties for cross-breeding, with the goal of developing nutrient-dense, resilient, and sustainable cultivars. Traditionally, these measurements are performed manually, which is both time-consuming and inefficient. Advances in digital technologies have paved the way for automating this process. However, field conditions pose significant challenges, such as occlusions of leaves, overlapping wheat heads, varying lighting conditions, and motion blur. In this paper, we propose a novel data augmentation technique, BBoxCut, which uses random localized masking to simulate occlusions caused by leaves and neighboring wheat heads. We evaluated our approach using three state-of-the-art object detectors and observed mean average precision (mAP) gains of 2.76, 3.26, and 1.9 for Faster R-CNN, FCOS, and DETR, respectively. Our augmentation technique led to significant improvements both qualitatively and quantitatively. In particular, the improvements were particularly evident in scenarios involving occluded wheat heads, demonstrating the robustness of our method in challenging field conditions.
☆ HumanDreamer: Generating Controllable Human-Motion Videos via Decoupled Generation
Human-motion video generation has been a challenging task, primarily due to the difficulty inherent in learning human body movements. While some approaches have attempted to drive human-centric video generation explicitly through pose control, these methods typically rely on poses derived from existing videos, thereby lacking flexibility. To address this, we propose HumanDreamer, a decoupled human video generation framework that first generates diverse poses from text prompts and then leverages these poses to generate human-motion videos. Specifically, we propose MotionVid, the largest dataset for human-motion pose generation. Based on the dataset, we present MotionDiT, which is trained to generate structured human-motion poses from text prompts. Besides, a novel LAMA loss is introduced, which together contribute to a significant improvement in FID by 62.4%, along with respective enhancements in R-precision for top1, top2, and top3 by 41.8%, 26.3%, and 18.3%, thereby advancing both the Text-to-Pose control accuracy and FID metrics. Our experiments across various Pose-to-Video baselines demonstrate that the poses generated by our method can produce diverse and high-quality human-motion videos. Furthermore, our model can facilitate other downstream tasks, such as pose sequence prediction and 2D-3D motion lifting.
comment: Project Page: https://humandreamer.github.io
☆ Crossmodal Knowledge Distillation with WordNet-Relaxed Text Embeddings for Robust Image Classification
Crossmodal knowledge distillation (KD) aims to enhance a unimodal student using a multimodal teacher model. In particular, when the teacher's modalities include the student's, additional complementary information can be exploited to improve knowledge transfer. In supervised image classification, image datasets typically include class labels that represent high-level concepts, suggesting a natural avenue to incorporate textual cues for crossmodal KD. However, these labels rarely capture the deeper semantic structures in real-world visuals and can lead to label leakage if used directly as inputs, ultimately limiting KD performance. To address these issues, we propose a multi-teacher crossmodal KD framework that integrates CLIP image embeddings with learnable WordNet-relaxed text embeddings under a hierarchical loss. By avoiding direct use of exact class names and instead using semantically richer WordNet expansions, we mitigate label leakage and introduce more diverse textual cues. Experiments show that this strategy significantly boosts student performance, whereas noisy or overly precise text embeddings hinder distillation efficiency. Interpretability analyses confirm that WordNet-relaxed prompts encourage heavier reliance on visual features over textual shortcuts, while still effectively incorporating the newly introduced textual cues. Our method achieves state-of-the-art or second-best results on six public datasets, demonstrating its effectiveness in advancing crossmodal KD.
☆ Optimization of Layer Skipping and Frequency Scaling for Convolutional Neural Networks under Latency Constraint ECCV
The energy consumption of Convolutional Neural Networks (CNNs) is a critical factor in deploying deep learning models on resource-limited equipment such as mobile devices and autonomous vehicles. We propose an approach involving Proportional Layer Skipping (PLS) and Frequency Scaling (FS). Layer skipping reduces computational complexity by selectively bypassing network layers, whereas frequency scaling adjusts the frequency of the processor to optimize energy use under latency constraints. Experiments of PLS and FS on ResNet-152 with the CIFAR-10 dataset demonstrated significant reductions in computational demands and energy consumption with minimal accuracy loss. This study offers practical solutions for improving real-time processing in resource-limited settings and provides insights into balancing computational efficiency and model performance.
comment: 12 pages, 6 figures, Accepted in Proc. Eur. Conf. Comput. Vis. (ECCV) Workshops. Milan, Italy: Springer, September 2024
☆ Learning 3D-Gaussian Simulators from RGB Videos
Learning physics simulations from video data requires maintaining spatial and temporal consistency, a challenge often addressed with strong inductive biases or ground-truth 3D information -- limiting scalability and generalization. We introduce 3DGSim, a 3D physics simulator that learns object dynamics end-to-end from multi-view RGB videos. It encodes images into a 3D Gaussian particle representation, propagates dynamics via a transformer, and renders frames using 3D Gaussian splatting. By jointly training inverse rendering with a dynamics transformer using a temporal encoding and merging layer, 3DGSimembeds physical properties into point-wise latent vectors without enforcing explicit connectivity constraints. This enables the model to capture diverse physical behaviors, from rigid to elastic and cloth-like interactions, along with realistic lighting effects that also generalize to unseen multi-body interactions and novel scene edits.
☆ H2VU-Benchmark: A Comprehensive Benchmark for Hierarchical Holistic Video Understanding
With the rapid development of multimodal models, the demand for assessing video understanding capabilities has been steadily increasing. However, existing benchmarks for evaluating video understanding exhibit significant limitations in coverage, task diversity, and scene adaptability. These shortcomings hinder the accurate assessment of models' comprehensive video understanding capabilities. To tackle this challenge, we propose a hierarchical and holistic video understanding (H2VU) benchmark designed to evaluate both general video and online streaming video comprehension. This benchmark contributes three key features: Extended video duration: Spanning videos from brief 3-second clips to comprehensive 1.5-hour recordings, thereby bridging the temporal gaps found in current benchmarks. Comprehensive assessment tasks: Beyond traditional perceptual and reasoning tasks, we have introduced modules for countercommonsense comprehension and trajectory state tracking. These additions test the models' deep understanding capabilities beyond mere prior knowledge. Enriched video data: To keep pace with the rapid evolution of current AI agents, we have expanded first-person streaming video datasets. This expansion allows for the exploration of multimodal models' performance in understanding streaming videos from a first-person perspective. Extensive results from H2VU reveal that existing multimodal large language models (MLLMs) possess substantial potential for improvement in our newly proposed evaluation tasks. We expect that H2VU will facilitate advancements in video understanding research by offering a comprehensive and in-depth analysis of MLLMs.
☆ DenseFormer: Learning Dense Depth Map from Sparse Depth and Image via Conditional Diffusion Model
The depth completion task is a critical problem in autonomous driving, involving the generation of dense depth maps from sparse depth maps and RGB images. Most existing methods employ a spatial propagation network to iteratively refine the depth map after obtaining an initial dense depth. In this paper, we propose DenseFormer, a novel method that integrates the diffusion model into the depth completion task. By incorporating the denoising mechanism of the diffusion model, DenseFormer generates the dense depth map by progressively refining an initial random depth distribution through multiple iterations. We propose a feature extraction module that leverages a feature pyramid structure, along with multi-layer deformable attention, to effectively extract and integrate features from sparse depth maps and RGB images, which serve as the guiding condition for the diffusion process. Additionally, this paper presents a depth refinement module that applies multi-step iterative refinement across various ranges to the dense depth results generated by the diffusion process. The module utilizes image features enriched with multi-scale information and sparse depth input to further enhance the accuracy of the predicted depth map. Extensive experiments on the KITTI outdoor scene dataset demonstrate that DenseFormer outperforms classical depth completion methods.
☆ SALT: A Flexible Semi-Automatic Labeling Tool for General LiDAR Point Clouds with Cross-Scene Adaptability and 4D Consistency
We propose a flexible Semi-Automatic Labeling Tool (SALT) for general LiDAR point clouds with cross-scene adaptability and 4D consistency. Unlike recent approaches that rely on camera distillation, SALT operates directly on raw LiDAR data, automatically generating pre-segmentation results. To achieve this, we propose a novel zero-shot learning paradigm, termed data alignment, which transforms LiDAR data into pseudo-images by aligning with the training distribution of vision foundation models. Additionally, we design a 4D-consistent prompting strategy and 4D non-maximum suppression module to enhance SAM2, ensuring high-quality, temporally consistent presegmentation. SALT surpasses the latest zero-shot methods by 18.4% PQ on SemanticKITTI and achieves nearly 40-50% of human annotator performance on our newly collected low-resolution LiDAR data and on combined data from three LiDAR types, significantly boosting annotation efficiency. We anticipate that SALT's open-sourcing will catalyze substantial expansion of current LiDAR datasets and lay the groundwork for the future development of LiDAR foundation models. Code is available at https://github.com/Cavendish518/SALT.
Video-based Traffic Light Recognition by Rockchip RV1126 for Autonomous Driving
Real-time traffic light recognition is fundamental for autonomous driving safety and navigation in urban environments. While existing approaches rely on single-frame analysis from onboard cameras, they struggle with complex scenarios involving occlusions and adverse lighting conditions. We present \textit{ViTLR}, a novel video-based end-to-end neural network that processes multiple consecutive frames to achieve robust traffic light detection and state classification. The architecture leverages a transformer-like design with convolutional self-attention modules, which is optimized specifically for deployment on the Rockchip RV1126 embedded platform. Extensive evaluations on two real-world datasets demonstrate that \textit{ViTLR} achieves state-of-the-art performance while maintaining real-time processing capabilities (>25 FPS) on RV1126's NPU. The system shows superior robustness across temporal stability, varying target distances, and challenging environmental conditions compared to existing single-frame approaches. We have successfully integrated \textit{ViTLR} into an ego-lane traffic light recognition system using HD maps for autonomous driving applications. The complete implementation, including source code and datasets, is made publicly available to facilitate further research in this domain.
comment: Accepted by IEEE IV'25
☆ A Benchmark for Vision-Centric HD Mapping by V2I Systems
Autonomous driving faces safety challenges due to a lack of global perspective and the semantic information of vectorized high-definition (HD) maps. Information from roadside cameras can greatly expand the map perception range through vehicle-to-infrastructure (V2I) communications. However, there is still no dataset from the real world available for the study on map vectorization onboard under the scenario of vehicle-infrastructure cooperation. To prosper the research on online HD mapping for Vehicle-Infrastructure Cooperative Autonomous Driving (VICAD), we release a real-world dataset, which contains collaborative camera frames from both vehicles and roadside infrastructures, and provides human annotations of HD map elements. We also present an end-to-end neural framework (i.e., V2I-HD) leveraging vision-centric V2I systems to construct vectorized maps. To reduce computation costs and further deploy V2I-HD on autonomous vehicles, we introduce a directionally decoupled self-attention mechanism to V2I-HD. Extensive experiments show that V2I-HD has superior performance in real-time inference speed, as tested by our real-world dataset. Abundant qualitative results also demonstrate stable and robust map construction quality with low cost in complex and various driving scenes. As a benchmark, both source codes and the dataset have been released at OneDrive for the purpose of further study.
comment: Accepted by IEEE IV'25
Local Information Matters: Inference Acceleration For Grounded Conversation Generation Models Through Adaptive Local-Aware Token Pruning
Grounded Conversation Generation (GCG) is an emerging vision-language task that requires models to generate natural language responses seamlessly intertwined with corresponding object segmentation masks. Recent models, such as GLaMM and OMG-LLaVA, achieve pixel-level grounding but incur significant computational costs due to processing a large number of visual tokens. Existing token pruning methods, like FastV and PyramidDrop, fail to preserve the local visual features critical for accurate grounding, leading to substantial performance drops in GCG tasks. To address this, we propose Adaptive Local-Aware Token Pruning (ALTP), a simple yet effective framework that accelerates GCG models by prioritizing local object information. ALTP introduces two key components: (1) Detail Density Capture (DDC), which uses superpixel segmentation to retain tokens in object-centric regions, preserving fine-grained details, and (2) Dynamic Density Formation (DDF), which dynamically allocates tokens based on information density, ensuring higher retention in semantically rich areas. Extensive experiments on the GranDf dataset demonstrate that ALTP significantly outperforms existing token pruning methods, such as FastV and PyramidDrop, on both GLaMM and OMG-LLaVA models. Notably, when applied to GLaMM, ALTP achieves a 90% reduction in visual tokens with a 4.9% improvement in AP50 and a 5.0% improvement in Recall compared to PyramidDrop. Similarly, on OMG-LLaVA, ALTP improves AP by 2.1% and mIOU by 3.0% at a 90% token reduction compared with PDrop.
comment: Work in progress
☆ A Multi-Stage Auto-Context Deep Learning Framework for Tissue and Nuclei Segmentation and Classification in H&E-Stained Histological Images of Advanced Melanoma
Melanoma is the most lethal form of skin cancer, with an increasing incidence rate worldwide. Analyzing histological images of melanoma by localizing and classifying tissues and cell nuclei is considered the gold standard method for diagnosis and treatment options for patients. While many computerized approaches have been proposed for automatic analysis, most perform tissue-based analysis and nuclei (cell)-based analysis as separate tasks, which might be suboptimal. In this work, using the PUMA challenge dataset, we proposed a novel multi-stage deep learning approach by combining tissue and nuclei information in a unified framework based on the auto-context concept to perform segmentation and classification in histological images of melanoma. Through pre-training and further post-processing, our approach achieved second and first place rankings in the PUMA challenge, with average micro Dice tissue score and summed nuclei F1-score of 73.40% for Track 1 and 63.48% for Track 2, respectively. Our implementation for training and testing is available at: https://github.com/NimaTorbati/PumaSubmit
comment: 15 pages
☆ AirCache: Activating Inter-modal Relevancy KV Cache Compression for Efficient Large Vision-Language Model Inference
Recent advancements in Large Visual Language Models (LVLMs) have gained significant attention due to their remarkable reasoning capabilities and proficiency in generalization. However, processing a large number of visual tokens and generating long-context outputs impose substantial computational overhead, leading to excessive demands for key-value (KV) cache. To address this critical bottleneck, we propose AirCache, a novel KV cache compression method aimed at accelerating LVLMs inference. This work systematically investigates the correlations between visual and textual tokens within the attention mechanisms of LVLMs. Our empirical analysis reveals considerable redundancy in cached visual tokens, wherein strategically eliminating these tokens preserves model performance while significantly accelerating context generation. Inspired by these findings, we introduce an elite observation window for assessing the importance of visual components in the KV cache, focusing on stable inter-modal relevancy modeling with enhanced multi-perspective consistency. Additionally, we develop an adaptive layer-wise budget allocation strategy that capitalizes on the strength and skewness of token importance distribution, showcasing superior efficiency compared to uniform allocation. Comprehensive evaluations across multiple LVLMs and benchmarks demonstrate that our method achieves comparable performance to the full cache while retaining only 10% of visual KV cache, thereby reducing decoding latency by 29% to 66% across various batch size and prompt length of inputs. Notably, as cache retention rates decrease, our method exhibits increasing performance advantages over existing approaches.
☆ JointTuner: Appearance-Motion Adaptive Joint Training for Customized Video Generation
Recent text-to-video advancements have enabled coherent video synthesis from prompts and expanded to fine-grained control over appearance and motion. However, existing methods either suffer from concept interference due to feature domain mismatch caused by naive decoupled optimizations or exhibit appearance contamination induced by spatial feature leakage resulting from the entanglement of motion and appearance in reference video reconstructions. In this paper, we propose JointTuner, a novel adaptive joint training framework, to alleviate these issues. Specifically, we develop Adaptive LoRA, which incorporates a context-aware gating mechanism, and integrate the gated LoRA components into the spatial and temporal Transformers within the diffusion model. These components enable simultaneous optimization of appearance and motion, eliminating concept interference. In addition, we introduce the Appearance-independent Temporal Loss, which decouples motion patterns from intrinsic appearance in reference video reconstructions through an appearance-agnostic noise prediction task. The key innovation lies in adding frame-wise offset noise to the ground-truth Gaussian noise, perturbing its distribution, thereby disrupting spatial attributes associated with frames while preserving temporal coherence. Furthermore, we construct a benchmark comprising 90 appearance-motion customized combinations and 10 multi-type automatic metrics across four dimensions, facilitating a more comprehensive evaluation for this customization task. Extensive experiments demonstrate the superior performance of our method compared to current advanced approaches.
comment: Project Page: https://fdchen24.github.io/JointTuner-Website
☆ AMB-FHE: Adaptive Multi-biometric Fusion with Fully Homomorphic Encryption
Biometric systems strive to balance security and usability. The use of multi-biometric systems combining multiple biometric modalities is usually recommended for high-security applications. However, the presentation of multiple biometric modalities can impair the user-friendliness of the overall system and might not be necessary in all cases. In this work, we present a simple but flexible approach to increase the privacy protection of homomorphically encrypted multi-biometric reference templates while enabling adaptation to security requirements at run-time: An adaptive multi-biometric fusion with fully homomorphic encryption (AMB-FHE). AMB-FHE is benchmarked against a bimodal biometric database consisting of the CASIA iris and MCYT fingerprint datasets using deep neural networks for feature extraction. Our contribution is easy to implement and increases the flexibility of biometric authentication while offering increased privacy protection through joint encryption of templates from multiple modalities.
Spectral-Adaptive Modulation Networks for Visual Perception
Recent studies have shown that 2D convolution and self-attention exhibit distinct spectral behaviors, and optimizing their spectral properties can enhance vision model performance. However, theoretical analyses remain limited in explaining why 2D convolution is more effective in high-pass filtering than self-attention and why larger kernels favor shape bias, akin to self-attention. In this paper, we employ graph spectral analysis to theoretically simulate and compare the frequency responses of 2D convolution and self-attention within a unified framework. Our results corroborate previous empirical findings and reveal that node connectivity, modulated by window size, is a key factor in shaping spectral functions. Leveraging this insight, we introduce a \textit{spectral-adaptive modulation} (SPAM) mixer, which processes visual features in a spectral-adaptive manner using multi-scale convolutional kernels and a spectral re-scaling mechanism to refine spectral components. Based on SPAM, we develop SPANetV2 as a novel vision backbone. Extensive experiments demonstrate that SPANetV2 outperforms state-of-the-art models across multiple vision tasks, including ImageNet-1K classification, COCO object detection, and ADE20K semantic segmentation.
☆ Exploring Reliable PPG Authentication on Smartwatches in Daily Scenarios
Photoplethysmography (PPG) Sensors, widely deployed in smartwatches, offer a simple and non-invasive authentication approach for daily use. However, PPG authentication faces reliability issues due to motion artifacts from physical activity and physiological variability over time. To address these challenges, we propose MTL-RAPID, an efficient and reliable PPG authentication model, that employs a multitask joint training strategy, simultaneously assessing signal quality and verifying user identity. The joint optimization of these two tasks in MTL-RAPID results in a structure that outperforms models trained on individual tasks separately, achieving stronger performance with fewer parameters. In our comprehensive user studies regarding motion artifacts (N = 30), time variations (N = 32), and user preferences (N = 16), MTL-RAPID achieves a best AUC of 99.2\% and an EER of 3.5\%, outperforming existing baselines. We opensource our PPG authentication dataset along with the MTL-RAPID model to facilitate future research on GitHub.
☆ CoMatch: Dynamic Covisibility-Aware Transformer for Bilateral Subpixel-Level Semi-Dense Image Matching
This prospective study proposes CoMatch, a novel semi-dense image matcher with dynamic covisibility awareness and bilateral subpixel accuracy. Firstly, observing that modeling context interaction over the entire coarse feature map elicits highly redundant computation due to the neighboring representation similarity of tokens, a covisibility-guided token condenser is introduced to adaptively aggregate tokens in light of their covisibility scores that are dynamically estimated, thereby ensuring computational efficiency while improving the representational capacity of aggregated tokens simultaneously. Secondly, considering that feature interaction with massive non-covisible areas is distracting, which may degrade feature distinctiveness, a covisibility-assisted attention mechanism is deployed to selectively suppress irrelevant message broadcast from non-covisible reduced tokens, resulting in robust and compact attention to relevant rather than all ones. Thirdly, we find that at the fine-level stage, current methods adjust only the target view's keypoints to subpixel level, while those in the source view remain restricted at the coarse level and thus not informative enough, detrimental to keypoint location-sensitive usages. A simple yet potent fine correlation module is developed to refine the matching candidates in both source and target views to subpixel level, attaining attractive performance improvement. Thorough experimentation across an array of public benchmarks affirms CoMatch's promising accuracy, efficiency, and generalizability.
☆ FineCausal: A Causal-Based Framework for Interpretable Fine-Grained Action Quality Assessment
Action quality assessment (AQA) is critical for evaluating athletic performance, informing training strategies, and ensuring safety in competitive sports. However, existing deep learning approaches often operate as black boxes and are vulnerable to spurious correlations, limiting both their reliability and interpretability. In this paper, we introduce FineCausal, a novel causal-based framework that achieves state-of-the-art performance on the FineDiving-HM dataset. Our approach leverages a Graph Attention Network-based causal intervention module to disentangle human-centric foreground cues from background confounders, and incorporates a temporal causal attention module to capture fine-grained temporal dependencies across action stages. This dual-module strategy enables FineCausal to generate detailed spatio-temporal representations that not only achieve state-of-the-art scoring performance but also provide transparent, interpretable feedback on which features drive the assessment. Despite its strong performance, FineCausal requires extensive expert knowledge to define causal structures and depends on high-quality annotations, challenges that we discuss and address as future research directions. Code is available at https://github.com/Harrison21/FineCausal.
☆ HumanAesExpert: Advancing a Multi-Modality Foundation Model for Human Image Aesthetic Assessment
Image Aesthetic Assessment (IAA) is a long-standing and challenging research task. However, its subset, Human Image Aesthetic Assessment (HIAA), has been scarcely explored, even though HIAA is widely used in social media, AI workflows, and related domains. To bridge this research gap, our work pioneers a holistic implementation framework tailored for HIAA. Specifically, we introduce HumanBeauty, the first dataset purpose-built for HIAA, which comprises 108k high-quality human images with manual annotations. To achieve comprehensive and fine-grained HIAA, 50K human images are manually collected through a rigorous curation process and annotated leveraging our trailblazing 12-dimensional aesthetic standard, while the remaining 58K with overall aesthetic labels are systematically filtered from public datasets. Based on the HumanBeauty database, we propose HumanAesExpert, a powerful Vision Language Model for aesthetic evaluation of human images. We innovatively design an Expert head to incorporate human knowledge of aesthetic sub-dimensions while jointly utilizing the Language Modeling (LM) and Regression head. This approach empowers our model to achieve superior proficiency in both overall and fine-grained HIAA. Furthermore, we introduce a MetaVoter, which aggregates scores from all three heads, to effectively balance the capabilities of each head, thereby realizing improved assessment precision. Extensive experiments demonstrate that our HumanAesExpert models deliver significantly better performance in HIAA than other state-of-the-art models. Our datasets, models, and codes are publicly released to advance the HIAA community. Project webpage: https://humanaesexpert.github.io/HumanAesExpert/
☆ Boosting MLLM Reasoning with Text-Debiased Hint-GRPO
MLLM reasoning has drawn widespread research for its excellent problem-solving capability. Current reasoning methods fall into two types: PRM, which supervises the intermediate reasoning steps, and ORM, which supervises the final results. Recently, DeepSeek-R1 has challenged the traditional view that PRM outperforms ORM, which demonstrates strong generalization performance using an ORM method (i.e., GRPO). However, current MLLM's GRPO algorithms still struggle to handle challenging and complex multimodal reasoning tasks (e.g., mathematical reasoning). In this work, we reveal two problems that impede the performance of GRPO on the MLLM: Low data utilization and Text-bias. Low data utilization refers to that GRPO cannot acquire positive rewards to update the MLLM on difficult samples, and text-bias is a phenomenon that the MLLM bypasses image condition and solely relies on text condition for generation after GRPO training. To tackle these problems, this work proposes Hint-GRPO that improves data utilization by adaptively providing hints for samples of varying difficulty, and text-bias calibration that mitigates text-bias by calibrating the token prediction logits with image condition in test-time. Experiment results on three base MLLMs across eleven datasets demonstrate that our proposed methods advance the reasoning capability of original MLLM by a large margin, exhibiting superior performance to existing MLLM reasoning methods. Our code is available at https://github.com/hqhQAQ/Hint-GRPO.
An Explainable Neural Radiomic Sequence Model with Spatiotemporal Continuity for Quantifying 4DCT-based Pulmonary Ventilation
Accurate evaluation of regional lung ventilation is essential for the management and treatment of lung cancer patients, supporting assessments of pulmonary function, optimization of therapeutic strategies, and monitoring of treatment response. Currently, ventilation scintigraphy using nuclear medicine techniques is widely employed in clinical practice; however, it is often time-consuming, costly, and entails additional radiation exposure. In this study, we propose an explainable neural radiomic sequence model to identify regions of compromised pulmonary ventilation based on four-dimensional computed tomography (4DCT). A cohort of 45 lung cancer patients from the VAMPIRE dataset was analyzed. For each patient, lung volumes were segmented from 4DCT, and voxel-wise radiomic features (56-dimensional) were extracted across the respiratory cycle to capture local intensity and texture dynamics, forming temporal radiomic sequences. Ground truth ventilation defects were delineated voxel-wise using Galligas-PET and DTPA-SPECT. To identify compromised regions, we developed a temporal saliency-enhanced explainable long short-term memory (LSTM) network trained on the radiomic sequences. Temporal saliency maps were generated to highlight key features contributing to the model's predictions. The proposed model demonstrated robust performance, achieving average (range) Dice similarity coefficients of 0.78 (0.74-0.79) for 25 PET cases and 0.78 (0.74-0.82) for 20 SPECT cases. The temporal saliency map explained three key radiomic sequences in ventilation quantification: during lung exhalation, compromised pulmonary function region typically exhibits (1) an increasing trend of intensity and (2) a decreasing trend of homogeneity, in contrast to healthy lung tissue.
comment: 43 pages, 13 figures
☆ Training-Free Text-Guided Image Editing with Visual Autoregressive Model
Text-guided image editing is an essential task that enables users to modify images through natural language descriptions. Recent advances in diffusion models and rectified flows have significantly improved editing quality, primarily relying on inversion techniques to extract structured noise from input images. However, inaccuracies in inversion can propagate errors, leading to unintended modifications and compromising fidelity. Moreover, even with perfect inversion, the entanglement between textual prompts and image features often results in global changes when only local edits are intended. To address these challenges, we propose a novel text-guided image editing framework based on VAR (Visual AutoRegressive modeling), which eliminates the need for explicit inversion while ensuring precise and controlled modifications. Our method introduces a caching mechanism that stores token indices and probability distributions from the original image, capturing the relationship between the source prompt and the image. Using this cache, we design an adaptive fine-grained masking strategy that dynamically identifies and constrains modifications to relevant regions, preventing unintended changes. A token reassembling approach further refines the editing process, enhancing diversity, fidelity, and control. Our framework operates in a training-free manner and achieves high-fidelity editing with faster inference speeds, processing a 1K resolution image in as fast as 1.2 seconds. Extensive experiments demonstrate that our method achieves performance comparable to, or even surpassing, existing diffusion- and rectified flow-based approaches in both quantitative metrics and visual quality. The code will be released.
☆ DiffScale: Continuous Downscaling and Bias Correction of Subseasonal Wind Speed Forecasts using Diffusion Models
Renewable resources are strongly dependent on local and large-scale weather situations. Skillful subseasonal to seasonal (S2S) forecasts -- beyond two weeks and up to two months -- can offer significant socioeconomic advantages to the energy sector. This study aims to enhance wind speed predictions using a diffusion model with classifier-free guidance to downscale S2S forecasts of surface wind speed. We propose DiffScale, a diffusion model that super-resolves spatial information for continuous downscaling factors and lead times. Leveraging weather priors as guidance for the generative process of diffusion models, we adopt the perspective of conditional probabilities on sampling super-resolved S2S forecasts. We aim to directly estimate the density associated with the target S2S forecasts at different spatial resolutions and lead times without auto-regression or sequence prediction, resulting in an efficient and flexible model. Synthetic experiments were designed to super-resolve wind speed S2S forecasts from the European Center for Medium-Range Weather Forecast (ECMWF) from a coarse resolution to a finer resolution of ERA5 reanalysis data, which serves as a high-resolution target. The innovative aspect of DiffScale lies in its flexibility to downscale arbitrary scaling factors, enabling it to generalize across various grid resolutions and lead times -without retraining the model- while correcting model errors, making it a versatile tool for improving S2S wind speed forecasts. We achieve a significant improvement in prediction quality, outperforming baselines up to week 3.
comment: 28 pages, 18 figures, preprint under review
☆ MuseFace: Text-driven Face Editing via Diffusion-based Mask Generation Approach
Face editing modifies the appearance of face, which plays a key role in customization and enhancement of personal images. Although much work have achieved remarkable success in text-driven face editing, they still face significant challenges as none of them simultaneously fulfill the characteristics of diversity, controllability and flexibility. To address this challenge, we propose MuseFace, a text-driven face editing framework, which relies solely on text prompt to enable face editing. Specifically, MuseFace integrates a Text-to-Mask diffusion model and a semantic-aware face editing model, capable of directly generating fine-grained semantic masks from text and performing face editing. The Text-to-Mask diffusion model provides \textit{diversity} and \textit{flexibility} to the framework, while the semantic-aware face editing model ensures \textit{controllability} of the framework. Our framework can create fine-grained semantic masks, making precise face editing possible, and significantly enhancing the controllability and flexibility of face editing models. Extensive experiments demonstrate that MuseFace achieves superior high-fidelity performance.
comment: 6 pages, 5 figures,IEEE International Conference on Multimedia & Expo 2025
☆ GLane3D : Detecting Lanes with Graph of 3D Keypoints CVPR 2025
Accurate and efficient lane detection in 3D space is essential for autonomous driving systems, where robust generalization is the foremost requirement for 3D lane detection algorithms. Considering the extensive variation in lane structures worldwide, achieving high generalization capacity is particularly challenging, as algorithms must accurately identify a wide variety of lane patterns worldwide. Traditional top-down approaches rely heavily on learning lane characteristics from training datasets, often struggling with lanes exhibiting previously unseen attributes. To address this generalization limitation, we propose a method that detects keypoints of lanes and subsequently predicts sequential connections between them to construct complete 3D lanes. Each key point is essential for maintaining lane continuity, and we predict multiple proposals per keypoint by allowing adjacent grids to predict the same keypoint using an offset mechanism. PointNMS is employed to eliminate overlapping proposal keypoints, reducing redundancy in the estimated BEV graph and minimizing computational overhead from connection estimations. Our model surpasses previous state-of-the-art methods on both the Apollo and OpenLane datasets, demonstrating superior F1 scores and a strong generalization capacity when models trained on OpenLane are evaluated on the Apollo dataset, compared to prior approaches.
comment: Accepted to CVPR 2025
☆ ExScene: Free-View 3D Scene Reconstruction with Gaussian Splatting from a Single Image ICME 2025
The increasing demand for augmented and virtual reality applications has highlighted the importance of crafting immersive 3D scenes from a simple single-view image. However, due to the partial priors provided by single-view input, existing methods are often limited to reconstruct low-consistency 3D scenes with narrow fields of view from single-view input. These limitations make them less capable of generalizing to reconstruct immersive scenes. To address this problem, we propose ExScene, a two-stage pipeline to reconstruct an immersive 3D scene from any given single-view image. ExScene designs a novel multimodal diffusion model to generate a high-fidelity and globally consistent panoramic image. We then develop a panoramic depth estimation approach to calculate geometric information from panorama, and we combine geometric information with high-fidelity panoramic image to train an initial 3D Gaussian Splatting (3DGS) model. Following this, we introduce a GS refinement technique with 2D stable video diffusion priors. We add camera trajectory consistency and color-geometric priors into the denoising process of diffusion to improve color and spatial consistency across image sequences. These refined sequences are then used to fine-tune the initial 3DGS model, leading to better reconstruction quality. Experimental results demonstrate that our ExScene achieves consistent and immersive scene reconstruction using only single-view input, significantly surpassing state-of-the-art baselines.
comment: ICME 2025
☆ ZeroMimic: Distilling Robotic Manipulation Skills from Web Videos ICRA 2025
Many recent advances in robotic manipulation have come through imitation learning, yet these rely largely on mimicking a particularly hard-to-acquire form of demonstrations: those collected on the same robot in the same room with the same objects as the trained policy must handle at test time. In contrast, large pre-recorded human video datasets demonstrating manipulation skills in-the-wild already exist, which contain valuable information for robots. Is it possible to distill a repository of useful robotic skill policies out of such data without any additional requirements on robot-specific demonstrations or exploration? We present the first such system ZeroMimic, that generates immediately deployable image goal-conditioned skill policies for several common categories of manipulation tasks (opening, closing, pouring, pick&place, cutting, and stirring) each capable of acting upon diverse objects and across diverse unseen task setups. ZeroMimic is carefully designed to exploit recent advances in semantic and geometric visual understanding of human videos, together with modern grasp affordance detectors and imitation policy classes. After training ZeroMimic on the popular EpicKitchens dataset of ego-centric human videos, we evaluate its out-of-the-box performance in varied real-world and simulated kitchen settings with two different robot embodiments, demonstrating its impressive abilities to handle these varied tasks. To enable plug-and-play reuse of ZeroMimic policies on other task setups and robots, we release software and policy checkpoints of our skill policies.
comment: ICRA 2025. Project website: https://zeromimic.github.io/
☆ Learned Image Compression and Restoration for Digital Pathology
Digital pathology images play a crucial role in medical diagnostics, but their ultra-high resolution and large file sizes pose significant challenges for storage, transmission, and real-time visualization. To address these issues, we propose CLERIC, a novel deep learning-based image compression framework designed specifically for whole slide images (WSIs). CLERIC integrates a learnable lifting scheme and advanced convolutional techniques to enhance compression efficiency while preserving critical pathological details. Our framework employs a lifting-scheme transform in the analysis stage to decompose images into low- and high-frequency components, enabling more structured latent representations. These components are processed through parallel encoders incorporating Deformable Residual Blocks (DRB) and Recurrent Residual Blocks (R2B) to improve feature extraction and spatial adaptability. The synthesis stage applies an inverse lifting transform for effective image reconstruction, ensuring high-fidelity restoration of fine-grained tissue structures. We evaluate CLERIC on a digital pathology image dataset and compare its performance against state-of-the-art learned image compression (LIC) models. Experimental results demonstrate that CLERIC achieves superior rate-distortion (RD) performance, significantly reducing storage requirements while maintaining high diagnostic image quality. Our study highlights the potential of deep learning-based compression in digital pathology, facilitating efficient data management and long-term storage while ensuring seamless integration into clinical workflows and AI-assisted diagnostic systems. Code and models are available at: https://github.com/pnu-amilab/CLERIC.
☆ FlexiMo: A Flexible Remote Sensing Foundation Model
The rapid expansion of multi-source satellite imagery drives innovation in Earth observation, opening unprecedented opportunities for Remote Sensing Foundation Models to harness diverse data. However, many existing models remain constrained by fixed spatial resolutions and patch sizes, limiting their ability to fully exploit the heterogeneous spatial characteristics inherent in satellite imagery. To address these challenges, we propose FlexiMo, a flexible remote sensing foundation model that endows the pre-trained model with the flexibility to adapt to arbitrary spatial resolutions. Central to FlexiMo is a spatial resolution-aware module that employs a parameter-free alignment embedding mechanism to dynamically recalibrate patch embeddings based on the input image's resolution and dimensions. This design not only preserves critical token characteristics and ensures multi-scale feature fidelity but also enables efficient feature extraction without requiring modifications to the underlying network architecture. In addition, FlexiMo incorporates a lightweight channel adaptation module that leverages prior spectral information from sensors. This mechanism allows the model to process images with varying numbers of channels while maintaining the data's intrinsic physical properties. Extensive experiments on diverse multimodal, multi-resolution, and multi-scale datasets demonstrate that FlexiMo significantly enhances model generalization and robustness. In particular, our method achieves outstanding performance across a range of downstream tasks, including scene classification, land cover classification, urban building segmentation, and cloud detection. By enabling parameter-efficient and physically consistent adaptation, FlexiMo paves the way for more adaptable and effective foundation models in real-world remote sensing applications.
☆ Conformal uncertainty quantification to evaluate predictive fairness of foundation AI model for skin lesion classes across patient demographics
Deep learning based diagnostic AI systems based on medical images are starting to provide similar performance as human experts. However these data hungry complex systems are inherently black boxes and therefore slow to be adopted for high risk applications like healthcare. This problem of lack of transparency is exacerbated in the case of recent large foundation models, which are trained in a self supervised manner on millions of data points to provide robust generalisation across a range of downstream tasks, but the embeddings generated from them happen through a process that is not interpretable, and hence not easily trustable for clinical applications. To address this timely issue, we deploy conformal analysis to quantify the predictive uncertainty of a vision transformer (ViT) based foundation model across patient demographics with respect to sex, age and ethnicity for the tasks of skin lesion classification using several public benchmark datasets. The significant advantage of this method is that conformal analysis is method independent and it not only provides a coverage guarantee at population level but also provides an uncertainty score for each individual. We used a model-agnostic dynamic F1-score-based sampling during model training, which helped to stabilize the class imbalance and we investigate the effects on uncertainty quantification (UQ) with or without this bias mitigation step. Thus we show how this can be used as a fairness metric to evaluate the robustness of the feature embeddings of the foundation model (Google DermFoundation) and thus advance the trustworthiness and fairness of clinical AI.
☆ Bridge the Gap Between Visual and Linguistic Comprehension for Generalized Zero-shot Semantic Segmentation
Generalized zero-shot semantic segmentation (GZS3) aims to achieve the human-level capability of segmenting not only seen classes but also novel class regions unseen in the training data through introducing the bridge of semantic representations, e.g., word vector. While effective, the way of utilizing one semantic representation to associate the corresponding class and to enable the knowledge transfer from seen to unseen classes is insufficient as well as incompatible with human cognition. Inspired by the observation that humans often use some `part' and `state' information to comprehend the seen objects and imagine unseen classes, we decouple each class into detailed descriptions, including object parts and states. Based on the decoupling formulation, we propose a Decoupled Vision-Language Matching (DeVLMatch) framework, composed of spatial-part (SPMatch) and channel-state (CSMatch) matching modules, for GZS3. In SPMatch, we comprehend objects with spatial part information from both visual and linguistic perspectives and perform graph matching to bridge the gap. In CSMatch, states of objects from the linguistic perspective are matched to compatible channel information from the visual perspective. By decoupling and matching objects across visual and linguistic comprehension, we can explicitly introspect the relationship between seen and unseen classes in fine-grained object part and state levels, thereby facilitating the knowledge transfer from seen to unseen classes in visual space. The proposed DeVLMatch framework surpasses the previous GZS3 methods on standard benchmarks, including PASCAL VOC, COCO-Stuff, and CATARACTS, demonstrating its effectiveness.
☆ On-device Sora: Enabling Training-Free Diffusion-based Text-to-Video Generation for Mobile Devices
We present On-device Sora, the first model training-free solution for diffusion-based on-device text-to-video generation that operates efficiently on smartphone-grade devices. To address the challenges of diffusion-based text-to-video generation on computation- and memory-limited mobile devices, the proposed On-device Sora applies three novel techniques to pre-trained video generative models. First, Linear Proportional Leap (LPL) reduces the excessive denoising steps required in video diffusion through an efficient leap-based approach. Second, Temporal Dimension Token Merging (TDTM) minimizes intensive token-processing computation in attention layers by merging consecutive tokens along the temporal dimension. Third, Concurrent Inference with Dynamic Loading (CI-DL) dynamically partitions large models into smaller blocks and loads them into memory for concurrent model inference, effectively addressing the challenges of limited device memory. We implement On-device Sora on the iPhone 15 Pro, and the experimental evaluations show that it is capable of generating high-quality videos on the device, comparable to those produced by high-end GPUs. These results show that On-device Sora enables efficient and high-quality video generation on resource-constrained mobile devices. We envision the proposed On-device Sora as a significant first step toward democratizing state-of-the-art generative technologies, enabling video generation on commodity mobile and embedded devices without resource-intensive re-training for model optimization (compression). The code implementation is available at a GitHub repository(https://github.com/eai-lab/On-device-Sora).
☆ Pan-LUT: Efficient Pan-sharpening via Learnable Look-Up Tables
Recently, deep learning-based pan-sharpening algorithms have achieved notable advancements over traditional methods. However, many deep learning-based approaches incur substantial computational overhead during inference, especially with high-resolution images. This excessive computational demand limits the applicability of these methods in real-world scenarios, particularly in the absence of dedicated computing devices such as GPUs and TPUs. To address these challenges, we propose Pan-LUT, a novel learnable look-up table (LUT) framework for pan-sharpening that strikes a balance between performance and computational efficiency for high-resolution remote sensing images. To finely control the spectral transformation, we devise the PAN-guided look-up table (PGLUT) for channel-wise spectral mapping. To effectively capture fine-grained spatial details and adaptively learn local contexts, we introduce the spatial details look-up table (SDLUT) and adaptive aggregation look-up table (AALUT). Our proposed method contains fewer than 300K parameters and processes a 8K resolution image in under 1 ms using a single NVIDIA GeForce RTX 2080 Ti GPU, demonstrating significantly faster performance compared to other methods. Experiments reveal that Pan-LUT efficiently processes large remote sensing images in a lightweight manner, bridging the gap to real-world applications. Furthermore, our model surpasses SOTA methods in full-resolution scenes under real-world conditions, highlighting its effectiveness and efficiency.
comment: 12 pages, 6 figures
☆ MGD-SAM2: Multi-view Guided Detail-enhanced Segment Anything Model 2 for High-Resolution Class-agnostic Segmentation
Segment Anything Models (SAMs), as vision foundation models, have demonstrated remarkable performance across various image analysis tasks. Despite their strong generalization capabilities, SAMs encounter challenges in fine-grained detail segmentation for high-resolution class-independent segmentation (HRCS), due to the limitations in the direct processing of high-resolution inputs and low-resolution mask predictions, and the reliance on accurate manual prompts. To address these limitations, we propose MGD-SAM2 which integrates SAM2 with multi-view feature interaction between a global image and local patches to achieve precise segmentation. MGD-SAM2 incorporates the pre-trained SAM2 with four novel modules: the Multi-view Perception Adapter (MPAdapter), the Multi-view Complementary Enhancement Module (MCEM), the Hierarchical Multi-view Interaction Module (HMIM), and the Detail Refinement Module (DRM). Specifically, we first introduce MPAdapter to adapt the SAM2 encoder for enhanced extraction of local details and global semantics in HRCS images. Then, MCEM and HMIM are proposed to further exploit local texture and global context by aggregating multi-view features within and across multi-scales. Finally, DRM is designed to generate gradually restored high-resolution mask predictions, compensating for the loss of fine-grained details resulting from directly upsampling the low-resolution prediction maps. Experimental results demonstrate the superior performance and strong generalization of our model on multiple high-resolution and normal-resolution datasets. Code will be available at https://github.com/sevenshr/MGD-SAM2.
☆ Evaluation of (Un-)Supervised Machine Learning Methods for GNSS Interference Classification with Real-World Data Discrepancies
The accuracy and reliability of vehicle localization on roads are crucial for applications such as self-driving cars, toll systems, and digital tachographs. To achieve accurate positioning, vehicles typically use global navigation satellite system (GNSS) receivers to validate their absolute positions. However, GNSS-based positioning can be compromised by interference signals, necessitating the identification, classification, determination of purpose, and localization of such interference to mitigate or eliminate it. Recent approaches based on machine learning (ML) have shown superior performance in monitoring interference. However, their feasibility in real-world applications and environments has yet to be assessed. Effective implementation of ML techniques requires training datasets that incorporate realistic interference signals, including real-world noise and potential multipath effects that may occur between transmitter, receiver, and satellite in the operational area. Additionally, these datasets require reference labels. Creating such datasets is often challenging due to legal restrictions, as causing interference to GNSS sources is strictly prohibited. Consequently, the performance of ML-based methods in practical applications remains unclear. To address this gap, we describe a series of large-scale measurement campaigns conducted in real-world settings at two highway locations in Germany and the Seetal Alps in Austria, and in large-scale controlled indoor environments. We evaluate the latest supervised ML-based methods to report on their performance in real-world settings and present the applicability of pseudo-labeling for unsupervised learning. We demonstrate the challenges of combining datasets due to data discrepancies and evaluate outlier detection, domain adaptation, and data augmentation techniques to present the models' capabilities to adapt to changes in the datasets.
comment: 34 pages, 25 figures
☆ XLRS-Bench: Could Your Multimodal LLMs Understand Extremely Large Ultra-High-Resolution Remote Sensing Imagery? CVPR2025
The astonishing breakthrough of multimodal large language models (MLLMs) has necessitated new benchmarks to quantitatively assess their capabilities, reveal their limitations, and indicate future research directions. However, this is challenging in the context of remote sensing (RS), since the imagery features ultra-high resolution that incorporates extremely complex semantic relationships. Existing benchmarks usually adopt notably smaller image sizes than real-world RS scenarios, suffer from limited annotation quality, and consider insufficient dimensions of evaluation. To address these issues, we present XLRS-Bench: a comprehensive benchmark for evaluating the perception and reasoning capabilities of MLLMs in ultra-high-resolution RS scenarios. XLRS-Bench boasts the largest average image size (8500$\times$8500) observed thus far, with all evaluation samples meticulously annotated manually, assisted by a novel semi-automatic captioner on ultra-high-resolution RS images. On top of the XLRS-Bench, 16 sub-tasks are defined to evaluate MLLMs' 10 kinds of perceptual capabilities and 6 kinds of reasoning capabilities, with a primary emphasis on advanced cognitive processes that facilitate real-world decision-making and the capture of spatiotemporal changes. The results of both general and RS-focused MLLMs on XLRS-Bench indicate that further efforts are needed for real-world RS applications. We have open-sourced XLRS-Bench to support further research in developing more powerful MLLMs for remote sensing.
comment: It has been accepted by CVPR2025
☆ Texture or Semantics? Vision-Language Models Get Lost in Font Recognition
Modern Vision-Language Models (VLMs) exhibit remarkable visual and linguistic capabilities, achieving impressive performance in various tasks such as image recognition and object localization. However, their effectiveness in fine-grained tasks remains an open question. In everyday scenarios, individuals encountering design materials, such as magazines, typography tutorials, research papers, or branding content, may wish to identify aesthetically pleasing fonts used in the text. Given their multimodal capabilities and free accessibility, many VLMs are often considered potential tools for font recognition. This raises a fundamental question: Do VLMs truly possess the capability to recognize fonts? To investigate this, we introduce the Font Recognition Benchmark (FRB), a compact and well-structured dataset comprising 15 commonly used fonts. FRB includes two versions: (i) an easy version, where 10 sentences are rendered in different fonts, and (ii) a hard version, where each text sample consists of the names of the 15 fonts themselves, introducing a stroop effect that challenges model perception. Through extensive evaluation of various VLMs on font recognition tasks, we arrive at the following key findings: (i) Current VLMs exhibit limited font recognition capabilities, with many state-of-the-art models failing to achieve satisfactory performance. (ii) Few-shot learning and Chain-of-Thought (CoT) prompting provide minimal benefits in improving font recognition accuracy across different VLMs. (iii) Attention analysis sheds light on the inherent limitations of VLMs in capturing semantic features.
☆ STI-Bench: Are MLLMs Ready for Precise Spatial-Temporal World Understanding?
The use of Multimodal Large Language Models (MLLMs) as an end-to-end solution for Embodied AI and Autonomous Driving has become a prevailing trend. While MLLMs have been extensively studied for visual semantic understanding tasks, their ability to perform precise and quantitative spatial-temporal understanding in real-world applications remains largely unexamined, leading to uncertain prospects. To evaluate models' Spatial-Temporal Intelligence, we introduce STI-Bench, a benchmark designed to evaluate MLLMs' spatial-temporal understanding through challenging tasks such as estimating and predicting the appearance, pose, displacement, and motion of objects. Our benchmark encompasses a wide range of robot and vehicle operations across desktop, indoor, and outdoor scenarios. The extensive experiments reveals that the state-of-the-art MLLMs still struggle in real-world spatial-temporal understanding, especially in tasks requiring precise distance estimation and motion analysis.
☆ WaveFormer: A 3D Transformer with Wavelet-Driven Feature Representation for Efficient Medical Image Segmentation
Transformer-based architectures have advanced medical image analysis by effectively modeling long-range dependencies, yet they often struggle in 3D settings due to substantial memory overhead and insufficient capture of fine-grained local features. We address these limi- tations with WaveFormer, a novel 3D-transformer that: i) leverages the fundamental frequency-domain properties of features for contextual rep- resentation, and ii) is inspired by the top-down mechanism of the human visual recognition system, making it a biologically motivated architec- ture. By employing discrete wavelet transformations (DWT) at multiple scales, WaveFormer preserves both global context and high-frequency de- tails while replacing heavy upsampling layers with efficient wavelet-based summarization and reconstruction. This significantly reduces the number of parameters, which is critical for real-world deployment where compu- tational resources and training times are constrained. Furthermore, the model is generic and easily adaptable to diverse applications. Evaluations on BraTS2023, FLARE2021, and KiTS2023 demonstrate performance on par with state-of-the-art methods while offering substantially lower computational complexity.
☆ StrokeFusion: Vector Sketch Generation via Joint Stroke-UDF Encoding and Latent Sequence Diffusion
In the field of sketch generation, raster-format trained models often produce non-stroke artifacts, while vector-format trained models typically lack a holistic understanding of sketches, leading to compromised recognizability. Moreover, existing methods struggle to extract common features from similar elements (e.g., eyes of animals) appearing at varying positions across sketches. To address these challenges, we propose StrokeFusion, a two-stage framework for vector sketch generation. It contains a dual-modal sketch feature learning network that maps strokes into a high-quality latent space. This network decomposes sketches into normalized strokes and jointly encodes stroke sequences with Unsigned Distance Function (UDF) maps, representing sketches as sets of stroke feature vectors. Building upon this representation, our framework exploits a stroke-level latent diffusion model that simultaneously adjusts stroke position, scale, and trajectory during generation. This enables high-fidelity sketch generation while supporting stroke interpolation editing. Extensive experiments on the QuickDraw dataset demonstrate that our framework outperforms state-of-the-art techniques, validating its effectiveness in preserving structural integrity and semantic features. Code and models will be made publicly available upon publication.
☆ Decoupled Distillation to Erase: A General Unlearning Method for Any Class-centric Tasks CVPR2025
In this work, we present DEcoupLEd Distillation To Erase (DELETE), a general and strong unlearning method for any class-centric tasks. To derive this, we first propose a theoretical framework to analyze the general form of unlearning loss and decompose it into forgetting and retention terms. Through the theoretical framework, we point out that a class of previous methods could be mainly formulated as a loss that implicitly optimizes the forgetting term while lacking supervision for the retention term, disturbing the distribution of pre-trained model and struggling to adequately preserve knowledge of the remaining classes. To address it, we refine the retention term using "dark knowledge" and propose a mask distillation unlearning method. By applying a mask to separate forgetting logits from retention logits, our approach optimizes both the forgetting and refined retention components simultaneously, retaining knowledge of the remaining classes while ensuring thorough forgetting of the target class. Without access to the remaining data or intervention (i.e., used in some works), we achieve state-of-the-art performance across various benchmarks. What's more, DELETE is a general solution that can be applied to various downstream tasks, including face recognition, backdoor defense, and semantic segmentation with great performance.
comment: CVPR2025, Equal contributions from first two authors
☆ Consistency-aware Self-Training for Iterative-based Stereo Matching CVPR 2025
Iterative-based methods have become mainstream in stereo matching due to their high performance. However, these methods heavily rely on labeled data and face challenges with unlabeled real-world data. To this end, we propose a consistency-aware self-training framework for iterative-based stereo matching for the first time, leveraging real-world unlabeled data in a teacher-student manner. We first observe that regions with larger errors tend to exhibit more pronounced oscillation characteristics during model prediction.Based on this, we introduce a novel consistency-aware soft filtering module to evaluate the reliability of teacher-predicted pseudo-labels, which consists of a multi-resolution prediction consistency filter and an iterative prediction consistency filter to assess the prediction fluctuations of multiple resolutions and iterative optimization respectively. Further, we introduce a consistency-aware soft-weighted loss to adjust the weight of pseudo-labels accordingly, relieving the error accumulation and performance degradation problem due to incorrect pseudo-labels. Extensive experiments demonstrate that our method can improve the performance of various iterative-based stereo matching approaches in various scenarios. In particular, our method can achieve further enhancements over the current SOTA methods on several benchmark datasets.
comment: Accepted by CVPR 2025
☆ Short-video Propagation Influence Rating: A New Real-world Dataset and A New Large Graph Model
Short-video platforms have gained immense popularity, captivating the interest of millions, if not billions, of users globally. Recently, researchers have highlighted the significance of analyzing the propagation of short-videos, which typically involves discovering commercial values, public opinions, user behaviors, etc. This paper proposes a new Short-video Propagation Influence Rating (SPIR) task and aims to promote SPIR from both the dataset and method perspectives. First, we propose a new Cross-platform Short-Video (XS-Video) dataset, which aims to provide a large-scale and real-world short-video propagation network across various platforms to facilitate the research on short-video propagation. Our XS-Video dataset includes 117,720 videos, 381,926 samples, and 535 topics across 5 biggest Chinese platforms, annotated with the propagation influence from level 0 to 9. To the best of our knowledge, this is the first large-scale short-video dataset that contains cross-platform data or provides all of the views, likes, shares, collects, fans, comments, and comment content. Second, we propose a Large Graph Model (LGM) named NetGPT, based on a novel three-stage training mechanism, to bridge heterogeneous graph-structured data with the powerful reasoning ability and knowledge of Large Language Models (LLMs). Our NetGPT can comprehend and analyze the short-video propagation graph, enabling it to predict the long-term propagation influence of short-videos. Comprehensive experimental results evaluated by both classification and regression metrics on our XS-Video dataset indicate the superiority of our method for SPIR.
☆ Every Painting Awakened: A Training-free Framework for Painting-to-Animation Generation
We introduce a training-free framework specifically designed to bring real-world static paintings to life through image-to-video (I2V) synthesis, addressing the persistent challenge of aligning these motions with textual guidance while preserving fidelity to the original artworks. Existing I2V methods, primarily trained on natural video datasets, often struggle to generate dynamic outputs from static paintings. It remains challenging to generate motion while maintaining visual consistency with real-world paintings. This results in two distinct failure modes: either static outputs due to limited text-based motion interpretation or distorted dynamics caused by inadequate alignment with real-world artistic styles. We leverage the advanced text-image alignment capabilities of pre-trained image models to guide the animation process. Our approach introduces synthetic proxy images through two key innovations: (1) Dual-path score distillation: We employ a dual-path architecture to distill motion priors from both real and synthetic data, preserving static details from the original painting while learning dynamic characteristics from synthetic frames. (2) Hybrid latent fusion: We integrate hybrid features extracted from real paintings and synthetic proxy images via spherical linear interpolation in the latent space, ensuring smooth transitions and enhancing temporal consistency. Experimental evaluations confirm that our approach significantly improves semantic alignment with text prompts while faithfully preserving the unique characteristics and integrity of the original paintings. Crucially, by achieving enhanced dynamic effects without requiring any model training or learnable parameters, our framework enables plug-and-play integration with existing I2V methods, making it an ideal solution for animating real-world paintings. More animated examples can be found on our project website.
comment: The project is available at: https://painting-animation.github.io/animation/
☆ AdaMMS: Model Merging for Heterogeneous Multimodal Large Language Models with Unsupervised Coefficient Optimization CVPR 2025
Recently, model merging methods have demonstrated powerful strengths in combining abilities on various tasks from multiple Large Language Models (LLMs). While previous model merging methods mainly focus on merging homogeneous models with identical architecture, they meet challenges when dealing with Multimodal Large Language Models (MLLMs) with inherent heterogeneous property, including differences in model architecture and the asymmetry in the parameter space. In this work, we propose AdaMMS, a novel model merging method tailored for heterogeneous MLLMs. Our method tackles the challenges in three steps: mapping, merging and searching. Specifically, we first design mapping function between models to apply model merging on MLLMs with different architecture. Then we apply linear interpolation on model weights to actively adapt the asymmetry in the heterogeneous MLLMs. Finally in the hyper-parameter searching step, we propose an unsupervised hyper-parameter selection method for model merging. As the first model merging method capable of merging heterogeneous MLLMs without labeled data, extensive experiments on various model combinations demonstrated that AdaMMS outperforms previous model merging methods on various vision-language benchmarks.
comment: CVPR 2025
☆ Investigation of intelligent barbell squat coaching system based on computer vision and machine learning
Purpose: Research has revealed that strength training can reduce the incidence of chronic diseases and physical deterioration at any age. Therefore, having a movement diagnostic system is crucial for training alone. Hence, this study developed an artificial intelligence and computer vision-based barbell squat coaching system with a real-time mode that immediately diagnoses the issue and provides feedback after each squat. In addition, a replay mode allows users to examine their previous squats and check their comments. Initially, four primary characteristics of the barbell squat were identified: body joint angles, dorsiflexion, the ratio of knee-to-hip movement, and barbell stability. Methods: We collect 8,151 squats from 77 participants, categorizing them as good squats and six issues. Then, we trained the diagnosis models with three machine-learning architectures. Furthermore, this research applied the SHapley Additive exPlanations (SHAP) method to enhance the accuracy of issue prediction and reduce the computation time by feature selection. Results: The F1 score of the six issues reached 86.86%, 69.01%, 77.42%, 90.74%, 95.83%, and 100%. Each squat diagnosis took less than 0.5 seconds. Finally, this study examined the efficacy of the proposed system with two groups of participants trained with and without the system. Subsequently, participants trained with the system exhibited substantial improvements in their squat technique, as assessed both by the system itself and by a professional weightlifting coach. Conclusion: This is a comprehensive study that integrates artificial intelligence, computer vision and multivariable processing technologies, aimed at building a real-time, user-friendly barbell squat feedback and training system.
☆ KOFFVQA: An Objectively Evaluated Free-form VQA Benchmark for Large Vision-Language Models in the Korean Language CVPR
The recent emergence of Large Vision-Language Models(VLMs) has resulted in a variety of different benchmarks for evaluating such models. Despite this, we observe that most existing evaluation methods suffer from the fact that they either require the model to choose from pre-determined responses, sacrificing open-endedness, or evaluate responses using a judge model, resulting in subjective and unreliable evaluation. In addition, we observe a lack of benchmarks for VLMs in the Korean language, which are necessary as a separate metric from more common English language benchmarks, as the performance of generative language models can differ significantly based on the language being used. Therefore, we present KOFFVQA, a general-purpose free-form visual question answering benchmark in the Korean language for the evaluation of VLMs. Our benchmark consists of 275 carefully crafted questions each paired with an image and grading criteria covering 10 different aspects of VLM performance. The grading criteria eliminate the problem of unreliability by allowing the judge model to grade each response based on a pre-determined set of rules. By defining the evaluation criteria in an objective manner, even a small open-source model can be used to evaluate models on our benchmark reliably. In addition to evaluating a large number of existing VLMs on our benchmark, we also experimentally verify that our method of using pre-existing grading criteria for evaluation is much more reliable than existing methods. Our evaluation code is available at https://github.com/maum-ai/KOFFVQA
comment: Accepted to CVPRW 2025, Workshop on Benchmarking and Expanding AI Multimodal Approaches
☆ Exploring Temporal Dynamics in Event-based Eye Tracker CVPR 2025
Eye-tracking is a vital technology for human-computer interaction, especially in wearable devices such as AR, VR, and XR. The realization of high-speed and high-precision eye-tracking using frame-based image sensors is constrained by their limited temporal resolution, which impairs the accurate capture of rapid ocular dynamics, such as saccades and blinks. Event cameras, inspired by biological vision systems, are capable of perceiving eye movements with extremely low power consumption and ultra-high temporal resolution. This makes them a promising solution for achieving high-speed, high-precision tracking with rich temporal dynamics. In this paper, we propose TDTracker, an effective eye-tracking framework that captures rapid eye movements by thoroughly modeling temporal dynamics from both implicit and explicit perspectives. TDTracker utilizes 3D convolutional neural networks to capture implicit short-term temporal dynamics and employs a cascaded structure consisting of a Frequency-aware Module, GRU, and Mamba to extract explicit long-term temporal dynamics. Ultimately, a prediction heatmap is used for eye coordinate regression. Experimental results demonstrate that TDTracker achieves state-of-the-art (SOTA) performance on the synthetic SEET dataset and secured Third place in the CVPR event-based eye-tracking challenge 2025. Our code is available at https://github.com/rhwxmx/TDTracker.
comment: Accepted by CVPR 2025 Event-based Vision Workshop
☆ LATex: Leveraging Attribute-based Text Knowledge for Aerial-Ground Person Re-Identification
Aerial-Ground person Re-IDentification (AG-ReID) aims to retrieve specific persons across heterogeneous cameras in different views. Previous methods usually adopt large-scale models, focusing on view-invariant features. However, they overlook the semantic information in person attributes. Additionally, existing training strategies often rely on full fine-tuning large-scale models, which significantly increases training costs. To address these issues, we propose a novel framework named LATex for AG-ReID, which adopts prompt-tuning strategies to leverage attribute-based text knowledge. More specifically, we first introduce the Contrastive Language-Image Pre-training (CLIP) model as the backbone, and propose an Attribute-aware Image Encoder (AIE) to extract global semantic features and attribute-aware features. Then, with these features, we propose a Prompted Attribute Classifier Group (PACG) to generate person attribute predictions and obtain the encoded representations of predicted attributes. Finally, we design a Coupled Prompt Template (CPT) to transform attribute tokens and view information into structured sentences. These sentences are processed by the text encoder of CLIP to generate more discriminative features. As a result, our framework can fully leverage attribute-based text knowledge to improve the AG-ReID. Extensive experiments on three AG-ReID benchmarks demonstrate the effectiveness of our proposed LATex. The source code will be available.
☆ Effective Cloud Removal for Remote Sensing Images by an Improved Mean-Reverting Denoising Model with Elucidated Design Space
Cloud removal (CR) remains a challenging task in remote sensing image processing. Although diffusion models (DM) exhibit strong generative capabilities, their direct applications to CR are suboptimal, as they generate cloudless images from random noise, ignoring inherent information in cloudy inputs. To overcome this drawback, we develop a new CR model EMRDM based on mean-reverting diffusion models (MRDMs) to establish a direct diffusion process between cloudy and cloudless images. Compared to current MRDMs, EMRDM offers a modular framework with updatable modules and an elucidated design space, based on a reformulated forward process and a new ordinary differential equation (ODE)-based backward process. Leveraging our framework, we redesign key MRDM modules to boost CR performance, including restructuring the denoiser via a preconditioning technique, reorganizing the training process, and improving the sampling process by introducing deterministic and stochastic samplers. To achieve multi-temporal CR, we further develop a denoising network for simultaneously denoising sequential images. Experiments on mono-temporal and multi-temporal datasets demonstrate the superior performance of EMRDM. Our code is available at https://github.com/Ly403/EMRDM.
comment: 29 pages, 12 figures
☆ HOIGen-1M: A Large-scale Dataset for Human-Object Interaction Video Generation CVPR 2025
Text-to-video (T2V) generation has made tremendous progress in generating complicated scenes based on texts. However, human-object interaction (HOI) often cannot be precisely generated by current T2V models due to the lack of large-scale videos with accurate captions for HOI. To address this issue, we introduce HOIGen-1M, the first largescale dataset for HOI Generation, consisting of over one million high-quality videos collected from diverse sources. In particular, to guarantee the high quality of videos, we first design an efficient framework to automatically curate HOI videos using the powerful multimodal large language models (MLLMs), and then the videos are further cleaned by human annotators. Moreover, to obtain accurate textual captions for HOI videos, we design a novel video description method based on a Mixture-of-Multimodal-Experts (MoME) strategy that not only generates expressive captions but also eliminates the hallucination by individual MLLM. Furthermore, due to the lack of an evaluation framework for generated HOI videos, we propose two new metrics to assess the quality of generated videos in a coarse-to-fine manner. Extensive experiments reveal that current T2V models struggle to generate high-quality HOI videos and confirm that our HOIGen-1M dataset is instrumental for improving HOI video generation. Project webpage is available at https://liuqi-creat.github.io/HOIGen.github.io.
comment: CVPR 2025
☆ ElimPCL: Eliminating Noise Accumulation with Progressive Curriculum Labeling for Source-Free Domain Adaptation ICME 2025
Source-Free Domain Adaptation (SFDA) aims to train a target model without source data, and the key is to generate pseudo-labels using a pre-trained source model. However, we observe that the source model often produces highly uncertain pseudo-labels for hard samples, particularly those heavily affected by domain shifts, leading to these noisy pseudo-labels being introduced even before adaptation and further reinforced through parameter updates. Additionally, they continuously influence neighbor samples through propagation in the feature space.To eliminate the issue of noise accumulation, we propose a novel Progressive Curriculum Labeling (ElimPCL) method, which iteratively filters trustworthy pseudo-labeled samples based on prototype consistency to exclude high-noise samples from training. Furthermore, a Dual MixUP technique is designed in the feature space to enhance the separability of hard samples, thereby mitigating the interference of noisy samples on their neighbors.Extensive experiments validate the effectiveness of ElimPCL, achieving up to a 3.4% improvement on challenging tasks compared to state-of-the-art methods.
comment: ICME 2025 camera-ready
☆ Expanding-and-Shrinking Binary Neural Networks
While binary neural networks (BNNs) offer significant benefits in terms of speed, memory and energy, they encounter substantial accuracy degradation in challenging tasks compared to their real-valued counterparts. Due to the binarization of weights and activations, the possible values of each entry in the feature maps generated by BNNs are strongly constrained. To tackle this limitation, we propose the expanding-and-shrinking operation, which enhances binary feature maps with negligible increase of computation complexity, thereby strengthening the representation capacity. Extensive experiments conducted on multiple benchmarks reveal that our approach generalizes well across diverse applications ranging from image classification, object detection to generative diffusion model, while also achieving remarkable improvement over various leading binarization algorithms based on different architectures including both CNNs and Transformers.
☆ 3D Dental Model Segmentation with Geometrical Boundary Preserving
3D intraoral scan mesh is widely used in digital dentistry diagnosis, segmenting 3D intraoral scan mesh is a critical preliminary task. Numerous approaches have been devised for precise tooth segmentation. Currently, the deep learning-based methods are capable of the high accuracy segmentation of crown. However, the segmentation accuracy at the junction between the crown and the gum is still below average. Existing down-sampling methods are unable to effectively preserve the geometric details at the junction. To address these problems, we propose CrossTooth, a boundary-preserving segmentation method that combines 3D mesh selective downsampling to retain more vertices at the tooth-gingiva area, along with cross-modal discriminative boundary features extracted from multi-view rendered images, enhancing the geometric representation of the segmentation network. Using a point network as a backbone and incorporating image complementary features, CrossTooth significantly improves segmentation accuracy, as demonstrated by experiments on a public intraoral scan dataset.
comment: The IEEE/CVF Conference on Computer Vision and Pattern Recognition 2025
☆ Detail-aware multi-view stereo network for depth estimation
Multi-view stereo methods have achieved great success for depth estimation based on the coarse-to-fine depth learning frameworks, however, the existing methods perform poorly in recovering the depth of object boundaries and detail regions. To address these issues, we propose a detail-aware multi-view stereo network (DA-MVSNet) with a coarse-to-fine framework. The geometric depth clues hidden in the coarse stage are utilized to maintain the geometric structural relationships between object surfaces and enhance the expressive capability of image features. In addition, an image synthesis loss is employed to constrain the gradient flow for detailed regions and further strengthen the supervision of object boundaries and texture-rich areas. Finally, we propose an adaptive depth interval adjustment strategy to improve the accuracy of object reconstruction. Extensive experiments on the DTU and Tanks & Temples datasets demonstrate that our method achieves competitive results. The code is available at https://github.com/wsmtht520-/DAMVSNet.
☆ The Devil is in the Distributions: Explicit Modeling of Scene Content is Key in Zero-Shot Video Captioning
Zero-shot video captioning requires that a model generate high-quality captions without human-annotated video-text pairs for training. State-of-the-art approaches to the problem leverage CLIP to extract visual-relevant textual prompts to guide language models in generating captions. These methods tend to focus on one key aspect of the scene and build a caption that ignores the rest of the visual input. To address this issue, and generate more accurate and complete captions, we propose a novel progressive multi-granularity textual prompting strategy for zero-shot video captioning. Our approach constructs three distinct memory banks, encompassing noun phrases, scene graphs of noun phrases, and entire sentences. Moreover, we introduce a category-aware retrieval mechanism that models the distribution of natural language surrounding the specific topics in question. Extensive experiments demonstrate the effectiveness of our method with 5.7%, 16.2%, and 3.4% improvements in terms of the main metric CIDEr on MSR-VTT, MSVD, and VATEX benchmarks compared to existing state-of-the-art.
comment: 13 pages
☆ Learning Bijective Surface Parameterization for Inferring Signed Distance Functions from Sparse Point Clouds with Grid Deformation CVPR
Inferring signed distance functions (SDFs) from sparse point clouds remains a challenge in surface reconstruction. The key lies in the lack of detailed geometric information in sparse point clouds, which is essential for learning a continuous field. To resolve this issue, we present a novel approach that learns a dynamic deformation network to predict SDFs in an end-to-end manner. To parameterize a continuous surface from sparse points, we propose a bijective surface parameterization (BSP) that learns the global shape from local patches. Specifically, we construct a bijective mapping for sparse points from the parametric domain to 3D local patches, integrating patches into the global surface. Meanwhile, we introduce grid deformation optimization (GDO) into the surface approximation to optimize the deformation of grid points and further refine the parametric surfaces. Experimental results on synthetic and real scanned datasets demonstrate that our method significantly outperforms the current state-of-the-art methods. Project page: https://takeshie.github.io/Bijective-SDF
comment: Accepted by Conference on Computer Vision and Pattern Recognition (CVPR) 2025. Project page:https://takeshie.github.io/Bijective-SDF
☆ Context-Independent OCR with Multimodal LLMs: Effects of Image Resolution and Visual Complexity
Due to their high versatility in tasks such as image captioning, document analysis, and automated content generation, multimodal Large Language Models (LLMs) have attracted significant attention across various industrial fields. In particular, they have been shown to surpass specialized models in Optical Character Recognition (OCR). Nevertheless, their performance under different image conditions remains insufficiently investigated, and individual character recognition is not guaranteed due to their reliance on contextual cues. In this work, we examine a context-independent OCR task using single-character images with diverse visual complexities to determine the conditions for accurate recognition. Our findings reveal that multimodal LLMs can match conventional OCR methods at about 300 ppi, yet their performance deteriorates significantly below 150 ppi. Additionally, we observe a very weak correlation between visual complexity and misrecognitions, whereas a conventional OCR-specific model exhibits no correlation. These results suggest that image resolution and visual complexity may play an important role in the reliable application of multimodal LLMs to OCR tasks that require precise character-level accuracy.
☆ LiM-Loc: Visual Localization with Dense and Accurate 3D Reference Maps Directly Corresponding 2D Keypoints to 3D LiDAR Point Clouds
Visual localization is to estimate the 6-DOF camera pose of a query image in a 3D reference map. We extract keypoints from the reference image and generate a 3D reference map with 3D reconstruction of the keypoints in advance. We emphasize that the more keypoints in the 3D reference map and the smaller the error of the 3D positions of the keypoints, the higher the accuracy of the camera pose estimation. However, previous image-only methods require a huge number of images, and it is difficult to 3D-reconstruct keypoints without error due to inevitable mismatches and failures in feature matching. As a result, the 3D reference map is sparse and inaccurate. In contrast, accurate 3D reference maps can be generated by combining images and 3D sensors. Recently, 3D-LiDAR has been widely used around the world. LiDAR, which measures a large space with high density, has become inexpensive. In addition, accurately calibrated cameras are also widely used, so images that record the external parameters of the camera without errors can be easily obtained. In this paper, we propose a method to directly assign 3D LiDAR point clouds to keypoints to generate dense and accurate 3D reference maps. The proposed method avoids feature matching and achieves accurate 3D reconstruction for almost all keypoints. To estimate camera pose over a wide area, we use the wide-area LiDAR point cloud to remove points that are not visible to the camera and reduce 2D-3D correspondence errors. Using indoor and outdoor datasets, we apply the proposed method to several state-of-the-art local features and confirm that it improves the accuracy of camera pose estimation.
comment: 8 pages, 6 figures
☆ DeepDubber-V1: Towards High Quality and Dialogue, Narration, Monologue Adaptive Movie Dubbing Via Multi-Modal Chain-of-Thoughts Reasoning Guidance
Current movie dubbing technology can generate the desired voice from a given speech prompt, ensuring good synchronization between speech and visuals while accurately conveying the intended emotions. However, in movie dubbing, key aspects such as adapting to different dubbing styles, handling dialogue, narration, and monologue effectively, and understanding subtle details like the age and gender of speakers, have not been well studied. To address this challenge, we propose a framework of multi-modal large language model. First, it utilizes multimodal Chain-of-Thought (CoT) reasoning methods on visual inputs to understand dubbing styles and fine-grained attributes. Second, it generates high-quality dubbing through large speech generation models, guided by multimodal conditions. Additionally, we have developed a movie dubbing dataset with CoT annotations. The evaluation results demonstrate a performance improvement over state-of-the-art methods across multiple datasets. In particular, for the evaluation metrics, the SPK-SIM and EMO-SIM increases from 82.48% to 89.74%, 66.24% to 78.88% for dubbing setting 2.0 on V2C Animation dataset, LSE-D and MCD-SL decreases from 14.79 to 14.63, 5.24 to 4.74 for dubbing setting 2.0 on Grid dataset, SPK-SIM increases from 64.03 to 83.42 and WER decreases from 52.69% to 23.20% for initial reasoning setting on proposed CoT-Movie-Dubbing dataset in the comparison with the state-of-the art models.
comment: 11 pages, 5 figures
☆ Introducing the Short-Time Fourier Kolmogorov Arnold Network: A Dynamic Graph CNN Approach for Tree Species Classification in 3D Point Clouds
Accurate classification of tree species based on Terrestrial Laser Scanning (TLS) and Airborne Laser Scanning (ALS) is essential for biodiversity conservation. While advanced deep learning models for 3D point cloud classification have demonstrated strong performance in this domain, their high complexity often hinders the development of efficient, low-computation architectures. In this paper, we introduce STFT-KAN, a novel Kolmogorov-Arnold network that integrates the Short-Time Fourier Transform (STFT), which can replace the standard linear layer with activation. We implemented STFT-KAN within a lightweight version of DGCNN, called liteDGCNN, to classify tree species using the TLS data. Our experiments show that STFT-KAN outperforms existing KAN variants by effectively balancing model complexity and performance with parameter count reduction, achieving competitive results compared to MLP-based models. Additionally, we evaluated a hybrid architecture that combines MLP in edge convolution with STFT-KAN in other layers, achieving comparable performance to MLP models while reducing the parameter count by 50% and 75% compared to other KAN-based variants. Furthermore, we compared our model to leading 3D point cloud learning approaches, demonstrating that STFT-KAN delivers competitive results compared to the state-of-the-art method PointMLP lite with an 87% reduction in parameter count.
☆ Uni-Render: A Unified Accelerator for Real-Time Rendering Across Diverse Neural Renderers
Recent advancements in neural rendering technologies and their supporting devices have paved the way for immersive 3D experiences, significantly transforming human interaction with intelligent devices across diverse applications. However, achieving the desired real-time rendering speeds for immersive interactions is still hindered by (1) the lack of a universal algorithmic solution for different application scenarios and (2) the dedication of existing devices or accelerators to merely specific rendering pipelines. To overcome this challenge, we have developed a unified neural rendering accelerator that caters to a wide array of typical neural rendering pipelines, enabling real-time and on-device rendering across different applications while maintaining both efficiency and compatibility. Our accelerator design is based on the insight that, although neural rendering pipelines vary and their algorithm designs are continually evolving, they typically share common operators, predominantly executing similar workloads. Building on this insight, we propose a reconfigurable hardware architecture that can dynamically adjust dataflow to align with specific rendering metric requirements for diverse applications, effectively supporting both typical and the latest hybrid rendering pipelines. Benchmarking experiments and ablation studies on both synthetic and real-world scenes demonstrate the effectiveness of the proposed accelerator. The proposed unified accelerator stands out as the first solution capable of achieving real-time neural rendering across varied representative pipelines on edge devices, potentially paving the way for the next generation of neural graphics applications.
comment: Accepted by HPCA'25
☆ RIG: Synergizing Reasoning and Imagination in End-to-End Generalist Policy
Reasoning before action and imagining potential outcomes (i.e., world models) are essential for embodied agents operating in complex open-world environments. Yet, prior work either incorporates only one of these abilities in an end-to-end agent or integrates multiple specialized models into an agent system, limiting the learning efficiency and generalization of the policy. Thus, this paper makes the first attempt to synergize Reasoning and Imagination in an end-to-end Generalist policy, termed RIG. To train RIG in an end-to-end manner, we construct a data pipeline that progressively integrates and enriches the content of imagination and reasoning in the trajectories collected from existing agents. The joint learning of reasoning and next image generation explicitly models the inherent correlation between reasoning, action, and dynamics of environments, and thus exhibits more than $17\times$ sample efficiency improvements and generalization in comparison with previous works. During inference, RIG first reasons about the next action, produces potential action, and then predicts the action outcomes, which offers the agent a chance to review and self-correct based on the imagination before taking real actions. Experimental results show that the synergy of reasoning and imagination not only improves the robustness, generalization, and interoperability of generalist policy but also enables test-time scaling to enhance overall performance.
♻ ☆ Image as an IMU: Estimating Camera Motion from a Single Motion-Blurred Image
In many robotics and VR/AR applications, fast camera motions cause a high level of motion blur, causing existing camera pose estimation methods to fail. In this work, we propose a novel framework that leverages motion blur as a rich cue for motion estimation rather than treating it as an unwanted artifact. Our approach works by predicting a dense motion flow field and a monocular depth map directly from a single motion-blurred image. We then recover the instantaneous camera velocity by solving a linear least squares problem under the small motion assumption. In essence, our method produces an IMU-like measurement that robustly captures fast and aggressive camera movements. To train our model, we construct a large-scale dataset with realistic synthetic motion blur derived from ScanNet++v2 and further refine our model by training end-to-end on real data using our fully differentiable pipeline. Extensive evaluations on real-world benchmarks demonstrate that our method achieves state-of-the-art angular and translational velocity estimates, outperforming current methods like MASt3R and COLMAP.
comment: Project page: https://jerredchen.github.io/image-as-imu/
♻ ☆ A Double Deep Learning-based Solution for Efficient Event Data Coding and Classification
Event cameras have the ability to capture asynchronous per-pixel brightness changes, called "events", offering advantages over traditional frame-based cameras for computer vision applications. Efficiently coding event data is critical for transmission and storage, given the significant volume of events. This paper proposes a novel double deep learning-based architecture for both event data coding and classification, using a point cloud-based representation for events. In this context, the conversions from events to point clouds and back to events are key steps in the proposed solution, and therefore its impact is evaluated in terms of compression and classification performance. Experimental results show that it is possible to achieve a classification performance of compressed events which is similar to one of the original events, even after applying a lossy point cloud codec, notably the recent learning-based JPEG Pleno Point Cloud Coding standard, with a clear rate reduction. Experimental results also demonstrate that events coded using JPEG PCC achieve better classification performance than those coded using the conventional lossy MPEG Geometry-based Point Cloud Coding standard. Furthermore, the adoption of learning-based coding offers high potential for performing computer vision tasks in the compressed domain, which allows skipping the decoding stage while mitigating the impact of coding artifacts.
♻ ☆ Reversible Decoupling Network for Single Image Reflection Removal CVPR 2025
Recent deep-learning-based approaches to single-image reflection removal have shown promising advances, primarily for two reasons: 1) the utilization of recognition-pretrained features as inputs, and 2) the design of dual-stream interaction networks. However, according to the Information Bottleneck principle, high-level semantic clues tend to be compressed or discarded during layer-by-layer propagation. Additionally, interactions in dual-stream networks follow a fixed pattern across different layers, limiting overall performance. To address these limitations, we propose a novel architecture called Reversible Decoupling Network (RDNet), which employs a reversible encoder to secure valuable information while flexibly decoupling transmission- and reflection-relevant features during the forward pass. Furthermore, we customize a transmission-rate-aware prompt generator to dynamically calibrate features, further boosting performance. Extensive experiments demonstrate the superiority of RDNet over existing SOTA methods on five widely-adopted benchmark datasets. RDNet achieves the best performance in the NTIRE 2025 Single Image Reflection Removal in the Wild Challenge in both fidelity and perceptual comparison. Our code is available at https://github.com/lime-j/RDNet
comment: To appear at CVPR 2025
♻ ☆ Perceptually Accurate 3D Talking Head Generation: New Definitions, Speech-Mesh Representation, and Evaluation Metrics CVPR 2025
Recent advancements in speech-driven 3D talking head generation have made significant progress in lip synchronization. However, existing models still struggle to capture the perceptual alignment between varying speech characteristics and corresponding lip movements. In this work, we claim that three criteria -- Temporal Synchronization, Lip Readability, and Expressiveness -- are crucial for achieving perceptually accurate lip movements. Motivated by our hypothesis that a desirable representation space exists to meet these three criteria, we introduce a speech-mesh synchronized representation that captures intricate correspondences between speech signals and 3D face meshes. We found that our learned representation exhibits desirable characteristics, and we plug it into existing models as a perceptual loss to better align lip movements to the given speech. In addition, we utilize this representation as a perceptual metric and introduce two other physically grounded lip synchronization metrics to assess how well the generated 3D talking heads align with these three criteria. Experiments show that training 3D talking head generation models with our perceptual loss significantly improve all three aspects of perceptually accurate lip synchronization. Codes and datasets are available at https://perceptual-3d-talking-head.github.io/.
comment: CVPR 2025. Project page: https://perceptual-3d-talking-head.github.io/
♻ ☆ The impact of internal variability on benchmarking deep learning climate emulators
Full-complexity Earth system models (ESMs) are computationally very expensive, limiting their use in exploring the climate outcomes of multiple emission pathways. More efficient emulators that approximate ESMs can directly map emissions onto climate outcomes, and benchmarks are being used to evaluate their accuracy on standardized tasks and datasets. We investigate a popular benchmark in data-driven climate emulation, ClimateBench, on which deep learning-based emulators are currently achieving the best performance. We compare these deep learning emulators with a linear regression-based emulator, akin to pattern scaling, and show that it outperforms the incumbent 100M-parameter deep learning foundation model, ClimaX, on 3 out of 4 regionally-resolved climate variables, notably surface temperature and precipitation. While emulating surface temperature is expected to be predominantly linear, this result is surprising for emulating precipitation. Precipitation is a much more noisy variable, and we show that deep learning emulators can overfit to internal variability noise at low frequencies, degrading their performance in comparison to a linear emulator. We address the issue of overfitting by increasing the number of climate simulations per emission pathway (from 3 to 50) and updating the benchmark targets with the respective ensemble averages from the MPI-ESM1.2-LR model. Using the new targets, we show that linear pattern scaling continues to be more accurate on temperature, but can be outperformed by a deep learning-based technique for emulating precipitation. We publish our code and data at github.com/blutjens/climate-emulator.
♻ ☆ CASA: Class-Agnostic Shared Attributes in Vision-Language Models for Efficient Incremental Object Detection
Incremental object detection is fundamentally challenged by catastrophic forgetting. A major factor contributing to this issue is background shift, where background categories in sequential tasks may overlap with either previously learned or future unseen classes. To address this, we propose a novel method called Class-Agnostic Shared Attribute Base (CASA) that encourages the model to learn category-agnostic attributes shared across incremental classes. Our approach leverages an LLM to generate candidate textual attributes, selects the most relevant ones based on the current training data, and records their importance in an assignment matrix. For subsequent tasks, the retained attributes are frozen, and new attributes are selected from the remaining candidates, ensuring both knowledge retention and adaptability. Extensive experiments on the COCO dataset demonstrate the state-of-the-art performance of our method.
♻ ☆ Finer-CAM: Spotting the Difference Reveals Finer Details for Visual Explanation CVPR 2025
Class activation map (CAM) has been widely used to highlight image regions that contribute to class predictions. Despite its simplicity and computational efficiency, CAM often struggles to identify discriminative regions that distinguish visually similar fine-grained classes. Prior efforts address this limitation by introducing more sophisticated explanation processes, but at the cost of extra complexity. In this paper, we propose Finer-CAM, a method that retains CAM's efficiency while achieving precise localization of discriminative regions. Our key insight is that the deficiency of CAM lies not in "how" it explains, but in "what" it explains. Specifically, previous methods attempt to identify all cues contributing to the target class's logit value, which inadvertently also activates regions predictive of visually similar classes. By explicitly comparing the target class with similar classes and spotting their differences, Finer-CAM suppresses features shared with other classes and emphasizes the unique, discriminative details of the target class. Finer-CAM is easy to implement, compatible with various CAM methods, and can be extended to multi-modal models for accurate localization of specific concepts. Additionally, Finer-CAM allows adjustable comparison strength, enabling users to selectively highlight coarse object contours or fine discriminative details. Quantitatively, we show that masking out the top 5% of activated pixels by Finer-CAM results in a larger relative confidence drop compared to baselines. The source code and demo are available at https://github.com/Imageomics/Finer-CAM.
comment: Accepted by CVPR 2025
♻ ☆ DICE: Discrete Inversion Enabling Controllable Editing for Multinomial Diffusion and Masked Generative Models CVPR 2025
Discrete diffusion models have achieved success in tasks like image generation and masked language modeling but face limitations in controlled content editing. We introduce DICE (Discrete Inversion for Controllable Editing), the first approach to enable precise inversion for discrete diffusion models, including multinomial diffusion and masked generative models. By recording noise sequences and masking patterns during the reverse diffusion process, DICE enables accurate reconstruction and flexible editing of discrete data without the need for predefined masks or attention manipulation. We demonstrate the effectiveness of DICE across both image and text domains, evaluating it on models such as VQ-Diffusion, Paella, and RoBERTa. Our results show that DICE preserves high data fidelity while enhancing editing capabilities, offering new opportunities for fine-grained content manipulation in discrete spaces.
comment: Project webpage: https://hexiaoxiao-cs.github.io/DICE/. This paper was accepted to CVPR 2025 but later desk-rejected post camera-ready, due to a withdrawal from ICLR made 14 days before reviewer assignment
♻ ☆ Gen3DSR: Generalizable 3D Scene Reconstruction via Divide and Conquer from a Single View 3DV 2025
Single-view 3D reconstruction is currently approached from two dominant perspectives: reconstruction of scenes with limited diversity using 3D data supervision or reconstruction of diverse singular objects using large image priors. However, real-world scenarios are far more complex and exceed the capabilities of these methods. We therefore propose a hybrid method following a divide-and-conquer strategy. We first process the scene holistically, extracting depth and semantic information, and then leverage an object-level method for the detailed reconstruction of individual components. By splitting the problem into simpler tasks, our system is able to generalize to various types of scenes without retraining or fine-tuning. We purposely design our pipeline to be highly modular with independent, self-contained modules, to avoid the need for end-to-end training of the whole system. This enables the pipeline to naturally improve as future methods can replace the individual modules. We demonstrate the reconstruction performance of our approach on both synthetic and real-world scenes, comparing favorable against prior works. Project page: https://andreeadogaru.github.io/Gen3DSR
comment: 3DV 2025 camera ready
♻ ☆ DH-Mamba: Exploring Dual-domain Hierarchical State Space Models for MRI Reconstruction
The accelerated MRI reconstruction poses a challenging ill-posed inverse problem due to the significant undersampling in k-space. Deep neural networks, such as CNNs and ViTs, have shown substantial performance improvements for this task while encountering the dilemma between global receptive fields and efficient computation. To this end, this paper explores selective state space models (Mamba), a new paradigm for long-range dependency modeling with linear complexity, for efficient and effective MRI reconstruction. However, directly applying Mamba to MRI reconstruction faces three significant issues: (1) Mamba typically flattens 2D images into distinct 1D sequences along rows and columns, disrupting k-space's unique spectrum and leaving its potential in k-space learning unexplored. (2) Existing approaches adopt multi-directional lengthy scanning to unfold images at the pixel level, leading to long-range forgetting and high computational burden. (3) Mamba struggles with spatially-varying contents, resulting in limited diversity of local representations. To address these, we propose a dual-domain hierarchical Mamba for MRI reconstruction from the following perspectives: (1) We pioneer vision Mamba in k-space learning. A circular scanning is customized for spectrum unfolding, benefiting the global modeling of k-space. (2) We propose a hierarchical Mamba with an efficient scanning strategy in both image and k-space domains. It mitigates long-range forgetting and achieves a better trade-off between efficiency and performance. (3) We develop a local diversity enhancement module to improve the spatially-varying representation of Mamba. Extensive experiments are conducted on three public datasets for MRI reconstruction under various undersampling patterns. Comprehensive results demonstrate that our method significantly outperforms state-of-the-art methods with lower computational cost.
♻ ☆ MoMuSE: Momentum Multi-modal Target Speaker Extraction for Real-time Scenarios with Impaired Visual Cues
Audio-visual Target Speaker Extraction (AV-TSE) aims to isolate the speech of a specific target speaker from an audio mixture using time-synchronized visual cues. In real-world scenarios, visual cues are not always available due to various impairments, which undermines the stability of AV-TSE. Despite this challenge, humans can maintain attentional momentum over time, even when the target speaker is not visible. In this paper, we introduce the Momentum Multi-modal target Speaker Extraction (MoMuSE), which retains a speaker identity momentum in memory, enabling the model to continuously track the target speaker. Designed for real-time inference, MoMuSE extracts the current speech window with guidance from both visual cues and dynamically updated speaker momentum. Experimental results demonstrate that MoMuSE exhibits significant improvement, particularly in scenarios with severe impairment of visual cues.
♻ ☆ Bayesian Learning-driven Prototypical Contrastive Loss for Class-Incremental Learning
The primary objective of methods in continual learning is to learn tasks in a sequential manner over time (sometimes from a stream of data), while mitigating the detrimental phenomenon of catastrophic forgetting. This paper proposes a method to learn an effective representation between previous and newly encountered class prototypes. We propose a prototypical network with a Bayesian learning-driven contrastive loss (BLCL), tailored specifically for class-incremental learning scenarios. We introduce a contrastive loss that incorporates novel classes into the latent representation by reducing intra-class and increasing inter-class distance. Our approach dynamically adapts the balance between the cross-entropy and contrastive loss functions with a Bayesian learning technique. Experimental results conducted on the CIFAR-10, CIFAR-100, and ImageNet100 datasets for image classification and images of a GNSS-based dataset for interference classification validate the efficacy of our method, showcasing its superiority over existing state-of-the-art approaches. Git: https://gitlab.cc-asp.fraunhofer.de/darcy_gnss/gnss_class_incremental_learning
comment: 27 pages, 22 figures
♻ ☆ Convolutional Kolmogorov-Arnold Networks
In this paper, we present Convolutional Kolmogorov-Arnold Networks, a novel architecture that integrates the learnable spline-based activation functions of Kolmogorov-Arnold Networks (KANs) into convolutional layers. By replacing traditional fixed-weight kernels with learnable non-linear functions, Convolutional KANs offer a significant improvement in parameter efficiency and expressive power over standard Convolutional Neural Networks (CNNs). We empirically evaluate Convolutional KANs on the Fashion-MNIST dataset, demonstrating competitive accuracy with up to 50% fewer parameters compared to baseline classic convolutions. This suggests that the KAN Convolution can effectively capture complex spatial relationships with fewer resources, offering a promising alternative for parameter-efficient deep learning models.
♻ ☆ LoRA Subtraction for Drift-Resistant Space in Exemplar-Free Continual Learning CVPR 2025
In continual learning (CL), catastrophic forgetting often arises due to feature drift. This challenge is particularly prominent in the exemplar-free continual learning (EFCL) setting, where samples from previous tasks cannot be retained, making it difficult to preserve prior knowledge. To address this issue, some EFCL methods aim to identify feature spaces that minimize the impact on previous tasks while accommodating new ones. However, they rely on static features or outdated statistics stored from old tasks, which prevents them from capturing the dynamic evolution of the feature space in CL, leading to performance degradation over time. In this paper, we introduce the Drift-Resistant Space (DRS), which effectively handles feature drifts without requiring explicit feature modeling or the storage of previous tasks. A novel parameter-efficient fine-tuning approach called Low-Rank Adaptation Subtraction (LoRA-) is proposed to develop the DRS. This method subtracts the LoRA weights of old tasks from the initial pre-trained weight before processing new task data to establish the DRS for model training. Therefore, LoRA- enhances stability, improves efficiency, and simplifies implementation. Furthermore, stabilizing feature drifts allows for better plasticity by learning with a triplet loss. Our method consistently achieves state-of-the-art results, especially for long task sequences, across multiple datasets.
comment: Accepted to CVPR 2025
♻ ☆ InPK: Infusing Prior Knowledge into Prompt for Vision-Language Models
Prompt tuning has become a popular strategy for adapting Vision-Language Models (VLMs) to zero/few-shot visual recognition tasks. Some prompting techniques introduce prior knowledge due to its richness, but when learnable tokens are randomly initialized and disconnected from prior knowledge, they tend to overfit on seen classes and struggle with domain shifts for unseen ones. To address this issue, we propose the InPK model, which infuses class-specific prior knowledge into the learnable tokens during initialization, thus enabling the model to explicitly focus on class-relevant information. Furthermore, to mitigate the weakening of class information by multi-layer encoders, we continuously reinforce the interaction between learnable tokens and prior knowledge across multiple feature levels. This progressive interaction allows the learnable tokens to better capture the fine-grained differences and universal visual concepts within prior knowledge, enabling the model to extract more discriminative and generalized text features. Even for unseen classes, the learned interaction allows the model to capture their common representations and infer their appropriate positions within the existing semantic structure. Moreover, we introduce a learnable text-to-vision projection layer to accommodate the text adjustments, ensuring better alignment of visual-text semantics. Extensive experiments on 11 recognition datasets show that InPK significantly outperforms state-of-the-art methods in multiple zero/few-shot image classification tasks.
♻ ☆ Cropper: Vision-Language Model for Image Cropping through In-Context Learning
The goal of image cropping is to identify visually appealing crops in an image. Conventional methods are trained on specific datasets and fail to adapt to new requirements. Recent breakthroughs in large vision-language models (VLMs) enable visual in-context learning without explicit training. However, downstream tasks with VLMs remain under explored. In this paper, we propose an effective approach to leverage VLMs for image cropping. First, we propose an efficient prompt retrieval mechanism for image cropping to automate the selection of in-context examples. Second, we introduce an iterative refinement strategy to iteratively enhance the predicted crops. The proposed framework, we refer to as Cropper, is applicable to a wide range of cropping tasks, including free-form cropping, subject-aware cropping, and aspect ratio-aware cropping. Extensive experiments demonstrate that Cropper significantly outperforms state-of-the-art methods across several benchmarks.
♻ ☆ Singular Value Scaling: Efficient Generative Model Compression via Pruned Weights Refinement AAAI 2025
While pruning methods effectively maintain model performance without extra training costs, they often focus solely on preserving crucial connections, overlooking the impact of pruned weights on subsequent fine-tuning or distillation, leading to inefficiencies. Moreover, most compression techniques for generative models have been developed primarily for GANs, tailored to specific architectures like StyleGAN, and research into compressing Diffusion models has just begun. Even more, these methods are often applicable only to GANs or Diffusion models, highlighting the need for approaches that work across both model types. In this paper, we introduce Singular Value Scaling (SVS), a versatile technique for refining pruned weights, applicable to both model types. Our analysis reveals that pruned weights often exhibit dominant singular vectors, hindering fine-tuning efficiency and leading to suboptimal performance compared to random initialization. Our method enhances weight initialization by minimizing the disparities between singular values of pruned weights, thereby improving the fine-tuning process. This approach not only guides the compressed model toward superior solutions but also significantly speeds up fine-tuning. Extensive experiments on StyleGAN2, StyleGAN3 and DDPM demonstrate that SVS improves compression performance across model types without additional training costs. Our code is available at: https://github.com/LAIT-CVLab/Singular-Value-Scaling.
comment: Accepted to AAAI 2025
♻ ☆ MagicDistillation: Weak-to-Strong Video Distillation for Large-Scale Few-Step Synthesis
Recently, open-source video diffusion models (VDMs), such as WanX, Magic141 and HunyuanVideo, have been scaled to over 10 billion parameters. These large-scale VDMs have demonstrated significant improvements over smaller-scale VDMs across multiple dimensions, including enhanced visual quality and more natural motion dynamics. However, these models face two major limitations: (1) High inference overhead: Large-scale VDMs require approximately 10 minutes to synthesize a 28-step video on a single H100 GPU. (2) Limited in portrait video synthesis: Models like WanX-I2V and HunyuanVideo-I2V often produce unnatural facial expressions and movements in portrait videos. To address these challenges, we propose MagicDistillation, a novel framework designed to reduce inference overhead while ensuring the generalization of VDMs for portrait video synthesis. Specifically, we primarily use sufficiently high-quality talking video to fine-tune Magic141, which is dedicated to portrait video synthesis. We then employ LoRA to effectively and efficiently fine-tune the fake DiT within the step distillation framework known as distribution matching distillation (DMD). Following this, we apply weak-to-strong (W2S) distribution matching and minimize the discrepancy between the fake data distribution and the ground truth distribution, thereby improving the visual fidelity and motion dynamics of the synthesized videos. Experimental results on portrait video synthesis demonstrate the effectiveness of MagicDistillation, as our method surpasses Euler, LCM, and DMD baselines in both FID/FVD metrics and VBench. Moreover, MagicDistillation, requiring only 4 steps, also outperforms WanX-I2V (14B) and HunyuanVideo-I2V (13B) on visualization and VBench. Our project page is https://magicdistillation.github.io/MagicDistillation/.
♻ ☆ Beyond Walking: A Large-Scale Image-Text Benchmark for Text-based Person Anomaly Search
Text-based person search aims to retrieve specific individuals across camera networks using natural language descriptions. However, current benchmarks often exhibit biases towards common actions like walking or standing, neglecting the critical need for identifying abnormal behaviors in real-world scenarios. To meet such demands, we propose a new task, text-based person anomaly search, locating pedestrians engaged in both routine or anomalous activities via text. To enable the training and evaluation of this new task, we construct a large-scale image-text Pedestrian Anomaly Behavior (PAB) benchmark, featuring a broad spectrum of actions, e.g., running, performing, playing soccer, and the corresponding anomalies, e.g., lying, being hit, and falling of the same identity. The training set of PAB comprises 1,013,605 synthesized image-text pairs of both normalities and anomalies, while the test set includes 1,978 real-world image-text pairs. To validate the potential of PAB, we introduce a cross-modal pose-aware framework, which integrates human pose patterns with identity-based hard negative pair sampling. Extensive experiments on the proposed benchmark show that synthetic training data facilitates the fine-grained behavior retrieval, and the proposed pose-aware method arrives at 84.93% recall@1 accuracy, surpassing other competitive methods. The dataset, model, and code are available at https://github.com/Shuyu-XJTU/CMP.
♻ ☆ Data-free Universal Adversarial Perturbation with Pseudo-semantic Prior CVPR 2025
Data-free Universal Adversarial Perturbation (UAP) is an image-agnostic adversarial attack that deceives deep neural networks using a single perturbation generated solely from random noise without relying on data priors. However, traditional data-free UAP methods often suffer from limited transferability due to the absence of semantic content in random noise. To address this issue, we propose a novel data-free universal attack method that recursively extracts pseudo-semantic priors directly from the UAPs during training to enrich the semantic content within the data-free UAP framework. Our approach effectively leverages latent semantic information within UAPs via region sampling, enabling successful input transformations-typically ineffective in traditional data-free UAP methods due to the lack of semantic cues-and significantly enhancing black-box transferability. Furthermore, we introduce a sample reweighting technique to mitigate potential imbalances from random sampling and transformations, emphasizing hard examples less affected by the UAPs. Comprehensive experiments on ImageNet show that our method achieves state-of-the-art performance in average fooling rate by a substantial margin, notably improves attack transferability across various CNN architectures compared to existing data-free UAP methods, and even surpasses data-dependent UAP methods. Code is available at: https://github.com/ChnanChan/PSP-UAP.
comment: CVPR 2025
♻ ☆ Mitigating Cache Noise in Test-Time Adaptation for Large Vision-Language Models ICME 2025
Test-time adaptation (TTA) of visual language models has recently attracted significant attention as a solution to the performance degradation caused by distribution shifts in downstream tasks. However, existing cache-based TTA methods have certain limitations. They mainly rely on the accuracy of cached feature labels, and the presence of noisy pseudo-labels can cause these features to deviate from their true distribution. This makes cache retrieval methods based on similarity matching highly sensitive to outliers or extreme samples. Moreover, current methods lack effective mechanisms to model class distributions, which limits their ability to fully exploit the potential of cached information. To address these challenges, we introduce a comprehensive and reliable caching mechanism and propose a novel zero-shot TTA method called "Cache, Residual, Gaussian" (CRG). This method not only employs learnable residual parameters to better align positive and negative visual prototypes with text prototypes, thereby optimizing the quality of cached features, but also incorporates Gaussian Discriminant Analysis (GDA) to dynamically model intra-class feature distributions, further mitigating the impact of noisy features. Experimental results on 13 benchmarks demonstrate that CRG outperforms state-of-the-art TTA methods, showcasing exceptional robustness and adaptability.
comment: Accepted by ICME 2025 and ICLR 2025 Workshop on Foundation Models in the Wild
♻ ☆ Interpreting Low-level Vision Models with Causal Effect Maps
Deep neural networks have significantly improved the performance of low-level vision tasks but also increased the difficulty of interpretability. A deep understanding of deep models is beneficial for both network design and practical reliability. To take up this challenge, we introduce causality theory to interpret low-level vision models and propose a model-/task-agnostic method called Causal Effect Map (CEM). With CEM, we can visualize and quantify the input-output relationships on either positive or negative effects. After analyzing various low-level vision tasks with CEM, we have reached several interesting insights, such as: (1) Using more information of input images (e.g., larger receptive field) does NOT always yield positive outcomes. (2) Attempting to incorporate mechanisms with a global receptive field (e.g., channel attention) into image denoising may prove futile. (3) Integrating multiple tasks to train a general model could encourage the network to prioritize local information over global context. Based on the causal effect theory, the proposed diagnostic tool can refresh our common knowledge and bring a deeper understanding of low-level vision models. Codes are available at https://github.com/J-FHu/CEM.
♻ ☆ Gaussian Eigen Models for Human Heads CVPR25
Current personalized neural head avatars face a trade-off: lightweight models lack detail and realism, while high-quality, animatable avatars require significant computational resources, making them unsuitable for commodity devices. To address this gap, we introduce Gaussian Eigen Models (GEM), which provide high-quality, lightweight, and easily controllable head avatars. GEM utilizes 3D Gaussian primitives for representing the appearance combined with Gaussian splatting for rendering. Building on the success of mesh-based 3D morphable face models (3DMM), we define GEM as an ensemble of linear eigenbases for representing the head appearance of a specific subject. In particular, we construct linear bases to represent the position, scale, rotation, and opacity of the 3D Gaussians. This allows us to efficiently generate Gaussian primitives of a specific head shape by a linear combination of the basis vectors, only requiring a low-dimensional parameter vector that contains the respective coefficients. We propose to construct these linear bases (GEM) by distilling high-quality compute-intense CNN-based Gaussian avatar models that can generate expression-dependent appearance changes like wrinkles. These high-quality models are trained on multi-view videos of a subject and are distilled using a series of principal component analyses. Once we have obtained the bases that represent the animatable appearance space of a specific human, we learn a regressor that takes a single RGB image as input and predicts the low-dimensional parameter vector that corresponds to the shown facial expression. In a series of experiments, we compare GEM's self-reenactment and cross-person reenactment results to state-of-the-art 3D avatar methods, demonstrating GEM's higher visual quality and better generalization to new expressions.
comment: Accepted to CVPR25 Website: https://zielon.github.io/gem/
♻ ☆ Synthetic Prior for Few-Shot Drivable Head Avatar Inversion CVPR25
We present SynShot, a novel method for the few-shot inversion of a drivable head avatar based on a synthetic prior. We tackle three major challenges. First, training a controllable 3D generative network requires a large number of diverse sequences, for which pairs of images and high-quality tracked meshes are not always available. Second, the use of real data is strictly regulated (e.g., under the General Data Protection Regulation, which mandates frequent deletion of models and data to accommodate a situation when a participant's consent is withdrawn). Synthetic data, free from these constraints, is an appealing alternative. Third, state-of-the-art monocular avatar models struggle to generalize to new views and expressions, lacking a strong prior and often overfitting to a specific viewpoint distribution. Inspired by machine learning models trained solely on synthetic data, we propose a method that learns a prior model from a large dataset of synthetic heads with diverse identities, expressions, and viewpoints. With few input images, SynShot fine-tunes the pretrained synthetic prior to bridge the domain gap, modeling a photorealistic head avatar that generalizes to novel expressions and viewpoints. We model the head avatar using 3D Gaussian splatting and a convolutional encoder-decoder that outputs Gaussian parameters in UV texture space. To account for the different modeling complexities over parts of the head (e.g., skin vs hair), we embed the prior with explicit control for upsampling the number of per-part primitives. Compared to SOTA monocular and GAN-based methods, SynShot significantly improves novel view and expression synthesis.
comment: Accepted to CVPR25 Website: https://zielon.github.io/synshot/
♻ ☆ Adaptive Multi-step Refinement Network for Robust Point Cloud Registration
Point Cloud Registration (PCR) estimates the relative rigid transformation between two point clouds of the same scene. Despite significant progress with learning-based approaches, existing methods still face challenges when the overlapping region between the two point clouds is small. In this paper, we propose an adaptive multi-step refinement network that refines the registration quality at each step by leveraging the information from the preceding step. To achieve this, we introduce a training procedure and a refinement network. Firstly, to adapt the network to the current step, we utilize a generalized one-way attention mechanism, which prioritizes the last step's estimated overlapping region, and we condition the network on step indices. Secondly, instead of training the network to map either random transformations or a fixed pre-trained model's estimations to the ground truth, we train it on transformations with varying registration qualities, ranging from accurate to inaccurate, thereby enhancing the network's adaptiveness and robustness. Despite its conceptual simplicity, our method achieves state-of-the-art performance on both the 3DMatch/3DLoMatch and KITTI benchmarks. Notably, on 3DLoMatch, our method reaches 80.4% recall rate, with an absolute improvement of 1.2%.
comment: Accepted at TMLR'25
♻ ☆ Resilient Sensor Fusion under Adverse Sensor Failures via Multi-Modal Expert Fusion CVPR 2025
Modern autonomous driving perception systems utilize complementary multi-modal sensors, such as LiDAR and cameras. Although sensor fusion architectures enhance performance in challenging environments, they still suffer significant performance drops under severe sensor failures, such as LiDAR beam reduction, LiDAR drop, limited field of view, camera drop, and occlusion. This limitation stems from inter-modality dependencies in current sensor fusion frameworks. In this study, we introduce an efficient and robust LiDAR-camera 3D object detector, referred to as MoME, which can achieve robust performance through a mixture of experts approach. Our MoME fully decouples modality dependencies using three parallel expert decoders, which use camera features, LiDAR features, or a combination of both to decode object queries, respectively. We propose Multi-Expert Decoding (MED) framework, where each query is decoded selectively using one of three expert decoders. MoME utilizes an Adaptive Query Router (AQR) to select the most appropriate expert decoder for each query based on the quality of camera and LiDAR features. This ensures that each query is processed by the best-suited expert, resulting in robust performance across diverse sensor failure scenarios. We evaluated the performance of MoME on the nuScenes-R benchmark. Our MoME achieved state-of-the-art performance in extreme weather and sensor failure conditions, significantly outperforming the existing models across various sensor failure scenarios.
comment: Accepted to CVPR 2025
♻ ☆ RingMo-Aerial: An Aerial Remote Sensing Foundation Model With A Affine Transformation Contrastive Learning
Aerial Remote Sensing (ARS) vision tasks pose significant challenges due to the unique characteristics of their viewing angles. Existing research has primarily focused on algorithms for specific tasks, which have limited applicability in a broad range of ARS vision applications. This paper proposes the RingMo-Aerial model, aiming to fill the gap in foundation model research in the field of ARS vision. By introducing the Frequency-Enhanced Multi-Head Self-Attention (FE-MSA) mechanism and an affine transformation-based contrastive learning pre-training method, the model's detection capability for small targets is enhanced and optimized for the tilted viewing angles characteristic of ARS. Furthermore, the ARS-Adapter, an efficient parameter fine-tuning method, is proposed to improve the model's adaptability and effectiveness in various ARS vision tasks. Experimental results demonstrate that RingMo-Aerial achieves SOTA performance on multiple downstream tasks. This indicates the practicality and efficacy of RingMo-Aerial in enhancing the performance of ARS vision tasks.
♻ ☆ Bootstrap Your Own Views: Masked Ego-Exo Modeling for Fine-grained View-invariant Video Representations CVPR 2025
View-invariant representation learning from egocentric (first-person, ego) and exocentric (third-person, exo) videos is a promising approach toward generalizing video understanding systems across multiple viewpoints. However, this area has been underexplored due to the substantial differences in perspective, motion patterns, and context between ego and exo views. In this paper, we propose a novel masked ego-exo modeling that promotes both causal temporal dynamics and cross-view alignment, called Bootstrap Your Own Views (BYOV), for fine-grained view-invariant video representation learning from unpaired ego-exo videos. We highlight the importance of capturing the compositional nature of human actions as a basis for robust cross-view understanding. Specifically, self-view masking and cross-view masking predictions are designed to learn view-invariant and powerful representations concurrently. Experimental results demonstrate that our BYOV significantly surpasses existing approaches with notable gains across all metrics in four downstream ego-exo video tasks. The code is available at https://github.com/park-jungin/byov.
comment: CVPR 2025 Camera-ready, 18 pages, 7 figures, 9 tables
♻ ☆ 3D-GSW: 3D Gaussian Splatting for Robust Watermarking
As 3D Gaussian Splatting (3D-GS) gains significant attention and its commercial usage increases, the need for watermarking technologies to prevent unauthorized use of the 3D-GS models and rendered images has become increasingly important. In this paper, we introduce a robust watermarking method for 3D-GS that secures copyright of both the model and its rendered images. Our proposed method remains robust against distortions in rendered images and model attacks while maintaining high rendering quality. To achieve these objectives, we present Frequency-Guided Densification (FGD), which removes 3D Gaussians based on their contribution to rendering quality, enhancing real-time rendering and the robustness of the message. FGD utilizes Discrete Fourier Transform to split 3D Gaussians in high-frequency areas, improving rendering quality. Furthermore, we employ a gradient mask for 3D Gaussians and design a wavelet-subband loss to enhance rendering quality. Our experiments show that our method embeds the message in the rendered images invisibly and robustly against various attacks, including model distortion. Our method achieves superior performance in both rendering quality and watermark robustness while improving real-time rendering efficiency. Project page: https://kuai-lab.github.io/cvpr20253dgsw/
♻ ☆ TransXNet: Learning Both Global and Local Dynamics with a Dual Dynamic Token Mixer for Visual Recognition
Recent studies have integrated convolutions into transformers to introduce inductive bias and improve generalization performance. However, the static nature of conventional convolution prevents it from dynamically adapting to input variations, resulting in a representation discrepancy between convolution and self-attention as the latter computes attention maps dynamically. Furthermore, when stacking token mixers that consist of convolution and self-attention to form a deep network, the static nature of convolution hinders the fusion of features previously generated by self-attention into convolution kernels. These two limitations result in a sub-optimal representation capacity of the entire network. To find a solution, we propose a lightweight Dual Dynamic Token Mixer (D-Mixer) to simultaneously learn global and local dynamics via computing input-dependent global and local aggregation weights. D-Mixer works by applying an efficient global attention module and an input-dependent depthwise convolution separately on evenly split feature segments, endowing the network with strong inductive bias and an enlarged receptive field. We use D-Mixer as the basic building block to design TransXNet, a novel hybrid CNN-Transformer vision backbone network that delivers compelling performance. In the ImageNet-1K classification, TransXNet-T surpasses Swin-T by 0.3% in top-1 accuracy while requiring less than half of the computational cost. Furthermore, TransXNet-S and TransXNet-B exhibit excellent model scalability, achieving top-1 accuracy of 83.8% and 84.6% respectively, with reasonable computational costs. Additionally, our proposed network architecture demonstrates strong generalization capabilities in various dense prediction tasks, outperforming other state-of-the-art networks while having lower computational costs. Code is publicly available at https://github.com/LMMMEng/TransXNet.
comment: Accepted by IEEE TNNLS
♻ ☆ Controllable Human Image Generation with Personalized Multi-Garments CVPR 2025
We present BootComp, a novel framework based on text-to-image diffusion models for controllable human image generation with multiple reference garments. Here, the main bottleneck is data acquisition for training: collecting a large-scale dataset of high-quality reference garment images per human subject is quite challenging, i.e., ideally, one needs to manually gather every single garment photograph worn by each human. To address this, we propose a data generation pipeline to construct a large synthetic dataset, consisting of human and multiple-garment pairs, by introducing a model to extract any reference garment images from each human image. To ensure data quality, we also propose a filtering strategy to remove undesirable generated data based on measuring perceptual similarities between the garment presented in human image and extracted garment. Finally, by utilizing the constructed synthetic dataset, we train a diffusion model having two parallel denoising paths that use multiple garment images as conditions to generate human images while preserving their fine-grained details. We further show the wide-applicability of our framework by adapting it to different types of reference-based generation in the fashion domain, including virtual try-on, and controllable human image generation with other conditions, e.g., pose, face, etc.
comment: CVPR 2025. Project page: https://omnious.github.io/BootComp
♻ ☆ HyperGLM: HyperGraph for Video Scene Graph Generation and Anticipation
Multimodal LLMs have advanced vision-language tasks but still struggle with understanding video scenes. To bridge this gap, Video Scene Graph Generation (VidSGG) has emerged to capture multi-object relationships across video frames. However, prior methods rely on pairwise connections, limiting their ability to handle complex multi-object interactions and reasoning. To this end, we propose Multimodal LLMs on a Scene HyperGraph (HyperGLM), promoting reasoning about multi-way interactions and higher-order relationships. Our approach uniquely integrates entity scene graphs, which capture spatial relationships between objects, with a procedural graph that models their causal transitions, forming a unified HyperGraph. Significantly, HyperGLM enables reasoning by injecting this unified HyperGraph into LLMs. Additionally, we introduce a new Video Scene Graph Reasoning (VSGR) dataset featuring 1.9M frames from third-person, egocentric, and drone views and supports five tasks: Scene Graph Generation, Scene Graph Anticipation, Video Question Answering, Video Captioning, and Relation Reasoning. Empirically, HyperGLM consistently outperforms state-of-the-art methods across five tasks, effectively modeling and reasoning complex relationships in diverse video scenes.
♻ ☆ RadSplat: Radiance Field-Informed Gaussian Splatting for Robust Real-Time Rendering with 900+ FPS 3DV
Recent advances in view synthesis and real-time rendering have achieved photorealistic quality at impressive rendering speeds. While Radiance Field-based methods achieve state-of-the-art quality in challenging scenarios such as in-the-wild captures and large-scale scenes, they often suffer from excessively high compute requirements linked to volumetric rendering. Gaussian Splatting-based methods, on the other hand, rely on rasterization and naturally achieve real-time rendering but suffer from brittle optimization heuristics that underperform on more challenging scenes. In this work, we present RadSplat, a lightweight method for robust real-time rendering of complex scenes. Our main contributions are threefold. First, we use radiance fields as a prior and supervision signal for optimizing point-based scene representations, leading to improved quality and more robust optimization. Next, we develop a novel pruning technique reducing the overall point count while maintaining high quality, leading to smaller and more compact scene representations with faster inference speeds. Finally, we propose a novel test-time filtering approach that further accelerates rendering and allows to scale to larger, house-sized scenes. We find that our method enables state-of-the-art synthesis of complex captures at 900+ FPS.
comment: Project page at https://m-niemeyer.github.io/radsplat/ and presented at 3DV (Oral)
♻ ☆ Drag Your Gaussian: Effective Drag-Based Editing with Score Distillation for 3D Gaussian Splatting
Recent advancements in 3D scene editing have been propelled by the rapid development of generative models. Existing methods typically utilize generative models to perform text-guided editing on 3D representations, such as 3D Gaussian Splatting (3DGS). However, these methods are often limited to texture modifications and fail when addressing geometric changes, such as editing a character's head to turn around. Moreover, such methods lack accurate control over the spatial position of editing results, as language struggles to precisely describe the extent of edits. To overcome these limitations, we introduce DYG, an effective 3D drag-based editing method for 3D Gaussian Splatting. It enables users to conveniently specify the desired editing region and the desired dragging direction through the input of 3D masks and pairs of control points, thereby enabling precise control over the extent of editing. DYG integrates the strengths of the implicit triplane representation to establish the geometric scaffold of the editing results, effectively overcoming suboptimal editing outcomes caused by the sparsity of 3DGS in the desired editing regions. Additionally, we incorporate a drag-based Latent Diffusion Model into our method through the proposed Drag-SDS loss function, enabling flexible, multi-view consistent, and fine-grained editing. Extensive experiments demonstrate that DYG conducts effective drag-based editing guided by control point prompts, surpassing other baselines in terms of editing effect and quality, both qualitatively and quantitatively. Visit our project page at https://quyans.github.io/Drag-Your-Gaussian.
comment: Visit our project page at https://quyans.github.io/Drag-Your-Gaussian
♻ ☆ DSU-Net:An Improved U-Net Model Based on DINOv2 and SAM2 with Multi-scale Cross-model Feature Enhancement
Despite the significant advancements in general image segmentation achieved by large-scale pre-trained foundation models (such as Meta's Segment Any-thing Model (SAM) series and DINOv2), their performance in specialized fields remains limited by two critical issues: the excessive training costs due to large model parameters, and the insufficient ability to represent specific domain characteristics. This paper proposes a multi-scale feature collabora-tion framework guided by DINOv2 for SAM2, with core innovations in three aspects: (1) Establishing a feature collaboration mechanism between DINOv2 and SAM2 backbones, where high-dimensional semantic features extracted by the self-supervised model guide multi-scale feature fusion; (2) Designing lightweight adapter modules and cross-modal, cross-layer feature fusion units to inject cross-domain knowledge while freezing the base model parameters; (3) Constructing a U-shaped network structure based on U-net, which utilizes attention mechanisms to achieve adaptive aggregation decoding of multi-granularity features. This framework surpasses existing state-of-the-art meth-ods in downstream tasks such as camouflage target detection and salient ob-ject detection, without requiring costly training processes. It provides a tech-nical pathway for efficient deployment of visual image segmentation, demon-strating significant application value in a wide range of downstream tasks and specialized fields within image segmentation.Project page: https://github.com/CheneyXuYiMin/SAM2DINO-Seg
♻ ☆ Mitigating Covariate Shift in Imitation Learning for Autonomous Vehicles Using Latent Space Generative World Models ICRA 2025
We propose the use of latent space generative world models to address the covariate shift problem in autonomous driving. A world model is a neural network capable of predicting an agent's next state given past states and actions. By leveraging a world model during training, the driving policy effectively mitigates covariate shift without requiring an excessive amount of training data. During end-to-end training, our policy learns how to recover from errors by aligning with states observed in human demonstrations, so that at runtime it can recover from perturbations outside the training distribution. Additionally, we introduce a novel transformer-based perception encoder that employs multi-view cross-attention and a learned scene query. We present qualitative and quantitative results, demonstrating significant improvements upon prior state of the art in closed-loop testing in the CARLA simulator, as well as showing the ability to handle perturbations in both CARLA and NVIDIA's DRIVE Sim.
comment: 8 pages, 6 figures, updated in March 2025, original published in September 2024, for ICRA 2025 submission, for associated video file, see https://youtu.be/7m3bXzlVQvU
♻ ☆ On-device Sora: Enabling Training-Free Diffusion-based Text-to-Video Generation for Mobile Devices
We present On-device Sora, the first model training-free solution for diffusion-based on-device text-to-video generation that operates efficiently on smartphone-grade devices. To address the challenges of diffusion-based text-to-video generation on computation- and memory-limited mobile devices, the proposed On-device Sora applies three novel techniques to pre-trained video generative models. First, Linear Proportional Leap (LPL) reduces the excessive denoising steps required in video diffusion through an efficient leap-based approach. Second, Temporal Dimension Token Merging (TDTM) minimizes intensive token-processing computation in attention layers by merging consecutive tokens along the temporal dimension. Third, Concurrent Inference with Dynamic Loading (CI-DL) dynamically partitions large models into smaller blocks and loads them into memory for concurrent model inference, effectively addressing the challenges of limited device memory. We implement On-device Sora on the iPhone 15 Pro, and the experimental evaluations show that it is capable of generating high-quality videos on the device, comparable to those produced by high-end GPUs. These results show that On-device Sora enables efficient and high-quality video generation on resource-constrained mobile devices. We envision the proposed On-device Sora as a significant first step toward democratizing state-of-the-art generative technologies, enabling video generation on commodity mobile and embedded devices without resource-intensive re-training for model optimization (compression). The code implementation is available at a GitHub repository(https://github.com/eai-lab/On-device-Sora).
♻ ☆ Know "No'' Better: A Data-Driven Approach for Enhancing Negation Awareness in CLIP
While CLIP has significantly advanced multimodal understanding by bridging vision and language, the inability to grasp negation - such as failing to differentiate concepts like "parking" from "no parking" - poses substantial challenges. By analyzing the data used in the public CLIP model's pre-training, we posit this limitation stems from a lack of negation-inclusive data. To address this, we introduce data generation pipelines that employ a large language model (LLM) and a multimodal LLM to produce negation-inclusive captions. Fine-tuning CLIP with data generated from our pipelines, we develop NegationCLIP, which enhances negation awareness while preserving the generality. Moreover, to enable a comprehensive evaluation of negation understanding, we propose NegRefCOCOg-a benchmark tailored to test VLMs' ability to interpret negation across diverse expressions and positions within a sentence. Experiments on various CLIP architectures validate the effectiveness of our data generation pipelines in enhancing CLIP's ability to perceive negation accurately. Additionally, NegationCLIP's enhanced negation awareness has practical applications across various multimodal tasks, demonstrated by performance gains in text-to-image generation and referring image segmentation.
♻ ☆ MultiBooth: Towards Generating All Your Concepts in an Image from Text AAAI 2025
This paper introduces MultiBooth, a novel and efficient technique for multi-concept customization in image generation from text. Despite the significant advancements in customized generation methods, particularly with the success of diffusion models, existing methods often struggle with multi-concept scenarios due to low concept fidelity and high inference cost. MultiBooth addresses these issues by dividing the multi-concept generation process into two phases: a single-concept learning phase and a multi-concept integration phase. During the single-concept learning phase, we employ a multi-modal image encoder and an efficient concept encoding technique to learn a concise and discriminative representation for each concept. In the multi-concept integration phase, we use bounding boxes to define the generation area for each concept within the cross-attention map. This method enables the creation of individual concepts within their specified regions, thereby facilitating the formation of multi-concept images. This strategy not only improves concept fidelity but also reduces additional inference cost. MultiBooth surpasses various baselines in both qualitative and quantitative evaluations, showcasing its superior performance and computational efficiency. Project Page: https://multibooth.github.io/
comment: To be published in AAAI 2025
♻ ☆ Vision-RWKV: Efficient and Scalable Visual Perception with RWKV-Like Architectures
Transformers have revolutionized computer vision and natural language processing, but their high computational complexity limits their application in high-resolution image processing and long-context analysis. This paper introduces Vision-RWKV (VRWKV), a model adapted from the RWKV model used in the NLP field with necessary modifications for vision tasks. Similar to the Vision Transformer (ViT), our model is designed to efficiently handle sparse inputs and demonstrate robust global processing capabilities, while also scaling up effectively, accommodating both large-scale parameters and extensive datasets. Its distinctive advantage lies in its reduced spatial aggregation complexity, which renders it exceptionally adept at processing high-resolution images seamlessly, eliminating the necessity for windowing operations. Our evaluations demonstrate that VRWKV surpasses ViT's performance in image classification and has significantly faster speeds and lower memory usage processing high-resolution inputs. In dense prediction tasks, it outperforms window-based models, maintaining comparable speeds. These results highlight VRWKV's potential as a more efficient alternative for visual perception tasks. Code is released at https://github.com/OpenGVLab/Vision-RWKV.
comment: Code is released at \url{https://github.com/OpenGVLab/Vision-RWKV}
♻ ☆ Enhancing Intent Understanding for Ambiguous prompt: A Human-Machine Co-Adaption Strategy
Today's image generation systems are capable of producing realistic and high-quality images. However, user prompts often contain ambiguities, making it difficult for these systems to interpret users' actual intentions. Consequently, many users must modify their prompts several times to ensure the generated images meet their expectations. While some methods focus on enhancing prompts to make the generated images fit user needs, the model is still hard to understand users' real needs, especially for non-expert users. In this research, we aim to enhance the visual parameter-tuning process, making the model user-friendly for individuals without specialized knowledge and better understand user needs. We propose a human-machine co-adaption strategy using mutual information between the user's prompts and the pictures under modification as the optimizing target to make the system better adapt to user needs. We find that an improved model can reduce the necessity for multiple rounds of adjustments. We also collect multi-round dialogue datasets with prompts and images pairs and user intent. Various experiments demonstrate the effectiveness of the proposed method in our proposed dataset. Our annotation tools and several examples of our dataset are available at https://zenodo.org/records/14876029 for easier review. We will make open source our full dataset and code.
♻ ☆ Disentangled 4D Gaussian Splatting: Towards Faster and More Efficient Dynamic Scene Rendering
Novel-view synthesis (NVS) for dynamic scenes from 2D images presents significant challenges due to the spatial complexity and temporal variability of such scenes. Recently, inspired by the remarkable success of NVS using 3D Gaussian Splatting (3DGS), researchers have sought to extend 3D Gaussian models to four dimensions (4D) for dynamic novel-view synthesis. However, methods based on 4D rotation and scaling introduce spatiotemporal deformation into the 4D covariance matrix, necessitating the slicing of 4D Gaussians into 3D Gaussians. This process increases redundant computations as timestamps change-an inherent characteristic of dynamic scene rendering. Additionally, performing calculations on a four-dimensional matrix is computationally intensive. In this paper, we introduce Disentangled 4D Gaussian Splatting (Disentangled4DGS), a novel representation and rendering approach that disentangles temporal and spatial deformations, thereby eliminating the reliance on 4D matrix computations. We extend the 3DGS rendering process to 4D, enabling the projection of temporal and spatial deformations into dynamic 2D Gaussians in ray space. Consequently, our method facilitates faster dynamic scene synthesis. Moreover, it reduces storage requirements by at least 4.5\% due to our efficient presentation method. Our approach achieves an unprecedented average rendering speed of 343 FPS at a resolution of $1352\times1014$ on an RTX 3090 GPU, with experiments across multiple benchmarks demonstrating its competitive performance in both monocular and multi-view scenarios.
♻ ☆ Boost Your Human Image Generation Model via Direct Preference Optimization CVPR
Human image generation is a key focus in image synthesis due to its broad applications, but even slight inaccuracies in anatomy, pose, or details can compromise realism. To address these challenges, we explore Direct Preference Optimization (DPO), which trains models to generate preferred (winning) images while diverging from non-preferred (losing) ones. However, conventional DPO methods use generated images as winning images, limiting realism. To overcome this limitation, we propose an enhanced DPO approach that incorporates high-quality real images as winning images, encouraging outputs to resemble real images rather than generated ones. However, implementing this concept is not a trivial task. Therefore, our approach, HG-DPO (Human image Generation through DPO), employs a novel curriculum learning framework that gradually improves the output of the model toward greater realism, making training more feasible. Furthermore, HG-DPO effectively adapts to personalized text-to-image tasks, generating high-quality and identity-specific images, which highlights the practical value of our approach.
comment: CVPR`2025
♻ ☆ Context-Aware Weakly Supervised Image Manipulation Localization with SAM Refinement
Malicious image manipulation poses societal risks, increasing the importance of effective image manipulation detection methods. Recent approaches in image manipulation detection have largely been driven by fully supervised approaches, which require labor-intensive pixel-level annotations. Thus, it is essential to explore weakly supervised image manipulation localization methods that only require image-level binary labels for training. However, existing weakly supervised image manipulation methods overlook the importance of edge information for accurate localization, leading to suboptimal localization performance. To address this, we propose a Context-Aware Boundary Localization (CABL) module to aggregate boundary features and learn context-inconsistency for localizing manipulated areas. Furthermore, by leveraging Class Activation Mapping (CAM) and Segment Anything Model (SAM), we introduce the CAM-Guided SAM Refinement (CGSR) module to generate more accurate manipulation localization maps. By integrating two modules, we present a novel weakly supervised framework based on a dual-branch Transformer-CNN architecture. Our method achieves outstanding localization performance across multiple datasets.
♻ ☆ Emphasizing Discriminative Features for Dataset Distillation in Complex Scenarios
Dataset distillation has demonstrated strong performance on simple datasets like CIFAR, MNIST, and TinyImageNet but struggles to achieve similar results in more complex scenarios. In this paper, we propose EDF (emphasizes the discriminative features), a dataset distillation method that enhances key discriminative regions in synthetic images using Grad-CAM activation maps. Our approach is inspired by a key observation: in simple datasets, high-activation areas typically occupy most of the image, whereas in complex scenarios, the size of these areas is much smaller. Unlike previous methods that treat all pixels equally when synthesizing images, EDF uses Grad-CAM activation maps to enhance high-activation areas. From a supervision perspective, we downplay supervision signals that have lower losses, as they contain common patterns. Additionally, to help the DD community better explore complex scenarios, we build the Complex Dataset Distillation (Comp-DD) benchmark by meticulously selecting sixteen subsets, eight easy and eight hard, from ImageNet-1K. In particular, EDF consistently outperforms SOTA results in complex scenarios, such as ImageNet-1K subsets. Hopefully, more researchers will be inspired and encouraged to improve the practicality and efficacy of DD. Our code and benchmark will be made public at https://github.com/NUS-HPC-AI-Lab/EDF.
comment: 24 pages, 13 figures
♻ ☆ YOLO11 and Vision Transformers based 3D Pose Estimation of Immature Green Fruits in Commercial Apple Orchards for Robotic Thinning
In this study, a robust method for 3D pose estimation of immature green apples (fruitlets) in commercial orchards was developed, utilizing the YOLO11(or YOLOv11) object detection and pose estimation algorithm alongside Vision Transformers (ViT) for depth estimation (Dense Prediction Transformer (DPT) and Depth Anything V2). For object detection and pose estimation, performance comparisons of YOLO11 (YOLO11n, YOLO11s, YOLO11m, YOLO11l and YOLO11x) and YOLOv8 (YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l and YOLOv8x) were made under identical hyperparameter settings among the all configurations. It was observed that YOLO11n surpassed all configurations of YOLO11 and YOLOv8 in terms of box precision and pose precision, achieving scores of 0.91 and 0.915, respectively. Conversely, YOLOv8n exhibited the highest box and pose recall scores of 0.905 and 0.925, respectively. Regarding the mean average precision at 50\% intersection over union (mAP@50), YOLO11s led all configurations with a box mAP@50 score of 0.94, while YOLOv8n achieved the highest pose mAP@50 score of 0.96. In terms of image processing speed, YOLO11n outperformed all configurations with an impressive inference speed of 2.7 ms, significantly faster than the quickest YOLOv8 configuration, YOLOv8n, which processed images in 7.8 ms. Subsequent integration of ViTs for the green fruit's pose depth estimation revealed that Depth Anything V2 outperformed Dense Prediction Transformer in 3D pose length validation, achieving the lowest Root Mean Square Error (RMSE) of 1.52 and Mean Absolute Error (MAE) of 1.28, demonstrating exceptional precision in estimating immature green fruit lengths. Integration of YOLO11 and Depth Anything Model provides a promising solution to 3D pose estimation of immature green fruits for robotic thinning applications. (YOLOv11 pose detection, YOLOv11 Pose, YOLOv11 Keypoints detection, YOLOv11 pose estimation)
comment: 24 Pages, 13 Figures, 1 Table
♻ ☆ Hi3DGen: High-fidelity 3D Geometry Generation from Images via Normal Bridging
With the growing demand for high-fidelity 3D models from 2D images, existing methods still face significant challenges in accurately reproducing fine-grained geometric details due to limitations in domain gaps and inherent ambiguities in RGB images. To address these issues, we propose Hi3DGen, a novel framework for generating high-fidelity 3D geometry from images via normal bridging. Hi3DGen consists of three key components: (1) an image-to-normal estimator that decouples the low-high frequency image pattern with noise injection and dual-stream training to achieve generalizable, stable, and sharp estimation; (2) a normal-to-geometry learning approach that uses normal-regularized latent diffusion learning to enhance 3D geometry generation fidelity; and (3) a 3D data synthesis pipeline that constructs a high-quality dataset to support training. Extensive experiments demonstrate the effectiveness and superiority of our framework in generating rich geometric details, outperforming state-of-the-art methods in terms of fidelity. Our work provides a new direction for high-fidelity 3D geometry generation from images by leveraging normal maps as an intermediate representation.
comment: https://stable-x.github.io/Hi3DGen
♻ ☆ Enhancing Object Coherence in Layout-to-Image Synthesis
Layout-to-image synthesis is an emerging technique in conditional image generation. It aims to generate complex scenes, where users require fine control over the layout of the objects in a scene. However, it remains challenging to control the object coherence, including semantic coherence (e.g., the cat looks at the flowers or not) and physical coherence (e.g., the hand and the racket should not be misaligned). In this paper, we propose a novel diffusion model with effective global semantic fusion (GSF) and self-similarity feature enhancement modules to guide the object coherence for this task. For semantic coherence, we argue that the image caption contains rich information for defining the semantic relationship within the objects in the images. Instead of simply employing cross-attention between captions and latent images, which addresses the highly relevant layout restriction and semantic coherence requirement separately and thus leads to unsatisfying results shown in our experiments, we develop GSF to fuse the supervision from the layout restriction and semantic coherence requirement and exploit it to guide the image synthesis process. Moreover, to improve the physical coherence, we develop a Self-similarity Coherence Attention (SCA) module to explicitly integrate local contextual physical coherence relation into each pixel's generation process. Specifically, we adopt a self-similarity map to encode the physical coherence restrictions and employ it to extract coherent features from text embedding. Through visualization of our self-similarity map, we explore the essence of SCA, revealing that its effectiveness is not only in capturing reliable physical coherence patterns but also in enhancing complex texture generation. Extensive experiments demonstrate the superiority of our proposed method.
comment: Code: https://github.com/CodeGoat24/EOCNet
♻ ☆ Exploring Cognitive Paradoxes in Video Games: A Quantum Mechanical Perspective
This paper introduces a quantum-mechanical model that bridges the realms of cognition and quantum mechanics, offering a novel perspective on decision-making under risk and perceptual reversals. By integrating quantum theories addressing decision-theoretic anomalies with examples from immersive video games like "Deal or No Deal", we seek to elucidate complex human cognitive behaviours. Study 1 showcases the proposed quantum model's superiority over traditional decision-making approaches using the "Deal or No Deal" video game experiment. In Study 2, we apply our model to bistable perceptions, taking the Necker cube from the Necker game as a primary example. While previous works have hinted at connections between quantum mechanics and cognition, Study 3 provides a more tangible link, likening the physics that underpins quantum tunnelling to an eye blink's role in perceptual reversals. Conclusively, our model displays a promising ability to interpret diverse optical illusions and psychological phenomena, marking a significant stride in understanding human decision making.
♻ ☆ Head and Neck Tumor Segmentation of MRI from Pre- and Mid-radiotherapy with Pre-training, Data Augmentation and Dual Flow UNet
Head and neck tumors and metastatic lymph nodes are crucial for treatment planning and prognostic analysis. Accurate segmentation and quantitative analysis of these structures require pixel-level annotation, making automated segmentation techniques essential for the diagnosis and treatment of head and neck cancer. In this study, we investigated the effects of multiple strategies on the segmentation of pre-radiotherapy (pre-RT) and mid-radiotherapy (mid-RT) images. For the segmentation of pre-RT images, we utilized: 1) a fully supervised learning approach, and 2) the same approach enhanced with pre-trained weights and the MixUp data augmentation technique. For mid-RT images, we introduced a novel computational-friendly network architecture that features separate encoders for mid-RT images and registered pre-RT images with their labels. The mid-RT encoder branch integrates information from pre-RT images and labels progressively during the forward propagation. We selected the highest-performing model from each fold and used their predictions to create an ensemble average for inference. In the final test, our models achieved a segmentation performance of 82.38% for pre-RT and 72.53% for mid-RT on aggregated Dice Similarity Coefficient (DSC) as HiLab. Our code is available at https://github.com/WltyBY/HNTS-MRG2024_train_code.
♻ ☆ MMIE: Massive Multimodal Interleaved Comprehension Benchmark for Large Vision-Language Models ICLR 2025
Interleaved multimodal comprehension and generation, enabling models to produce and interpret both images and text in arbitrary sequences, have become a pivotal area in multimodal learning. Despite significant advancements, the evaluation of this capability remains insufficient. Existing benchmarks suffer from limitations in data scale, scope, and evaluation depth, while current evaluation metrics are often costly or biased, lacking in reliability for practical applications. To address these challenges, we introduce MMIE, a large-scale knowledge-intensive benchmark for evaluating interleaved multimodal comprehension and generation in Large Vision-Language Models (LVLMs). MMIE comprises 20K meticulously curated multimodal queries, spanning 3 categories, 12 fields, and 102 subfields, including mathematics, coding, physics, literature, health, and arts. It supports both interleaved inputs and outputs, offering a mix of multiple-choice and open-ended question formats to evaluate diverse competencies. Moreover, we propose a reliable automated evaluation metric, leveraging a scoring model fine-tuned with human-annotated data and systematic evaluation criteria, aimed at reducing bias and improving evaluation accuracy. Extensive experiments demonstrate the effectiveness of our benchmark and metrics in providing a comprehensive evaluation of interleaved LVLMs. Specifically, we evaluate eight LVLMs, revealing that even the best models show significant room for improvement, with most achieving only moderate results. We believe MMIE will drive further advancements in the development of interleaved LVLMs. We publicly release our benchmark and code in https://mmie-bench.github.io/.
comment: ICLR 2025 Oral
♻ ☆ MovieBench: A Hierarchical Movie Level Dataset for Long Video Generation
Recent advancements in video generation models, like Stable Video Diffusion, show promising results, but primarily focus on short, single-scene videos. These models struggle with generating long videos that involve multiple scenes, coherent narratives, and consistent characters. Furthermore, there is no publicly available dataset tailored for the analysis, evaluation, and training of long video generation models. In this paper, we present MovieBench: A Hierarchical Movie-Level Dataset for Long Video Generation, which addresses these challenges by providing unique contributions: (1) movie-length videos featuring rich, coherent storylines and multi-scene narratives, (2) consistency of character appearance and audio across scenes, and (3) hierarchical data structure contains high-level movie information and detailed shot-level descriptions. Experiments demonstrate that MovieBench brings some new insights and challenges, such as maintaining character ID consistency across multiple scenes for various characters. The dataset will be public and continuously maintained, aiming to advance the field of long video generation. Data can be found at: https://weijiawu.github.io/MovieBench/.
comment: The project website is at: https://weijiawu.github.io/MovieBench/. Code: https://github.com/showlab/MovieBecnh
♻ ☆ Interpretable Few-shot Learning with Online Attribute Selection
Few-shot learning (FSL) presents a challenging learning problem in which only a few samples are available for each class. Decision interpretation is more important in few-shot classification due to a greater chance of error compared to traditional classification. However, the majority of the previous FSL methods are black-box models. In this paper, we propose an inherently interpretable model for FSL based on human-friendly attributes. Previously, human-friendly attributes have been utilized to train models with the potential for human interaction and interpretability. However, such approaches are not directly extendible to the few-shot classification scenario. Moreover, we propose an online attribute selection mechanism to effectively filter out irrelevant attributes in each episode. The attribute selection mechanism improves accuracy and helps with interpretability by reducing the number of attributes that participate in each episode. We further propose a mechanism that automatically detects the episodes where the pool of available human-friendly attributes is insufficient, and subsequently augments it by engaging some learned unknown attributes. We demonstrate that the proposed method achieves results on par with black-box few-shot learning models on four widely used datasets. We also empirically evaluate the level of decision alignment between different models and human understanding and show that our model outperforms the comparison methods based on this criterion.
♻ ☆ Towards Geometric-Photometric Joint Alignment for Facial Mesh Registration
This paper presents a Geometric-Photometric Joint Alignment~(GPJA) method, which aligns discrete human expressions at pixel-level accuracy by combining geometric and photometric information. Common practices for registering human heads typically involve aligning landmarks with facial template meshes using geometry processing approaches, but often overlook dense pixel-level photometric consistency. This oversight leads to inconsistent texture parametrization across different expressions, hindering the creation of topologically consistent head meshes widely used in movies and games. GPJA overcomes this limitation by leveraging differentiable rendering to align vertices with target expressions, achieving joint alignment in both geometry and photometric appearances automatically, without requiring semantic annotation or pre-aligned meshes for training. It features a holistic rendering alignment mechanism and a multiscale regularized optimization for robust convergence on large deformation. The method utilizes derivatives at vertex positions for supervision and employs a gradient-based algorithm which guarantees smoothness and avoids topological artifacts during the geometry evolution. Experimental results demonstrate faithful alignment under various expressions, surpassing the conventional non-rigid ICP-based methods and the state-of-the-art deep learning based method. In practical, our method generates meshes of the same subject across diverse expressions, all with the same texture parametrization. This consistency benefits face animation, re-parametrization, and other batch operations for face modeling and applications with enhanced efficiency.
♻ ☆ Skip-Vision: Efficient and Scalable Acceleration of Vision-Language Models via Adaptive Token Skipping
Transformer-based models have driven significant advancements in Multimodal Large Language Models (MLLMs), yet their computational costs surge drastically when scaling resolution, training data, and model parameters. A key bottleneck stems from the proliferation of visual tokens required for fine-grained image understanding. We propose Skip-Vision, a unified framework addressing both training and inference inefficiencies in vision-language models. On top of conventional token compression approaches, our method introduces two complementary acceleration strategies. For training acceleration, we observe that Feed-Forward Network (FFN) computations on visual tokens induce marginal feature updates. This motivates our Skip-FFN strategy, which bypasses FFN layers for redundant visual tokens. For inference acceleration, we design a selective KV-cache removal mechanism that prunes the skipped key-value pairs during decoding while preserving model performance. Experimental results demonstrate that Skip-Vision reduces training time by up to 35\%, inference FLOPs by 75\%, and latency by 45\%, while achieving comparable or superior performance to existing methods. Our work provides a practical solution for scaling high-performance MLLMs with enhanced efficiency.
♻ ☆ Will Pre-Training Ever End? A First Step Toward Next-Generation Foundation MLLMs via Self-Improving Systematic Cognition
Recent progress in (multimodal) large language models ((M)LLMs) has shifted focus from pre-training to inference-time compute scaling and post-training optimization, driven by concerns over limited high-quality real-world data. However, these strategies alone are insufficient for advancing model capabilities. We hypothesize that effective model improvement requires a strong synergy among pre-training, inference-time compute scaling, and post-training optimization. In this paper, we validate this hypothesis in the context of multimodal pre-training for foundation MLLM construction. We introduce Self-Improving cognition (SIcog), a self-learning framework for constructing next-generation foundation MLLMs by imparting multimodal knowledge and enhancing their systematic cognitive capabilities through multimodal pre-training with self-generated data. Specifically, we introduce Chain-of-Description, a step-by-step visual understanding method to improve comprehensive perception, and integrate structured chain-of-thought (CoT) reasoning to support in-depth multimodal reasoning. SIcog first equips a base model with systematic perception and reasoning using minimal external supervision. The enhanced model then generates candidate image captions and CoT-style reasoning responses for unlabeled images and image-question pairs across diverse tasks, which are curated through a self-consistency mechanism. These curated samples are subsequently used for large-scale multimodal pre-training, completing a self-learning cycle that strengthens the model's cognitive foundation. Extensive experiments demonstrate that SIcog produces next-generation foundation MLLMs with substantially improved multimodal cognition, outperforming prevailing pre-training approaches. These findings empirically establish SIcog as a promising framework for realizing a complete self-improving paradigm.
comment: 40 pages. Preprint, work in progress
♻ ☆ Diffusion-driven lensless fiber endomicroscopic quantitative phase imaging towards digital pathology
Lensless fiber endomicroscope is an emerging tool for in-vivo microscopic imaging, where quantitative phase imaging (QPI) can be utilized as a label-free method to enhance image contrast. However, existing single-shot phase reconstruction methods through lensless fiber endomicroscope typically perform well on simple images but struggle with complex microscopic structures. Here, we propose a speckle-conditioned diffusion model (SpecDiffusion), which reconstructs phase images directly from speckles captured at the detection side of a multi-core fiber (MCF). Unlike conventional neural networks, SpecDiffusion employs iterative phase denoising steps for speckle-driven phase reconstruction. The iteration scheme allows SpecDiffusion to break down the phase reconstruction process into multiple steps, gradually building up to the final phase image. This attribute alleviates the computation challenge at each step and enables the reconstruction of rich details in complex microscopic images. To validate its efficacy, we build an optical system to capture speckles from MCF and construct a dataset consisting of 100,000 paired images. SpecDiffusion provides high-fidelity phase reconstruction results and shows powerful generalization capacity for unseen objects, such as test charts and biological tissues, reducing the average mean absolute error of the reconstructed tissue images by 7 times. Furthermore, the reconstructed tissue images using SpecDiffusion shows higher accuracy in zero-shot cell segmentation tasks compared to the conventional method, demonstrating the potential for further cell morphology analysis through the learning-based lensless fiber endomicroscope. SpecDiffusion offers a precise and generalized method to phase reconstruction through scattering media, including MCFs, opening new perspective in lensless fiber endomicroscopic imaging.
♻ ☆ An interpretable approach to automating the assessment of biofouling in video footage
Biofouling$\unicode{x2013}$communities of organisms that grow on hard surfaces immersed in water$\unicode{x2013}$provides a pathway for the spread of invasive marine species and diseases. To address this risk, international vessels are increasingly being obligated to provide evidence of their biofouling management practices. Verification that these activities are effective requires underwater inspections, using divers or underwater remotely operated vehicles (ROVs), and the collection and analysis of large amounts of imagery and footage. Automated assessment using computer vision techniques can significantly streamline this process, and this work shows how this challenge can be addressed efficiently and effectively using the interpretable Component Features (ComFe) approach with a DINOv2 Vision Transformer (ViT) foundation model. ComFe is able to obtain improved performance in comparison to previous non-interpretable Convolutional Neural Network (CNN) methods, with significantly fewer weights and greater transparency$\unicode{x2013}$through identifying which regions of the image contribute to the classification, and which images in the training data lead to that conclusion. All code, data and model weights are publicly released.
♻ ☆ DetailCLIP: Detail-Oriented CLIP for Fine-Grained Tasks ICLR 2025
In this paper, we introduce DetailCLIP: A Detail-Oriented CLIP to address the limitations of contrastive learning-based vision-language models, particularly CLIP, in handling detail-oriented and fine-grained tasks like segmentation. While CLIP and its variants excel in the global alignment of image and text representations, they often struggle to capture the fine-grained details necessary for precise segmentation. To overcome these challenges, we propose a novel framework that employs patch-level comparison of self-distillation and pixel-level reconstruction losses, enhanced with an attention-based token removal mechanism. This approach selectively retains semantically relevant tokens, enabling the model to focus on the image's critical regions aligned with the specific functions of our model, including textual information processing, patch comparison, and image reconstruction, ensuring that the model learns high-level semantics and detailed visual features. Our experiments demonstrate that DetailCLIP surpasses existing CLIP-based and traditional self-supervised learning (SSL) models in segmentation accuracy and exhibits superior generalization across diverse datasets. DetailCLIP represents a significant advancement in vision-language modeling, offering a robust solution for tasks that demand high-level semantic understanding and detailed feature extraction. https://github.com/KishoreP1/DetailCLIP.
comment: Accepted in SSI-FM Workshop of ICLR 2025
♻ ☆ Towards Adversarially Robust Dataset Distillation by Curvature Regularization
Dataset distillation (DD) allows datasets to be distilled to fractions of their original size while preserving the rich distributional information so that models trained on the distilled datasets can achieve a comparable accuracy while saving significant computational loads. Recent research in this area has been focusing on improving the accuracy of models trained on distilled datasets. In this paper, we aim to explore a new perspective of DD. We study how to embed adversarial robustness in distilled datasets, so that models trained on these datasets maintain the high accuracy and meanwhile acquire better adversarial robustness. We propose a new method that achieves this goal by incorporating curvature regularization into the distillation process with much less computational overhead than standard adversarial training. Extensive empirical experiments suggest that our method not only outperforms standard adversarial training on both accuracy and robustness with less computation overhead but is also capable of generating robust distilled datasets that can withstand various adversarial attacks.
comment: 14 pages, 3 figures
♻ ☆ GyralNet Subnetwork Partitioning via Differentiable Spectral Modularity Optimization
Understanding the structural and functional organization of the human brain requires a detailed examination of cortical folding patterns, among which the three-hinge gyrus (3HG) has been identified as a key structural landmark. GyralNet, a network representation of cortical folding, models 3HGs as nodes and gyral crests as edges, highlighting their role as critical hubs in cortico-cortical connectivity. However, existing methods for analyzing 3HGs face significant challenges, including the sub-voxel scale of 3HGs at typical neuroimaging resolutions, the computational complexity of establishing cross-subject correspondences, and the oversimplification of treating 3HGs as independent nodes without considering their community-level relationships. To address these limitations, we propose a fully differentiable subnetwork partitioning framework that employs a spectral modularity maximization optimization strategy to modularize the organization of 3HGs within GyralNet. By incorporating topological structural similarity and DTI-derived connectivity patterns as attribute features, our approach provides a biologically meaningful representation of cortical organization. Extensive experiments on the Human Connectome Project (HCP) dataset demonstrate that our method effectively partitions GyralNet at the individual level while preserving the community-level consistency of 3HGs across subjects, offering a robust foundation for understanding brain connectivity.
comment: 10 pages, 3 figures
♻ ☆ VidHalluc: Evaluating Temporal Hallucinations in Multimodal Large Language Models for Video Understanding CVPR 2025
Multimodal large language models (MLLMs) have recently shown significant advancements in video understanding, excelling in content reasoning and instruction-following tasks. However, hallucination, where models generate inaccurate or misleading content, remains underexplored in the video domain. Building on the observation that MLLM visual encoders often fail to distinguish visually different yet semantically similar video pairs, we introduce VidHalluc, the largest benchmark designed to examine hallucinations in MLLMs for video understanding. It consists of 5,002 videos, paired to highlight cases prone to hallucinations. VidHalluc assesses hallucinations across three critical dimensions: (1) action, (2) temporal sequence, and (3) scene transition. Comprehensive testing shows that most MLLMs are vulnerable to hallucinations across these dimensions. Furthermore, we propose DINO-HEAL, a training-free method that reduces hallucinations by incorporating spatial saliency from DINOv2 to reweight visual features during inference. Our results show that DINO-HEAL consistently improves performance on VidHalluc, achieving an average improvement of 3.02% in mitigating hallucinations across all tasks. Both the VidHalluc benchmark and DINO-HEAL code are available at https://people-robots.github.io/vidhalluc.
comment: CVPR 2025
♻ ☆ Learning Color Equivariant Representations ICLR 2025
In this paper, we introduce group convolutional neural networks (GCNNs) equivariant to color variation. GCNNs have been designed for a variety of geometric transformations from 2D and 3D rotation groups, to semi-groups such as scale. Despite the improved interpretability, accuracy and generalizability of these architectures, GCNNs have seen limited application in the context of perceptual quantities. Notably, the recent CEConv network uses a GCNN to achieve equivariance to hue transformations by convolving input images with a hue rotated RGB filter. However, this approach leads to invalid RGB values which break equivariance and degrade performance. We resolve these issues with a lifting layer that transforms the input image directly, thereby circumventing the issue of invalid RGB values and improving equivariance error by over three orders of magnitude. Moreover, we extend the notion of color equivariance to include equivariance to saturation and luminance shift. Our hue-, saturation-, luminance- and color-equivariant networks achieve strong generalization to out-of-distribution perceptual variations and improved sample efficiency over conventional architectures. We demonstrate the utility of our approach on synthetic and real world datasets where we consistently outperform competitive baselines.
comment: Accept to The 13th International Conference on Learning Representations (ICLR 2025)
♻ ☆ Interact with me: Joint Egocentric Forecasting of Intent to Interact, Attitude and Social Actions ICME
For efficient human-agent interaction, an agent should proactively recognize their target user and prepare for upcoming interactions. We formulate this challenging problem as the novel task of jointly forecasting a person's intent to interact with the agent, their attitude towards the agent and the action they will perform, from the agent's (egocentric) perspective. So we propose \emph{SocialEgoNet} - a graph-based spatiotemporal framework that exploits task dependencies through a hierarchical multitask learning approach. SocialEgoNet uses whole-body skeletons (keypoints from face, hands and body) extracted from only 1 second of video input for high inference speed. For evaluation, we augment an existing egocentric human-agent interaction dataset with new class labels and bounding box annotations. Extensive experiments on this augmented dataset, named JPL-Social, demonstrate \emph{real-time} inference and superior performance (average accuracy across all tasks: 83.15\%) of our model outperforming several competitive baselines. The additional annotations and code will be available upon acceptance.
comment: Accepted at ICME, 2025
♻ ☆ Self-Calibrating 4D Novel View Synthesis from Monocular Videos Using Gaussian Splatting
Gaussian Splatting (GS) has significantly elevated scene reconstruction efficiency and novel view synthesis (NVS) accuracy compared to Neural Radiance Fields (NeRF), particularly for dynamic scenes. However, current 4D NVS methods, whether based on GS or NeRF, primarily rely on camera parameters provided by COLMAP and even utilize sparse point clouds generated by COLMAP for initialization, which lack accuracy as well are time-consuming. This sometimes results in poor dynamic scene representation, especially in scenes with large object movements, or extreme camera conditions e.g. small translations combined with large rotations. Some studies simultaneously optimize the estimation of camera parameters and scenes, supervised by additional information like depth, optical flow, etc. obtained from off-the-shelf models. Using this unverified information as ground truth can reduce robustness and accuracy, which does frequently occur for long monocular videos (with e.g. > hundreds of frames). We propose a novel approach that learns a high-fidelity 4D GS scene representation with self-calibration of camera parameters. It includes the extraction of 2D point features that robustly represent 3D structure, and their use for subsequent joint optimization of camera parameters and 3D structure towards overall 4D scene optimization. We demonstrate the accuracy and time efficiency of our method through extensive quantitative and qualitative experimental results on several standard benchmarks. The results show significant improvements over state-of-the-art methods for 4D novel view synthesis. The source code will be released soon at https://github.com/fangli333/SC-4DGS.
comment: GitHub Page: https://github.com/fangli333/SC-4DGS
♻ ☆ VERA: Explainable Video Anomaly Detection via Verbalized Learning of Vision-Language Models CVPR 2025
The rapid advancement of vision-language models (VLMs) has established a new paradigm in video anomaly detection (VAD): leveraging VLMs to simultaneously detect anomalies and provide comprehendible explanations for the decisions. Existing work in this direction often assumes the complex reasoning required for VAD exceeds the capabilities of pretrained VLMs. Consequently, these approaches either incorporate specialized reasoning modules during inference or rely on instruction tuning datasets through additional training to adapt VLMs for VAD. However, such strategies often incur substantial computational costs or data annotation overhead. To address these challenges in explainable VAD, we introduce a verbalized learning framework named VERA that enables VLMs to perform VAD without model parameter modifications. Specifically, VERA automatically decomposes the complex reasoning required for VAD into reflections on simpler, more focused guiding questions capturing distinct abnormal patterns. It treats these reflective questions as learnable parameters and optimizes them through data-driven verbal interactions between learner and optimizer VLMs, using coarsely labeled training data. During inference, VERA embeds the learned questions into model prompts to guide VLMs in generating segment-level anomaly scores, which are then refined into frame-level scores via the fusion of scene and temporal contexts. Experimental results on challenging benchmarks demonstrate that the learned questions of VERA are highly adaptable, significantly improving both detection performance and explainability of VLMs for VAD.
comment: Accepted in CVPR 2025
♻ ☆ HaSPeR: An Image Repository for Hand Shadow Puppet Recognition
Hand shadow puppetry, also known as shadowgraphy or ombromanie, is a form of theatrical art and storytelling where hand shadows are projected onto flat surfaces to create illusions of living creatures. The skilled performers create these silhouettes by hand positioning, finger movements, and dexterous gestures to resemble shadows of animals and objects. Due to the lack of practitioners and a seismic shift in people's entertainment standards, this art form is on the verge of extinction. To facilitate its preservation and proliferate it to a wider audience, we introduce ${\rm H{\small A}SP{\small E}R}$, a novel dataset consisting of 15,000 images of hand shadow puppets across 15 classes extracted from both professional and amateur hand shadow puppeteer clips. We provide a detailed statistical analysis of the dataset and employ a range of pretrained image classification models to establish baselines. Our findings show a substantial performance superiority of skip-connected convolutional models over attention-based transformer architectures. We also find that lightweight models, such as MobileNetV2, suited for mobile applications and embedded devices, perform comparatively well. We surmise that such low-latency architectures can be useful in developing ombromanie teaching tools, and we create a prototype application to explore this surmission. Keeping the best-performing model ResNet34 under the limelight, we conduct comprehensive feature-spatial, explainability, and error analyses to gain insights into its decision-making process. To the best of our knowledge, this is the first documented dataset and research endeavor to preserve this dying art for future generations, with computer vision approaches. Our code and data will be publicly available.
comment: Submitted to Image and Vision Computing, 15 pages, 110 figures, 2 tables
♻ ☆ PTDiffusion: Free Lunch for Generating Optical Illusion Hidden Pictures with Phase-Transferred Diffusion Model CVPR 2025
Optical illusion hidden picture is an interesting visual perceptual phenomenon where an image is cleverly integrated into another picture in a way that is not immediately obvious to the viewer. Established on the off-the-shelf text-to-image (T2I) diffusion model, we propose a novel training-free text-guided image-to-image (I2I) translation framework dubbed as \textbf{P}hase-\textbf{T}ransferred \textbf{Diffusion} Model (PTDiffusion) for hidden art syntheses. PTDiffusion harmoniously embeds an input reference image into arbitrary scenes described by the text prompts, producing illusion images exhibiting hidden visual cues of the reference image. At the heart of our method is a plug-and-play phase transfer mechanism that dynamically and progressively transplants diffusion features' phase spectrum from the denoising process to reconstruct the reference image into the one to sample the generated illusion image, realizing deep fusion of the reference structural information and the textual semantic information in the diffusion model latent space. Furthermore, we propose asynchronous phase transfer to enable flexible control to the degree of hidden content discernability. Our method bypasses any model training and fine-tuning process, all while substantially outperforming related text-guided I2I methods in image generation quality, text fidelity, visual discernibility, and contextual naturalness for illusion picture synthesis, as demonstrated by extensive qualitative and quantitative experiments. Our project is publically available at \href{https://xianggao1102.github.io/PTDiffusion_webpage/}{this web page}.
comment: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2025)
♻ ☆ MedTrinity-25M: A Large-scale Multimodal Dataset with Multigranular Annotations for Medicine ICLR 2025
This paper introduces MedTrinity-25M, a comprehensive, large-scale multimodal dataset for medicine, covering over 25 million images across 10 modalities with multigranular annotations for more than 65 diseases. These multigranular annotations encompass both global information, such as modality and organ detection, and local information like ROI analysis, lesion texture, and region-wise correlations. Unlike the existing multimodal datasets, which are limited by the availability of image-text pairs, we have developed the first automated pipeline that scales up multimodal data by generating multigranular visual and textual annotations in the form of image-ROI-description triplets without the need for any paired text descriptions. Specifically, data from over 30 different sources have been collected, preprocessed, and grounded using domain-specific expert models to identify ROIs related to abnormal regions. We then build a comprehensive knowledge base and prompt multimodal large language models to perform retrieval-augmented generation with the identified ROIs as guidance, resulting in multigranular textual descriptions. Compared to existing datasets, MedTrinity-25M provides the most enriched annotations, supporting a comprehensive range of multimodal tasks such as captioning and report generation, as well as vision-centric tasks like classification and segmentation. We propose LLaVA-Tri by pretraining LLaVA on MedTrinity-25M, achieving state-of-the-art performance on VQA-RAD, SLAKE, and PathVQA, surpassing representative SOTA multimodal large language models. Furthermore, MedTrinity-25M can also be utilized to support large-scale pre-training of multimodal medical AI models, contributing to the development of future foundation models in the medical domain. We will make our dataset available.
comment: The dataset is publicly available at https://yunfeixie233.github.io/MedTrinity-25M/. Accepted to ICLR 2025
♻ ☆ BIGbench: A Unified Benchmark for Evaluating Multi-dimensional Social Biases in Text-to-Image Models
Text-to-Image (T2I) generative models are becoming increasingly crucial due to their ability to generate high-quality images, but also raise concerns about social biases, particularly in human image generation. Sociological research has established systematic classifications of bias. Yet, existing studies on bias in T2I models largely conflate different types of bias, impeding methodological progress. In this paper, we introduce BIGbench, a unified benchmark for Biases of Image Generation, featuring a carefully designed dataset. Unlike existing benchmarks, BIGbench classifies and evaluates biases across four dimensions to enable a more granular evaluation and deeper analysis. Furthermore, BIGbench applies advanced multi-modal large language models to achieve fully automated and highly accurate evaluations. We apply BIGbench to evaluate eight representative T2I models and three debiasing methods. Our human evaluation results by trained evaluators from different races underscore BIGbench's effectiveness in aligning images and identifying various biases. Moreover, our study also reveals new research directions about biases with insightful analysis of our results. Our work is openly accessible at https://github.com/BIGbench2024/BIGbench2024/.
comment: arXiv admin note: substantial text overlap with arXiv:2405.17814
Machine Learning 183
☆ RIG: Synergizing Reasoning and Imagination in End-to-End Generalist Policy
Reasoning before action and imagining potential outcomes (i.e., world models) are essential for embodied agents operating in complex open-world environments. Yet, prior work either incorporates only one of these abilities in an end-to-end agent or integrates multiple specialized models into an agent system, limiting the learning efficiency and generalization of the policy. Thus, this paper makes the first attempt to synergize Reasoning and Imagination in an end-to-end Generalist policy, termed RIG. To train RIG in an end-to-end manner, we construct a data pipeline that progressively integrates and enriches the content of imagination and reasoning in the trajectories collected from existing agents. The joint learning of reasoning and next image generation explicitly models the inherent correlation between reasoning, action, and dynamics of environments, and thus exhibits more than $17\times$ sample efficiency improvements and generalization in comparison with previous works. During inference, RIG first reasons about the next action, produces potential action, and then predicts the action outcomes, which offers the agent a chance to review and self-correct based on the imagination before taking real actions. Experimental results show that the synergy of reasoning and imagination not only improves the robustness, generalization, and interoperability of generalist policy but also enables test-time scaling to enhance overall performance.
☆ UniOcc: A Unified Benchmark for Occupancy Forecasting and Prediction in Autonomous Driving
We introduce UniOcc, a comprehensive, unified benchmark for occupancy forecasting (i.e., predicting future occupancies based on historical information) and current-frame occupancy prediction from camera images. UniOcc unifies data from multiple real-world datasets (i.e., nuScenes, Waymo) and high-fidelity driving simulators (i.e., CARLA, OpenCOOD), which provides 2D/3D occupancy labels with per-voxel flow annotations and support for cooperative autonomous driving. In terms of evaluation, unlike existing studies that rely on suboptimal pseudo labels for evaluation, UniOcc incorporates novel metrics that do not depend on ground-truth occupancy, enabling robust assessment of additional aspects of occupancy quality. Through extensive experiments on state-of-the-art models, we demonstrate that large-scale, diverse training data and explicit flow information significantly enhance occupancy prediction and forecasting performance.
comment: 14 pages; Dataset: https://huggingface.co/datasets/tasl-lab/uniocc; Code: https://github.com/tasl-lab/UniOcc
☆ Exploring the Effect of Reinforcement Learning on Video Understanding: Insights from SEED-Bench-R1
Recent advancements in Chain of Thought (COT) generation have significantly improved the reasoning capabilities of Large Language Models (LLMs), with reinforcement learning (RL) emerging as an effective post-training approach. Multimodal Large Language Models (MLLMs) inherit this reasoning potential but remain underexplored in tasks requiring both perception and logical reasoning. To address this, we introduce SEED-Bench-R1, a benchmark designed to systematically evaluate post-training methods for MLLMs in video understanding. It includes intricate real-world videos and complex everyday planning tasks in the format of multiple-choice questions, requiring sophisticated perception and reasoning. SEED-Bench-R1 assesses generalization through a three-level hierarchy: in-distribution, cross-environment, and cross-environment-task scenarios, equipped with a large-scale training dataset with easily verifiable ground-truth answers. Using Qwen2-VL-Instruct-7B as a base model, we compare RL with supervised fine-tuning (SFT), demonstrating RL's data efficiency and superior performance on both in-distribution and out-of-distribution tasks, even outperforming SFT on general video understanding benchmarks like LongVideoBench. Our detailed analysis reveals that RL enhances visual perception but often produces less logically coherent reasoning chains. We identify key limitations such as inconsistent reasoning and overlooked visual cues, and suggest future improvements in base model reasoning, reward modeling, and RL robustness against noisy signals.
comment: Technical Report (In Progress); Code released at: https://github.com/TencentARC/SEED-Bench-R1
☆ Policy Gradient for LQR with Domain Randomization
Domain randomization (DR) enables sim-to-real transfer by training controllers on a distribution of simulated environments, with the goal of achieving robust performance in the real world. Although DR is widely used in practice and is often solved using simple policy gradient (PG) methods, understanding of its theoretical guarantees remains limited. Toward addressing this gap, we provide the first convergence analysis of PG methods for domain-randomized linear quadratic regulation (LQR). We show that PG converges globally to the minimizer of a finite-sample approximation of the DR objective under suitable bounds on the heterogeneity of the sampled systems. We also quantify the sample-complexity associated with achieving a small performance gap between the sample-average and population-level objectives. Additionally, we propose and analyze a discount-factor annealing algorithm that obviates the need for an initial jointly stabilizing controller, which may be challenging to find. Empirical results support our theoretical findings and highlight promising directions for future work, including risk-sensitive DR formulations and stochastic PG algorithms.
☆ Effectively Controlling Reasoning Models through Thinking Intervention
Reasoning-enhanced large language models (LLMs) explicitly generate intermediate reasoning steps prior to generating final answers, helping the model excel in complex problem-solving. In this paper, we demonstrate that this emerging generation framework offers a unique opportunity for more fine-grained control over model behavior. We propose Thinking Intervention, a novel paradigm designed to explicitly guide the internal reasoning processes of LLMs by strategically inserting or revising specific thinking tokens. We conduct comprehensive evaluations across multiple tasks, including instruction following on IFEval, instruction hierarchy on SEP, and safety alignment on XSTest and SORRY-Bench. Our results demonstrate that Thinking Intervention significantly outperforms baseline prompting approaches, achieving up to 6.7% accuracy gains in instruction-following scenarios, 15.4% improvements in reasoning about instruction hierarchies, and a 40.0% increase in refusal rates for unsafe prompts using open-source DeepSeek R1 models. Overall, our work opens a promising new research avenue for controlling reasoning LLMs.
☆ Which LIME should I trust? Concepts, Challenges, and Solutions
As neural networks become dominant in essential systems, Explainable Artificial Intelligence (XAI) plays a crucial role in fostering trust and detecting potential misbehavior of opaque models. LIME (Local Interpretable Model-agnostic Explanations) is among the most prominent model-agnostic approaches, generating explanations by approximating the behavior of black-box models around specific instances. Despite its popularity, LIME faces challenges related to fidelity, stability, and applicability to domain-specific problems. Numerous adaptations and enhancements have been proposed to address these issues, but the growing number of developments can be overwhelming, complicating efforts to navigate LIME-related research. To the best of our knowledge, this is the first survey to comprehensively explore and collect LIME's foundational concepts and known limitations. We categorize and compare its various enhancements, offering a structured taxonomy based on intermediate steps and key issues. Our analysis provides a holistic overview of advancements in LIME, guiding future research and helping practitioners identify suitable approaches. Additionally, we provide a continuously updated interactive website (https://patrick-knab.github.io/which-lime-to-trust/), offering a concise and accessible overview of the survey.
comment: Accepted at the 3rd World Conference on eXplainable Artificial Intelligence (XAI 2025)
☆ Sim-and-Real Co-Training: A Simple Recipe for Vision-Based Robotic Manipulation
Large real-world robot datasets hold great potential to train generalist robot models, but scaling real-world human data collection is time-consuming and resource-intensive. Simulation has great potential in supplementing large-scale data, especially with recent advances in generative AI and automated data generation tools that enable scalable creation of robot behavior datasets. However, training a policy solely in simulation and transferring it to the real world often demands substantial human effort to bridge the reality gap. A compelling alternative is to co-train the policy on a mixture of simulation and real-world datasets. Preliminary studies have recently shown this strategy to substantially improve the performance of a policy over one trained on a limited amount of real-world data. Nonetheless, the community lacks a systematic understanding of sim-and-real co-training and what it takes to reap the benefits of simulation data for real-robot learning. This work presents a simple yet effective recipe for utilizing simulation data to solve vision-based robotic manipulation tasks. We derive this recipe from comprehensive experiments that validate the co-training strategy on various simulation and real-world datasets. Using two domains--a robot arm and a humanoid--across diverse tasks, we demonstrate that simulation data can enhance real-world task performance by an average of 38%, even with notable differences between the simulation and real-world data. Videos and additional results can be found at https://co-training.github.io/
comment: Project website: https://co-training.github.io/
☆ SQuat: Subspace-orthogonal KV Cache Quantization
The key-value (KV) cache accelerates LLMs decoding by storing KV tensors from previously generated tokens. It reduces redundant computation at the cost of increased memory usage. To mitigate this overhead, existing approaches compress KV tensors into lower-bit representations; however, quantization errors can accumulate as more tokens are generated, potentially resulting in undesired outputs. In this paper, we introduce SQuat (Subspace-orthogonal KV cache quantization). It first constructs a subspace spanned by query tensors to capture the most critical task-related information. During key tensor quantization, it enforces that the difference between the (de)quantized and original keys remains orthogonal to this subspace, minimizing the impact of quantization errors on the attention mechanism's outputs. SQuat requires no model fine-tuning, no additional calibration dataset for offline learning, and is grounded in a theoretical framework we develop. Through numerical experiments, we show that our method reduces peak memory by 2.17 to 2.82, improves throughput by 2.45 to 3.60, and achieves more favorable benchmark scores than existing KV cache quantization algorithms.
☆ ORAL: Prompting Your Large-Scale LoRAs via Conditional Recurrent Diffusion
Parameter generation has emerged as a novel paradigm for neural network development, offering an alternative to traditional neural network training by synthesizing high-quality model weights directly. In the context of Low-Rank Adaptation (LoRA) for evolving ($\textit{i.e.}$, constantly updated) large language models (LLMs), this approach promises efficient adaptation without costly retraining. However, existing methods face critical limitations in simultaneously achieving scalability and controllability. In this paper, we introduce $\texttt{ORAL}$, a novel $\textbf{conditional recurrent diffusion}$ framework that addresses these challenges. $\texttt{ORAL}$ incorporates a novel conditioning mechanism that integrates model architecture and textual task specifications, enabling the generation of task-specific LoRA parameters that can seamlessly transfer across evolving foundation models. Our approach successfully scales to billions-of-parameter LLMs and maintains controllability. Through extensive experiments across seven language tasks, four vision tasks, and three multimodal tasks using five pre-trained LLMs, we demonstrate that $\texttt{ORAL}$ generates high-quality LoRA parameters that achieve comparable or superior performance to vanilla trained counterparts.
☆ Faster Rates for No-Regret Learning in General Games via Cautious Optimism
We establish the first uncoupled learning algorithm that attains $O(n \log^2 d \log T)$ per-player regret in multi-player general-sum games, where $n$ is the number of players, $d$ is the number of actions available to each player, and $T$ is the number of repetitions of the game. Our results exponentially improve the dependence on $d$ compared to the $O(n\, d \log T)$ regret attainable by Log-Regularized Lifted Optimistic FTRL [Far+22c], and also reduce the dependence on the number of iterations $T$ from $\log^4 T$ to $\log T$ compared to Optimistic Hedge, the previously well-studied algorithm with $O(n \log d \log^4 T)$ regret [DFG21]. Our algorithm is obtained by combining the classic Optimistic Multiplicative Weights Update (OMWU) with an adaptive, non-monotonic learning rate that paces the learning process of the players, making them more cautious when their regret becomes too negative.
comment: Appeared at STOC 2025
☆ Contextual Preference Collaborative Measure Framework Based on Belief System
To reduce the human intervention in the preference measure process,this article proposes a preference collaborative measure framework based on an updated belief system,which is also capable of improving the accuracy and efficiency of preferen-ce measure algorithms.Firstly,the distance of rules and the average internal distance of rulesets are proposed for specifying the relationship between the rules.For discovering the most representative preferences that are common in all users,namely common preference,a algorithm based on average internal distance of ruleset,PRA algorithm,is proposed,which aims to finish the discoveryprocess with minimum information loss rate.Furthermore,the concept of Common belief is proposed to update the belief system,and the common preferences are the evidences of updated belief system.Then,under the belief system,the proposed belief degree and deviation degree are used to determine whether a rule confirms the belief system or not and classify the preference rules into two kinds(generalized or personalized),and eventually filters out Top-K interesting rules relying on belief degree and deviation degree.Based on above,a scalable interestingness calculation framework that can apply various formulas is proposed for accurately calculating interestingness in different conditions.At last,IMCos algorithm and IMCov algorithm are proposed as exemplars to verify the accuracy and efficiency of the framework by using weighted cosine similarity and correlation coefficients as belief degree.In experiments,the proposed algorithms are compared to two state-of-the-art algorithms and the results show that IMCos and IMCov outperform than the other two in most aspects.
comment: in Chinese language
☆ Self-Supervised Pretraining for Aerial Road Extraction
Deep neural networks for aerial image segmentation require large amounts of labeled data, but high-quality aerial datasets with precise annotations are scarce and costly to produce. To address this limitation, we propose a self-supervised pretraining method that improves segmentation performance while reducing reliance on labeled data. Our approach uses inpainting-based pretraining, where the model learns to reconstruct missing regions in aerial images, capturing their inherent structure before being fine-tuned for road extraction. This method improves generalization, enhances robustness to domain shifts, and is invariant to model architecture and dataset choice. Experiments show that our pretraining significantly boosts segmentation accuracy, especially in low-data regimes, making it a scalable solution for aerial image analysis.
☆ NoProp: Training Neural Networks without Back-propagation or Forward-propagation
The canonical deep learning approach for learning requires computing a gradient term at each layer by back-propagating the error signal from the output towards each learnable parameter. Given the stacked structure of neural networks, where each layer builds on the representation of the layer below, this approach leads to hierarchical representations. More abstract features live on the top layers of the model, while features on lower layers are expected to be less abstract. In contrast to this, we introduce a new learning method named NoProp, which does not rely on either forward or backwards propagation. Instead, NoProp takes inspiration from diffusion and flow matching methods, where each layer independently learns to denoise a noisy target. We believe this work takes a first step towards introducing a new family of gradient-free learning methods, that does not learn hierarchical representations -- at least not in the usual sense. NoProp needs to fix the representation at each layer beforehand to a noised version of the target, learning a local denoising process that can then be exploited at inference. We demonstrate the effectiveness of our method on MNIST, CIFAR-10, and CIFAR-100 image classification benchmarks. Our results show that NoProp is a viable learning algorithm which achieves superior accuracy, is easier to use and computationally more efficient compared to other existing back-propagation-free methods. By departing from the traditional gradient based learning paradigm, NoProp alters how credit assignment is done within the network, enabling more efficient distributed learning as well as potentially impacting other characteristics of the learning process.
☆ Sample-Optimal Private Regression in Polynomial Time
We consider the task of privately obtaining prediction error guarantees in ordinary least-squares regression problems with Gaussian covariates (with unknown covariance structure). We provide the first sample-optimal polynomial time algorithm for this task under both pure and approximate differential privacy. We show that any improvement to the sample complexity of our algorithm would violate either statistical-query or information-theoretic lower bounds. Additionally, our algorithm is robust to a small fraction of arbitrary outliers and achieves optimal error rates as a function of the fraction of outliers. In contrast, all prior efficient algorithms either incurred sample complexities with sub-optimal dimension dependence, scaling with the condition number of the covariates, or obtained a polynomially worse dependence on the privacy parameters. Our technical contributions are two-fold: first, we leverage resilience guarantees of Gaussians within the sum-of-squares framework. As a consequence, we obtain efficient sum-of-squares algorithms for regression with optimal robustness rates and sample complexity. Second, we generalize the recent robustness-to-privacy framework [HKMN23, (arXiv:2212.05015)] to account for the geometry induced by the covariance of the input samples. This framework crucially relies on the robust estimators to be sum-of-squares algorithms, and combining the two steps yields a sample-optimal private regression algorithm. We believe our techniques are of independent interest, and we demonstrate this by obtaining an efficient algorithm for covariance-aware mean estimation, with an optimal dependence on the privacy parameters.
☆ A Systematic Evaluation of LLM Strategies for Mental Health Text Analysis: Fine-tuning vs. Prompt Engineering vs. RAG
This study presents a systematic comparison of three approaches for the analysis of mental health text using large language models (LLMs): prompt engineering, retrieval augmented generation (RAG), and fine-tuning. Using LLaMA 3, we evaluate these approaches on emotion classification and mental health condition detection tasks across two datasets. Fine-tuning achieves the highest accuracy (91% for emotion classification, 80% for mental health conditions) but requires substantial computational resources and large training sets, while prompt engineering and RAG offer more flexible deployment with moderate performance (40-68% accuracy). Our findings provide practical insights for implementing LLM-based solutions in mental health applications, highlighting the trade-offs between accuracy, computational requirements, and deployment flexibility.
☆ Evaluating machine learning models for predicting pesticides toxicity to honey bees
Small molecules play a critical role in the biomedical, environmental, and agrochemical domains, each with distinct physicochemical requirements and success criteria. Although biomedical research benefits from extensive datasets and established benchmarks, agrochemical data remain scarce, particularly with respect to species-specific toxicity. This work focuses on ApisTox, the most comprehensive dataset of experimentally validated chemical toxicity to the honey bee (\textit{Apis mellifera}), an ecologically vital pollinator. We evaluate ApisTox using a diverse suite of machine learning approaches, including molecular fingerprints, graph kernels, and graph neural networks, as well as pretrained models. Comparative analysis with medicinal datasets from the MoleculeNet benchmark reveals that ApisTox represents a distinct chemical space. Performance degradation on non-medicinal datasets, such as ApisTox, demonstrates their limited generalizability of current state-of-the-art algorithms trained solely on biomedical data. Our study highlights the need for more diverse datasets and for targeted model development geared toward the agrochemical domain.
☆ Solving the Best Subset Selection Problem via Suboptimal Algorithms
Best subset selection in linear regression is well known to be nonconvex and computationally challenging to solve, as the number of possible subsets grows rapidly with increasing dimensionality of the problem. As a result, finding the global optimal solution via an exact optimization method for a problem with dimensions of 1000s may take an impractical amount of CPU time. This suggests the importance of finding suboptimal procedures that can provide good approximate solutions using much less computational effort than exact methods. In this work, we introduce a new procedure and compare it with other popular suboptimal algorithms to solve the best subset selection problem. Extensive computational experiments using synthetic and real data have been performed. The results provide insights into the performance of these methods in different data settings. The new procedure is observed to be a competitive suboptimal algorithm for solving the best subset selection problem for high-dimensional data.
☆ Fair Dynamic Spectrum Access via Fully Decentralized Multi-Agent Reinforcement Learning
We consider a decentralized wireless network with several source-destination pairs sharing a limited number of orthogonal frequency bands. Sources learn to adapt their transmissions (specifically, their band selection strategy) over time, in a decentralized manner, without sharing information with each other. Sources can only observe the outcome of their own transmissions (i.e., success or collision), having no prior knowledge of the network size or of the transmission strategy of other sources. The goal of each source is to maximize their own throughput while striving for network-wide fairness. We propose a novel fully decentralized Reinforcement Learning (RL)-based solution that achieves fairness without coordination. The proposed Fair Share RL (FSRL) solution combines: (i) state augmentation with a semi-adaptive time reference; (ii) an architecture that leverages risk control and time difference likelihood; and (iii) a fairness-driven reward structure. We evaluate FSRL in more than 50 network settings with different number of agents, different amounts of available spectrum, in the presence of jammers, and in an ad-hoc setting. Simulation results suggest that, when we compare FSRL with a common baseline RL algorithm from the literature, FSRL can be up to 89.0% fairer (as measured by Jain's fairness index) in stringent settings with several sources and a single frequency band, and 48.1% fairer on average.
comment: To appear in WiOpt 2025
☆ Open-Reasoner-Zero: An Open Source Approach to Scaling Up Reinforcement Learning on the Base Model
We introduce Open-Reasoner-Zero, the first open source implementation of large-scale reasoning-oriented RL training focusing on scalability, simplicity and accessibility. Through extensive experiments, we demonstrate that a minimalist approach, vanilla PPO with GAE ($\lambda=1$, $\gamma=1$) and straightforward rule-based rewards, without any KL regularization, is sufficient to scale up both response length and benchmark performance, similar to the phenomenon observed in DeepSeek-R1-Zero. Using the same base model as DeepSeek-R1-Zero-Qwen-32B, our implementation achieves superior performance on AIME2024, MATH500, and the GPQA Diamond benchmark while demonstrating remarkable efficiency -- requiring only a tenth of the training steps, compared to DeepSeek-R1-Zero pipeline. In the spirit of open source, we release our source code, parameter settings, training data, and model weights across various sizes.
☆ Value of Information-based Deceptive Path Planning Under Adversarial Interventions
Existing methods for deceptive path planning (DPP) address the problem of designing paths that conceal their true goal from a passive, external observer. Such methods do not apply to problems where the observer has the ability to perform adversarial interventions to impede the path planning agent. In this paper, we propose a novel Markov decision process (MDP)-based model for the DPP problem under adversarial interventions and develop new value of information (VoI) objectives to guide the design of DPP policies. Using the VoI objectives we propose, path planning agents deceive the adversarial observer into choosing suboptimal interventions by selecting trajectories that are of low informational value to the observer. Leveraging connections to the linear programming theory for MDPs, we derive computationally efficient solution methods for synthesizing policies for performing DPP under adversarial interventions. In our experiments, we illustrate the effectiveness of the proposed solution method in achieving deceptiveness under adversarial interventions and demonstrate the superior performance of our approach to both existing DPP methods and conservative path planning approaches on illustrative gridworld problems.
comment: 10 pages, 4 figures
☆ Evaluating and Designing Sparse Autoencoders by Approximating Quasi-Orthogonality
Sparse autoencoders (SAEs) have emerged as a workhorse of modern mechanistic interpretability, but leading SAE approaches with top-$k$ style activation functions lack theoretical grounding for selecting the hyperparameter $k$. SAEs are based on the linear representation hypothesis (LRH), which assumes that the representations of large language models (LLMs) are linearly encoded, and the superposition hypothesis (SH), which states that there can be more features in the model than its dimensionality. We show that, based on the formal definitions of the LRH and SH, the magnitude of sparse feature vectors (the latent representations learned by SAEs of the dense embeddings of LLMs) can be approximated using their corresponding dense vector with a closed-form error bound. To visualize this, we propose the ZF plot, which reveals a previously unknown relationship between LLM hidden embeddings and SAE feature vectors, allowing us to make the first empirical measurement of the extent to which feature vectors of pre-trained SAEs are over- or under-activated for a given input. Correspondingly, we introduce Approximate Feature Activation (AFA), which approximates the magnitude of the ground-truth sparse feature vector, and propose a new evaluation metric derived from AFA to assess the alignment between inputs and activations. We also leverage AFA to introduce a novel SAE architecture, the top-AFA SAE, leading to SAEs that: (a) are more in line with theoretical justifications; and (b) obviate the need to tune SAE sparsity hyperparameters. Finally, we empirically demonstrate that top-AFA SAEs achieve reconstruction loss comparable to that of state-of-the-art top-k SAEs, without requiring the hyperparameter $k$ to be tuned. Our code is available at: https://github.com/SewoongLee/top-afa-sae.
☆ Learning Velocity and Acceleration: Self-Supervised Motion Consistency for Pedestrian Trajectory Prediction
Understanding human motion is crucial for accurate pedestrian trajectory prediction. Conventional methods typically rely on supervised learning, where ground-truth labels are directly optimized against predicted trajectories. This amplifies the limitations caused by long-tailed data distributions, making it difficult for the model to capture abnormal behaviors. In this work, we propose a self-supervised pedestrian trajectory prediction framework that explicitly models position, velocity, and acceleration. We leverage velocity and acceleration information to enhance position prediction through feature injection and a self-supervised motion consistency mechanism. Our model hierarchically injects velocity features into the position stream. Acceleration features are injected into the velocity stream. This enables the model to predict position, velocity, and acceleration jointly. From the predicted position, we compute corresponding pseudo velocity and acceleration, allowing the model to learn from data-generated pseudo labels and thus achieve self-supervised learning. We further design a motion consistency evaluation strategy grounded in physical principles; it selects the most reasonable predicted motion trend by comparing it with historical dynamics and uses this trend to guide and constrain trajectory generation. We conduct experiments on the ETH-UCY and Stanford Drone datasets, demonstrating that our method achieves state-of-the-art performance on both datasets.
☆ Enhancing Image Resolution of Solar Magnetograms: A Latent Diffusion Model Approach
The spatial properties of the solar magnetic field are crucial to decoding the physical processes in the solar interior and their interplanetary effects. However, observations from older instruments, such as the Michelson Doppler Imager (MDI), have limited spatial or temporal resolution, which hinders the ability to study small-scale solar features in detail. Super resolving these older datasets is essential for uniform analysis across different solar cycles, enabling better characterization of solar flares, active regions, and magnetic network dynamics. In this work, we introduce a novel diffusion model approach for Super-Resolution and we apply it to MDI magnetograms to match the higher-resolution capabilities of the Helioseismic and Magnetic Imager (HMI). By training a Latent Diffusion Model (LDM) with residuals on downscaled HMI data and fine-tuning it with paired MDI/HMI data, we can enhance the resolution of MDI observations from 2"/pixel to 0.5"/pixel. We evaluate the quality of the reconstructed images by means of classical metrics (e.g., PSNR, SSIM, FID and LPIPS) and we check if physical properties, such as the unsigned magnetic flux or the size of an active region, are preserved. We compare our model with different variations of LDM and Denoising Diffusion Probabilistic models (DDPMs), but also with two deterministic architectures already used in the past for performing the Super-Resolution task. Furthermore, we show with an analysis in the Fourier domain that the LDM with residuals can resolve features smaller than 2", and due to the probabilistic nature of the LDM, we can asses their reliability, in contrast with the deterministic models. Future studies aim to super-resolve the temporal scale of the solar MDI instrument so that we can also have a better overview of the dynamics of the old events.
comment: Accepted for publication on A&A
☆ New Statistical Framework for Extreme Error Probability in High-Stakes Domains for Reliable Machine Learning
Machine learning is vital in high-stakes domains, yet conventional validation methods rely on averaging metrics like mean squared error (MSE) or mean absolute error (MAE), which fail to quantify extreme errors. Worst-case prediction failures can have substantial consequences, but current frameworks lack statistical foundations for assessing their probability. In this work a new statistical framework, based on Extreme Value Theory (EVT), is presented that provides a rigorous approach to estimating worst-case failures. Applying EVT to synthetic and real-world datasets, this method is shown to enable robust estimation of catastrophic failure probabilities, overcoming the fundamental limitations of standard cross-validation. This work establishes EVT as a fundamental tool for assessing model reliability, ensuring safer AI deployment in new technologies where uncertainty quantification is central to decision-making or scientific analysis.
☆ Advances in Continual Graph Learning for Anti-Money Laundering Systems: A Comprehensive Review
Financial institutions are required by regulation to report suspicious financial transactions related to money laundering. Therefore, they need to constantly monitor vast amounts of incoming and outgoing transactions. A particular challenge in detecting money laundering is that money launderers continuously adapt their tactics to evade detection. Hence, detection methods need constant fine-tuning. Traditional machine learning models suffer from catastrophic forgetting when fine-tuning the model on new data, thereby limiting their effectiveness in dynamic environments. Continual learning methods may address this issue and enhance current anti-money laundering (AML) practices, by allowing models to incorporate new information while retaining prior knowledge. Research on continual graph learning for AML, however, is still scarce. In this review, we critically evaluate state-of-the-art continual graph learning approaches for AML applications. We categorise methods into replay-based, regularization-based, and architecture-based strategies within the graph neural network (GNN) framework, and we provide in-depth experimental evaluations on both synthetic and real-world AML data sets that showcase the effect of the different hyperparameters. Our analysis demonstrates that continual learning improves model adaptability and robustness in the face of extreme class imbalances and evolving fraud patterns. Finally, we outline key challenges and propose directions for future research.
☆ Spatio-temporal Prediction of Fine-Grained Origin-Destination Matrices with Applications in Ridesharing
Accurate spatial-temporal prediction of network-based travelers' requests is crucial for the effective policy design of ridesharing platforms. Having knowledge of the total demand between various locations in the upcoming time slots enables platforms to proactively prepare adequate supplies, thereby increasing the likelihood of fulfilling travelers' requests and redistributing idle drivers to areas with high potential demand to optimize the global supply-demand equilibrium. This paper delves into the prediction of Origin-Destination (OD) demands at a fine-grained spatial level, especially when confronted with an expansive set of local regions. While this task holds immense practical value, it remains relatively unexplored within the research community. To fill this gap, we introduce a novel prediction model called OD-CED, which comprises an unsupervised space coarsening technique to alleviate data sparsity and an encoder-decoder architecture to capture both semantic and geographic dependencies. Through practical experimentation, OD-CED has demonstrated remarkable results. It achieved an impressive reduction of up to 45% reduction in root-mean-square error and 60% in weighted mean absolute percentage error over traditional statistical methods when dealing with OD matrices exhibiting a sparsity exceeding 90%.
☆ GPU-centric Communication Schemes for HPC and ML Applications
Compute nodes on modern heterogeneous supercomputing systems comprise CPUs, GPUs, and high-speed network interconnects (NICs). Parallelization is identified as a technique for effectively utilizing these systems to execute scalable simulation and deep learning workloads. The resulting inter-process communication from the distributed execution of these parallel workloads is one of the key factors contributing to its performance bottleneck. Most programming models and runtime systems enabling the communication requirements on these systems support GPU-aware communication schemes that move the GPU-attached communication buffers in the application directly from the GPU to the NIC without staging through the host memory. A CPU thread is required to orchestrate the communication operations even with support for such GPU-awareness. This survey discusses various available GPU-centric communication schemes that move the control path of the communication operations from the CPU to the GPU. This work presents the need for the new communication schemes, various GPU and NIC capabilities required to implement the schemes, and the potential use-cases addressed. Based on these discussions, challenges involved in supporting the exhibited GPU-centric communication schemes are discussed.
comment: A surveyor on Communication Schemes for Distributed HPC and ML Applications. Article in consideration for journal publication
☆ MB-ORES: A Multi-Branch Object Reasoner for Visual Grounding in Remote Sensing
We propose a unified framework that integrates object detection (OD) and visual grounding (VG) for remote sensing (RS) imagery. To support conventional OD and establish an intuitive prior for VG task, we fine-tune an open-set object detector using referring expression data, framing it as a partially supervised OD task. In the first stage, we construct a graph representation of each image, comprising object queries, class embeddings, and proposal locations. Then, our task-aware architecture processes this graph to perform the VG task. The model consists of: (i) a multi-branch network that integrates spatial, visual, and categorical features to generate task-aware proposals, and (ii) an object reasoning network that assigns probabilities across proposals, followed by a soft selection mechanism for final referring object localization. Our model demonstrates superior performance on the OPT-RSVG and DIOR-RSVG datasets, achieving significant improvements over state-of-the-art methods while retaining classical OD capabilities. The code will be available in our repository: \url{https://github.com/rd20karim/MB-ORES}.
☆ Data-driven construction of a generalized kinetic collision operator from molecular dynamics
We introduce a data-driven approach to learn a generalized kinetic collision operator directly from molecular dynamics. Unlike the conventional (e.g., Landau) models, the present operator takes an anisotropic form that accounts for a second energy transfer arising from the collective interactions between the pair of collision particles and the environment. Numerical results show that preserving the broadly overlooked anisotropic nature of the collision energy transfer is crucial for predicting the plasma kinetics with non-negligible correlations, where the Landau model shows limitations.
☆ A Comparison of Parametric Dynamic Mode Decomposition Algorithms for Thermal-Hydraulics Applications
In recent years, algorithms aiming at learning models from available data have become quite popular due to two factors: 1) the significant developments in Artificial Intelligence techniques and 2) the availability of large amounts of data. Nevertheless, this topic has already been addressed by methodologies belonging to the Reduced Order Modelling framework, of which perhaps the most famous equation-free technique is Dynamic Mode Decomposition. This algorithm aims to learn the best linear model that represents the physical phenomena described by a time series dataset: its output is a best state operator of the underlying dynamical system that can be used, in principle, to advance the original dataset in time even beyond its span. However, in its standard formulation, this technique cannot deal with parametric time series, meaning that a different linear model has to be derived for each parameter realization. Research on this is ongoing, and some versions of a parametric Dynamic Mode Decomposition already exist. This work contributes to this research field by comparing the different algorithms presently deployed and assessing their advantages and shortcomings compared to each other. To this aim, three different thermal-hydraulics problems are considered: two benchmark 'flow over cylinder' test cases at diverse Reynolds numbers, whose datasets are, respectively, obtained with the FEniCS finite element solver and retrieved from the CFDbench dataset, and the DYNASTY experimental facility operating at Politecnico di Milano, which studies the natural circulation established by internally heated fluids for Generation IV nuclear applications, whose dataset was generated using the RELAP5 nodal solver.
☆ Many-to-Many Matching via Sparsity Controlled Optimal Transport
Many-to-many matching seeks to match multiple points in one set and multiple points in another set, which is a basis for a wide range of data mining problems. It can be naturally recast in the framework of Optimal Transport (OT). However, existing OT methods either lack the ability to accomplish many-to-many matching or necessitate careful tuning of a regularization parameter to achieve satisfactory results. This paper proposes a novel many-to-many matching method to explicitly encode many-to-many constraints while preventing the degeneration into one-to-one matching. The proposed method consists of the following two components. The first component is the matching budget constraints on each row and column of a transport plan, which specify how many points can be matched to a point at most. The second component is the deformed $q$-entropy regularization, which encourages a point to meet the matching budget maximally. While the deformed $q$-entropy was initially proposed to sparsify a transport plan, we employ it to avoid the degeneration into one-to-one matching. We optimize the objective via a penalty algorithm, which is efficient and theoretically guaranteed to converge. Experimental results on various tasks demonstrate that the proposed method achieves good performance by gleaning meaningful many-to-many matchings.
☆ Traffic Engineering in Large-scale Networks with Generalizable Graph Neural Networks
Traffic engineering (TE) in large-scale computer networks has become a fundamental yet challenging problem, owing to the swift growth of global-scale cloud wide-area networks or backbone low-Earth-orbit satellite constellations. To address the scalability issue of traditional TE algorithms, learning-based approaches have been proposed, showing potential of significant efficiency improvement over state-of-the-art methods. Nevertheless, the intrinsic limitations of existing learning-based methods hinder their practical application: they are not generalizable across diverse topologies and network conditions, incur excessive training overhead, and do not respect link capacities by default. This paper proposes TELGEN, a novel TE algorithm that learns to solve TE problems efficiently in large-scale networks, while achieving superior generalizability across diverse network conditions. TELGEN is based on the novel idea of transforming the problem of "predicting the optimal TE solution" into "predicting the optimal TE algorithm", which enables TELGEN to learn and efficiently approximate the end-to-end solving process of classical optimal TE algorithms. The learned algorithm is agnostic to the exact network topology or traffic patterns, and can efficiently solve TE problems given arbitrary inputs and generalize well to unseen topologies and demands. We trained and evaluated TELGEN on random and real-world networks with up to 5000 nodes and 106 links. TELGEN achieved less than 3% optimality gap while ensuring feasibility in all cases, even when the test network had up to 20x more nodes than the largest in training. It also saved up to 84% solving time than classical optimal solver, and could reduce training time per epoch and solving time by 2-4 orders of magnitude than latest learning algorithms on the largest networks.
☆ NeuRaLaTeX: A machine learning library written in pure LaTeX
In this paper, we introduce NeuRaLaTeX, which we believe to be the first deep learning library written entirely in LaTeX. As part of your LaTeX document you can specify the architecture of a neural network and its loss functions, define how to generate or load training data, and specify training hyperparameters and experiments. When the document is compiled, the LaTeX compiler will generate or load training data, train the network, run experiments, and generate figures. This paper generates a random 100 point spiral dataset, trains a two layer MLP on it, evaluates on a different random spiral dataset, produces plots and tables of results. The paper took 48 hours to compile and the entire source code for NeuRaLaTeX is contained within the source code of the paper. We propose two new metrics: the Written In Latex (WIL) metric measures the proportion of a machine learning library that is written in pure LaTeX, while the Source Code Of Method in Source Code of Paper (SCOMISCOP) metric measures the proportion of a paper's implementation that is contained within the paper source. We are state-of-the-art for both metrics, outperforming the ResNet and Transformer papers, as well as the PyTorch and Tensorflow libraries. Source code, documentation, videos, crypto scams and an invitation to invest in the commercialisation of NeuRaLaTeX are available at https://www.neuralatex.com
☆ Ride-Sourcing Vehicle Rebalancing with Service Accessibility Guarantees via Constrained Mean-Field Reinforcement Learning
The rapid expansion of ride-sourcing services such as Uber, Lyft, and Didi Chuxing has fundamentally reshaped urban transportation by offering flexible, on-demand mobility via mobile applications. Despite their convenience, these platforms confront significant operational challenges, particularly vehicle rebalancing - the strategic repositioning of thousands of vehicles to address spatiotemporal mismatches in supply and demand. Inadequate rebalancing results in prolonged rider waiting times, inefficient vehicle utilization, and inequitable distribution of services, leading to disparities in driver availability and income. To tackle these complexities, we introduce scalable continuous-state mean-field control (MFC) and reinforcement learning (MFRL) models that explicitly represent each vehicle's precise location and employ continuous repositioning actions guided by the distribution of other vehicles. To ensure equitable service distribution, an accessibility constraint is integrated within our optimal control formulation, balancing operational efficiency with equitable access to the service across geographic regions. Our approach acknowledges realistic conditions, including inherent stochasticity in transitions, the simultaneous occurrence of vehicle-rider matching, vehicles' rebalancing and cruising, and variability in rider behaviors. Crucially, we relax the traditional mean-field assumption of equal supply-demand volume, better reflecting practical scenarios. Extensive empirical evaluation using real-world data-driven simulation of Shenzhen demonstrates the real-time efficiency and robustness of our approach at the scale of tens of thousands of vehicles. The code is available at https://github.com/mjusup1501/mf-vehicle-rebalancing.
comment: 30 pages, 12 figures
☆ Predicting Targeted Therapy Resistance in Non-Small Cell Lung Cancer Using Multimodal Machine Learning
Lung cancer is the primary cause of cancer death globally, with non-small cell lung cancer (NSCLC) emerging as its most prevalent subtype. Among NSCLC patients, approximately 32.3% have mutations in the epidermal growth factor receptor (EGFR) gene. Osimertinib, a third-generation EGFR-tyrosine kinase inhibitor (TKI), has demonstrated remarkable efficacy in the treatment of NSCLC patients with activating and T790M resistance EGFR mutations. Despite its established efficacy, drug resistance poses a significant challenge for patients to fully benefit from osimertinib. The absence of a standard tool to accurately predict TKI resistance, including that of osimertinib, remains a critical obstacle. To bridge this gap, in this study, we developed an interpretable multimodal machine learning model designed to predict patient resistance to osimertinib among late-stage NSCLC patients with activating EGFR mutations, achieving a c-index of 0.82 on a multi-institutional dataset. This machine learning model harnesses readily available data routinely collected during patient visits and medical assessments to facilitate precision lung cancer management and informed treatment decisions. By integrating various data types such as histology images, next generation sequencing (NGS) data, demographics data, and clinical records, our multimodal model can generate well-informed recommendations. Our experiment results also demonstrated the superior performance of the multimodal model over single modality models (c-index 0.82 compared with 0.75 and 0.77), thus underscoring the benefit of combining multiple modalities in patient outcome prediction.
☆ LLM4FS: Leveraging Large Language Models for Feature Selection and How to Improve It
Recent advances in large language models (LLMs) have provided new opportunities for decision-making, particularly in the task of automated feature selection. In this paper, we first comprehensively evaluate LLM-based feature selection methods, covering the state-of-the-art DeepSeek-R1, GPT-o3-mini, and GPT-4.5. Then, we propose a novel hybrid strategy called LLM4FS that integrates LLMs with traditional data-driven methods. Specifically, input data samples into LLMs, and directly call traditional data-driven techniques such as random forest and forward sequential selection. Notably, our analysis reveals that the hybrid strategy leverages the contextual understanding of LLMs and the high statistical reliability of traditional data-driven methods to achieve excellent feature selection performance, even surpassing LLMs and traditional data-driven methods. Finally, we point out the limitations of its application in decision-making.
☆ Learning a Canonical Basis of Human Preferences from Binary Ratings
Recent advances in generative AI have been driven by alignment techniques such as reinforcement learning from human feedback (RLHF). RLHF and related techniques typically involve constructing a dataset of binary or ranked choice human preferences and subsequently fine-tuning models to align with these preferences. This paper shifts the focus to understanding the preferences encoded in such datasets and identifying common human preferences. We find that a small subset of 21 preference categories (selected from a set of nearly 5,000 distinct preferences) captures >89% of preference variation across individuals. This small set of preferences is analogous to a canonical basis of human preferences, similar to established findings that characterize human variation in psychology or facial recognition studies. Through both synthetic and empirical evaluations, we confirm that our low-rank, canonical set of human preferences generalizes across the entire dataset and within specific topics. We further demonstrate our preference basis' utility in model evaluation, where our preference categories offer deeper insights into model alignment, and in model training, where we show that fine-tuning on preference-defined subsets successfully aligns the model accordingly.
comment: 25 pages, 11 figures
☆ Reinforcement Learning for Safe Autonomous Two Device Navigation of Cerebral Vessels in Mechanical Thrombectomy
Purpose: Autonomous systems in mechanical thrombectomy (MT) hold promise for reducing procedure times, minimizing radiation exposure, and enhancing patient safety. However, current reinforcement learning (RL) methods only reach the carotid arteries, are not generalizable to other patient vasculatures, and do not consider safety. We propose a safe dual-device RL algorithm that can navigate beyond the carotid arteries to cerebral vessels. Methods: We used the Simulation Open Framework Architecture to represent the intricacies of cerebral vessels, and a modified Soft Actor-Critic RL algorithm to learn, for the first time, the navigation of micro-catheters and micro-guidewires. We incorporate patient safety metrics into our reward function by integrating guidewire tip forces. Inverse RL is used with demonstrator data on 12 patient-specific vascular cases. Results: Our simulation demonstrates successful autonomous navigation within unseen cerebral vessels, achieving a 96% success rate, 7.0s procedure time, and 0.24 N mean forces, well below the proposed 1.5 N vessel rupture threshold. Conclusion: To the best of our knowledge, our proposed autonomous system for MT two-device navigation reaches cerebral vessels, considers safety, and is generalizable to unseen patient-specific cases for the first time. We envisage future work will extend the validation to vasculatures of different complexity and on in vitro models. While our contributions pave the way towards deploying agents in clinical settings, safety and trustworthiness will be crucial elements to consider when proposing new methodology.
☆ Graph Neural Network-Based Predictive Modeling for Robotic Plaster Printing
This work proposes a Graph Neural Network (GNN) modeling approach to predict the resulting surface from a particle based fabrication process. The latter consists of spray-based printing of cementitious plaster on a wall and is facilitated with the use of a robotic arm. The predictions are computed using the robotic arm trajectory features, such as position, velocity and direction, as well as the printing process parameters. The proposed approach, based on a particle representation of the wall domain and the end effector, allows for the adoption of a graph-based solution. The GNN model consists of an encoder-processor-decoder architecture and is trained using data from laboratory tests, while the hyperparameters are optimized by means of a Bayesian scheme. The aim of this model is to act as a simulator of the printing process, and ultimately used for the generation of the robotic arm trajectory and the optimization of the printing parameters, towards the materialization of an autonomous plastering process. The performance of the proposed model is assessed in terms of the prediction error against unseen ground truth data, which shows its generality in varied scenarios, as well as in comparison with the performance of an existing benchmark model. The results demonstrate a significant improvement over the benchmark model, with notably better performance and enhanced error scaling across prediction steps.
☆ It's a (Blind) Match! Towards Vision-Language Correspondence without Parallel Data CVPR 2025
The platonic representation hypothesis suggests that vision and language embeddings become more homogeneous as model and dataset sizes increase. In particular, pairwise distances within each modality become more similar. This suggests that as foundation models mature, it may become possible to match vision and language embeddings in a fully unsupervised fashion, i.e. without parallel data. We present the first feasibility study, and investigate conformity of existing vision and language foundation models in the context of unsupervised, or "blind", matching. First, we formulate unsupervised matching as a quadratic assignment problem and introduce a novel heuristic that outperforms previous solvers. We also develop a technique to find optimal matching problems, for which a non-trivial match is very likely. Second, we conduct an extensive study deploying a range of vision and language models on four datasets. Our analysis reveals that for many problem instances, vision and language representations can be indeed matched without supervision. This finding opens up the exciting possibility of embedding semantic knowledge into other modalities virtually annotation-free. As a proof of concept, we showcase an unsupervised classifier, which achieves non-trivial classification accuracy without any image-text annotation.
comment: Accepted to CVPR 2025, Project page: https://dominik-schnaus.github.io/itsamatch/
☆ CTSketch: Compositional Tensor Sketching for Scalable Neurosymbolic Learning
Many computational tasks benefit from being formulated as the composition of neural networks followed by a discrete symbolic program. The goal of neurosymbolic learning is to train the neural networks using only end-to-end input-output labels of the composite. We introduce CTSketch, a novel, scalable neurosymbolic learning algorithm. CTSketch uses two techniques to improve the scalability of neurosymbolic inference: decompose the symbolic program into sub-programs and summarize each sub-program with a sketched tensor. This strategy allows us to approximate the output distribution of the program with simple tensor operations over the input distributions and summaries. We provide theoretical insight into the maximum error of the approximation. Furthermore, we evaluate CTSketch on many benchmarks from the neurosymbolic literature, including some designed for evaluating scalability. Our results show that CTSketch pushes neurosymbolic learning to new scales that have previously been unattainable by obtaining high accuracy on tasks involving over one thousand inputs.
comment: 15 pages, 6 figures
☆ IMPACT: A Generic Semantic Loss for Multimodal Medical Image Registration
Image registration is fundamental in medical imaging, enabling precise alignment of anatomical structures for diagnosis, treatment planning, image-guided treatment or longitudinal monitoring. This work introduces IMPACT (Image Metric with Pretrained model-Agnostic Comparison for Transmodality registration), a generic semantic similarity metric designed for seamless integration into diverse image registration frameworks (such as Elastix and Voxelmorph). It compares deep learning-based features extracted from medical images without requiring task-specific training, ensuring broad applicability across various modalities. By leveraging the features of the large-scale pretrained TotalSegmentator models and the ability to integrate Segment Anything Model (SAM) and other large-scale segmentation networks, this approach offers significant advantages. It provides robust, scalable, and efficient solutions for multimodal image registration. The IMPACT loss was evaluated on five challenging registration tasks involving thoracic CT/CBCT, and pelvic MR/CT datasets. Quantitative metrics, such as Target Registration Error and Dice Similarity Coefficient, demonstrated significant improvements in anatomical alignment compared to baseline methods. Qualitative analyses further confirmed the increased robustness of the proposed metric in the face of noise, artifacts, and modality variations. IMPACT's versatility and efficiency make it a valuable tool for advancing registration performance in clinical and research applications, addressing critical challenges in multimodal medical imaging.
comment: Submitted to IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI). This is a preprint version and has not been peer-reviewed
☆ Inductive Graph Representation Learning with Quantum Graph Neural Networks
Quantum Graph Neural Networks (QGNNs) present a promising approach for combining quantum computing with graph-structured data processing. While classical Graph Neural Networks (GNNs) are renowned for their scalability and robustness, existing QGNNs often lack flexibility due to graph-specific quantum circuit designs, limiting their applicability to a narrower range of graph-structured problems, falling short of real-world scenarios. To address these limitations, we propose a versatile QGNN framework inspired by the classical GraphSAGE approach, utilizing quantum models as aggregators. In this work, we integrate established techniques for inductive representation learning on graphs with parametrized quantum convolutional and pooling layers, effectively bridging classical and quantum paradigms. The convolutional layer is flexible, enabling tailored designs for specific problems. Benchmarked on a node regression task with the QM9 dataset, we demonstrate that our framework successfully models a non-trivial molecular dataset, achieving performance comparable to classical GNNs. In particular, we show that our quantum approach exhibits robust generalization across molecules with varying numbers of atoms without requiring circuit modifications, slightly outperforming classical GNNs. Furthermore, we numerically investigate the scalability of the QGNN framework. Specifically, we demonstrate the absence of barren plateaus in our architecture as the number of qubits increases, suggesting that the proposed quantum model can be extended to handle larger and more complex graph-based problems effectively.
comment: 18 pages, 6 figures
☆ Level the Level: Balancing Game Levels for Asymmetric Player Archetypes With Reinforcement Learning
Balancing games, especially those with asymmetric multiplayer content, requires significant manual effort and extensive human playtesting during development. For this reason, this work focuses on generating balanced levels tailored to asymmetric player archetypes, where the disparity in abilities is balanced entirely through the level design. For instance, while one archetype may have an advantage over another, both should have an equal chance of winning. We therefore conceptualize game balancing as a procedural content generation problem and build on and extend a recently introduced method that uses reinforcement learning to balance tile-based game levels. We evaluate the method on four different player archetypes and demonstrate its ability to balance a larger proportion of levels compared to two baseline approaches. Furthermore, our results indicate that as the disparity between player archetypes increases, the required number of training steps grows, while the model's accuracy in achieving balance decreases.
comment: Accepted at the ACM International Conference on the Foundations of Digital Games (FDG) 2025
☆ New universal operator approximation theorem for encoder-decoder architectures (Preprint)
Motivated by the rapidly growing field of mathematics for operator approximation with neural networks, we present a novel universal operator approximation theorem for a broad class of encoder-decoder architectures. In this study, we focus on approximating continuous operators in $\mathcal{C}(\mathcal{X}, \mathcal{Y})$, where $\mathcal{X}$ and $\mathcal{Y}$ are infinite-dimensional normed or metric spaces, and we consider uniform convergence on compact subsets of $\mathcal{X}$. Unlike standard results in the operator learning literature, we investigate the case where the approximating operator sequence can be chosen independently of the compact sets. Taking a topological perspective, we analyze different types of operator approximation and show that compact-set-independent approximation is a strictly stronger property in most relevant operator learning frameworks. To establish our results, we introduce a new approximation property tailored to encoder-decoder architectures, which enables us to prove a universal operator approximation theorem ensuring uniform convergence on every compact subset. This result unifies and extends existing universal operator approximation theorems for various encoder-decoder architectures, including classical DeepONets, BasisONets, special cases of MIONets, architectures based on frames and other related approaches.
comment: 34 pages
☆ Controlled Latent Diffusion Models for 3D Porous Media Reconstruction
Three-dimensional digital reconstruction of porous media presents a fundamental challenge in geoscience, requiring simultaneous resolution of fine-scale pore structures while capturing representative elementary volumes. We introduce a computational framework that addresses this challenge through latent diffusion models operating within the EDM framework. Our approach reduces dimensionality via a custom variational autoencoder trained in binary geological volumes, improving efficiency and also enabling the generation of larger volumes than previously possible with diffusion models. A key innovation is our controlled unconditional sampling methodology, which enhances distribution coverage by first sampling target statistics from their empirical distributions, then generating samples conditioned on these values. Extensive testing on four distinct rock types demonstrates that conditioning on porosity - a readily computable statistic - is sufficient to ensure a consistent representation of multiple complex properties, including permeability, two-point correlation functions, and pore size distributions. The framework achieves better generation quality than pixel-space diffusion while enabling significantly larger volume reconstruction (256-cube voxels) with substantially reduced computational requirements, establishing a new state-of-the-art for digital rock physics applications.
comment: 58 pages
☆ Riemannian Multiplicative Update for Sparse Simplex constraint using oblique rotation manifold
We propose a new manifold optimization method to solve low-rank problems with sparse simplex constraints (variables are simultaneous nonnegativity, sparsity, and sum-to-1) that are beneficial in applications. The proposed approach exploits oblique rotation manifolds, rewrite the problem, and introduce a new Riemannian optimization method. Experiments on synthetic datasets compared to the standard Euclidean method show the effectiveness of the proposed method.
comment: 8 pages, 1 figure
☆ Physics-informed neural networks for hidden boundary detection and flow field reconstruction
Simultaneously detecting hidden solid boundaries and reconstructing flow fields from sparse observations poses a significant inverse challenge in fluid mechanics. This study presents a physics-informed neural network (PINN) framework designed to infer the presence, shape, and motion of static or moving solid boundaries within a flow field. By integrating a body fraction parameter into the governing equations, the model enforces no-slip/no-penetration boundary conditions in solid regions while preserving conservation laws of fluid dynamics. Using partial flow field data, the method simultaneously reconstructs the unknown flow field and infers the body fraction distribution, thereby revealing solid boundaries. The framework is validated across diverse scenarios, including incompressible Navier-Stokes and compressible Euler flows, such as steady flow past a fixed cylinder, an inline oscillating cylinder, and subsonic flow over an airfoil. The results demonstrate accurate detection of hidden boundaries, reconstruction of missing flow data, and estimation of trajectories and velocities of a moving body. Further analysis examines the effects of data sparsity, velocity-only measurements, and noise on inference accuracy. The proposed method exhibits robustness and versatility, highlighting its potential for applications when only limited experimental or numerical data are available.
comment: 21 pages, 17 figures
☆ From Colors to Classes: Emergence of Concepts in Vision Transformers
Vision Transformers (ViTs) are increasingly utilized in various computer vision tasks due to their powerful representation capabilities. However, it remains understudied how ViTs process information layer by layer. Numerous studies have shown that convolutional neural networks (CNNs) extract features of increasing complexity throughout their layers, which is crucial for tasks like domain adaptation and transfer learning. ViTs, lacking the same inductive biases as CNNs, can potentially learn global dependencies from the first layers due to their attention mechanisms. Given the increasing importance of ViTs in computer vision, there is a need to improve the layer-wise understanding of ViTs. In this work, we present a novel, layer-wise analysis of concepts encoded in state-of-the-art ViTs using neuron labeling. Our findings reveal that ViTs encode concepts with increasing complexity throughout the network. Early layers primarily encode basic features such as colors and textures, while later layers represent more specific classes, including objects and animals. As the complexity of encoded concepts increases, the number of concepts represented in each layer also rises, reflecting a more diverse and specific set of features. Additionally, different pretraining strategies influence the quantity and category of encoded concepts, with finetuning to specific downstream tasks generally reducing the number of encoded concepts and shifting the concepts to more relevant categories.
comment: Preprint. Accepted at The 3rd World Conference on eXplainable Artificial Intelligence
☆ HACTS: a Human-As-Copilot Teleoperation System for Robot Learning
Teleoperation is essential for autonomous robot learning, especially in manipulation tasks that require human demonstrations or corrections. However, most existing systems only offer unilateral robot control and lack the ability to synchronize the robot's status with the teleoperation hardware, preventing real-time, flexible intervention. In this work, we introduce HACTS (Human-As-Copilot Teleoperation System), a novel system that establishes bilateral, real-time joint synchronization between a robot arm and teleoperation hardware. This simple yet effective feedback mechanism, akin to a steering wheel in autonomous vehicles, enables the human copilot to intervene seamlessly while collecting action-correction data for future learning. Implemented using 3D-printed components and low-cost, off-the-shelf motors, HACTS is both accessible and scalable. Our experiments show that HACTS significantly enhances performance in imitation learning (IL) and reinforcement learning (RL) tasks, boosting IL recovery capabilities and data efficiency, and facilitating human-in-the-loop RL. HACTS paves the way for more effective and interactive human-robot collaboration and data-collection, advancing the capabilities of robot manipulation.
☆ TransMamba: Flexibly Switching between Transformer and Mamba
Transformers are the cornerstone of modern large language models, but their quadratic computational complexity limits efficiency in long-sequence processing. Recent advancements in Mamba, a state space model (SSM) with linear complexity, offer promising efficiency gains but suffer from unstable contextual learning and multitask generalization. This paper proposes TransMamba, a novel framework that unifies Transformer and Mamba through shared parameter matrices (e.g., QKV and CBx), and thus could dynamically switch between attention and SSM mechanisms at different token lengths and layers. We design the Memory converter to bridge Transformer and Mamba by converting attention outputs into SSM-compatible states, ensuring seamless information flow at TransPoints where the transformation happens. The TransPoint scheduling is also thoroughly explored for further improvements. We conducted extensive experiments demonstrating that TransMamba achieves superior training efficiency and performance compared to baselines, and validated the deeper consistency between Transformer and Mamba paradigms, offering a scalable solution for next-generation sequence modeling.
comment: Preprint. Under review
☆ Artificial Conversations, Real Results: Fostering Language Detection with Synthetic Data
Collecting high-quality training data is essential for fine-tuning Large Language Models (LLMs). However, acquiring such data is often costly and time-consuming, especially for non-English languages such as Italian. Recently, researchers have begun to explore the use of LLMs to generate synthetic datasets as a viable alternative. This study proposes a pipeline for generating synthetic data and a comprehensive approach for investigating the factors that influence the validity of synthetic data generated by LLMs by examining how model performance is affected by metrics such as prompt strategy, text length and target position in a specific task, i.e. inclusive language detection in Italian job advertisements. Our results show that, in most cases and across different metrics, the fine-tuned models trained on synthetic data consistently outperformed other models on both real and synthetic test datasets. The study discusses the practical implications and limitations of using synthetic data for language detection tasks with LLMs.
☆ Accelerated Airfoil Design Using Neural Network Approaches
In this paper, prediction of airfoil shape from targeted pressure distribution (suction and pressure sides) and vice versa is demonstrated using both Convolutional Neural Networks (CNNs) and Deep Neural Networks (DNNs) techniques. The dataset is generated for 1600 airfoil shapes, with simulations carried out at Reynolds numbers (Re) ranging from 10,000 and 90,00,000 and angles of attack (AoA) ranging from 0 to 15 degrees, ensuring the dataset captured diverse aerodynamic conditions. Five different CNN and DNN models are developed depending on the input/output parameters. Results demonstrate that the refined models exhibit improved efficiency, with the DNN model achieving a multi-fold reduction in training time compared to the CNN model for complex datasets consisting of varying airfoil, Re, and AoA. The predicted airfoil shapes/pressure distribution closely match the targeted values, validating the effectiveness of deep learning frameworks. However, the performance of CNN models is found to be better compared to DNN models. Lastly, a flying wing aircraft model of wingspan >10 m is considered for the prediction of pressure distribution along the chordwise. The proposed CNN and DNN models show promising results. This research underscores the potential of deep learning models accelerating aerodynamic optimization and advancing the design of high-performance airfoils.
☆ Frequency-Aware Attention-LSTM for PM$_{2.5}$ Time Series Forecasting
To enhance the accuracy and robustness of PM$_{2.5}$ concentration forecasting, this paper introduces FALNet, a Frequency-Aware LSTM Network that integrates frequency-domain decomposition, temporal modeling, and attention-based refinement. The model first applies STL and FFT to extract trend, seasonal, and denoised residual components, effectively filtering out high-frequency noise. The filtered residuals are then fed into a stacked LSTM to capture long-term dependencies, followed by a multi-head attention mechanism that dynamically focuses on key time steps. Experiments conducted on real-world urban air quality datasets demonstrate that FALNet consistently outperforms conventional models across standard metrics such as MAE, RMSE, and $R^2$. The model shows strong adaptability in capturing sharp fluctuations during pollution peaks and non-stationary conditions. These results validate the effectiveness and generalizability of FALNet for real-time air pollution prediction, environmental risk assessment, and decision-making support.
☆ AutoML Algorithms for Online Generalized Additive Model Selection: Application to Electricity Demand Forecasting
Electricity demand forecasting is key to ensuring that supply meets demand lest the grid would blackout. Reliable short-term forecasts may be obtained by combining a Generalized Additive Models (GAM) with a State-Space model (Obst et al., 2021), leading to an adaptive (or online) model. A GAM is an over-parameterized linear model defined by a formula and a state-space model involves hyperparameters. Both the formula and adaptation parameters have to be fixed before model training and have a huge impact on the model's predictive performance. We propose optimizing them using the DRAGON package of Keisler (2025), originally designed for neural architecture search. This work generalizes it for automated online generalized additive model selection by defining an efficient modeling of the search space (namely, the space of the GAM formulae and adaptation parameters). Its application to short-term French electricity demand forecasting demonstrates the relevance of the approach
comment: 13 pages, 1 figure
☆ Crossmodal Knowledge Distillation with WordNet-Relaxed Text Embeddings for Robust Image Classification
Crossmodal knowledge distillation (KD) aims to enhance a unimodal student using a multimodal teacher model. In particular, when the teacher's modalities include the student's, additional complementary information can be exploited to improve knowledge transfer. In supervised image classification, image datasets typically include class labels that represent high-level concepts, suggesting a natural avenue to incorporate textual cues for crossmodal KD. However, these labels rarely capture the deeper semantic structures in real-world visuals and can lead to label leakage if used directly as inputs, ultimately limiting KD performance. To address these issues, we propose a multi-teacher crossmodal KD framework that integrates CLIP image embeddings with learnable WordNet-relaxed text embeddings under a hierarchical loss. By avoiding direct use of exact class names and instead using semantically richer WordNet expansions, we mitigate label leakage and introduce more diverse textual cues. Experiments show that this strategy significantly boosts student performance, whereas noisy or overly precise text embeddings hinder distillation efficiency. Interpretability analyses confirm that WordNet-relaxed prompts encourage heavier reliance on visual features over textual shortcuts, while still effectively incorporating the newly introduced textual cues. Our method achieves state-of-the-art or second-best results on six public datasets, demonstrating its effectiveness in advancing crossmodal KD.
☆ Bayesian Predictive Coding
Predictive coding (PC) is an influential theory of information processing in the brain, providing a biologically plausible alternative to backpropagation. It is motivated in terms of Bayesian inference, as hidden states and parameters are optimised via gradient descent on variational free energy. However, implementations of PC rely on maximum \textit{a posteriori} (MAP) estimates of hidden states and maximum likelihood (ML) estimates of parameters, limiting their ability to quantify epistemic uncertainty. In this work, we investigate a Bayesian extension to PC that estimates a posterior distribution over network parameters. This approach, termed Bayesian Predictive coding (BPC), preserves the locality of PC and results in closed-form Hebbian weight updates. Compared to PC, our BPC algorithm converges in fewer epochs in the full-batch setting and remains competitive in the mini-batch setting. Additionally, we demonstrate that BPC offers uncertainty quantification comparable to existing methods in Bayesian deep learning, while also improving convergence properties. Together, these results suggest that BPC provides a biologically plausible method for Bayesian learning in the brain, as well as an attractive approach to uncertainty quantification in deep learning.
☆ Tree-Guided $L_1$-Convex Clustering
Convex clustering is a modern clustering framework that guarantees globally optimal solutions and performs comparably to other advanced clustering methods. However, obtaining a complete dendrogram (clusterpath) for large-scale datasets remains computationally challenging due to the extensive costs associated with iterative optimization approaches. To address this limitation, we develop a novel convex clustering algorithm called Tree-Guided $L_1$-Convex Clustering (TGCC). We first focus on the fact that the loss function of $L_1$-convex clustering with tree-structured weights can be efficiently optimized using a dynamic programming approach. We then develop an efficient cluster fusion algorithm that utilizes the tree structure of the weights to accelerate the optimization process and eliminate the issue of cluster splits commonly observed in convex clustering. By combining the dynamic programming approach with the cluster fusion algorithm, the TGCC algorithm achieves superior computational efficiency without sacrificing clustering performance. Remarkably, our TGCC algorithm can construct a complete clusterpath for $10^6$ points in $\mathbb{R}^2$ within 15 seconds on a standard laptop without the need for parallel or distributed computing frameworks. Moreover, we extend the TGCC algorithm to develop biclustering and sparse convex clustering algorithms.
☆ Learning 3D-Gaussian Simulators from RGB Videos
Learning physics simulations from video data requires maintaining spatial and temporal consistency, a challenge often addressed with strong inductive biases or ground-truth 3D information -- limiting scalability and generalization. We introduce 3DGSim, a 3D physics simulator that learns object dynamics end-to-end from multi-view RGB videos. It encodes images into a 3D Gaussian particle representation, propagates dynamics via a transformer, and renders frames using 3D Gaussian splatting. By jointly training inverse rendering with a dynamics transformer using a temporal encoding and merging layer, 3DGSimembeds physical properties into point-wise latent vectors without enforcing explicit connectivity constraints. This enables the model to capture diverse physical behaviors, from rigid to elastic and cloth-like interactions, along with realistic lighting effects that also generalize to unseen multi-body interactions and novel scene edits.
☆ CITRAS: Covariate-Informed Transformer for Time Series Forecasting
Covariates play an indispensable role in practical time series forecasting, offering rich context from the past and sometimes extending into the future. However, their availability varies depending on the scenario, and situations often involve multiple target variables simultaneously. Moreover, the cross-variate dependencies between them are multi-granular, with some covariates having a short-term impact on target variables and others showing long-term correlations. This heterogeneity and the intricate dependencies arising in covariate-informed forecasting present significant challenges to existing deep models. To address these issues, we propose CITRAS, a patch-based Transformer that flexibly leverages multiple targets and covariates covering both the past and the future forecasting horizon. While preserving the strong autoregressive capabilities of the canonical Transformer, CITRAS introduces two novel mechanisms in patch-wise cross-variate attention: Key-Value (KV) Shift and Attention Score Smoothing. KV Shift seamlessly incorporates future known covariates into the forecasting of target variables based on their concurrent dependencies. Additionally, Attention Score Smoothing transforms locally accurate patch-wise cross-variate dependencies into global variate-level dependencies by smoothing the past series of attention scores. Experimentally, CITRAS achieves state-of-the-art performance in both covariate-informed and multivariate forecasting, demonstrating its versatile ability to leverage cross-variate dependency for improved forecasting accuracy.
☆ Rethinking Key-Value Cache Compression Techniques for Large Language Model Serving
Key-Value cache (\texttt{KV} \texttt{cache}) compression has emerged as a promising technique to optimize Large Language Model (LLM) serving. It primarily decreases the memory consumption of \texttt{KV} \texttt{cache} to reduce the computation cost. Despite the development of many compression algorithms, their applications in production environments are still not prevalent. In this paper, we revisit mainstream \texttt{KV} \texttt{cache} compression solutions from a practical perspective. Our contributions are three-fold. First, we comprehensively review existing algorithmic designs and benchmark studies for \texttt{KV} \texttt{cache} compression and identify missing pieces in their performance measurement, which could hinder their adoption in practice. Second, we empirically evaluate representative \texttt{KV} \texttt{cache} compression methods to uncover two key issues that affect the computational efficiency: (1) while compressing \texttt{KV} \texttt{cache} can reduce memory consumption, current implementations (e.g., FlashAttention, PagedAttention) do not optimize for production-level LLM serving, resulting in suboptimal throughput performance; (2) compressing \texttt{KV} \texttt{cache} may lead to longer outputs, resulting in increased end-to-end latency. We further investigate the accuracy performance of individual samples rather than the overall performance, revealing the intrinsic limitations in \texttt{KV} \texttt{cache} compression when handling specific LLM tasks. Third, we provide tools to shed light on future \texttt{KV} \texttt{cache} compression studies and facilitate their practical deployment in production. They are open-sourced in \href{https://github.com/LLMkvsys/rethink-kv-compression}{https://github.com/LLMkvsys/rethink-kv-compression}.
comment: 21 pages, 18 figures, published to MLSys2025
☆ Deep Nets as Hamiltonians
Neural networks are complex functions of both their inputs and parameters. Much prior work in deep learning theory analyzes the distribution of network outputs at a fixed a set of inputs (e.g. a training dataset) over random initializations of the network parameters. The purpose of this article is to consider the opposite situation: we view a randomly initialized Multi-Layer Perceptron (MLP) as a Hamiltonian over its inputs. For typical realizations of the network parameters, we study the properties of the energy landscape induced by this Hamiltonian, focusing on the structure of near-global minimum in the limit of infinite width. Specifically, we use the replica trick to perform an exact analytic calculation giving the entropy (log volume of space) at a given energy. We further derive saddle point equations that describe the overlaps between inputs sampled iid from the Gibbs distribution induced by the random MLP. For linear activations we solve these saddle point equations exactly. But we also solve them numerically for a variety of depths and activation functions, including $\tanh, \sin, \text{ReLU}$, and shaped non-linearities. We find even at infinite width a rich range of behaviors. For some non-linearities, such as $\sin$, for instance, we find that the landscapes of random MLPs exhibit full replica symmetry breaking, while shallow $\tanh$ and ReLU networks or deep shaped MLPs are instead replica symmetric.
comment: 19+7 pages
☆ Federated Structured Sparse PCA for Anomaly Detection in IoT Networks
Although federated learning has gained prominence as a privacy-preserving framework tailored for distributed Internet of Things (IoT) environments, current federated principal component analysis (PCA) methods lack integration of sparsity, a critical feature for robust anomaly detection. To address this limitation, we propose a novel federated structured sparse PCA (FedSSP) approach for anomaly detection in IoT networks. The proposed model uniquely integrates double sparsity regularization: (1) row-wise sparsity governed by $\ell_{2,p}$-norm with $p\in[0,1)$ to eliminate redundant feature dimensions, and (2) element-wise sparsity via $\ell_{q}$-norm with $q\in[0,1)$ to suppress noise-sensitive components. To efficiently solve this non-convex optimization problem in a distributed setting, we devise a proximal alternating minimization (PAM) algorithm with rigorous theoretical proofs establishing its convergence guarantees. Experiments on real datasets validate that incorporating structured sparsity enhances both model interpretability and detection accuracy.
☆ The more the merrier: logical and multistage processors in credit scoring
Machine Learning algorithms are ubiquitous in key decision-making contexts such as organizational justice or healthcare, which has spawned a great demand for fairness in these procedures. In this paper we focus on the application of fair ML in finance, more concretely on the use of fairness techniques on credit scoring. This paper makes two contributions. On the one hand, it addresses the existent gap concerning the application of established methods in the literature to the case of multiple sensitive variables through the use of a new technique called logical processors (LP). On the other hand, it also explores the novel method of multistage processors (MP) to investigate whether the combination of fairness methods can work synergistically to produce solutions with improved fairness or accuracy. Furthermore, we examine the intersection of these two lines of research by exploring the integration of fairness methods in the multivariate case. The results are very promising and suggest that logical processors are an appropriate way of handling multiple sensitive variables. Furthermore, multistage processors are capable of improving the performance of existing methods.
comment: 34 pages, 14 figures
☆ Noise-based reward-modulated learning
Recent advances in reinforcement learning (RL) have led to significant improvements in task performance. However, training neural networks in an RL regime is typically achieved in combination with backpropagation, limiting their applicability in resource-constrained environments or when using non-differentiable neural networks. While noise-based alternatives like reward-modulated Hebbian learning (RMHL) have been proposed, their performance has remained limited, especially in scenarios with delayed rewards, which require retrospective credit assignment over time. Here, we derive a novel noise-based learning rule that addresses these challenges. Our approach combines directional derivative theory with Hebbian-like updates to enable efficient, gradient-free learning in RL. It features stochastic noisy neurons which can approximate gradients, and produces local synaptic updates modulated by a global reward signal. Drawing on concepts from neuroscience, our method uses reward prediction error as its optimization target to generate increasingly advantageous behavior, and incorporates an eligibility trace to facilitate temporal credit assignment in environments with delayed rewards. Its formulation relies on local information alone, making it compatible with implementations in neuromorphic hardware. Experimental validation shows that our approach significantly outperforms RMHL and is competitive with BP-based baselines, highlighting the promise of noise-based, biologically inspired learning for low-power and real-time applications.
☆ Machine Learning-assisted High-speed Combinatorial Optimization with Ising Machines for Dynamically Changing Problems
Quantum or quantum-inspired Ising machines have recently shown promise in solving combinatorial optimization problems in a short time. Real-world applications, such as time division multiple access (TDMA) scheduling for wireless multi-hop networks and financial trading, require solving those problems sequentially where the size and characteristics change dynamically. However, using Ising machines involves challenges to shorten system-wide latency due to the transfer of large Ising model or the cloud access and to determine the parameters for each problem. Here we show a combinatorial optimization method using embedded Ising machines, which enables solving diverse problems at high speed without runtime parameter tuning. We customize the algorithm and circuit architecture of the simulated bifurcation-based Ising machine to compress the Ising model and accelerate computation and then built a machine learning model to estimate appropriate parameters using extensive training data. In TDMA scheduling for wireless multi-hop networks, our demonstration has shown that the sophisticated system can adapt to changes in the problem and showed that it has a speed advantage over conventional methods.
☆ Green MLOps to Green GenOps: An Empirical Study of Energy Consumption in Discriminative and Generative AI Operations
This study presents an empirical investigation into the energy consumption of Discriminative and Generative AI models within real-world MLOps pipelines. For Discriminative models, we examine various architectures and hyperparameters during training and inference and identify energy-efficient practices. For Generative AI, Large Language Models (LLMs) are assessed, focusing primarily on energy consumption across different model sizes and varying service requests. Our study employs software-based power measurements, ensuring ease of replication across diverse configurations, models, and datasets. We analyse multiple models and hardware setups to uncover correlations among various metrics, identifying key contributors to energy consumption. The results indicate that for Discriminative models, optimising architectures, hyperparameters, and hardware can significantly reduce energy consumption without sacrificing performance. For LLMs, energy efficiency depends on balancing model size, reasoning complexity, and request-handling capacity, as larger models do not necessarily consume more energy when utilisation remains low. This analysis provides practical guidelines for designing green and sustainable ML operations, emphasising energy consumption and carbon footprint reductions while maintaining performance. This paper can serve as a benchmark for accurately estimating total energy use across different types of AI models.
comment: Published to MDPI Information - Artificial Intelligence Section
☆ Detecting Localized Density Anomalies in Multivariate Data via Coin-Flip Statistics
Detecting localized density differences in multivariate data is a crucial task in computational science. Such anomalies can indicate a critical system failure, lead to a groundbreaking scientific discovery, or reveal unexpected changes in data distribution. We introduce EagleEye, an anomaly detection method to compare two multivariate datasets with the aim of identifying local density anomalies, namely over- or under-densities affecting only localised regions of the feature space. Anomalies are detected by modelling, for each point, the ordered sequence of its neighbours' membership label as a coin-flipping process and monitoring deviations from the expected behaviour of such process. A unique advantage of our method is its ability to provide an accurate, entirely unsupervised estimate of the local signal purity. We demonstrate its effectiveness through experiments on both synthetic and real-world datasets. In synthetic data, EagleEye accurately detects anomalies in multiple dimensions even when they affect a tiny fraction of the data. When applied to a challenging resonant anomaly detection benchmark task in simulated Large Hadron Collider data, EagleEye successfully identifies particle decay events present in just 0.3% of the dataset. In global temperature data, EagleEye uncovers previously unidentified, geographically localised changes in temperature fields that occurred in the most recent years. Thanks to its key advantages of conceptual simplicity, computational efficiency, trivial parallelisation, and scalability, EagleEye is widely applicable across many fields.
☆ Model Hemorrhage and the Robustness Limits of Large Language Models
Large language models (LLMs) demonstrate strong performance across natural language processing tasks, yet undergo significant performance degradation when modified for deployment through quantization, pruning, or decoding strategy adjustments. We define this phenomenon as model hemorrhage - performance decline caused by parameter alterations and architectural changes. Through systematic analysis of various LLM frameworks, we identify key vulnerability patterns: layer expansion frequently disrupts attention mechanisms, compression techniques induce information loss cascades, and decoding adjustments amplify prediction divergences. Our investigation reveals transformer architectures exhibit inherent robustness thresholds that determine hemorrhage severity across modification types. We propose three mitigation strategies: gradient-aware pruning preserves critical weight pathways, dynamic quantization scaling maintains activation integrity, and decoding calibration aligns generation trajectories with original model distributions. This work establishes foundational metrics for evaluating model stability during adaptation, providing practical guidelines for maintaining performance while enabling efficient LLM deployment. Our findings advance understanding of neural network resilience under architectural transformations, particularly for large-scale language models.
comment: 33 pages, 18 figures
☆ Certified Approximate Reachability (CARe): Formal Error Bounds on Deep Learning of Reachable Sets
Recent approaches to leveraging deep learning for computing reachable sets of continuous-time dynamical systems have gained popularity over traditional level-set methods, as they overcome the curse of dimensionality. However, as with level-set methods, considerable care needs to be taken in limiting approximation errors, particularly since no guarantees are provided during training on the accuracy of the learned reachable set. To address this limitation, we introduce an epsilon-approximate Hamilton-Jacobi Partial Differential Equation (HJ-PDE), which establishes a relationship between training loss and accuracy of the true reachable set. To formally certify this approximation, we leverage Satisfiability Modulo Theories (SMT) solvers to bound the residual error of the HJ-based loss function across the domain of interest. Leveraging Counter Example Guided Inductive Synthesis (CEGIS), we close the loop around learning and verification, by fine-tuning the neural network on counterexamples found by the SMT solver, thus improving the accuracy of the learned reachable set. To the best of our knowledge, Certified Approximate Reachability (CARe) is the first approach to provide soundness guarantees on learned reachable sets of continuous dynamical systems.
☆ Feature learning from non-Gaussian inputs: the case of Independent Component Analysis in high dimensions
Deep neural networks learn structured features from complex, non-Gaussian inputs, but the mechanisms behind this process remain poorly understood. Our work is motivated by the observation that the first-layer filters learnt by deep convolutional neural networks from natural images resemble those learnt by independent component analysis (ICA), a simple unsupervised method that seeks the most non-Gaussian projections of its inputs. This similarity suggests that ICA provides a simple, yet principled model for studying feature learning. Here, we leverage this connection to investigate the interplay between data structure and optimisation in feature learning for the most popular ICA algorithm, FastICA, and stochastic gradient descent (SGD), which is used to train deep networks. We rigorously establish that FastICA requires at least $n\gtrsim d^4$ samples to recover a single non-Gaussian direction from $d$-dimensional inputs on a simple synthetic data model. We show that vanilla online SGD outperforms FastICA, and prove that the optimal sample complexity $n \gtrsim d^2$ can be reached by smoothing the loss, albeit in a data-dependent way. We finally demonstrate the existence of a search phase for FastICA on ImageNet, and discuss how the strong non-Gaussianity of said images compensates for the poor sample complexity of FastICA.
☆ DiffScale: Continuous Downscaling and Bias Correction of Subseasonal Wind Speed Forecasts using Diffusion Models
Renewable resources are strongly dependent on local and large-scale weather situations. Skillful subseasonal to seasonal (S2S) forecasts -- beyond two weeks and up to two months -- can offer significant socioeconomic advantages to the energy sector. This study aims to enhance wind speed predictions using a diffusion model with classifier-free guidance to downscale S2S forecasts of surface wind speed. We propose DiffScale, a diffusion model that super-resolves spatial information for continuous downscaling factors and lead times. Leveraging weather priors as guidance for the generative process of diffusion models, we adopt the perspective of conditional probabilities on sampling super-resolved S2S forecasts. We aim to directly estimate the density associated with the target S2S forecasts at different spatial resolutions and lead times without auto-regression or sequence prediction, resulting in an efficient and flexible model. Synthetic experiments were designed to super-resolve wind speed S2S forecasts from the European Center for Medium-Range Weather Forecast (ECMWF) from a coarse resolution to a finer resolution of ERA5 reanalysis data, which serves as a high-resolution target. The innovative aspect of DiffScale lies in its flexibility to downscale arbitrary scaling factors, enabling it to generalize across various grid resolutions and lead times -without retraining the model- while correcting model errors, making it a versatile tool for improving S2S wind speed forecasts. We achieve a significant improvement in prediction quality, outperforming baselines up to week 3.
comment: 28 pages, 18 figures, preprint under review
☆ An End-to-End Comprehensive Gear Fault Diagnosis Method Based on Multi-Scale Feature-Level Fusion Strategy
To satisfy the requirements of the end-to-end fault diagnosis of gears, an integrated intelligent method of fault diagnosis for gears using acceleration signals was proposed, which was based on Gabor-based Adaptive Short-Time Fourier Transform (Gabor-ASTFT) and Dual-Tree Complex Wavelet Transform(DTCWT) algorithms, Dilated Residual structure and feature fusion layer, is proposed in this paper. Initially, the raw one-dimensional acceleration signals collected from the gearbox base using vibration sensors undergo pre-segmentation processing. The Gabor-ASTFT and DTCWT are then applied to convert the original one-dimensional time-domain signals into two-dimensional time-frequency representations, facilitating the preliminary extraction of fault features and obtaining weak feature maps.Subsequently, a dual-channel structure is established using deconvolution and dilated convolution to perform upsampling and downsampling on the feature maps, adjusting their sizes accordingly. A feature fusion layer is then constructed to integrate the dual-channel features, enabling multi-scale analysis of the extracted fault features.Finally, a convolutional neural network (CNN) model incorporating a residual structure is developed to conduct deep feature extraction from the fused feature maps. The extracted features are subsequently fed into a Global Average Pooling(GAP) and a classification function for fault classification. Conducting comparative experiments on different datasets, the proposed method is demonstrated to effectively meet the requirements of end-to-end fault diagnosis for gears.
☆ ZeroMimic: Distilling Robotic Manipulation Skills from Web Videos ICRA 2025
Many recent advances in robotic manipulation have come through imitation learning, yet these rely largely on mimicking a particularly hard-to-acquire form of demonstrations: those collected on the same robot in the same room with the same objects as the trained policy must handle at test time. In contrast, large pre-recorded human video datasets demonstrating manipulation skills in-the-wild already exist, which contain valuable information for robots. Is it possible to distill a repository of useful robotic skill policies out of such data without any additional requirements on robot-specific demonstrations or exploration? We present the first such system ZeroMimic, that generates immediately deployable image goal-conditioned skill policies for several common categories of manipulation tasks (opening, closing, pouring, pick&place, cutting, and stirring) each capable of acting upon diverse objects and across diverse unseen task setups. ZeroMimic is carefully designed to exploit recent advances in semantic and geometric visual understanding of human videos, together with modern grasp affordance detectors and imitation policy classes. After training ZeroMimic on the popular EpicKitchens dataset of ego-centric human videos, we evaluate its out-of-the-box performance in varied real-world and simulated kitchen settings with two different robot embodiments, demonstrating its impressive abilities to handle these varied tasks. To enable plug-and-play reuse of ZeroMimic policies on other task setups and robots, we release software and policy checkpoints of our skill policies.
comment: ICRA 2025. Project website: https://zeromimic.github.io/
☆ Communication-Efficient and Personalized Federated Foundation Model Fine-Tuning via Tri-Matrix Adaptation
In federated learning, fine-tuning pre-trained foundation models poses significant challenges, particularly regarding high communication cost and suboptimal model performance due to data heterogeneity between the clients. To address these issues, this paper introduces communication-efficient federated LoRA adaption (CE-LoRA), a method that employs a tri-factorization low-rank adaptation approach with personalized model parameter aggregation. We first presents a novel LoRA parameter factorization by introducing a small-size dense matrix, which can significantly reduce the communication cost and achieve comparable empirical performance than transferring the low-rank parameter matrix used by existing methods. Without violating data privacy, the server considers the client similarity in both training dataset and model parameter space, and learns personalized weights for model aggregation. Our experiments on various LLM and VLM fine-tuning tasks demonstrate that CE-LoRA not only significantly reduces communication overhead but also improves performance under not independently and identically distributed data conditions. In addition, CE-LoRA improves data privacy protection, effectively mitigating gradient-based data reconstruction attacks.
☆ A Channel-Triggered Backdoor Attack on Wireless Semantic Image Reconstruction
Despite the transformative impact of deep learning (DL) on wireless communication systems through data-driven end-to-end (E2E) learning, the security vulnerabilities of these systems have been largely overlooked. Unlike the extensively studied image domain, limited research has explored the threat of backdoor attacks on the reconstruction of symbols in semantic communication (SemCom) systems. Previous work has investigated such backdoor attacks at the input level, but these approaches are infeasible in applications with strict input control. In this paper, we propose a novel attack paradigm, termed Channel-Triggered Backdoor Attack (CT-BA), where the backdoor trigger is a specific wireless channel. This attack leverages fundamental physical layer characteristics, making it more covert and potentially more threatening compared to previous input-level attacks. Specifically, we utilize channel gain with different fading distributions or channel noise with different power spectral densities as potential triggers. This approach establishes unprecedented attack flexibility as the adversary can select backdoor triggers from both fading characteristics and noise variations in diverse channel environments. Moreover, during the testing phase, CT-BA enables automatic trigger activation through natural channel variations without requiring active adversary participation. We evaluate the robustness of CT-BA on a ViT-based Joint Source-Channel Coding (JSCC) model across three datasets: MNIST, CIFAR-10, and ImageNet. Furthermore, we apply CT-BA to three typical E2E SemCom systems: BDJSCC, ADJSCC, and JSCCOFDM. Experimental results demonstrate that our attack achieves near-perfect attack success rate (ASR) while maintaining effective stealth. Finally, we discuss potential defense mechanisms against such attacks.
☆ An extrapolated and provably convergent algorithm for nonlinear matrix decomposition with the ReLU function
Nonlinear matrix decomposition (NMD) with the ReLU function, denoted ReLU-NMD, is the following problem: given a sparse, nonnegative matrix $X$ and a factorization rank $r$, identify a rank-$r$ matrix $\Theta$ such that $X\approx \max(0,\Theta)$. This decomposition finds application in data compression, matrix completion with entries missing not at random, and manifold learning. The standard ReLU-NMD model minimizes the least squares error, that is, $\|X - \max(0,\Theta)\|_F^2$. The corresponding optimization problem is nondifferentiable and highly nonconvex. This motivated Saul to propose an alternative model, Latent-ReLU-NMD, where a latent variable $Z$ is introduced and satisfies $\max(0,Z)=X$ while minimizing $\|Z - \Theta\|_F^2$ (``A nonlinear matrix decomposition for mining the zeros of sparse data'', SIAM J. Math. Data Sci., 2022). Our first contribution is to show that the two formulations may yield different low-rank solutions $\Theta$; in particular, we show that Latent-ReLU-NMD can be ill-posed when ReLU-NMD is not, meaning that there are instances in which the infimum of Latent-ReLU-NMD is not attained while that of ReLU-NMD is. We also consider another alternative model, called 3B-ReLU-NMD, which parameterizes $\Theta=WH$, where $W$ has $r$ columns and $H$ has $r$ rows, allowing one to get rid of the rank constraint in Latent-ReLU-NMD. Our second contribution is to prove the convergence of a block coordinate descent (BCD) applied to 3B-ReLU-NMD and referred to as BCD-NMD. Our third contribution is a novel extrapolated variant of BCD-NMD, dubbed eBCD-NMD, which we prove is also convergent under mild assumptions. We illustrate the significant acceleration effect of eBCD-NMD compared to BCD-NMD, and also show that eBCD-NMD performs well against the state of the art on synthetic and real-world data sets.
comment: 27 pages. Codes and data available from https://github.com/giovanniseraghiti/ReLU-NMD
☆ Node Embeddings via Neighbor Embeddings
Graph layouts and node embeddings are two distinct paradigms for non-parametric graph representation learning. In the former, nodes are embedded into 2D space for visualization purposes. In the latter, nodes are embedded into a high-dimensional vector space for downstream processing. State-of-the-art algorithms for these two paradigms, force-directed layouts and random-walk-based contrastive learning (such as DeepWalk and node2vec), have little in common. In this work, we show that both paradigms can be approached with a single coherent framework based on established neighbor embedding methods. Specifically, we introduce graph t-SNE, a neighbor embedding method for two-dimensional graph layouts, and graph CNE, a contrastive neighbor embedding method that produces high-dimensional node representations by optimizing the InfoNCE objective. We show that both graph t-SNE and graph CNE strongly outperform state-of-the-art algorithms in terms of local structure preservation, while being conceptually simpler.
☆ When Counterfactual Reasoning Fails: Chaos and Real-World Complexity
Counterfactual reasoning, a cornerstone of human cognition and decision-making, is often seen as the 'holy grail' of causal learning, with applications ranging from interpreting machine learning models to promoting algorithmic fairness. While counterfactual reasoning has been extensively studied in contexts where the underlying causal model is well-defined, real-world causal modeling is often hindered by model and parameter uncertainty, observational noise, and chaotic behavior. The reliability of counterfactual analysis in such settings remains largely unexplored. In this work, we investigate the limitations of counterfactual reasoning within the framework of Structural Causal Models. Specifically, we empirically investigate \emph{counterfactual sequence estimation} and highlight cases where it becomes increasingly unreliable. We find that realistic assumptions, such as low degrees of model uncertainty or chaotic dynamics, can result in counterintuitive outcomes, including dramatic deviations between predicted and true counterfactual trajectories. This work urges caution when applying counterfactual reasoning in settings characterized by chaos and uncertainty. Furthermore, it raises the question of whether certain systems may pose fundamental limitations on the ability to answer counterfactual questions about their behavior.
☆ Conformal uncertainty quantification to evaluate predictive fairness of foundation AI model for skin lesion classes across patient demographics
Deep learning based diagnostic AI systems based on medical images are starting to provide similar performance as human experts. However these data hungry complex systems are inherently black boxes and therefore slow to be adopted for high risk applications like healthcare. This problem of lack of transparency is exacerbated in the case of recent large foundation models, which are trained in a self supervised manner on millions of data points to provide robust generalisation across a range of downstream tasks, but the embeddings generated from them happen through a process that is not interpretable, and hence not easily trustable for clinical applications. To address this timely issue, we deploy conformal analysis to quantify the predictive uncertainty of a vision transformer (ViT) based foundation model across patient demographics with respect to sex, age and ethnicity for the tasks of skin lesion classification using several public benchmark datasets. The significant advantage of this method is that conformal analysis is method independent and it not only provides a coverage guarantee at population level but also provides an uncertainty score for each individual. We used a model-agnostic dynamic F1-score-based sampling during model training, which helped to stabilize the class imbalance and we investigate the effects on uncertainty quantification (UQ) with or without this bias mitigation step. Thus we show how this can be used as a fairness metric to evaluate the robustness of the feature embeddings of the foundation model (Google DermFoundation) and thus advance the trustworthiness and fairness of clinical AI.
☆ Free Parametrization of L2-bounded State Space Models
Structured state-space models (SSMs) have emerged as a powerful architecture in machine learning and control, featuring stacked layers where each consists of a linear time-invariant (LTI) discrete-time system followed by a nonlinearity. While SSMs offer computational efficiency and excel in long-sequence predictions, their widespread adoption in applications like system identification and optimal control is hindered by the challenge of ensuring their stability and robustness properties. We introduce L2RU, a novel parametrization of SSMs that guarantees input-output stability and robustness by enforcing a prescribed L-bound for all parameter values. This design eliminates the need for complex constraints, allowing unconstrained optimization over L2RUs by using standard methods such as gradient descent. Leveraging tools from system theory and convex optimization, we derive a non-conservative parametrization of square discrete-time LTI systems with a specified L2-bound, forming the foundation of the L2RU architecture. Additionally, we enhance its performance with a bespoke initialization strategy optimized for long input sequences. Through a system identification task, we validate L2RU's superior performance, showcasing its potential in learning and control applications.
comment: 8 pages
☆ An extension of linear self-attention for in-context learning
In-context learning is a remarkable property of transformers and has been the focus of recent research. An attention mechanism is a key component in transformers, in which an attention matrix encodes relationships between words in a sentence and is used as weights for words in a sentence. This mechanism is effective for capturing language representations. However, it is questionable whether naive self-attention is suitable for in-context learning in general tasks, since the computation implemented by self-attention is somewhat restrictive in terms of matrix multiplication. In fact, we may need appropriate input form designs when considering heuristic implementations of computational algorithms. In this paper, in case of linear self-attention, we extend it by introducing a bias matrix in addition to a weight matrix for an input. Despite the simple extension, the extended linear self-attention can output any constant matrix, input matrix and multiplications of two or three matrices in the input. Note that the second property implies that it can be a skip connection. Therefore, flexible matrix manipulations can be implemented by connecting the extended linear self-attention components. As an example of implementation using the extended linear self-attention, we show a heuristic construction of a batch-type gradient descent of ridge regression under a reasonable input form.
☆ Adaptive Attention-Based Model for 5G Radio-based Outdoor Localization
Radio-based localization in dynamic environments, such as urban and vehicular settings, requires systems that can efficiently adapt to varying signal conditions and environmental changes. Factors such as multipath interference and obstructions introduce different levels of complexity that affect the accuracy of the localization. Although generalized models offer broad applicability, they often struggle to capture the nuances of specific environments, leading to suboptimal performance in real-world deployments. In contrast, specialized models can be tailored to particular conditions, enabling more precise localization by effectively handling domain-specific variations and noise patterns. However, deploying multiple specialized models requires an efficient mechanism to select the most appropriate one for a given scenario. In this work, we develop an adaptive localization framework that combines shallow attention-based models with a router/switching mechanism based on a single-layer perceptron (SLP). This enables seamless transitions between specialized localization models optimized for different conditions, balancing accuracy, computational efficiency, and robustness to environmental variations. We design three low-complex localization models tailored for distinct scenarios, optimized for reduced computational complexity, test time, and model size. The router dynamically selects the most suitable model based on real-time input characteristics. The proposed framework is validated using real-world vehicle localization data collected from a massive MIMO base station (BS), demonstrating its ability to seamlessly adapt to diverse deployment conditions while maintaining high localization accuracy.
comment: 6 pages, 6 figures
☆ Force-Free Molecular Dynamics Through Autoregressive Equivariant Networks
Molecular dynamics (MD) simulations play a crucial role in scientific research. Yet their computational cost often limits the timescales and system sizes that can be explored. Most data-driven efforts have been focused on reducing the computational cost of accurate interatomic forces required for solving the equations of motion. Despite their success, however, these machine learning interatomic potentials (MLIPs) are still bound to small time-steps. In this work, we introduce TrajCast, a transferable and data-efficient framework based on autoregressive equivariant message passing networks that directly updates atomic positions and velocities lifting the constraints imposed by traditional numerical integration. We benchmark our framework across various systems, including a small molecule, crystalline material, and bulk liquid, demonstrating excellent agreement with reference MD simulations for structural, dynamical, and energetic properties. Depending on the system, TrajCast allows for forecast intervals up to $30\times$ larger than traditional MD time-steps, generating over 15 ns of trajectory data per day for a solid with more than 4,000 atoms. By enabling efficient large-scale simulations over extended timescales, TrajCast can accelerate materials discovery and explore physical phenomena beyond the reach of traditional simulations and experiments. An open-source implementation of TrajCast is accessible under https://github.com/IBM/trajcast.
comment: 25 pages total (19 manuscript, 6 SI). 5 figures in manuscript, 3 figures and 2 tables in SI
☆ Evaluation of (Un-)Supervised Machine Learning Methods for GNSS Interference Classification with Real-World Data Discrepancies
The accuracy and reliability of vehicle localization on roads are crucial for applications such as self-driving cars, toll systems, and digital tachographs. To achieve accurate positioning, vehicles typically use global navigation satellite system (GNSS) receivers to validate their absolute positions. However, GNSS-based positioning can be compromised by interference signals, necessitating the identification, classification, determination of purpose, and localization of such interference to mitigate or eliminate it. Recent approaches based on machine learning (ML) have shown superior performance in monitoring interference. However, their feasibility in real-world applications and environments has yet to be assessed. Effective implementation of ML techniques requires training datasets that incorporate realistic interference signals, including real-world noise and potential multipath effects that may occur between transmitter, receiver, and satellite in the operational area. Additionally, these datasets require reference labels. Creating such datasets is often challenging due to legal restrictions, as causing interference to GNSS sources is strictly prohibited. Consequently, the performance of ML-based methods in practical applications remains unclear. To address this gap, we describe a series of large-scale measurement campaigns conducted in real-world settings at two highway locations in Germany and the Seetal Alps in Austria, and in large-scale controlled indoor environments. We evaluate the latest supervised ML-based methods to report on their performance in real-world settings and present the applicability of pseudo-labeling for unsupervised learning. We demonstrate the challenges of combining datasets due to data discrepancies and evaluate outlier detection, domain adaptation, and data augmentation techniques to present the models' capabilities to adapt to changes in the datasets.
comment: 34 pages, 25 figures
☆ Accelerating High-Efficiency Organic Photovoltaic Discovery via Pretrained Graph Neural Networks and Generative Reinforcement Learning ICLR 2025
Organic photovoltaic (OPV) materials offer a promising avenue toward cost-effective solar energy utilization. However, optimizing donor-acceptor (D-A) combinations to achieve high power conversion efficiency (PCE) remains a significant challenge. In this work, we propose a framework that integrates large-scale pretraining of graph neural networks (GNNs) with a GPT-2 (Generative Pretrained Transformer 2)-based reinforcement learning (RL) strategy to design OPV molecules with potentially high PCE. This approach produces candidate molecules with predicted efficiencies approaching 21\%, although further experimental validation is required. Moreover, we conducted a preliminary fragment-level analysis to identify structural motifs recognized by the RL model that may contribute to enhanced PCE, thus providing design guidelines for the broader research community. To facilitate continued discovery, we are building the largest open-source OPV dataset to date, expected to include nearly 3,000 donor-acceptor pairs. Finally, we discuss plans to collaborate with experimental teams on synthesizing and characterizing AI-designed molecules, which will provide new data to refine and improve our predictive and generative models.
comment: AI for Accelerated Materials Design - ICLR 2025
☆ Time-Series Forecasting via Topological Information Supervised Framework with Efficient Topological Feature Learning
Topological Data Analysis (TDA) has emerged as a powerful tool for extracting meaningful features from complex data structures, driving significant advancements in fields such as neuroscience, biology, machine learning, and financial modeling. Despite its success, the integration of TDA with time-series prediction remains underexplored due to three primary challenges: the limited utilization of temporal dependencies within topological features, computational bottlenecks associated with persistent homology, and the deterministic nature of TDA pipelines restricting generalized feature learning. This study addresses these challenges by proposing the Topological Information Supervised (TIS) Prediction framework, which leverages neural networks and Conditional Generative Adversarial Networks (CGANs) to generate synthetic topological features, preserving their distribution while significantly reducing computational time. We propose a novel training strategy that integrates topological consistency loss to improve the predictive accuracy of deep learning models. Specifically, we introduce two state-of-the-art models, TIS-BiGRU and TIS-Informer, designed to capture short-term and long-term temporal dependencies, respectively. Comparative experimental results demonstrate the superior performance of TIS models over conventional predictors, validating the effectiveness of integrating topological information. This work not only advances TDA-based time-series prediction but also opens new avenues for utilizing topological features in deep learning architectures.
☆ THEMIS: Towards Practical Intellectual Property Protection for Post-Deployment On-Device Deep Learning Models
On-device deep learning (DL) has rapidly gained adoption in mobile apps, offering the benefits of offline model inference and user privacy preservation over cloud-based approaches. However, it inevitably stores models on user devices, introducing new vulnerabilities, particularly model-stealing attacks and intellectual property infringement. While system-level protections like Trusted Execution Environments (TEEs) provide a robust solution, practical challenges remain in achieving scalable on-device DL model protection, including complexities in supporting third-party models and limited adoption in current mobile solutions. Advancements in TEE-enabled hardware, such as NVIDIA's GPU-based TEEs, may address these obstacles in the future. Currently, watermarking serves as a common defense against model theft but also faces challenges here as many mobile app developers lack corresponding machine learning expertise and the inherent read-only and inference-only nature of on-device DL models prevents third parties like app stores from implementing existing watermarking techniques in post-deployment models. To protect the intellectual property of on-device DL models, in this paper, we propose THEMIS, an automatic tool that lifts the read-only restriction of on-device DL models by reconstructing their writable counterparts and leverages the untrainable nature of on-device DL models to solve watermark parameters and protect the model owner's intellectual property. Extensive experimental results across various datasets and model structures show the superiority of THEMIS in terms of different metrics. Further, an empirical investigation of 403 real-world DL mobile apps from Google Play is performed with a success rate of 81.14%, showing the practicality of THEMIS.
comment: To Appear in the 34th USENIX Security Symposium, August 13-15, 2025
☆ Short-video Propagation Influence Rating: A New Real-world Dataset and A New Large Graph Model
Short-video platforms have gained immense popularity, captivating the interest of millions, if not billions, of users globally. Recently, researchers have highlighted the significance of analyzing the propagation of short-videos, which typically involves discovering commercial values, public opinions, user behaviors, etc. This paper proposes a new Short-video Propagation Influence Rating (SPIR) task and aims to promote SPIR from both the dataset and method perspectives. First, we propose a new Cross-platform Short-Video (XS-Video) dataset, which aims to provide a large-scale and real-world short-video propagation network across various platforms to facilitate the research on short-video propagation. Our XS-Video dataset includes 117,720 videos, 381,926 samples, and 535 topics across 5 biggest Chinese platforms, annotated with the propagation influence from level 0 to 9. To the best of our knowledge, this is the first large-scale short-video dataset that contains cross-platform data or provides all of the views, likes, shares, collects, fans, comments, and comment content. Second, we propose a Large Graph Model (LGM) named NetGPT, based on a novel three-stage training mechanism, to bridge heterogeneous graph-structured data with the powerful reasoning ability and knowledge of Large Language Models (LLMs). Our NetGPT can comprehend and analyze the short-video propagation graph, enabling it to predict the long-term propagation influence of short-videos. Comprehensive experimental results evaluated by both classification and regression metrics on our XS-Video dataset indicate the superiority of our method for SPIR.
☆ Integral regularization PINNs for evolution equations
Evolution equations, including both ordinary differential equations (ODEs) and partial differential equations (PDEs), play a pivotal role in modeling dynamic systems. However, achieving accurate long-time integration for these equations remains a significant challenge. While physics-informed neural networks (PINNs) provide a mesh-free framework for solving PDEs, they often suffer from temporal error accumulation, which limits their effectiveness in capturing long-time behaviors. To alleviate this issue, we propose integral regularization PINNs (IR-PINNs), a novel approach that enhances temporal accuracy by incorporating an integral-based residual term into the loss function. This method divides the entire time interval into smaller sub-intervals and enforces constraints over these sub-intervals, thereby improving the resolution and correlation of temporal dynamics. Furthermore, IR-PINNs leverage adaptive sampling to dynamically refine the distribution of collocation points based on the evolving solution, ensuring higher accuracy in regions with sharp gradients or rapid variations. Numerical experiments on benchmark problems demonstrate that IR-PINNs outperform original PINNs and other state-of-the-art methods in capturing long-time behaviors, offering a robust and accurate solution for evolution equations.
☆ PDSL: Privacy-Preserved Decentralized Stochastic Learning with Heterogeneous Data Distribution
In the paradigm of decentralized learning, a group of agents collaborates to learn a global model using distributed datasets without a central server. However, due to the heterogeneity of the local data across the different agents, learning a robust global model is rather challenging. Moreover, the collaboration of the agents relies on their gradient information exchange, which poses a risk of privacy leakage. In this paper, to address these issues, we propose PDSL, a novel privacy-preserved decentralized stochastic learning algorithm with heterogeneous data distribution. On one hand, we innovate in utilizing the notion of Shapley values such that each agent can precisely measure the contributions of its heterogeneous neighbors to the global learning goal; on the other hand, we leverage the notion of differential privacy to prevent each agent from suffering privacy leakage when it contributes gradient information to its neighbors. We conduct both solid theoretical analysis and extensive experiments to demonstrate the efficacy of our PDSL algorithm in terms of privacy preservation and convergence.
☆ Unimodal-driven Distillation in Multimodal Emotion Recognition with Dynamic Fusion
Multimodal Emotion Recognition in Conversations (MERC) identifies emotional states across text, audio and video, which is essential for intelligent dialogue systems and opinion analysis. Existing methods emphasize heterogeneous modal fusion directly for cross-modal integration, but often suffer from disorientation in multimodal learning due to modal heterogeneity and lack of instructive guidance. In this work, we propose SUMMER, a novel heterogeneous multimodal integration framework leveraging Mixture of Experts with Hierarchical Cross-modal Fusion and Interactive Knowledge Distillation. Key components include a Sparse Dynamic Mixture of Experts (SDMoE) for capturing dynamic token-wise interactions, a Hierarchical Cross-Modal Fusion (HCMF) for effective fusion of heterogeneous modalities, and Interactive Knowledge Distillation (IKD), which uses a pre-trained unimodal teacher to guide multimodal fusion in latent and logit spaces. Experiments on IEMOCAP and MELD show SUMMER outperforms state-of-the-art methods, particularly in recognizing minority and semantically similar emotions.
☆ Steering Large Agent Populations using Mean-Field Schrodinger Bridges with Gaussian Mixture Models
The Mean-Field Schrodinger Bridge (MFSB) problem is an optimization problem aiming to find the minimum effort control policy to drive a McKean-Vlassov stochastic differential equation from one probability measure to another. In the context of multiagent control, the objective is to control the configuration of a swarm of identical, interacting cooperative agents, as captured by the time-varying probability measure of their state. Available methods for solving this problem for distributions with continuous support rely either on spatial discretizations of the problem's domain or on approximating optimal solutions using neural networks trained through stochastic optimization schemes. For agents following Linear Time-Varying dynamics, and for Gaussian Mixture Model boundary distributions, we propose a highly efficient parameterization to approximate the solutions of the corresponding MFSB in closed form, without any learning steps. Our proposed approach consists of a mixture of elementary policies, each solving a Gaussian-to-Gaussian Covariance Steering problem from the components of the initial to the components of the terminal mixture. Leveraging the semidefinite formulation of the Covariance Steering problem, our proposed solver can handle probabilistic hard constraints on the system's state, while maintaining numerical tractability. We illustrate our approach on a variety of numerical examples.
☆ A Low-complexity Structured Neural Network to Realize States of Dynamical Systems
Data-driven learning is rapidly evolving and places a new perspective on realizing state-space dynamical systems. However, dynamical systems derived from nonlinear ordinary differential equations (ODEs) suffer from limitations in computational efficiency. Thus, this paper stems from data-driven learning to advance states of dynamical systems utilizing a structured neural network (StNN). The proposed learning technique also seeks to identify an optimal, low-complexity operator to solve dynamical systems, the so-called Hankel operator, derived from time-delay measurements. Thus, we utilize the StNN based on the Hankel operator to solve dynamical systems as an alternative to existing data-driven techniques. We show that the proposed StNN reduces the number of parameters and computational complexity compared with the conventional neural networks and also with the classical data-driven techniques, such as Sparse Identification of Nonlinear Dynamics (SINDy) and Hankel Alternative view of Koopman (HAVOK), which is commonly known as delay-Dynamic Mode Decomposition(DMD) or Hankel-DMD. More specifically, we present numerical simulations to solve dynamical systems utilizing the StNN based on the Hankel operator beginning from the fundamental Lotka-Volterra model, where we compare the StNN with the LEarning Across Dynamical Systems (LEADS), and extend our analysis to highly nonlinear and chaotic Lorenz systems, comparing the StNN with conventional neural networks, SINDy, and HAVOK. Hence, we show that the proposed StNN paves the way for realizing state-space dynamical systems with a low-complexity learning algorithm, enabling prediction and understanding of future states.
comment: 20 pages, 6 figures
☆ MKA: Leveraging Cross-Lingual Consensus for Model Abstention ICLR 2025
Reliability of LLMs is questionable even as they get better at more tasks. A wider adoption of LLMs is contingent on whether they are usably factual. And if they are not, on whether they can properly calibrate their confidence in their responses. This work focuses on utilizing the multilingual knowledge of an LLM to inform its decision to abstain or answer when prompted. We develop a multilingual pipeline to calibrate the model's confidence and let it abstain when uncertain. We run several multilingual models through the pipeline to profile them across different languages. We find that the performance of the pipeline varies by model and language, but that in general they benefit from it. This is evidenced by the accuracy improvement of $71.2\%$ for Bengali over a baseline performance without the pipeline. Even a high-resource language like English sees a $15.5\%$ improvement. These results hint at possible further improvements.
comment: To appear in Building Trust Workshop at ICLR 2025
☆ Data-Driven Forecasting of High-Dimensional Transient and Stationary Processes via Space-Time Projection
Space-Time Projection (STP) is introduced as a data-driven forecasting approach for high-dimensional and time-resolved data. The method computes extended space-time proper orthogonal modes from training data spanning a prediction horizon comprising both hindcast and forecast intervals. Forecasts are then generated by projecting the hindcast portion of these modes onto new data, simultaneously leveraging their orthogonality and optimal correlation with the forecast extension. Rooted in Proper Orthogonal Decomposition (POD) theory, dimensionality reduction and time-delay embedding are intrinsic to the approach. For a given ensemble and fixed prediction horizon, the only tunable parameter is the truncation rank--no additional hyperparameters are required. The hindcast accuracy serves as a reliable indicator for short-term forecast accuracy and establishes a lower bound on forecast errors. The efficacy of the method is demonstrated using two datasets: transient, highly anisotropic simulations of supernova explosions in a turbulent interstellar medium, and experimental velocity fields of a turbulent high-subsonic engineering flow. In a comparative study with standard Long Short-Term Memory (LSTM) neural networks--acknowledging that alternative architectures or training strategies may yield different outcomes--the method consistently provided more accurate forecasts. Considering its simplicity and robust performance, STP offers an interpretable and competitive benchmark for forecasting high-dimensional transient and chaotic processes, relying purely on spatiotemporal correlation information.
☆ Dynamic Operating System Scheduling Using Double DQN: A Reinforcement Learning Approach to Task Optimization
In this paper, an operating system scheduling algorithm based on Double DQN (Double Deep Q network) is proposed, and its performance under different task types and system loads is verified by experiments. Compared with the traditional scheduling algorithm, the algorithm based on Double DQN can dynamically adjust the task priority and resource allocation strategy, thus improving the task completion efficiency, system throughput, and response speed. The experimental results show that the Double DQN algorithm has high scheduling performance under light load, medium load and heavy load scenarios, especially when dealing with I/O intensive tasks, and can effectively reduce task completion time and system response time. In addition, the algorithm also shows high optimization ability in resource utilization and can intelligently adjust resource allocation according to the system state, avoiding resource waste and excessive load. Future studies will further explore the application of the algorithm in more complex systems, especially scheduling optimization in cloud computing and large-scale distributed environments, combining factors such as network latency and energy efficiency to improve the overall performance and adaptability of the algorithm.
☆ Scalable Geometric Learning with Correlation-Based Functional Brain Networks
The correlation matrix is a central representation of functional brain networks in neuroimaging. Traditional analyses often treat pairwise interactions independently in a Euclidean setting, overlooking the intrinsic geometry of correlation matrices. While earlier attempts have embraced the quotient geometry of the correlation manifold, they remain limited by computational inefficiency and numerical instability, particularly in high-dimensional contexts. This paper presents a novel geometric framework that employs diffeomorphic transformations to embed correlation matrices into a Euclidean space, preserving salient manifold properties and enabling large-scale analyses. The proposed method integrates with established learning algorithms - regression, dimensionality reduction, and clustering - and extends naturally to population-level inference of brain networks. Simulation studies demonstrate both improved computational speed and enhanced accuracy compared to conventional manifold-based approaches. Moreover, applications in real neuroimaging scenarios illustrate the framework's utility, enhancing behavior score prediction, subject fingerprinting in resting-state fMRI, and hypothesis testing in electroencephalogram data. An open-source MATLAB toolbox is provided to facilitate broader adoption and advance the application of correlation geometry in functional brain network research.
☆ A Survey of Reinforcement Learning-Based Motion Planning for Autonomous Driving: Lessons Learned from a Driving Task Perspective
Reinforcement learning (RL), with its ability to explore and optimize policies in complex, dynamic decision-making tasks, has emerged as a promising approach to addressing motion planning (MoP) challenges in autonomous driving (AD). Despite rapid advancements in RL and AD, a systematic description and interpretation of the RL design process tailored to diverse driving tasks remains underdeveloped. This survey provides a comprehensive review of RL-based MoP for AD, focusing on lessons from task-specific perspectives. We first outline the fundamentals of RL methodologies, and then survey their applications in MoP, analyzing scenario-specific features and task requirements to shed light on their influence on RL design choices. Building on this analysis, we summarize key design experiences, extract insights from various driving task applications, and provide guidance for future implementations. Additionally, we examine the frontier challenges in RL-based MoP, review recent efforts to addresse these challenges, and propose strategies for overcoming unresolved issues.
comment: 21 pages, 5 figures
☆ Learning a Single Index Model from Anisotropic Data with vanilla Stochastic Gradient Descent
We investigate the problem of learning a Single Index Model (SIM)- a popular model for studying the ability of neural networks to learn features - from anisotropic Gaussian inputs by training a neuron using vanilla Stochastic Gradient Descent (SGD). While the isotropic case has been extensively studied, the anisotropic case has received less attention and the impact of the covariance matrix on the learning dynamics remains unclear. For instance, Mousavi-Hosseini et al. (2023b) proposed a spherical SGD that requires a separate estimation of the data covariance matrix, thereby oversimplifying the influence of covariance. In this study, we analyze the learning dynamics of vanilla SGD under the SIM with anisotropic input data, demonstrating that vanilla SGD automatically adapts to the data's covariance structure. Leveraging these results, we derive upper and lower bounds on the sample complexity using a notion of effective dimension that is determined by the structure of the covariance matrix instead of the input data dimension.
♻ ☆ Evil twins are not that evil: Qualitative insights into machine-generated prompts
It has been widely observed that language models (LMs) respond in predictable ways to algorithmically generated prompts that are seemingly unintelligible. This is both a sign that we lack a full understanding of how LMs work, and a practical challenge, because opaqueness can be exploited for harmful uses of LMs, such as jailbreaking. We present the first thorough analysis of opaque machine-generated prompts, or autoprompts, pertaining to 6 LMs of different sizes and families. We find that machine-generated prompts are characterized by a last token that is often intelligible and strongly affects the generation. A small but consistent proportion of the previous tokens are prunable, probably appearing in the prompt as a by-product of the fact that the optimization process fixes the number of tokens. The remaining tokens fall into two categories: filler tokens, which can be replaced with semantically unrelated substitutes, and keywords, that tend to have at least a loose semantic relation with the generation, although they do not engage in well-formed syntactic relations with it. Additionally, human experts can reliably identify the most influential tokens in an autoprompt a posteriori, suggesting these prompts are not entirely opaque. Finally, some of the ablations we applied to autoprompts yield similar effects in natural language inputs, suggesting that autoprompts emerge naturally from the way LMs process linguistic inputs in general.
♻ ☆ The impact of internal variability on benchmarking deep learning climate emulators
Full-complexity Earth system models (ESMs) are computationally very expensive, limiting their use in exploring the climate outcomes of multiple emission pathways. More efficient emulators that approximate ESMs can directly map emissions onto climate outcomes, and benchmarks are being used to evaluate their accuracy on standardized tasks and datasets. We investigate a popular benchmark in data-driven climate emulation, ClimateBench, on which deep learning-based emulators are currently achieving the best performance. We compare these deep learning emulators with a linear regression-based emulator, akin to pattern scaling, and show that it outperforms the incumbent 100M-parameter deep learning foundation model, ClimaX, on 3 out of 4 regionally-resolved climate variables, notably surface temperature and precipitation. While emulating surface temperature is expected to be predominantly linear, this result is surprising for emulating precipitation. Precipitation is a much more noisy variable, and we show that deep learning emulators can overfit to internal variability noise at low frequencies, degrading their performance in comparison to a linear emulator. We address the issue of overfitting by increasing the number of climate simulations per emission pathway (from 3 to 50) and updating the benchmark targets with the respective ensemble averages from the MPI-ESM1.2-LR model. Using the new targets, we show that linear pattern scaling continues to be more accurate on temperature, but can be outperformed by a deep learning-based technique for emulating precipitation. We publish our code and data at github.com/blutjens/climate-emulator.
♻ ☆ Inductive Moment Matching
Diffusion models and Flow Matching generate high-quality samples but are slow at inference, and distilling them into few-step models often leads to instability and extensive tuning. To resolve these trade-offs, we propose Inductive Moment Matching (IMM), a new class of generative models for one- or few-step sampling with a single-stage training procedure. Unlike distillation, IMM does not require pre-training initialization and optimization of two networks; and unlike Consistency Models, IMM guarantees distribution-level convergence and remains stable under various hyperparameters and standard model architectures. IMM surpasses diffusion models on ImageNet-256x256 with 1.99 FID using only 8 inference steps and achieves state-of-the-art 2-step FID of 1.98 on CIFAR-10 for a model trained from scratch.
♻ ☆ CryptoPulse: Short-Term Cryptocurrency Forecasting with Dual-Prediction and Cross-Correlated Market Indicators
Cryptocurrencies fluctuate in markets with high price volatility, posing significant challenges for investors. To aid in informed decision-making, systems predicting cryptocurrency market movements have been developed, typically focusing on historical patterns. However, these methods often overlook three critical factors influencing market dynamics: 1) the macro investing environment, reflected in major cryptocurrency fluctuations affecting collaborative investor behaviors; 2) overall market sentiment, heavily influenced by news impacting investor strategies; and 3) technical indicators, offering insights into overbought or oversold conditions, momentum, and market trends, which are crucial for short-term price movements. This paper proposes a dual prediction mechanism that forecasts the next day's closing price by incorporating macroeconomic fluctuations, technical indicators, and individual cryptocurrency price changes. Additionally, a novel refinement mechanism enhances predictions through market sentiment-based rescaling and fusion. Experiments demonstrate that the proposed model achieves state-of-the-art performance, consistently outperforming ten comparison methods.
comment: 10
♻ ☆ A distance for mixed-variable and hierarchical domains with meta variables
Heterogeneous datasets emerge in various machine learning and optimization applications that feature different input sources, types or formats. Most models or methods do not natively tackle heterogeneity. Hence, such datasets are often partitioned into smaller and simpler ones, which may limit the generalizability or performance, especially when data is limited. The first main contribution of this work is a modeling framework that generalizes hierarchical, tree-structured, variable-size or conditional search frameworks. The framework models mixed-variable and hierarchical domains in which variables may be continuous, integer, or categorical, with some identified as meta when they influence the structure of the problem. The second main contribution is a novel distance that compares any pair of mixed-variable points that do not share the same variables, allowing to use whole heterogeneous datasets that reside in mixed-variable and hierarchical domains with meta variables. The contributions are illustrated through regression and classification experiments using simple distance-based models applied to datasets of hyperparameters with corresponding performance scores.
comment: 29 pages (without references), 12 figures, 5 tables, data and scripts available at https://github.com/bbopt/graph_distance
♻ ☆ Evolutionary Optimization of Physics-Informed Neural Networks: Survey and Prospects
Deep learning models trained on finite data lack a complete understanding of the physical world. On the other hand, physics-informed neural networks (PINNs) are infused with such knowledge through the incorporation of mathematically expressible laws of nature into their training loss function. By complying with physical laws, PINNs provide advantages over purely data-driven models in limited-data regimes. This feature has propelled them to the forefront of scientific machine learning, a domain characterized by scarce and costly data. However, the vision of accurate physics-informed learning comes with significant challenges. This review examines PINNs for the first time in terms of model optimization and generalization, shedding light on the need for new algorithmic advances to overcome issues pertaining to the training speed, precision, and generalizability of today's PINN models. Of particular interest are the gradient-free methods of neuroevolution for optimizing the uniquely complex loss landscapes arising in PINN training. Methods synergizing gradient descent and neuroevolution for discovering bespoke neural architectures and balancing multiple conflicting terms in physics-informed learning objectives are positioned as important avenues for future research. Yet another exciting track is to cast neuroevolution as a meta-learner of generalizable PINN models.
comment: 20 pages, 8 figures, 1 table
♻ ☆ DICE: Discrete Inversion Enabling Controllable Editing for Multinomial Diffusion and Masked Generative Models CVPR 2025
Discrete diffusion models have achieved success in tasks like image generation and masked language modeling but face limitations in controlled content editing. We introduce DICE (Discrete Inversion for Controllable Editing), the first approach to enable precise inversion for discrete diffusion models, including multinomial diffusion and masked generative models. By recording noise sequences and masking patterns during the reverse diffusion process, DICE enables accurate reconstruction and flexible editing of discrete data without the need for predefined masks or attention manipulation. We demonstrate the effectiveness of DICE across both image and text domains, evaluating it on models such as VQ-Diffusion, Paella, and RoBERTa. Our results show that DICE preserves high data fidelity while enhancing editing capabilities, offering new opportunities for fine-grained content manipulation in discrete spaces.
comment: Project webpage: https://hexiaoxiao-cs.github.io/DICE/. This paper was accepted to CVPR 2025 but later desk-rejected post camera-ready, due to a withdrawal from ICLR made 14 days before reviewer assignment
♻ ☆ Cascade Reward Sampling for Efficient Decoding-Time Alignment
Aligning large language models (LLMs) with human preferences is essential for their applications. Recently, decoding-time alignment has emerged as an effective plug-and-play technique that avoids fine-tuning model parameters. This approach retains the general utility of pretrained LLMs but often suffers from significant inefficiencies during decoding, primarily due to wasted token generation and excessive reward evaluations. To address these challenges, we introduce Cascade Reward Sampling (CARDS) to resolve both efficiency bottlenecks in decoding-time alignment. Specifically, we develop a segment-level rejection sampling algorithm that minimizes redundant computations of both LLMs and reward models (RMs). Central to CARDS is an uncertainty-based segmentation mechanism, which ensures the accuracy of RMs evaluations on incomplete segments. Furthermore, we provide a detailed analysis of reward scores on segments to elucidate the improved alignment performance. Experimental results demonstrate that CARDS significantly improves decoding efficiency, alignment quality, and general utility compared to existing decoding-time alignment methods, achieving approximately a 70% reduction in decoding time and over 90% win-ties in utility and safety benchmarks.
♻ ☆ Distributed Fractional Bayesian Learning for Adaptive Optimization
This paper considers a distributed adaptive optimization problem, where all agents only have access to their local cost functions with a common unknown parameter, whereas they mean to collaboratively estimate the true parameter and find the optimal solution over a connected network. A general mathematical framework for such a problem has not been studied yet. We aim to provide valuable insights for addressing parameter uncertainty in distributed optimization problems and simultaneously find the optimal solution. Thus, we propose a novel Prediction while Optimization scheme, which utilizes distributed fractional Bayesian learning through weighted averaging on the log-beliefs to update the beliefs of unknown parameters, and distributed gradient descent for renewing the estimation of the optimal solution. Then under suitable assumptions, we prove that all agents' beliefs and decision variables converge almost surely to the true parameter and the optimal solution under the true parameter, respectively. We further establish a sublinear convergence rate for the belief sequence. Finally, numerical experiments are implemented to corroborate the theoretical analysis.
♻ ☆ Studying the Interplay Between the Actor and Critic Representations in Reinforcement Learning ICLR 2025
Extracting relevant information from a stream of high-dimensional observations is a central challenge for deep reinforcement learning agents. Actor-critic algorithms add further complexity to this challenge, as it is often unclear whether the same information will be relevant to both the actor and the critic. To this end, we here explore the principles that underlie effective representations for the actor and for the critic in on-policy algorithms. We focus our study on understanding whether the actor and critic will benefit from separate, rather than shared, representations. Our primary finding is that when separated, the representations for the actor and critic systematically specialise in extracting different types of information from the environment -- the actor's representation tends to focus on action-relevant information, while the critic's representation specialises in encoding value and dynamics information. We conduct a rigourous empirical study to understand how different representation learning approaches affect the actor and critic's specialisations and their downstream performance, in terms of sample efficiency and generation capabilities. Finally, we discover that a separated critic plays an important role in exploration and data collection during training. Our code, trained models and data are accessible at https://github.com/francelico/deac-rep.
comment: Published as a conference paper at ICLR 2025. 10 pages
♻ ☆ ScienceAgentBench: Toward Rigorous Assessment of Language Agents for Data-Driven Scientific Discovery ICLR 2025
The advancements of large language models (LLMs) have piqued growing interest in developing LLM-based language agents to automate scientific discovery end-to-end, which has sparked both excitement and skepticism about their true capabilities. In this work, we call for rigorous assessment of agents on individual tasks in a scientific workflow before making bold claims on end-to-end automation. To this end, we present ScienceAgentBench, a new benchmark for evaluating language agents for data-driven scientific discovery. To ensure the scientific authenticity and real-world relevance of our benchmark, we extract 102 tasks from 44 peer-reviewed publications in four disciplines and engage nine subject matter experts to validate them. We unify the target output for every task to a self-contained Python program file and employ an array of evaluation metrics to examine the generated programs, execution results, and costs. Each task goes through multiple rounds of manual validation by annotators and subject matter experts to ensure its annotation quality and scientific plausibility. We also propose two effective strategies to mitigate data contamination concerns. Using ScienceAgentBench, we evaluate five open-weight and proprietary LLMs, each with three frameworks: direct prompting, OpenHands CodeAct, and self-debug. Given three attempts for each task, the best-performing agent can only solve 32.4% of the tasks independently and 34.3% with expert-provided knowledge. In addition, we evaluate OpenAI o1-preview with direct prompting and self-debug, which can boost the performance to 42.2%, demonstrating the effectiveness of increasing inference-time compute but with more than 10 times the cost of other LLMs. Still, our results underscore the limitations of current language agents in generating code for data-driven discovery, let alone end-to-end automation for scientific research.
comment: ICLR 2025. 60 pages
♻ ☆ Concept Navigation and Classification via Open-Source Large Language Model Processing
This paper presents a novel methodological framework for detecting and classifying latent constructs, including frames, narratives, and topics, from textual data using Open-Source Large Language Models (LLMs). The proposed hybrid approach combines automated summarization with human-in-the-loop validation to enhance the accuracy and interpretability of construct identification. By employing iterative sampling coupled with expert refinement, the framework guarantees methodological robustness and ensures conceptual precision. Applied to diverse data sets, including AI policy debates, newspaper articles on encryption, and the 20 Newsgroups data set, this approach demonstrates its versatility in systematically analyzing complex political discourses, media framing, and topic classification tasks.
comment: 36 pages, 1 figure, 5 tabels
♻ ☆ PhD Knowledge Not Required: A Reasoning Challenge for Large Language Models
Existing benchmarks for frontier models often test specialized, "PhD-level" knowledge that is difficult for non-experts to grasp. In contrast, we present a benchmark with 594 problems based on the NPR Sunday Puzzle Challenge that requires only general knowledge. Our benchmark is challenging for both humans and models; however correct solutions are easy to verify, and models' mistakes are easy to spot. As LLMs are more widely deployed in society, we believe it is useful to develop benchmarks for frontier models that humans can understand without the need for deep domain expertise. Our work reveals capability gaps that are not evident in existing benchmarks: OpenAI o1 significantly outperforms other reasoning models on our benchmark, despite being on par with other models when tested on benchmarks that test specialized knowledge. Furthermore, our analysis of reasoning outputs uncovers new kinds of failures. DeepSeek R1, for instance, often concedes with "I give up" before providing an answer that it knows is wrong. R1 can also be remarkably "uncertain" in its output and in rare cases, it does not "finish thinking," which suggests the need for techniques to "wrap up" before the context window limit is reached. We also quantify the effectiveness of reasoning longer to identify the point beyond which more reasoning is unlikely to improve accuracy on our benchmark.
♻ ☆ Backdoor Graph Condensation ICDE 2025
Graph condensation has recently emerged as a prevalent technique to improve the training efficiency for graph neural networks (GNNs). It condenses a large graph into a small one such that a GNN trained on this small synthetic graph can achieve comparable performance to a GNN trained on the large graph. However, while existing graph condensation studies mainly focus on the best trade-off between graph size and the GNNs' performance (model utility), they overlook the security issues of graph condensation. To bridge this gap, we first explore backdoor attack against the GNNs trained on the condensed graphs. We introduce an effective backdoor attack against graph condensation, termed BGC. This attack aims to (1) preserve the condensed graph quality despite trigger injection, and (2) ensure trigger efficacy through the condensation process, achieving a high attack success rate. Specifically, BGC consistently updates triggers during condensation and targets representative nodes for poisoning. Extensive experiments demonstrate the effectiveness of our attack. BGC achieves a high attack success rate (close to 1.0) and good model utility in all cases. Furthermore, the results against multiple defense methods demonstrate BGC's resilience under their defenses. Finally, we analyze the key hyperparameters that influence the attack performance. Our code is available at: https://github.com/JiahaoWuGit/BGC.
comment: ICDE 2025 Camera Ready
♻ ☆ Innovative LSGTime Model for Crime Spatiotemporal Prediction Based on MindSpore Framework
With the acceleration of urbanization, the spatiotemporal characteristics of criminal activities have become increasingly complex. Accurate prediction of crime distribution is crucial for optimizing the allocation of police resources and preventing crime. This paper proposes LGSTime, a crime spatiotemporal prediction model that integrates Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and the Multi-head Sparse Self-attention mechanism. LSTM and GRU capture long-term dependencies in crime time series, such as seasonality and periodicity, through their unique gating mechanisms. The Multi-head Sparse Self-attention mechanism, on the other hand, focuses on both temporal and spatial features of criminal events simultaneously through parallel processing and sparsification techniques, significantly improving computational efficiency and prediction accuracy. The integrated model leverages the strengths of each technique to better handle complex spatiotemporal data. Experimental findings demonstrate that the model attains optimal performance across four real - world crime datasets. In comparison to the CNN model, it exhibits performance enhancements of 2.8\%, 1.9\%, and 1.4\% in the Mean Squared Error (MSE), Mean Absolute Error (MAE), and Root Mean Squared Error (RMSE) metrics respectively. These results offer a valuable reference for tackling the challenges in crime prediction.
♻ ☆ AI in radiological imaging of soft-tissue and bone tumours: a systematic review evaluating against CLAIM and FUTURE-AI guidelines
Soft-tissue and bone tumours (STBT) are rare, diagnostically challenging lesions with variable clinical behaviours and treatment approaches. This systematic review provides an overview of Artificial Intelligence (AI) methods using radiological imaging for diagnosis and prognosis of these tumours, highlighting challenges in clinical translation, and evaluating study alignment with the Checklist for AI in Medical Imaging (CLAIM) and the FUTURE-AI international consensus guidelines for trustworthy and deployable AI to promote the clinical translation of AI methods. The review covered literature from several bibliographic databases, including papers published before 17/07/2024. Original research in peer-reviewed journals focused on radiology-based AI for diagnosing or prognosing primary STBT was included. Exclusion criteria were animal, cadaveric, or laboratory studies, and non-English papers. Abstracts were screened by two of three independent reviewers for eligibility. Eligible papers were assessed against guidelines by one of three independent reviewers. The search identified 15,015 abstracts, from which 325 articles were included for evaluation. Most studies performed moderately on CLAIM, averaging a score of 28.9$\pm$7.5 out of 53, but poorly on FUTURE-AI, averaging 5.1$\pm$2.1 out of 30. Imaging-AI tools for STBT remain at the proof-of-concept stage, indicating significant room for improvement. Future efforts by AI developers should focus on design (e.g. define unmet clinical need, intended clinical setting and how AI would be integrated in clinical workflow), development (e.g. build on previous work, explainability), evaluation (e.g. evaluating and addressing biases, evaluating AI against best practices), and data reproducibility and availability (making documented code and data publicly available). Following these recommendations could improve clinical translation of AI methods.
comment: 25 pages, 6 figures, 8 supplementary figures
♻ ☆ Score-Based Metropolis-Hastings Algorithms
In this paper, we introduce a new approach for integrating score-based models with the Metropolis-Hastings algorithm. While traditional score-based diffusion models excel in accurately learning the score function from data points, they lack an energy function, making the Metropolis-Hastings adjustment step inaccessible. Consequently, the unadjusted Langevin algorithm is often used for sampling using estimated score functions. The lack of an energy function then prevents the application of the Metropolis-adjusted Langevin algorithm and other Metropolis-Hastings methods, limiting the wealth of other algorithms developed that use acceptance functions. We address this limitation by introducing a new loss function based on the \emph{detailed balance condition}, allowing the estimation of the Metropolis-Hastings acceptance probabilities given a learned score function. We demonstrate the effectiveness of the proposed method for various scenarios, including sampling from heavy-tail distributions.
♻ ☆ Learning Beamforming Codebooks for Active Sensing with Reconfigurable Intelligent Surface
This paper explores the design of beamforming codebooks for the base station (BS) and for the reconfigurable intelligent surfaces (RISs) in an active sensing scheme for uplink localization, in which the mobile user transmits a sequence of pilots to the BS through reflection at the RISs, and the BS and the RISs are adaptively configured by carefully choosing BS beamforming codeword and RIS codewords from their respective codebooks in a sequential manner to progressively focus onto the user. Most existing codebook designs for RIS are not tailored for active sensing, by which we mean the choice of the next codeword should depend on the measurements made so far, and the sequence of codewords should dynamically focus reflection toward the user. Moreover, most existing codeword selection methods rely on exhaustive search in beam training to identify the codeword with the highest signal-to-noise ratio (SNR), thus incurring substantial pilot overhead as the size of the codebook scales. This paper proposes a learning-based approach for codebook construction and for codeword selection for active sensing. The proposed learning approach aims to locate a target in the service area by recursively selecting a sequence of BS beamforming codewords and RIS codewords from the respective codebooks as more measurements become available without exhaustive beam training. The codebook design and the codeword selection fuse key ideas from the vector quantized variational autoencoder (VQ-VAE) and the long short-term memory (LSTM) network to learn respectively the discrete function space of the codebook and the temporal dependencies between measurements.
comment: Accepted in IEEE Transactions on Wireless Communications
♻ ☆ Exploring Data Scaling Trends and Effects in Reinforcement Learning from Human Feedback
Reinforcement Learning from Human Feedback (RLHF) is crucial for aligning large language models with human preferences. While recent research has focused on algorithmic improvements, the importance of prompt-data construction has been overlooked. This paper addresses this gap by exploring data-driven bottlenecks in RLHF performance scaling, particularly reward hacking and decreasing response diversity. We introduce a hybrid reward system combining reasoning task verifiers (RTV) and a generative reward model (GenRM) to mitigate reward hacking. We also propose a novel prompt-selection method, Pre-PPO, to maintain response diversity and enhance learning effectiveness. Additionally, we find that prioritizing mathematical and coding tasks early in RLHF training significantly improves performance. Experiments across two model sizes validate our methods' effectiveness and scalability. Results show that RTV is most resistant to reward hacking, followed by GenRM with ground truth, and then GenRM with SFT Best-of-N responses. Our strategies enable rapid capture of subtle task-specific distinctions, leading to substantial improvements in overall RLHF performance. This work highlights the importance of careful data construction and provides practical methods to overcome performance barriers in RLHF.
♻ ☆ Efficient Learning for Entropy-Regularized Markov Decision Processes via Multilevel Monte Carlo
Designing efficient learning algorithms with complexity guarantees for Markov decision processes (MDPs) with large or continuous state and action spaces remains a fundamental challenge. We address this challenge for entropy-regularized MDPs with Polish state and action spaces, assuming access to a generative model of the environment. We propose a novel family of multilevel Monte Carlo (MLMC) algorithms that integrate fixed-point iteration with MLMC techniques and a generic stochastic approximation of the Bellman operator. We quantify the precise impact of the chosen approximate Bellman operator on the accuracy of the resulting MLMC estimator. Leveraging this error analysis, we show that using a biased plain MC estimate for the Bellman operator results in quasi-polynomial sample complexity, whereas an unbiased randomized multilevel approximation of the Bellman operator achieves polynomial sample complexity in expectation. Notably, these complexity bounds are independent of the dimensions or cardinalities of the state and action spaces, distinguishing our approach from existing algorithms whose complexities scale with the sizes of these spaces. We validate these theoretical performance guarantees through numerical experiments.
comment: 46 pages, 6 figures; fixed formatting of definitions and titles
♻ ☆ Are Large Language Models Memorizing Bug Benchmarks?
Large Language Models (LLMs) have become integral to various software engineering tasks, including code generation, bug detection, and repair. To evaluate model performance in these domains, numerous bug benchmarks containing real-world bugs from software projects have been developed. However, a growing concern within the software engineering community is that these benchmarks may not reliably reflect true LLM performance due to the risk of data leakage. Despite this concern, limited research has been conducted to quantify the impact of potential leakage. In this paper, we systematically evaluate popular LLMs to assess their susceptibility to data leakage from widely used bug benchmarks. To identify potential leakage, we use multiple metrics, including a study of benchmark membership within commonly used training datasets, as well as analyses of negative log-likelihood and n-gram accuracy. Our findings show that certain models, in particular codegen-multi, exhibit significant evidence of memorization in widely used benchmarks like Defects4J, while newer models trained on larger datasets like LLaMa 3.1 exhibit limited signs of leakage. These results highlight the need for careful benchmark selection and the adoption of robust metrics to adequately assess models capabilities.
♻ ☆ LoRA Subtraction for Drift-Resistant Space in Exemplar-Free Continual Learning CVPR 2025
In continual learning (CL), catastrophic forgetting often arises due to feature drift. This challenge is particularly prominent in the exemplar-free continual learning (EFCL) setting, where samples from previous tasks cannot be retained, making it difficult to preserve prior knowledge. To address this issue, some EFCL methods aim to identify feature spaces that minimize the impact on previous tasks while accommodating new ones. However, they rely on static features or outdated statistics stored from old tasks, which prevents them from capturing the dynamic evolution of the feature space in CL, leading to performance degradation over time. In this paper, we introduce the Drift-Resistant Space (DRS), which effectively handles feature drifts without requiring explicit feature modeling or the storage of previous tasks. A novel parameter-efficient fine-tuning approach called Low-Rank Adaptation Subtraction (LoRA-) is proposed to develop the DRS. This method subtracts the LoRA weights of old tasks from the initial pre-trained weight before processing new task data to establish the DRS for model training. Therefore, LoRA- enhances stability, improves efficiency, and simplifies implementation. Furthermore, stabilizing feature drifts allows for better plasticity by learning with a triplet loss. Our method consistently achieves state-of-the-art results, especially for long task sequences, across multiple datasets.
comment: Accepted to CVPR 2025
♻ ☆ Accelerated Smoothing: A Scalable Approach to Randomized Smoothing
Randomized smoothing has emerged as a potent certifiable defense against adversarial attacks by employing smoothing noises from specific distributions to ensure the robustness of a smoothed classifier. However, the utilization of Monte Carlo sampling in this process introduces a compute-intensive element, which constrains the practicality of randomized smoothing on a larger scale. To address this limitation, we propose a novel approach that replaces Monte Carlo sampling with the training of a surrogate neural network. Through extensive experimentation in various settings, we demonstrate the efficacy of our approach in approximating the smoothed classifier with remarkable precision. Furthermore, we demonstrate that our approach significantly accelerates the robust radius certification process, providing nearly $600$X improvement in computation time, overcoming the computational bottlenecks associated with traditional randomized smoothing.
♻ ☆ The Mathematical Relationship Between Layer Normalization and Dynamic Activation Functions
A recent paper proposes Dynamic Tanh (DyT) as a drop-in replacement for layer normalization (LN). Although the method is empirically well-motivated and appealing from a practical point of view, it lacks a theoretical foundation. In this work, we shed light on the mathematical relationship between layer normalization and dynamic activation functions. In particular, we derive DyT from LN and show that a well-defined approximation is needed to do so. By dropping said approximation, an alternative activation function is obtained, which we call Dynamic Inverse Square Root Unit (DyISRU). DyISRU is the exact counterpart of layer normalization, and we demonstrate numerically that it indeed resembles LN more accurately than DyT does.
comment: New title, renamed DyISRU, added missing parentheses in proof of theorem 3, minor language corrections
♻ ☆ LSEAttention is All You Need for Time Series Forecasting
Transformer-based architectures have achieved remarkable success in natural language processing and computer vision. However, their performance in multivariate long-term forecasting often falls short compared to simpler linear baselines. Previous research has identified the traditional attention mechanism as a key factor limiting their effectiveness in this domain. To bridge this gap, we introduce LATST, a novel approach designed to mitigate entropy collapse and training instability common challenges in Transformer-based time series forecasting. We rigorously evaluate LATST across multiple real-world multivariate time series datasets, demonstrating its ability to outperform existing state-of-the-art Transformer models. Notably, LATST manages to achieve competitive performance with fewer parameters than some linear models on certain datasets, highlighting its efficiency and effectiveness.
comment: 8 pages with referencing, 1 figure, 5 tables
♻ ☆ SoftCVI: Contrastive variational inference with self-generated soft labels ICLR
Estimating a distribution given access to its unnormalized density is pivotal in Bayesian inference, where the posterior is generally known only up to an unknown normalizing constant. Variational inference and Markov chain Monte Carlo methods are the predominant tools for this task; however, both are often challenging to apply reliably, particularly when the posterior has complex geometry. Here, we introduce Soft Contrastive Variational Inference (SoftCVI), which allows a family of variational objectives to be derived through a contrastive estimation framework. The approach parameterizes a classifier in terms of a variational distribution, reframing the inference task as a contrastive estimation problem aiming to identify a single true posterior sample among a set of samples. Despite this framing, we do not require positive or negative samples, but rather learn by sampling the variational distribution and computing ground truth soft classification labels from the unnormalized posterior itself. The objectives have zero variance gradient when the variational approximation is exact, without the need for specialized gradient estimators. We empirically investigate the performance on a variety of Bayesian inference tasks, using both simple (e.g. normal) and expressive (normalizing flow) variational distributions. We find that SoftCVI can be used to form objectives which are stable to train and mass-covering, frequently outperforming inference with other variational approaches.
comment: Updated to match version accepted at ICLR
♻ ☆ Pharmolix-FM: All-Atom Foundation Models for Molecular Modeling and Generation
Structural biology relies on accurate three-dimensional biomolecular structures to advance our understanding of biological functions, disease mechanisms, and therapeutics. While recent advances in deep learning have enabled the development of all-atom foundation models for molecular modeling and generation, existing approaches face challenges in generalization due to the multi-modal nature of atomic data and the lack of comprehensive analysis of training and sampling strategies. To address these limitations, we propose PharMolixFM, a unified framework for constructing all-atom foundation models based on multi-modal generative techniques. Our framework includes three variants using state-of-the-art multi-modal generative models. By formulating molecular tasks as a generalized denoising process with task-specific priors, PharMolixFM achieves robust performance across various structural biology applications. Experimental results demonstrate that PharMolixFM-Diff achieves competitive prediction accuracy in protein-small-molecule docking (83.9% vs. 90.2% RMSD < 2{\AA}, given pocket) with significantly improved inference speed. Moreover, we explore the empirical inference scaling law by introducing more sampling repeats or steps. Our code and model are available at https://github.com/PharMolix/OpenBioMed.
♻ ☆ RelChaNet: Neural Network Feature Selection using Relative Change Scores
There is an ongoing effort to develop feature selection algorithms to improve interpretability, reduce computational resources, and minimize overfitting in predictive models. Neural networks stand out as architectures on which to build feature selection methods, and recently, neuron pruning and regrowth have emerged from the sparse neural network literature as promising new tools. We introduce RelChaNet, a novel and lightweight supervised feature selection algorithm that uses neuron pruning and regrowth in the input layer of a dense neural network. For neuron pruning, a gradient sum metric measures the relative change induced in a network after a feature enters, while neurons are randomly regrown. We also propose an extension that adapts the size of the input layer at runtime. Extensive experiments on 13 different datasets show that our approach generally outperforms the current state-of-the-art methods, and in particular improves the average accuracy by 2% on the MNIST dataset. Our code is available at https://github.com/flxzimmer/relchanet.
♻ ☆ Emergent representations in networks trained with the Forward-Forward algorithm
The Backpropagation algorithm has often been criticised for its lack of biological realism. In an attempt to find a more biologically plausible alternative, the recently introduced Forward-Forward algorithm replaces the forward and backward passes of Backpropagation with two forward passes. In this work, we show that the internal representations obtained by the Forward-Forward algorithm can organise into category-specific ensembles exhibiting high sparsity -- composed of a low number of active units. This situation is reminiscent of what has been observed in cortical sensory areas, where neuronal ensembles are suggested to serve as the functional building blocks for perception and action. Interestingly, while this sparse pattern does not typically arise in models trained with standard Backpropagation, it can emerge in networks trained with Backpropagation on the same objective proposed for the Forward-Forward algorithm.
comment: Published in Transactions on Machine Learning Research (TMLR)
♻ ☆ Entropy-guided sequence weighting for efficient exploration in RL-based LLM fine-tuning
We introduce Entropy-Guided Sequence Weighting (EGSW), a novel approach that enhances the exploration-exploitation tradeoff by dynamically assigning weights to generated outputs based on their advantage and entropy for Reinforcement Learning-based Large Language Model fine-tuning. EGSW integrates entropy regularization with advantage-based weighting to balance policy updates, enabling efficient exploration in high-dimensional state spaces. By employing temperature-scaled softmax weighting over sequences, EGSW prioritizing high-reward, high-uncertainty steps while maintaining training stability. Although originally developed to improve Group Relative Policy Optimization (GRPO) during large language model (LLM) fine-tuning, EGSW is generalizable to other reinforcement learning (RL) algorithms and can be implemented in both step-wise and trajectory-wise settings. Empirical evaluations demonstrate that EGSW enhances GRPO reasoning ability, yielding improvements in sample efficiency. Future work will explore the application of EGSW to advanced RL methodologies.
♻ ☆ Grasping a Handful: Sequential Multi-Object Dexterous Grasp Generation
We introduce the sequential multi-object robotic grasp sampling algorithm SeqGrasp that can robustly synthesize stable grasps on diverse objects using the robotic hand's partial Degrees of Freedom (DoF). We use SeqGrasp to construct the large-scale Allegro Hand sequential grasping dataset SeqDataset and use it for training the diffusion-based sequential grasp generator SeqDiffuser. We experimentally evaluate SeqGrasp and SeqDiffuser against the state-of-the-art non-sequential multi-object grasp generation method MultiGrasp in simulation and on a real robot. The experimental results demonstrate that SeqGrasp and SeqDiffuser reach an 8.71%-43.33% higher grasp success rate than MultiGrasp. Furthermore, SeqDiffuser is approximately 1000 times faster at generating grasps than SeqGrasp and MultiGrasp.
comment: 8 pages, 7 figures
♻ ☆ Dynamic High-Order Control Barrier Functions with Diffuser for Safety-Critical Trajectory Planning at Signal-Free Intersections
Planning safe and efficient trajectories through signal-free intersections presents significant challenges for autonomous vehicles (AVs), particularly in dynamic, multi-task environments with unpredictable interactions and an increased possibility of conflicts. This study aims to address these challenges by developing a unified, robust, adaptive framework to ensure safety and efficiency across three distinct intersection movements: left-turn, right-turn, and straight-ahead. Existing methods often struggle to reliably ensure safety and effectively learn multi-task behaviors from demonstrations in such environments. This study proposes a safety-critical planning method that integrates Dynamic High-Order Control Barrier Functions (DHOCBF) with a diffusion-based model, called Dynamic Safety-Critical Diffuser (DSC-Diffuser). The DSC-Diffuser leverages task-guided planning to enhance efficiency, allowing the simultaneous learning of multiple driving tasks from real-world expert demonstrations. Moreover, the incorporation of goal-oriented constraints significantly reduces displacement errors, ensuring precise trajectory execution. To further ensure driving safety in dynamic environments, the proposed DHOCBF framework dynamically adjusts to account for the movements of surrounding vehicles, offering enhanced adaptability and reduce the conservatism compared to traditional control barrier functions. Validity evaluations of DHOCBF, conducted through numerical simulations, demonstrate its robustness in adapting to variations in obstacle velocities, sizes, uncertainties, and locations, effectively maintaining driving safety across a wide range of complex and uncertain scenarios. Comprehensive performance evaluations demonstrate that DSC-Diffuser generates realistic, stable, and generalizable policies, providing flexibility and reliable safety assurance in complex multi-task driving scenarios.
comment: 11 figures, 5 tables, 15 pages
♻ ☆ The AI off-switch problem as a signalling game: bounded rationality and incomparability
The off-switch problem is a critical challenge in AI control: if an AI system resists being switched off, it poses a significant risk. In this paper, we model the off-switch problem as a signalling game, where a human decision-maker communicates its preferences about some underlying decision problem to an AI agent, which then selects actions to maximise the human's utility. We assume that the human is a bounded rational agent and explore various bounded rationality mechanisms. Using real machine learning models, we reprove prior results and demonstrate that a necessary condition for an AI system to refrain from disabling its off-switch is its uncertainty about the human's utility. We also analyse how message costs influence optimal strategies and extend the analysis to scenarios involving incomparability.
♻ ☆ Mitigating Covariate Shift in Imitation Learning for Autonomous Vehicles Using Latent Space Generative World Models ICRA 2025
We propose the use of latent space generative world models to address the covariate shift problem in autonomous driving. A world model is a neural network capable of predicting an agent's next state given past states and actions. By leveraging a world model during training, the driving policy effectively mitigates covariate shift without requiring an excessive amount of training data. During end-to-end training, our policy learns how to recover from errors by aligning with states observed in human demonstrations, so that at runtime it can recover from perturbations outside the training distribution. Additionally, we introduce a novel transformer-based perception encoder that employs multi-view cross-attention and a learned scene query. We present qualitative and quantitative results, demonstrating significant improvements upon prior state of the art in closed-loop testing in the CARLA simulator, as well as showing the ability to handle perturbations in both CARLA and NVIDIA's DRIVE Sim.
comment: 8 pages, 6 figures, updated in March 2025, original published in September 2024, for ICRA 2025 submission, for associated video file, see https://youtu.be/7m3bXzlVQvU
♻ ☆ ShapG: new feature importance method based on the Shapley value
With wide application of Artificial Intelligence (AI), it has become particularly important to make decisions of AI systems explainable and transparent. In this paper, we proposed a new Explainable Artificial Intelligence (XAI) method called ShapG (Explanations based on Shapley value for Graphs) for measuring feature importance. ShapG is a model-agnostic global explanation method. At the first stage, it defines an undirected graph based on the dataset, where nodes represent features and edges are added based on calculation of correlation coefficients between features. At the second stage, it calculates an approximated Shapley value by sampling the data taking into account this graph structure. The sampling approach of ShapG allows to calculate the importance of features efficiently, i.e. to reduce computational complexity. Comparison of ShapG with other existing XAI methods shows that it provides more accurate explanations for two examined datasets. We also compared other XAI methods developed based on cooperative game theory with ShapG in running time, and the results show that ShapG exhibits obvious advantages in its running time, which further proves efficiency of ShapG. In addition, extensive experiments demonstrate a wide range of applicability of the ShapG method for explaining complex models. We find ShapG an important tool in improving explainability and transparency of AI systems and believe it can be widely used in various fields.
comment: This paper has been published in the journal "Engineering Applications of Artificial Intelligence"
♻ ☆ Quantifying the Capability Boundary of DeepSeek Models: An Application-Driven Performance Analysis
DeepSeek-R1, known for its low training cost and exceptional reasoning capabilities, has achieved state-of-the-art performance on various benchmarks. However, detailed evaluations for DeepSeek Series models from the perspective of real-world applications are lacking, making it challenging for users to select the most suitable DeepSeek models for their specific needs. To address this gap, we conduct a systematic evaluation of the DeepSeek-V3, DeepSeek-R1, DeepSeek-R1-Distill-Qwen series, DeepSeek-R1-Distill-Llama series, their corresponding 4-bit quantized models, and the reasoning model QwQ-32B using the enhanced A-Eval benchmark, A-Eval-2.0. Through a comparative analysis of original instruction-tuned models and their distilled counterparts, we investigate how reasoning enhancements impact performance across diverse practical tasks. To assist users in model selection, we quantify the capability boundary of DeepSeek models through performance tier classifications. Based on the quantification results, we develop a model selection handbook that clearly illustrates the relation among models, their capabilities and practical applications. This handbook enables users to select the most cost-effective models without efforts, ensuring optimal performance and resource efficiency in real-world applications. It should be noted that, despite our efforts to establish a comprehensive, objective, and authoritative evaluation benchmark, the selection of test samples, characteristics of data distribution, and the setting of evaluation criteria may inevitably introduce certain biases into the evaluation results. We will continuously optimize the evaluation benchmarks and periodically update this paper to provide more comprehensive and accurate evaluation results. Please refer to the latest version of the paper for the most current results and conclusions.
♻ ☆ FreqX: Analyze the Attribution Methods in Another Domain
Personalized Federal learning(PFL) allows clients to cooperatively train a personalized model without disclosing their private dataset. However, PFL suffers from Non-IID, heterogeneous devices, lack of fairness, and unclear contribution which urgently need the interpretability of deep learning model to overcome these challenges. These challenges proposed new demands for interpretability. Low cost, privacy, and detailed information. There is no current interpretability method satisfying them. In this paper, we propose a novel interpretability method \emph{FreqX} by introducing Signal Processing and Information Theory. Our experiments show that the explanation results of FreqX contain both attribution information and concept information. FreqX runs at least 10 times faster than the baselines which contain concept information.
comment: 16pages, 9 figures
♻ ☆ Implicit Bias and Fast Convergence Rates for Self-attention
We study the fundamental optimization principles of self-attention, the defining mechanism of transformers, by analyzing the implicit bias of gradient-based optimizers in training a self-attention layer with a linear decoder in binary classification. Building on prior studies in linear logistic regression, recent findings demonstrate that the key-query matrix $W_t$ from gradient-descent (GD) converges in direction towards $W_{mm}$, which maximizes the margin between optimal and non-optimal tokens across sequences. However, this convergence is local, dependent on initial conditions, only holds asymptotically as the number of iterations increases, and leaves questions about the potential benefits of adaptive step-size rules unaddressed. To bridge this gap, we first establish scenarios for which convergence is provably \emph{global}. We then analyze two adaptive step-size strategies: normalized GD and Polyak step-size, demonstrating \emph{finite-time} convergence rates for $W_t$ to $W_{mm}$, and quantifying the sparsification rate of the attention map. These findings not only show that these strategies can accelerate parameter convergence over standard GD in a non-convex setting but also deepen the understanding of the implicit bias in self-attention, linking it more closely to the phenomena observed in linear logistic regression despite its intricate non-convex nature.
comment: Accepted in TMLR, 43 pages, 10 figures
♻ ☆ Q-fid: Quantum Circuit Fidelity Improvement with LSTM Networks
The fidelity of quantum circuits (QC) is influenced by several factors, including hardware characteristics, calibration status, and the transpilation process, all of which impact their susceptibility to noise. However, existing methods struggle to estimate and compare the noise performance of different circuit layouts due to fluctuating error rates and the absence of a standardized fidelity metric. In this work, Q-fid is introduced, a Long Short-Term Memory (LSTM) based fidelity prediction system accompanied by a novel metric designed to quantify the fidelity of quantum circuits. Q-fid provides an intuitive way to predict the noise performance of Noisy Intermediate-Scale Quantum (NISQ) circuits. This approach frames fidelity prediction as a Time Series Forecasting problem to analyze the tokenized circuits, capturing the causal dependence of the gate sequences and their impact on overall fidelity. Additionally, the model is capable of dynamically adapting to changes in hardware characteristics, ensuring accurate fidelity predictions under varying conditions. Q-fid achieves a high prediction accuracy with an average RMSE of 0.0515, up to 24.7x more accurate than the Qiskit transpile tool mapomatic. By offering a reliable method for fidelity prediction, Q-fid empowers developers to optimize transpilation strategies, leading to more efficient and noise-resilient quantum circuit implementations.
♻ ☆ Internet of Things-Based Smart Precision Farming in Soilless Agriculture:Opportunities and Challenges for Global Food Security
The rapid growth of the global population and the continuous decline in cultivable land pose significant threats to food security. This challenge worsens as climate change further reduces the availability of farmland. Soilless agriculture, such as hydroponics, aeroponics, and aquaponics, offers a sustainable solution by enabling efficient crop cultivation in controlled environments. The integration of the Internet of Things (IoT) with smart precision farming improves resource efficiency, automates environmental control, and ensures stable and high-yield crop production. IoT-enabled smart farming systems utilize real-time monitoring, data-driven decision-making, and automation to optimize water and nutrient usage while minimizing human intervention. This paper explores the opportunities and challenges of IoT-based soilless farming, highlighting its role in sustainable agriculture, urban farming, and global food security. These advanced farming methods ensure greater productivity, resource conservation, and year-round cultivation. However, they also face challenges such as high initial investment, technological dependency, and energy consumption. Through a comprehensive study, bibliometric analysis, and comparative analysis, this research highlights current trends and research gaps. It also outlines future directions for researchers, policymakers, and industry stakeholders to drive innovation and scalability in IoT-driven soilless agriculture. By emphasizing the benefits of vertical farming and Controlled Environment Agriculture (CEA)-enabled soilless techniques, this paper supports informed decision-making to address food security challenges and promote sustainable agricultural innovations.
♻ ☆ Learning out-of-time-ordered correlators with classical kernel methods
Out-of-Time Ordered Correlators (OTOCs) are widely used to investigate information scrambling in quantum systems. However, directly computing OTOCs with classical computers is an expensive procedure. This is due to the need to classically simulate the dynamics of quantum many-body systems, which entails computational costs that scale rapidly with system size. Similarly, exact simulation of the dynamics with a quantum computer (QC) will either only be possible for short times with noisy intermediate-scale quantum (NISQ) devices, or will require a fault-tolerant QC which is currently beyond technological capabilities. This motivates a search for alternative approaches to determine OTOCs and related quantities. In this study, we explore four parameterised sets of Hamiltonians describing local one-dimensional quantum systems of interest in condensed matter physics. For each set, we investigate whether classical kernel methods (KMs) can accurately learn the XZ-OTOC and a particular sum of OTOCs, as functions of the Hamiltonian parameters. We frame the problem as a regression task, generating small batches of labelled data with classical tensor network methods for quantum many-body systems with up to 40 qubits. Using this data, we train a variety of standard kernel machines and observe that the Laplacian and radial basis function (RBF) kernels perform best, achieving a coefficient of determination (\(R^2\)) on the testing sets of at least 0.7167, with averages between 0.8112 and 0.9822 for the various sets of Hamiltonians, together with small root mean squared error and mean absolute error. Hence, after training, the models can replace further uses of tensor networks for calculating an OTOC function of a system within the parameterised sets. Accordingly, the proposed method can assist with extensive evaluations of an OTOC function.
comment: 19+ 18 pages, 6 figures, 14 tables
♻ ☆ Boost Your Human Image Generation Model via Direct Preference Optimization CVPR
Human image generation is a key focus in image synthesis due to its broad applications, but even slight inaccuracies in anatomy, pose, or details can compromise realism. To address these challenges, we explore Direct Preference Optimization (DPO), which trains models to generate preferred (winning) images while diverging from non-preferred (losing) ones. However, conventional DPO methods use generated images as winning images, limiting realism. To overcome this limitation, we propose an enhanced DPO approach that incorporates high-quality real images as winning images, encouraging outputs to resemble real images rather than generated ones. However, implementing this concept is not a trivial task. Therefore, our approach, HG-DPO (Human image Generation through DPO), employs a novel curriculum learning framework that gradually improves the output of the model toward greater realism, making training more feasible. Furthermore, HG-DPO effectively adapts to personalized text-to-image tasks, generating high-quality and identity-specific images, which highlights the practical value of our approach.
comment: CVPR`2025
♻ ☆ Scalable Multi-modal Model Predictive Control via Duality-based Interaction Predictions
We propose a hierarchical architecture designed for scalable real-time Model Predictive Control (MPC) in complex, multi-modal traffic scenarios. This architecture comprises two key components: 1) RAID-Net, a novel attention-based Recurrent Neural Network that predicts relevant interactions along the MPC prediction horizon between the autonomous vehicle and the surrounding vehicles using Lagrangian duality, and 2) a reduced Stochastic MPC problem that eliminates irrelevant collision avoidance constraints, enhancing computational efficiency. Our approach is demonstrated in a simulated traffic intersection with interactive surrounding vehicles, showcasing a 12x speed-up in solving the motion planning problem. A video demonstrating the proposed architecture in multiple complex traffic scenarios can be found here: https://youtu.be/-pRiOnPb9_c. GitHub: https://github.com/MPC-Berkeley/hmpc_raidnet
comment: Accepted at IEEE Intelligent Vehicles Symposium 2024
♻ ☆ Comparison of Metadata Representation Models for Knowledge Graph Embeddings
Hyper-relational Knowledge Graphs (HRKGs) extend traditional KGs beyond binary relations, enabling the representation of contextual, provenance, and temporal information in domains, such as historical events, sensor data, video content, and narratives. HRKGs can be structured using several Metadata Representation Models (MRMs), including Reification (REF), Singleton Property (SGP), and RDF-star (RDR). However, the effects of different MRMs on KG Embedding (KGE) and Link Prediction (LP) models remain unclear. This study evaluates MRMs in the context of LP tasks, identifies the limitations of existing evaluation frameworks, and introduces a new task that ensures fair comparisons across MRMs. Furthermore, we propose a framework that effectively reflects the knowledge representations of the three MRMs in latent space. Experiments on two types of datasets reveal that REF performs well in simple HRKGs, whereas SGP is less effective. However, in complex HRKGs, the differences among MRMs in the LP tasks are minimal. Our findings contribute to an optimal knowledge representation strategy for HRKGs in LP tasks.
comment: 11 pages, 9 Figures
♻ ☆ Testing Support Size More Efficiently Than Learning Histograms
Consider two problems about an unknown probability distribution $p$: 1. How many samples from $p$ are required to test if $p$ is supported on $n$ elements or not? Specifically, given samples from $p$, determine whether it is supported on at most $n$ elements, or it is "$\epsilon$-far" (in total variation distance) from being supported on $n$ elements. 2. Given $m$ samples from $p$, what is the largest lower bound on its support size that we can produce? The best known upper bound for problem (1) uses a general algorithm for learning the histogram of the distribution $p$, which requires $\Theta(\tfrac{n}{\epsilon^2 \log n})$ samples. We show that testing can be done more efficiently than learning the histogram, using only $O(\tfrac{n}{\epsilon \log n} \log(1/\epsilon))$ samples, nearly matching the best known lower bound of $\Omega(\tfrac{n}{\epsilon \log n})$. This algorithm also provides a better solution to problem (2), producing larger lower bounds on support size than what follows from previous work. The proof relies on an analysis of Chebyshev polynomial approximations outside the range where they are designed to be good approximations, and the paper is intended as an accessible self-contained exposition of the Chebyshev polynomial method.
comment: 40 pages. Minor edits, added Open questions
♻ ☆ Learning dynamical systems with hit-and-run random feature maps
We show how random feature maps can be used to forecast dynamical systems with excellent forecasting skill. We consider the tanh activation function and judiciously choose the internal weights in a data-driven manner such that the resulting features explore the nonlinear, non-saturated regions of the activation function. We introduce skip connections and construct a deep variant of random feature maps by combining several units. To mitigate the curse of dimensionality, we introduce localization where we learn local maps, employing conditional independence. Our modified random feature maps provide excellent forecasting skill for both single trajectory forecasts as well as long-time estimates of statistical properties, for a range of chaotic dynamical systems with dimensions up to 512. In contrast to other methods such as reservoir computers which require extensive hyperparameter tuning, we effectively need to tune only a single hyperparameter, and are able to achieve state-of-the-art forecast skill with much smaller networks.
♻ ☆ ADMM Algorithms for Residual Network Training: Convergence Analysis and Parallel Implementation
We propose both serial and parallel proximal (linearized) alternating direction method of multipliers (ADMM) algorithms for training residual neural networks. In contrast to backpropagation-based approaches, our methods inherently mitigate the exploding gradient issue and are well-suited for parallel and distributed training through regional updates. Theoretically, we prove that the proposed algorithms converge at an R-linear (sublinear) rate for both the iteration points and the objective function values. These results hold without imposing stringent constraints on network width, depth, or training data size. Furthermore, we theoretically analyze our parallel/distributed ADMM algorithms, highlighting their reduced time complexity and lower per-node memory consumption. To facilitate practical deployment, we develop a control protocol for parallel ADMM implementation using Python's multiprocessing and interprocess communication. Experimental results validate the proposed ADMM algorithms, demonstrating rapid and stable convergence, improved performance, and high computational efficiency. Finally, we highlight the improved scalability and efficiency achieved by our parallel ADMM training strategy.
♻ ☆ Training-Free Exponential Context Extension via Cascading KV Cache
The transformer's context window is vital for tasks such as few-shot learning and conditional generation as it preserves previous tokens for active memory. However, as the context lengths increase, the computational costs grow quadratically, hindering the deployment of large language models (LLMs) in real-world, long sequence scenarios. Although some recent key-value caching (KV Cache) methods offer linear inference complexity, they naively manage the stored context, prematurely evicting tokens and losing valuable information. Moreover, they lack an optimized prefill/prompt stage strategy, resulting in higher latency than even quadratic attention for realistic context sizes. In response, we introduce a novel mechanism that leverages cascading sub-cache buffers to selectively retain the most relevant tokens, enabling the model to maintain longer context histories without increasing the cache size. Our approach outperforms linear caching baselines across key benchmarks, including streaming perplexity, question answering, book summarization, and passkey retrieval, where it retains better retrieval accuracy at 1M tokens after four doublings of the cache size of 65K. Additionally, our method reduces prefill stage latency by a factor of 6.8 when compared to flash attention on 1M tokens. These innovations not only enhance the computational efficiency of LLMs but also pave the way for their effective deployment in resource-constrained environments, enabling large-scale, real-time applications with significantly reduced latency.
♻ ☆ XAMBA: Enabling Efficient State Space Models on Resource-Constrained Neural Processing Units
State-Space Models (SSMs) have emerged as efficient alternatives to transformers for sequential data tasks, offering linear or near-linear scalability with sequence length, making them ideal for long-sequence applications in NLP, vision, and edge AI, including real-time transcription, translation, and contextual search. These applications require lightweight, high-performance models for deployment on resource-constrained devices like laptops and PCs. Designing specialized accelerators for every emerging neural network is costly and impractical; instead, optimizing models for existing NPUs in AI PCs provides a scalable solution. To this end, we propose XAMBA, the first framework to enable and optimize SSMs on commercial off-the-shelf (COTS) state-of-the-art (SOTA) NPUs. XAMBA follows a three-step methodology: (1) enabling SSMs on NPUs, (2) optimizing performance to meet KPI requirements, and (3) trading accuracy for additional performance gains. After enabling SSMs on NPUs, XAMBA mitigates key bottlenecks using CumBA and ReduBA, replacing sequential CumSum and ReduceSum operations with matrix-based computations, significantly improving execution speed and memory efficiency. Additionally, ActiBA enhances performance by approximating expensive activation functions (e.g., Swish, Softplus) using piecewise linear mappings, reducing latency with minimal accuracy loss. Evaluations on an Intel Core Ultra Series 2 AI PC show that XAMBA achieves up to 4.8X speed-up over the baseline. Our implementation is available at https://github.com/arghadippurdue/XAMBA.
♻ ☆ Model Selection for Inverse Reinforcement Learning via Structural Risk Minimization
Inverse reinforcement learning (IRL) usually assumes the reward function model is pre-specified as a weighted sum of features and estimates the weighting parameters only. However, how to select features and determine a proper reward model is nontrivial and experience-dependent. A simplistic model is less likely to contain the ideal reward function, while a model with high complexity leads to substantial computation cost and potential overfitting. This paper addresses this trade-off in the model selection for IRL problems by introducing the structural risk minimization (SRM) framework from statistical learning. SRM selects an optimal reward function class from a hypothesis set minimizing both estimation error and model complexity. To formulate an SRM scheme for IRL, we estimate the policy gradient from given demonstration as the empirical risk, and establish the upper bound of Rademacher complexity as the model penalty of hypothesis function classes. The SRM learning guarantee is further presented. In particular, we provide the explicit form for the linear weighted sum setting. Simulations demonstrate the performance and efficiency of our algorithm.
♻ ☆ MMIE: Massive Multimodal Interleaved Comprehension Benchmark for Large Vision-Language Models ICLR 2025
Interleaved multimodal comprehension and generation, enabling models to produce and interpret both images and text in arbitrary sequences, have become a pivotal area in multimodal learning. Despite significant advancements, the evaluation of this capability remains insufficient. Existing benchmarks suffer from limitations in data scale, scope, and evaluation depth, while current evaluation metrics are often costly or biased, lacking in reliability for practical applications. To address these challenges, we introduce MMIE, a large-scale knowledge-intensive benchmark for evaluating interleaved multimodal comprehension and generation in Large Vision-Language Models (LVLMs). MMIE comprises 20K meticulously curated multimodal queries, spanning 3 categories, 12 fields, and 102 subfields, including mathematics, coding, physics, literature, health, and arts. It supports both interleaved inputs and outputs, offering a mix of multiple-choice and open-ended question formats to evaluate diverse competencies. Moreover, we propose a reliable automated evaluation metric, leveraging a scoring model fine-tuned with human-annotated data and systematic evaluation criteria, aimed at reducing bias and improving evaluation accuracy. Extensive experiments demonstrate the effectiveness of our benchmark and metrics in providing a comprehensive evaluation of interleaved LVLMs. Specifically, we evaluate eight LVLMs, revealing that even the best models show significant room for improvement, with most achieving only moderate results. We believe MMIE will drive further advancements in the development of interleaved LVLMs. We publicly release our benchmark and code in https://mmie-bench.github.io/.
comment: ICLR 2025 Oral
♻ ☆ Tackling Copyright Issues in AI Image Generation Through Originality Estimation and Genericization
The rapid progress of generative AI technology has sparked significant copyright concerns, leading to numerous lawsuits filed against AI developers. Notably, generative AI's capacity for generating images of copyrighted characters has been well documented in the literature, and while various techniques for mitigating copyright issues have been studied, significant risks remain. Here, we propose a genericization method that modifies the outputs of a generative model to make them more generic and less likely to imitate distinctive features of copyrighted materials. To achieve this, we introduce a metric for quantifying the level of originality of data, estimated by drawing samples from a generative model, and applied in the genericization process. As a practical implementation, we introduce PREGen (Prompt Rewriting-Enhanced Genericization), which combines our genericization method with an existing mitigation technique. Compared to the existing method, PREGen reduces the likelihood of generating copyrighted characters by more than half when the names of copyrighted characters are used as the prompt. Additionally, while generative models can produce copyrighted characters even when their names are not directly mentioned in the prompt, PREGen almost entirely prevents the generation of such characters in these cases. Ultimately, this study advances computational approaches for quantifying and strengthening copyright protection, thereby providing practical methodologies to promote responsible generative AI development.
comment: 23 pages, 10 figures
♻ ☆ Interpretable Few-shot Learning with Online Attribute Selection
Few-shot learning (FSL) presents a challenging learning problem in which only a few samples are available for each class. Decision interpretation is more important in few-shot classification due to a greater chance of error compared to traditional classification. However, the majority of the previous FSL methods are black-box models. In this paper, we propose an inherently interpretable model for FSL based on human-friendly attributes. Previously, human-friendly attributes have been utilized to train models with the potential for human interaction and interpretability. However, such approaches are not directly extendible to the few-shot classification scenario. Moreover, we propose an online attribute selection mechanism to effectively filter out irrelevant attributes in each episode. The attribute selection mechanism improves accuracy and helps with interpretability by reducing the number of attributes that participate in each episode. We further propose a mechanism that automatically detects the episodes where the pool of available human-friendly attributes is insufficient, and subsequently augments it by engaging some learned unknown attributes. We demonstrate that the proposed method achieves results on par with black-box few-shot learning models on four widely used datasets. We also empirically evaluate the level of decision alignment between different models and human understanding and show that our model outperforms the comparison methods based on this criterion.
♻ ☆ ADMM for Structured Fractional Minimization
This paper considers a class of structured fractional minimization problems. The numerator consists of a differentiable function, a simple nonconvex nonsmooth function, a concave nonsmooth function, and a convex nonsmooth function composed with a linear operator. The denominator is a continuous function that is either weakly convex or has a weakly convex square root. These problems are prevalent in various important applications in machine learning and data science. Existing methods, primarily based on subgradient methods and smoothing proximal gradient methods, often suffer from slow convergence and numerical stability issues. In this paper, we introduce {\sf FADMM}, the first Alternating Direction Method of Multipliers tailored for this class of problems. {\sf FADMM} decouples the original problem into linearized proximal subproblems, featuring two variants: one using Dinkelbach's parametric method ({\sf FADMM-D}) and the other using the quadratic transform method ({\sf FADMM-Q}). By introducing a novel Lyapunov function, we establish that {\sf FADMM} converges to $\epsilon$-approximate critical points of the problem within an oracle complexity of $\mathcal{O}(1/\epsilon^{3})$. Extensive experiments on synthetic and real-world datasets, including sparse Fisher discriminant analysis, robust Sharpe ratio minimization, and robust sparse recovery, demonstrate the effectiveness of our approach. Keywords: Fractional Minimization, Nonconvex Optimization, Proximal Linearized ADMM, Nonsmooth Optimization, Convergence Analysis
♻ ☆ A Minimal Control Family of Dynamical Systems for Universal Approximation
The universal approximation property (UAP) holds a fundamental position in deep learning, as it provides a theoretical foundation for the expressive power of neural networks. It is widely recognized that a composition of linear and nonlinear functions, such as the rectified linear unit (ReLU) activation function, can approximate continuous functions on compact domains. In this paper, we extend this efficacy to a scenario containing dynamical systems with controls. We prove that the control family $\mathcal{F}_1$ containing all affine maps and the nonlinear ReLU map is sufficient for generating flow maps that can approximate orientation-preserving (OP) diffeomorphisms on any compact domain. Since $\mathcal{F}_1$ contains only one nonlinear function and the UAP does not hold if we remove the nonlinear function, we call $\mathcal{F}_1$ a minimal control family for the UAP. On this basis, several mild sufficient conditions, such as affine invariance, are established for the control family and discussed. Our results reveal an underlying connection between the approximation power of neural networks and control systems and could provide theoretical guidance for examining the approximation power of flow-based models.
comment: 12 pages
♻ ☆ Self-Vocabularizing Training for Neural Machine Translation
Past vocabulary learning techniques identify relevant vocabulary before training, relying on statistical and entropy-based assumptions that largely neglect the role of model training. Empirically, we observe that trained translation models are induced to use a byte-pair encoding (BPE) vocabulary subset distinct from the original BPE vocabulary, leading to performance improvements when retrained with the induced vocabulary. In this paper, we analyze this discrepancy in neural machine translation by examining vocabulary and entropy shifts during self-training--where each iteration generates a labeled dataset by pairing source sentences with the model's predictions to define a new vocabulary. Building on these insights, we propose self-vocabularizing training, an iterative method that self-selects a smaller, more optimal vocabulary, yielding up to a 1.49 BLEU improvement. Moreover, we find that deeper model architectures lead to both an increase in unique token usage and a 6-8% reduction in vocabulary size.
comment: Accepted to NAACL SRW 2025
♻ ☆ An Iterative Bayesian Approach for System Identification based on Linear Gaussian Models
We tackle the problem of system identification, where we select inputs, observe the corresponding outputs from the true system, and optimize the parameters of our model to best fit the data. We propose a flexible and computationally tractable methodology that is compatible with any system and parametric family of models. Our approach only requires input-output data from the system and first-order information from the model with respect to the parameters. Our algorithm consists of two modules. First, we formulate the problem of system identification from a Bayesian perspective and use a linear Gaussian model approximation to iteratively optimize the model's parameters. In each iteration, we propose to use the input-output data to tune the covariance of the linear Gaussian model. This statistically calibrates the approach. Secondly, we define a Gaussian-based uncertainty measure for the model parameters, which we can then minimize with respect to the next selected input. We test our method with linear and nonlinear dynamics.
comment: Submitted to the IEEE CDC
♻ ☆ Graph neural networks extrapolate out-of-distribution for shortest paths
Neural networks (NNs), despite their success and wide adoption, still struggle to extrapolate out-of-distribution (OOD), i.e., to inputs that are not well-represented by their training dataset. Addressing the OOD generalization gap is crucial when models are deployed in environments significantly different from the training set, such as applying Graph Neural Networks (GNNs) trained on small graphs to large, real-world graphs. One promising approach for achieving robust OOD generalization is the framework of neural algorithmic alignment, which incorporates ideas from classical algorithms by designing neural architectures that resemble specific algorithmic paradigms (e.g. dynamic programming). The hope is that trained models of this form would have superior OOD capabilities, in much the same way that classical algorithms work for all instances. We rigorously analyze the role of algorithmic alignment in achieving OOD generalization, focusing on graph neural networks (GNNs) applied to the canonical shortest path problem. We prove that GNNs, trained to minimize a sparsity-regularized loss over a small set of shortest path instances, exactly implement the Bellman-Ford (BF) algorithm for shortest paths. In fact, if a GNN minimizes this loss within an error of $\epsilon$, it implements the BF algorithm with an error of $O(\epsilon)$. Consequently, despite limited training data, these GNNs are guaranteed to extrapolate to arbitrary shortest-path problems, including instances of any size. Our empirical results support our theory by showing that NNs trained by gradient descent are able to minimize this loss and extrapolate in practice.
♻ ☆ Balls-and-Bins Sampling for DP-SGD AISTATS 2025
We introduce the Balls-and-Bins sampling for differentially private (DP) optimization methods such as DP-SGD. While it has been common practice to use some form of shuffling in DP-SGD implementations, privacy accounting algorithms have typically assumed that Poisson subsampling is used instead. Recent work by Chua et al. (ICML 2024), however, pointed out that shuffling based DP-SGD can have a much larger privacy cost in practical regimes of parameters. In this work we show that the Balls-and-Bins sampling achieves the "best-of-both" samplers, namely, the implementation of Balls-and-Bins sampling is similar to that of Shuffling and models trained using DP-SGD with Balls-and-Bins sampling achieve utility comparable to those trained using DP-SGD with Shuffling at the same noise multiplier, and yet, Balls-and-Bins sampling enjoys similar-or-better privacy amplification as compared to Poisson subsampling in practical regimes.
comment: Conference Proceedings version for AISTATS 2025
♻ ☆ On Creating a Causally Grounded Usable Rating Method for Assessing the Robustness of Foundation Models Supporting Time Series
Foundation Models (FMs) have improved time series forecasting in various sectors, such as finance, but their vulnerability to input disturbances can hinder their adoption by stakeholders, such as investors and analysts. To address this, we propose a causally grounded rating framework to study the robustness of Foundational Models for Time Series (FMTS) with respect to input perturbations. We evaluate our approach to the stock price prediction problem, a well-studied problem with easily accessible public data, evaluating six state-of-the-art (some multi-modal) FMTS across six prominent stocks spanning three industries. The ratings proposed by our framework effectively assess the robustness of FMTS and also offer actionable insights for model selection and deployment. Within the scope of our study, we find that (1) multi-modal FMTS exhibit better robustness and accuracy compared to their uni-modal versions and, (2) FMTS pre-trained on time series forecasting task exhibit better robustness and forecasting accuracy compared to general-purpose FMTS pre-trained across diverse settings. Further, to validate our framework's usability, we conduct a user study showcasing FMTS prediction errors along with our computed ratings. The study confirmed that our ratings reduced the difficulty for users in comparing the robustness of different systems.
♻ ☆ A Formal Framework for Understanding Length Generalization in Transformers ICLR 2025
A major challenge for transformers is generalizing to sequences longer than those observed during training. While previous works have empirically shown that transformers can either succeed or fail at length generalization depending on the task, theoretical understanding of this phenomenon remains limited. In this work, we introduce a rigorous theoretical framework to analyze length generalization in causal transformers with learnable absolute positional encodings. In particular, we characterize those functions that are identifiable in the limit from sufficiently long inputs with absolute positional encodings under an idealized inference scheme using a norm-based regularizer. This enables us to prove the possibility of length generalization for a rich family of problems. We experimentally validate the theory as a predictor of success and failure of length generalization across a range of algorithmic and formal language tasks. Our theory not only explains a broad set of empirical observations but also opens the way to provably predicting length generalization capabilities in transformers.
comment: 85 pages, 9 figures, 11 tables. Accepted for publication at ICLR 2025
♻ ☆ Diversity-driven Data Selection for Language Model Tuning through Sparse Autoencoder
Instruction tuning data are often quantity-saturated due to the large volume of data collection and fast model iteration, leaving data selection important but underexplored. Existing quality-driven data selection methods, such as LIMA (NeurIPS 2023 \citep{zhou2024lima}) and AlpaGasus (ICLR 2024 \citep{chenalpagasus}) generally ignore the equal importance of data diversity and complexity. In this work, we aim to design a diversity-aware data selection strategy and creatively propose using sparse autoencoders (SAEs) to tackle the challenge of data diversity measure. In addition, SAEs can also provide more interpretability of model behavior and explain, e.g., the surprising effectiveness of selecting the longest response (ICML 2024 \citep{zhaolong}). Using effective data selection, we experimentally prove that models trained on our selected data can outperform other methods in terms of model capabilities, reduce training cost, and potentially gain more control over model behaviors. We prove that SAEs can serve as a good alternative to diversity measure and design our method to be scalable for potential industrial large-scale pruning, and we will also release our trained SAEs for use by the broader community.
comment: fix typos
♻ ☆ Don't lie to your friends: Learning what you know from collaborative self-play
To be helpful assistants, AI agents must be aware of their own capabilities and limitations. This includes knowing when to answer from parametric knowledge versus using tools, when to trust tool outputs, and when to abstain or hedge. Such capabilities are hard to teach through supervised fine-tuning because they require constructing examples that reflect the agent's specific capabilities. We therefore propose a radically new approach to teaching agents what they know: \emph{collaborative self-play}. We construct multi-agent collaborations in which the group is rewarded for collectively arriving at correct answers. The desired meta-knowledge emerges from the incentives built into the structure of the interaction. We focus on small societies of agents that have access to heterogeneous tools (corpus-specific retrieval), and therefore must collaborate to maximize their success while minimizing their effort. Experiments show that group-level rewards for multi-agent communities can induce policies that \emph{transfer} to improve tool use and selective prediction in settings where individual agents are deployed in isolation.
♻ ☆ Towards Adversarially Robust Dataset Distillation by Curvature Regularization
Dataset distillation (DD) allows datasets to be distilled to fractions of their original size while preserving the rich distributional information so that models trained on the distilled datasets can achieve a comparable accuracy while saving significant computational loads. Recent research in this area has been focusing on improving the accuracy of models trained on distilled datasets. In this paper, we aim to explore a new perspective of DD. We study how to embed adversarial robustness in distilled datasets, so that models trained on these datasets maintain the high accuracy and meanwhile acquire better adversarial robustness. We propose a new method that achieves this goal by incorporating curvature regularization into the distillation process with much less computational overhead than standard adversarial training. Extensive empirical experiments suggest that our method not only outperforms standard adversarial training on both accuracy and robustness with less computation overhead but is also capable of generating robust distilled datasets that can withstand various adversarial attacks.
comment: 14 pages, 3 figures
♻ ☆ DT-DDNN: A Physical Layer Security Attack Detector in 5G RF Domain for CAVs
The Synchronization Signal Block (SSB) is a fundamental component of the 5G New Radio (NR) air interface, crucial for the initial access procedure of Connected and Automated Vehicles (CAVs), and serves several key purposes in the network's operation. However, due to the predictable nature of SSB transmission, including the Primary and Secondary Synchronization Signals (PSS and SSS), jamming attacks are critical threats. These attacks, which can be executed without requiring high power or complex equipment, pose substantial risks to the 5G network, particularly as a result of the unencrypted transmission of control signals. Leveraging RF domain knowledge, this work presents a novel deep learning-based technique for detecting jammers in CAV networks. Unlike the existing jamming detection algorithms that mostly rely on network parameters, we introduce a double-threshold deep learning jamming detector by focusing on the SSB. The detection method is focused on RF domain features and improves the robustness of the network without requiring integration with the pre-existing network infrastructure. By integrating a preprocessing block to extract PSS correlation and energy per null resource elements (EPNRE) characteristics, our method distinguishes between normal and jammed received signals with high precision. Additionally, by incorporating of Discrete Wavelet Transform (DWT), the efficacy of training and detection are optimized. A double-threshold double Deep Neural Network (DT-DDNN) is also introduced to the architecture complemented by a deep cascade learning model to increase the sensitivity of the model to variations of signal-to-jamming noise ratio (SJNR). Results show that the proposed method achieves 96.4% detection rate in extra low jamming power, i.e., SJNR between 15 to 30 dB. Further, performance of DT-DDNN is validated by analyzing real 5G signals obtained from a practical testbed.
comment: 14 pages, 13 figures, accepted to IEEE Transactions on Vehicular Technology
♻ ☆ Learning Color Equivariant Representations ICLR 2025
In this paper, we introduce group convolutional neural networks (GCNNs) equivariant to color variation. GCNNs have been designed for a variety of geometric transformations from 2D and 3D rotation groups, to semi-groups such as scale. Despite the improved interpretability, accuracy and generalizability of these architectures, GCNNs have seen limited application in the context of perceptual quantities. Notably, the recent CEConv network uses a GCNN to achieve equivariance to hue transformations by convolving input images with a hue rotated RGB filter. However, this approach leads to invalid RGB values which break equivariance and degrade performance. We resolve these issues with a lifting layer that transforms the input image directly, thereby circumventing the issue of invalid RGB values and improving equivariance error by over three orders of magnitude. Moreover, we extend the notion of color equivariance to include equivariance to saturation and luminance shift. Our hue-, saturation-, luminance- and color-equivariant networks achieve strong generalization to out-of-distribution perceptual variations and improved sample efficiency over conventional architectures. We demonstrate the utility of our approach on synthetic and real world datasets where we consistently outperform competitive baselines.
comment: Accept to The 13th International Conference on Learning Representations (ICLR 2025)
♻ ☆ Safe Policy Learning through Extrapolation: Application to Pre-trial Risk Assessment
Algorithmic recommendations and decisions have become ubiquitous in today's society. Many of these data-driven policies, especially in the realm of public policy, are based on known, deterministic rules to ensure their transparency and interpretability. We examine a particular case of algorithmic pre-trial risk assessments in the US criminal justice system, which provide deterministic classification scores and recommendations to help judges make release decisions. Our goal is to analyze data from a unique field experiment on an algorithmic pre-trial risk assessment to investigate whether the scores and recommendations can be improved. Unfortunately, prior methods for policy learning are not applicable because they require existing policies to be stochastic. We develop a maximin robust optimization approach that partially identifies the expected utility of a policy, and then finds a policy that maximizes the worst-case expected utility. The resulting policy has a statistical safety property, limiting the probability of producing a worse policy than the existing one, under structural assumptions about the outcomes. Our analysis of data from the field experiment shows that we can safely improve certain components of the risk assessment instrument by classifying arrestees as lower risk under a wide range of utility specifications, though the analysis is not informative about several components of the instrument.
♻ ☆ Eliminating Position Bias of Language Models: A Mechanistic Approach
Position bias has proven to be a prevalent issue of modern language models (LMs), where the models prioritize content based on its position within the given context. This bias often leads to unexpected model failures and hurts performance, robustness, and reliability across various applications. Our mechanistic analysis attributes the position bias to two components employed in nearly all state-of-the-art LMs: causal attention and relative positional encodings. Based on the analyses, we propose to eliminate position bias (e.g., different retrieved documents' orders in QA affect performance) with a training-free zero-shot approach. Our method changes the causal attention to bidirectional attention between documents and utilizes model attention values to decide the relative orders of documents instead of using the order provided in input prompts, therefore enabling Position-INvariant inferencE (PINE) at the document level. By eliminating position bias, models achieve better performance and reliability in downstream tasks, including LM-as-a-judge, retrieval-augmented QA, molecule generation, and math reasoning. Notably, PINE is especially useful when adapting LMs for evaluating reasoning pairs: it consistently provides 8 to 10 percentage points performance gains, making Llama-3-70B-Instruct perform even better than GPT-4-0125-preview and GPT-4o-2024-08-06 on the RewardBench reasoning set.
comment: 26 pages, 6 figures, 15 tables
♻ ☆ Features that Make a Difference: Leveraging Gradients for Improved Dictionary Learning
Sparse Autoencoders (SAEs) are a promising approach for extracting neural network representations by learning a sparse and overcomplete decomposition of the network's internal activations. However, SAEs are traditionally trained considering only activation values and not the effect those activations have on downstream computations. This limits the information available to learn features, and biases the autoencoder towards neglecting features which are represented with small activation values but strongly influence model outputs. To address this, we introduce Gradient SAEs (g-SAEs), which modify the $k$-sparse autoencoder architecture by augmenting the TopK activation function to rely on the gradients of the input activation when selecting the $k$ elements. For a given sparsity level, g-SAEs produce reconstructions that are more faithful to original network performance when propagated through the network. Additionally, we find evidence that g-SAEs learn latents that are on average more effective at steering models in arbitrary contexts. By considering the downstream effects of activations, our approach leverages the dual nature of neural network features as both $\textit{representations}$, retrospectively, and $\textit{actions}$, prospectively. While previous methods have approached the problem of feature discovery primarily focused on the former aspect, g-SAEs represent a step towards accounting for the latter as well.
comment: 10 pages, 10 figures. Accepted to NAACL 2025
♻ ☆ VERA: Explainable Video Anomaly Detection via Verbalized Learning of Vision-Language Models CVPR 2025
The rapid advancement of vision-language models (VLMs) has established a new paradigm in video anomaly detection (VAD): leveraging VLMs to simultaneously detect anomalies and provide comprehendible explanations for the decisions. Existing work in this direction often assumes the complex reasoning required for VAD exceeds the capabilities of pretrained VLMs. Consequently, these approaches either incorporate specialized reasoning modules during inference or rely on instruction tuning datasets through additional training to adapt VLMs for VAD. However, such strategies often incur substantial computational costs or data annotation overhead. To address these challenges in explainable VAD, we introduce a verbalized learning framework named VERA that enables VLMs to perform VAD without model parameter modifications. Specifically, VERA automatically decomposes the complex reasoning required for VAD into reflections on simpler, more focused guiding questions capturing distinct abnormal patterns. It treats these reflective questions as learnable parameters and optimizes them through data-driven verbal interactions between learner and optimizer VLMs, using coarsely labeled training data. During inference, VERA embeds the learned questions into model prompts to guide VLMs in generating segment-level anomaly scores, which are then refined into frame-level scores via the fusion of scene and temporal contexts. Experimental results on challenging benchmarks demonstrate that the learned questions of VERA are highly adaptable, significantly improving both detection performance and explainability of VLMs for VAD.
comment: Accepted in CVPR 2025
♻ ☆ VL-ICL Bench: The Devil in the Details of Multimodal In-Context Learning ICLR 2025
Large language models (LLMs) famously exhibit emergent in-context learning (ICL) -- the ability to rapidly adapt to new tasks using few-shot examples provided as a prompt, without updating the model's weights. Built on top of LLMs, vision large language models (VLLMs) have advanced significantly in areas such as recognition, reasoning, and grounding. However, investigations into \emph{multimodal ICL} have predominantly focused on few-shot visual question answering (VQA), and image captioning, which we will show neither exploit the strengths of ICL, nor test its limitations. The broader capabilities and limitations of multimodal ICL remain under-explored. In this study, we introduce a comprehensive benchmark VL-ICL Bench for multimodal in-context learning, encompassing a broad spectrum of tasks that involve both images and text as inputs and outputs, and different types of challenges, from {perception to reasoning and long context length}. We evaluate the abilities of state-of-the-art VLLMs against this benchmark suite, revealing their diverse strengths and weaknesses, and showing that even the most advanced models, such as GPT-4, find the tasks challenging. By highlighting a range of new ICL tasks, and the associated strengths and limitations of existing models, we hope that our dataset will inspire future work on enhancing the in-context learning capabilities of VLLMs, as well as inspire new applications that leverage VLLM ICL. The code and dataset are available at https://github.com/ys-zong/VL-ICL.
comment: ICLR 2025
♻ ☆ Can Zero-Shot Commercial APIs Deliver Regulatory-Grade Clinical Text DeIdentification?
We evaluate the performance of four leading solutions for de-identification of unstructured medical text - Azure Health Data Services, AWS Comprehend Medical, OpenAI GPT-4o, and John Snow Labs - on a ground truth dataset of 48 clinical documents annotated by medical experts. The analysis, conducted at both entity-level and token-level, suggests that John Snow Labs' Medical Language Models solution achieves the highest accuracy, with a 96% F1-score in protected health information (PHI) detection, outperforming Azure (91%), AWS (83%), and GPT-4o (79%). John Snow Labs is not only the only solution which achieves regulatory-grade accuracy (surpassing that of human experts) but is also the most cost-effective solution: It is over 80% cheaper compared to Azure and GPT-4o, and is the only solution not priced by token. Its fixed-cost local deployment model avoids the escalating per-request fees of cloud-based services, making it a scalable and economical choice.
comment: 14 pages, accepted at Text2Story Workshop at ECIR 2025
♻ ☆ Forgetting Transformer: Softmax Attention with a Forget Gate ICLR 2025
An essential component of modern recurrent sequence models is the forget gate. While Transformers do not have an explicit recurrent form, we show that a forget gate can be naturally incorporated into Transformers by down-weighting the unnormalized attention scores in a data-dependent way. We name this attention mechanism Forgetting Attention and the resulting model the Forgetting Transformer (FoX). We show that FoX outperforms the Transformer on long-context language modeling, length extrapolation, and short-context downstream tasks, while performing on par with the Transformer on long-context downstream tasks. Moreover, it is compatible with the FlashAttention algorithm and does not require any positional embeddings. Several analyses, including the needle-in-the-haystack test, show that FoX also retains the Transformer's superior long-context capabilities over recurrent sequence models such as Mamba-2, HGRN2, and DeltaNet. We also introduce a "Pro" block design that incorporates some common architectural components in recurrent sequence models and find it significantly improves the performance of both FoX and the Transformer. Our code is available at https://github.com/zhixuan-lin/forgetting-transformer.
comment: Published as a conference paper at ICLR 2025; Fixed an issue with the attention map visualization
♻ ☆ SE Arena: An Interactive Platform for Evaluating Foundation Models in Software Engineering
Foundation models (FMs), particularly large language models (LLMs), have shown significant promise in various software engineering (SE) tasks, including code generation, debugging, and requirement refinement. Despite these advances, existing evaluation frameworks are insufficient for assessing model performance in iterative, context-rich workflows characteristic of SE activities. To address this limitation, we introduce SE Arena, an interactive platform designed to evaluate SE-focused chatbots. SE Arena provides a transparent, open-source leaderboard, supports multi-round conversational workflows, and enables end-to-end model comparisons. Moreover, SE Arena incorporates a new feature called RepoChat, which automatically injects repository-related context (e.g., issues, commits, pull requests) into the conversation, further aligning evaluations with real-world development processes. This paper outlines the design and capabilities of SE Arena, emphasizing its potential to advance the evaluation and practical application of FMs in software engineering.
comment: Check the arena at https://huggingface.co/spaces/SE-Arena/Software-Engineering-Arena
♻ ☆ Privacy Vulnerabilities in Marginals-based Synthetic Data
When acting as a privacy-enhancing technology, synthetic data generation (SDG) aims to maintain a resemblance to the real data while excluding personally-identifiable information. Many SDG algorithms provide robust differential privacy (DP) guarantees to this end. However, we show that the strongest class of SDG algorithms--those that preserve \textit{marginal probabilities}, or similar statistics, from the underlying data--leak information about individuals that can be recovered more efficiently than previously understood. We demonstrate this by presenting a novel membership inference attack, MAMA-MIA, and evaluate it against three seminal DP SDG algorithms: MST, PrivBayes, and Private-GSD. MAMA-MIA leverages knowledge of which SDG algorithm was used, allowing it to learn information about the hidden data more accurately, and orders-of-magnitude faster, than other leading attacks. We use MAMA-MIA to lend insight into existing SDG vulnerabilities. Our approach went on to win the first SNAKE (SaNitization Algorithm under attacK ... $\varepsilon$) competition.
comment: Accepted at 3rd IEEE Conference on Secure and Trustworthy Machine Learning (SaTML) 2025
♻ ☆ Dataset Distillation via Knowledge Distillation: Towards Efficient Self-Supervised Pre-Training of Deep Networks ICLR 2025
Dataset distillation (DD) generates small synthetic datasets that can efficiently train deep networks with a limited amount of memory and compute. Despite the success of DD methods for supervised learning, DD for self-supervised pre-training of deep models has remained unaddressed. Pre-training on unlabeled data is crucial for efficiently generalizing to downstream tasks with limited labeled data. In this work, we propose the first effective DD method for SSL pre-training. First, we show, theoretically and empirically, that naive application of supervised DD methods to SSL fails, due to the high variance of the SSL gradient. Then, we address this issue by relying on insights from knowledge distillation (KD) literature. Specifically, we train a small student model to match the representations of a larger teacher model trained with SSL. Then, we generate a small synthetic dataset by matching the training trajectories of the student models. As the KD objective has considerably lower variance than SSL, our approach can generate synthetic datasets that can successfully pre-train high-quality encoders. Through extensive experiments, we show that our distilled sets lead to up to 13% higher accuracy than prior work, on a variety of downstream tasks, in the presence of limited labeled data. Code at https://github.com/BigML-CS-UCLA/MKDT.
comment: ICLR 2025. Code at https://github.com/BigML-CS-UCLA/MKDT
♻ ☆ GP-MoLFormer: A Foundation Model For Molecular Generation
Transformer-based models trained on large and general purpose datasets consisting of molecular strings have recently emerged as a powerful tool for successfully modeling various structure-property relations. Inspired by this success, we extend the paradigm of training chemical language transformers on large-scale chemical datasets to generative tasks in this work. Specifically, we propose GP-MoLFormer, an autoregressive molecular string generator that is trained on more than 1.1B (billion) chemical SMILES. GP-MoLFormer uses a 46.8M parameter transformer decoder model with linear attention and rotary positional encodings as the base architecture. GP-MoLFormer's utility is evaluated and compared with that of existing baselines on three different tasks: de novo generation, scaffold-constrained molecular decoration, and unconstrained property-guided optimization. While the first two are handled with no additional training, we propose a parameter-efficient fine-tuning method for the last task, which uses property-ordered molecular pairs as input. We call this new approach pair-tuning. Our results show GP-MoLFormer performs better or comparable with baselines across all three tasks, demonstrating its general utility for a variety of molecular generation tasks. We further report strong memorization of training data in GP-MoLFormer generations, which has so far remained unexplored for chemical language models. Our analyses reveal that training data memorization and novelty in generations are impacted by the quality and scale of the training data; duplication bias in training data can enhance memorization at the cost of lowering novelty. We further establish a scaling law relating inference compute and novelty in generations.
♻ ☆ Severing Spurious Correlations with Data Pruning ICLR 2025
Deep neural networks have been shown to learn and rely on spurious correlations present in the data that they are trained on. Reliance on such correlations can cause these networks to malfunction when deployed in the real world, where these correlations may no longer hold. To overcome the learning of and reliance on such correlations, recent studies propose approaches that yield promising results. These works, however, study settings where the strength of the spurious signal is significantly greater than that of the core, invariant signal, making it easier to detect the presence of spurious features in individual training samples and allow for further processing. In this paper, we identify new settings where the strength of the spurious signal is relatively weaker, making it difficult to detect any spurious information while continuing to have catastrophic consequences. We also discover that spurious correlations are learned primarily due to only a handful of all the samples containing the spurious feature and develop a novel data pruning technique that identifies and prunes small subsets of the training data that contain these samples. Our proposed technique does not require inferred domain knowledge, information regarding the sample-wise presence or nature of spurious information, or human intervention. Finally, we show that such data pruning attains state-of-the-art performance on previously studied settings where spurious information is identifiable.
comment: ICLR 2025, Spotlight
♻ ☆ Adversarially Robust Learning with Optimal Transport Regularized Divergences
We introduce a new class of optimal-transport-regularized divergences, $D^c$, constructed via an infimal convolution between an information divergence, $D$, and an optimal-transport (OT) cost, $C$, and study their use in distributionally robust optimization (DRO). In particular, we propose the $ARMOR_D$ methods as novel approaches to enhancing the adversarial robustness of deep learning models. These DRO-based methods are defined by minimizing the maximum expected loss over a $D^c$-neighborhood of the empirical distribution of the training data. Viewed as a tool for constructing adversarial samples, our method allows samples to be both transported, according to the OT cost, and re-weighted, according to the information divergence; the addition of a principled and dynamical adversarial re-weighting on top of adversarial sample transport is a key innovation of $ARMOR_D$. $ARMOR_D$ can be viewed as a generalization of the best-performing loss functions and OT costs in the adversarial training literature; we demonstrate this flexibility by using $ARMOR_D$ to augment the UDR, TRADES, and MART methods and obtain improved performance on CIFAR-10 and CIFAR-100 image recognition. Specifically, augmenting with $ARMOR_D$ leads to 1.9\% and 2.1\% improvement against AutoAttack, a powerful ensemble of adversarial attacks, on CIFAR-10 and CIFAR-100 respectively. To foster reproducibility, we made the code accessible at https://github.com/star-ailab/ARMOR.
comment: 33 pages, 2 figures
♻ ☆ Decentralized Bilevel Optimization: A Perspective from Transient Iteration Complexity
Stochastic bilevel optimization (SBO) is becoming increasingly essential in machine learning due to its versatility in handling nested structures. To address large-scale SBO, decentralized approaches have emerged as effective paradigms in which nodes communicate with immediate neighbors without a central server, thereby improving communication efficiency and enhancing algorithmic robustness. However, most decentralized SBO algorithms focus solely on asymptotic convergence rates, overlooking transient iteration complexity-the number of iterations required before asymptotic rates dominate, which results in limited understanding of the influence of network topology, data heterogeneity, and the nested bilevel algorithmic structures. To address this issue, this paper introduces D-SOBA, a Decentralized Stochastic One-loop Bilevel Algorithm framework. D-SOBA comprises two variants: D-SOBA-SO, which incorporates second-order Hessian and Jacobian matrices, and D-SOBA-FO, which relies entirely on first-order gradients. We provide a comprehensive non-asymptotic convergence analysis and establish the transient iteration complexity of D-SOBA. This provides the first theoretical understanding of how network topology, data heterogeneity, and nested bilevel structures influence decentralized SBO. Extensive experimental results demonstrate the efficiency and theoretical advantages of D-SOBA.
comment: 59 pages, 7 figures
♻ ☆ Online Reinforcement Learning in Non-Stationary Context-Driven Environments ICLR '25
We study online reinforcement learning (RL) in non-stationary environments, where a time-varying exogenous context process affects the environment dynamics. Online RL is challenging in such environments due to "catastrophic forgetting" (CF). The agent tends to forget prior knowledge as it trains on new experiences. Prior approaches to mitigate this issue assume task labels (which are often not available in practice), employ brittle regularization heuristics, or use off-policy methods that suffer from instability and poor performance. We present Locally Constrained Policy Optimization (LCPO), an online RL approach that combats CF by anchoring policy outputs on old experiences while optimizing the return on current experiences. To perform this anchoring, LCPO locally constrains policy optimization using samples from experiences that lie outside of the current context distribution. We evaluate LCPO in Mujoco, classic control and computer systems environments with a variety of synthetic and real context traces, and find that it outperforms a variety of baselines in the non-stationary setting, while achieving results on-par with a "prescient" agent trained offline across all context traces. LCPO's source code is available at https://github.com/pouyahmdn/LCPO.
comment: ICLR '25 Spotlight
♻ ☆ Wasserstein multivariate auto-regressive models for modeling distributional time series
This paper is focused on the statistical analysis of data consisting of a collection of multiple series of probability measures that are indexed by distinct time instants and supported over a bounded interval of the real line. By modeling these time-dependent probability measures as random objects in the Wasserstein space, we propose a new auto-regressive model for the statistical analysis of multivariate distributional time series. Using the theory of iterated random function systems, results on the existence, uniqueness and stationarity of the solution of such a model are provided. We also propose a consistent estimator for the auto-regressive coefficients of this model. Due to the simplex constraints that we impose on the model coefficients, the proposed estimator that is learned under these constraints, naturally has a sparse structure. The sparsity allows the application of the proposed model in learning a graph of temporal dependency from multivariate distributional time series. We explore the numerical performances of our estimation procedure using simulated data. To shed some light on the benefits of our approach for real data analysis, we also apply this methodology to two data sets, respectively made of observations from age distribution in different countries and those from the bike sharing network in Paris.
♻ ☆ Learning out-of-time-ordered correlators with classical kernel methods
Out-of-Time Ordered Correlators (OTOCs) are widely used to investigate information scrambling in quantum systems. However, directly computing OTOCs with classical computers is an expensive procedure. This is due to the need to classically simulate the dynamics of quantum many-body systems, which entails computational costs that scale rapidly with system size. Similarly, exact simulation of the dynamics with a quantum computer (QC) will either only be possible for short times with noisy intermediate-scale quantum (NISQ) devices, or will require a fault-tolerant QC which is currently beyond technological capabilities. This motivates a search for alternative approaches to determine OTOCs and related quantities. In this study, we explore four parameterised sets of Hamiltonians describing local one-dimensional quantum systems of interest in condensed matter physics. For each set, we investigate whether classical kernel methods (KMs) can accurately learn the XZ-OTOC and a particular sum of OTOCs, as functions of the Hamiltonian parameters. We frame the problem as a regression task, generating small batches of labelled data with classical tensor network methods for quantum many-body systems with up to 40 qubits. Using this data, we train a variety of standard kernel machines and observe that the Laplacian and radial basis function (RBF) kernels perform best, achieving a coefficient of determination (\(R^2\)) on the testing sets of at least 0.7167, with averages between 0.8112 and 0.9822 for the various sets of Hamiltonians, together with small root mean squared error and mean absolute error. Hence, after training, the models can replace further uses of tensor networks for calculating an OTOC function of a system within the parameterised sets. Accordingly, the proposed method can assist with extensive evaluations of an OTOC function.
comment: 19 + 18 pages, 6 figures, 14 tables
Machine Learning 93
☆ A Constrained Multi-Agent Reinforcement Learning Approach to Autonomous Traffic Signal Control
Traffic congestion in modern cities is exacerbated by the limitations of traditional fixed-time traffic signal systems, which fail to adapt to dynamic traffic patterns. Adaptive Traffic Signal Control (ATSC) algorithms have emerged as a solution by dynamically adjusting signal timing based on real-time traffic conditions. However, the main limitation of such methods is that they are not transferable to environments under real-world constraints, such as balancing efficiency, minimizing collisions, and ensuring fairness across intersections. In this paper, we view the ATSC problem as a constrained multi-agent reinforcement learning (MARL) problem and propose a novel algorithm named Multi-Agent Proximal Policy Optimization with Lagrange Cost Estimator (MAPPO-LCE) to produce effective traffic signal control policies. Our approach integrates the Lagrange multipliers method to balance rewards and constraints, with a cost estimator for stable adjustment. We also introduce three constraints on the traffic network: GreenTime, GreenSkip, and PhaseSkip, which penalize traffic policies that do not conform to real-world scenarios. Our experimental results on three real-world datasets demonstrate that MAPPO-LCE outperforms three baseline MARL algorithms by across all environments and traffic constraints (improving on MAPPO by 12.60%, IPPO by 10.29%, and QTRAN by 13.10%). Our results show that constrained MARL is a valuable tool for traffic planners to deploy scalable and efficient ATSC methods in real-world traffic networks. We provide code at https://github.com/Asatheesh6561/MAPPO-LCE.
comment: Submitted to ACM Journal for Autonomous Transportation Systems
☆ Simple Feedfoward Neural Networks are Almost All You Need for Time Series Forecasting
Time series data are everywhere -- from finance to healthcare -- and each domain brings its own unique complexities and structures. While advanced models like Transformers and graph neural networks (GNNs) have gained popularity in time series forecasting, largely due to their success in tasks like language modeling, their added complexity is not always necessary. In our work, we show that simple feedforward neural networks (SFNNs) can achieve performance on par with, or even exceeding, these state-of-the-art models, while being simpler, smaller, faster, and more robust. Our analysis indicates that, in many cases, univariate SFNNs are sufficient, implying that modeling interactions between multiple series may offer only marginal benefits. Even when inter-series relationships are strong, a basic multivariate SFNN still delivers competitive results. We also examine some key design choices and offer guidelines on making informed decisions. Additionally, we critique existing benchmarking practices and propose an improved evaluation protocol. Although SFNNs may not be optimal for every situation (hence the ``almost'' in our title) they serve as a strong baseline that future time series forecasting methods should always be compared against.
☆ Graph-Eq: Discovering Mathematical Equations using Graph Generative Models
The ability to discover meaningful, accurate, and concise mathematical equations that describe datasets is valuable across various domains. Equations offer explicit relationships between variables, enabling deeper insights into underlying data patterns. Most existing equation discovery methods rely on genetic programming, which iteratively searches the equation space but is often slow and prone to overfitting. By representing equations as directed acyclic graphs, we leverage the use of graph neural networks to learn the underlying semantics of equations, and generate new, previously unseen equations. Although graph generative models have been shown to be successful in discovering new types of graphs in many fields, there application in discovering equations remains largely unexplored. In this work, we propose Graph-EQ, a deep graph generative model designed for efficient equation discovery. Graph-EQ uses a conditional variational autoencoder (CVAE) to learn a rich latent representation of the equation space by training it on a large corpus of equations in an unsupervised manner. Instead of directly searching the equation space, we employ Bayesian optimization to efficiently explore this learned latent space. We show that the encoder-decoder architecture of Graph-Eq is able to accurately reconstruct input equations. Moreover, we show that the learned latent representation can be sampled and decoded into valid equations, including new and previously unseen equations in the training data. Finally, we assess Graph-Eq's ability to discover equations that best fit a dataset by exploring the latent space using Bayesian optimization. Latent space exploration is done on 20 dataset with known ground-truth equations, and Graph-Eq is shown to successfully discover the grountruth equation in the majority of datasets.
comment: 8 pages, 4 figures
☆ Interpretable Machine Learning in Physics: A Review
Machine learning is increasingly transforming various scientific fields, enabled by advancements in computational power and access to large data sets from experiments and simulations. As artificial intelligence (AI) continues to grow in capability, these algorithms will enable many scientific discoveries beyond human capabilities. Since the primary goal of science is to understand the world around us, fully leveraging machine learning in scientific discovery requires models that are interpretable -- allowing experts to comprehend the concepts underlying machine-learned predictions. Successful interpretations increase trust in black-box methods, help reduce errors, allow for the improvement of the underlying models, enhance human-AI collaboration, and ultimately enable fully automated scientific discoveries that remain understandable to human scientists. This review examines the role of interpretability in machine learning applied to physics. We categorize different aspects of interpretability, discuss machine learning models in terms of both interpretability and performance, and explore the philosophical implications of interpretability in scientific inquiry. Additionally, we highlight recent advances in interpretable machine learning across many subfields of physics. By bridging boundaries between disciplines -- each with its own unique insights and challenges -- we aim to establish interpretable machine learning as a core research focus in science.
☆ An Organizationally-Oriented Approach to Enhancing Explainability and Control in Multi-Agent Reinforcement Learning
Multi-Agent Reinforcement Learning can lead to the development of collaborative agent behaviors that show similarities with organizational concepts. Pushing forward this perspective, we introduce a novel framework that explicitly incorporates organizational roles and goals from the $\mathcal{M}OISE^+$ model into the MARL process, guiding agents to satisfy corresponding organizational constraints. By structuring training with roles and goals, we aim to enhance both the explainability and control of agent behaviors at the organizational level, whereas much of the literature primarily focuses on individual agents. Additionally, our framework includes a post-training analysis method to infer implicit roles and goals, offering insights into emergent agent behaviors. This framework has been applied across various MARL environments and algorithms, demonstrating coherence between predefined organizational specifications and those inferred from trained agents.
☆ Make Autoregressive Great Again: Diffusion-Free Graph Generation with Next-Scale Prediction
Autoregressive models are popular generative models due to their speed and properties. However, they require an explicit sequence order, which contradicts the unordered nature of graphs. In contrast, diffusion models maintain permutation invariance and enable one-shot generation but require up to thousands of denoising steps and additional features, leading to high computational costs. Inspired by recent breakthroughs in image generation-especially the success of visual autoregressive methods-we propose MAG, a novel diffusion-free graph generation framework based on next-scale prediction. By leveraging a hierarchy of latent representations, the model progressively generates scales of the entire graph without the need for explicit node ordering. Extensive experiments on both generic and molecular graph datasets demonstrate that MAG delivers competitive performance compared to state-of-the-art methods, achieving up to three orders of magnitude in speedup during inference.
comment: Draft #1
☆ Autonomous Learning with High-Dimensional Computing Architecture Similar to von Neumann's
We model human and animal learning by computing with high-dimensional vectors (H = 10,000 for example). The architecture resembles traditional (von Neumann) computing with numbers, but the instructions refer to vectors and operate on them in superposition. The architecture includes a high-capacity memory for vectors, analogue of the random-access memory (RAM) for numbers. The model's ability to learn from data reminds us of deep learning, but with an architecture closer to biology. The architecture agrees with an idea from psychology that human memory and learning involve a short-term working memory and a long-term data store. Neuroscience provides us with a model of the long-term memory, namely, the cortex of the cerebellum. With roots in psychology, biology, and traditional computing, a theory of computing with vectors can help us understand how brains compute. Application to learning by robots seems inevitable, but there is likely to be more, including language. Ultimately we want to compute with no more material and energy than used by brains. To that end, we need a mathematical theory that agrees with psychology and biology, and is suitable for nanotechnology. We also need to exercise the theory in large-scale experiments. Computing with vectors is described here in terms familiar to us from traditional computing with numbers.
comment: 20 pages including references, all contained in a single .tex file
☆ Partial Transportability for Domain Generalization
A fundamental task in AI is providing performance guarantees for predictions made in unseen domains. In practice, there can be substantial uncertainty about the distribution of new data, and corresponding variability in the performance of existing predictors. Building on the theory of partial identification and transportability, this paper introduces new results for bounding the value of a functional of the target distribution, such as the generalization error of a classifier, given data from source domains and assumptions about the data generating mechanisms, encoded in causal diagrams. Our contribution is to provide the first general estimation technique for transportability problems, adapting existing parameterization schemes such Neural Causal Models to encode the structural constraints necessary for cross-population inference. We demonstrate the expressiveness and consistency of this procedure and further propose a gradient-based optimization scheme for making scalable inferences in practice. Our results are corroborated with experiments.
comment: causalai.net/r88.pdf
☆ Space of Data through the Lens of Multilevel Graph
This work seeks to tackle the inherent complexity of dataspaces by introducing a novel data structure that can represent datasets across multiple levels of abstraction, ranging from local to global. We propose the concept of a multilevel graph, which is equipped with two fundamental operations: contraction and expansion of its topology. This multilevel graph is specifically designed to fulfil the requirements for incremental abstraction and flexibility, as outlined in existing definitions of dataspaces. Furthermore, we provide a comprehensive suite of methods for manipulating this graph structure, establishing a robust framework for data analysis. While its effectiveness has been empirically validated for unstructured data, its application to structured data is also inherently viable. Preliminary results are presented through a real-world scenario based on a collection of dream reports.
comment: 18 pages, 11 figures, ITADATA 2024 conference
☆ Exploring GPT-4 for Robotic Agent Strategy with Real-Time State Feedback and a Reactive Behaviour Framework
We explore the use of GPT-4 on a humanoid robot in simulation and the real world as proof of concept of a novel large language model (LLM) driven behaviour method. LLMs have shown the ability to perform various tasks, including robotic agent behaviour. The problem involves prompting the LLM with a goal, and the LLM outputs the sub-tasks to complete to achieve that goal. Previous works focus on the executability and correctness of the LLM's generated tasks. We propose a method that successfully addresses practical concerns around safety, transitions between tasks, time horizons of tasks and state feedback. In our experiments we have found that our approach produces output for feasible requests that can be executed every time, with smooth transitions. User requests are achieved most of the time across a range of goal time horizons.
☆ Online Convex Optimization and Integral Quadratic Constraints: A new approach to regret analysis
We propose a novel approach for analyzing dynamic regret of first-order constrained online convex optimization algorithms for strongly convex and Lipschitz-smooth objectives. Crucially, we provide a general analysis that is applicable to a wide range of first-order algorithms that can be expressed as an interconnection of a linear dynamical system in feedback with a first-order oracle. By leveraging Integral Quadratic Constraints (IQCs), we derive a semi-definite program which, when feasible, provides a regret guarantee for the online algorithm. For this, the concept of variational IQCs is introduced as the generalization of IQCs to time-varying monotone operators. Our bounds capture the temporal rate of change of the problem in the form of the path length of the time-varying minimizer and the objective function variation. In contrast to standard results in OCO, our results do not require nerither the assumption of gradient boundedness, nor that of a bounded feasible set. Numerical analyses showcase the ability of the approach to capture the dependence of the regret on the function class condition number.
☆ Multi-Objective Optimization and Hyperparameter Tuning With Desirability Functions
The goal of this article is to provide an introduction to the desirability function approach to multi-objective optimization (direct and surrogate model-based), and multi-objective hyperparameter tuning. This work is based on the paper by Kuhn (2016). It presents a `Python` implementation of Kuhn's `R` package `desirability`. The `Python` package `spotdesirability` is available as part of the `sequential parameter optimization` framework. After a brief introduction to the desirability function approach is presented, three examples are given that demonstrate how to use the desirability functions for classical optimization, surrogate-model based optimization, and hyperparameter tuning.
☆ DASH: Detection and Assessment of Systematic Hallucinations of VLMs
Vision-language models (VLMs) are prone to object hallucinations, where they erroneously indicate the presenceof certain objects in an image. Existing benchmarks quantify hallucinations using relatively small, labeled datasets. However, this approach is i) insufficient to assess hallucinations that arise in open-world settings, where VLMs are widely used, and ii) inadequate for detecting systematic errors in VLMs. We propose DASH (Detection and Assessment of Systematic Hallucinations), an automatic, large-scale pipeline designed to identify systematic hallucinations of VLMs on real-world images in an open-world setting. A key component is DASH-OPT for image-based retrieval, where we optimize over the ''natural image manifold'' to generate images that mislead the VLM. The output of DASH consists of clusters of real and semantically similar images for which the VLM hallucinates an object. We apply DASH to PaliGemma and two LLaVA-NeXT models across 380 object classes and, in total, find more than 19k clusters with 950k images. We study the transfer of the identified systematic hallucinations to other VLMs and show that fine-tuning PaliGemma with the model-specific images obtained with DASH mitigates object hallucinations. Code and data are available at https://YanNeu.github.io/DASH.
☆ Bridging conformal prediction and scenario optimization
Conformal prediction and scenario optimization constitute two important classes of statistical learning frameworks to certify decisions made using data. They have found numerous applications in control theory, machine learning and robotics. Despite intense research in both areas, and apparently similar results, a clear connection between these two frameworks has not been established. By focusing on the so-called vanilla conformal prediction, we show rigorously how to choose appropriate score functions and set predictor map to recover well-known bounds on the probability of constraint violation associated with scenario programs. We also show how to treat ranking of nonconformity scores as a one-dimensional scenario program with discarded constraints, and use such connection to recover vanilla conformal prediction guarantees on the validity of the set predictor. We also capitalize on the main developments of the scenario approach, and show how we could analyze calibration conditional conformal prediction under this lens. Our results establish a theoretical bridge between conformal prediction and scenario optimization.
☆ Addressing Model Overcomplexity in Drug-Drug Interaction Prediction With Molecular Fingerprints ICLR 2025
Accurately predicting drug-drug interactions (DDIs) is crucial for pharmaceutical research and clinical safety. Recent deep learning models often suffer from high computational costs and limited generalization across datasets. In this study, we investigate a simpler yet effective approach using molecular representations such as Morgan fingerprints (MFPS), graph-based embeddings from graph convolutional networks (GCNs), and transformer-derived embeddings from MoLFormer integrated into a straightforward neural network. We benchmark our implementation on DrugBank DDI splits and a drug-drug affinity (DDA) dataset from the Food and Drug Administration. MFPS along with MoLFormer and GCN representations achieve competitive performance across tasks, even in the more challenging leak-proof split, highlighting the sufficiency of simple molecular representations. Moreover, we are able to identify key molecular motifs and structural patterns relevant to drug interactions via gradient-based analyses using the representations under study. Despite these results, dataset limitations such as insufficient chemical diversity, limited dataset size, and inconsistent labeling impact robust evaluation and challenge the need for more complex approaches. Our work provides a meaningful baseline and emphasizes the need for better dataset curation and progressive complexity scaling.
comment: Accepted to the GEM Workshop at ICLR 2025
☆ Redundant feature screening method for human activity recognition based on attention purification mechanism
In the field of sensor-based Human Activity Recognition (HAR), deep neural networks provide advanced technical support. Many studies have proven that recognition accuracy can be improved by increasing the depth or width of the network. However, for wearable devices, the balance between network performance and resource consumption is crucial. With minimum resource consumption as the basic principle, we propose a universal attention feature purification mechanism, called MSAP, which is suitable for multi-scale networks. The mechanism effectively solves the feature redundancy caused by the superposition of multi-scale features by means of inter-scale attention screening and connection method. In addition, we have designed a network correction module that integrates seamlessly between layers of individual network modules to mitigate inherent problems in deep networks. We also built an embedded deployment system that is in line with the current level of wearable technology to test the practical feasibility of the HAR model, and further prove the efficiency of the method. Extensive experiments on four public datasets show that the proposed method model effectively reduces redundant features in filtered data and provides excellent performance with little resource consumption.
comment: 12 pages,7 figures
☆ A Survey on Unlearnable Data
Unlearnable data (ULD) has emerged as an innovative defense technique to prevent machine learning models from learning meaningful patterns from specific data, thus protecting data privacy and security. By introducing perturbations to the training data, ULD degrades model performance, making it difficult for unauthorized models to extract useful representations. Despite the growing significance of ULD, existing surveys predominantly focus on related fields, such as adversarial attacks and machine unlearning, with little attention given to ULD as an independent area of study. This survey fills that gap by offering a comprehensive review of ULD, examining unlearnable data generation methods, public benchmarks, evaluation metrics, theoretical foundations and practical applications. We compare and contrast different ULD approaches, analyzing their strengths, limitations, and trade-offs related to unlearnability, imperceptibility, efficiency and robustness. Moreover, we discuss key challenges, such as balancing perturbation imperceptibility with model degradation and the computational complexity of ULD generation. Finally, we highlight promising future research directions to advance the effectiveness and applicability of ULD, underscoring its potential to become a crucial tool in the evolving landscape of data protection in machine learning.
comment: 31 pages, 3 figures
☆ In-silico biological discovery with large perturbation models
Data generated in perturbation experiments link perturbations to the changes they elicit and therefore contain information relevant to numerous biological discovery tasks -- from understanding the relationships between biological entities to developing therapeutics. However, these data encompass diverse perturbations and readouts, and the complex dependence of experimental outcomes on their biological context makes it challenging to integrate insights across experiments. Here, we present the Large Perturbation Model (LPM), a deep-learning model that integrates multiple, heterogeneous perturbation experiments by representing perturbation, readout, and context as disentangled dimensions. LPM outperforms existing methods across multiple biological discovery tasks, including in predicting post-perturbation transcriptomes of unseen experiments, identifying shared molecular mechanisms of action between chemical and genetic perturbations, and facilitating the inference of gene-gene interaction networks.
☆ Question-Aware Knowledge Graph Prompting for Enhancing Large Language Models
Large Language Models (LLMs) often struggle with tasks requiring external knowledge, such as knowledge-intensive Multiple Choice Question Answering (MCQA). Integrating Knowledge Graphs (KGs) can enhance reasoning; however, existing methods typically demand costly fine-tuning or retrieve noisy KG information. Recent approaches leverage Graph Neural Networks (GNNs) to generate KG-based input embedding prefixes as soft prompts for LLMs but fail to account for question relevance, resulting in noisy prompts. Moreover, in MCQA tasks, the absence of relevant KG knowledge for certain answer options remains a significant challenge. To address these issues, we propose Question-Aware Knowledge Graph Prompting (QAP), which incorporates question embeddings into GNN aggregation to dynamically assess KG relevance. QAP employs global attention to capture inter-option relationships, enriching soft prompts with inferred knowledge. Experimental results demonstrate that QAP outperforms state-of-the-art methods across multiple datasets, highlighting its effectiveness.
☆ Federated Self-Supervised Learning for One-Shot Cross-Modal and Cross-Imaging Technique Segmentation
Decentralized federated learning enables learning of data representations from multiple sources without compromising the privacy of the clients. In applications like medical image segmentation, where obtaining a large annotated dataset from a single source is a distressing problem, federated self-supervised learning can provide some solace. In this work, we push the limits further by exploring a federated self-supervised one-shot segmentation task representing a more data-scarce scenario. We adopt a pre-existing self-supervised few-shot segmentation framework CoWPro and adapt it to the federated learning scenario. To the best of our knowledge, this work is the first to attempt a self-supervised few-shot segmentation task in the federated learning domain. Moreover, we consider the clients to be constituted of data from different modalities and imaging techniques like MR or CT, which makes the problem even harder. Additionally, we reinforce and improve the baseline CoWPro method using a fused dice loss which shows considerable improvement in performance over the baseline CoWPro. Finally, we evaluate this novel framework on a completely unseen held-out part of the local client dataset. We observe that the proposed framework can achieve performance at par or better than the FedAvg version of the CoWPro framework on the held-out validation dataset.
☆ Boosting Omnidirectional Stereo Matching with a Pre-trained Depth Foundation Model
Omnidirectional depth perception is essential for mobile robotics applications that require scene understanding across a full 360{\deg} field of view. Camera-based setups offer a cost-effective option by using stereo depth estimation to generate dense, high-resolution depth maps without relying on expensive active sensing. However, existing omnidirectional stereo matching approaches achieve only limited depth accuracy across diverse environments, depth ranges, and lighting conditions, due to the scarcity of real-world data. We present DFI-OmniStereo, a novel omnidirectional stereo matching method that leverages a large-scale pre-trained foundation model for relative monocular depth estimation within an iterative optimization-based stereo matching architecture. We introduce a dedicated two-stage training strategy to utilize the relative monocular depth features for our omnidirectional stereo matching before scale-invariant fine-tuning. DFI-OmniStereo achieves state-of-the-art results on the real-world Helvipad dataset, reducing disparity MAE by approximately 16% compared to the previous best omnidirectional stereo method.
comment: Project page: https://vita-epfl.github.io/DFI-OmniStereo-website/
☆ POINT$^{2}$: A Polymer Informatics Training and Testing Database
The advancement of polymer informatics has been significantly propelled by the integration of machine learning (ML) techniques, enabling the rapid prediction of polymer properties and expediting the discovery of high-performance polymeric materials. However, the field lacks a standardized workflow that encompasses prediction accuracy, uncertainty quantification, ML interpretability, and polymer synthesizability. In this study, we introduce POINT$^{2}$ (POlymer INformatics Training and Testing), a comprehensive benchmark database and protocol designed to address these critical challenges. Leveraging the existing labeled datasets and the unlabeled PI1M dataset, a collection of approximately one million virtual polymers generated via a recurrent neural network trained on the realistic polymers, we develop an ensemble of ML models, including Quantile Random Forests, Multilayer Perceptrons with dropout, Graph Neural Networks, and pretrained large language models. These models are coupled with diverse polymer representations such as Morgan, MACCS, RDKit, Topological, Atom Pair fingerprints, and graph-based descriptors to achieve property predictions, uncertainty estimations, model interpretability, and template-based polymerization synthesizability across a spectrum of properties, including gas permeability, thermal conductivity, glass transition temperature, melting temperature, fractional free volume, and density. The POINT$^{2}$ database can serve as a valuable resource for the polymer informatics community for polymer discovery and optimization.
☆ $p$-Adic Polynomial Regression as Alternative to Neural Network for Approximating $p$-Adic Functions of Many Variables
A method for approximating continuous functions $\mathbb{Z}_{p}^{n}\rightarrow\mathbb{Z}_{p}$ by a linear superposition of continuous functions $\mathbb{Z}_{p}\rightarrow\mathbb{Z}_{p}$ is presented and a polynomial regression model is constructed that allows approximating such functions with any degree of accuracy. A physical interpretation of such a model is given and possible methods for its training are discussed. The proposed model can be considered as a simple alternative to possible $p$-adic models based on neural network architecture.
comment: 10 pages
☆ Benchmarking Systematic Relational Reasoning with Large Language and Reasoning Models
Large Language Models (LLMs) have been found to struggle with systematic reasoning. Even on tasks where they appear to perform well, their performance often depends on shortcuts, rather than on genuine reasoning abilities, leading them to collapse on out-of-distribution examples. Post-training strategies based on reinforcement learning and chain-of-thought prompting have recently been hailed as a step change. However, little is still known about the potential of the resulting ``Large Reasoning Models'' (LRMs) beyond problem solving in mathematics and programming, where finding genuine out-of-distribution problems can be difficult. In this paper, we focus on tasks that require systematic reasoning about relational compositions, especially for qualitative spatial and temporal reasoning. These tasks allow us to control the difficulty of problem instances, and measure in a precise way to what extent models can generalise. We find that that the considered LLMs and LRMs overall perform poorly overall, albeit better than random chance.
comment: Submitted to ACL 2025
☆ Order Independence With Finetuning ICLR 2025
Large language models (LLMs) demonstrate remarkable performance on many NLP tasks, yet often exhibit order dependence: simply reordering semantically identical tokens (e.g., answer choices in multiple-choice questions) can lead to inconsistent predictions. Recent work proposes Set-Based Prompting (SBP) as a way to remove order information from designated token subsets, thereby mitigating positional biases. However, applying SBP on base models induces an out-of-distribution input format, which can degrade in-distribution performance. We introduce a fine-tuning strategy that integrates SBP into the training process, "pulling" these set-formatted prompts closer to the model's training manifold. We show that SBP can be incorporated into a model via fine-tuning. Our experiments on in-distribution (MMLU) and out-of-distribution (CSQA, ARC Challenge) multiple-choice tasks show that SBP fine-tuning significantly improves accuracy and robustness to answer-order permutations, all while preserving broader language modeling capabilities. We discuss the broader implications of order-invariant modeling and outline future directions for building fairer, more consistent LLMs.
comment: Published as a Bi-Align workshop paper at ICLR 2025
☆ Handling Delay in Real-Time Reinforcement Learning ICLR 2025
Real-time reinforcement learning (RL) introduces several challenges. First, policies are constrained to a fixed number of actions per second due to hardware limitations. Second, the environment may change while the network is still computing an action, leading to observational delay. The first issue can partly be addressed with pipelining, leading to higher throughput and potentially better policies. However, the second issue remains: if each neuron operates in parallel with an execution time of $\tau$, an $N$-layer feed-forward network experiences observation delay of $\tau N$. Reducing the number of layers can decrease this delay, but at the cost of the network's expressivity. In this work, we explore the trade-off between minimizing delay and network's expressivity. We present a theoretically motivated solution that leverages temporal skip connections combined with history-augmented observations. We evaluate several architectures and show that those incorporating temporal skip connections achieve strong performance across various neuron execution times, reinforcement learning algorithms, and environments, including four Mujoco tasks and all MinAtar games. Moreover, we demonstrate parallel neuron computation can accelerate inference by 6-350% on standard hardware. Our investigation into temporal skip connections and parallel computations paves the way for more efficient RL agents in real-time setting.
comment: Accepted at ICLR 2025. Code available at https://github.com/avecplezir/realtime-agent
☆ Codehacks: A Dataset of Adversarial Tests for Competitive Programming Problems Obtained from Codeforces
Software is used in critical applications in our day-to-day life and it is important to ensure its correctness. One popular approach to assess correctness is to evaluate software on tests. If a test fails, it indicates a fault in the software under test; if all tests pass correctly, one may assume that the software is correct. However, the reliability of these results depends on the test suite considered, and there is a risk of false negatives (i.e. software that passes all available tests but contains bugs because some cases are not tested). Therefore, it is important to consider error-inducing test cases when evaluating software. To support data-driven creation of such a test-suite, which is especially of interest for testing software synthesized from large language models, we curate a dataset (Codehacks) of programming problems together with corresponding error-inducing test cases (i.e., "hacks"). This dataset is collected from the wild, in particular, from the Codeforces online judge platform. The dataset comprises 288,617 hacks for 5,578 programming problems, each with a natural language description, as well as the source code for 2,196 submitted solutions to these problems that can be broken with their corresponding hacks. Keywords: competitive programming, language model, dataset
comment: Accepted for publication at the 18th IEEE International Conference on Software Testing, Verification and Validation (ICST 2025)
☆ Accelerated Stein Variational Gradient Flow
Stein variational gradient descent (SVGD) is a kernel-based particle method for sampling from a target distribution, e.g., in generative modeling and Bayesian inference. SVGD does not require estimating the gradient of the log-density, which is called score estimation. In practice, SVGD can be slow compared to score-estimation based sampling algorithms. To design fast and efficient high-dimensional sampling algorithms, we introduce ASVGD, an accelerated SVGD, based on an accelerated gradient flow in a metric space of probability densities following Nesterov's method. We then derive a momentum-based discrete-time sampling algorithm, which evolves a set of particles deterministically. To stabilize the particles' momentum update, we also study a Wasserstein metric regularization. For the generalized bilinear kernel and the Gaussian kernel, toy numerical examples with varied target distributions demonstrate the effectiveness of ASVGD compared to SVGD and other popular sampling methods.
comment: Submitted to GSI'25, 9 pages, 2 figures, comments welcome
☆ Semantic-Preserving Transformations as Mutation Operators: A Study on Their Effectiveness in Defect Detection
Recent advances in defect detection use language models. Existing works enhanced the training data to improve the models' robustness when applied to semantically identical code (i.e., predictions should be the same). However, the use of semantically identical code has not been considered for improving the tools during their application - a concept closely related to metamorphic testing. The goal of our study is to determine whether we can use semantic-preserving transformations, analogue to mutation operators, to improve the performance of defect detection tools in the testing stage. We first collect existing publications which implemented semantic-preserving transformations and share their implementation, such that we can reuse them. We empirically study the effectiveness of three different ensemble strategies for enhancing defect detection tools. We apply the collected transformations on the Devign dataset, considering vulnerabilities as a type of defect, and two fine-tuned large language models for defect detection (VulBERTa, PLBART). We found 28 publications with 94 different transformations. We choose to implement 39 transformations from four of the publications, but a manual check revealed that 23 out 39 transformations change code semantics. Using the 16 remaining, correct transformations and three ensemble strategies, we were not able to increase the accuracy of the defect detection models. Our results show that reusing shared semantic-preserving transformation is difficult, sometimes even causing wrongful changes to the semantics. Keywords: defect detection, language model, semantic-preserving transformation, ensemble
comment: Accepted for publication in Mutation 2025 at the 18th IEEE International Conference on Software Testing, Verification and Validation (ICST 2025)
☆ Speculative End-Turn Detector for Efficient Speech Chatbot Assistant
Spoken dialogue systems powered by large language models have demonstrated remarkable abilities in understanding human speech and generating appropriate spoken responses. However, these systems struggle with end-turn detection (ETD) -- the ability to distinguish between user turn completion and hesitation. This limitation often leads to premature or delayed responses, disrupting the flow of spoken conversations. In this paper, we introduce the ETD Dataset, the first public dataset for end-turn detection. The ETD dataset consists of both synthetic speech data generated with text-to-speech models and real-world speech data collected from web sources. We also propose SpeculativeETD, a novel collaborative inference framework that balances efficiency and accuracy to improve real-time ETD in resource-constrained environments. Our approach jointly employs a lightweight GRU-based model, which rapidly detects the non-speaking units in real-time on local devices, and a high-performance Wav2vec-based model running on the server to make a more challenging classification of distinguishing turn ends from mere pauses. Experiments demonstrate that the proposed SpeculativeETD significantly improves ETD accuracy while keeping the required computations low. Datasets and code will be available after the review.
comment: Preprint
☆ Towards Trustworthy GUI Agents: A Survey
GUI agents, powered by large foundation models, can interact with digital interfaces, enabling various applications in web automation, mobile navigation, and software testing. However, their increasing autonomy has raised critical concerns about their security, privacy, and safety. This survey examines the trustworthiness of GUI agents in five critical dimensions: security vulnerabilities, reliability in dynamic environments, transparency and explainability, ethical considerations, and evaluation methodologies. We also identify major challenges such as vulnerability to adversarial attacks, cascading failure modes in sequential decision-making, and a lack of realistic evaluation benchmarks. These issues not only hinder real-world deployment but also call for comprehensive mitigation strategies beyond task success. As GUI agents become more widespread, establishing robust safety standards and responsible development practices is essential. This survey provides a foundation for advancing trustworthy GUI agents through systematic understanding and future research.
comment: 10 pages, work in process
☆ DGSAM: Domain Generalization via Individual Sharpness-Aware Minimization
Domain generalization (DG) aims to learn models that can generalize well to unseen domains by training only on a set of source domains. Sharpness-Aware Minimization (SAM) has been a popular approach for this, aiming to find flat minima in the total loss landscape. However, we show that minimizing the total loss sharpness does not guarantee sharpness across individual domains. In particular, SAM can converge to fake flat minima, where the total loss may exhibit flat minima, but sharp minima are present in individual domains. Moreover, the current perturbation update in gradient ascent steps is ineffective in directly updating the sharpness of individual domains. Motivated by these findings, we introduce a novel DG algorithm, Decreased-overhead Gradual Sharpness-Aware Minimization (DGSAM), that applies gradual domain-wise perturbation to reduce sharpness consistently across domains while maintaining computational efficiency. Our experiments demonstrate that DGSAM outperforms state-of-the-art DG methods, achieving improved robustness to domain shifts and better performance across various benchmarks, while reducing computational overhead compared to SAM.
☆ What Makes an Evaluation Useful? Common Pitfalls and Best Practices
Following the rapid increase in Artificial Intelligence (AI) capabilities in recent years, the AI community has voiced concerns regarding possible safety risks. To support decision-making on the safe use and development of AI systems, there is a growing need for high-quality evaluations of dangerous model capabilities. While several attempts to provide such evaluations have been made, a clear definition of what constitutes a "good evaluation" has yet to be agreed upon. In this practitioners' perspective paper, we present a set of best practices for safety evaluations, drawing on prior work in model evaluation and illustrated through cybersecurity examples. We first discuss the steps of the initial thought process, which connects threat modeling to evaluation design. Then, we provide the characteristics and parameters that make an evaluation useful. Finally, we address additional considerations as we move from building specific evaluations to building a full and comprehensive evaluation suite.
☆ Quantum-Assisted Machine Learning Models for Enhanced Weather Prediction
Quantum Machine Learning (QML) presents as a revolutionary approach to weather forecasting by using quantum computing to improve predictive modeling capabilities. In this study, we apply QML models, including Quantum Gated Recurrent Units (QGRUs), Quantum Neural Networks (QNNs), Quantum Long Short-Term Memory(QLSTM), Variational Quantum Circuits(VQCs), and Quantum Support Vector Machines(QSVMs), to analyze meteorological time-series data from the ERA5 dataset. Our methodology includes preprocessing meteorological features, implementing QML architectures for both classification and regression tasks. The results demonstrate that QML models can achieve reasonable accuracy in both prediction and classification tasks, particularly in binary classification. However, challenges such as quantum hardware limitations and noise affect scalability and generalization. This research provides insights into the feasibility of QML for weather prediction, paving the way for further exploration of hybrid quantum-classical frameworks to enhance meteorological forecasting.
☆ Pareto Continual Learning: Preference-Conditioned Learning and Adaption for Dynamic Stability-Plasticity Trade-off
Continual learning aims to learn multiple tasks sequentially. A key challenge in continual learning is balancing between two objectives: retaining knowledge from old tasks (stability) and adapting to new tasks (plasticity). Experience replay methods, which store and replay past data alongside new data, have become a widely adopted approach to mitigate catastrophic forgetting. However, these methods neglect the dynamic nature of the stability-plasticity trade-off and aim to find a fixed and unchanging balance, resulting in suboptimal adaptation during training and inference. In this paper, we propose Pareto Continual Learning (ParetoCL), a novel framework that reformulates the stability-plasticity trade-off in continual learning as a multi-objective optimization (MOO) problem. ParetoCL introduces a preference-conditioned model to efficiently learn a set of Pareto optimal solutions representing different trade-offs and enables dynamic adaptation during inference. From a generalization perspective, ParetoCL can be seen as an objective augmentation approach that learns from different objective combinations of stability and plasticity. Extensive experiments across multiple datasets and settings demonstrate that ParetoCL outperforms state-of-the-art methods and adapts to diverse continual learning scenarios.
☆ COSMIC: Clique-Oriented Semantic Multi-space Integration for Robust CLIP Test-Time Adaptation CVPR 2025
Recent vision-language models (VLMs) face significant challenges in test-time adaptation to novel domains. While cache-based methods show promise by leveraging historical information, they struggle with both caching unreliable feature-label pairs and indiscriminately using single-class information during querying, significantly compromising adaptation accuracy. To address these limitations, we propose COSMIC (Clique-Oriented Semantic Multi-space Integration for CLIP), a robust test-time adaptation framework that enhances adaptability through multi-granular, cross-modal semantic caching and graph-based querying mechanisms. Our framework introduces two key innovations: Dual Semantics Graph (DSG) and Clique Guided Hyper-class (CGH). The Dual Semantics Graph constructs complementary semantic spaces by incorporating textual features, coarse-grained CLIP features, and fine-grained DINOv2 features to capture rich semantic relationships. Building upon these dual graphs, the Clique Guided Hyper-class component leverages structured class relationships to enhance prediction robustness through correlated class selection. Extensive experiments demonstrate COSMIC's superior performance across multiple benchmarks, achieving significant improvements over state-of-the-art methods: 15.81% gain on out-of-distribution tasks and 5.33% on cross-domain generation with CLIP RN-50. Code is available at github.com/hf618/COSMIC.
comment: Accepted to CVPR 2025
KernelDNA: Dynamic Kernel Sharing via Decoupled Naive Adapters
Dynamic convolution enhances model capacity by adaptively combining multiple kernels, yet faces critical trade-offs: prior works either (1) incur significant parameter overhead by scaling kernel numbers linearly, (2) compromise inference speed through complex kernel interactions, or (3) struggle to jointly optimize dynamic attention and static kernels. We also observe that pre-trained Convolutional Neural Networks (CNNs) exhibit inter-layer redundancy akin to that in Large Language Models (LLMs). Specifically, dense convolutional layers can be efficiently replaced by derived ``child" layers generated from a shared ``parent" convolutional kernel through an adapter. To address these limitations and implement the weight-sharing mechanism, we propose a lightweight convolution kernel plug-in, named KernelDNA. It decouples kernel adaptation into input-dependent dynamic routing and pre-trained static modulation, ensuring both parameter efficiency and hardware-friendly inference. Unlike existing dynamic convolutions that expand parameters via multi-kernel ensembles, our method leverages cross-layer weight sharing and adapter-based modulation, enabling dynamic kernel specialization without altering the standard convolution structure. This design preserves the native computational efficiency of standard convolutions while enhancing representation power through input-adaptive kernel adjustments. Experiments on image classification and dense prediction tasks demonstrate that KernelDNA achieves state-of-the-art accuracy-efficiency balance among dynamic convolution variants. Our codes are available at https://github.com/haiduo/KernelDNA.
☆ Large Language Models Are Better Logical Fallacy Reasoners with Counterargument, Explanation, and Goal-Aware Prompt Formulation
The advancement of Large Language Models (LLMs) has greatly improved our ability to process complex language. However, accurately detecting logical fallacies remains a significant challenge. This study presents a novel and effective prompt formulation approach for logical fallacy detection, applicable in both supervised (fine-tuned) and unsupervised (zero-shot) settings. Our method enriches input text incorporating implicit contextual information -- counterarguments, explanations, and goals -- which we query for validity within the context of the argument. We then rank these queries based on confidence scores to inform classification. We evaluate our approach across multiple datasets from 5 domains, covering 29 distinct fallacy types, using models from the GPT and LLaMA series. The results show substantial improvements over state-of-the-art models, with F1 score increases of up to 0.60 in zero-shot settings and up to 0.45 in fine-tuned models. Extensive analyses further illustrate why and how our method excels.
comment: Accepted to NAACL 2025 Findings
☆ Solve sparse PCA problem by employing Hamiltonian system and leapfrog method
Principal Component Analysis (PCA) is a widely utilized technique for dimensionality reduction; however, its inherent lack of interpretability-stemming from dense linear combinations of all feature-limits its applicability in many domains. In this paper, we propose a novel sparse PCA algorithm that imposes sparsity through a smooth L1 penalty and leverages a Hamiltonian formulation solved via geometric integration techniques. Specifically, we implement two distinct numerical methods-one based on the Proximal Gradient (ISTA) approach and another employing a leapfrog (fourth-order Runge-Kutta) scheme-to minimize the energy function that balances variance maximization with sparsity enforcement. To extract a subset of sparse principal components, we further incorporate a deflation technique and subsequently transform the original high-dimensional face data into a lower-dimensional feature space. Experimental evaluations on a face recognition dataset-using both k-nearest neighbor and kernel ridge regression classifiers-demonstrate that the proposed sparse PCA methods consistently achieve higher classification accuracy than conventional PCA. Future research will extend this framework to integrate sparse PCA with modern deep learning architectures for multimodal recognition tasks.
comment: 2 tables
☆ HiPART: Hierarchical Pose AutoRegressive Transformer for Occluded 3D Human Pose Estimation CVPR2025
Existing 2D-to-3D human pose estimation (HPE) methods struggle with the occlusion issue by enriching information like temporal and visual cues in the lifting stage. In this paper, we argue that these methods ignore the limitation of the sparse skeleton 2D input representation, which fundamentally restricts the 2D-to-3D lifting and worsens the occlusion issue. To address these, we propose a novel two-stage generative densification method, named Hierarchical Pose AutoRegressive Transformer (HiPART), to generate hierarchical 2D dense poses from the original sparse 2D pose. Specifically, we first develop a multi-scale skeleton tokenization module to quantize the highly dense 2D pose into hierarchical tokens and propose a Skeleton-aware Alignment to strengthen token connections. We then develop a Hierarchical AutoRegressive Modeling scheme for hierarchical 2D pose generation. With generated hierarchical poses as inputs for 2D-to-3D lifting, the proposed method shows strong robustness in occluded scenarios and achieves state-of-the-art performance on the single-frame-based 3D HPE. Moreover, it outperforms numerous multi-frame methods while reducing parameter and computational complexity and can also complement them to further enhance performance and robustness.
comment: CVPR2025
☆ AI Agents in Engineering Design: A Multi-Agent Framework for Aesthetic and Aerodynamic Car Design
We introduce the concept of "Design Agents" for engineering applications, particularly focusing on the automotive design process, while emphasizing that our approach can be readily extended to other engineering and design domains. Our framework integrates AI-driven design agents into the traditional engineering workflow, demonstrating how these specialized computational agents interact seamlessly with engineers and designers to augment creativity, enhance efficiency, and significantly accelerate the overall design cycle. By automating and streamlining tasks traditionally performed manually, such as conceptual sketching, styling enhancements, 3D shape retrieval and generative modeling, computational fluid dynamics (CFD) meshing, and aerodynamic simulations, our approach reduces certain aspects of the conventional workflow from weeks and days down to minutes. These agents leverage state-of-the-art vision-language models (VLMs), large language models (LLMs), and geometric deep learning techniques, providing rapid iteration and comprehensive design exploration capabilities. We ground our methodology in industry-standard benchmarks, encompassing a wide variety of conventional automotive designs, and utilize high-fidelity aerodynamic simulations to ensure practical and applicable outcomes. Furthermore, we present design agents that can swiftly and accurately predict simulation outcomes, empowering engineers and designers to engage in more informed design optimization and exploration. This research underscores the transformative potential of integrating advanced generative AI techniques into complex engineering tasks, paving the way for broader adoption and innovation across multiple engineering disciplines.
☆ SPIO: Ensemble and Selective Strategies via LLM-Based Multi-Agent Planning in Automated Data Science
Large Language Models (LLMs) have revolutionized automated data analytics and machine learning by enabling dynamic reasoning and adaptability. While recent approaches have advanced multi-stage pipelines through multi-agent systems, they typically rely on rigid, single-path workflows that limit the exploration and integration of diverse strategies, often resulting in suboptimal predictions. To address these challenges, we propose SPIO (Sequential Plan Integration and Optimization), a novel framework that leverages LLM-driven decision-making to orchestrate multi-agent planning across four key modules: data preprocessing, feature engineering, modeling, and hyperparameter tuning. In each module, dedicated planning agents independently generate candidate strategies that cascade into subsequent stages, fostering comprehensive exploration. A plan optimization agent refines these strategies by suggesting several optimized plans. We further introduce two variants: SPIO-S, which selects a single best solution path as determined by the LLM, and SPIO-E, which selects the top k candidate plans and ensembles them to maximize predictive performance. Extensive experiments on Kaggle and OpenML datasets demonstrate that SPIO significantly outperforms state-of-the-art methods, providing a robust and scalable solution for automated data science task.
comment: Under Review
☆ Reinforcement Learning for Active Matter
Active matter refers to systems composed of self-propelled entities that consume energy to produce motion, exhibiting complex non-equilibrium dynamics that challenge traditional models. With the rapid advancements in machine learning, reinforcement learning (RL) has emerged as a promising framework for addressing the complexities of active matter. This review systematically introduces the integration of RL for guiding and controlling active matter systems, focusing on two key aspects: optimal motion strategies for individual active particles and the regulation of collective dynamics in active swarms. We discuss the use of RL to optimize the navigation, foraging, and locomotion strategies for individual active particles. In addition, the application of RL in regulating collective behaviors is also examined, emphasizing its role in facilitating the self-organization and goal-directed control of active swarms. This investigation offers valuable insights into how RL can advance the understanding, manipulation, and control of active matter, paving the way for future developments in fields such as biological systems, robotics, and medical science.
comment: 16 pages, 8 figures
☆ Using Source-Side Confidence Estimation for Reliable Translation into Unfamiliar Languages
We present an interactive machine translation (MT) system designed for users who are not proficient in the target language. It aims to improve trustworthiness and explainability by identifying potentially mistranslated words and allowing the user to intervene to correct mistranslations. However, confidence estimation in machine translation has traditionally focused on the target side. Whereas the conventional approach to source-side confidence estimation would have been to project target word probabilities to the source side via word alignments, we propose a direct, alignment-free approach that measures how sensitive the target word probabilities are to changes in the source embeddings. Experimental results show that our method outperforms traditional alignment-based methods at detection of mistranslations.
comment: 7 pages, 5 figures, 1 table. Submitted to ACL 2025 System Demonstrations
☆ SalesRLAgent: A Reinforcement Learning Approach for Real-Time Sales Conversion Prediction and Optimization
Current approaches to sales conversation analysis and conversion prediction typically rely on Large Language Models (LLMs) combined with basic retrieval augmented generation (RAG). These systems, while capable of answering questions, fail to accurately predict conversion probability or provide strategic guidance in real time. In this paper, we present SalesRLAgent, a novel framework leveraging specialized reinforcement learning to predict conversion probability throughout sales conversations. Unlike systems from Kapa.ai, Mendable, Inkeep, and others that primarily use off-the-shelf LLMs for content generation, our approach treats conversion prediction as a sequential decision problem, training on synthetic data generated using GPT-4O to develop a specialized probability estimation model. Our system incorporates Azure OpenAI embeddings (3072 dimensions), turn-by-turn state tracking, and meta-learning capabilities to understand its own knowledge boundaries. Evaluations demonstrate that SalesRLAgent achieves 96.7% accuracy in conversion prediction, outperforming LLM-only approaches by 34.7% while offering significantly faster inference (85ms vs 3450ms for GPT-4). Furthermore, integration with existing sales platforms shows a 43.2% increase in conversion rates when representatives utilize our system's real-time guidance. SalesRLAgent represents a fundamental shift from content generation to strategic sales intelligence, providing moment-by-moment conversion probability estimation with actionable insights for sales professionals.
☆ Enhancing Physics-Informed Neural Networks with a Hybrid Parallel Kolmogorov-Arnold and MLP Architecture
Neural networks have emerged as powerful tools for modeling complex physical systems, yet balancing high accuracy with computational efficiency remains a critical challenge in their convergence behavior. In this work, we propose the Hybrid Parallel Kolmogorov-Arnold Network (KAN) and Multi-Layer Perceptron (MLP) Physics-Informed Neural Network (HPKM-PINN), a novel architecture that synergistically integrates parallelized KAN and MLP branches within a unified PINN framework. The HPKM-PINN introduces a scaling factor {\xi}, to optimally balance the complementary strengths of KAN's interpretable function approximation and MLP's nonlinear feature learning, thereby enhancing predictive performance through a weighted fusion of their outputs. Through systematic numerical evaluations, we elucidate the impact of the scaling factor {\xi} on the model's performance in both function approximation and partial differential equation (PDE) solving tasks. Benchmark experiments across canonical PDEs, such as the Poisson and Advection equations, demonstrate that HPKM-PINN achieves a marked decrease in loss values (reducing relative error by two orders of magnitude) compared to standalone KAN or MLP models. Furthermore, the framework exhibits numerical stability and robustness when applied to various physical systems. These findings highlight the HPKM-PINN's ability to leverage KAN's interpretability and MLP's expressivity, positioning it as a versatile and scalable tool for solving complex PDE-driven problems in computational science and engineering.
☆ Two Heads Are Better than One: Model-Weight and Latent-Space Analysis for Federated Learning on Non-iid Data against Poisoning Attacks
Federated Learning is a popular paradigm that enables remote clients to jointly train a global model without sharing their raw data. However, FL has been shown to be vulnerable towards model poisoning attacks due to its distributed nature. Particularly, attackers acting as participants can upload arbitrary model updates that effectively compromise the global model of FL. While extensive research has been focusing on fighting against these attacks, we find that most of them assume data at remote clients are under iid while in practice they are inevitably non-iid. Our benchmark evaluations reveal that existing defenses generally fail to live up to their reputation when applied to various non-iid scenarios. In this paper, we propose a novel approach, GeminiGuard, that aims to address such a significant gap. We design GeminiGuard to be lightweight, versatile, and unsupervised so that it aligns well with the practical requirements of deploying such defenses. The key challenge from non-iids is that they make benign model updates look more similar to malicious ones. GeminiGuard is mainly built on two fundamental observations: (1) existing defenses based on either model-weight analysis or latent-space analysis face limitations in covering different MPAs and non-iid scenarios, and (2) model-weight and latent-space analysis are sufficiently different yet potentially complementary methods as MPA defenses. We hence incorporate a novel model-weight analysis component as well as a custom latent-space analysis component in GeminiGuard, aiming to further enhance its defense performance. We conduct extensive experiments to evaluate our defense across various settings, demonstrating its effectiveness in countering multiple types of untargeted and targeted MPAs, including adaptive ones. Our comprehensive evaluations show that GeminiGuard consistently outperforms SOTA defenses under various settings.
☆ Extracting Patient History from Clinical Text: A Comparative Study of Clinical Large Language Models
Extracting medical history entities (MHEs) related to a patient's chief complaint (CC), history of present illness (HPI), and past, family, and social history (PFSH) helps structure free-text clinical notes into standardized EHRs, streamlining downstream tasks like continuity of care, medical coding, and quality metrics. Fine-tuned clinical large language models (cLLMs) can assist in this process while ensuring the protection of sensitive data via on-premises deployment. This study evaluates the performance of cLLMs in recognizing CC/HPI/PFSH-related MHEs and examines how note characteristics impact model accuracy. We annotated 1,449 MHEs across 61 outpatient-related clinical notes from the MTSamples repository. To recognize these entities, we fine-tuned seven state-of-the-art cLLMs. Additionally, we assessed the models' performance when enhanced by integrating, problems, tests, treatments, and other basic medical entities (BMEs). We compared the performance of these models against GPT-4o in a zero-shot setting. To further understand the textual characteristics affecting model accuracy, we conducted an error analysis focused on note length, entity length, and segmentation. The cLLMs showed potential in reducing the time required for extracting MHEs by over 20%. However, detecting many types of MHEs remained challenging due to their polysemous nature and the frequent involvement of non-medical vocabulary. Fine-tuned GatorTron and GatorTronS, two of the most extensively trained cLLMs, demonstrated the highest performance. Integrating pre-identified BME information improved model performance for certain entities. Regarding the impact of textual characteristics on model performance, we found that longer entities were harder to identify, note length did not correlate with a higher error rate, and well-organized segments with headings are beneficial for the extraction.
Localized Graph-Based Neural Dynamics Models for Terrain Manipulation
Predictive models can be particularly helpful for robots to effectively manipulate terrains in construction sites and extraterrestrial surfaces. However, terrain state representations become extremely high-dimensional especially to capture fine-resolution details and when depth is unknown or unbounded. This paper introduces a learning-based approach for terrain dynamics modeling and manipulation, leveraging the Graph-based Neural Dynamics (GBND) framework to represent terrain deformation as motion of a graph of particles. Based on the principle that the moving portion of a terrain is usually localized, our approach builds a large terrain graph (potentially millions of particles) but only identifies a very small active subgraph (hundreds of particles) for predicting the outcomes of robot-terrain interaction. To minimize the size of the active subgraph we introduce a learning-based approach that identifies a small region of interest (RoI) based on the robot's control inputs and the current scene. We also introduce a novel domain boundary feature encoding that allows GBNDs to perform accurate dynamics prediction in the RoI interior while avoiding particle penetration through RoI boundaries. Our proposed method is both orders of magnitude faster than naive GBND and it achieves better overall prediction accuracy. We further evaluated our framework on excavation and shaping tasks on terrain with different granularity.
☆ A Lightweight Image Super-Resolution Transformer Trained on Low-Resolution Images Only
Transformer architectures prominently lead single-image super-resolution (SISR) benchmarks, reconstructing high-resolution (HR) images from their low-resolution (LR) counterparts. Their strong representative power, however, comes with a higher demand for training data compared to convolutional neural networks (CNNs). For many real-world SR applications, the availability of high-quality HR training images is not given, sparking interest in LR-only training methods. The LR-only SISR benchmark mimics this condition by allowing only low-resolution (LR) images for model training. For a 4x super-resolution, this effectively reduces the amount of available training data to 6.25% of the HR image pixels, which puts the employment of a data-hungry transformer model into question. In this work, we are the first to utilize a lightweight vision transformer model with LR-only training methods addressing the unsupervised SISR LR-only benchmark. We adopt and configure a recent LR-only training method from microscopy image super-resolution to macroscopic real-world data, resulting in our multi-scale training method for bicubic degradation (MSTbic). Furthermore, we compare it with reference methods and prove its effectiveness both for a transformer and a CNN model. We evaluate on the classic SR benchmark datasets Set5, Set14, BSD100, Urban100, and Manga109, and show superior performance over state-of-the-art (so far: CNN-based) LR-only SISR methods. The code is available on GitHub: https://github.com/ifnspaml/SuperResolutionMultiscaleTraining.
☆ Joint Source-Environment Adaptation for Deep Learning-Based Underwater Acoustic Source Ranging
In this paper, we propose a method to adapt a pre-trained deep-learning-based model for underwater acoustic localization to a new environment. We use unsupervised domain adaptation to improve the generalization performance of the model, i.e., using an unsupervised loss, fine-tune the pre-trained network parameters without access to any labels of the target environment or any data used to pre-train the model. This method improves the pre-trained model prediction by coupling that with an almost independent estimation based on the received signal energy (that depends on the source). We show the effectiveness of this approach on Bellhop generated data in an environment similar to that of the SWellEx-96 experiment contaminated with real ocean noise from the KAM11 experiment.
☆ Mismatch-Robust Underwater Acoustic Localization Using A Differentiable Modular Forward Model
In this paper, we study the underwater acoustic localization in the presence of environmental mismatch. Especially, we exploit a pre-trained neural network for the acoustic wave propagation in a gradient-based optimization framework to estimate the source location. To alleviate the effect of mismatch between the training data and the test data, we simultaneously optimize over the network weights at the inference time, and provide conditions under which this method is effective. Moreover, we introduce a physics-inspired modularity in the forward model that enables us to learn the path lengths of the multipath structure in an end-to-end training manner without access to the specific path labels. We investigate the validity of the assumptions in a simple yet illustrative environment model.
☆ Joint Source-Environment Adaptation of Data-Driven Underwater Acoustic Source Ranging Based on Model Uncertainty
Adapting pre-trained deep learning models to new and unknown environments is a difficult challenge in underwater acoustic localization. We show that although pre-trained models have performance that suffers from mismatch between the training and test data, they generally exhibit a higher ``implied uncertainty'' in environments where there is more mismatch. Leveraging this notion of implied uncertainty, we partition the test samples into more certain and less certain sets, and implement an estimation method using the certain samples to improve the labeling for uncertain samples, which helps to adapt the model. We use an efficient method to quantify model prediction uncertainty, and an innovative approach to adapt a pre-trained model to unseen underwater environments at test time. This eliminates the need for labeled data from the target environment or the original training data. This adaptation is enhanced by integrating an independent estimate based on the received signal energy. We validate the approach extensively using real experimental data, as well as synthetic data consisting of model-generated signals with real ocean noise. The results demonstrate significant improvements in model prediction accuracy, underscoring the potential of the method to enhance underwater acoustic localization in diverse, noisy, and unknown environments.
♻ ☆ RGB-Th-Bench: A Dense benchmark for Visual-Thermal Understanding of Vision Language Models
We introduce RGB-Th-Bench, the first benchmark designed to evaluate the ability of Vision-Language Models (VLMs) to comprehend RGB-Thermal image pairs. While VLMs have demonstrated remarkable progress in visual reasoning and multimodal understanding, their evaluation has been predominantly limited to RGB-based benchmarks, leaving a critical gap in assessing their capabilities in infrared vision tasks. Existing visible-infrared datasets are either task-specific or lack high-quality annotations necessary for rigorous model evaluation. To address these limitations, RGB-Th-Bench provides a comprehensive evaluation framework covering 14 distinct skill dimensions, with a total of 1,600+ expert-annotated Yes/No questions. The benchmark employs two accuracy metrics: a standard question-level accuracy and a stricter skill-level accuracy, which evaluates model robustness across multiple questions within each skill dimension. This design ensures a thorough assessment of model performance, including resilience to adversarial and hallucinated responses. We conduct extensive evaluations on 19 state-of-the-art VLMs, revealing significant performance gaps in RGB-Thermal understanding. Our results show that even the strongest models struggle with thermal image comprehension, with performance heavily constrained by their RGB-based capabilities. Additionally, the lack of large-scale application-specific and expert-annotated thermal-caption-pair datasets in pre-training is an important reason of the observed performance gap. RGB-Th-Bench highlights the urgent need for further advancements in multimodal learning to bridge the gap between visible and thermal image understanding. The dataset is available through this link, and the evaluation code will also be made publicly available.
♻ ☆ The Geometry of Concepts: Sparse Autoencoder Feature Structure
Sparse autoencoders have recently produced dictionaries of high-dimensional vectors corresponding to the universe of concepts represented by large language models. We find that this concept universe has interesting structure at three levels: 1) The "atomic" small-scale structure contains "crystals" whose faces are parallelograms or trapezoids, generalizing well-known examples such as (man-woman-king-queen). We find that the quality of such parallelograms and associated function vectors improves greatly when projecting out global distractor directions such as word length, which is efficiently done with linear discriminant analysis. 2) The "brain" intermediate-scale structure has significant spatial modularity; for example, math and code features form a "lobe" akin to functional lobes seen in neural fMRI images. We quantify the spatial locality of these lobes with multiple metrics and find that clusters of co-occurring features, at coarse enough scale, also cluster together spatially far more than one would expect if feature geometry were random. 3) The "galaxy" scale large-scale structure of the feature point cloud is not isotropic, but instead has a power law of eigenvalues with steepest slope in middle layers. We also quantify how the clustering entropy depends on the layer.
comment: 16 pages, 12 figures
♻ ☆ Hierarchical graph sampling based minibatch learning with chain preservation and variance reduction
Graph sampling based Graph Convolutional Networks (GCNs) decouple the sampling from the forward and backward propagation during minibatch training, which exhibit good scalability in terms of layer depth and graph size. We propose HIS_GCNs, a hierarchical importance graph sampling based learning method. By constructing minibatches using sampled subgraphs, HIS_GCNs gives attention to the importance of both core and periphery nodes/edges in a scale-free training graph. Specifically, it preserves the centrum of the core to most minibatches, which maintains connectivity between periphery nodes, and samples periphery edges without core node interference, in order to keep more long chains composed entirely of low-degree nodes in the same minibatch. HIS_GCNs can maximize the discrete Ricci curvature (i.e., Ollivier-Ricci curvatures) of the edges in a subgraph that enables the preservation of important chains for information propagation, and can achieve a low node embedding variance and a high convergence speed. Diverse experiments on Graph Neural Networks (GNNs) with node classification tasks confirm superior performance of HIS_GCNs in both accuracy and training time. Open sourced code (https://github.com/HuQiaCHN/HIS-GCN).
comment: 26 pages, 10 figures
♻ ☆ On the Diagram of Thought
Current large language models (LLMs) demonstrate impressive capabilities but struggle with complex, multi-step reasoning tasks. Existing methods often tackle this by requiring external control mechanisms or multi-model orchestration, which introduces system complexity and typically lacks formal guarantees of reasoning soundness. We introduce the Diagram of Thought (DoT), a framework wherein a single auto-regressive LLM internally constructs and navigates a Directed Acyclic Graph (DAG). This DAG represents the iterative reasoning process, encompassing steps like proposing ideas, critiquing them, refining based on feedback, and synthesizing conclusions. This self-orchestrated, self-contained process is guided by learned role-specific tokens (e.g., , , ) embedded within the standard generation loop, thereby eliminating external dependencies. Crucially, we establish a rigorous mathematical foundation for DoT using Topos Theory. We formalize the reasoning DAG as a diagram within a suitable topos and prove that the final synthesis step, aggregating validated information, corresponds semantically to computing the colimit of the relevant sub-diagram. This formalization provides theoretical guarantees concerning the logical consistency and robustness of the synthesized outcome. DoT thus offers a unified, self-contained, interpretable, efficient, and formally grounded approach designed to significantly advance the complex reasoning capabilities of LLMs.
comment: 23 pages
♻ ☆ Configurable Holography: Towards Display and Scene Adaptation
Emerging learned holography approaches have enabled faster and high-quality hologram synthesis, setting a new milestone toward practical holographic displays. However, these learned models require training a dedicated model for each set of display-scene parameters. To address this shortcoming, our work introduces a highly configurable learned model structure, synthesizing 3D holograms interactively while supporting diverse display-scene parameters. Our family of models relying on this structure can be conditioned continuously for varying novel scene parameters, including input images, propagation distances, volume depths, peak brightnesses, and novel display parameters of pixel pitches and wavelengths. Uniquely, our findings unearth a correlation between depth estimation and hologram synthesis tasks in the learning domain, leading to a learned model that unlocks accurate 3D hologram generation from 2D images across varied display-scene parameters. We validate our models by synthesizing high-quality 3D holograms in simulations and also verify our findings with two different holographic display prototypes. Moreover, our family of models can synthesize holograms with a 2x speed-up compared to the state-of-the-art learned holography approaches in the literature.
comment: 11 pages, 9 figures
♻ ☆ Krait: A Backdoor Attack Against Graph Prompt Tuning
Graph prompt tuning has emerged as a promising paradigm to effectively transfer general graph knowledge from pre-trained models to various downstream tasks, particularly in few-shot contexts. However, its susceptibility to backdoor attacks, where adversaries insert triggers to manipulate outcomes, raises a critical concern. We conduct the first study to investigate such vulnerability, revealing that backdoors can disguise benign graph prompts, thus evading detection. We introduce Krait, a novel graph prompt backdoor. Specifically, we propose a simple yet effective model-agnostic metric called label non-uniformity homophily to select poisoned candidates, significantly reducing computational complexity. To accommodate diverse attack scenarios and advanced attack types, we design three customizable trigger generation methods to craft prompts as triggers. We propose a novel centroid similarity-based loss function to optimize prompt tuning for attack effectiveness and stealthiness. Experiments on four real-world graphs demonstrate that Krait can efficiently embed triggers to merely 0.15% to 2% of training nodes, achieving high attack success rates without sacrificing clean accuracy. Notably, in one-to-one and all-to-one attacks, Krait can achieve 100% attack success rates by poisoning as few as 2 and 22 nodes, respectively. Our experiments further show that Krait remains potent across different transfer cases, attack types, and graph neural network backbones. Additionally, Krait can be successfully extended to the black-box setting, posing more severe threats. Finally, we analyze why Krait can evade both classical and state-of-the-art defenses, and provide practical insights for detecting and mitigating this class of attacks.
comment: Accepted by SaTML'2025
♻ ☆ Any-Resolution AI-Generated Image Detection by Spectral Learning CVPR2025
Recent works have established that AI models introduce spectral artifacts into generated images and propose approaches for learning to capture them using labeled data. However, the significant differences in such artifacts among different generative models hinder these approaches from generalizing to generators not seen during training. In this work, we build upon the key idea that the spectral distribution of real images constitutes both an invariant and highly discriminative pattern for AI-generated image detection. To model this under a self-supervised setup, we employ masked spectral learning using the pretext task of frequency reconstruction. Since generated images constitute out-of-distribution samples for this model, we propose spectral reconstruction similarity to capture this divergence. Moreover, we introduce spectral context attention, which enables our approach to efficiently capture subtle spectral inconsistencies in images of any resolution. Our spectral AI-generated image detection approach (SPAI) achieves a 5.5% absolute improvement in AUC over the previous state-of-the-art across 13 recent generative approaches, while exhibiting robustness against common online perturbations. Code is available on https://mever-team.github.io/spai.
comment: CVPR2025
♻ ☆ What is Reproducibility in Artificial Intelligence and Machine Learning Research?
In the rapidly evolving fields of Artificial Intelligence (AI) and Machine Learning (ML), the reproducibility crisis underscores the urgent need for clear validation methodologies to maintain scientific integrity and encourage advancement. The crisis is compounded by the prevalent confusion over validation terminology. In response to this challenge, we introduce a framework that clarifies the roles and definitions of key validation efforts: repeatability, dependent and independent reproducibility, and direct and conceptual replicability. This structured framework aims to provide AI/ML researchers with the necessary clarity on these essential concepts, facilitating the appropriate design, conduct, and interpretation of validation studies. By articulating the nuances and specific roles of each type of validation study, we aim to enhance the reliability and trustworthiness of research findings and support the community's efforts to address reproducibility challenges effectively.
comment: 13 pages, 3 figures, 1 table; submitted to AI Magazine
♻ ☆ Diffusion-based subsurface CO$_2$ multiphysics monitoring and forecasting
Carbon capture and storage (CCS) plays a crucial role in mitigating greenhouse gas emissions, particularly from industrial outputs. Using seismic monitoring can aid in an accurate and robust monitoring system to ensure the effectiveness of CCS and mitigate associated risks. However, conventional seismic wave equation-based approaches are computationally demanding, which hinders real-time applications. In addition to efficiency, forecasting and uncertainty analysis are not easy to handle using such numerical-simulation-based approaches. To this end, we propose a novel subsurface multiphysics monitoring and forecasting framework utilizing video diffusion models. This approach can generate high-quality representations of CO$2$ evolution and associated changes in subsurface elastic properties. With reconstruction guidance, forecasting and inversion can be achieved conditioned on historical frames and/or observational data. Meanwhile, due to the generative nature of the approach, we can quantify uncertainty in the prediction. Tests based on the Compass model show that the proposed method successfully captured the inherently complex physical phenomena associated with CO$_2$ monitoring, and it can predict and invert the subsurface elastic properties and CO$_2$ saturation with consistency in their evolution.
comment: JGR: Machine Learning and Computation, accepted
♻ ☆ Trojan Cleansing with Neural Collapse
Trojan attacks are sophisticated training-time attacks on neural networks that embed backdoor triggers which force the network to produce a specific output on any input which includes the trigger. With the increasing relevance of deep networks which are too large to train with personal resources and which are trained on data too large to thoroughly audit, these training-time attacks pose a significant risk. In this work, we connect trojan attacks to Neural Collapse, a phenomenon wherein the final feature representations of over-parameterized neural networks converge to a simple geometric structure. We provide experimental evidence that trojan attacks disrupt this convergence for a variety of datasets and architectures. We then use this disruption to design a lightweight, broadly generalizable mechanism for cleansing trojan attacks from a wide variety of different network architectures and experimentally demonstrate its efficacy.
♻ ☆ Measuring AI Ability to Complete Long Tasks
Despite rapid progress on AI benchmarks, the real-world meaning of benchmark performance remains unclear. To quantify the capabilities of AI systems in terms of human capabilities, we propose a new metric: 50%-task-completion time horizon. This is the time humans typically take to complete tasks that AI models can complete with 50% success rate. We first timed humans with relevant domain expertise on a combination of RE-Bench, HCAST, and 66 novel shorter tasks. On these tasks, current frontier AI models such as Claude 3.7 Sonnet have a 50% time horizon of around 50 minutes. Furthermore, frontier AI time horizon has been doubling approximately every seven months since 2019, though the trend may have accelerated in 2024. The increase in AI models' time horizons seems to be primarily driven by greater reliability and ability to adapt to mistakes, combined with better logical reasoning and tool use capabilities. We discuss the limitations of our results -- including their degree of external validity -- and the implications of increased autonomy for dangerous capabilities. If these results generalize to real-world software tasks, extrapolation of this trend predicts that within 5 years, AI systems will be capable of automating many software tasks that currently take humans a month.
♻ ☆ Decoding Human Preferences in Alignment: An Improved Approach to Inverse Constitutional AI
Traditional methods for aligning Large Language Models (LLMs), such as Reinforcement Learning from Human Feedback (RLHF) and Direct Preference Optimization (DPO), rely on implicit principles, limiting interpretability. Constitutional AI (CAI) offers an explicit, rule-based framework for guiding LLM alignment. Building on this, we refine the Inverse Constitutional AI (ICAI) algorithm, which extracts constitutions from preference datasets. By improving principle generation, clustering, and embedding processes, our approach enhances the accuracy and generalizability of extracted principles across synthetic and real-world datasets. Our results highlight the potential of these principles to foster more transparent and adaptable alignment methods, offering a promising direction for future advancements beyond traditional fine-tuning.
comment: 9 Pages, 3 Figures
♻ ☆ Alternating Iteratively Reweighted $\ell_1$ and Subspace Newton Algorithms for Nonconvex Sparse Optimization
This paper presents a novel hybrid algorithm for minimizing the sum of a continuously differentiable loss function and a nonsmooth, possibly nonconvex, sparse regularization function. The proposed method alternates between solving a reweighted $\ell_1$-regularized subproblem and performing an inexact subspace Newton step. The reweighted $\ell_1$-subproblem allows for efficient closed-form solutions via the soft-thresholding operator, avoiding the computational overhead of proximity operator calculations. As the algorithm approaches an optimal solution, it maintains a stable support set, ensuring that nonzero components stay uniformly bounded away from zero. It then switches to a perturbed regularized Newton method, further accelerating the convergence. We prove global convergence to a critical point and, under suitable conditions, demonstrate that the algorithm exhibits local linear and quadratic convergence rates. Numerical experiments show that our algorithm outperforms existing methods in both efficiency and solution quality across various model prediction problems.
♻ ☆ Theoretical Insights into Fine-Tuning Attention Mechanism: Generalization and Optimization
Large Language Models (LLMs), built on Transformer architectures, exhibit remarkable generalization across a wide range of tasks. However, fine-tuning these models for specific tasks remains resource-intensive due to their extensive parameterization. In this paper, we investigate two remarkable phenomena related to the attention mechanism during the fine-tuning of LLMs. The first phenomenon, termed "Unequal Importance of Attention Matrices," highlights the impact of fine-tuning different weight matrices. It shows that optimizing the $\mathbf{W}_v$ matrix yields significantly better performance than optimizing the $\mathbf{W}_k$ matrix. Fine-tuning only the $\mathbf{W}_q$ and $\mathbf{W}_v$ matrices is computationally efficient while delivering results comparable to, or even better than fine-tuning all three matrices ($\mathbf{W}_q$, $\mathbf{W}_k$, and $\mathbf{W}_v$). The second phenomenon, "Attention Matrices with Customized Learning Rate Leads to Better Convergence," emphasizes the importance of assigning distinct learning rates to these matrices. Specifically, a higher learning rate for the $\mathbf{W}_v$ matrix compared to $\mathbf{W}_q$ and $\mathbf{W}_k$ accelerates convergence and improves performance. Building on these insights, we propose a new strategy that improves fine-tuning efficiency in terms of both storage and time. Experimental results on benchmark datasets validate the effectiveness of this approach, supporting our theoretical findings. Our analysis lays the theoretical groundwork for configuring and improving lightweight algorithms in LLMs fine-tuning.
♻ ☆ Is Algorithmic Stability Testable? A Unified Framework under Computational Constraints
Algorithmic stability is a central notion in learning theory that quantifies the sensitivity of an algorithm to small changes in the training data. If a learning algorithm satisfies certain stability properties, this leads to many important downstream implications, such as generalization, robustness, and reliable predictive inference. Verifying that stability holds for a particular algorithm is therefore an important and practical question. However, recent results establish that testing the stability of a black-box algorithm is impossible, given limited data from an unknown distribution, in settings where the data lies in an uncountably infinite space (such as real-valued data). In this work, we extend this question to examine a far broader range of settings, where the data may lie in any space -- for example, categorical data. We develop a unified framework for quantifying the hardness of testing algorithmic stability, which establishes that across all settings, if the available data is limited then exhaustive search is essentially the only universally valid mechanism for certifying algorithmic stability. Since in practice, any test of stability would naturally be subject to computational constraints, exhaustive search is impossible and so this implies fundamental limits on our ability to test the stability property for a black-box algorithm.
♻ ☆ Make Haste Slowly: A Theory of Emergent Structured Mixed Selectivity in Feature Learning ReLU Networks ICLR
In spite of finite dimension ReLU neural networks being a consistent factor behind recent deep learning successes, a theory of feature learning in these models remains elusive. Currently, insightful theories still rely on assumptions including the linearity of the network computations, unstructured input data and architectural constraints such as infinite width or a single hidden layer. To begin to address this gap we establish an equivalence between ReLU networks and Gated Deep Linear Networks, and use their greater tractability to derive dynamics of learning. We then consider multiple variants of a core task reminiscent of multi-task learning or contextual control which requires both feature learning and nonlinearity. We make explicit that, for these tasks, the ReLU networks possess an inductive bias towards latent representations which are not strictly modular or disentangled but are still highly structured and reusable between contexts. This effect is amplified with the addition of more contexts and hidden layers. Thus, we take a step towards a theory of feature learning in finite ReLU networks and shed light on how structured mixed-selective latent representations can emerge due to a bias for node-reuse and learning speed.
comment: 35 pages; 9 figures; accepted at the International Conference on Learning Representations (ICLR)
♻ ☆ Coupled Input-Output Dimension Reduction: Application to Goal-oriented Bayesian Experimental Design and Global Sensitivity Analysis
We introduce a new method to jointly reduce the dimension of the input and output space of a function between high-dimensional spaces. Choosing a reduced input subspace influences which output subspace is relevant and vice versa. Conventional methods focus on reducing either the input or output space, even though both are often reduced simultaneously in practice. Our coupled approach naturally supports goal-oriented dimension reduction, where either an input or output quantity of interest is prescribed. We consider, in particular, goal-oriented sensor placement and goal-oriented sensitivity analysis, which can be viewed as dimension reduction where the most important output or, respectively, input components are chosen. Both applications present difficult combinatorial optimization problems with expensive objectives such as the expected information gain and Sobol' indices. By optimizing gradient-based bounds, we can determine the most informative sensors and most influential parameters as the largest diagonal entries of some diagnostic matrices, thus bypassing the combinatorial optimization and objective evaluation.
♻ ☆ Nesterov acceleration in benignly non-convex landscapes ICLR 2025
While momentum-based optimization algorithms are commonly used in the notoriously non-convex optimization problems of deep learning, their analysis has historically been restricted to the convex and strongly convex setting. In this article, we partially close this gap between theory and practice and demonstrate that virtually identical guarantees can be obtained in optimization problems with a `benign' non-convexity. We show that these weaker geometric assumptions are well justified in overparametrized deep learning, at least locally. Variations of this result are obtained for a continuous time model of Nesterov's accelerated gradient descent algorithm (NAG), the classical discrete time version of NAG, and versions of NAG with stochastic gradient estimates with purely additive noise and with noise that exhibits both additive and multiplicative scaling.
comment: ICLR 2025 Spotlight
♻ ☆ STEP: Enhancing Video-LLMs' Compositional Reasoning by Spatio-Temporal Graph-guided Self-Training
Video Large Language Models (Video-LLMs) have recently shown strong performance in basic video understanding tasks, such as captioning and coarse-grained question answering, but struggle with compositional reasoning that requires multi-step spatio-temporal inference across object relations, interactions, and events. The hurdles to enhancing this capability include extensive manual labor, the lack of spatio-temporal compositionality in existing data and the absence of explicit reasoning supervision. In this paper, we propose STEP, a novel graph-guided self-training method that enables Video-LLMs to generate reasoning-rich fine-tuning data from any raw videos to improve itself. Specifically, we first induce Spatio-Temporal Scene Graph (STSG) representation of diverse videos to capture fine-grained, multi-granular video semantics. Then, the STSGs guide the derivation of multi-step reasoning Question-Answer (QA) data with Chain-of-Thought (CoT) rationales. Both answers and rationales are integrated as training objective, aiming to enhance model's reasoning abilities by supervision over explicit reasoning steps. Experimental results demonstrate the effectiveness of STEP across models of varying scales, with a significant 21.3\% improvement in tasks requiring three or more reasoning steps. Furthermore, it achieves superior performance with a minimal amount of self-generated rationale-enriched training samples in both compositional reasoning and comprehensive understanding benchmarks, highlighting the broad applicability and vast potential.
♻ ☆ VELOCITI: Benchmarking Video-Language Compositional Reasoning with Strict Entailment CVPR 2025
A fundamental aspect of compositional reasoning in a video is associating people and their actions across time. Recent years have seen great progress in general-purpose vision or video models and a move towards long-video understanding. While exciting, we take a step back and ask: are current models good at compositional reasoning on short videos? To this end, we introduce VELOCITI, a benchmark to study Video-LLMs by disentangling and assessing the comprehension of agents, actions, and their associations across multiple events. We adopt the Video-Language Entailment setup and propose StrictVLE that requires correct classification (rather than ranking) of the positive and negative caption. We evaluate several models and observe that even the best, LLaVA-OneVision (44.5%) and Gemini-1.5-Pro (49.3%), are far from human accuracy at 93.0%. Results show that action understanding lags behind agents, and negative captions created using entities appearing in the video perform worse than those obtained from pure text manipulation. We also present challenges with ClassicVLE and multiple-choice (MC) evaluation, strengthening our preference for StrictVLE. Finally, we validate that our benchmark requires visual inputs of multiple frames making it ideal to study video-language compositional reasoning.
comment: Accepted to CVPR 2025. Project Page, see https://katha-ai.github.io/projects/velociti
♻ ☆ RWKV-7 "Goose" with Expressive Dynamic State Evolution
We present RWKV-7 "Goose", a new sequence modeling architecture with constant memory usage and constant inference time per token. Despite being trained on dramatically fewer tokens than other top models, our 2.9 billion parameter language model achieves a new 3B SoTA on multilingual tasks and matches the current 3B SoTA on English language downstream performance. RWKV-7 introduces a newly generalized formulation of the delta rule with vector-valued gating and in-context learning rates, as well as a relaxed value replacement rule. We show that RWKV-7 can perform state tracking and recognize all regular languages, while retaining parallelizability of training. This exceeds the capabilities of Transformers under standard complexity conjectures, which are limited to $\mathsf{TC}^0$. To demonstrate RWKV-7's language modeling capability, we also present an extended open source 3.1 trillion token multilingual corpus, and train four RWKV-7 models ranging from 0.19 billion to 2.9 billion parameters on this dataset. To foster openness, reproduction, and adoption, we release our models and dataset component listing at https://huggingface.co/RWKV, and our training and inference code at https://github.com/RWKV/RWKV-LM all under the Apache 2.0 License.
♻ ☆ Analyzing and Boosting the Power of Fine-Grained Visual Recognition for Multi-modal Large Language Models ICLR 2025
Multi-modal large language models (MLLMs) have shown remarkable abilities in various visual understanding tasks. However, MLLMs still struggle with fine-grained visual recognition (FGVR), which aims to identify subordinate-level categories from images. This can negatively impact more advanced capabilities of MLLMs, such as object-centric visual question answering and reasoning. In our study, we revisit three quintessential capabilities of MLLMs for FGVR, including object information extraction, category knowledge reserve, object-category alignment, and position of the root cause as a misalignment problem. To address this issue, we present Finedefics, an MLLM that enhances the model's FGVR capability by incorporating informative attribute descriptions of objects into the training phase. We employ contrastive learning on object-attribute pairs and attribute-category pairs simultaneously and use examples from similar but incorrect categories as hard negatives, naturally bringing representations of visual objects and category names closer. Extensive evaluations across multiple popular FGVR datasets demonstrate that Finedefics outperforms existing MLLMs of comparable parameter sizes, showcasing its remarkable efficacy. The code is available at https://github.com/PKU-ICST-MIPL/Finedefics_ICLR2025.
comment: Published as a conference paper at ICLR 2025. The model is available at https://huggingface.co/StevenHH2000/Finedefics
♻ ☆ Pareto Front Approximation for Multi-Objective Session-Based Recommender Systems
This work introduces MultiTRON, an approach that adapts Pareto front approximation techniques to multi-objective session-based recommender systems using a transformer neural network. Our approach optimizes trade-offs between key metrics such as click-through and conversion rates by training on sampled preference vectors. A significant advantage is that after training, a single model can access the entire Pareto front, allowing it to be tailored to meet the specific requirements of different stakeholders by adjusting an additional input vector that weights the objectives. We validate the model's performance through extensive offline and online evaluation. For broader application and research, the source code is made available at https://github.com/otto-de/MultiTRON. The results confirm the model's ability to manage multiple recommendation objectives effectively, offering a flexible tool for diverse business needs.
comment: Accepted at the Eighteenth ACM Conference on Recommender Systems (RecSys '24)
♻ ☆ Scaling Session-Based Transformer Recommendations using Optimized Negative Sampling and Loss Functions
This work introduces TRON, a scalable session-based Transformer Recommender using Optimized Negative-sampling. Motivated by the scalability and performance limitations of prevailing models such as SASRec and GRU4Rec+, TRON integrates top-k negative sampling and listwise loss functions to enhance its recommendation accuracy. Evaluations on relevant large-scale e-commerce datasets show that TRON improves upon the recommendation quality of current methods while maintaining training speeds similar to SASRec. A live A/B test yielded an 18.14% increase in click-through rate over SASRec, highlighting the potential of TRON in practical settings. For further research, we provide access to our source code at https://github.com/otto-de/TRON and an anonymized dataset at https://github.com/otto-de/recsys-dataset.
comment: Accepted at the Seventeenth ACM Conference on Recommender Systems (RecSys '23)
♻ ☆ Token Dynamics: Towards Efficient and Dynamic Video Token Representation for Video Large Language Models
Token-based video representation has emerged as a promising approach for enabling LLMs to interpret video content. However, existing token reduction, such as token pruning and token merging, often disrupt essential spatial-temporal positional embeddings, failing to adequately balance computational efficiency with fewer tokens. Consequently, these methods result in lengthy token sequences, limiting their applicability in scenarios requiring extreme token compression, such as video large language models. In this paper, we introduce the novel task of extreme short token reduction, aiming to represent extensive video sequences with a minimal number of tokens. To address this challenge, we propose Token Dynamics, a new video representation framework that dynamically reduces token count while preserving spatial-temporal coherence. Specifically, we disentangle video representations by separating visual embeddings from grid-level motion information, structuring them into: 1. a concise token hash table, created by clustering tokens that describe object-level content; 2. a token indices key map, capturing detailed spatial-temporal motion patterns across grids; 3. a token hash function, which vector-quantizes the token hash table to reconstruct the token sequence from the key map. Furthermore, we introduce a cross-dynamics attention mechanism that integrates motion features into the token base without increasing token length, thereby maintaining compactness and spatial-temporal integrity. The experiments demonstrate a reduction of token count to merely 0.07% of the original tokens, with only a minor performance drop of 1.13%. Additionally, we propose two novel subtasks within extreme token reduction (fixed-length and adaptive-length compression). Our method offers significantly lower theoretical complexity, fewer tokens, and enhanced throughput, thus providing an efficient solution for video LLMs.
♻ ☆ Machine-generated text detection prevents language model collapse
As Large Language Models (LLMs) become increasingly prevalent, their generated outputs are proliferating across the web, risking a future where machine-generated content dilutes human-authored text. Since online data is the primary resource for LLM pre-training, subsequent models could be trained on an unknown portion of synthetic samples. This will lead to model collapse, a degenerative process whereby LLMs reinforce their own errors, and ultimately yield a declining performance. In this study, we investigate the impact of decoding strategy on model collapse, analysing the characteristics of text at each model generation, the similarity to human references, and the resulting model performance. Using the decoding strategies that lead to the most significant degradation, we evaluate model collapse in more realistic scenarios where the origin of the data (human or synthetic) is unknown. We train a machine-generated text detector and propose an importance sampling approach to alleviate model collapse. Our method is validated on two LLM variants (GPT-2 and SmolLM2) on the open-ended text generation task. We demonstrate that it can not only prevent model collapse but also improve performance when sufficient human-authored samples are present.
♻ ☆ Mask-informed Deep Contrastive Incomplete Multi-view Clustering
Multi-view clustering (MvC) utilizes information from multiple views to uncover the underlying structures of data. Despite significant advancements in MvC, mitigating the impact of missing samples in specific views on the integration of knowledge from different views remains a critical challenge. This paper proposes a novel Mask-informed Deep Contrastive Incomplete Multi-view Clustering (Mask-IMvC) method, which elegantly identifies a view-common representation for clustering. Specifically, we introduce a mask-informed fusion network that aggregates incomplete multi-view information while considering the observation status of samples across various views as a mask, thereby reducing the adverse effects of missing values. Additionally, we design a prior knowledge-assisted contrastive learning loss that boosts the representation capability of the aggregated view-common representation by injecting neighborhood information of samples from different views. Finally, extensive experiments are conducted to demonstrate the superiority of the proposed Mask-IMvC method over state-of-the-art approaches across multiple MvC datasets, both in complete and incomplete scenarios.
♻ ☆ Accelerating Task Generalisation with Multi-Level Skill Hierarchies ICLR 2025
Creating reinforcement learning agents that generalise effectively to new tasks is a key challenge in AI research. This paper introduces Fracture Cluster Options (FraCOs), a multi-level hierarchical reinforcement learning method that achieves state-of-the-art performance on difficult generalisation tasks. FraCOs identifies patterns in agent behaviour and forms options based on the expected future usefulness of those patterns, enabling rapid adaptation to new tasks. In tabular settings, FraCOs demonstrates effective transfer and improves performance as it grows in hierarchical depth. We evaluate FraCOs against state-of-the-art deep reinforcement learning algorithms in several complex procedurally generated environments. Our results show that FraCOs achieves higher in-distribution and out-of-distribution performance than competitors.
comment: 10 pages, accepted at ICLR 2025
♻ ☆ F$^3$OCUS -- Federated Finetuning of Vision-Language Foundation Models with Optimal Client Layer Updating Strategy via Multi-objective Meta-Heuristics CVPR 2025
Effective training of large Vision-Language Models (VLMs) on resource-constrained client devices in Federated Learning (FL) requires the usage of parameter-efficient fine-tuning (PEFT) strategies. To this end, we demonstrate the impact of two factors \textit{viz.}, client-specific layer importance score that selects the most important VLM layers for fine-tuning and inter-client layer diversity score that encourages diverse layer selection across clients for optimal VLM layer selection. We first theoretically motivate and leverage the principal eigenvalue magnitude of layerwise Neural Tangent Kernels and show its effectiveness as client-specific layer importance score. Next, we propose a novel layer updating strategy dubbed F$^3$OCUS that jointly optimizes the layer importance and diversity factors by employing a data-free, multi-objective, meta-heuristic optimization on the server. We explore 5 different meta-heuristic algorithms and compare their effectiveness for selecting model layers and adapter layers towards PEFT-FL. Furthermore, we release a new MedVQA-FL dataset involving overall 707,962 VQA triplets and 9 modality-specific clients and utilize it to train and evaluate our method. Overall, we conduct more than 10,000 client-level experiments on 6 Vision-Language FL task settings involving 58 medical image datasets and 4 different VLM architectures of varying sizes to demonstrate the effectiveness of the proposed method.
comment: Accepted in CVPR 2025
♻ ☆ Tool or Tutor? Experimental evidence from AI deployment in cancer diagnosis
Professionals increasingly use Artificial Intelligence (AI) to enhance their capabilities and assist with task execution. While prior research has examined these uses separately, their potential interaction remains underexplored. We propose that AI-driven training ("tutor") and AI-assisted task completion ("tool") can have a joint effect on human capability and test this hypothesis in the context of lung cancer diagnosis. In a field experiment with 336 medical students, we manipulated AI deployment in training, in practice, and in both. Our findings reveal that while AI-integrated training and AI assistance independently improved diagnostic performance, their combination yielded the highest accuracy. These results underscore AI's dual role in enhancing human performance through both learning and real-time support, offering insights into AI deployment in professional settings where human expertise remains essential.
♻ ☆ MoTCoder: Elevating Large Language Models with Modular of Thought for Challenging Programming Tasks
Large Language Models (LLMs) have showcased impressive capabilities in handling straightforward programming tasks. However, their performance tends to falter when confronted with more challenging programming problems. We observe that conventional models often generate solutions as monolithic code blocks, restricting their effectiveness in tackling intricate questions. To overcome this limitation, we present Module-of-Thought Coder (MoTCoder). We introduce a framework for MoT instruction tuning, designed to promote the decomposition of tasks into logical sub-tasks and sub-modules. Our investigations reveal that, through the cultivation and utilization of sub-modules, MoTCoder significantly improves both the modularity and correctness of the generated solutions, leading to substantial pass@1 improvements of 5.9% on APPS and 5.8% on CodeContests. MoTCoder also achieved significant improvements in self-correction capabilities, surpassing the current SOTA by 3.3%. Additionally, we provide an analysis of between problem complexity and optimal module decomposition and evaluate the maintainability index, confirming that the code generated by MoTCoder is easier to understand and modify, which can be beneficial for long-term code maintenance and evolution. Our codes are available at https://github.com/dvlab-research/MoTCoder.
comment: Data: https://huggingface.co/datasets/JingyaoLi/MoTCode-Data,MoTCoder-32B: https://huggingface.co/JingyaoLi/MoTCoder-32B-V1.5,MoTCoder-7B: https://huggingface.co/JingyaoLi/MoTCoder-7B-v1.5,Code: https://github.com/dvlab-research/MoTCoder, Paper: arXiv:2312.15960
♻ ☆ Generative Semantic Communication for Joint Image Transmission and Segmentation
Semantic communication has emerged as a promising technology for enhancing communication efficiency. However, most existing research emphasizes single-task reconstruction, neglecting model adaptability and generalization across multi-task systems. In this paper, we propose a novel generative semantic communication system that supports both image reconstruction and segmentation tasks. Our approach builds upon semantic knowledge bases (KBs) at both the transmitter and receiver, with each semantic KB comprising a source KB and a task KB. The source KB at the transmitter leverages a hierarchical Swin-Transformer, a generative AI scheme, to extract multi-level features from the input image. Concurrently, the counterpart source KB at the receiver utilizes hierarchical residual blocks to generate task-specific knowledge. Furthermore, the task KBs adopt a semantic similarity model to map different task requirements into pre-defined task instructions, thereby facilitating the feature selection of the source KBs. Additionally, we develop a unified residual block-based joint source and channel (JSCC) encoder and two task-specific JSCC decoders to achieve the two image tasks. In particular, a generative diffusion model is adopted to construct the JSCC decoder for the image reconstruction task. Experimental results show that our multi-task generative semantic communication system outperforms previous single-task communication systems in terms of peak signal-to-noise ratio and segmentation accuracy.
comment: This paper has been accepted by the 2025 IEEE International Conference on Communications Workshops and is scheduled for publication
♻ ☆ Blind Baselines Beat Membership Inference Attacks for Foundation Models ICLR 2025
Membership inference (MI) attacks try to determine if a data sample was used to train a machine learning model. For foundation models trained on unknown Web data, MI attacks are often used to detect copyrighted training materials, measure test set contamination, or audit machine unlearning. Unfortunately, we find that evaluations of MI attacks for foundation models are flawed, because they sample members and non-members from different distributions. For 8 published MI evaluation datasets, we show that blind attacks -- that distinguish the member and non-member distributions without looking at any trained model -- outperform state-of-the-art MI attacks. Existing evaluations thus tell us nothing about membership leakage of a foundation model's training data.
comment: Accepted to be presented at DATA-FM @ ICLR 2025 and IEEE DLSP Workshop 2025
♻ ☆ PQCache: Product Quantization-based KVCache for Long Context LLM Inference
As the field of Large Language Models (LLMs) continues to evolve, the context length in inference is steadily growing. Key-Value Cache (KVCache), the intermediate representations of tokens within LLM inference, has now become the primary memory bottleneck due to limited GPU memory. Current methods selectively determine suitable keys and values for self-attention computation in LLMs to address the issue. However, they either fall short in maintaining model quality or result in high serving latency. Drawing inspiration from advanced embedding retrieval techniques prevalent in the data management community, we consider the storage and retrieval of KVCache as a typical embedding retrieval problem. We propose PQCache, which employs Product Quantization (PQ) to manage KVCache, maintaining model quality while ensuring low serving latency. During the prefilling phase, we apply PQ to tokens' keys for each LLM layer and head. During the autoregressive decoding phase, we use PQ codes and centroids to approximately identify important preceding tokens, then fetch the corresponding key-value pairs for self-attention computation. Through meticulous design of overlapping and caching, we minimize any additional computation and communication overhead during both phases. Extensive experiments demonstrate that PQCache achieves both effectiveness and efficiency, with 4.60% score improvement over existing methods on InfiniteBench and low system latency in both prefilling and decoding.
♻ ☆ Benchmarking Post-Training Quantization in LLMs: Comprehensive Taxonomy, Unified Evaluation, and Comparative Analysis
Post-training Quantization (PTQ) technique has been extensively adopted for large language models (LLMs) compression owing to its efficiency and low resource requirement. However, current research lacks a in-depth analysis of the superior and applicable scenarios of each PTQ strategy. In addition, existing algorithms focus primarily on performance, overlooking the trade-off among model size, performance, and quantization bitwidth. To mitigate these confusions, we provide a novel benchmark for LLMs PTQ in this paper. Firstly, in order to support our benchmark, we propose a comprehensive taxonomy for existing mainstream methods by scrutinizing their computational strategies (e.g., optimization-based, compensation-based, etc.). Then, we conduct extensive experiments with the baseline within each class, covering models with various sizes (7B-70B), bitwidths, training levels (LLaMA1/2/3/3.1), architectures (Mixtral, DeepSeekMoE and Mamba) and modality (LLaVA1.5 and VILA1.5) on a wide range of evaluation metrics.Through comparative analysis on the results, we summarize the superior of each PTQ strategy and modelsize-bitwidth trade-off considering the performance. For example, our benchmark reveals that compensation-based technique demonstrates outstanding cross-architecture robustness and extremely low-bit PTQ for ultra large models should be reexamined. Finally, we further accordingly claim that a practical combination of compensation and other PTQ strategy can achieve SOTA various robustness. We believe that our benchmark will provide valuable recommendations for the deployment of LLMs and future research on PTQ approaches.We conduct an repository for our benchmark at https://github.com/zjq0455/PTQ_Benchmark.
comment: 17 pages, 3 fugures
♻ ☆ Mosaic of Modalities: A Comprehensive Benchmark for Multimodal Graph Learning CVPR 2025
Graph machine learning has made significant strides in recent years, yet the integration of visual information with graph structure and its potential for improving performance in downstream tasks remains an underexplored area. To address this critical gap, we introduce the Multimodal Graph Benchmark (MM-GRAPH), a pioneering benchmark that incorporates both visual and textual information into graph learning tasks. MM-GRAPH extends beyond existing text-attributed graph benchmarks, offering a more comprehensive evaluation framework for multimodal graph learning Our benchmark comprises seven diverse datasets of varying scales (ranging from thousands to millions of edges), designed to assess algorithms across different tasks in real-world scenarios. These datasets feature rich multimodal node attributes, including visual data, which enables a more holistic evaluation of various graph learning frameworks in complex, multimodal environments. To support advancements in this emerging field, we provide an extensive empirical study on various graph learning frameworks when presented with features from multiple modalities, particularly emphasizing the impact of visual information. This study offers valuable insights into the challenges and opportunities of integrating visual data into graph learning.
comment: CVPR 2025
♻ ☆ TouchUp-G: Improving Feature Representation through Graph-Centric Finetuning
How can we enhance the node features acquired from Pretrained Models (PMs) to better suit downstream graph learning tasks? Graph Neural Networks (GNNs) have become the state-of-the-art approach for many high-impact, real-world graph applications. For feature-rich graphs, a prevalent practice involves utilizing a PM directly to generate features, without incorporating any domain adaptation techniques. Nevertheless, this practice is suboptimal because the node features extracted from PM are graph-agnostic and prevent GNNs from fully utilizing the potential correlations between the graph structure and node features, leading to a decline in GNNs performance. In this work, we seek to improve the node features obtained from a PM for downstream graph tasks and introduce TOUCHUP-G, which has several advantages. It is (a) General: applicable to any downstream graph task, including link prediction which is often employed in recommender systems; (b) Multi-modal: able to improve raw features of any modality (e.g. images, texts, audio); (c) Principled: it is closely related to a novel metric, feature homophily, which we propose to quantify the potential correlations between the graph structure and node features and we show that TOUCHUP-G can effectively shrink the discrepancy between the graph structure and node features; (d) Effective: achieving state-of-the-art results on four real-world datasets spanning different tasks and modalities.
comment: SIGIR 2024
♻ ☆ Machine Learning Analysis of Anomalous Diffusion
The rapid advancements in machine learning have made its application to anomalous diffusion analysis both essential and inevitable. This review systematically introduces the integration of machine learning techniques for enhanced analysis of anomalous diffusion, focusing on two pivotal aspects: single trajectory characterization via machine learning and representation learning of anomalous diffusion. We extensively compare various machine learning methods, including both classical machine learning and deep learning, used for the inference of diffusion parameters and trajectory segmentation. Additionally, platforms such as the Anomalous Diffusion Challenge that serve as benchmarks for evaluating these methods are highlighted. On the other hand, we outline three primary strategies for representing anomalous diffusion: the combination of predefined features, the feature vector from the penultimate layer of neural network, and the latent representation from the autoencoder, analyzing their applicability across various scenarios. This investigation paves the way for future research, offering valuable perspectives that can further enrich the study of anomalous diffusion and advance the application of artificial intelligence in statistical physics and biophysics.
comment: 44 pages, 10 figures
♻ ☆ Optimal vintage factor analysis with deflation varimax
Vintage factor analysis is one important type of factor analysis that aims to first find a low-dimensional representation of the original data, and then to seek a rotation such that the rotated low-dimensional representation is scientifically meaningful. The most widely used vintage factor analysis is the Principal Component Analysis (PCA) followed by the varimax rotation. Despite its popularity, little theoretical guarantee can be provided to date mainly because varimax rotation requires to solve a non-convex optimization over the set of orthogonal matrices. In this paper, we propose a deflation varimax procedure that solves each row of an orthogonal matrix sequentially. In addition to its net computational gain and flexibility, we are able to fully establish theoretical guarantees for the proposed procedure in a broader context. Adopting this new deflation varimax as the second step after PCA, we further analyze this two step procedure under a general class of factor models. Our results show that it estimates the factor loading matrix in the minimax optimal rate when the signal-to-noise-ratio (SNR) is moderate or large. In the low SNR regime, we offer possible improvement over using PCA and the deflation varimax when the additive noise under the factor model is structured. The modified procedure is shown to be minimax optimal in all SNR regimes. Our theory is valid for finite sample and allows the number of the latent factors to grow with the sample size as well as the ambient dimension to grow with, or even exceed, the sample size. Extensive simulation and real data analysis further corroborate our theoretical findings.
Building Machine Learning Challenges for Anomaly Detection in Science
Scientific discoveries are often made by finding a pattern or object that was not predicted by the known rules of science. Oftentimes, these anomalous events or objects that do not conform to the norms are an indication that the rules of science governing the data are incomplete, and something new needs to be present to explain these unexpected outliers. The challenge of finding anomalies can be confounding since it requires codifying a complete knowledge of the known scientific behaviors and then projecting these known behaviors on the data to look for deviations. When utilizing machine learning, this presents a particular challenge since we require that the model not only understands scientific data perfectly but also recognizes when the data is inconsistent and out of the scope of its trained behavior. In this paper, we present three datasets aimed at developing machine learning-based anomaly detection for disparate scientific domains covering astrophysics, genomics, and polar science. We present the different datasets along with a scheme to make machine learning challenges around the three datasets findable, accessible, interoperable, and reusable (FAIR). Furthermore, we present an approach that generalizes to future machine learning challenges, enabling the possibility of large, more compute-intensive challenges that can ultimately lead to scientific discovery.
comment: 17 pages 6 figures to be submitted to Nature Communications
Computer Vision and Pattern Recognition 114
☆ Language-Guided Trajectory Traversal in Disentangled Stable Diffusion Latent Space for Factorized Medical Image Generation
Text-to-image diffusion models have demonstrated a remarkable ability to generate photorealistic images from natural language prompts. These high-resolution, language-guided synthesized images are essential for the explainability of disease or exploring causal relationships. However, their potential for disentangling and controlling latent factors of variation in specialized domains like medical imaging remains under-explored. In this work, we present the first investigation of the power of pre-trained vision-language foundation models, once fine-tuned on medical image datasets, to perform latent disentanglement for factorized medical image generation and interpolation. Through extensive experiments on chest X-ray and skin datasets, we illustrate that fine-tuned, language-guided Stable Diffusion inherently learns to factorize key attributes for image generation, such as the patient's anatomical structures or disease diagnostic features. We devise a framework to identify, isolate, and manipulate key attributes through latent space trajectory traversal of generative models, facilitating precise control over medical image synthesis.
comment: 10 pages
☆ Leveraging Vision-Language Foundation Models to Reveal Hidden Image-Attribute Relationships in Medical Imaging
Vision-language foundation models (VLMs) have shown impressive performance in guiding image generation through text, with emerging applications in medical imaging. In this work, we are the first to investigate the question: 'Can fine-tuned foundation models help identify critical, and possibly unknown, data properties?' By evaluating our proposed method on a chest x-ray dataset, we show that these models can generate high-resolution, precisely edited images compared to methods that rely on Structural Causal Models (SCMs) according to numerous metrics. For the first time, we demonstrate that fine-tuned VLMs can reveal hidden data relationships that were previously obscured due to available metadata granularity and model capacity limitations. Our experiments demonstrate both the potential of these models to reveal underlying dataset properties while also exposing the limitations of fine-tuned VLMs for accurate image editing and susceptibility to biases and spurious correlations.
☆ Blurry-Edges: Photon-Limited Depth Estimation from Defocused Boundaries CVPR 2025
Extracting depth information from photon-limited, defocused images is challenging because depth from defocus (DfD) relies on accurate estimation of defocus blur, which is fundamentally sensitive to image noise. We present a novel approach to robustly measure object depths from photon-limited images along the defocused boundaries. It is based on a new image patch representation, Blurry-Edges, that explicitly stores and visualizes a rich set of low-level patch information, including boundaries, color, and smoothness. We develop a deep neural network architecture that predicts the Blurry-Edges representation from a pair of differently defocused images, from which depth can be calculated using a closed-form DfD relation we derive. The experimental results on synthetic and real data show that our method achieves the highest depth estimation accuracy on photon-limited images compared to a broad range of state-of-the-art DfD methods.
comment: Accepted to CVPR 2025. Project page: https://blurry-edges.qiguo.org/
☆ GenVP: Generating Visual Puzzles with Contrastive Hierarchical VAEs ICLR 2025
Raven's Progressive Matrices (RPMs) is an established benchmark to examine the ability to perform high-level abstract visual reasoning (AVR). Despite the current success of algorithms that solve this task, humans can generalize beyond a given puzzle and create new puzzles given a set of rules, whereas machines remain locked in solving a fixed puzzle from a curated choice list. We propose Generative Visual Puzzles (GenVP), a framework to model the entire RPM generation process, a substantially more challenging task. Our model's capability spans from generating multiple solutions for one specific problem prompt to creating complete new puzzles out of the desired set of rules. Experiments on five different datasets indicate that GenVP achieves state-of-the-art (SOTA) performance both in puzzle-solving accuracy and out-of-distribution (OOD) generalization in 22 OOD scenarios. Compared to SOTA generative approaches, which struggle to solve RPMs when the feasible solution space increases, GenVP efficiently generalizes to these challenging setups. Moreover, our model demonstrates the ability to produce a wide range of complete RPMs given a set of abstract rules by effectively capturing the relationships between abstract rules and visual object properties.
comment: Accepted to ICLR 2025
☆ PhysPose: Refining 6D Object Poses with Physical Constraints
Accurate 6D object pose estimation from images is a key problem in object-centric scene understanding, enabling applications in robotics, augmented reality, and scene reconstruction. Despite recent advances, existing methods often produce physically inconsistent pose estimates, hindering their deployment in real-world scenarios. We introduce PhysPose, a novel approach that integrates physical reasoning into pose estimation through a postprocessing optimization enforcing non-penetration and gravitational constraints. By leveraging scene geometry, PhysPose refines pose estimates to ensure physical plausibility. Our approach achieves state-of-the-art accuracy on the YCB-Video dataset from the BOP benchmark and improves over the state-of-the-art pose estimation methods on the HOPE-Video dataset. Furthermore, we demonstrate its impact in robotics by significantly improving success rates in a challenging pick-and-place task, highlighting the importance of physical consistency in real-world applications.
comment: Project page: https://data.ciirc.cvut.cz/public/projects/2025PhysPose
☆ DiT4SR: Taming Diffusion Transformer for Real-World Image Super-Resolution
Large-scale pre-trained diffusion models are becoming increasingly popular in solving the Real-World Image Super-Resolution (Real-ISR) problem because of their rich generative priors. The recent development of diffusion transformer (DiT) has witnessed overwhelming performance over the traditional UNet-based architecture in image generation, which also raises the question: Can we adopt the advanced DiT-based diffusion model for Real-ISR? To this end, we propose our DiT4SR, one of the pioneering works to tame the large-scale DiT model for Real-ISR. Instead of directly injecting embeddings extracted from low-resolution (LR) images like ControlNet, we integrate the LR embeddings into the original attention mechanism of DiT, allowing for the bidirectional flow of information between the LR latent and the generated latent. The sufficient interaction of these two streams allows the LR stream to evolve with the diffusion process, producing progressively refined guidance that better aligns with the generated latent at each diffusion step. Additionally, the LR guidance is injected into the generated latent via a cross-stream convolution layer, compensating for DiT's limited ability to capture local information. These simple but effective designs endow the DiT model with superior performance in Real-ISR, which is demonstrated by extensive experiments. Project Page: https://adam-duan.github.io/projects/dit4sr/.
☆ Multiview Image-Based Localization
The image retrieval (IR) approach to image localization has distinct advantages to the 3D and the deep learning (DNN) approaches: it is seen-agnostic, simpler to implement and use, has no privacy issues, and is computationally efficient. The main drawback of this approach is relatively poor localization in both position and orientation of the query camera when compared to the competing approaches. This paper represents a hybrid approach that stores only image features in the database like some IR methods, but relies on a latent 3D reconstruction, like 3D methods but without retaining a 3D scene reconstruction. The approach is based on two ideas: {\em (i)} a novel proposal where query camera center estimation relies only on relative translation estimates but not relative rotation estimates through a decoupling of the two, and {\em (ii)} a shift from computing optimal pose from estimated relative pose to computing optimal pose from multiview correspondences, thus cutting out the ``middle-man''. Our approach shows improved performance on the 7-Scenes and Cambridge Landmarks datasets while also improving on timing and memory footprint as compared to state-of-the-art.
☆ DASH: Detection and Assessment of Systematic Hallucinations of VLMs
Vision-language models (VLMs) are prone to object hallucinations, where they erroneously indicate the presenceof certain objects in an image. Existing benchmarks quantify hallucinations using relatively small, labeled datasets. However, this approach is i) insufficient to assess hallucinations that arise in open-world settings, where VLMs are widely used, and ii) inadequate for detecting systematic errors in VLMs. We propose DASH (Detection and Assessment of Systematic Hallucinations), an automatic, large-scale pipeline designed to identify systematic hallucinations of VLMs on real-world images in an open-world setting. A key component is DASH-OPT for image-based retrieval, where we optimize over the ''natural image manifold'' to generate images that mislead the VLM. The output of DASH consists of clusters of real and semantically similar images for which the VLM hallucinates an object. We apply DASH to PaliGemma and two LLaVA-NeXT models across 380 object classes and, in total, find more than 19k clusters with 950k images. We study the transfer of the identified systematic hallucinations to other VLMs and show that fine-tuning PaliGemma with the model-specific images obtained with DASH mitigates object hallucinations. Code and data are available at https://YanNeu.github.io/DASH.
☆ Enhancing Creative Generation on Stable Diffusion-based Models CVPR 2025
Recent text-to-image generative models, particularly Stable Diffusion and its distilled variants, have achieved impressive fidelity and strong text-image alignment. However, their creative capability remains constrained, as including `creative' in prompts seldom yields the desired results. This paper introduces C3 (Creative Concept Catalyst), a training-free approach designed to enhance creativity in Stable Diffusion-based models. C3 selectively amplifies features during the denoising process to foster more creative outputs. We offer practical guidelines for choosing amplification factors based on two main aspects of creativity. C3 is the first study to enhance creativity in diffusion models without extensive computational costs. We demonstrate its effectiveness across various Stable Diffusion-based models.
comment: CVPR 2025 accepted paper
☆ BiPVL-Seg: Bidirectional Progressive Vision-Language Fusion with Global-Local Alignment for Medical Image Segmentation
Medical image segmentation typically relies solely on visual data, overlooking the rich textual information clinicians use for diagnosis. Vision-language models attempt to bridge this gap, but existing approaches often process visual and textual features independently, resulting in weak cross-modal alignment. Simple fusion techniques fail due to the inherent differences between spatial visual features and sequential text embeddings. Additionally, medical terminology deviates from general language, limiting the effectiveness of off-the-shelf text encoders and further hindering vision-language alignment. We propose BiPVL-Seg, an end-to-end framework that integrates vision-language fusion and embedding alignment through architectural and training innovations, where both components reinforce each other to enhance medical image segmentation. BiPVL-Seg introduces bidirectional progressive fusion in the architecture, which facilitates stage-wise information exchange between vision and text encoders. Additionally, it incorporates global-local contrastive alignment, a training objective that enhances the text encoder's comprehension by aligning text and vision embeddings at both class and concept levels. Extensive experiments on diverse medical imaging benchmarks across CT and MR modalities demonstrate BiPVL-Seg's superior performance when compared with state-of-the-art methods in complex multi-class segmentation. Source code is available in this GitHub repository.
☆ ViLAaD: Enhancing "Attracting and Dispersing'' Source-Free Domain Adaptation with Vision-and-Language Model
Source-Free Domain Adaptation (SFDA) aims to adapt a pre-trained source model to a target dataset from a different domain without access to the source data. Conventional SFDA methods are limited by the information encoded in the pre-trained source model and the unlabeled target data. Recently, approaches leveraging auxiliary resources have emerged, yet remain in their early stages, offering ample opportunities for research. In this work, we propose a novel method that incorporates auxiliary information by extending an existing SFDA framework using Vision-and-Language (ViL) models. Specifically, we build upon Attracting and Dispersing (AaD), a widely adopted SFDA technique, and generalize its core principle to naturally integrate ViL models as a powerful initialization for target adaptation. Our approach, called ViL-enhanced AaD (ViLAaD), preserves the simplicity and flexibility of the AaD framework, while leveraging ViL models to significantly boost adaptation performance. We validate our method through experiments using various ViL models, demonstrating that ViLAaD consistently outperforms both AaD and zero-shot classification by ViL models, especially when both the source model and ViL model provide strong initializations. Moreover, the flexibility of ViLAaD allows it to be seamlessly incorporated into an alternating optimization framework with ViL prompt tuning and extended with additional objectives for target model adaptation. Extensive experiments on four SFDA benchmarks show that this enhanced version, ViLAaD++, achieves state-of-the-art performance across multiple SFDA scenarios, including Closed-set SFDA, Partial-set SFDA, and Open-set SFDA.
comment: 15 pages
☆ BoundMatch: Boundary detection applied to semi-supervised segmentation for urban-driving scenes
Semi-supervised semantic segmentation (SS-SS) aims to mitigate the heavy annotation burden of dense pixel labeling by leveraging abundant unlabeled images alongside a small labeled set. While current teacher-student consistency regularization methods achieve strong results, they often overlook a critical challenge: the precise delineation of object boundaries. In this paper, we propose BoundMatch, a novel multi-task SS-SS framework that explicitly integrates semantic boundary detection into the consistency regularization pipeline. Our core mechanism, Boundary Consistency Regularized Multi-Task Learning (BCRM), enforces prediction agreement between teacher and student models on both segmentation masks and detailed semantic boundaries. To further enhance performance and sharpen contours, BoundMatch incorporates two lightweight fusion modules: Boundary-Semantic Fusion (BSF) injects learned boundary cues into the segmentation decoder, while Spatial Gradient Fusion (SGF) refines boundary predictions using mask gradients, leading to higher-quality boundary pseudo-labels. This framework is built upon SAMTH, a strong teacher-student baseline featuring a Harmonious Batch Normalization (HBN) update strategy for improved stability. Extensive experiments on diverse datasets including Cityscapes, BDD100K, SYNTHIA, ADE20K, and Pascal VOC show that BoundMatch achieves competitive performance against state-of-the-art methods while significantly improving boundary-specific evaluation metrics. We also demonstrate its effectiveness in realistic large-scale unlabeled data scenarios and on lightweight architectures designed for mobile deployment.
comment: 15 pages, 7 figures
☆ Optimal Invariant Bases for Atomistic Machine Learning
The representation of atomic configurations for machine learning models has led to the development of numerous descriptors, often to describe the local environment of atoms. However, many of these representations are incomplete and/or functionally dependent. Incomplete descriptor sets are unable to represent all meaningful changes in the atomic environment. Complete constructions of atomic environment descriptors, on the other hand, often suffer from a high degree of functional dependence, where some descriptors can be written as functions of the others. These redundant descriptors do not provide additional power to discriminate between different atomic environments and increase the computational burden. By employing techniques from the pattern recognition literature to existing atomistic representations, we remove descriptors that are functions of other descriptors to produce the smallest possible set that satisfies completeness. We apply this in two ways: first we refine an existing description, the Atomistic Cluster Expansion. We show that this yields a more efficient subset of descriptors. Second, we augment an incomplete construction based on a scalar neural network, yielding a new message-passing network architecture that can recognize up to 5-body patterns in each neuron by taking advantage of an optimal set of Cartesian tensor invariants. This architecture shows strong accuracy on state-of-the-art benchmarks while retaining low computational cost. Our results not only yield improved models, but point the way to classes of invariant bases that minimize cost while maximizing expressivity for a host of applications.
☆ ReferDINO-Plus: 2nd Solution for 4th PVUW MeViS Challenge at CVPR 2025
Referring Video Object Segmentation (RVOS) aims to segment target objects throughout a video based on a text description. This task has attracted increasing attention in the field of computer vision due to its promising applications in video editing and human-agent interaction. Recently, ReferDINO has demonstrated promising performance in this task by adapting object-level vision-language knowledge from pretrained foundational image models. In this report, we further enhance its capabilities by incorporating the advantages of SAM2 in mask quality and object consistency. In addition, to effectively balance performance between single-object and multi-object scenarios, we introduce a conditional mask fusion strategy that adaptively fuses the masks from ReferDINO and SAM2. Our solution, termed ReferDINO-Plus, achieves 60.43 \(\mathcal{J}\&\mathcal{F}\) on MeViS test set, securing 2nd place in the MeViS PVUW challenge at CVPR 2025. The code is available at: https://github.com/iSEE-Laboratory/ReferDINO-Plus.
☆ Re-Aligning Language to Visual Objects with an Agentic Workflow ICLR 2025
Language-based object detection (LOD) aims to align visual objects with language expressions. A large amount of paired data is utilized to improve LOD model generalizations. During the training process, recent studies leverage vision-language models (VLMs) to automatically generate human-like expressions for visual objects, facilitating training data scaling up. In this process, we observe that VLM hallucinations bring inaccurate object descriptions (e.g., object name, color, and shape) to deteriorate VL alignment quality. To reduce VLM hallucinations, we propose an agentic workflow controlled by an LLM to re-align language to visual objects via adaptively adjusting image and text prompts. We name this workflow Real-LOD, which includes planning, tool use, and reflection steps. Given an image with detected objects and VLM raw language expressions, Real-LOD reasons its state automatically and arranges action based on our neural symbolic designs (i.e., planning). The action will adaptively adjust the image and text prompts and send them to VLMs for object re-description (i.e., tool use). Then, we use another LLM to analyze these refined expressions for feedback (i.e., reflection). These steps are conducted in a cyclic form to gradually improve language descriptions for re-aligning to visual objects. We construct a dataset that contains a tiny amount of 0.18M images with re-aligned language expression and train a prevalent LOD model to surpass existing LOD methods by around 50% on the standard benchmarks. Our Real-LOD workflow, with automatic VL refinement, reveals a potential to preserve data quality along with scaling up data quantity, which further improves LOD performance from a data-alignment perspective.
comment: 33 pages, 20 figures, 17 tables, ICLR 2025
☆ Federated Self-Supervised Learning for One-Shot Cross-Modal and Cross-Imaging Technique Segmentation
Decentralized federated learning enables learning of data representations from multiple sources without compromising the privacy of the clients. In applications like medical image segmentation, where obtaining a large annotated dataset from a single source is a distressing problem, federated self-supervised learning can provide some solace. In this work, we push the limits further by exploring a federated self-supervised one-shot segmentation task representing a more data-scarce scenario. We adopt a pre-existing self-supervised few-shot segmentation framework CoWPro and adapt it to the federated learning scenario. To the best of our knowledge, this work is the first to attempt a self-supervised few-shot segmentation task in the federated learning domain. Moreover, we consider the clients to be constituted of data from different modalities and imaging techniques like MR or CT, which makes the problem even harder. Additionally, we reinforce and improve the baseline CoWPro method using a fused dice loss which shows considerable improvement in performance over the baseline CoWPro. Finally, we evaluate this novel framework on a completely unseen held-out part of the local client dataset. We observe that the proposed framework can achieve performance at par or better than the FedAvg version of the CoWPro framework on the held-out validation dataset.
☆ Boosting Omnidirectional Stereo Matching with a Pre-trained Depth Foundation Model
Omnidirectional depth perception is essential for mobile robotics applications that require scene understanding across a full 360{\deg} field of view. Camera-based setups offer a cost-effective option by using stereo depth estimation to generate dense, high-resolution depth maps without relying on expensive active sensing. However, existing omnidirectional stereo matching approaches achieve only limited depth accuracy across diverse environments, depth ranges, and lighting conditions, due to the scarcity of real-world data. We present DFI-OmniStereo, a novel omnidirectional stereo matching method that leverages a large-scale pre-trained foundation model for relative monocular depth estimation within an iterative optimization-based stereo matching architecture. We introduce a dedicated two-stage training strategy to utilize the relative monocular depth features for our omnidirectional stereo matching before scale-invariant fine-tuning. DFI-OmniStereo achieves state-of-the-art results on the real-world Helvipad dataset, reducing disparity MAE by approximately 16% compared to the previous best omnidirectional stereo method.
comment: Project page: https://vita-epfl.github.io/DFI-OmniStereo-website/
☆ Embedding Shift Dissection on CLIP: Effects of Augmentations on VLM's Representation Learning CVPR 2025
Understanding the representation shift on Vision Language Models like CLIP under different augmentations provides valuable insights on Mechanistic Interpretability. In this study, we show the shift on CLIP's embeddings on 9 common augmentation techniques: noise, blur, color jitter, scale and rotate, flip, elastic and perspective transforms, random brightness and contrast, and coarse dropout of pixel blocks. We scrutinize the embedding shifts under similarity on attention map, patch, edge, detail preservation, cosine similarity, L2 distance, pairwise distance and dendrogram clusters and provide qualitative analysis on sample images. Our findings suggest certain augmentations like noise, perspective transform and shift scaling have higher degree of drastic impact on embedding shift. This study provides a concrete foundation for future work on VLM's robustness for mechanical interpretation and adversarial data defense.
comment: accepted at MIV at CVPR 2025
Efficient Dynamic Attention 3D Convolution for Hyperspectral Image Classification
Deep neural networks face several challenges in hyperspectral image classification, including insufficient utilization of joint spatial-spectral information, gradient vanishing with increasing depth, and overfitting. To enhance feature extraction efficiency while skipping redundant information, this paper proposes a dynamic attention convolution design based on an improved 3D-DenseNet model. The design employs multiple parallel convolutional kernels instead of a single kernel and assigns dynamic attention weights to these parallel convolutions. This dynamic attention mechanism achieves adaptive feature response based on spatial characteristics in the spatial dimension of hyperspectral images, focusing more on key spatial structures. In the spectral dimension, it enables dynamic discrimination of different bands, alleviating information redundancy and computational complexity caused by high spectral dimensionality. The DAC module enhances model representation capability by attention-based aggregation of multiple convolutional kernels without increasing network depth or width. The proposed method demonstrates superior performance in both inference speed and accuracy, outperforming mainstream hyperspectral image classification methods on the IN, UP, and KSC datasets.
☆ Internal Organ Localization Using Depth Images
Automated patient positioning is a crucial step in streamlining MRI workflows and enhancing patient throughput. RGB-D camera-based systems offer a promising approach to automate this process by leveraging depth information to estimate internal organ positions. This paper investigates the feasibility of a learning-based framework to infer approximate internal organ positions from the body surface. Our approach utilizes a large-scale dataset of MRI scans to train a deep learning model capable of accurately predicting organ positions and shapes from depth images alone. We demonstrate the effectiveness of our method in localization of multiple internal organs, including bones and soft tissues. Our findings suggest that RGB-D camera-based systems integrated into MRI workflows have the potential to streamline scanning procedures and improve patient experience by enabling accurate and automated patient positioning.
comment: Accepted for German Conference on Medical Image Computing 2025 (BVM 2025)
☆ OpenDriveVLA: Towards End-to-end Autonomous Driving with Large Vision Language Action Model
We present OpenDriveVLA, a Vision-Language Action (VLA) model designed for end-to-end autonomous driving. OpenDriveVLA builds upon open-source pre-trained large Vision-Language Models (VLMs) to generate reliable driving actions, conditioned on 3D environmental perception, ego vehicle states, and driver commands. To bridge the modality gap between driving visual representations and language embeddings, we propose a hierarchical vision-language alignment process, projecting both 2D and 3D structured visual tokens into a unified semantic space. Besides, OpenDriveVLA models the dynamic relationships between the ego vehicle, surrounding agents, and static road elements through an autoregressive agent-env-ego interaction process, ensuring both spatially and behaviorally informed trajectory planning. Extensive experiments on the nuScenes dataset demonstrate that OpenDriveVLA achieves state-of-the-art results across open-loop trajectory planning and driving-related question-answering tasks. Qualitative analyses further illustrate OpenDriveVLA's superior capability to follow high-level driving commands and robustly generate trajectories under challenging scenarios, highlighting its potential for next-generation end-to-end autonomous driving. We will release our code to facilitate further research in this domain.
☆ TextCrafter: Accurately Rendering Multiple Texts in Complex Visual Scenes
This paper explores the task of Complex Visual Text Generation (CVTG), which centers on generating intricate textual content distributed across diverse regions within visual images. In CVTG, image generation models often rendering distorted and blurred visual text or missing some visual text. To tackle these challenges, we propose TextCrafter, a novel multi-visual text rendering method. TextCrafter employs a progressive strategy to decompose complex visual text into distinct components while ensuring robust alignment between textual content and its visual carrier. Additionally, it incorporates a token focus enhancement mechanism to amplify the prominence of visual text during the generation process. TextCrafter effectively addresses key challenges in CVTG tasks, such as text confusion, omissions, and blurriness. Moreover, we present a new benchmark dataset, CVTG-2K, tailored to rigorously evaluate the performance of generative models on CVTG tasks. Extensive experiments demonstrate that our method surpasses state-of-the-art approaches.
☆ Reinforcement Learning-based Token Pruning in Vision Transformers: A Markov Game Approach ICME
Vision Transformers (ViTs) have computational costs scaling quadratically with the number of tokens, calling for effective token pruning policies. Most existing policies are handcrafted, lacking adaptivity to varying inputs. Moreover, they fail to consider the sequential nature of token pruning across multiple layers. In this work, for the first time (as far as we know), we exploit Reinforcement Learning (RL) to data-adaptively learn a pruning policy. Formulating token pruning as a sequential decision-making problem, we model it as a Markov Game and utilize Multi-Agent Proximal Policy Optimization (MAPPO) where each agent makes an individualized pruning decision for a single token. We also develop reward functions that enable simultaneous collaboration and competition of these agents to balance efficiency and accuracy. On the well-known ImageNet-1k dataset, our method improves the inference speed by up to 44% while incurring only a negligible accuracy drop of 0.4%. The source code is available at https://github.com/daashuai/rl4evit.
comment: Accepted by IEEE International Conference on Multimedia & Expo (ICME) 2025
☆ CADFormer: Fine-Grained Cross-modal Alignment and Decoding Transformer for Referring Remote Sensing Image Segmentation
Referring Remote Sensing Image Segmentation (RRSIS) is a challenging task, aiming to segment specific target objects in remote sensing (RS) images based on a given language expression. Existing RRSIS methods typically employ coarse-grained unidirectional alignment approaches to obtain multimodal features, and they often overlook the critical role of language features as contextual information during the decoding process. Consequently, these methods exhibit weak object-level correspondence between visual and language features, leading to incomplete or erroneous predicted masks, especially when handling complex expressions and intricate RS image scenes. To address these challenges, we propose a fine-grained cross-modal alignment and decoding Transformer, CADFormer, for RRSIS. Specifically, we design a semantic mutual guidance alignment module (SMGAM) to achieve both vision-to-language and language-to-vision alignment, enabling comprehensive integration of visual and textual features for fine-grained cross-modal alignment. Furthermore, a textual-enhanced cross-modal decoder (TCMD) is introduced to incorporate language features during decoding, using refined textual information as context to enhance the relationship between cross-modal features. To thoroughly evaluate the performance of CADFormer, especially for inconspicuous targets in complex scenes, we constructed a new RRSIS dataset, called RRSIS-HR, which includes larger high-resolution RS image patches and semantically richer language expressions. Extensive experiments on the RRSIS-HR dataset and the popular RRSIS-D dataset demonstrate the effectiveness and superiority of CADFormer. Datasets and source codes will be available at https://github.com/zxk688.
Efficient Token Compression for Vision Transformer with Spatial Information Preserved
Token compression is essential for reducing the computational and memory requirements of transformer models, enabling their deployment in resource-constrained environments. In this work, we propose an efficient and hardware-compatible token compression method called Prune and Merge. Our approach integrates token pruning and merging operations within transformer models to achieve layer-wise token compression. By introducing trainable merge and reconstruct matrices and utilizing shortcut connections, we efficiently merge tokens while preserving important information and enabling the restoration of pruned tokens. Additionally, we introduce a novel gradient-weighted attention scoring mechanism that computes token importance scores during the training phase, eliminating the need for separate computations during inference and enhancing compression efficiency. We also leverage gradient information to capture the global impact of tokens and automatically identify optimal compression structures. Extensive experiments on the ImageNet-1k and ADE20K datasets validate the effectiveness of our approach, achieving significant speed-ups with minimal accuracy degradation compared to state-of-the-art methods. For instance, on DeiT-Small, we achieve a 1.64$\times$ speed-up with only a 0.2\% drop in accuracy on ImageNet-1k. Moreover, by compressing segmenter models and comparing with existing methods, we demonstrate the superior performance of our approach in terms of efficiency and effectiveness. Code and models have been made available at https://github.com/NUST-Machine-Intelligence-Laboratory/prune_and_merge.
comment: accepted by IEEE Transactions on Multimedia
☆ Semantic-Spatial Feature Fusion with Dynamic Graph Refinement for Remote Sensing Image Captioning
Remote sensing image captioning aims to generate semantically accurate descriptions that are closely linked to the visual features of remote sensing images. Existing approaches typically emphasize fine-grained extraction of visual features and capturing global information. However, they often overlook the complementary role of textual information in enhancing visual semantics and face challenges in precisely locating objects that are most relevant to the image context. To address these challenges, this paper presents a semantic-spatial feature fusion with dynamic graph refinement (SFDR) method, which integrates the semantic-spatial feature fusion (SSFF) and dynamic graph feature refinement (DGFR) modules. The SSFF module utilizes a multi-level feature representation strategy by leveraging pre-trained CLIP features, grid features, and ROI features to integrate rich semantic and spatial information. In the DGFR module, a graph attention network captures the relationships between feature nodes, while a dynamic weighting mechanism prioritizes objects that are most relevant to the current scene and suppresses less significant ones. Therefore, the proposed SFDR method significantly enhances the quality of the generated descriptions. Experimental results on three benchmark datasets demonstrate the effectiveness of the proposed method. The source code will be available at https://github.com/zxk688}{https://github.com/zxk688.
VideoGen-Eval: Agent-based System for Video Generation Evaluation
The rapid advancement of video generation has rendered existing evaluation systems inadequate for assessing state-of-the-art models, primarily due to simple prompts that cannot showcase the model's capabilities, fixed evaluation operators struggling with Out-of-Distribution (OOD) cases, and misalignment between computed metrics and human preferences. To bridge the gap, we propose VideoGen-Eval, an agent evaluation system that integrates LLM-based content structuring, MLLM-based content judgment, and patch tools designed for temporal-dense dimensions, to achieve a dynamic, flexible, and expandable video generation evaluation. Additionally, we introduce a video generation benchmark to evaluate existing cutting-edge models and verify the effectiveness of our evaluation system. It comprises 700 structured, content-rich prompts (both T2V and I2V) and over 12,000 videos generated by 20+ models, among them, 8 cutting-edge models are selected as quantitative evaluation for the agent and human. Extensive experiments validate that our proposed agent-based evaluation system demonstrates strong alignment with human preferences and reliably completes the evaluation, as well as the diversity and richness of the benchmark.
comment: project:https://github.com/AILab-CVC/VideoGen-Eval
☆ Beyond Academic Benchmarks: Critical Analysis and Best Practices for Visual Industrial Anomaly Detection
Anomaly detection (AD) is essential for automating visual inspection in manufacturing. This field of computer vision is rapidly evolving, with increasing attention towards real-world applications. Meanwhile, popular datasets are typically produced in controlled lab environments with artificially created defects, unable to capture the diversity of real production conditions. New methods often fail in production settings, showing significant performance degradation or requiring impractical computational resources. This disconnect between academic results and industrial viability threatens to misdirect visual anomaly detection research. This paper makes three key contributions: (1) we demonstrate the importance of real-world datasets and establish benchmarks using actual production data, (2) we provide a fair comparison of existing SOTA methods across diverse tasks by utilizing metrics that are valuable for practical applications, and (3) we present a comprehensive analysis of recent advancements in this field by discussing important challenges and new perspectives for bridging the academia-industry gap. The code is publicly available at https://github.com/abc-125/viad-benchmark
☆ AU-TTT: Vision Test-Time Training model for Facial Action Unit Detection
Facial Action Units (AUs) detection is a cornerstone of objective facial expression analysis and a critical focus in affective computing. Despite its importance, AU detection faces significant challenges, such as the high cost of AU annotation and the limited availability of datasets. These constraints often lead to overfitting in existing methods, resulting in substantial performance degradation when applied across diverse datasets. Addressing these issues is essential for improving the reliability and generalizability of AU detection methods. Moreover, many current approaches leverage Transformers for their effectiveness in long-context modeling, but they are hindered by the quadratic complexity of self-attention. Recently, Test-Time Training (TTT) layers have emerged as a promising solution for long-sequence modeling. Additionally, TTT applies self-supervised learning for iterative updates during both training and inference, offering a potential pathway to mitigate the generalization challenges inherent in AU detection tasks. In this paper, we propose a novel vision backbone tailored for AU detection, incorporating bidirectional TTT blocks, named AU-TTT. Our approach introduces TTT Linear to the AU detection task and optimizes image scanning mechanisms for enhanced performance. Additionally, we design an AU-specific Region of Interest (RoI) scanning mechanism to capture fine-grained facial features critical for AU detection. Experimental results demonstrate that our method achieves competitive performance in both within-domain and cross-domain scenarios.
☆ CA^2ST: Cross-Attention in Audio, Space, and Time for Holistic Video Recognition
We propose Cross-Attention in Audio, Space, and Time (CA^2ST), a transformer-based method for holistic video recognition. Recognizing actions in videos requires both spatial and temporal understanding, yet most existing models lack a balanced spatio-temporal understanding of videos. To address this, we propose a novel two-stream architecture, called Cross-Attention in Space and Time (CAST), using only RGB input. In each layer of CAST, Bottleneck Cross-Attention (B-CA) enables spatial and temporal experts to exchange information and make synergistic predictions. For holistic video understanding, we extend CAST by integrating an audio expert, forming Cross-Attention in Visual and Audio (CAVA). We validate the CAST on benchmarks with different characteristics, EPIC-KITCHENS-100, Something-Something-V2, and Kinetics-400, consistently showing balanced performance. We also validate the CAVA on audio-visual action recognition benchmarks, including UCF-101, VGG-Sound, KineticsSound, and EPIC-SOUNDS. With a favorable performance of CAVA across these datasets, we demonstrate the effective information exchange among multiple experts within the B-CA module. In summary, CA^2ST combines CAST and CAVA by employing spatial, temporal, and audio experts through cross-attention, achieving balanced and holistic video understanding.
comment: 27 pages including appendix, TPAMI under review
☆ Improving underwater semantic segmentation with underwater image quality attention and muti-scale aggregation attention
Underwater image understanding is crucial for both submarine navigation and seabed exploration. However, the low illumination in underwater environments degrades the imaging quality, which in turn seriously deteriorates the performance of underwater semantic segmentation, particularly for outlining the object region boundaries. To tackle this issue, we present UnderWater SegFormer (UWSegFormer), a transformer-based framework for semantic segmentation of low-quality underwater images. Firstly, we propose the Underwater Image Quality Attention (UIQA) module. This module enhances the representation of highquality semantic information in underwater image feature channels through a channel self-attention mechanism. In order to address the issue of loss of imaging details due to the underwater environment, the Multi-scale Aggregation Attention(MAA) module is proposed. This module aggregates sets of semantic features at different scales by extracting discriminative information from high-level features,thus compensating for the semantic loss of detail in underwater objects. Finally, during training, we introduce Edge Learning Loss (ELL) in order to enhance the model's learning of underwater object edges and improve the model's prediction accuracy. Experiments conducted on the SUIM and DUT-USEG (DUT) datasets have demonstrated that the proposed method has advantages in terms of segmentation completeness, boundary clarity, and subjective perceptual details when compared to SOTA methods. In addition, the proposed method achieves the highest mIoU of 82.12 and 71.41 on the SUIM and DUT datasets, respectively. Code will be available at https://github.com/SAWRJJ/UWSegFormer.
comment: Accepted by Pattern Analysis and Applications
☆ Visual Acuity Consistent Foveated Rendering towards Retinal Resolution
Prior foveated rendering methods often suffer from a limitation where the shading load escalates with increasing display resolution, leading to decreased efficiency, particularly when dealing with retinal-level resolutions. To tackle this challenge, we begin with the essence of the human visual system (HVS) perception and present visual acuity-consistent foveated rendering (VaFR), aiming to achieve exceptional rendering performance at retinal-level resolutions. Specifically, we propose a method with a novel log-polar mapping function derived from the human visual acuity model, which accommodates the natural bandwidth of the visual system. This mapping function and its associated shading rate guarantee a consistent output of rendering information, regardless of variations in the display resolution of the VR HMD. Consequently, our VaFR outperforms alternative methods, improving rendering speed while preserving perceptual visual quality, particularly when operating at retinal resolutions. We validate our approach using both the rasterization and ray-casting rendering pipelines. We also validate our approach using different binocular rendering strategies for HMD devices. In diverse testing scenarios, our approach delivers better perceptual visual quality than prior foveated rendering while achieving an impressive speedup of 6.5$\times$-9.29$\times$ for deferred rendering of 3D scenarios and an even more powerful speedup of 10.4$\times$-16.4$\times$ for ray-casting at retinal resolution. Additionally, our approach significantly enhances the rendering performance of binocular 8K path tracing, achieving smooth frame rates.
GMapLatent: Geometric Mapping in Latent Space
Cross-domain generative models based on encoder-decoder AI architectures have attracted much attention in generating realistic images, where domain alignment is crucial for generation accuracy. Domain alignment methods usually deal directly with the initial distribution; however, mismatched or mixed clusters can lead to mode collapse and mixture problems in the decoder, compromising model generalization capabilities. In this work, we innovate a cross-domain alignment and generation model that introduces a canonical latent space representation based on geometric mapping to align the cross-domain latent spaces in a rigorous and precise manner, thus avoiding mode collapse and mixture in the encoder-decoder generation architectures. We name this model GMapLatent. The core of the method is to seamlessly align latent spaces with strict cluster correspondence constraints using the canonical parameterizations of cluster-decorated latent spaces. We first (1) transform the latent space to a canonical parameter domain by composing barycenter translation, optimal transport merging and constrained harmonic mapping, and then (2) compute geometric registration with cluster constraints over the canonical parameter domains. This process realizes a bijective (one-to-one and onto) mapping between newly transformed latent spaces and generates a precise alignment of cluster pairs. Cross-domain generation is then achieved through the aligned latent spaces embedded in the encoder-decoder pipeline. Experiments on gray-scale and color images validate the efficiency, efficacy and applicability of GMapLatent, and demonstrate that the proposed model has superior performance over existing models.
Diffusion Meets Few-shot Class Incremental Learning
Few-shot class-incremental learning (FSCIL) is challenging due to extremely limited training data; while aiming to reduce catastrophic forgetting and learn new information. We propose Diffusion-FSCIL, a novel approach that employs a text-to-image diffusion model as a frozen backbone. Our conjecture is that FSCIL can be tackled using a large generative model's capabilities benefiting from 1) generation ability via large-scale pre-training; 2) multi-scale representation; 3) representational flexibility through the text encoder. To maximize the representation capability, we propose to extract multiple complementary diffusion features to play roles as latent replay with slight support from feature distillation for preventing generative biases. Our framework realizes efficiency through 1) using a frozen backbone; 2) minimal trainable components; 3) batch processing of multiple feature extractions. Extensive experiments on CUB-200, miniImageNet, and CIFAR-100 show that Diffusion-FSCIL surpasses state-of-the-art methods, preserving performance on previously learned classes and adapting effectively to new ones.
comment: pre-print
☆ A Large Scale Analysis of Gender Biases in Text-to-Image Generative Models
With the increasing use of image generation technology, understanding its social biases, including gender bias, is essential. This paper presents the first large-scale study on gender bias in text-to-image (T2I) models, focusing on everyday situations. While previous research has examined biases in occupations, we extend this analysis to gender associations in daily activities, objects, and contexts. We create a dataset of 3,217 gender-neutral prompts and generate 200 images per prompt from five leading T2I models. We automatically detect the perceived gender of people in the generated images and filter out images with no person or multiple people of different genders, leaving 2,293,295 images. To enable a broad analysis of gender bias in T2I models, we group prompts into semantically similar concepts and calculate the proportion of male- and female-gendered images for each prompt. Our analysis shows that T2I models reinforce traditional gender roles, reflect common gender stereotypes in household roles, and underrepresent women in financial related activities. Women are predominantly portrayed in care- and human-centered scenarios, and men in technical or physical labor scenarios.
☆ COSMIC: Clique-Oriented Semantic Multi-space Integration for Robust CLIP Test-Time Adaptation CVPR 2025
Recent vision-language models (VLMs) face significant challenges in test-time adaptation to novel domains. While cache-based methods show promise by leveraging historical information, they struggle with both caching unreliable feature-label pairs and indiscriminately using single-class information during querying, significantly compromising adaptation accuracy. To address these limitations, we propose COSMIC (Clique-Oriented Semantic Multi-space Integration for CLIP), a robust test-time adaptation framework that enhances adaptability through multi-granular, cross-modal semantic caching and graph-based querying mechanisms. Our framework introduces two key innovations: Dual Semantics Graph (DSG) and Clique Guided Hyper-class (CGH). The Dual Semantics Graph constructs complementary semantic spaces by incorporating textual features, coarse-grained CLIP features, and fine-grained DINOv2 features to capture rich semantic relationships. Building upon these dual graphs, the Clique Guided Hyper-class component leverages structured class relationships to enhance prediction robustness through correlated class selection. Extensive experiments demonstrate COSMIC's superior performance across multiple benchmarks, achieving significant improvements over state-of-the-art methods: 15.81% gain on out-of-distribution tasks and 5.33% on cross-domain generation with CLIP RN-50. Code is available at github.com/hf618/COSMIC.
comment: Accepted to CVPR 2025
☆ Enhancing Human Motion Prediction via Multi-range Decoupling Decoding with Gating-adjusting Aggregation
Expressive representation of pose sequences is crucial for accurate motion modeling in human motion prediction (HMP). While recent deep learning-based methods have shown promise in learning motion representations, these methods tend to overlook the varying relevance and dependencies between historical information and future moments, with a stronger correlation for short-term predictions and weaker for distant future predictions. This limits the learning of motion representation and then hampers prediction performance. In this paper, we propose a novel approach called multi-range decoupling decoding with gating-adjusting aggregation ($MD2GA$), which leverages the temporal correlations to refine motion representation learning. This approach employs a two-stage strategy for HMP. In the first stage, a multi-range decoupling decoding adeptly adjusts feature learning by decoding the shared features into distinct future lengths, where different decoders offer diverse insights into motion patterns. In the second stage, a gating-adjusting aggregation dynamically combines the diverse insights guided by input motion data. Extensive experiments demonstrate that the proposed method can be easily integrated into other motion prediction methods and enhance their prediction performance.
KernelDNA: Dynamic Kernel Sharing via Decoupled Naive Adapters
Dynamic convolution enhances model capacity by adaptively combining multiple kernels, yet faces critical trade-offs: prior works either (1) incur significant parameter overhead by scaling kernel numbers linearly, (2) compromise inference speed through complex kernel interactions, or (3) struggle to jointly optimize dynamic attention and static kernels. We also observe that pre-trained Convolutional Neural Networks (CNNs) exhibit inter-layer redundancy akin to that in Large Language Models (LLMs). Specifically, dense convolutional layers can be efficiently replaced by derived ``child" layers generated from a shared ``parent" convolutional kernel through an adapter. To address these limitations and implement the weight-sharing mechanism, we propose a lightweight convolution kernel plug-in, named KernelDNA. It decouples kernel adaptation into input-dependent dynamic routing and pre-trained static modulation, ensuring both parameter efficiency and hardware-friendly inference. Unlike existing dynamic convolutions that expand parameters via multi-kernel ensembles, our method leverages cross-layer weight sharing and adapter-based modulation, enabling dynamic kernel specialization without altering the standard convolution structure. This design preserves the native computational efficiency of standard convolutions while enhancing representation power through input-adaptive kernel adjustments. Experiments on image classification and dense prediction tasks demonstrate that KernelDNA achieves state-of-the-art accuracy-efficiency balance among dynamic convolution variants. Our codes are available at https://github.com/haiduo/KernelDNA.
☆ JavisDiT: Joint Audio-Video Diffusion Transformer with Hierarchical Spatio-Temporal Prior Synchronization
This paper introduces JavisDiT, a novel Joint Audio-Video Diffusion Transformer designed for synchronized audio-video generation (JAVG). Built upon the powerful Diffusion Transformer (DiT) architecture, JavisDiT is able to generate high-quality audio and video content simultaneously from open-ended user prompts. To ensure optimal synchronization, we introduce a fine-grained spatio-temporal alignment mechanism through a Hierarchical Spatial-Temporal Synchronized Prior (HiST-Sypo) Estimator. This module extracts both global and fine-grained spatio-temporal priors, guiding the synchronization between the visual and auditory components. Furthermore, we propose a new benchmark, JavisBench, consisting of 10,140 high-quality text-captioned sounding videos spanning diverse scenes and complex real-world scenarios. Further, we specifically devise a robust metric for evaluating the synchronization between generated audio-video pairs in real-world complex content. Experimental results demonstrate that JavisDiT significantly outperforms existing methods by ensuring both high-quality generation and precise synchronization, setting a new standard for JAVG tasks. Our code, model, and dataset will be made publicly available at https://javisdit.github.io/.
comment: Work in progress. Homepage: https://javisdit.github.io/
☆ Map Feature Perception Metric for Map Generation Quality Assessment and Loss Optimization
In intelligent cartographic generation tasks empowered by generative models, the authenticity of synthesized maps constitutes a critical determinant. Concurrently, the selection of appropriate evaluation metrics to quantify map authenticity emerges as a pivotal research challenge. Current methodologies predominantly adopt computer vision-based image assessment metrics to compute discrepancies between generated and reference maps. However, conventional visual similarity metrics-including L1, L2, SSIM, and FID-primarily operate at pixel-level comparisons, inadequately capturing cartographic global features and spatial correlations, consequently inducing semantic-structural artifacts in generated outputs. This study introduces a novel Map Feature Perception Metric designed to evaluate global characteristics and spatial congruence between synthesized and target maps. Diverging from pixel-wise metrics, our approach extracts elemental-level deep features that comprehensively encode cartographic structural integrity and topological relationships. Experimental validation demonstrates MFP's superior capability in evaluating cartographic semantic features, with classification-enhanced implementations outperforming conventional loss functions across diverse generative frameworks. When employed as optimization objectives, our metric achieves performance gains ranging from 2% to 50% across multiple benchmarks compared to traditional L1, L2, and SSIM baselines. This investigation concludes that explicit consideration of cartographic global attributes and spatial coherence substantially enhances generative model optimization, thereby significantly improving the geographical plausibility of synthesized maps.
☆ Towards Physically Plausible Video Generation via VLM Planning
Video diffusion models (VDMs) have advanced significantly in recent years, enabling the generation of highly realistic videos and drawing the attention of the community in their potential as world simulators. However, despite their capabilities, VDMs often fail to produce physically plausible videos due to an inherent lack of understanding of physics, resulting in incorrect dynamics and event sequences. To address this limitation, we propose a novel two-stage image-to-video generation framework that explicitly incorporates physics. In the first stage, we employ a Vision Language Model (VLM) as a coarse-grained motion planner, integrating chain-of-thought and physics-aware reasoning to predict a rough motion trajectories/changes that approximate real-world physical dynamics while ensuring the inter-frame consistency. In the second stage, we use the predicted motion trajectories/changes to guide the video generation of a VDM. As the predicted motion trajectories/changes are rough, noise is added during inference to provide freedom to the VDM in generating motion with more fine details. Extensive experimental results demonstrate that our framework can produce physically plausible motion, and comparative evaluations highlight the notable superiority of our approach over existing methods. More video results are available on our Project Page: https://madaoer.github.io/projects/physically_plausible_video_generation.
comment: 18 pages, 11 figures
☆ FastVAR: Linear Visual Autoregressive Modeling via Cached Token Pruning
Visual Autoregressive (VAR) modeling has gained popularity for its shift towards next-scale prediction. However, existing VAR paradigms process the entire token map at each scale step, leading to the complexity and runtime scaling dramatically with image resolution. To address this challenge, we propose FastVAR, a post-training acceleration method for efficient resolution scaling with VARs. Our key finding is that the majority of latency arises from the large-scale step where most tokens have already converged. Leveraging this observation, we develop the cached token pruning strategy that only forwards pivotal tokens for scale-specific modeling while using cached tokens from previous scale steps to restore the pruned slots. This significantly reduces the number of forwarded tokens and improves the efficiency at larger resolutions. Experiments show the proposed FastVAR can further speedup FlashAttention-accelerated VAR by 2.7$\times$ with negligible performance drop of <1%. We further extend FastVAR to zero-shot generation of higher resolution images. In particular, FastVAR can generate one 2K image with 15GB memory footprints in 1.5s on a single NVIDIA 3090 GPU. Code is available at https://github.com/csguoh/FastVAR.
comment: Technical Report
OnSiteVRU: A High-Resolution Trajectory Dataset for High-Density Vulnerable Road Users
With the acceleration of urbanization and the growth of transportation demands, the safety of vulnerable road users (VRUs, such as pedestrians and cyclists) in mixed traffic flows has become increasingly prominent, necessitating high-precision and diverse trajectory data to support the development and optimization of autonomous driving systems. However, existing datasets fall short in capturing the diversity and dynamics of VRU behaviors, making it difficult to meet the research demands of complex traffic environments. To address this gap, this study developed the OnSiteVRU datasets, which cover a variety of scenarios, including intersections, road segments, and urban villages. These datasets provide trajectory data for motor vehicles, electric bicycles, and human-powered bicycles, totaling approximately 17,429 trajectories with a precision of 0.04 seconds. The datasets integrate both aerial-view natural driving data and onboard real-time dynamic detection data, along with environmental information such as traffic signals, obstacles, and real-time maps, enabling a comprehensive reconstruction of interaction events. The results demonstrate that VRU\_Data outperforms traditional datasets in terms of VRU density and scene coverage, offering a more comprehensive representation of VRU behavioral characteristics. This provides critical support for traffic flow modeling, trajectory prediction, and autonomous driving virtual testing. The dataset is publicly available for download at: https://www.kaggle.com/datasets/zcyan2/mixed-traffic-trajectory-dataset-in-from-shanghai.
VideoFusion: A Spatio-Temporal Collaborative Network for Mutli-modal Video Fusion and Restoration
Compared to images, videos better align with real-world acquisition scenarios and possess valuable temporal cues. However, existing multi-sensor fusion research predominantly integrates complementary context from multiple images rather than videos. This primarily stems from two factors: 1) the scarcity of large-scale multi-sensor video datasets, limiting research in video fusion, and 2) the inherent difficulty of jointly modeling spatial and temporal dependencies in a unified framework. This paper proactively compensates for the dilemmas. First, we construct M3SVD, a benchmark dataset with $220$ temporally synchronized and spatially registered infrared-visible video pairs comprising 153,797 frames, filling the data gap for the video fusion community. Secondly, we propose VideoFusion, a multi-modal video fusion model that fully exploits cross-modal complementarity and temporal dynamics to generate spatio-temporally coherent videos from (potentially degraded) multi-modal inputs. Specifically, 1) a differential reinforcement module is developed for cross-modal information interaction and enhancement, 2) a complete modality-guided fusion strategy is employed to adaptively integrate multi-modal features, and 3) a bi-temporal co-attention mechanism is devised to dynamically aggregate forward-backward temporal contexts to reinforce cross-frame feature representations. Extensive experiments reveal that VideoFusion outperforms existing image-oriented fusion paradigms in sequential scenarios, effectively mitigating temporal inconsistency and interference.
☆ ControlFusion: A Controllable Image Fusion Framework with Language-Vision Degradation Prompts
Current image fusion methods struggle to address the composite degradations encountered in real-world imaging scenarios and lack the flexibility to accommodate user-specific requirements. In response to these challenges, we propose a controllable image fusion framework with language-vision prompts, termed ControlFusion, which adaptively neutralizes composite degradations. On the one hand, we develop a degraded imaging model that integrates physical imaging mechanisms, including the Retinex theory and atmospheric scattering principle, to simulate composite degradations, thereby providing potential for addressing real-world complex degradations from the data level. On the other hand, we devise a prompt-modulated restoration and fusion network that dynamically enhances features with degradation prompts, enabling our method to accommodate composite degradation of varying levels. Specifically, considering individual variations in quality perception of users, we incorporate a text encoder to embed user-specified degradation types and severity levels as degradation prompts. We also design a spatial-frequency collaborative visual adapter that autonomously perceives degradations in source images, thus eliminating the complete dependence on user instructions. Extensive experiments demonstrate that ControlFusion outperforms SOTA fusion methods in fusion quality and degradation handling, particularly in countering real-world and compound degradations with various levels.
☆ DSPFusion: Image Fusion via Degradation and Semantic Dual-Prior Guidance
Existing fusion methods are tailored for high-quality images but struggle with degraded images captured under harsh circumstances, thus limiting the practical potential of image fusion. This work presents a \textbf{D}egradation and \textbf{S}emantic \textbf{P}rior dual-guided framework for degraded image \textbf{Fusion} (\textbf{DSPFusion}), utilizing degradation priors and high-quality scene semantic priors restored via diffusion models to guide both information recovery and fusion in a unified model. In specific, it first individually extracts modality-specific degradation priors, while jointly capturing comprehensive low-quality semantic priors. Subsequently, a diffusion model is developed to iteratively restore high-quality semantic priors in a compact latent space, enabling our method to be over $20 \times$ faster than mainstream diffusion model-based image fusion schemes. Finally, the degradation priors and high-quality semantic priors are employed to guide information enhancement and aggregation via the dual-prior guidance and prior-guided fusion modules. Extensive experiments demonstrate that DSPFusion mitigates most typical degradations while integrating complementary context with minimal computational cost, greatly broadening the application scope of image fusion.
☆ Object Isolated Attention for Consistent Story Visualization
Open-ended story visualization is a challenging task that involves generating coherent image sequences from a given storyline. One of the main difficulties is maintaining character consistency while creating natural and contextually fitting scenes--an area where many existing methods struggle. In this paper, we propose an enhanced Transformer module that uses separate self attention and cross attention mechanisms, leveraging prior knowledge from pre-trained diffusion models to ensure logical scene creation. The isolated self attention mechanism improves character consistency by refining attention maps to reduce focus on irrelevant areas and highlight key features of the same character. Meanwhile, the isolated cross attention mechanism independently processes each character's features, avoiding feature fusion and further strengthening consistency. Notably, our method is training-free, allowing the continuous generation of new characters and storylines without re-tuning. Both qualitative and quantitative evaluations show that our approach outperforms current methods, demonstrating its effectiveness.
comment: 6 pages, 4 figures
☆ Physically Ground Commonsense Knowledge for Articulated Object Manipulation with Analytic Concepts
We human rely on a wide range of commonsense knowledge to interact with an extensive number and categories of objects in the physical world. Likewise, such commonsense knowledge is also crucial for robots to successfully develop generalized object manipulation skills. While recent advancements in Large Language Models (LLM) have showcased their impressive capabilities in acquiring commonsense knowledge and conducting commonsense reasoning, effectively grounding this semantic-level knowledge produced by LLMs to the physical world to thoroughly guide robots in generalized articulated object manipulation remains a challenge that has not been sufficiently addressed. To this end, we introduce analytic concepts, procedurally defined upon mathematical symbolism that can be directly computed and simulated by machines. By leveraging the analytic concepts as a bridge between the semantic-level knowledge inferred by LLMs and the physical world where real robots operate, we are able to figure out the knowledge of object structure and functionality with physics-informed representations, and then use the physically grounded knowledge to instruct robot control policies for generalized, interpretable and accurate articulated object manipulation. Extensive experiments in both simulation and real-world environments demonstrate the superiority of our approach.
☆ From Panels to Prose: Generating Literary Narratives from Comics
Comics have long been a popular form of storytelling, offering visually engaging narratives that captivate audiences worldwide. However, the visual nature of comics presents a significant barrier for visually impaired readers, limiting their access to these engaging stories. In this work, we provide a pragmatic solution to this accessibility challenge by developing an automated system that generates text-based literary narratives from manga comics. Our approach aims to create an evocative and immersive prose that not only conveys the original narrative but also captures the depth and complexity of characters, their interactions, and the vivid settings in which they reside. To this end we make the following contributions: (1) We present a unified model, Magiv3, that excels at various functional tasks pertaining to comic understanding, such as localising panels, characters, texts, and speech-bubble tails, performing OCR, grounding characters etc. (2) We release human-annotated captions for over 3300 Japanese comic panels, along with character grounding annotations, and benchmark large vision-language models in their ability to understand comic images. (3) Finally, we demonstrate how integrating large vision-language models with Magiv3, can generate seamless literary narratives that allows visually impaired audiences to engage with the depth and richness of comic storytelling.
☆ Enhancing 3D Gaussian Splatting Compression via Spatial Condition-based Prediction ICME2025
Recently, 3D Gaussian Spatting (3DGS) has gained widespread attention in Novel View Synthesis (NVS) due to the remarkable real-time rendering performance. However, the substantial cost of storage and transmission of vanilla 3DGS hinders its further application (hundreds of megabytes or even gigabytes for a single scene). Motivated by the achievements of prediction in video compression, we introduce the prediction technique into the anchor-based Gaussian representation to effectively reduce the bit rate. Specifically, we propose a spatial condition-based prediction module to utilize the grid-captured scene information for prediction, with a residual compensation strategy designed to learn the missing fine-grained information. Besides, to further compress the residual, we propose an instance-aware hyper prior, developing a structure-aware and instance-aware entropy model. Extensive experiments demonstrate the effectiveness of our prediction-based compression framework and each technical component. Even compared with SOTA compression method, our framework still achieves a bit rate savings of 24.42 percent. Code is to be released!
comment: The paper has been accepted by ICME2025 in March,2025
☆ Beyond Unimodal Boundaries: Generative Recommendation with Multimodal Semantics
Generative recommendation (GR) has become a powerful paradigm in recommendation systems that implicitly links modality and semantics to item representation, in contrast to previous methods that relied on non-semantic item identifiers in autoregressive models. However, previous research has predominantly treated modalities in isolation, typically assuming item content is unimodal (usually text). We argue that this is a significant limitation given the rich, multimodal nature of real-world data and the potential sensitivity of GR models to modality choices and usage. Our work aims to explore the critical problem of Multimodal Generative Recommendation (MGR), highlighting the importance of modality choices in GR nframeworks. We reveal that GR models are particularly sensitive to different modalities and examine the challenges in achieving effective GR when multiple modalities are available. By evaluating design strategies for effectively leveraging multiple modalities, we identify key challenges and introduce MGR-LF++, an enhanced late fusion framework that employs contrastive modality alignment and special tokens to denote different modalities, achieving a performance improvement of over 20% compared to single-modality alternatives.
☆ TraceMark-LDM: Authenticatable Watermarking for Latent Diffusion Models via Binary-Guided Rearrangement
Image generation algorithms are increasingly integral to diverse aspects of human society, driven by their practical applications. However, insufficient oversight in artificial Intelligence generated content (AIGC) can facilitate the spread of malicious content and increase the risk of copyright infringement. Among the diverse range of image generation models, the Latent Diffusion Model (LDM) is currently the most widely used, dominating the majority of the Text-to-Image model market. Currently, most attribution methods for LDMs rely on directly embedding watermarks into the generated images or their intermediate noise, a practice that compromises both the quality and the robustness of the generated content. To address these limitations, we introduce TraceMark-LDM, an novel algorithm that integrates watermarking to attribute generated images while guaranteeing non-destructive performance. Unlike current methods, TraceMark-LDM leverages watermarks as guidance to rearrange random variables sampled from a Gaussian distribution. To mitigate potential deviations caused by inversion errors, the small absolute elements are grouped and rearranged. Additionally, we fine-tune the LDM encoder to enhance the robustness of the watermark. Experimental results show that images synthesized using TraceMark-LDM exhibit superior quality and attribution accuracy compared to state-of-the-art (SOTA) techniques. Notably, TraceMark-LDM demonstrates exceptional robustness against various common attack methods, consistently outperforming SOTA methods.
comment: 14 pages, 6 figures,
☆ HiPART: Hierarchical Pose AutoRegressive Transformer for Occluded 3D Human Pose Estimation CVPR2025
Existing 2D-to-3D human pose estimation (HPE) methods struggle with the occlusion issue by enriching information like temporal and visual cues in the lifting stage. In this paper, we argue that these methods ignore the limitation of the sparse skeleton 2D input representation, which fundamentally restricts the 2D-to-3D lifting and worsens the occlusion issue. To address these, we propose a novel two-stage generative densification method, named Hierarchical Pose AutoRegressive Transformer (HiPART), to generate hierarchical 2D dense poses from the original sparse 2D pose. Specifically, we first develop a multi-scale skeleton tokenization module to quantize the highly dense 2D pose into hierarchical tokens and propose a Skeleton-aware Alignment to strengthen token connections. We then develop a Hierarchical AutoRegressive Modeling scheme for hierarchical 2D pose generation. With generated hierarchical poses as inputs for 2D-to-3D lifting, the proposed method shows strong robustness in occluded scenarios and achieves state-of-the-art performance on the single-frame-based 3D HPE. Moreover, it outperforms numerous multi-frame methods while reducing parameter and computational complexity and can also complement them to further enhance performance and robustness.
comment: CVPR2025
☆ EagleVision: Object-level Attribute Multimodal LLM for Remote Sensing
Recent advances in multimodal large language models (MLLMs) have demonstrated impressive results in various visual tasks. However, in remote sensing (RS), high resolution and small proportion of objects pose challenges to existing MLLMs, which struggle with object-centric tasks, particularly in precise localization and fine-grained attribute description for each object. These RS MLLMs have not yet surpassed classical visual perception models, as they only provide coarse image understanding, leading to limited gains in real-world scenarios. To address this gap, we establish EagleVision, an MLLM tailored for remote sensing that excels in object detection and attribute comprehension. Equipped with the Attribute Disentangle module, EagleVision learns disentanglement vision tokens to express distinct attributes. To support object-level visual-language alignment, we construct EVAttrs-95K, the first large-scale object attribute understanding dataset in RS for instruction tuning, along with a novel evaluation benchmark, EVBench. EagleVision achieves state-of-the-art performance on both fine-grained object detection and object attribute understanding tasks, highlighting the mutual promotion between detection and understanding capabilities in MLLMs. The code, model, data, and demo will be available at https://github.com/XiangTodayEatsWhat/EagleVision.
comment: Under Review
☆ SpINR: Neural Volumetric Reconstruction for FMCW Radars
In this paper, we introduce SpINR, a novel framework for volumetric reconstruction using Frequency-Modulated Continuous-Wave (FMCW) radar data. Traditional radar imaging techniques, such as backprojection, often assume ideal signal models and require dense aperture sampling, leading to limitations in resolution and generalization. To address these challenges, SpINR integrates a fully differentiable forward model that operates natively in the frequency domain with implicit neural representations (INRs). This integration leverages the linear relationship between beat frequency and scatterer distance inherent in FMCW radar systems, facilitating more efficient and accurate learning of scene geometry. Additionally, by computing outputs for only the relevant frequency bins, our forward model achieves greater computational efficiency compared to time-domain approaches that process the entire signal before transformation. Through extensive experiments, we demonstrate that SpINR significantly outperforms classical backprojection methods and existing learning-based approaches, achieving higher resolution and more accurate reconstructions of complex scenes. This work represents the first application of neural volumetic reconstruction in the radar domain, offering a promising direction for future research in radar-based imaging and perception systems.
☆ LaViC: Adapting Large Vision-Language Models to Visually-Aware Conversational Recommendation
Conversational recommender systems engage users in dialogues to refine their needs and provide more personalized suggestions. Although textual information suffices for many domains, visually driven categories such as fashion or home decor potentially require detailed visual information related to color, style, or design. To address this challenge, we propose LaViC (Large Vision-Language Conversational Recommendation Framework), a novel approach that integrates compact image representations into dialogue-based recommendation systems. LaViC leverages a large vision-language model in a two-stage process: (1) visual knowledge self-distillation, which condenses product images from hundreds of tokens into a small set of visual tokens in a self-distillation manner, significantly reducing computational overhead, and (2) recommendation prompt tuning, which enables the model to incorporate both dialogue context and distilled visual tokens, providing a unified mechanism for capturing textual and visual features. To support rigorous evaluation of visually-aware conversational recommendation, we construct a new dataset by aligning Reddit conversations with Amazon product listings across multiple visually oriented categories (e.g., fashion, beauty, and home). This dataset covers realistic user queries and product appearances in domains where visual details are crucial. Extensive experiments demonstrate that LaViC significantly outperforms text-only conversational recommendation methods and open-source vision-language baselines. Moreover, LaViC achieves competitive or superior accuracy compared to prominent proprietary baselines (e.g., GPT-3.5-turbo, GPT-4o-mini, and GPT-4o), demonstrating the necessity of explicitly using visual data for capturing product attributes and showing the effectiveness of our vision-language integration. Our code and dataset are available at https://github.com/jeon185/LaViC.
☆ MoCha: Towards Movie-Grade Talking Character Synthesis
Recent advancements in video generation have achieved impressive motion realism, yet they often overlook character-driven storytelling, a crucial task for automated film, animation generation. We introduce Talking Characters, a more realistic task to generate talking character animations directly from speech and text. Unlike talking head, Talking Characters aims at generating the full portrait of one or more characters beyond the facial region. In this paper, we propose MoCha, the first of its kind to generate talking characters. To ensure precise synchronization between video and speech, we propose a speech-video window attention mechanism that effectively aligns speech and video tokens. To address the scarcity of large-scale speech-labeled video datasets, we introduce a joint training strategy that leverages both speech-labeled and text-labeled video data, significantly improving generalization across diverse character actions. We also design structured prompt templates with character tags, enabling, for the first time, multi-character conversation with turn-based dialogue-allowing AI-generated characters to engage in context-aware conversations with cinematic coherence. Extensive qualitative and quantitative evaluations, including human preference studies and benchmark comparisons, demonstrate that MoCha sets a new standard for AI-generated cinematic storytelling, achieving superior realism, expressiveness, controllability and generalization.
comment: https://congwei1230.github.io/MoCha/
☆ Learning Predictive Visuomotor Coordination
Understanding and predicting human visuomotor coordination is crucial for applications in robotics, human-computer interaction, and assistive technologies. This work introduces a forecasting-based task for visuomotor modeling, where the goal is to predict head pose, gaze, and upper-body motion from egocentric visual and kinematic observations. We propose a \textit{Visuomotor Coordination Representation} (VCR) that learns structured temporal dependencies across these multimodal signals. We extend a diffusion-based motion modeling framework that integrates egocentric vision and kinematic sequences, enabling temporally coherent and accurate visuomotor predictions. Our approach is evaluated on the large-scale EgoExo4D dataset, demonstrating strong generalization across diverse real-world activities. Our results highlight the importance of multimodal integration in understanding visuomotor coordination, contributing to research in visuomotor learning and human behavior modeling.
☆ ReasonGrounder: LVLM-Guided Hierarchical Feature Splatting for Open-Vocabulary 3D Visual Grounding and Reasoning
Open-vocabulary 3D visual grounding and reasoning aim to localize objects in a scene based on implicit language descriptions, even when they are occluded. This ability is crucial for tasks such as vision-language navigation and autonomous robotics. However, current methods struggle because they rely heavily on fine-tuning with 3D annotations and mask proposals, which limits their ability to handle diverse semantics and common knowledge required for effective reasoning. In this work, we propose ReasonGrounder, an LVLM-guided framework that uses hierarchical 3D feature Gaussian fields for adaptive grouping based on physical scale, enabling open-vocabulary 3D grounding and reasoning. ReasonGrounder interprets implicit instructions using large vision-language models (LVLM) and localizes occluded objects through 3D Gaussian splatting. By incorporating 2D segmentation masks from the SAM and multi-view CLIP embeddings, ReasonGrounder selects Gaussian groups based on object scale, enabling accurate localization through both explicit and implicit language understanding, even in novel, occluded views. We also contribute ReasoningGD, a new dataset containing over 10K scenes and 2 million annotations for evaluating open-vocabulary 3D grounding and amodal perception under occlusion. Experiments show that ReasonGrounder significantly improves 3D grounding accuracy in real-world scenarios.
☆ SketchVideo: Sketch-based Video Generation and Editing CVPR 2025
Video generation and editing conditioned on text prompts or images have undergone significant advancements. However, challenges remain in accurately controlling global layout and geometry details solely by texts, and supporting motion control and local modification through images. In this paper, we aim to achieve sketch-based spatial and motion control for video generation and support fine-grained editing of real or synthetic videos. Based on the DiT video generation model, we propose a memory-efficient control structure with sketch control blocks that predict residual features of skipped DiT blocks. Sketches are drawn on one or two keyframes (at arbitrary time points) for easy interaction. To propagate such temporally sparse sketch conditions across all frames, we propose an inter-frame attention mechanism to analyze the relationship between the keyframes and each video frame. For sketch-based video editing, we design an additional video insertion module that maintains consistency between the newly edited content and the original video's spatial feature and dynamic motion. During inference, we use latent fusion for the accurate preservation of unedited regions. Extensive experiments demonstrate that our SketchVideo achieves superior performance in controllable video generation and editing.
comment: CVPR 2025
☆ Language Guided Concept Bottleneck Models for Interpretable Continual Learning CVPR 2025
Continual learning (CL) aims to enable learning systems to acquire new knowledge constantly without forgetting previously learned information. CL faces the challenge of mitigating catastrophic forgetting while maintaining interpretability across tasks. Most existing CL methods focus primarily on preserving learned knowledge to improve model performance. However, as new information is introduced, the interpretability of the learning process becomes crucial for understanding the evolving decision-making process, yet it is rarely explored. In this paper, we introduce a novel framework that integrates language-guided Concept Bottleneck Models (CBMs) to address both challenges. Our approach leverages the Concept Bottleneck Layer, aligning semantic consistency with CLIP models to learn human-understandable concepts that can generalize across tasks. By focusing on interpretable concepts, our method not only enhances the models ability to retain knowledge over time but also provides transparent decision-making insights. We demonstrate the effectiveness of our approach by achieving superior performance on several datasets, outperforming state-of-the-art methods with an improvement of up to 3.06% in final average accuracy on ImageNet-subset. Additionally, we offer concept visualizations for model predictions, further advancing the understanding of interpretable continual learning.
comment: CVPR 2025; Project Page: https://github.com/FisherCats/CLG-CBM
☆ AnyCam: Learning to Recover Camera Poses and Intrinsics from Casual Videos CVPR 2025
Estimating camera motion and intrinsics from casual videos is a core challenge in computer vision. Traditional bundle-adjustment based methods, such as SfM and SLAM, struggle to perform reliably on arbitrary data. Although specialized SfM approaches have been developed for handling dynamic scenes, they either require intrinsics or computationally expensive test-time optimization and often fall short in performance. Recently, methods like Dust3r have reformulated the SfM problem in a more data-driven way. While such techniques show promising results, they are still 1) not robust towards dynamic objects and 2) require labeled data for supervised training. As an alternative, we propose AnyCam, a fast transformer model that directly estimates camera poses and intrinsics from a dynamic video sequence in feed-forward fashion. Our intuition is that such a network can learn strong priors over realistic camera poses. To scale up our training, we rely on an uncertainty-based loss formulation and pre-trained depth and flow networks instead of motion or trajectory supervision. This allows us to use diverse, unlabelled video datasets obtained mostly from YouTube. Additionally, we ensure that the predicted trajectory does not accumulate drift over time through a lightweight trajectory refinement step. We test AnyCam on established datasets, where it delivers accurate camera poses and intrinsics both qualitatively and quantitatively. Furthermore, even with trajectory refinement, AnyCam is significantly faster than existing works for SfM in dynamic settings. Finally, by combining camera information, uncertainty, and depth, our model can produce high-quality 4D pointclouds.
comment: CVPR 2025 - For more details and code, please check out our project page under https://fwmb.github.io/anycam
☆ Improved Ear Verification with Vision Transformers and Overlapping Patches
Ear recognition has emerged as a promising biometric modality due to the relative stability in appearance during adulthood. Although Vision Transformers (ViTs) have been widely used in image recognition tasks, their efficiency in ear recognition has been hampered by a lack of attention to overlapping patches, which is crucial for capturing intricate ear features. In this study, we evaluate ViT-Tiny (ViT-T), ViT-Small (ViT-S), ViT-Base (ViT-B) and ViT-Large (ViT-L) configurations on a diverse set of datasets (OPIB, AWE, WPUT, and EarVN1.0), using an overlapping patch selection strategy. Results demonstrate the critical importance of overlapping patches, yielding superior performance in 44 of 48 experiments in a structured study. Moreover, upon comparing the results of the overlapping patches with the non-overlapping configurations, the increase is significant, reaching up to 10% for the EarVN1.0 dataset. In terms of model performance, the ViT-T model consistently outperformed the ViT-S, ViT-B, and ViT-L models on the AWE, WPUT, and EarVN1.0 datasets. The highest scores were achieved in a configuration with a patch size of 28x28 and a stride of 14 pixels. This patch-stride configuration represents 25% of the normalized image area (112x112 pixels) for the patch size and 12.5% of the row or column size for the stride. This study confirms that transformer architectures with overlapping patch selection can serve as an efficient and high-performing option for ear-based biometric recognition tasks in verification scenarios.
☆ OwlSight: A Robust Illumination Adaptation Framework for Dark Video Human Action Recognition
Human action recognition in low-light environments is crucial for various real-world applications. However, the existing approaches overlook the full utilization of brightness information throughout the training phase, leading to suboptimal performance. To address this limitation, we propose OwlSight, a biomimetic-inspired framework with whole-stage illumination enhancement to interact with action classification for accurate dark video human action recognition. Specifically, OwlSight incorporates a Time-Consistency Module (TCM) to capture shallow spatiotemporal features meanwhile maintaining temporal coherence, which are then processed by a Luminance Adaptation Module (LAM) to dynamically adjust the brightness based on the input luminance distribution. Furthermore, a Reflect Augmentation Module (RAM) is presented to maximize illumination utilization and simultaneously enhance action recognition via two interactive paths. Additionally, we build Dark-101, a large-scale dataset comprising 18,310 dark videos across 101 action categories, significantly surpassing existing datasets (e.g., ARID1.5 and Dark-48) in scale and diversity. Extensive experiments demonstrate that the proposed OwlSight achieves state-of-the-art performance across four low-light action recognition benchmarks. Notably, it outperforms previous best approaches by 5.36% on ARID1.5 and 1.72% on Dark-101, highlighting its effectiveness in challenging dark environments.
☆ A Lightweight Image Super-Resolution Transformer Trained on Low-Resolution Images Only
Transformer architectures prominently lead single-image super-resolution (SISR) benchmarks, reconstructing high-resolution (HR) images from their low-resolution (LR) counterparts. Their strong representative power, however, comes with a higher demand for training data compared to convolutional neural networks (CNNs). For many real-world SR applications, the availability of high-quality HR training images is not given, sparking interest in LR-only training methods. The LR-only SISR benchmark mimics this condition by allowing only low-resolution (LR) images for model training. For a 4x super-resolution, this effectively reduces the amount of available training data to 6.25% of the HR image pixels, which puts the employment of a data-hungry transformer model into question. In this work, we are the first to utilize a lightweight vision transformer model with LR-only training methods addressing the unsupervised SISR LR-only benchmark. We adopt and configure a recent LR-only training method from microscopy image super-resolution to macroscopic real-world data, resulting in our multi-scale training method for bicubic degradation (MSTbic). Furthermore, we compare it with reference methods and prove its effectiveness both for a transformer and a CNN model. We evaluate on the classic SR benchmark datasets Set5, Set14, BSD100, Urban100, and Manga109, and show superior performance over state-of-the-art (so far: CNN-based) LR-only SISR methods. The code is available on GitHub: https://github.com/ifnspaml/SuperResolutionMultiscaleTraining.
♻ ☆ SINE: SINgle Image Editing with Text-to-Image Diffusion Models CVPR 2023
Recent works on diffusion models have demonstrated a strong capability for conditioning image generation, e.g., text-guided image synthesis. Such success inspires many efforts trying to use large-scale pre-trained diffusion models for tackling a challenging problem--real image editing. Works conducted in this area learn a unique textual token corresponding to several images containing the same object. However, under many circumstances, only one image is available, such as the painting of the Girl with a Pearl Earring. Using existing works on fine-tuning the pre-trained diffusion models with a single image causes severe overfitting issues. The information leakage from the pre-trained diffusion models makes editing can not keep the same content as the given image while creating new features depicted by the language guidance. This work aims to address the problem of single-image editing. We propose a novel model-based guidance built upon the classifier-free guidance so that the knowledge from the model trained on a single image can be distilled into the pre-trained diffusion model, enabling content creation even with one given image. Additionally, we propose a patch-based fine-tuning that can effectively help the model generate images of arbitrary resolution. We provide extensive experiments to validate the design choices of our approach and show promising editing capabilities, including changing style, content addition, and object manipulation. The code is available for research purposes at https://github.com/zhang-zx/SINE.git .
comment: Accepted at CVPR 2023. Project website: https://zhang-zx.github.io/SINE/
♻ ☆ Configurable Holography: Towards Display and Scene Adaptation
Emerging learned holography approaches have enabled faster and high-quality hologram synthesis, setting a new milestone toward practical holographic displays. However, these learned models require training a dedicated model for each set of display-scene parameters. To address this shortcoming, our work introduces a highly configurable learned model structure, synthesizing 3D holograms interactively while supporting diverse display-scene parameters. Our family of models relying on this structure can be conditioned continuously for varying novel scene parameters, including input images, propagation distances, volume depths, peak brightnesses, and novel display parameters of pixel pitches and wavelengths. Uniquely, our findings unearth a correlation between depth estimation and hologram synthesis tasks in the learning domain, leading to a learned model that unlocks accurate 3D hologram generation from 2D images across varied display-scene parameters. We validate our models by synthesizing high-quality 3D holograms in simulations and also verify our findings with two different holographic display prototypes. Moreover, our family of models can synthesize holograms with a 2x speed-up compared to the state-of-the-art learned holography approaches in the literature.
comment: 11 pages, 9 figures
♻ ☆ Any-Resolution AI-Generated Image Detection by Spectral Learning CVPR2025
Recent works have established that AI models introduce spectral artifacts into generated images and propose approaches for learning to capture them using labeled data. However, the significant differences in such artifacts among different generative models hinder these approaches from generalizing to generators not seen during training. In this work, we build upon the key idea that the spectral distribution of real images constitutes both an invariant and highly discriminative pattern for AI-generated image detection. To model this under a self-supervised setup, we employ masked spectral learning using the pretext task of frequency reconstruction. Since generated images constitute out-of-distribution samples for this model, we propose spectral reconstruction similarity to capture this divergence. Moreover, we introduce spectral context attention, which enables our approach to efficiently capture subtle spectral inconsistencies in images of any resolution. Our spectral AI-generated image detection approach (SPAI) achieves a 5.5% absolute improvement in AUC over the previous state-of-the-art across 13 recent generative approaches, while exhibiting robustness against common online perturbations. Code is available on https://mever-team.github.io/spai.
comment: CVPR2025
♻ ☆ 3D-AVS: LiDAR-based 3D Auto-Vocabulary Segmentation CVPR 2025
Open-Vocabulary Segmentation (OVS) methods offer promising capabilities in detecting unseen object categories, but the category must be known and needs to be provided by a human, either via a text prompt or pre-labeled datasets, thus limiting their scalability. We propose 3D-AVS, a method for Auto-Vocabulary Segmentation of 3D point clouds for which the vocabulary is unknown and auto-generated for each input at runtime, thus eliminating the human in the loop and typically providing a substantially larger vocabulary for richer annotations. 3D-AVS first recognizes semantic entities from image or point cloud data and then segments all points with the automatically generated vocabulary. Our method incorporates both image-based and point-based recognition, enhancing robustness under challenging lighting conditions where geometric information from LiDAR is especially valuable. Our point-based recognition features a Sparse Masked Attention Pooling (SMAP) module to enrich the diversity of recognized objects. To address the challenges of evaluating unknown vocabularies and avoid annotation biases from label synonyms, hierarchies, or semantic overlaps, we introduce the annotation-free Text-Point Semantic Similarity (TPSS) metric for assessing generated vocabulary quality. Our evaluations on nuScenes and ScanNet200 demonstrate 3D-AVS's ability to generate semantic classes with accurate point-wise segmentations. Codes will be released at https://github.com/ozzyou/3D-AVS
comment: v3 is the camera-ready version for CVPR 2025, while v2 serves as both a preview and the camera-ready version for the CVPR 2024 OpenSun3D Workshop
♻ ☆ ROVER: A Multi-Season Dataset for Visual SLAM
Robust SLAM is a crucial enabler for autonomous navigation in natural, semi-structured environments such as parks and gardens. However, these environments present unique challenges for SLAM due to frequent seasonal changes, varying light conditions, and dense vegetation. These factors often degrade the performance of visual SLAM algorithms originally developed for structured urban environments. To address this gap, we present ROVER, a comprehensive benchmark dataset tailored for evaluating visual SLAM algorithms under diverse environmental conditions and spatial configurations. We captured the dataset with a robotic platform equipped with monocular, stereo, and RGBD cameras, as well as inertial sensors. It covers 39 recordings across five outdoor locations, collected through all seasons and various lighting scenarios, i.e., day, dusk, and night with and without external lighting. With this novel dataset, we evaluate several traditional and deep learning-based SLAM methods and study their performance in diverse challenging conditions. The results demonstrate that while stereo-inertial and RGBD configurations generally perform better under favorable lighting and moderate vegetation, most SLAM systems perform poorly in low-light and high-vegetation scenarios, particularly during summer and autumn. Our analysis highlights the need for improved adaptability in visual SLAM algorithms for outdoor applications, as current systems struggle with dynamic environmental factors affecting scale, feature extraction, and trajectory consistency. This dataset provides a solid foundation for advancing visual SLAM research in real-world, semi-structured environments, fostering the development of more resilient SLAM systems for long-term outdoor localization and mapping. The dataset and the code of the benchmark are available under https://iis-esslingen.github.io/rover.
comment: 19 pages, 9 figures, 12 tables
♻ ☆ OVTR: End-to-End Open-Vocabulary Multiple Object Tracking with Transformer ICLR 2025
Open-vocabulary multiple object tracking aims to generalize trackers to unseen categories during training, enabling their application across a variety of real-world scenarios. However, the existing open-vocabulary tracker is constrained by its framework structure, isolated frame-level perception, and insufficient modal interactions, which hinder its performance in open-vocabulary classification and tracking. In this paper, we propose OVTR (End-to-End Open-Vocabulary Multiple Object Tracking with TRansformer), the first end-to-end open-vocabulary tracker that models motion, appearance, and category simultaneously. To achieve stable classification and continuous tracking, we design the CIP (Category Information Propagation) strategy, which establishes multiple high-level category information priors for subsequent frames. Additionally, we introduce a dual-branch structure for generalization capability and deep multimodal interaction, and incorporate protective strategies in the decoder to enhance performance. Experimental results show that our method surpasses previous trackers on the open-vocabulary MOT benchmark while also achieving faster inference speeds and significantly reducing preprocessing requirements. Moreover, the experiment transferring the model to another dataset demonstrates its strong adaptability. Models and code are released at https://github.com/jinyanglii/OVTR.
comment: Accepted by ICLR 2025
♻ ☆ Self-Supervised Masked Mesh Learning for Unsupervised Anomaly Detection on 3D Cortical Surfaces
Unsupervised anomaly detection in brain imaging is challenging. In this paper, we propose self-supervised masked mesh learning for unsupervised anomaly detection on 3D cortical surfaces. Our framework leverages the intrinsic geometry of the cortical surface to learn a self-supervised representation that captures the underlying structure of the brain. We introduce a masked mesh convolutional neural network (MMN) that learns to predict masked regions of the cortical surface. By training the MMN on a large dataset of healthy subjects, we learn a representation that captures the normal variation in the cortical surface. We then use this representation to detect anomalies in unseen individuals by calculating anomaly scores based on the reconstruction error of the MMN. We evaluated our framework by training on population-scale dataset UKB and HCP-Aging and testing on two datasets of Alzheimer's disease patients ADNI and OASIS3. Our results show that our framework can detect anomalies in cortical thickness, cortical volume, and cortical sulcus characteristics, which are known to be biomarkers of Alzheimer's disease. Our proposed framework provides a promising approach for unsupervised anomaly detection based on normative variation of cortical features.
♻ ☆ Precise, Fast, and Low-cost Concept Erasure in Value Space: Orthogonal Complement Matters
Recent success of text-to-image (T2I) generation and its increasing practical applications, enabled by diffusion models, require urgent consideration of erasing unwanted concepts, e.g., copyrighted, offensive, and unsafe ones, from the pre-trained models in a precise, timely, and low-cost manner. The twofold demand of concept erasure includes not only a precise removal of the target concept (i.e., erasure efficacy) but also a minimal change on non-target content (i.e., prior preservation), during generation. Existing methods face challenges in maintaining an effective balance between erasure efficacy and prior preservation, and they can be computationally costly. To improve, we propose a precise, fast, and low-cost concept erasure method, called Adaptive Value Decomposer (AdaVD), which is training-free. Our method is grounded in a classical linear algebraic operation of computing the orthogonal complement, implemented in the value space of each cross-attention layer within the UNet of diffusion models. We design a shift factor to adaptively navigate the erasure strength, enhancing effective prior preservation without sacrificing erasure efficacy. Extensive comparative experiments with both training-based and training-free state-of-the-art methods demonstrate that the proposed AdaVD excels in both single and multiple concept erasure, showing 2 to 10 times improvement in prior preservation than the second best, meanwhile achieving the best or near best erasure efficacy. AdaVD supports a series of diffusion models and downstream image generation tasks, with code available on: https://github.com/WYuan1001/AdaVD.
♻ ☆ Local Concept Embeddings for Analysis of Concept Distributions in Vision DNN Feature Spaces
Insights into the learned latent representations are imperative for verifying deep neural networks (DNNs) in critical computer vision (CV) tasks. Therefore, state-of-the-art supervised Concept-based eXplainable Artificial Intelligence (C-XAI) methods associate user-defined concepts like ``car'' each with a single vector in the DNN latent space (concept embedding vector). In the case of concept segmentation, these linearly separate between activation map pixels belonging to a concept and those belonging to background. Existing methods for concept segmentation, however, fall short of capturing implicitly learned sub-concepts (e.g., the DNN might split car into ``proximate car'' and ``distant car''), and overlap of user-defined concepts (e.g., between ``bus'' and ``truck''). In other words, they do not capture the full distribution of concept representatives in latent space. For the first time, this work shows that these simplifications are frequently broken and that distribution information can be particularly useful for understanding DNN-learned notions of sub-concepts, concept confusion, and concept outliers. To allow exploration of learned concept distributions, we propose a novel local concept analysis framework. Instead of optimizing a single global concept vector on the complete dataset, it generates a local concept embedding (LoCE) vector for each individual sample. We use the distribution formed by LoCEs to explore the latent concept distribution by fitting Gaussian mixture models (GMMs), hierarchical clustering, and concept-level information retrieval and outlier detection. Despite its context sensitivity, our method's concept segmentation performance is competitive to global baselines. Analysis results are obtained on three datasets and six diverse vision DNN architectures, including vision transformers (ViTs).
comment: This is the authors accepted manuscript of the article accepted for publication in the International Journal of Computer Vision (IJCV). The final version will be available via SpringerLink upon publication. To cite this work please refer to the final journal version once published
♻ ☆ Language Prompt for Autonomous Driving AAAI2025
A new trend in the computer vision community is to capture objects of interest following flexible human command represented by a natural language prompt. However, the progress of using language prompts in driving scenarios is stuck in a bottleneck due to the scarcity of paired prompt-instance data. To address this challenge, we propose the first object-centric language prompt set for driving scenes within 3D, multi-view, and multi-frame space, named NuPrompt. It expands nuScenes dataset by constructing a total of 40,147 language descriptions, each referring to an average of 7.4 object tracklets. Based on the object-text pairs from the new benchmark, we formulate a novel prompt-based driving task, \ie, employing a language prompt to predict the described object trajectory across views and frames. Furthermore, we provide a simple end-to-end baseline model based on Transformer, named PromptTrack. Experiments show that our PromptTrack achieves impressive performance on NuPrompt. We hope this work can provide some new insights for the self-driving community. The data and code have been released at https://github.com/wudongming97/Prompt4Driving.
comment: Accepted by AAAI2025
♻ ☆ RGB-Th-Bench: A Dense benchmark for Visual-Thermal Understanding of Vision Language Models
We introduce RGB-Th-Bench, the first benchmark designed to evaluate the ability of Vision-Language Models (VLMs) to comprehend RGB-Thermal image pairs. While VLMs have demonstrated remarkable progress in visual reasoning and multimodal understanding, their evaluation has been predominantly limited to RGB-based benchmarks, leaving a critical gap in assessing their capabilities in infrared vision tasks. Existing visible-infrared datasets are either task-specific or lack high-quality annotations necessary for rigorous model evaluation. To address these limitations, RGB-Th-Bench provides a comprehensive evaluation framework covering 14 distinct skill dimensions, with a total of 1,600+ expert-annotated Yes/No questions. The benchmark employs two accuracy metrics: a standard question-level accuracy and a stricter skill-level accuracy, which evaluates model robustness across multiple questions within each skill dimension. This design ensures a thorough assessment of model performance, including resilience to adversarial and hallucinated responses. We conduct extensive evaluations on 19 state-of-the-art VLMs, revealing significant performance gaps in RGB-Thermal understanding. Our results show that even the strongest models struggle with thermal image comprehension, with performance heavily constrained by their RGB-based capabilities. Additionally, the lack of large-scale application-specific and expert-annotated thermal-caption-pair datasets in pre-training is an important reason of the observed performance gap. RGB-Th-Bench highlights the urgent need for further advancements in multimodal learning to bridge the gap between visible and thermal image understanding. The dataset is available through this link, and the evaluation code will also be made publicly available.
♻ ☆ SleeperMark: Towards Robust Watermark against Fine-Tuning Text-to-image Diffusion Models CVPR 2025
Recent advances in large-scale text-to-image (T2I) diffusion models have enabled a variety of downstream applications, including style customization, subject-driven personalization, and conditional generation. As T2I models require extensive data and computational resources for training, they constitute highly valued intellectual property (IP) for their legitimate owners, yet making them incentive targets for unauthorized fine-tuning by adversaries seeking to leverage these models for customized, usually profitable applications. Existing IP protection methods for diffusion models generally involve embedding watermark patterns and then verifying ownership through generated outputs examination, or inspecting the model's feature space. However, these techniques are inherently ineffective in practical scenarios when the watermarked model undergoes fine-tuning, and the feature space is inaccessible during verification ((i.e., black-box setting). The model is prone to forgetting the previously learned watermark knowledge when it adapts to a new task. To address this challenge, we propose SleeperMark, a novel framework designed to embed resilient watermarks into T2I diffusion models. SleeperMark explicitly guides the model to disentangle the watermark information from the semantic concepts it learns, allowing the model to retain the embedded watermark while continuing to be adapted to new downstream tasks. Our extensive experiments demonstrate the effectiveness of SleeperMark across various types of diffusion models, including latent diffusion models (e.g., Stable Diffusion) and pixel diffusion models (e.g., DeepFloyd-IF), showing robustness against downstream fine-tuning and various attacks at both the image and model levels, with minimal impact on the model's generative capability. The code is available at https://github.com/taco-group/SleeperMark.
comment: CVPR 2025
♻ ☆ Visual Self-paced Iterative Learning for Unsupervised Temporal Action Localization
Recently, temporal action localization (TAL) has garnered significant interest in information retrieval community. However, existing supervised/weakly supervised methods are heavily dependent on extensive labeled temporal boundaries and action categories, which is labor-intensive and time-consuming. Although some unsupervised methods have utilized the ``iteratively clustering and localization'' paradigm for TAL, they still suffer from two pivotal impediments: 1) unsatisfactory video clustering confidence, and 2) unreliable video pseudolabels for model training. To address these limitations, we present a novel self-paced iterative learning model to enhance clustering and localization training simultaneously, thereby facilitating more effective unsupervised TAL. Concretely, we improve the clustering confidence through exploring the contextual feature-robust visual information. Thereafter, we design two (constant- and variable- speed) incremental instance learning strategies for easy-to-hard model training, thus ensuring the reliability of these video pseudolabels and further improving overall localization performance. Extensive experiments on two public datasets have substantiated the superiority of our model over several state-of-the-art competitors.
♻ ☆ STEP: Enhancing Video-LLMs' Compositional Reasoning by Spatio-Temporal Graph-guided Self-Training
Video Large Language Models (Video-LLMs) have recently shown strong performance in basic video understanding tasks, such as captioning and coarse-grained question answering, but struggle with compositional reasoning that requires multi-step spatio-temporal inference across object relations, interactions, and events. The hurdles to enhancing this capability include extensive manual labor, the lack of spatio-temporal compositionality in existing data and the absence of explicit reasoning supervision. In this paper, we propose STEP, a novel graph-guided self-training method that enables Video-LLMs to generate reasoning-rich fine-tuning data from any raw videos to improve itself. Specifically, we first induce Spatio-Temporal Scene Graph (STSG) representation of diverse videos to capture fine-grained, multi-granular video semantics. Then, the STSGs guide the derivation of multi-step reasoning Question-Answer (QA) data with Chain-of-Thought (CoT) rationales. Both answers and rationales are integrated as training objective, aiming to enhance model's reasoning abilities by supervision over explicit reasoning steps. Experimental results demonstrate the effectiveness of STEP across models of varying scales, with a significant 21.3\% improvement in tasks requiring three or more reasoning steps. Furthermore, it achieves superior performance with a minimal amount of self-generated rationale-enriched training samples in both compositional reasoning and comprehensive understanding benchmarks, highlighting the broad applicability and vast potential.
♻ ☆ CCUP: A Controllable Synthetic Data Generation Pipeline for Pretraining Cloth-Changing Person Re-Identification Models ICME 2025
Cloth-changing person re-identification (CC-ReID), also known as Long-Term Person Re-Identification (LT-ReID) is a critical and challenging research topic in computer vision that has recently garnered significant attention. However, due to the high cost of constructing CC-ReID data, the existing data-driven models are hard to train efficiently on limited data, causing overfitting issue. To address this challenge, we propose a low-cost and efficient pipeline for generating controllable and high-quality synthetic data simulating the surveillance of real scenarios specific to the CC-ReID task. Particularly, we construct a new self-annotated CC-ReID dataset named Cloth-Changing Unreal Person (CCUP), containing 6,000 IDs, 1,179,976 images, 100 cameras, and 26.5 outfits per individual. Based on this large-scale dataset, we introduce an effective and scalable pretrain-finetune framework for enhancing the generalization capabilities of the traditional CC-ReID models. The extensive experiments demonstrate that two typical models namely TransReID and FIRe^2, when integrated into our framework, outperform other state-of-the-art models after pretraining on CCUP and finetuning on the benchmarks such as PRCC, VC-Clothes and NKUP. The CCUP is available at: https://github.com/yjzhao1019/CCUP.
comment: Accepted by ICME 2025
♻ ☆ Multimodal Feature-Driven Deep Learning for the Prediction of Duck Body Dimensions and Weight
Accurate body dimension and weight measurements are critical for optimizing poultry management, health assessment, and economic efficiency. This study introduces an innovative deep learning-based model leveraging multimodal data-2D RGB images from different views, depth images, and 3D point clouds-for the non-invasive estimation of duck body dimensions and weight. A dataset of 1,023 Linwu ducks, comprising over 5,000 samples with diverse postures and conditions, was collected to support model training. The proposed method innovatively employs PointNet++ to extract key feature points from point clouds, extracts and computes corresponding 3D geometric features, and fuses them with multi-view convolutional 2D features. A Transformer encoder is then utilized to capture long-range dependencies and refine feature interactions, thereby enhancing prediction robustness. The model achieved a mean absolute percentage error (MAPE) of 6.33% and an R2 of 0.953 across eight morphometric parameters, demonstrating strong predictive capability. Unlike conventional manual measurements, the proposed model enables high-precision estimation while eliminating the necessity for physical handling, thereby reducing animal stress and broadening its application scope. This study marks the first application of deep learning techniques to poultry body dimension and weight estimation, providing a valuable reference for the intelligent and precise management of the livestock industry with far-reaching practical significance.
♻ ☆ VELOCITI: Benchmarking Video-Language Compositional Reasoning with Strict Entailment CVPR 2025
A fundamental aspect of compositional reasoning in a video is associating people and their actions across time. Recent years have seen great progress in general-purpose vision or video models and a move towards long-video understanding. While exciting, we take a step back and ask: are current models good at compositional reasoning on short videos? To this end, we introduce VELOCITI, a benchmark to study Video-LLMs by disentangling and assessing the comprehension of agents, actions, and their associations across multiple events. We adopt the Video-Language Entailment setup and propose StrictVLE that requires correct classification (rather than ranking) of the positive and negative caption. We evaluate several models and observe that even the best, LLaVA-OneVision (44.5%) and Gemini-1.5-Pro (49.3%), are far from human accuracy at 93.0%. Results show that action understanding lags behind agents, and negative captions created using entities appearing in the video perform worse than those obtained from pure text manipulation. We also present challenges with ClassicVLE and multiple-choice (MC) evaluation, strengthening our preference for StrictVLE. Finally, we validate that our benchmark requires visual inputs of multiple frames making it ideal to study video-language compositional reasoning.
comment: Accepted to CVPR 2025. Project Page, see https://katha-ai.github.io/projects/velociti
♻ ☆ Analyzing and Boosting the Power of Fine-Grained Visual Recognition for Multi-modal Large Language Models ICLR 2025
Multi-modal large language models (MLLMs) have shown remarkable abilities in various visual understanding tasks. However, MLLMs still struggle with fine-grained visual recognition (FGVR), which aims to identify subordinate-level categories from images. This can negatively impact more advanced capabilities of MLLMs, such as object-centric visual question answering and reasoning. In our study, we revisit three quintessential capabilities of MLLMs for FGVR, including object information extraction, category knowledge reserve, object-category alignment, and position of the root cause as a misalignment problem. To address this issue, we present Finedefics, an MLLM that enhances the model's FGVR capability by incorporating informative attribute descriptions of objects into the training phase. We employ contrastive learning on object-attribute pairs and attribute-category pairs simultaneously and use examples from similar but incorrect categories as hard negatives, naturally bringing representations of visual objects and category names closer. Extensive evaluations across multiple popular FGVR datasets demonstrate that Finedefics outperforms existing MLLMs of comparable parameter sizes, showcasing its remarkable efficacy. The code is available at https://github.com/PKU-ICST-MIPL/Finedefics_ICLR2025.
comment: Published as a conference paper at ICLR 2025. The model is available at https://huggingface.co/StevenHH2000/Finedefics
♻ ☆ Missing Target-Relevant Information Prediction with World Model for Accurate Zero-Shot Composed Image Retrieval CVPR 2025
Zero-Shot Composed Image Retrieval (ZS-CIR) involves diverse tasks with a broad range of visual content manipulation intent across domain, scene, object, and attribute. The key challenge for ZS-CIR tasks is to modify a reference image according to manipulation text to accurately retrieve a target image, especially when the reference image is missing essential target content. In this paper, we propose a novel prediction-based mapping network, named PrediCIR, to adaptively predict the missing target visual content in reference images in the latent space before mapping for accurate ZS-CIR. Specifically, a world view generation module first constructs a source view by omitting certain visual content of a target view, coupled with an action that includes the manipulation intent derived from existing image-caption pairs. Then, a target content prediction module trains a world model as a predictor to adaptively predict the missing visual information guided by user intention in manipulating text at the latent space. The two modules map an image with the predicted relevant information to a pseudo-word token without extra supervision. Our model shows strong generalization ability on six ZS-CIR tasks. It obtains consistent and significant performance boosts ranging from 1.73% to 4.45% over the best methods and achieves new state-of-the-art results on ZS-CIR. Our code is available at https://github.com/Pter61/predicir.
comment: This work has been accepted to CVPR 2025
♻ ☆ Token Dynamics: Towards Efficient and Dynamic Video Token Representation for Video Large Language Models
Token-based video representation has emerged as a promising approach for enabling LLMs to interpret video content. However, existing token reduction, such as token pruning and token merging, often disrupt essential spatial-temporal positional embeddings, failing to adequately balance computational efficiency with fewer tokens. Consequently, these methods result in lengthy token sequences, limiting their applicability in scenarios requiring extreme token compression, such as video large language models. In this paper, we introduce the novel task of extreme short token reduction, aiming to represent extensive video sequences with a minimal number of tokens. To address this challenge, we propose Token Dynamics, a new video representation framework that dynamically reduces token count while preserving spatial-temporal coherence. Specifically, we disentangle video representations by separating visual embeddings from grid-level motion information, structuring them into: 1. a concise token hash table, created by clustering tokens that describe object-level content; 2. a token indices key map, capturing detailed spatial-temporal motion patterns across grids; 3. a token hash function, which vector-quantizes the token hash table to reconstruct the token sequence from the key map. Furthermore, we introduce a cross-dynamics attention mechanism that integrates motion features into the token base without increasing token length, thereby maintaining compactness and spatial-temporal integrity. The experiments demonstrate a reduction of token count to merely 0.07% of the original tokens, with only a minor performance drop of 1.13%. Additionally, we propose two novel subtasks within extreme token reduction (fixed-length and adaptive-length compression). Our method offers significantly lower theoretical complexity, fewer tokens, and enhanced throughput, thus providing an efficient solution for video LLMs.
♻ ☆ OpenSDI: Spotting Diffusion-Generated Images in the Open World
This paper identifies OpenSDI, a challenge for spotting diffusion-generated images in open-world settings. In response to this challenge, we define a new benchmark, the OpenSDI dataset (OpenSDID), which stands out from existing datasets due to its diverse use of large vision-language models that simulate open-world diffusion-based manipulations. Another outstanding feature of OpenSDID is its inclusion of both detection and localization tasks for images manipulated globally and locally by diffusion models. To address the OpenSDI challenge, we propose a Synergizing Pretrained Models (SPM) scheme to build up a mixture of foundation models. This approach exploits a collaboration mechanism with multiple pretrained foundation models to enhance generalization in the OpenSDI context, moving beyond traditional training by synergizing multiple pretrained models through prompting and attending strategies. Building on this scheme, we introduce MaskCLIP, an SPM-based model that aligns Contrastive Language-Image Pre-Training (CLIP) with Masked Autoencoder (MAE). Extensive evaluations on OpenSDID show that MaskCLIP significantly outperforms current state-of-the-art methods for the OpenSDI challenge, achieving remarkable relative improvements of 14.23% in IoU (14.11% in F1) and 2.05% in accuracy (2.38% in F1) compared to the second-best model in localization and detection tasks, respectively. Our dataset and code are available at https://github.com/iamwangyabin/OpenSDI.
♻ ☆ YOLO-LLTS: Real-Time Low-Light Traffic Sign Detection via Prior-Guided Enhancement and Multi-Branch Feature Interaction
Detecting traffic signs effectively under low-light conditions remains a significant challenge. To address this issue, we propose YOLO-LLTS, an end-to-end real-time traffic sign detection algorithm specifically designed for low-light environments. Firstly, we introduce the High-Resolution Feature Map for Small Object Detection (HRFM-TOD) module to address indistinct small-object features in low-light scenarios. By leveraging high-resolution feature maps, HRFM-TOD effectively mitigates the feature dilution problem encountered in conventional PANet frameworks, thereby enhancing both detection accuracy and inference speed. Secondly, we develop the Multi-branch Feature Interaction Attention (MFIA) module, which facilitates deep feature interaction across multiple receptive fields in both channel and spatial dimensions, significantly improving the model's information extraction capabilities. Finally, we propose the Prior-Guided Enhancement Module (PGFE) to tackle common image quality challenges in low-light environments, such as noise, low contrast, and blurriness. This module employs prior knowledge to enrich image details and enhance visibility, substantially boosting detection performance. To support this research, we construct a novel dataset, the Chinese Nighttime Traffic Sign Sample Set (CNTSSS), covering diverse nighttime scenarios, including urban, highway, and rural environments under varying weather conditions. Experimental evaluations demonstrate that YOLO-LLTS achieves state-of-the-art performance, outperforming the previous best methods by 2.7% mAP50 and 1.6% mAP50:95 on TT100K-night, 1.3% mAP50 and 1.9% mAP50:95 on CNTSSS, and achieving superior results on the CCTSDB2021 dataset. Moreover, deployment experiments on edge devices confirm the real-time applicability and effectiveness of our proposed approach.
♻ ☆ EEdit: Rethinking the Spatial and Temporal Redundancy for Efficient Image Editing
Inversion-based image editing is rapidly gaining momentum while suffering from significant computation overhead, hindering its application in real-time interactive scenarios. In this paper, we rethink that the redundancy in inversion-based image editing exists in both the spatial and temporal dimensions, such as the unnecessary computation in unedited regions and the redundancy in the inversion progress. To tackle these challenges, we propose a practical framework, named EEdit, to achieve efficient image editing. Specifically, we introduce three techniques to solve them one by one. For spatial redundancy, spatial locality caching is introduced to compute the edited region and its neighboring regions while skipping the unedited regions, and token indexing preprocessing is designed to further accelerate the caching. For temporal redundancy, inversion step skipping is proposed to reuse the latent for efficient editing. Our experiments demonstrate an average of 2.46 $\times$ acceleration without performance drop in a wide range of editing tasks including prompt-guided image editing, dragging and image composition. Our codes are available at https://github.com/yuriYanZeXuan/EEdit
comment: 17 pages,fix figure mistake(inv/fwd skipping) in fig2
♻ ☆ Mask-informed Deep Contrastive Incomplete Multi-view Clustering
Multi-view clustering (MvC) utilizes information from multiple views to uncover the underlying structures of data. Despite significant advancements in MvC, mitigating the impact of missing samples in specific views on the integration of knowledge from different views remains a critical challenge. This paper proposes a novel Mask-informed Deep Contrastive Incomplete Multi-view Clustering (Mask-IMvC) method, which elegantly identifies a view-common representation for clustering. Specifically, we introduce a mask-informed fusion network that aggregates incomplete multi-view information while considering the observation status of samples across various views as a mask, thereby reducing the adverse effects of missing values. Additionally, we design a prior knowledge-assisted contrastive learning loss that boosts the representation capability of the aggregated view-common representation by injecting neighborhood information of samples from different views. Finally, extensive experiments are conducted to demonstrate the superiority of the proposed Mask-IMvC method over state-of-the-art approaches across multiple MvC datasets, both in complete and incomplete scenarios.
♻ ☆ FM2S: Towards Spatially-Correlated Noise Modeling in Zero-Shot Fluorescence Microscopy Image Denoising
Fluorescence microscopy image (FMI) denoising faces critical challenges due to the compound mixed Poisson-Gaussian noise with strong spatial correlation and the impracticality of acquiring paired noisy/clean data in dynamic biomedical scenarios. While supervised methods trained on synthetic noise (e.g., Gaussian/Poisson) suffer from out-of-distribution generalization issues, existing self-supervised approaches degrade under real FMI noise due to oversimplified noise assumptions and computationally intensive deep architectures. In this paper, we propose Fluorescence Micrograph to Self (FM2S), a zero-shot denoiser that achieves efficient FMI denoising through three key innovations: 1) A noise injection module that ensures training data sufficiency through adaptive Poisson-Gaussian synthesis while preserving spatial correlation and global statistics of FMI noise for robust model generalization; 2) A two-stage progressive learning strategy that first recovers structural priors via pre-denoised targets then refines high-frequency details through noise distribution alignment; 3) An ultra-lightweight network (3.5k parameters) enabling rapid convergence with 270$\times$ faster training and inference than SOTAs. Extensive experiments across FMI datasets demonstrate FM2S's superiority: It outperforms CVF-SID by 1.4dB PSNR on average while requiring 0.1% parameters of AP-BSN. Notably, FM2S maintains stable performance across varying noise levels, proving its practicality for microscopy platforms with diverse sensor characteristics. Code and datasets will be released.
comment: 14 pages, 10 figures
♻ ☆ Effective SAM Combination for Open-Vocabulary Semantic Segmentation CVPR 2025
Open-vocabulary semantic segmentation aims to assign pixel-level labels to images across an unlimited range of classes. Traditional methods address this by sequentially connecting a powerful mask proposal generator, such as the Segment Anything Model (SAM), with a pre-trained vision-language model like CLIP. But these two-stage approaches often suffer from high computational costs, memory inefficiencies. In this paper, we propose ESC-Net, a novel one-stage open-vocabulary segmentation model that leverages the SAM decoder blocks for class-agnostic segmentation within an efficient inference framework. By embedding pseudo prompts generated from image-text correlations into SAM's promptable segmentation framework, ESC-Net achieves refined spatial aggregation for accurate mask predictions. ESC-Net achieves superior performance on standard benchmarks, including ADE20K, PASCAL-VOC, and PASCAL-Context, outperforming prior methods in both efficiency and accuracy. Comprehensive ablation studies further demonstrate its robustness across challenging conditions.
comment: Accepted to CVPR 2025
♻ ☆ F$^3$OCUS -- Federated Finetuning of Vision-Language Foundation Models with Optimal Client Layer Updating Strategy via Multi-objective Meta-Heuristics CVPR 2025
Effective training of large Vision-Language Models (VLMs) on resource-constrained client devices in Federated Learning (FL) requires the usage of parameter-efficient fine-tuning (PEFT) strategies. To this end, we demonstrate the impact of two factors \textit{viz.}, client-specific layer importance score that selects the most important VLM layers for fine-tuning and inter-client layer diversity score that encourages diverse layer selection across clients for optimal VLM layer selection. We first theoretically motivate and leverage the principal eigenvalue magnitude of layerwise Neural Tangent Kernels and show its effectiveness as client-specific layer importance score. Next, we propose a novel layer updating strategy dubbed F$^3$OCUS that jointly optimizes the layer importance and diversity factors by employing a data-free, multi-objective, meta-heuristic optimization on the server. We explore 5 different meta-heuristic algorithms and compare their effectiveness for selecting model layers and adapter layers towards PEFT-FL. Furthermore, we release a new MedVQA-FL dataset involving overall 707,962 VQA triplets and 9 modality-specific clients and utilize it to train and evaluate our method. Overall, we conduct more than 10,000 client-level experiments on 6 Vision-Language FL task settings involving 58 medical image datasets and 4 different VLM architectures of varying sizes to demonstrate the effectiveness of the proposed method.
comment: Accepted in CVPR 2025
♻ ☆ MMAD: Multi-label Micro-Action Detection in Videos
Human body actions are an important form of non-verbal communication in social interactions. This paper specifically focuses on a subset of body actions known as micro-actions, which are subtle, low-intensity body movements with promising applications in human emotion analysis. In real-world scenarios, human micro-actions often temporally co-occur, with multiple micro-actions overlapping in time, such as concurrent head and hand movements. However, current research primarily focuses on recognizing individual micro-actions while overlooking their co-occurring nature. To address this gap, we propose a new task named Multi-label Micro-Action Detection (MMAD), which involves identifying all micro-actions in a given short video, determining their start and end times, and categorizing them. Accomplishing this requires a model capable of accurately capturing both long-term and short-term action relationships to detect multiple overlapping micro-actions. To facilitate the MMAD task, we introduce a new dataset named Multi-label Micro-Action-52 (MMA-52) and propose a baseline method equipped with a dual-path spatial-temporal adapter to address the challenges of subtle visual change in MMAD. We hope that MMA-52 can stimulate research on micro-action analysis in videos and prompt the development of spatio-temporal modeling in human-centric video understanding. The proposed MMA-52 dataset is available at: https://github.com/VUT-HFUT/Micro-Action.
♻ ☆ Video Prediction Transformers without Recurrence or Convolution
Video prediction has witnessed the emergence of RNN-based models led by ConvLSTM, and CNN-based models led by SimVP. Following the significant success of ViT, recent works have integrated ViT into both RNN and CNN frameworks, achieving improved performance. While we appreciate these prior approaches, we raise a fundamental question: Is there a simpler yet more effective solution that can eliminate the high computational cost of RNNs while addressing the limited receptive fields and poor generalization of CNNs? How far can it go with a simple pure transformer model for video prediction? In this paper, we propose PredFormer, a framework entirely based on Gated Transformers. We provide a comprehensive analysis of 3D Attention in the context of video prediction. Extensive experiments demonstrate that PredFormer delivers state-of-the-art performance across four standard benchmarks. The significant improvements in both accuracy and efficiency highlight the potential of PredFormer as a strong baseline for real-world video prediction applications. The source code and trained models will be released at https://github.com/yyyujintang/PredFormer.
comment: 11 pages, 7 figures
♻ ☆ MVREC: A General Few-shot Defect Classification Model Using Multi-View Region-Context AAAI 2025
Few-shot defect multi-classification (FSDMC) is an emerging trend in quality control within industrial manufacturing. However, current FSDMC research often lacks generalizability due to its focus on specific datasets. Additionally, defect classification heavily relies on contextual information within images, and existing methods fall short of effectively extracting this information. To address these challenges, we propose a general FSDMC framework called MVREC, which offers two primary advantages: (1) MVREC extracts general features for defect instances by incorporating the pre-trained AlphaCLIP model. (2) It utilizes a region-context framework to enhance defect features by leveraging mask region input and multi-view context augmentation. Furthermore, Few-shot Zip-Adapter(-F) classifiers within the model are introduced to cache the visual features of the support set and perform few-shot classification. We also introduce MVTec-FS, a new FSDMC benchmark based on MVTec AD, which includes 1228 defect images with instance-level mask annotations and 46 defect types. Extensive experiments conducted on MVTec-FS and four additional datasets demonstrate its effectiveness in general defect classification and its ability to incorporate contextual information to improve classification performance. Code: https://github.com/ShuaiLYU/MVREC
comment: Accepted by AAAI 2025
♻ ☆ Pretrain like Your Inference: Masked Tuning Improves Zero-Shot Composed Image Retrieval ICME 2025
Zero-shot composed image retrieval (ZS-CIR), which takes a textual modification and a reference image as a query to retrieve a target image without triplet labeling, has gained more and more attention in data mining. Current ZS-CIR research mainly relies on the generalization ability of pre-trained vision-language models, e.g., CLIP. However, the pre-trained vision-language models and CIR tasks have substantial discrepancies, where the vision-language models focus on learning the similarities but CIR aims to learn the modifications of the image guided by text. In this paper, we introduce a novel unlabeled and pre-trained masked tuning approach, which reduces the gap between the pre-trained vision-language model and the downstream CIR task. First, to reduce the gap, we reformulate the contrastive learning of the vision-language model as the CIR task, where we randomly mask input image patches to generate $\langle$masked image, text, image$\rangle$ triplet from an image-text pair. Then, we propose a simple but novel pre-trained masked tuning method, which uses the text and the masked image to learn the modifications of the original image. With such a simple design, the proposed masked tuning can learn to better capture fine-grained text-guided modifications. Extensive experimental results demonstrate the significant superiority of our approach over the baseline models on four ZS-CIR datasets, including FashionIQ, CIRR, CIRCO, and GeneCIS. Our codes are available at https://github.com/Chen-Junyang-cn/PLI
comment: accepted by ICME 2025, this is the full version of paper
♻ ☆ PlanGen: Towards Unified Layout Planning and Image Generation in Auto-Regressive Vision Language Models
In this paper, we propose a unified layout planning and image generation model, PlanGen, which can pre-plan spatial layout conditions before generating images. Unlike previous diffusion-based models that treat layout planning and layout-to-image as two separate models, PlanGen jointly models the two tasks into one autoregressive transformer using only next-token prediction. PlanGen integrates layout conditions into the model as context without requiring specialized encoding of local captions and bounding box coordinates, which provides significant advantages over the previous embed-and-pool operations on layout conditions, particularly when dealing with complex layouts. Unified prompting allows PlanGen to perform multitasking training related to layout, including layout planning, layout-to-image generation, image layout understanding, etc. In addition, PlanGen can be seamlessly expanded to layout-guided image manipulation thanks to the well-designed modeling, with teacher-forcing content manipulation policy and negative layout guidance. Extensive experiments verify the effectiveness of our PlanGen in multiple layoutrelated tasks, showing its great potential. Code is available at: https://360cvgroup.github.io/PlanGen.
comment: 15 pages, 12 figures, project page: https://360cvgroup.github.io/PlanGen
♻ ☆ StructVPR++: Distill Structural and Semantic Knowledge with Weighting Samples for Visual Place Recognition
Visual place recognition is a challenging task for autonomous driving and robotics, which is usually considered as an image retrieval problem. A commonly used two-stage strategy involves global retrieval followed by re-ranking using patch-level descriptors. Most deep learning-based methods in an end-to-end manner cannot extract global features with sufficient semantic information from RGB images. In contrast, re-ranking can utilize more explicit structural and semantic information in one-to-one matching process, but it is time-consuming. To bridge the gap between global retrieval and re-ranking and achieve a good trade-off between accuracy and efficiency, we propose StructVPR++, a framework that embeds structural and semantic knowledge into RGB global representations via segmentation-guided distillation. Our key innovation lies in decoupling label-specific features from global descriptors, enabling explicit semantic alignment between image pairs without requiring segmentation during deployment. Furthermore, we introduce a sample-wise weighted distillation strategy that prioritizes reliable training pairs while suppressing noisy ones. Experiments on four benchmarks demonstrate that StructVPR++ surpasses state-of-the-art global methods by 5-23% in Recall@1 and even outperforms many two-stage approaches, achieving real-time efficiency with a single RGB input.
comment: accepted by T-PAMI2025
♻ ☆ OpenING: A Comprehensive Benchmark for Judging Open-ended Interleaved Image-Text Generation CVPR 2025
Multimodal Large Language Models (MLLMs) have made significant strides in visual understanding and generation tasks. However, generating interleaved image-text content remains a challenge, which requires integrated multimodal understanding and generation abilities. While the progress in unified models offers new solutions, existing benchmarks are insufficient for evaluating these methods due to limitations in data size and diversity. To bridge this gap, we introduce OpenING, a comprehensive benchmark comprising 5,400 high-quality human-annotated instances across 56 real-world tasks. OpenING covers diverse daily scenarios such as travel guide, design, and brainstorming, offering a robust platform for challenging interleaved generation methods. In addition, we present IntJudge, a judge model for evaluating open-ended multimodal generation methods. Trained with a novel data pipeline, our IntJudge achieves an agreement rate of 82.42% with human judgments, outperforming GPT-based evaluators by 11.34%. Extensive experiments on OpenING reveal that current interleaved generation methods still have substantial room for improvement. Key findings on interleaved image-text generation are further presented to guide the development of next-generation models.
comment: 53 pages, 19 figures, accepted by CVPR 2025
♻ ☆ OnlineAnySeg: Online Zero-Shot 3D Segmentation by Visual Foundation Model Guided 2D Mask Merging
Online zero-shot 3D instance segmentation of a progressively reconstructed scene is both a critical and challenging task for embodied applications. With the success of visual foundation models (VFMs) in the image domain, leveraging 2D priors to address 3D online segmentation has become a prominent research focus. Since segmentation results provided by 2D priors often require spatial consistency to be lifted into final 3D segmentation, an efficient method for identifying spatial overlap among 2D masks is essential - yet existing methods rarely achieve this in real time, mainly limiting its use to offline approaches. To address this, we propose an efficient method that lifts 2D masks generated by VFMs into a unified 3D instance using a hashing technique. By employing voxel hashing for efficient 3D scene querying, our approach reduces the time complexity of costly spatial overlap queries from $O(n^2)$ to $O(n)$. Accurate spatial associations further enable 3D merging of 2D masks through simple similarity-based filtering in a zero-shot manner, making our approach more robust to incomplete and noisy data. Evaluated on the ScanNet and SceneNN benchmarks, our approach achieves state-of-the-art performance in online, zero-shot 3D instance segmentation with leading efficiency.
♻ ☆ Progressive Human Motion Generation Based on Text and Few Motion Frames
Although existing text-to-motion (T2M) methods can produce realistic human motion from text description, it is still difficult to align the generated motion with the desired postures since using text alone is insufficient for precisely describing diverse postures. To achieve more controllable generation, an intuitive way is to allow the user to input a few motion frames describing precise desired postures. Thus, we explore a new Text-Frame-to-Motion (TF2M) generation task that aims to generate motions from text and very few given frames. Intuitively, the closer a frame is to a given frame, the lower the uncertainty of this frame is when conditioned on this given frame. Hence, we propose a novel Progressive Motion Generation (PMG) method to progressively generate a motion from the frames with low uncertainty to those with high uncertainty in multiple stages. During each stage, new frames are generated by a Text-Frame Guided Generator conditioned on frame-aware semantics of the text, given frames, and frames generated in previous stages. Additionally, to alleviate the train-test gap caused by multi-stage accumulation of incorrectly generated frames during testing, we propose a Pseudo-frame Replacement Strategy for training. Experimental results show that our PMG outperforms existing T2M generation methods by a large margin with even one given frame, validating the effectiveness of our PMG. Code is available at https://github.com/qinghuannn/PMG.
comment: Accepted to IEEE Transactions on Circuits and Systems for Video Technology (TCSVT), 2025
♻ ☆ SOAF: Scene Occlusion-aware Neural Acoustic Field
This paper tackles the problem of novel view audio-visual synthesis along an arbitrary trajectory in an indoor scene, given the audio-video recordings from other known trajectories of the scene. Existing methods often overlook the effect of room geometry, particularly wall occlusions on sound propagation, making them less accurate in multi-room environments. In this work, we propose a new approach called Scene Occlusion-aware Acoustic Field (SOAF) for accurate sound generation. Our approach derives a global prior for the sound field using distance-aware parametric sound-propagation modeling and then transforms it based on the scene structure learned from the input video. We extract features from the local acoustic field centered at the receiver using a Fibonacci Sphere to generate binaural audio for novel views with a direction-aware attention mechanism. Extensive experiments on the real dataset RWAVS and the synthetic dataset SoundSpaces demonstrate that our method outperforms previous state-of-the-art techniques in audio generation.
♻ ☆ TouchUp-G: Improving Feature Representation through Graph-Centric Finetuning
How can we enhance the node features acquired from Pretrained Models (PMs) to better suit downstream graph learning tasks? Graph Neural Networks (GNNs) have become the state-of-the-art approach for many high-impact, real-world graph applications. For feature-rich graphs, a prevalent practice involves utilizing a PM directly to generate features, without incorporating any domain adaptation techniques. Nevertheless, this practice is suboptimal because the node features extracted from PM are graph-agnostic and prevent GNNs from fully utilizing the potential correlations between the graph structure and node features, leading to a decline in GNNs performance. In this work, we seek to improve the node features obtained from a PM for downstream graph tasks and introduce TOUCHUP-G, which has several advantages. It is (a) General: applicable to any downstream graph task, including link prediction which is often employed in recommender systems; (b) Multi-modal: able to improve raw features of any modality (e.g. images, texts, audio); (c) Principled: it is closely related to a novel metric, feature homophily, which we propose to quantify the potential correlations between the graph structure and node features and we show that TOUCHUP-G can effectively shrink the discrepancy between the graph structure and node features; (d) Effective: achieving state-of-the-art results on four real-world datasets spanning different tasks and modalities.
comment: SIGIR 2024
♻ ☆ StreamChat: Chatting with Streaming Video
This paper presents StreamChat, a novel approach that enhances the interaction capabilities of Large Multimodal Models (LMMs) with streaming video content. In streaming interaction scenarios, existing methods rely solely on visual information available at the moment a question is posed, resulting in significant delays as the model remains unaware of subsequent changes in the streaming video. StreamChat addresses this limitation by innovatively updating the visual context at each decoding step, ensuring that the model utilizes up-to-date video content throughout the decoding process. Additionally, we introduce a flexible and efficient crossattention-based architecture to process dynamic streaming inputs while maintaining inference efficiency for streaming interactions. Furthermore, we construct a new dense instruction dataset to facilitate the training of streaming interaction models, complemented by a parallel 3D-RoPE mechanism that encodes the relative temporal information of visual and text tokens. Experimental results demonstrate that StreamChat achieves competitive performance on established image and video benchmarks and exhibits superior capabilities in streaming interaction scenarios compared to state-of-the-art video LMM.
♻ ☆ NeRFPrior: Learning Neural Radiance Field as a Prior for Indoor Scene Reconstruction CVPR 2025
Recently, it has shown that priors are vital for neural implicit functions to reconstruct high-quality surfaces from multi-view RGB images. However, current priors require large-scale pre-training, and merely provide geometric clues without considering the importance of color. In this paper, we present NeRFPrior, which adopts a neural radiance field as a prior to learn signed distance fields using volume rendering for surface reconstruction. Our NeRF prior can provide both geometric and color clues, and also get trained fast under the same scene without additional data. Based on the NeRF prior, we are enabled to learn a signed distance function (SDF) by explicitly imposing a multi-view consistency constraint on each ray intersection for surface inference. Specifically, at each ray intersection, we use the density in the prior as a coarse geometry estimation, while using the color near the surface as a clue to check its visibility from another view angle. For the textureless areas where the multi-view consistency constraint does not work well, we further introduce a depth consistency loss with confidence weights to infer the SDF. Our experimental results outperform the state-of-the-art methods under the widely used benchmarks.
comment: Accepted by CVPR 2025. Project page: https://wen-yuan-zhang.github.io/NeRFPrior/
♻ ☆ MonoInstance: Enhancing Monocular Priors via Multi-view Instance Alignment for Neural Rendering and Reconstruction CVPR 2025
Monocular depth priors have been widely adopted by neural rendering in multi-view based tasks such as 3D reconstruction and novel view synthesis. However, due to the inconsistent prediction on each view, how to more effectively leverage monocular cues in a multi-view context remains a challenge. Current methods treat the entire estimated depth map indiscriminately, and use it as ground truth supervision, while ignoring the inherent inaccuracy and cross-view inconsistency in monocular priors. To resolve these issues, we propose MonoInstance, a general approach that explores the uncertainty of monocular depths to provide enhanced geometric priors for neural rendering and reconstruction. Our key insight lies in aligning each segmented instance depths from multiple views within a common 3D space, thereby casting the uncertainty estimation of monocular depths into a density measure within noisy point clouds. For high-uncertainty areas where depth priors are unreliable, we further introduce a constraint term that encourages the projected instances to align with corresponding instance masks on nearby views. MonoInstance is a versatile strategy which can be seamlessly integrated into various multi-view neural rendering frameworks. Our experimental results demonstrate that MonoInstance significantly improves the performance in both reconstruction and novel view synthesis under various benchmarks.
comment: Accepted by CVPR 2025. Project page: https://wen-yuan-zhang.github.io/MonoInstance/
♻ ☆ MLLM-Selector: Necessity and Diversity-driven High-Value Data Selection for Enhanced Visual Instruction Tuning
Visual instruction tuning (VIT) has emerged as a crucial technique for enabling multi-modal large language models (MLLMs) to follow user instructions adeptly. Yet, a significant gap persists in understanding the attributes of high-quality instruction tuning data and frameworks for its automated selection. To address this, we introduce MLLM-Selector, an automated approach that identifies valuable data for VIT by weighing necessity and diversity. Our process starts by randomly sampling a subset from the VIT data pool to fine-tune a pretrained model, thus creating a seed model with an initial ability to follow instructions. Then, leveraging the seed model, we calculate necessity scores for each sample in the VIT data pool to identify samples pivotal for enhancing model performance. Our findings underscore the importance of mixing necessity and diversity in data choice, leading to the creation of MLLM-Selector, our methodology that fuses necessity scoring with strategic sampling for superior data refinement. Empirical results indicate that within identical experimental conditions, MLLM-Selector surpasses LLaVA-1.5 in some benchmarks with less than 1% of the data and consistently exceeds performance across all validated benchmarks when using less than 50%.
comment: Tech Report
♻ ☆ D-Judge: How Far Are We? Evaluating the Discrepancies Between AI-synthesized Images and Natural Images through Multimodal Guidance
In Artificial Intelligence Generated Content (AIGC), distinguishing AI-synthesized images from natural ones remains a key challenge. Despite advancements in generative models, significant discrepancies persist. To systematically investigate and quantify these discrepancies, we introduce an AI-Natural Image Discrepancy accessing benchmark (\textit{D-Judge}) aimed at addressing the critical question: \textit{how far are AI-generated images (AIGIs) from truly realistic images?} We construct \textit{D-ANI}, a dataset with 5,000 natural images and over 440,000 AIGIs generated by nine models using Text-to-Image (T2I), Image-to-Image (I2I), and Text and Image-to-Image (TI2I) prompts. Our framework evaluates the discrepancy across five dimensions: naive image quality, semantic alignment, aesthetic appeal, downstream applicability, and human validation. Results reveal notable gaps, emphasizing the importance of aligning metrics with human judgment. Source code and datasets are available at https://shorturl.at/l83W2.
♻ ☆ Representational Similarity via Interpretable Visual Concepts ICLR 2025
How do two deep neural networks differ in how they arrive at a decision? Measuring the similarity of deep networks has been a long-standing open question. Most existing methods provide a single number to measure the similarity of two networks at a given layer, but give no insight into what makes them similar or dissimilar. We introduce an interpretable representational similarity method (RSVC) to compare two networks. We use RSVC to discover shared and unique visual concepts between two models. We show that some aspects of model differences can be attributed to unique concepts discovered by one model that are not well represented in the other. Finally, we conduct extensive evaluation across different vision model architectures and training protocols to demonstrate its effectiveness.
comment: 32 pages, 5 Figures, 16 Supplemental Figures, ICLR 2025
♻ ☆ EgoMe: A New Dataset and Challenge for Following Me via Egocentric View in Real World
In human imitation learning, the imitator typically take the egocentric view as a benchmark, naturally transferring behaviors observed from an exocentric view to their owns, which provides inspiration for researching how robots can more effectively imitate human behavior. However, current research primarily focuses on the basic alignment issues of ego-exo data from different cameras, rather than collecting data from the imitator's perspective, which is inconsistent with the high-level cognitive process. To advance this research, we introduce a novel large-scale egocentric dataset, called EgoMe, which towards following the process of human imitation learning via the imitator's egocentric view in the real world. Our dataset includes 7902 paired exo-ego videos (totaling15804 videos) spanning diverse daily behaviors in various real-world scenarios. For each video pair, one video captures an exocentric view of the imitator observing the demonstrator's actions, while the other captures an egocentric view of the imitator subsequently following those actions. Notably, EgoMe uniquely incorporates exo-ego eye gaze, other multi-modal sensor IMU data and different-level annotations for assisting in establishing correlations between observing and imitating process. We further provide a suit of challenging benchmarks for fully leveraging this data resource and promoting the robot imitation learning research. Extensive analysis demonstrates significant advantages over existing datasets. Our EgoMe dataset and benchmarks are available at https://huggingface.co/datasets/HeqianQiu/EgoMe.
♻ ☆ debiaSAE: Benchmarking and Mitigating Vision-Language Model Bias
As Vision Language Models (VLMs) gain widespread use, their fairness remains under-explored. In this paper, we analyze demographic biases across five models and six datasets. We find that portrait datasets like UTKFace and CelebA are the best tools for bias detection, finding gaps in performance and fairness for both LLaVa and CLIP models. Scene-based datasets like PATA and VLStereoSet fail to be useful benchmarks for bias due to their text prompts allowing the model to guess the answer without a picture. As for pronoun-based datasets like VisoGender, we receive mixed signals as only some subsets of the data are useful in providing insights. To alleviate these two problems, we introduce a more rigorous evaluation dataset and a debiasing method based on Sparse Autoencoders to help reduce bias in models. We find that our data set generates more meaningful errors than the previous data sets. Furthermore, our debiasing method improves fairness, gaining 5-15 points in performance over the baseline. This study displays the problems with the current benchmarks for measuring demographic bias in Vision Language Models and introduces both a more effective dataset for measuring bias and a novel and interpretable debiasing method based on Sparse Autoencoders.
comment: Under Review at COLM 2025
♻ ☆ Analysis of Unstructured High-Density Crowded Scenes for Crowd Monitoring
We are interested in developing an automated system for detection of organized movements in human crowds. Computer vision algorithms can extract information from videos of crowded scenes and automatically detect and track groups of individuals undergoing organized motion that represents an anomalous behavior in the context of conflict aversion. Our system can detect organized cohorts against the background of randomly moving objects and we can estimate the number of participants in an organized cohort, the speed and direction of motion in real time, within three to four video frames, which is less than one second from the onset of motion captured on a CCTV. We have performed preliminary analysis in this context in biological cell data containing up to four thousand objects per frame and will extend this numerically to a hundred-fold for public safety applications. We envisage using the existing infrastructure of video cameras for acquiring image datasets on-the-fly and deploying an easy-to-use data-driven software system for parsing of significant events by analyzing image sequences taken inside and outside of sports stadiums or other public venues. Other prospective users are organizers of political rallies, civic and wildlife organizations, security firms, and the military. We will optimize the performance of the software by implementing a classification method able to distinguish between activities posing a threat and those not posing a threat.
♻ ☆ VideoSAVi: Self-Aligned Video Language Models without Human Supervision
Recent advances in video-large language models (Video-LLMs) have led to significant progress in video understanding. Current preference optimization methods often rely on proprietary APIs or ground-truth captions to generate preference data (i.e., pairs of model outputs ranked based on their quality or alignment with human judgment), which is then used to train models for video-language alignment. This approach is both costly and labor-intensive. To address this limitation, we introduce VideoSAVi (Self-Aligned Video Language Model), a self-training pipeline that enables Video-LLMs to reason over video content without external supervision. Our approach includes a self-critiquing mechanism that identifies reasoning errors in the model's initial responses and generates improved alternatives, creating preference pairs directly from video content. VideoSAVi then applies Direct Preference Optimization (DPO), which uses the preference data to iteratively train the model, enhancing temporal and spatial reasoning in video understanding. Experiments show that VideoSAVi achieves state-of-the-art performance on MVBench (74.0%) and delivers significant improvements across other benchmarks, including a 3.9% gain on PerceptionTest and a substantial 6.8% improvement on the challenging EgoSchema dataset compared to baseline models. Our model-agnostic approach is computationally efficient, requiring only 32 frames, offering a promising direction for self-aligned video understanding without reliance on external models or annotations.
♻ ☆ Enhancing Adversarial Transferability via Component-Wise Transformation
Deep Neural Networks (DNNs) are highly vulnerable to adversarial examples, which pose significant challenges in security-sensitive applications. Among various adversarial attack strategies, input transformation-based attacks have demonstrated remarkable effectiveness in enhancing adversarial transferability. However, existing methods still perform poorly across different architectures, even though they have achieved promising results within the same architecture. This limitation arises because, while models of the same architecture may focus on different regions of the object, the variation is even more pronounced across different architectures. Unfortunately, current approaches fail to effectively guide models to attend to these diverse regions. To address this issue, this paper proposes a novel input transformation-based attack method, termed Component-Wise Transformation (CWT). CWT applies interpolation and selective rotation to individual image blocks, ensuring that each transformed image highlights different target regions, thereby improving the transferability of adversarial examples. Extensive experiments on the standard ImageNet dataset show that CWT consistently outperforms state-of-the-art methods in both attack success rates and stability across CNN- and Transformer-based models.
comment: 15 pages
Machine Learning 49
☆ FIESTA: Fisher Information-based Efficient Selective Test-time Adaptation
Robust facial expression recognition in unconstrained, "in-the-wild" environments remains challenging due to significant domain shifts between training and testing distributions. Test-time adaptation (TTA) offers a promising solution by adapting pre-trained models during inference without requiring labeled test data. However, existing TTA approaches typically rely on manually selecting which parameters to update, potentially leading to suboptimal adaptation and high computational costs. This paper introduces a novel Fisher-driven selective adaptation framework that dynamically identifies and updates only the most critical model parameters based on their importance as quantified by Fisher information. By integrating this principled parameter selection approach with temporal consistency constraints, our method enables efficient and effective adaptation specifically tailored for video-based facial expression recognition. Experiments on the challenging AffWild2 benchmark demonstrate that our approach significantly outperforms existing TTA methods, achieving a 7.7% improvement in F1 score over the base model while adapting only 22,000 parameters-more than 20 times fewer than comparable methods. Our ablation studies further reveal that parameter importance can be effectively estimated from minimal data, with sampling just 1-3 frames sufficient for substantial performance gains. The proposed approach not only enhances recognition accuracy but also dramatically reduces computational overhead, making test-time adaptation more practical for real-world affective computing applications.
☆ Beyond Contrastive Learning: Synthetic Data Enables List-wise Training with Multiple Levels of Relevance
Recent advancements in large language models (LLMs) have allowed the augmentation of information retrieval (IR) pipelines with synthetic data in various ways. Yet, the main training paradigm remains: contrastive learning with binary relevance labels and the InfoNCE loss, where one positive document is compared against one or more negatives. This objective treats all documents that are not explicitly annotated as relevant on an equally negative footing, regardless of their actual degree of relevance, thus (a) missing subtle nuances that are useful for ranking and (b) being susceptible to annotation noise. To overcome this limitation, in this work we forgo real training documents and annotations altogether and use open-source LLMs to directly generate synthetic documents that answer real user queries according to several different levels of relevance. This fully synthetic ranking context of graduated relevance, together with an appropriate list-wise loss (Wasserstein distance), enables us to train dense retrievers in a way that better captures the ranking task. Experiments on various IR datasets show that our proposed approach outperforms conventional training with InfoNCE by a large margin. Without using any real documents for training, our dense retriever significantly outperforms the same retriever trained through self-supervision. More importantly, it matches the performance of the same retriever trained on real, labeled training documents of the same dataset, while being more robust to distribution shift and clearly outperforming it when evaluated zero-shot on the BEIR dataset collection.
comment: Code: https://github.com/BatsResearch/sycl
☆ UP-ROM : Uncertainty-Aware and Parametrised dynamic Reduced-Order Model, application to unsteady flows
Reduced order models (ROMs) play a critical role in fluid mechanics by providing low-cost predictions, making them an attractive tool for engineering applications. However, for ROMs to be widely applicable, they must not only generalise well across different regimes, but also provide a measure of confidence in their predictions. While recent data-driven approaches have begun to address nonlinear reduction techniques to improve predictions in transient environments, challenges remain in terms of robustness and parametrisation. In this work, we present a nonlinear reduction strategy specifically designed for transient flows that incorporates parametrisation and uncertainty quantification. Our reduction strategy features a variational auto-encoder (VAE) that uses variational inference for confidence measurement. We use a latent space transformer that incorporates recent advances in attention mechanisms to predict dynamical systems. Attention's versatility in learning sequences and capturing their dependence on external parameters enhances generalisation across a wide range of dynamics. Prediction, coupled with confidence, enables more informed decision making and addresses the need for more robust models. In addition, this confidence is used to cost-effectively sample the parameter space, improving model performance a priori across the entire parameter space without requiring evaluation data for the entire domain.
☆ Citegeist: Automated Generation of Related Work Analysis on the arXiv Corpus
Large Language Models provide significant new opportunities for the generation of high-quality written works. However, their employment in the research community is inhibited by their tendency to hallucinate invalid sources and lack of direct access to a knowledge base of relevant scientific articles. In this work, we present Citegeist: An application pipeline using dynamic Retrieval Augmented Generation (RAG) on the arXiv Corpus to generate a related work section and other citation-backed outputs. For this purpose, we employ a mixture of embedding-based similarity matching, summarization, and multi-stage filtering. To adapt to the continuous growth of the document base, we also present an optimized way of incorporating new and modified papers. To enable easy utilization in the scientific community, we release both, a website (https://citegeist.org), as well as an implementation harness that works with several different LLM implementations.
☆ Aurelia: Test-time Reasoning Distillation in Audio-Visual LLMs
Recent advancements in reasoning optimization have greatly enhanced the performance of large language models (LLMs). However, existing work fails to address the complexities of audio-visual scenarios, underscoring the need for further research. In this paper, we introduce AURELIA, a novel actor-critic based audio-visual (AV) reasoning framework that distills structured, step-by-step reasoning into AVLLMs at test time, improving their ability to process complex multi-modal inputs without additional training or fine-tuning. To further advance AVLLM reasoning skills, we present AVReasonBench, a challenging benchmark comprising 4500 audio-visual questions, each paired with detailed step-by-step reasoning. Our benchmark spans six distinct tasks, including AV-GeoIQ, which evaluates AV reasoning combined with geographical and cultural knowledge. Evaluating 18 AVLLMs on AVReasonBench reveals significant limitations in their multi-modal reasoning capabilities. Using AURELIA, we achieve up to a 100% relative improvement, demonstrating its effectiveness. This performance gain highlights the potential of reasoning-enhanced data generation for advancing AVLLMs in real-world applications. Our code and data will be publicly released at: https: //github.com/schowdhury671/aurelia.
☆ Unsupervised Learning: Comparative Analysis of Clustering Techniques on High-Dimensional Data
This paper presents a comprehensive comparative analysis of prominent clustering algorithms K-means, DBSCAN, and Spectral Clustering on high-dimensional datasets. We introduce a novel evaluation framework that assesses clustering performance across multiple dimensionality reduction techniques (PCA, t-SNE, and UMAP) using diverse quantitative metrics. Experiments conducted on MNIST, Fashion-MNIST, and UCI HAR datasets reveal that preprocessing with UMAP consistently improves clustering quality across all algorithms, with Spectral Clustering demonstrating superior performance on complex manifold structures. Our findings show that algorithm selection should be guided by data characteristics, with Kmeans excelling in computational efficiency, DBSCAN in handling irregular clusters, and Spectral Clustering in capturing complex relationships. This research contributes a systematic approach for evaluating and selecting clustering techniques for high dimensional data applications.
☆ RECALL-MM: A Multimodal Dataset of Consumer Product Recalls for Risk Analysis using Computational Methods and Large Language Models
Product recalls provide valuable insights into potential risks and hazards within the engineering design process, yet their full potential remains underutilized. In this study, we curate data from the United States Consumer Product Safety Commission (CPSC) recalls database to develop a multimodal dataset, RECALL-MM, that informs data-driven risk assessment using historical information, and augment it using generative methods. Patterns in the dataset highlight specific areas where improved safety measures could have significant impact. We extend our analysis by demonstrating interactive clustering maps that embed all recalls into a shared latent space based on recall descriptions and product names. Leveraging these data-driven tools, we explore three case studies to demonstrate the dataset's utility in identifying product risks and guiding safer design decisions. The first two case studies illustrate how designers can visualize patterns across recalled products and situate new product ideas within the broader recall landscape to proactively anticipate hazards. In the third case study, we extend our approach by employing a large language model (LLM) to predict potential hazards based solely on product images. This demonstrates the model's ability to leverage visual context to identify risk factors, revealing strong alignment with historical recall data across many hazard categories. However, the analysis also highlights areas where hazard prediction remains challenging, underscoring the importance of risk awareness throughout the design process. Collectively, this work aims to bridge the gap between historical recall data and future product safety, presenting a scalable, data-driven approach to safer engineering design.
☆ Convolutional Neural Networks Can (Meta-)Learn the Same-Different Relation
While convolutional neural networks (CNNs) have come to match and exceed human performance in many settings, the tasks these models optimize for are largely constrained to the level of individual objects, such as classification and captioning. Humans remain vastly superior to CNNs in visual tasks involving relations, including the ability to identify two objects as `same' or `different'. A number of studies have shown that while CNNs can be coaxed into learning the same-different relation in some settings, they tend to generalize poorly to other instances of this relation. In this work we show that the same CNN architectures that fail to generalize the same-different relation with conventional training are able to succeed when trained via meta-learning, which explicitly encourages abstraction and generalization across tasks.
☆ A QUBO Framework for Team Formation
The team formation problem assumes a set of experts and a task, where each expert has a set of skills and the task requires some skills. The objective is to find a set of experts that maximizes coverage of the required skills while simultaneously minimizing the costs associated with the experts. Different definitions of cost have traditionally led to distinct problem formulations and algorithmic solutions. We introduce the unified TeamFormation formulation that captures all cost definitions for team formation problems that balance task coverage and expert cost. Specifically, we formulate three TeamFormation variants with different cost functions using quadratic unconstrained binary optimization (QUBO), and we evaluate two distinct general-purpose solution methods. We show that solutions based on the QUBO formulations of TeamFormation problems are at least as good as those produced by established baselines. Furthermore, we show that QUBO-based solutions leveraging graph neural networks can effectively learn representations of experts and skills to enable transfer learning, allowing node embeddings from one problem instance to be efficiently applied to another.
☆ The Challenge of Achieving Attributability in Multilingual Table-to-Text Generation with Question-Answer Blueprints
Multilingual Natural Language Generation (NLG) is challenging due to the lack of training data for low-resource languages. However, some low-resource languages have up to tens of millions of speakers globally, making it important to improve NLG tools for them. Table-to-Text NLG is an excellent measure of models' reasoning abilities but is very challenging in the multilingual setting. System outputs are often not attributable, or faithful, to the data in the source table. Intermediate planning techniques like Question-Answer (QA) blueprints have been shown to improve attributability on summarisation tasks. This work explores whether QA blueprints make multilingual Table-to-Text outputs more attributable to the input tables. This paper extends the challenging multilingual Table-to-Text dataset, TaTA, which includes African languages, with QA blueprints. Sequence-to-sequence language models are then finetuned on this dataset, with and without blueprints. Results show that QA blueprints improve performance for models finetuned and evaluated only on English examples, but do not demonstrate gains in the multilingual setting. This is due to inaccuracies in machine translating the blueprints from English into target languages when generating the training data, and models failing to rely closely on the blueprints they generate. An in-depth analysis is conducted on why this is challenging.
☆ Large Language Models are Unreliable for Cyber Threat Intelligence
Several recent works have argued that Large Language Models (LLMs) can be used to tame the data deluge in the cybersecurity field, by improving the automation of Cyber Threat Intelligence (CTI) tasks. This work presents an evaluation methodology that other than allowing to test LLMs on CTI tasks when using zero-shot learning, few-shot learning and fine-tuning, also allows to quantify their consistency and their confidence level. We run experiments with three state-of-the-art LLMs and a dataset of 350 threat intelligence reports and present new evidence of potential security risks in relying on LLMs for CTI. We show how LLMs cannot guarantee sufficient performance on real-size reports while also being inconsistent and overconfident. Few-shot learning and fine-tuning only partially improve the results, thus posing doubts about the possibility of using LLMs for CTI scenarios, where labelled datasets are lacking and where confidence is a fundamental factor.
☆ TRA: Better Length Generalisation with Threshold Relative Attention
Transformers struggle with length generalisation, displaying poor performance even on basic tasks. We test whether these limitations can be explained through two key failures of the self-attention mechanism. The first is the inability to fully remove irrelevant information. The second is tied to position, even if the dot product between a key and query is highly negative (i.e. an irrelevant key) learned positional biases may unintentionally up-weight such information - dangerous when distances become out of distribution. Put together, these two failure cases lead to compounding generalisation difficulties. We test whether they can be mitigated through the combination of a) selective sparsity - completely removing irrelevant keys from the attention softmax and b) contextualised relative distance - distance is only considered as between the query and the keys that matter. We show how refactoring the attention mechanism with these two mitigations in place can substantially improve generalisation capabilities of decoder only transformers.
☆ Graph ODEs and Beyond: A Comprehensive Survey on Integrating Differential Equations with Graph Neural Networks
Graph Neural Networks (GNNs) and differential equations (DEs) are two rapidly advancing areas of research that have shown remarkable synergy in recent years. GNNs have emerged as powerful tools for learning on graph-structured data, while differential equations provide a principled framework for modeling continuous dynamics across time and space. The intersection of these fields has led to innovative approaches that leverage the strengths of both, enabling applications in physics-informed learning, spatiotemporal modeling, and scientific computing. This survey aims to provide a comprehensive overview of the burgeoning research at the intersection of GNNs and DEs. We will categorize existing methods, discuss their underlying principles, and highlight their applications across domains such as molecular modeling, traffic prediction, and epidemic spreading. Furthermore, we identify open challenges and outline future research directions to advance this interdisciplinary field. A comprehensive paper list is provided at https://github.com/Emory-Melody/Awesome-Graph-NDEs. This survey serves as a resource for researchers and practitioners seeking to understand and contribute to the fusion of GNNs and DEs
☆ Reasoning-SQL: Reinforcement Learning with SQL Tailored Partial Rewards for Reasoning-Enhanced Text-to-SQL
Text-to-SQL is a challenging task involving multiple reasoning-intensive subtasks, including natural language understanding, database schema comprehension, and precise SQL query formulation. Existing approaches often rely on handcrafted reasoning paths with inductive biases that can limit their overall effectiveness. Motivated by the recent success of reasoning-enhanced models such as DeepSeek R1 and OpenAI o1, which effectively leverage reward-driven self-exploration to enhance reasoning capabilities and generalization, we propose a novel set of partial rewards tailored specifically for the Text-to-SQL task. Our reward set includes schema-linking, AI feedback, n-gram similarity, and syntax check, explicitly designed to address the reward sparsity issue prevalent in reinforcement learning (RL). Leveraging group relative policy optimization (GRPO), our approach explicitly encourages large language models (LLMs) to develop intrinsic reasoning skills necessary for accurate SQL query generation. With models of different sizes, we demonstrate that RL-only training with our proposed rewards consistently achieves higher accuracy and superior generalization compared to supervised fine-tuning (SFT). Remarkably, our RL-trained 14B-parameter model significantly outperforms larger proprietary models, e.g. o3-mini by 4% and Gemini-1.5-Pro-002 by 3% on the BIRD benchmark. These highlight the efficacy of our proposed RL-training framework with partial rewards for enhancing both accuracy and reasoning capabilities in Text-to-SQL tasks.
☆ Agent-Based Modeling and Deep Neural Networks for Establishing Digital Twins of Secure Facilities under Sensing Restrictions
Digital twin technologies help practitioners simulate, monitor, and predict undesirable outcomes in-silico, while avoiding the cost and risks of conducting live simulation exercises. Virtual reality (VR) based digital twin technologies are especially useful when monitoring human Patterns of Life (POL) in secure nuclear facilities, where live simulation exercises are too dangerous and costly to ever perform. However, the high-security status of such facilities may restrict modelers from deploying human activity sensors for data collection. This problem was encountered when deploying MetaPOL, a digital twin system to prevent insider threat or sabotage of secure facilities, at a secure nuclear reactor facility at Oak Ridge National Laboratory (ORNL). This challenge was addressed using an agent-based model (ABM), driven by anecdotal evidence of facility personnel POL, to generate synthetic movement trajectories. These synthetic trajectories were then used to train deep neural network surrogates for next location and stay duration prediction to drive NPCs in the VR environment. In this study, we evaluate the efficacy of this technique for establishing NPC movement within MetaPOL and the ability to distinguish NPC movement during normal operations from that during a simulated emergency response. Our results demonstrate the success of using a multi-layer perceptron for next location prediction and mixture density network for stay duration prediction to predict the ABM generated trajectories. We also find that NPC movement in the VR environment driven by the deep neural networks under normal operations remain significantly different to that seen when simulating responses to a simulated emergency scenario.
comment: This paper has been already published in the 2024 Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC'24): https://www.iitsec.org/-/media/sites/iitsec/agenda/2024/iitsec2024program3professionaldevelopment112124.pdf The authors have obtained permission from I/ITSEC'24 organizers to release this paper on arXiv. Appropriate licensing is also applied
☆ CodeARC: Benchmarking Reasoning Capabilities of LLM Agents for Inductive Program Synthesis
Inductive program synthesis, or programming by example, requires synthesizing functions from input-output examples that generalize to unseen inputs. While large language model agents have shown promise in programming tasks guided by natural language, their ability to perform inductive program synthesis is underexplored. Existing evaluation protocols rely on static sets of examples and held-out tests, offering no feedback when synthesized functions are incorrect and failing to reflect real-world scenarios such as reverse engineering. We propose CodeARC, the Code Abstraction and Reasoning Challenge, a new evaluation framework where agents interact with a hidden target function by querying it with new inputs, synthesizing candidate functions, and iteratively refining their solutions using a differential testing oracle. This interactive setting encourages agents to perform function calls and self-correction based on feedback. We construct the first large-scale benchmark for general-purpose inductive program synthesis, featuring 1114 functions. Among 18 models evaluated, o3-mini performs best with a success rate of 52.7%, highlighting the difficulty of this task. Fine-tuning LLaMA-3.1-8B-Instruct on curated synthesis traces yields up to a 31% relative performance gain. CodeARC provides a more realistic and challenging testbed for evaluating LLM-based program synthesis and inductive reasoning.
☆ How to safely discard features based on aggregate SHAP values
SHAP is one of the most popular local feature-attribution methods. Given a function f and an input x, it quantifies each feature's contribution to f(x). Recently, SHAP has been increasingly used for global insights: practitioners average the absolute SHAP values over many data points to compute global feature importance scores, which are then used to discard unimportant features. In this work, we investigate the soundness of this practice by asking whether small aggregate SHAP values necessarily imply that the corresponding feature does not affect the function. Unfortunately, the answer is no: even if the i-th SHAP value is 0 on the entire data support, there exist functions that clearly depend on Feature i. The issue is that computing SHAP values involves evaluating f on points outside of the data support, where f can be strategically designed to mask its dependence on Feature i. To address this, we propose to aggregate SHAP values over the extended support, which is the product of the marginals of the underlying distribution. With this modification, we show that a small aggregate SHAP value implies that we can safely discard the corresponding feature. We then extend our results to KernelSHAP, the most popular method to approximate SHAP values in practice. We show that if KernelSHAP is computed over the extended distribution, a small aggregate value justifies feature removal. This result holds independently of whether KernelSHAP accurately approximates true SHAP values, making it one of the first theoretical results to characterize the KernelSHAP algorithm itself. Our findings have both theoretical and practical implications. We introduce the Shapley Lie algebra, which offers algebraic insights that may enable a deeper investigation of SHAP and we show that randomly permuting each column of the data matrix enables safely discarding features based on aggregate SHAP and KernelSHAP values.
☆ SupertonicTTS: Towards Highly Scalable and Efficient Text-to-Speech System
We present a novel text-to-speech (TTS) system, namely SupertonicTTS, for improved scalability and efficiency in speech synthesis. SupertonicTTS is comprised of three components: a speech autoencoder for continuous latent representation, a text-to-latent module leveraging flow-matching for text-to-latent mapping, and an utterance-level duration predictor. To enable a lightweight architecture, we employ a low-dimensional latent space, temporal compression of latents, and ConvNeXt blocks. We further simplify the TTS pipeline by operating directly on raw character-level text and employing cross-attention for text-speech alignment, thus eliminating the need for grapheme-to-phoneme (G2P) modules and external aligners. In addition, we introduce context-sharing batch expansion that accelerates loss convergence and stabilizes text-speech alignment. Experimental results demonstrate that SupertonicTTS achieves competitive performance while significantly reducing architectural complexity and computational overhead compared to contemporary TTS models. Audio samples demonstrating the capabilities of SupertonicTTS are available at: https://supertonictts.github.io/.
comment: 19 pages, preprint
☆ Fast Training of Recurrent Neural Networks with Stationary State Feedbacks
Recurrent neural networks (RNNs) have recently demonstrated strong performance and faster inference than Transformers at comparable parameter budgets. However, the recursive gradient computation with the backpropagation through time (or BPTT) algorithm remains the major computational bottleneck. In this work, we propose a novel method that replaces BPTT with a fixed gradient feedback mechanism, yielding an efficient approximation of the exact gradient propagation based on the assumption of time stationarity. Our approach leverages state-space model (SSM) principles to define a structured feedback matrix that directly propagates gradients from future time steps. This formulation bypasses the need for recursive gradient backpropagation, significantly reducing training overhead while preserving the network's ability to capture long-term dependencies. The experiments on language modeling benchmarks exhibit competitive perplexity scores, while significantly reducing the training costs. These promising results suggest that designing a feedback method like an SSM can fully exploit the efficiency advantages of RNNs for many practical applications.
comment: 18 pages (including additional contents), 3 figures, 5 tables, code available at https://github.com/p0lcAi/DSF
☆ The geomagnetic storm and Kp prediction using Wasserstein transformer
The accurate forecasting of geomagnetic activity is important. In this work, we present a novel multimodal Transformer based framework for predicting the 3 days and 5 days planetary Kp index by integrating heterogeneous data sources, including satellite measurements, solar images, and KP time series. A key innovation is the incorporation of the Wasserstein distance into the transformer and the loss function to align the probability distributions across modalities. Comparative experiments with the NOAA model demonstrate performance, accurately capturing both the quiet and storm phases of geomagnetic activity. This study underscores the potential of integrating machine learning techniques with traditional models for improved real time forecasting.
☆ RL2Grid: Benchmarking Reinforcement Learning in Power Grid Operations
Reinforcement learning (RL) can transform power grid operations by providing adaptive and scalable controllers essential for grid decarbonization. However, existing methods struggle with the complex dynamics, aleatoric uncertainty, long-horizon goals, and hard physical constraints that occur in real-world systems. This paper presents RL2Grid, a benchmark designed in collaboration with power system operators to accelerate progress in grid control and foster RL maturity. Built on a power simulation framework developed by RTE France, RL2Grid standardizes tasks, state and action spaces, and reward structures within a unified interface for a systematic evaluation and comparison of RL approaches. Moreover, we integrate real control heuristics and safety constraints informed by the operators' expertise to ensure RL2Grid aligns with grid operation requirements. We benchmark popular RL baselines on the grid control tasks represented within RL2Grid, establishing reference performance metrics. Our results and discussion highlight the challenges that power grids pose for RL methods, emphasizing the need for novel algorithms capable of handling real-world physical systems.
☆ Beyond Standard MoE: Mixture of Latent Experts for Resource-Efficient Language Models
Mixture of Experts (MoE) has emerged as a pivotal architectural paradigm for efficient scaling of Large Language Models (LLMs), operating through selective activation of parameter subsets for each input token. Nevertheless, conventional MoE architectures encounter substantial challenges, including excessive memory utilization and communication overhead during training and inference, primarily attributable to the proliferation of expert modules. In this paper, we introduce Mixture of Latent Experts (MoLE), a novel parameterization methodology that facilitates the mapping of specific experts into a shared latent space. Specifically, all expert operations are systematically decomposed into two principal components: a shared projection into a lower-dimensional latent space, followed by expert-specific transformations with significantly reduced parametric complexity. This factorized approach substantially diminishes parameter count and computational requirements. Beyond the pretraining implementation of the MoLE architecture, we also establish a rigorous mathematical framework for transforming pre-trained MoE models into the MoLE architecture, characterizing the sufficient conditions for optimal factorization and developing a systematic two-phase algorithm for this conversion process. Our comprehensive theoretical analysis demonstrates that MoLE significantly enhances computational efficiency across multiple dimensions while preserving model representational capacity. Empirical evaluations corroborate our theoretical findings, confirming that MoLE achieves performance comparable to standard MoE implementations while substantially reducing resource requirements.
☆ InkFM: A Foundational Model for Full-Page Online Handwritten Note Understanding
Tablets and styluses are increasingly popular for taking notes. To optimize this experience and ensure a smooth and efficient workflow, it's important to develop methods for accurately interpreting and understanding the content of handwritten digital notes. We introduce a foundational model called InkFM for analyzing full pages of handwritten content. Trained on a diverse mixture of tasks, this model offers a unique combination of capabilities: recognizing text in 28 different scripts, mathematical expressions recognition, and segmenting pages into distinct elements like text and drawings. Our results demonstrate that these tasks can be effectively unified within a single model, achieving SoTA text line segmentation out-of-the-box quality surpassing public baselines like docTR. Fine- or LoRA-tuning our base model on public datasets further improves the quality of page segmentation, achieves state-of the art text recognition (DeepWriting, CASIA, SCUT, and Mathwriting datasets) and sketch classification (QuickDraw). This adaptability of InkFM provides a powerful starting point for developing applications with handwritten input.
☆ Concorde: Fast and Accurate CPU Performance Modeling with Compositional Analytical-ML Fusion
Cycle-level simulators such as gem5 are widely used in microarchitecture design, but they are prohibitively slow for large-scale design space explorations. We present Concorde, a new methodology for learning fast and accurate performance models of microarchitectures. Unlike existing simulators and learning approaches that emulate each instruction, Concorde predicts the behavior of a program based on compact performance distributions that capture the impact of different microarchitectural components. It derives these performance distributions using simple analytical models that estimate bounds on performance induced by each microarchitectural component, providing a simple yet rich representation of a program's performance characteristics across a large space of microarchitectural parameters. Experiments show that Concorde is more than five orders of magnitude faster than a reference cycle-level simulator, with about 2% average Cycles-Per-Instruction (CPI) prediction error across a range of SPEC, open-source, and proprietary benchmarks. This enables rapid design-space exploration and performance sensitivity analyses that are currently infeasible, e.g., in about an hour, we conducted a first-of-its-kind fine-grained performance attribution to different microarchitectural components across a diverse set of programs, requiring nearly 150 million CPI evaluations.
comment: 15 pages, 17 figures, To be published in ISCA 2025
☆ TRACE: Intra-visit Clinical Event Nowcasting via Effective Patient Trajectory Encoding WWW'25
Electronic Health Records (EHR) have become a valuable resource for a wide range of predictive tasks in healthcare. However, existing approaches have largely focused on inter-visit event predictions, overlooking the importance of intra-visit nowcasting, which provides prompt clinical insights during an ongoing patient visit. To address this gap, we introduce the task of laboratory measurement prediction within a hospital visit. We study the laboratory data that, however, remained underexplored in previous work. We propose TRACE, a Transformer-based model designed for clinical event nowcasting by encoding patient trajectories. TRACE effectively handles long sequences and captures temporal dependencies through a novel timestamp embedding that integrates decay properties and periodic patterns of data. Additionally, we introduce a smoothed mask for denoising, improving the robustness of the model. Experiments on two large-scale electronic health record datasets demonstrate that the proposed model significantly outperforms previous methods, highlighting its potential for improving patient care through more accurate laboratory measurement nowcasting. The code is available at https://github.com/Amehi/TRACE.
comment: Accepted by WWW'25 short paper track
☆ Unsupervised Anomaly Detection in Multivariate Time Series across Heterogeneous Domains
The widespread adoption of digital services, along with the scale and complexity at which they operate, has made incidents in IT operations increasingly more likely, diverse, and impactful. This has led to the rapid development of a central aspect of "Artificial Intelligence for IT Operations" (AIOps), focusing on detecting anomalies in vast amounts of multivariate time series data generated by service entities. In this paper, we begin by introducing a unifying framework for benchmarking unsupervised anomaly detection (AD) methods, and highlight the problem of shifts in normal behaviors that can occur in practical AIOps scenarios. To tackle anomaly detection under domain shift, we then cast the problem in the framework of domain generalization and propose a novel approach, Domain-Invariant VAE for Anomaly Detection (DIVAD), to learn domain-invariant representations for unsupervised anomaly detection. Our evaluation results using the Exathlon benchmark show that the two main DIVAD variants significantly outperform the best unsupervised AD method in maximum performance, with 20% and 15% improvements in maximum peak F1-scores, respectively. Evaluation using the Application Server Dataset further demonstrates the broader applicability of our domain generalization methods.
♻ ☆ Effective Skill Unlearning through Intervention and Abstention
Large language Models (LLMs) have demonstrated remarkable skills across various domains. Understanding the mechanisms behind their abilities and implementing controls over them is becoming increasingly important for developing better models. In this paper, we focus on skill unlearning in LLMs, specifically unlearning a particular skill while retaining their overall capabilities. We introduce two lightweight, training-free machine skill unlearning techniques for LLMs. First, we observe that the pre-activation distribution of neurons in each Feed-Forward Layer (FFL) differs when the model demonstrates different skills. Additionally, we find that queries triggering the same skill cluster within the FFL key space and can be separated from other queries using a hypercube. Based on these observations, we propose two lightweight, training-free skill unlearning methods via \textit{intervention} and \textit{abstention} respectively: \texttt{Neuron Adjust} and \texttt{Key Space Detection}. We evaluate our methods on unlearning math-solving, Python-coding, and comprehension skills across seven different languages. The results demonstrate their strong unlearning capabilities for the designated skills. Specifically, \texttt{Key Space Detection} achieves over 80\% relative performance drop on the forgetting skill and less than 10\% relative performance drop on other skills and the model's general knowledge (MMLU) for most unlearning tasks. Our code is available at https://github.com/Trustworthy-ML-Lab/effective_skill_unlearning
comment: Accepted to NAACL 2025 main conference
♻ ☆ Mechanism and Emergence of Stacked Attention Heads in Multi-Layer Transformers
In this paper, I introduce the retrieval problem, a simple yet common reasoning task that can be solved only by transformers with a minimum number of layers, which grows logarithmically with the input size. I empirically show that large language models can solve the task under different prompting formulations without any fine-tuning. To understand how transformers solve the retrieval problem, I train several transformers on a minimal formulation. Successful learning occurs only under the presence of an implicit curriculum. I uncover the learned mechanisms by studying the attention maps in the trained transformers. I also study the training process, uncovering that attention heads always emerge in a specific sequence guided by the implicit curriculum.
♻ ☆ Reachable Polyhedral Marching (RPM): An Exact Analysis Tool for Deep-Learned Control Systems
Neural networks are increasingly used in robotics as policies, state transition models, state estimation models, or all of the above. With these components being learned from data, it is important to be able to analyze what behaviors were learned and how this affects closed-loop performance. In this paper we take steps toward this goal by developing methods for computing control invariant sets and regions of attraction (ROAs) of dynamical systems represented as neural networks. We focus our attention on feedforward neural networks with the rectified linear unit (ReLU) activation, which are known to implement continuous piecewise-affine (PWA) functions. We describe the Reachable Polyhedral Marching (RPM) algorithm for enumerating the affine pieces of a neural network through an incremental connected walk. We then use this algorithm to compute exact forward and backward reachable sets, from which we provide methods for computing control invariant sets and ROAs. Our approach is unique in that we find these sets incrementally, without Lyapunov-based tools. In our examples we demonstrate the ability of our approach to find non-convex control invariant sets and ROAs on tasks with learned van der Pol oscillator and pendulum models. Further, we provide an accelerated algorithm for computing ROAs that leverages the incremental and connected enumeration of affine regions that RPM provides. We show this acceleration to lead to a 15x speedup in our examples. Finally, we apply our methods to find a set of states that are stabilized by an image-based controller for an aircraft runway control problem.
comment: Submitted to IEEE Transactions on Neural Networks and Learning Systems. arXiv admin note: text overlap with arXiv:2011.11609
♻ ☆ Monge-Kantorovich Fitting With Sobolev Budgets
Given $m < n$, we consider the problem of ``best'' approximating an $n\text{-d}$ probability measure $\rho$ via an $m\text{-d}$ measure $\nu$ such that $\mathrm{supp}\ \nu$ has bounded total ``complexity.'' When $\rho$ is concentrated near an $m\text{-d}$ set we may interpret this as a manifold learning problem with noisy data. However, we do not restrict our analysis to this case, as the more general formulation has broader applications. We quantify $\nu$'s performance in approximating $\rho$ via the Monge-Kantorovich (also called Wasserstein) $p$-cost $\mathbb{W}_p^p(\rho, \nu)$, and constrain the complexity by requiring $\mathrm{supp}\ \nu$ to be coverable by an $f : \mathbb{R}^{m} \to \mathbb{R}^{n}$ whose $W^{k,q}$ Sobolev norm is bounded by $\ell \geq 0$. This allows us to reformulate the problem as minimizing a functional $\mathscr J_p(f)$ under the Sobolev ``budget'' $\ell$. This problem is closely related to (but distinct from) principal curves with length constraints when $m=1, k = 1$ and an unsupervised analogue of smoothing splines when $k > 1$. New challenges arise from the higher-order differentiability condition. We study the ``gradient'' of $\mathscr J_p$, which is given by a certain vector field that we call the barycenter field, and use it to prove a nontrivial (almost) strict monotonicity result. We also provide a natural discretization scheme and establish its consistency. We use this scheme as a toy model for a generative learning task, and by analogy, propose novel interpretations for the role regularization plays in improving training.
comment: Expanded abstract and {\S}6; added conclusion ({\S}7); minor correction to implementation of constraint gradient in {\S}5.3.2; removed unused references; misc typo corrections. 69 pages, 51 pages without figures
♻ ☆ Accelerated Distributed Optimization with Compression and Error Feedback
Modern machine learning tasks often involve massive datasets and models, necessitating distributed optimization algorithms with reduced communication overhead. Communication compression, where clients transmit compressed updates to a central server, has emerged as a key technique to mitigate communication bottlenecks. However, the theoretical understanding of stochastic distributed optimization with contractive compression remains limited, particularly in conjunction with Nesterov acceleration -- a cornerstone for achieving faster convergence in optimization. In this paper, we propose a novel algorithm, ADEF (Accelerated Distributed Error Feedback), which integrates Nesterov acceleration, contractive compression, error feedback, and gradient difference compression. We prove that ADEF achieves the first accelerated convergence rate for stochastic distributed optimization with contractive compression in the general convex regime. Numerical experiments validate our theoretical findings and demonstrate the practical efficacy of ADEF in reducing communication costs while maintaining fast convergence.
♻ ☆ Simulation-based Bayesian Inference from Privacy Protected Data
Many modern statistical analysis and machine learning applications require training models on sensitive user data. Under a formal definition of privacy protection, differentially private algorithms inject calibrated noise into the confidential data or during the data analysis process to produce privacy-protected datasets or queries. However, restricting access to only privatized data during statistical analysis makes it computationally challenging to make valid statistical inferences. In this work, we propose simulation-based inference methods from privacy-protected datasets. In addition to sequential Monte Carlo approximate Bayesian computation, we adopt neural conditional density estimators as a flexible family of distributions to approximate the posterior distribution of model parameters given the observed private query results. We illustrate our methods on discrete time-series data under an infectious disease model and with ordinary linear regression models. Illustrating the privacy-utility trade-off, our experiments and analysis demonstrate the necessity and feasibility of designing valid statistical inference procedures to correct for biases introduced by the privacy-protection mechanisms.
comment: 28 pages, 15 figures
♻ ☆ Barking Up The Syntactic Tree: Enhancing VLM Training with Syntactic Losses
Vision-Language Models (VLMs) implicitly learn to associate image regions with words from large-scale training data, demonstrating an emergent capability for grounding concepts without dense annotations[14,18,51]. However, the coarse-grained supervision from image-caption pairs is often insufficient to resolve ambiguities in object-concept correspondence, even with enormous data volume. Rich semantic and syntactic structures within the text modality have been overlooked as sources of supervision. Starting from contrastive architectures (BLIP and ALBEF) that show strong intrinsic grounding abilities, we propose HIerarchically STructured Learning (HIST). HIST enhances spatial vision-language alignment without using additional human annotations, by hierarchically decomposing captions into the constituent Subjects, Phrases, and Composite Phrases, and enforcing entailment relation between a parent and its children in the hierarchy. Specifically, we introduce two novel loss functions: (1) Subject Loss, which aligns image content with the subject of the corresponding phrase, acting as an entailment of standard contrastive/matching losses at the Phrase level; (2) Composition Loss, to balance attention across multiple objects. HIST is general, and can be applied to any VLM for which attention between vision and language can be computed. Compared to baseline VLMs, HIST achieves up to +9.8% improvement in visual grounding and +6.3% in multi-object referring segmentation. Surprisingly, the improved spatial grounding leads to improvements in other downstream VLM tasks: +1.1% in image-text retrieval, and +0.2% in visual question answering.
♻ ☆ Revisiting End-To-End Sparse Autoencoder Training: A Short Finetune Is All You Need
Sparse autoencoders (SAEs) are widely used for interpreting language model activations. A key evaluation metric is the increase in cross-entropy loss between the original model logits and the reconstructed model logits when replacing model activations with SAE reconstructions. Typically, SAEs are trained solely on mean squared error (MSE) when reconstructing precomputed, shuffled activations. Recent work introduced training SAEs directly with a combination of KL divergence and MSE ("end-to-end" SAEs), significantly improving reconstruction accuracy at the cost of substantially increased computation, which has limited their widespread adoption. We propose a brief KL+MSE fine-tuning step applied only to the final 25M training tokens (just a few percent of typical training budgets) that achieves comparable improvements, reducing the cross-entropy loss gap by 20-50%, while incurring minimal additional computational cost. We further find that multiple fine-tuning methods (KL fine-tuning, LoRA adapters, linear adapters) yield similar, non-additive cross-entropy improvements, suggesting a common, easily correctable error source in MSE-trained SAEs. We demonstrate a straightforward method for effectively transferring hyperparameters and sparsity penalties between training phases despite scale differences between KL and MSE losses. While both ReLU and TopK SAEs see significant cross-entropy loss improvements, evaluations on supervised SAEBench metrics yield mixed results, with improvements on some metrics and decreases on others, depending on both the SAE architecture and downstream task. Nonetheless, our method may offer meaningful improvements in interpretability applications such as circuit analysis with minor additional cost.
comment: v2: Improve clarity of Figure 1 and Abstract, add reference to anthropic circuits work
♻ ☆ LLMs Are Not Intelligent Thinkers: Introducing Mathematical Topic Tree Benchmark for Comprehensive Evaluation of LLMs
Large language models (LLMs) demonstrate impressive capabilities in mathematical reasoning. However, despite these achievements, current evaluations are mostly limited to specific mathematical topics, and it remains unclear whether LLMs are genuinely engaging in reasoning. To address these gaps, we present the Mathematical Topics Tree (MaTT) benchmark, a challenging and structured benchmark that offers 1,958 questions across a wide array of mathematical subjects, each paired with a detailed hierarchical chain of topics. Upon assessing different LLMs using the MaTT benchmark, we find that the most advanced model, GPT-4, achieved a mere 54\% accuracy in a multiple-choice scenario. Interestingly, even when employing Chain-of-Thought prompting, we observe mostly no notable improvement. Moreover, LLMs accuracy dramatically reduced by up to 24.2 percentage point when the questions were presented without providing choices. Further detailed analysis of the LLMs' performance across a range of topics showed significant discrepancy even for closely related subtopics within the same general mathematical area. In an effort to pinpoint the reasons behind LLMs performances, we conducted a manual evaluation of the completeness and correctness of the explanations generated by GPT-4 when choices were available. Surprisingly, we find that in only 53.3\% of the instances where the model provided a correct answer, the accompanying explanations were deemed complete and accurate, i.e., the model engaged in genuine reasoning.
♻ ☆ APTx: better activation function than MISH, SWISH, and ReLU's variants used in deep learning
Activation Functions introduce non-linearity in the deep neural networks. This nonlinearity helps the neural networks learn faster and efficiently from the dataset. In deep learning, many activation functions are developed and used based on the type of problem statement. ReLU's variants, SWISH, and MISH are goto activation functions. MISH function is considered having similar or even better performance than SWISH, and much better than ReLU. In this paper, we propose an activation function named APTx which behaves similar to MISH, but requires lesser mathematical operations to compute. The lesser computational requirements of APTx does speed up the model training, and thus also reduces the hardware requirement for the deep learning model. Source code: https://github.com/mr-ravin/aptx_activation
comment: 8 pages, 6 figures
♻ ☆ Uncertainty propagation in feed-forward neural network models
We develop new uncertainty propagation methods for feed-forward neural network architectures with leaky ReLU activation functions subject to random perturbations in the input vectors. In particular, we derive analytical expressions for the probability density function (PDF) of the neural network output and its statistical moments as a function of the input uncertainty and the parameters of the network, i.e., weights and biases. A key finding is that an appropriate linearization of the leaky ReLU activation function yields accurate statistical results even for large perturbations in the input vectors. This can be attributed to the way information propagates through the network. We also propose new analytically tractable Gaussian copula surrogate models to approximate the full joint PDF of the neural network output. To validate our theoretical results, we conduct Monte Carlo simulations and a thorough error analysis on a multi-layer neural network representing a nonlinear integro-differential operator between two polynomial function spaces. Our findings demonstrate excellent agreement between the theoretical predictions and Monte Carlo simulations.
comment: 23 pages, 15 figures
♻ ☆ On the dimension of pullback attractors in recurrent neural networks
Recurrent Neural Networks (RNNs) are high-dimensional state space models capable of learning functions on sequence data. Recently, it has been conjectured that reservoir computers, a particular class of RNNs, trained on observations of a dynamical systems can be interpreted as embeddings. This result has been established for the case of linear reservoir systems. In this work, we use a nonautonomous dynamical systems approach to establish an upper bound for the fractal dimension of the subset of reservoir state space approximated during training and prediction phase. We prove that when the input sequences comes from an Nin-dimensional invertible dynamical system, the fractal dimension of this set is bounded above by Nin. The result obtained here are useful in dimensionality reduction of computation in RNNs as well as estimating fractal dimensions of dynamical systems from limited observations of their time series. It is also a step towards understanding embedding properties of reservoir computers.
♻ ☆ Lusifer: LLM-based User SImulated Feedback Environment for online Recommender systems
Reinforcement learning (RL) recommender systems often rely on static datasets that fail to capture the fluid, ever changing nature of user preferences in real-world scenarios. Meanwhile, generative AI techniques have emerged as powerful tools for creating synthetic data, including user profiles and behaviors. Recognizing this potential, we introduce Lusifer, an LLM-based simulation environment designed to generate dynamic, realistic user feedback for RL-based recommender training. In Lusifer, user profiles are incrementally updated at each interaction step, with Large Language Models (LLMs) providing transparent explanations of how and why preferences evolve. We focus on the MovieLens dataset, extracting only the last 40 interactions for each user, to emphasize recent behavior. By processing textual metadata (such as movie overviews and tags) Lusifer creates more context aware user states and simulates feedback on new items, including those with limited or no prior ratings. This approach reduces reliance on extensive historical data and facilitates cold start scenario handling and adaptation to out of distribution cases. Our experiments compare Lusifer with traditional collaborative filtering models, revealing that while Lusifer can be comparable in predictive accuracy, it excels at capturing dynamic user responses and yielding explainable results at every step. These qualities highlight its potential as a scalable, ethically sound alternative to live user experiments, supporting iterative and user-centric evaluations of RL-based recommender strategies. Looking ahead, we envision Lusifer serving as a foundational tool for exploring generative AI-driven user simulations, enabling more adaptive and personalized recommendation pipelines under real world constraints.
♻ ☆ Accelerated Training through Iterative Gradient Propagation Along the Residual Path ICLR 2025
Despite being the cornerstone of deep learning, backpropagation is criticized for its inherent sequentiality, which can limit the scalability of very deep models. Such models faced convergence issues due to vanishing gradient, later resolved using residual connections. Variants of these are now widely used in modern architecture. However, the computational cost of backpropagation remains a major burden, accounting for most of the training time. Taking advantage of residual-like architectural designs, we introduce Highway backpropagation, a parallelizable iterative algorithm that approximates backpropagation, by alternatively i) accumulating the gradient estimates along the residual path, and ii) backpropagating them through every layer in parallel. This algorithm is naturally derived from a decomposition of the gradient as the sum of gradients flowing through all paths and is adaptable to a diverse set of common architectures, ranging from ResNets and Transformers to recurrent neural networks. Through an extensive empirical study on a large selection of tasks and models, we evaluate Highway-BP and show that major speedups can be achieved with minimal performance degradation.
comment: 20 pages, 6 figures, accepted to ICLR 2025
♻ ☆ Can Neural Decompilation Assist Vulnerability Prediction on Binary Code?
Vulnerability prediction is valuable in identifying security issues efficiently, even though it requires the source code of the target software system, which is a restrictive hypothesis. This paper presents an experimental study to predict vulnerabilities in binary code without source code or complex representations of the binary, leveraging the pivotal idea of decompiling the binary file through neural decompilation and predicting vulnerabilities through deep learning on the decompiled source code. The results outperform the state-of-the-art in both neural decompilation and vulnerability prediction, showing that it is possible to identify vulnerable programs with this approach concerning bi-class (vulnerable/non-vulnerable) and multi-class (type of vulnerability) analysis.
♻ ☆ Graph Representation Learning via Causal Diffusion for Out-of-Distribution Recommendation WWW2025
Graph Neural Networks (GNNs)-based recommendation algorithms typically assume that training and testing data are drawn from independent and identically distributed (IID) spaces. However, this assumption often fails in the presence of out-of-distribution (OOD) data, resulting in significant performance degradation. In this study, we construct a Structural Causal Model (SCM) to analyze interaction data, revealing that environmental confounders (e.g., the COVID-19 pandemic) lead to unstable correlations in GNN-based models, thus impairing their generalization to OOD data. To address this issue, we propose a novel approach, graph representation learning via causal diffusion (CausalDiffRec) for OOD recommendation. This method enhances the model's generalization on OOD data by eliminating environmental confounding factors and learning invariant graph representations. Specifically, we use backdoor adjustment and variational inference to infer the real environmental distribution, thereby eliminating the impact of environmental confounders. This inferred distribution is then used as prior knowledge to guide the representation learning in the reverse phase of the diffusion process to learn the invariant representation. In addition, we provide a theoretical derivation that proves optimizing the objective function of CausalDiffRec can encourage the model to learn environment-invariant graph representations, thereby achieving excellent generalization performance in recommendations under distribution shifts. Our extensive experiments validate the effectiveness of CausalDiffRec in improving the generalization of OOD data, and the average improvement is up to 10.69% on Food, 18.83% on KuaiRec, 22.41% on Yelp2018, and 11.65% on Douban datasets.
comment: 14 pages, accepted by WWW2025
♻ ☆ Incremental Few-Shot Adaptation for Non-Prehensile Object Manipulation using Parallelizable Physics Simulators ICRA
Few-shot adaptation is an important capability for intelligent robots that perform tasks in open-world settings such as everyday environments or flexible production. In this paper, we propose a novel approach for non-prehensile manipulation which incrementally adapts a physics-based dynamics model for model-predictive control (MPC). The model prediction is aligned with a few examples of robot-object interactions collected with the MPC. This is achieved by using a parallelizable rigid-body physics simulation as dynamic world model and sampling-based optimization of the model parameters. In turn, the optimized dynamics model can be used for MPC using efficient sampling-based optimization. We evaluate our few-shot adaptation approach in object pushing experiments in simulation and with a real robot.
comment: Accepted for publication at the IEEE International Conference on Robotics and Automation (ICRA), 2025
♻ ☆ Advanced Deep Learning Methods for Protein Structure Prediction and Design
After AlphaFold won the Nobel Prize, protein prediction with deep learning once again became a hot topic. We comprehensively explore advanced deep learning methods applied to protein structure prediction and design. It begins by examining recent innovations in prediction architectures, with detailed discussions on improvements such as diffusion based frameworks and novel pairwise attention modules. The text analyses key components including structure generation, evaluation metrics, multiple sequence alignment processing, and network architecture, thereby illustrating the current state of the art in computational protein modelling. Subsequent chapters focus on practical applications, presenting case studies that range from individual protein predictions to complex biomolecular interactions. Strategies for enhancing prediction accuracy and integrating deep learning techniques with experimental validation are thoroughly explored. The later sections review the industry landscape of protein design, highlighting the transformative role of artificial intelligence in biotechnology and discussing emerging market trends and future challenges. Supplementary appendices provide essential resources such as databases and open source tools, making this volume a valuable reference for researchers and students.
♻ ☆ Weighted Graph Structure Learning with Attention Denoising for Node Classification
Node classification in graphs aims to predict the categories of unlabeled nodes by utilizing a small set of labeled nodes. However, weighted graphs often contain noisy edges and anomalous edge weights, which can distort fine-grained relationships between nodes and hinder accurate classification. We propose the Edge Weight-aware Graph Structure Learning (EWGSL) method, which combines weight learning and graph structure learning to address these issues. EWGSL improves node classification by redefining attention coefficients in graph attention networks to incorporate node features and edge weights. It also applies graph structure learning to sparsify attention coefficients and uses a modified InfoNCE loss function to enhance performance by adapting to denoised graph weights. Extensive experimental results show that EWGSL has an average Micro-F1 improvement of 17.8% compared with the best baseline.
comment: This paper is accepted by Youth Academic Annual Conference of Chinese Association of Automation(YAC)
♻ ☆ Modeling Caption Diversity in Contrastive Vision-Language Pretraining ICML2024
There are a thousand ways to caption an image. Contrastive Language Pretraining (CLIP) on the other hand, works by mapping an image and its caption to a single vector -- limiting how well CLIP-like models can represent the diverse ways to describe an image. In this work, we introduce Llip, Latent Language Image Pretraining, which models the diversity of captions that could match an image. Llip's vision encoder outputs a set of visual features that are mixed into a final representation by conditioning on information derived from the text. We show that Llip outperforms non-contextualized baselines like CLIP and SigLIP on a variety of tasks even with large-scale encoders. Llip improves zero-shot classification by an average of 2.9% zero-shot classification benchmarks with a ViT-G/14 encoder. Specifically, Llip attains a zero-shot top-1 accuracy of 83.5% on ImageNet outperforming a similarly sized CLIP by 1.4%. We also demonstrate improvement on zero-shot retrieval on MS-COCO by 6.0%. We provide a comprehensive analysis of the components introduced by the method and demonstrate that Llip leads to richer visual representations.
comment: 14 pages, 8 figures, 7 tables, to be published at ICML2024
♻ ☆ MathWriting: A Dataset For Handwritten Mathematical Expression Recognition
Recognition of handwritten mathematical expressions allows to transfer scientific notes into their digital form. It facilitates the sharing, searching, and preservation of scientific information. We introduce MathWriting, the largest online handwritten mathematical expression dataset to date. It consists of 230k human-written samples and an additional 400k synthetic ones}. This dataset can also be used in its rendered form for offline HME recognition. One MathWriting sample consists of a formula written on a touch screen and a corresponding LaTeX expression. We also provide a normalized version of LaTeX expression to simplify the recognition task and enhance the result quality. We provide baseline performance of standard models like OCR and CTC Transformer as well as Vision-Language Models like PaLI on the dataset. The dataset together with an example colab is accessible on Github.
♻ ☆ Enhanced Smart Contract Reputability Analysis using Multimodal Data Fusion on Ethereum
The evaluation of smart contract reputability is essential to foster trust in decentralized ecosystems. However, existing methods that rely solely on code analysis or transactional data, offer limited insight into evolving trustworthiness. We propose a multimodal data fusion framework that integrates code features with transactional data to enhance reputability prediction. Our framework initially focuses on AI-based code analysis, utilizing GAN-augmented opcode embeddings to address class imbalance, achieving 97.67% accuracy and a recall of 0.942 in detecting illicit contracts, surpassing traditional oversampling methods. This forms the crux of a reputability-centric fusion strategy, where combining code and transactional data improves recall by 7.25% over single-source models, demonstrating robust performance across validation sets. By providing a holistic view of smart contract behaviour, our approach enhances the model's ability to assess reputability, identify fraudulent activities, and predict anomalous patterns. These capabilities contribute to more accurate reputability assessments, proactive risk mitigation, and enhanced blockchain security.
♻ ☆ Fréchet regression with implicit denoising and multicollinearity reduction
Fr\'echet regression extends linear regression to model complex responses in metric spaces, making it particularly relevant for multi-label regression, where eachinstance can have multiple associated labels. However, addressing noise and dependencies among predictors within this framework remains un derexplored. In this paper, we present an extension of the Global Fr\'echet re gression model that enables explicit modeling of relationships between input variables and multiple responses. To address challenges arising from noise and multicollinearity, we propose a novel framework based on implicit regu larization, which preserves the intrinsic structure of the data while effectively capturing complex dependencies. Our approach ensures accurate and efficient modeling without the biases introduced by traditional explicit regularization methods. Theoretical guarantees are provided, and the performance of the proposed method is demonstrated through numerical experiments.
Computer Vision and Pattern Recognition 25
☆ FIESTA: Fisher Information-based Efficient Selective Test-time Adaptation
Robust facial expression recognition in unconstrained, "in-the-wild" environments remains challenging due to significant domain shifts between training and testing distributions. Test-time adaptation (TTA) offers a promising solution by adapting pre-trained models during inference without requiring labeled test data. However, existing TTA approaches typically rely on manually selecting which parameters to update, potentially leading to suboptimal adaptation and high computational costs. This paper introduces a novel Fisher-driven selective adaptation framework that dynamically identifies and updates only the most critical model parameters based on their importance as quantified by Fisher information. By integrating this principled parameter selection approach with temporal consistency constraints, our method enables efficient and effective adaptation specifically tailored for video-based facial expression recognition. Experiments on the challenging AffWild2 benchmark demonstrate that our approach significantly outperforms existing TTA methods, achieving a 7.7% improvement in F1 score over the base model while adapting only 22,000 parameters-more than 20 times fewer than comparable methods. Our ablation studies further reveal that parameter importance can be effectively estimated from minimal data, with sampling just 1-3 frames sufficient for substantial performance gains. The proposed approach not only enhances recognition accuracy but also dramatically reduces computational overhead, making test-time adaptation more practical for real-world affective computing applications.
☆ Context in object detection: a systematic literature review
Context is an important factor in computer vision as it offers valuable information to clarify and analyze visual data. Utilizing the contextual information inherent in an image or a video can improve the precision and effectiveness of object detectors. For example, where recognizing an isolated object might be challenging, context information can improve comprehension of the scene. This study explores the impact of various context-based approaches to object detection. Initially, we investigate the role of context in object detection and survey it from several perspectives. We then review and discuss the most recent context-based object detection approaches and compare them. Finally, we conclude by addressing research questions and identifying gaps for further studies. More than 265 publications are included in this survey, covering different aspects of context in different categories of object detection, including general object detection, video object detection, small object detection, camouflaged object detection, zero-shot, one-shot, and few-shot object detection. This literature review presents a comprehensive overview of the latest advancements in context-based object detection, providing valuable contributions such as a thorough understanding of contextual information and effective methods for integrating various context types into object detection, thus benefiting researchers.
comment: Artificial Intelligence Review Journal
☆ Geometry in Style: 3D Stylization via Surface Normal Deformation CVPR 2025
We present Geometry in Style, a new method for identity-preserving mesh stylization. Existing techniques either adhere to the original shape through overly restrictive deformations such as bump maps or significantly modify the input shape using expressive deformations that may introduce artifacts or alter the identity of the source shape. In contrast, we represent a deformation of a triangle mesh as a target normal vector for each vertex neighborhood. The deformations we recover from target normals are expressive enough to enable detailed stylizations yet restrictive enough to preserve the shape's identity. We achieve such deformations using our novel differentiable As-Rigid-As-Possible (dARAP) layer, a neural-network-ready adaptation of the classical ARAP algorithm which we use to solve for per-vertex rotations and deformed vertices. As a differentiable layer, dARAP is paired with a visual loss from a text-to-image model to drive deformations toward style prompts, altogether giving us Geometry in Style. Our project page is at https://threedle.github.io/geometry-in-style.
comment: CVPR 2025. Our project page is at https://threedle.github.io/geometry-in-style
☆ Z-SASLM: Zero-Shot Style-Aligned SLI Blending Latent Manipulation CVPR 2025
We introduce Z-SASLM, a Zero-Shot Style-Aligned SLI (Spherical Linear Interpolation) Blending Latent Manipulation pipeline that overcomes the limitations of current multi-style blending methods. Conventional approaches rely on linear blending, assuming a flat latent space leading to suboptimal results when integrating multiple reference styles. In contrast, our framework leverages the non-linear geometry of the latent space by using SLI Blending to combine weighted style representations. By interpolating along the geodesic on the hypersphere, Z-SASLM preserves the intrinsic structure of the latent space, ensuring high-fidelity and coherent blending of diverse styles - all without the need for fine-tuning. We further propose a new metric, Weighted Multi-Style DINO ViT-B/8, designed to quantitatively evaluate the consistency of the blended styles. While our primary focus is on the theoretical and practical advantages of SLI Blending for style manipulation, we also demonstrate its effectiveness in a multi-modal content fusion setting through comprehensive experimental studies. Experimental results show that Z-SASLM achieves enhanced and robust style alignment. The implementation code can be found at: https://github.com/alessioborgi/Z-SASLM.
comment: Accepted to the CVPR 2025 Workshop AI for Creative Visual Content Generation Editing and Understanding
☆ Synthetic Art Generation and DeepFake Detection A Study on Jamini Roy Inspired Dataset
The intersection of generative AI and art is a fascinating area that brings both exciting opportunities and significant challenges, especially when it comes to identifying synthetic artworks. This study takes a unique approach by examining diffusion-based generative models in the context of Indian art, specifically focusing on the distinctive style of Jamini Roy. To explore this, we fine-tuned Stable Diffusion 3 and used techniques like ControlNet and IPAdapter to generate realistic images. This allowed us to create a new dataset that includes both real and AI-generated artworks, which is essential for a detailed analysis of what these models can produce. We employed various qualitative and quantitative methods, such as Fourier domain assessments and autocorrelation metrics, to uncover subtle differences between synthetic images and authentic pieces. A key takeaway from recent research is that existing methods for detecting deepfakes face considerable challenges, especially when the deepfakes are of high quality and tailored to specific cultural contexts. This highlights a critical gap in current detection technologies, particularly in light of the challenges identified above, where high-quality and culturally specific deepfakes are difficult to detect. This work not only sheds light on the increasing complexity of generative models but also sets a crucial foundation for future research aimed at effective detection of synthetic art.
comment: 13 pages, 7 figures, 6 tables
☆ Large Self-Supervised Models Bridge the Gap in Domain Adaptive Object Detection CVPR 2025
The current state-of-the-art methods in domain adaptive object detection (DAOD) use Mean Teacher self-labelling, where a teacher model, directly derived as an exponential moving average of the student model, is used to generate labels on the target domain which are then used to improve both models in a positive loop. This couples learning and generating labels on the target domain, and other recent works also leverage the generated labels to add additional domain alignment losses. We believe this coupling is brittle and excessively constrained: there is no guarantee that a student trained only on source data can generate accurate target domain labels and initiate the positive feedback loop, and much better target domain labels can likely be generated by using a large pretrained network that has been exposed to much more data. Vision foundational models are exactly such models, and they have shown impressive task generalization capabilities even when frozen. We want to leverage these models for DAOD and introduce DINO Teacher, which consists of two components. First, we train a new labeller on source data only using a large frozen DINOv2 backbone and show it generates more accurate labels than Mean Teacher. Next, we align the student's source and target image patch features with those from a DINO encoder, driving source and target representations closer to the generalizable DINO representation. We obtain state-of-the-art performance on multiple DAOD datasets. Code available at https://github.com/TRAILab/DINO_Teacher
comment: 16 pages (8 main), 5 figures, accepted at CVPR 2025
☆ Aurelia: Test-time Reasoning Distillation in Audio-Visual LLMs
Recent advancements in reasoning optimization have greatly enhanced the performance of large language models (LLMs). However, existing work fails to address the complexities of audio-visual scenarios, underscoring the need for further research. In this paper, we introduce AURELIA, a novel actor-critic based audio-visual (AV) reasoning framework that distills structured, step-by-step reasoning into AVLLMs at test time, improving their ability to process complex multi-modal inputs without additional training or fine-tuning. To further advance AVLLM reasoning skills, we present AVReasonBench, a challenging benchmark comprising 4500 audio-visual questions, each paired with detailed step-by-step reasoning. Our benchmark spans six distinct tasks, including AV-GeoIQ, which evaluates AV reasoning combined with geographical and cultural knowledge. Evaluating 18 AVLLMs on AVReasonBench reveals significant limitations in their multi-modal reasoning capabilities. Using AURELIA, we achieve up to a 100% relative improvement, demonstrating its effectiveness. This performance gain highlights the potential of reasoning-enhanced data generation for advancing AVLLMs in real-world applications. Our code and data will be publicly released at: https: //github.com/schowdhury671/aurelia.
☆ Action Recognition in Real-World Ambient Assisted Living Environment
The growing ageing population and their preference to maintain independence by living in their own homes require proactive strategies to ensure safety and support. Ambient Assisted Living (AAL) technologies have emerged to facilitate ageing in place by offering continuous monitoring and assistance within the home. Within AAL technologies, action recognition plays a crucial role in interpreting human activities and detecting incidents like falls, mobility decline, or unusual behaviours that may signal worsening health conditions. However, action recognition in practical AAL applications presents challenges, including occlusions, noisy data, and the need for real-time performance. While advancements have been made in accuracy, robustness to noise, and computation efficiency, achieving a balance among them all remains a challenge. To address this challenge, this paper introduces the Robust and Efficient Temporal Convolution network (RE-TCN), which comprises three main elements: Adaptive Temporal Weighting (ATW), Depthwise Separable Convolutions (DSC), and data augmentation techniques. These elements aim to enhance the model's accuracy, robustness against noise and occlusion, and computational efficiency within real-world AAL contexts. RE-TCN outperforms existing models in terms of accuracy, noise and occlusion robustness, and has been validated on four benchmark datasets: NTU RGB+D 60, Northwestern-UCLA, SHREC'17, and DHG-14/28. The code is publicly available at: https://github.com/Gbouna/RE-TCN
☆ Convolutional Neural Networks Can (Meta-)Learn the Same-Different Relation
While convolutional neural networks (CNNs) have come to match and exceed human performance in many settings, the tasks these models optimize for are largely constrained to the level of individual objects, such as classification and captioning. Humans remain vastly superior to CNNs in visual tasks involving relations, including the ability to identify two objects as `same' or `different'. A number of studies have shown that while CNNs can be coaxed into learning the same-different relation in some settings, they tend to generalize poorly to other instances of this relation. In this work we show that the same CNN architectures that fail to generalize the same-different relation with conventional training are able to succeed when trained via meta-learning, which explicitly encourages abstraction and generalization across tasks.
☆ A GAN-Enhanced Deep Learning Framework for Rooftop Detection from Historical Aerial Imagery
Accurate rooftop detection from historical aerial imagery is vital for examining long-term urban development and human settlement patterns. However, black-and-white analog photographs pose significant challenges for modern object detection frameworks due to their limited spatial resolution, lack of color information, and archival degradation. To address these limitations, this study introduces a two-stage image enhancement pipeline based on Generative Adversarial Networks (GANs): image colorization using DeOldify, followed by super-resolution enhancement with Real-ESRGAN. The enhanced images were then used to train and evaluate rooftop detection models, including Faster R-CNN, DETReg, and YOLOv11n. Results show that combining colorization with super-resolution substantially improves detection performance, with YOLOv11n achieving a mean Average Precision (mAP) exceeding 85%. This reflects an improvement of approximately 40% over original black-and-white images and 20% over images enhanced through colorization alone. The proposed method effectively bridges the gap between archival imagery and contemporary deep learning techniques, enabling more reliable extraction of building footprints from historical aerial photographs.
☆ Real-time Video Prediction With Fast Video Interpolation Model and Prediction Training ICIP 2024
Transmission latency significantly affects users' quality of experience in real-time interaction and actuation. As latency is principally inevitable, video prediction can be utilized to mitigate the latency and ultimately enable zero-latency transmission. However, most of the existing video prediction methods are computationally expensive and impractical for real-time applications. In this work, we therefore propose real-time video prediction towards the zero-latency interaction over networks, called IFRVP (Intermediate Feature Refinement Video Prediction). Firstly, we propose three training methods for video prediction that extend frame interpolation models, where we utilize a simple convolution-only frame interpolation network based on IFRNet. Secondly, we introduce ELAN-based residual blocks into the prediction models to improve both inference speed and accuracy. Our evaluations show that our proposed models perform efficiently and achieve the best trade-off between prediction accuracy and computational speed among the existing video prediction methods. A demonstration movie is also provided at http://bit.ly/IFRVPDemo.
comment: ICIP 2024
☆ Enhancing Weakly Supervised Video Grounding via Diverse Inference Strategies for Boundary and Prediction Selection
Weakly supervised video grounding aims to localize temporal boundaries relevant to a given query without explicit ground-truth temporal boundaries. While existing methods primarily use Gaussian-based proposals, they overlook the importance of (1) boundary prediction and (2) top-1 prediction selection during inference. In their boundary prediction, boundaries are simply set at half a standard deviation away from a Gaussian mean on both sides, which may not accurately capture the optimal boundaries. In the top-1 prediction process, these existing methods rely heavily on intersections with other proposals, without considering the varying quality of each proposal. To address these issues, we explore various inference strategies by introducing (1) novel boundary prediction methods to capture diverse boundaries from multiple Gaussians and (2) new selection methods that take proposal quality into account. Extensive experiments on the ActivityNet Captions and Charades-STA datasets validate the effectiveness of our inference strategies, demonstrating performance improvements without requiring additional training.
☆ OncoReg: Medical Image Registration for Oncological Challenges
In modern cancer research, the vast volume of medical data generated is often underutilised due to challenges related to patient privacy. The OncoReg Challenge addresses this issue by enabling researchers to develop and validate image registration methods through a two-phase framework that ensures patient privacy while fostering the development of more generalisable AI models. Phase one involves working with a publicly available dataset, while phase two focuses on training models on a private dataset within secure hospital networks. OncoReg builds upon the foundation established by the Learn2Reg Challenge by incorporating the registration of interventional cone-beam computed tomography (CBCT) with standard planning fan-beam CT (FBCT) images in radiotherapy. Accurate image registration is crucial in oncology, particularly for dynamic treatment adjustments in image-guided radiotherapy, where precise alignment is necessary to minimise radiation exposure to healthy tissues while effectively targeting tumours. This work details the methodology and data behind the OncoReg Challenge and provides a comprehensive analysis of the competition entries and results. Findings reveal that feature extraction plays a pivotal role in this registration task. A new method emerging from this challenge demonstrated its versatility, while established approaches continue to perform comparably to newer techniques. Both deep learning and classical approaches still play significant roles in image registration, with the combination of methods - particularly in feature extraction - proving most effective.
comment: 26 pages, 6 figures
♻ ☆ SGE: Structured Light System Based on Gray Code with an Event Camera
Fast and accurate depth sensing has long been a significant research challenge. Event camera, as a device that quickly responds to intensity changes, provides a new solution for structured light (SL) systems. In this paper, we introduce Gray code into event-based SL systems for the first time. Our setup includes an event camera and a Digital Light Processing (DLP) projector, enabling depth estimation through high-speed projection and decoding of Gray code patterns. By employing Gray code for point matching in event-based SL system, our method is immune to timestamp noise, realizing high-speed depth estimation without loss of accuracy and spatial resolution. The binary nature of events and Gray code minimizes data redundancy, enabling us to fully utilize sensor bandwidth at 100%. Experimental results show that our approach achieves accuracy comparable to state-of-the-art scanning methods while surpassing them in data acquisition speed (up to 41 times improvement) without sacrificing accuracy and spatial resolution. Our proposed approach offers a highly promising solution for ultra-fast, real-time, and high-precision dense depth estimation.
♻ ☆ TopV: Compatible Token Pruning with Inference Time Optimization for Fast and Low-Memory Multimodal Vision Language Model CVPR 2025
Vision-Language Models (VLMs) demand substantial computational resources during inference, largely due to the extensive visual input tokens for representing visual information. Previous studies have noted that visual tokens tend to receive less attention than text tokens, suggesting their lower importance during inference and potential for pruning. However, their methods encounter several challenges: reliance on greedy heuristic criteria for token importance and incompatibility with FlashAttention and KV cache. To address these issues, we introduce \textbf{TopV}, a compatible \textbf{TO}ken \textbf{P}runing with inference Time Optimization for fast and low-memory \textbf{V}LM, achieving efficient pruning without additional training or fine-tuning. Instead of relying on attention scores, we formulate token pruning as an optimization problem, accurately identifying important visual tokens while remaining compatible with FlashAttention. Additionally, since we only perform this pruning once during the prefilling stage, it effectively reduces KV cache size. Our optimization framework incorporates a visual-aware cost function considering factors such as Feature Similarity, Relative Spatial Distance, and Absolute Central Distance, to measure the importance of each source visual token, enabling effective pruning of low-importance tokens. Extensive experiments demonstrate that our method outperforms previous token pruning methods, validating the effectiveness and efficiency of our approach.
comment: Accepted by CVPR 2025
♻ ☆ ID-Patch: Robust ID Association for Group Photo Personalization CVPR 2025
The ability to synthesize personalized group photos and specify the positions of each identity offers immense creative potential. While such imagery can be visually appealing, it presents significant challenges for existing technologies. A persistent issue is identity (ID) leakage, where injected facial features interfere with one another, resulting in low face resemblance, incorrect positioning, and visual artifacts. Existing methods suffer from limitations such as the reliance on segmentation models, increased runtime, or a high probability of ID leakage. To address these challenges, we propose ID-Patch, a novel method that provides robust association between identities and 2D positions. Our approach generates an ID patch and ID embeddings from the same facial features: the ID patch is positioned on the conditional image for precise spatial control, while the ID embeddings integrate with text embeddings to ensure high resemblance. Experimental results demonstrate that ID-Patch surpasses baseline methods across metrics, such as face ID resemblance, ID-position association accuracy, and generation efficiency. Project Page is: https://byteaigc.github.io/ID-Patch/
comment: Accepted by CVPR 2025. Project Page is: https://byteaigc.github.io/ID-Patch/
♻ ☆ Learning 3D Perception from Others' Predictions ICLR 2025
Accurate 3D object detection in real-world environments requires a huge amount of annotated data with high quality. Acquiring such data is tedious and expensive, and often needs repeated effort when a new sensor is adopted or when the detector is deployed in a new environment. We investigate a new scenario to construct 3D object detectors: learning from the predictions of a nearby unit that is equipped with an accurate detector. For example, when a self-driving car enters a new area, it may learn from other traffic participants whose detectors have been optimized for that area. This setting is label-efficient, sensor-agnostic, and communication-efficient: nearby units only need to share the predictions with the ego agent (e.g., car). Naively using the received predictions as ground-truths to train the detector for the ego car, however, leads to inferior performance. We systematically study the problem and identify viewpoint mismatches and mislocalization (due to synchronization and GPS errors) as the main causes, which unavoidably result in false positives, false negatives, and inaccurate pseudo labels. We propose a distance-based curriculum, first learning from closer units with similar viewpoints and subsequently improving the quality of other units' predictions via self-training. We further demonstrate that an effective pseudo label refinement module can be trained with a handful of annotated data, largely reducing the data quantity necessary to train an object detector. We validate our approach on the recently released real-world collaborative driving dataset, using reference cars' predictions as pseudo labels for the ego car. Extensive experiments including several scenarios (e.g., different sensors, detectors, and domains) demonstrate the effectiveness of our approach toward label-efficient learning of 3D perception from other units' predictions.
comment: Accepted to ICLR 2025
♻ ☆ Towards a Unified Copernicus Foundation Model for Earth Vision
Advances in Earth observation (EO) foundation models have unlocked the potential of big satellite data to learn generic representations from space, benefiting a wide range of downstream applications crucial to our planet. However, most existing efforts remain limited to fixed spectral sensors, focus solely on the Earth's surface, and overlook valuable metadata beyond imagery. In this work, we take a step towards next-generation EO foundation models with three key components: 1) Copernicus-Pretrain, a massive-scale pretraining dataset that integrates 18.7M aligned images from all major Copernicus Sentinel missions, spanning from the Earth's surface to its atmosphere; 2) Copernicus-FM, a unified foundation model capable of processing any spectral or non-spectral sensor modality using extended dynamic hypernetworks and flexible metadata encoding; and 3) Copernicus-Bench, a systematic evaluation benchmark with 15 hierarchical downstream tasks ranging from preprocessing to specialized applications for each Sentinel mission. Our dataset, model, and benchmark greatly improve the scalability, versatility, and multimodal adaptability of EO foundation models, while also creating new opportunities to connect EO, weather, and climate research. Codes, datasets and models are available at https://github.com/zhu-xlab/Copernicus-FM.
comment: 31 pages, 32 figures
♻ ☆ DiHuR: Diffusion-Guided Generalizable Human Reconstruction WACV 2025
We introduce DiHuR, a novel Diffusion-guided model for generalizable Human 3D Reconstruction and view synthesis from sparse, minimally overlapping images. While existing generalizable human radiance fields excel at novel view synthesis, they often struggle with comprehensive 3D reconstruction. Similarly, directly optimizing implicit Signed Distance Function (SDF) fields from sparse-view images typically yields poor results due to limited overlap. To enhance 3D reconstruction quality, we propose using learnable tokens associated with SMPL vertices to aggregate sparse view features and then to guide SDF prediction. These tokens learn a generalizable prior across different identities in training datasets, leveraging the consistent projection of SMPL vertices onto similar semantic areas across various human identities. This consistency enables effective knowledge transfer to unseen identities during inference. Recognizing SMPL's limitations in capturing clothing details, we incorporate a diffusion model as an additional prior to fill in missing information, particularly for complex clothing geometries. Our method integrates two key priors in a coherent manner: the prior from generalizable feed-forward models and the 2D diffusion prior, and it requires only multi-view image training, without 3D supervision. DiHuR demonstrates superior performance in both within-dataset and cross-dataset generalization settings, as validated on THuman, ZJU-MoCap, and HuMMan datasets compared to existing methods.
comment: Accepted to WACV 2025
♻ ☆ Can language-guided unsupervised adaptation improve medical image classification using unpaired images and texts?
In medical image classification, supervised learning is challenging due to the scarcity of labeled medical images. To address this, we leverage the visual-textual alignment within Vision-Language Models (VLMs) to enable unsupervised learning of a medical image classifier. In this work, we propose \underline{Med}ical \underline{Un}supervised \underline{A}daptation (\texttt{MedUnA}) of VLMs, where the LLM-generated descriptions for each class are encoded into text embeddings and matched with class labels via a cross-modal adapter. This adapter attaches to a visual encoder of \texttt{MedCLIP} and aligns the visual embeddings through unsupervised learning, driven by a contrastive entropy-based loss and prompt tuning. Thereby, improving performance in scenarios where textual information is more abundant than labeled images, particularly in the healthcare domain. Unlike traditional VLMs, \texttt{MedUnA} uses \textbf{unpaired images and text} for learning representations and enhances the potential of VLMs beyond traditional constraints. We evaluate the performance on three chest X-ray datasets and two multi-class datasets (diabetic retinopathy and skin lesions), showing significant accuracy gains over the zero-shot baseline. Our code is available at https://github.com/rumaima/meduna.
comment: Conference paper at International Symposium on Biomedical Imaging (ISBI) 2025
♻ ☆ Can Multi-modal (reasoning) LLMs work as deepfake detectors?
Deepfake detection remains a critical challenge in the era of advanced generative models, particularly as synthetic media becomes more sophisticated. In this study, we explore the potential of state of the art multi-modal (reasoning) large language models (LLMs) for deepfake image detection such as (OpenAI O1/4o, Gemini thinking Flash 2, Deepseek Janus, Grok 3, llama 3.2, Qwen 2/2.5 VL, Mistral Pixtral, Claude 3.5/3.7 sonnet) . We benchmark 12 latest multi-modal LLMs against traditional deepfake detection methods across multiple datasets, including recently published real-world deepfake imagery. To enhance performance, we employ prompt tuning and conduct an in-depth analysis of the models' reasoning pathways to identify key contributing factors in their decision-making process. Our findings indicate that best multi-modal LLMs achieve competitive performance with promising generalization ability with zero shot, even surpass traditional deepfake detection pipelines in out-of-distribution datasets while the rest of the LLM families performs extremely disappointing with some worse than random guess. Furthermore, we found newer model version and reasoning capabilities does not contribute to performance in such niche tasks of deepfake detection while model size do help in some cases. This study highlights the potential of integrating multi-modal reasoning in future deepfake detection frameworks and provides insights into model interpretability for robustness in real-world scenarios.
♻ ☆ The Scene Language: Representing Scenes with Programs, Words, and Embeddings CVPR 2025
We introduce the Scene Language, a visual scene representation that concisely and precisely describes the structure, semantics, and identity of visual scenes. It represents a scene with three key components: a program that specifies the hierarchical and relational structure of entities in the scene, words in natural language that summarize the semantic class of each entity, and embeddings that capture the visual identity of each entity. This representation can be inferred from pre-trained language models via a training-free inference technique, given text or image inputs. The resulting scene can be rendered into images using traditional, neural, or hybrid graphics renderers. Together, this forms a robust, automated system for high-quality 3D and 4D scene generation. Compared with existing representations like scene graphs, our proposed Scene Language generates complex scenes with higher fidelity, while explicitly modeling the scene structures to enable precise control and editing.
comment: CVPR 2025. Project page: https://ai.stanford.edu/~yzzhang/projects/scene-language/
♻ ☆ Barking Up The Syntactic Tree: Enhancing VLM Training with Syntactic Losses
Vision-Language Models (VLMs) implicitly learn to associate image regions with words from large-scale training data, demonstrating an emergent capability for grounding concepts without dense annotations[14,18,51]. However, the coarse-grained supervision from image-caption pairs is often insufficient to resolve ambiguities in object-concept correspondence, even with enormous data volume. Rich semantic and syntactic structures within the text modality have been overlooked as sources of supervision. Starting from contrastive architectures (BLIP and ALBEF) that show strong intrinsic grounding abilities, we propose HIerarchically STructured Learning (HIST). HIST enhances spatial vision-language alignment without using additional human annotations, by hierarchically decomposing captions into the constituent Subjects, Phrases, and Composite Phrases, and enforcing entailment relation between a parent and its children in the hierarchy. Specifically, we introduce two novel loss functions: (1) Subject Loss, which aligns image content with the subject of the corresponding phrase, acting as an entailment of standard contrastive/matching losses at the Phrase level; (2) Composition Loss, to balance attention across multiple objects. HIST is general, and can be applied to any VLM for which attention between vision and language can be computed. Compared to baseline VLMs, HIST achieves up to +9.8% improvement in visual grounding and +6.3% in multi-object referring segmentation. Surprisingly, the improved spatial grounding leads to improvements in other downstream VLM tasks: +1.1% in image-text retrieval, and +0.2% in visual question answering.
♻ ☆ Nepotistically Trained Generative-AI Models Collapse
Trained on massive amounts of human-generated content, AI-generated image synthesis is capable of reproducing semantically coherent images that match the visual appearance of its training data. We show that when retrained on even small amounts of their own creation, these generative-AI models produce highly distorted images. We also show that this distortion extends beyond the text prompts used in retraining, and that once affected, the models struggle to fully heal even after retraining on only real images.
♻ ☆ TEMPLE:Temporal Preference Learning of Video LLMs via Difficulty Scheduling and Pre-SFT Alignment
Video Large Language Models (Video LLMs) have achieved significant success by leveraging a two-stage paradigm: pretraining on large-scale video-text data for vision-language alignment, followed by supervised fine-tuning (SFT) for task-specific capabilities. However, existing approaches struggle with temporal reasoning due to weak temporal correspondence in the data and reliance on the next-token prediction paradigm during training. To address these limitations, we propose TEMPLE (TEMporal Preference Learning), a systematic framework that enhances Video LLMs' temporal reasoning capabilities through Direct Preference Optimization (DPO). To facilitate this, we introduce an automated preference data generation pipeline that systematically constructs preference pairs by selecting videos that are rich in temporal information, designing video-specific perturbation strategies, and finally evaluating model responses on clean and perturbed video inputs. Our temporal alignment features two key innovations: curriculum learning which that progressively increases perturbation difficulty to improve model robustness and adaptability; and "Pre-SFT Alignment'', applying preference optimization before instruction tuning to prioritize fine-grained temporal comprehension. Extensive experiments demonstrate that our approach consistently improves Video LLM performance across multiple benchmarks with a relatively small set of self-generated DPO data. We further analyze the transferability of DPO data across architectures and the role of difficulty scheduling in optimization. Our findings highlight our TEMPLE as a scalable and efficient complement to SFT-based methods, paving the way for developing reliable Video LLMs. Code is available at https://github.com/lscpku/TEMPLE.
Computer Vision and Pattern Recognition 170
☆ Q-Insight: Understanding Image Quality via Visual Reinforcement Learning
Image quality assessment (IQA) focuses on the perceptual visual quality of images, playing a crucial role in downstream tasks such as image reconstruction, compression, and generation. The rapid advancement of multi-modal large language models (MLLMs) has significantly broadened the scope of IQA, moving toward comprehensive image quality understanding that incorporates content analysis, degradation perception, and comparison reasoning beyond mere numerical scoring. Previous MLLM-based methods typically either generate numerical scores lacking interpretability or heavily rely on supervised fine-tuning (SFT) using large-scale annotated datasets to provide descriptive assessments, limiting their flexibility and applicability. In this paper, we propose Q-Insight, a reinforcement learning-based model built upon group relative policy optimization (GRPO), which demonstrates strong visual reasoning capability for image quality understanding while requiring only a limited amount of rating scores and degradation labels. By jointly optimizing score regression and degradation perception tasks with carefully designed reward functions, our approach effectively exploits their mutual benefits for enhanced performance. Extensive experiments demonstrate that Q-Insight substantially outperforms existing state-of-the-art methods in both score regression and degradation perception tasks, while exhibiting impressive zero-shot generalization to comparison reasoning tasks. Code will be available at https://github.com/lwq20020127/Q-Insight.
comment: Technical report
☆ DSO: Aligning 3D Generators with Simulation Feedback for Physical Soundness
Most 3D object generators focus on aesthetic quality, often neglecting physical constraints necessary in applications. One such constraint is that the 3D object should be self-supporting, i.e., remains balanced under gravity. Prior approaches to generating stable 3D objects used differentiable physics simulators to optimize geometry at test-time, which is slow, unstable, and prone to local optima. Inspired by the literature on aligning generative models to external feedback, we propose Direct Simulation Optimization (DSO), a framework to use the feedback from a (non-differentiable) simulator to increase the likelihood that the 3D generator outputs stable 3D objects directly. We construct a dataset of 3D objects labeled with a stability score obtained from the physics simulator. We can then fine-tune the 3D generator using the stability score as the alignment metric, via direct preference optimization (DPO) or direct reward optimization (DRO), a novel objective, which we introduce, to align diffusion models without requiring pairwise preferences. Our experiments show that the fine-tuned feed-forward generator, using either DPO or DRO objective, is much faster and more likely to produce stable objects than test-time optimization. Notably, the DSO framework works even without any ground-truth 3D objects for training, allowing the 3D generator to self-improve by automatically collecting simulation feedback on its own outputs.
comment: Project page: https://ruiningli.com/dso
☆ TranSplat: Lighting-Consistent Cross-Scene Object Transfer with 3D Gaussian Splatting
We present TranSplat, a 3D scene rendering algorithm that enables realistic cross-scene object transfer (from a source to a target scene) based on the Gaussian Splatting framework. Our approach addresses two critical challenges: (1) precise 3D object extraction from the source scene, and (2) faithful relighting of the transferred object in the target scene without explicit material property estimation. TranSplat fits a splatting model to the source scene, using 2D object masks to drive fine-grained 3D segmentation. Following user-guided insertion of the object into the target scene, along with automatic refinement of position and orientation, TranSplat derives per-Gaussian radiance transfer functions via spherical harmonic analysis to adapt the object's appearance to match the target scene's lighting environment. This relighting strategy does not require explicitly estimating physical scene properties such as BRDFs. Evaluated on several synthetic and real-world scenes and objects, TranSplat yields excellent 3D object extractions and relighting performance compared to recent baseline methods and visually convincing cross-scene object transfers. We conclude by discussing the limitations of the approach.
☆ Understanding Co-speech Gestures in-the-wild
Co-speech gestures play a vital role in non-verbal communication. In this paper, we introduce a new framework for co-speech gesture understanding in the wild. Specifically, we propose three new tasks and benchmarks to evaluate a model's capability to comprehend gesture-text-speech associations: (i) gesture-based retrieval, (ii) gestured word spotting, and (iii) active speaker detection using gestures. We present a new approach that learns a tri-modal speech-text-video-gesture representation to solve these tasks. By leveraging a combination of global phrase contrastive loss and local gesture-word coupling loss, we demonstrate that a strong gesture representation can be learned in a weakly supervised manner from videos in the wild. Our learned representations outperform previous methods, including large vision-language models (VLMs), across all three tasks. Further analysis reveals that speech and text modalities capture distinct gesture-related signals, underscoring the advantages of learning a shared tri-modal embedding space. The dataset, model, and code are available at: https://www.robots.ox.ac.uk/~vgg/research/jegal
comment: Main paper - 11 pages, 4 figures, Supplementary - 5 pages, 4 figures
☆ Evaluation of Machine-generated Biomedical Images via A Tally-based Similarity Measure
Super-resolution, in-painting, whole-image generation, unpaired style-transfer, and network-constrained image reconstruction each include an aspect of machine-learned image synthesis where the actual ground truth is not known at time of use. It is generally difficult to quantitatively and authoritatively evaluate the quality of synthetic images; however, in mission-critical biomedical scenarios robust evaluation is paramount. In this work, all practical image-to-image comparisons really are relative qualifications, not absolute difference quantifications; and, therefore, meaningful evaluation of generated image quality can be accomplished using the Tversky Index, which is a well-established measure for assessing perceptual similarity. This evaluation procedure is developed and then demonstrated using multiple image data sets, both real and simulated. The main result is that when the subjectivity and intrinsic deficiencies of any feature-encoding choice are put upfront, Tversky's method leads to intuitive results, whereas traditional methods based on summarizing distances in deep feature spaces do not.
comment: 13 pages. Manuscript under review at IEEE. Data available at https://doi.org/10.13012/B2IDB-2642688_V1
☆ Unicorn: Text-Only Data Synthesis for Vision Language Model Training
Training vision-language models (VLMs) typically requires large-scale, high-quality image-text pairs, but collecting or synthesizing such data is costly. In contrast, text data is abundant and inexpensive, prompting the question: can high-quality multimodal training data be synthesized purely from text? To tackle this, we propose a cross-integrated three-stage multimodal data synthesis framework, which generates two datasets: Unicorn-1.2M and Unicorn-471K-Instruction. In Stage 1: Diverse Caption Data Synthesis, we construct 1.2M semantically diverse high-quality captions by expanding sparse caption seeds using large language models (LLMs). In Stage 2: Instruction-Tuning Data Generation, we further process 471K captions into multi-turn instruction-tuning tasks to support complex reasoning. Finally, in Stage 3: Modality Representation Transfer, these textual captions representations are transformed into visual representations, resulting in diverse synthetic image representations. This three-stage process enables us to construct Unicorn-1.2M for pretraining and Unicorn-471K-Instruction for instruction-tuning, without relying on real images. By eliminating the dependency on real images while maintaining data quality and diversity, our framework offers a cost-effective and scalable solution for VLMs training. Code is available at https://github.com/Yu-xm/Unicorn.git.
☆ Zero4D: Training-Free 4D Video Generation From Single Video Using Off-the-Shelf Video Diffusion Model
Recently, multi-view or 4D video generation has emerged as a significant research topic. Nonetheless, recent approaches to 4D generation still struggle with fundamental limitations, as they primarily rely on harnessing multiple video diffusion models with additional training or compute-intensive training of a full 4D diffusion model with limited real-world 4D data and large computational costs. To address these challenges, here we propose the first training-free 4D video generation method that leverages the off-the-shelf video diffusion models to generate multi-view videos from a single input video. Our approach consists of two key steps: (1) By designating the edge frames in the spatio-temporal sampling grid as key frames, we first synthesize them using a video diffusion model, leveraging a depth-based warping technique for guidance. This approach ensures structural consistency across the generated frames, preserving spatial and temporal coherence. (2) We then interpolate the remaining frames using a video diffusion model, constructing a fully populated and temporally coherent sampling grid while preserving spatial and temporal consistency. Through this approach, we extend a single video into a multi-view video along novel camera trajectories while maintaining spatio-temporal consistency. Our method is training-free and fully utilizes an off-the-shelf video diffusion model, offering a practical and effective solution for multi-view video generation.
comment: project page: https://zero4dvid.github.io/
☆ Audio-Plane: Audio Factorization Plane Gaussian Splatting for Real-Time Talking Head Synthesis
Talking head synthesis has become a key research area in computer graphics and multimedia, yet most existing methods often struggle to balance generation quality with computational efficiency. In this paper, we present a novel approach that leverages an Audio Factorization Plane (Audio-Plane) based Gaussian Splatting for high-quality and real-time talking head generation. For modeling a dynamic talking head, 4D volume representation is needed. However, directly storing a dense 4D grid is impractical due to the high cost and lack of scalability for longer durations. We overcome this challenge with the proposed Audio-Plane, where the 4D volume representation is decomposed into audio-independent space planes and audio-dependent planes. This provides a compact and interpretable feature representation for talking head, facilitating more precise audio-aware spatial encoding and enhanced audio-driven lip dynamic modeling. To further improve speech dynamics, we develop a dynamic splatting method that helps the network more effectively focus on modeling the dynamics of the mouth region. Extensive experiments demonstrate that by integrating these innovations with the powerful Gaussian Splatting, our method is capable of synthesizing highly realistic talking videos in real time while ensuring precise audio-lip synchronization. Synthesized results are available in https://sstzal.github.io/Audio-Plane/.
☆ KEVS: Enhancing Segmentation of Visceral Adipose Tissue in Pre-Cystectomy CT with Gaussian Kernel Density Estimation
Purpose: The distribution of visceral adipose tissue (VAT) in cystectomy patients is indicative of the incidence of post-operative complications. Existing VAT segmentation methods for computed tomography (CT) employing intensity thresholding have limitations relating to inter-observer variability. Moreover, the difficulty in creating ground-truth masks limits the development of deep learning (DL) models for this task. This paper introduces a novel method for VAT prediction in pre-cystectomy CT, which is fully automated and does not require ground-truth VAT masks for training, overcoming aforementioned limitations. Methods: We introduce the Kernel density Enhanced VAT Segmentator ( KEVS), combining a DL semantic segmentation model, for multi-body feature prediction, with Gaussian kernel density estimation analysis of predicted subcutaneous adipose tissue to achieve accurate scan-specific predictions of VAT in the abdominal cavity. Uniquely for a DL pipeline, KEVS does not require ground-truth VAT masks. Results: We verify the ability of KEVS to accurately segment abdominal organs in unseen CT data and compare KEVS VAT segmentation predictions to existing state-of-the-art (SOTA) approaches in a dataset of 20 pre-cystectomy CT scans, collected from University College London Hospital (UCLH-Cyst), with expert ground-truth annotations. KEVS presents a 4.80% and 6.02% improvement in Dice Coefficient over the second best DL and thresholding-based VAT segmentation techniques respectively when evaluated on UCLH-Cyst. Conclusion: This research introduces KEVS; an automated, SOTA method for the prediction of VAT in pre-cystectomy CT which eliminates inter-observer variability and is trained entirely on open-source CT datasets which do not contain ground-truth VAT masks.
comment: Preprint for submission to IPCAI special edition of IJCARS 2025, version prior to any peer review
☆ Using AI to Summarize US Presidential Campaign TV Advertisement Videos, 1952-2012
This paper introduces the largest and most comprehensive dataset of US presidential campaign television advertisements, available in digital format. The dataset also includes machine-searchable transcripts and high-quality summaries designed to facilitate a variety of academic research. To date, there has been great interest in collecting and analyzing US presidential campaign advertisements, but the need for manual procurement and annotation led many to rely on smaller subsets. We design a large-scale parallelized, AI-based analysis pipeline that automates the laborious process of preparing, transcribing, and summarizing videos. We then apply this methodology to the 9,707 presidential ads from the Julian P. Kanter Political Commercial Archive. We conduct extensive human evaluations to show that these transcripts and summaries match the quality of manually generated alternatives. We illustrate the value of this data by including an application that tracks the genesis and evolution of current focal issue areas over seven decades of presidential elections. Our analysis pipeline and codebase also show how to use LLM-based tools to obtain high-quality summaries for other video datasets.
comment: 17 pages, 7 tables, 4 figures, and linked datasets
☆ Next-Best-Trajectory Planning of Robot Manipulators for Effective Observation and Exploration ICRA
Visual observation of objects is essential for many robotic applications, such as object reconstruction and manipulation, navigation, and scene understanding. Machine learning algorithms constitute the state-of-the-art in many fields but require vast data sets, which are costly and time-intensive to collect. Automated strategies for observation and exploration are crucial to enhance the efficiency of data gathering. Therefore, a novel strategy utilizing the Next-Best-Trajectory principle is developed for a robot manipulator operating in dynamic environments. Local trajectories are generated to maximize the information gained from observations along the path while avoiding collisions. We employ a voxel map for environment modeling and utilize raycasting from perspectives around a point of interest to estimate the information gain. A global ergodic trajectory planner provides an optional reference trajectory to the local planner, improving exploration and helping to avoid local minima. To enhance computational efficiency, raycasting for estimating the information gain in the environment is executed in parallel on the graphics processing unit. Benchmark results confirm the efficiency of the parallelization, while real-world experiments demonstrate the strategy's effectiveness.
comment: Accepted for publication at the IEEE International Conference on Robotics and Automation (ICRA), 2025
☆ Breaking Language Barriers in Visual Language Models via Multilingual Textual Regularization
Rapid advancements in Visual Language Models (VLMs) have transformed multimodal understanding but are often constrained by generating English responses regardless of the input language. This phenomenon has been termed as Image-induced Fidelity Loss (IFL) and stems from limited multimodal multilingual training data. To address this, we propose a continuous multilingual integration strategy that injects text-only multilingual data during visual instruction tuning, preserving the language model's original multilingual capabilities. Extensive evaluations demonstrate that our approach significantly improves linguistic fidelity across languages without degradation in visual performance. We also explore model merging, which improves language fidelity but comes at the cost of visual performance. In contrast, our core method achieves robust multilingual alignment without trade-offs, offering a scalable and effective path to mitigating IFL for global VLM adoption.
☆ RELD: Regularization by Latent Diffusion Models for Image Restoration
In recent years, Diffusion Models have become the new state-of-the-art in deep generative modeling, ending the long-time dominance of Generative Adversarial Networks. Inspired by the Regularization by Denoising principle, we introduce an approach that integrates a Latent Diffusion Model, trained for the denoising task, into a variational framework using Half-Quadratic Splitting, exploiting its regularization properties. This approach, under appropriate conditions that can be easily met in various imaging applications, allows for reduced computational cost while achieving high-quality results. The proposed strategy, called Regularization by Latent Denoising (RELD), is then tested on a dataset of natural images, for image denoising, deblurring, and super-resolution tasks. The numerical experiments show that RELD is competitive with other state-of-the-art methods, particularly achieving remarkable results when evaluated using perceptual quality metrics.
☆ Image Decomposition with G-norm Weighted by Total Symmetric Variation
In this paper, we propose a novel variational model for decomposing images into their respective cartoon and texture parts. Our model characterizes certain non-local features of any Bounded Variation (BV) image by its Total Symmetric Variation (TSV). We demonstrate that TSV is effective in identifying regional boundaries. Based on this property, we introduce a weighted Meyer's $G$-norm to identify texture interiors without including contour edges. For BV images with bounded TSV, we show that the proposed model admits a solution. Additionally, we design a fast algorithm based on operator-splitting to tackle the associated non-convex optimization problem. The performance of our method is validated by a series of numerical experiments.
☆ MO-CTranS: A unified multi-organ segmentation model learning from multiple heterogeneously labelled datasets
Multi-organ segmentation holds paramount significance in many clinical tasks. In practice, compared to large fully annotated datasets, multiple small datasets are often more accessible and organs are not labelled consistently. Normally, an individual model is trained for each of these datasets, which is not an effective way of using data for model learning. It remains challenging to train a single model that can robustly learn from several partially labelled datasets due to label conflict and data imbalance problems. We propose MO-CTranS: a single model that can overcome such problems. MO-CTranS contains a CNN-based encoder and a Transformer-based decoder, which are connected in a multi-resolution manner. Task-specific tokens are introduced in the decoder to help differentiate label discrepancies. Our method was evaluated and compared to several baseline models and state-of-the-art (SOTA) solutions on abdominal MRI datasets that were acquired in different views (i.e. axial and coronal) and annotated for different organs (i.e. liver, kidney, spleen). Our method achieved better performance (most were statistically significant) than the compared methods. Github link: https://github.com/naisops/MO-CTranS.
comment: Accepted by International Symposium on Biomedical Imaging (ISIB) 2025 as an oral presentation
☆ LIM: Large Interpolator Model for Dynamic Reconstruction
Reconstructing dynamic assets from video data is central to many in computer vision and graphics tasks. Existing 4D reconstruction approaches are limited by category-specific models or slow optimization-based methods. Inspired by the recent Large Reconstruction Model (LRM), we present the Large Interpolation Model (LIM), a transformer-based feed-forward solution, guided by a novel causal consistency loss, for interpolating implicit 3D representations across time. Given implicit 3D representations at times $t_0$ and $t_1$, LIM produces a deformed shape at any continuous time $t\in[t_0,t_1]$, delivering high-quality interpolated frames in seconds. Furthermore, LIM allows explicit mesh tracking across time, producing a consistently uv-textured mesh sequence ready for integration into existing production pipelines. We also use LIM, in conjunction with a diffusion-based multiview generator, to produce dynamic 4D reconstructions from monocular videos. We evaluate LIM on various dynamic datasets, benchmarking against image-space interpolation methods (e.g., FiLM) and direct triplane linear interpolation, and demonstrate clear advantages. In summary, LIM is the first feed-forward model capable of high-speed tracked 4D asset reconstruction across diverse categories.
☆ Deterministic Medical Image Translation via High-fidelity Brownian Bridges
Recent studies have shown that diffusion models produce superior synthetic images when compared to Generative Adversarial Networks (GANs). However, their outputs are often non-deterministic and lack high fidelity to the ground truth due to the inherent randomness. In this paper, we propose a novel High-fidelity Brownian bridge model (HiFi-BBrg) for deterministic medical image translations. Our model comprises two distinct yet mutually beneficial mappings: a generation mapping and a reconstruction mapping. The Brownian bridge training process is guided by the fidelity loss and adversarial training in the reconstruction mapping. This ensures that translated images can be accurately reversed to their original forms, thereby achieving consistent translations with high fidelity to the ground truth. Our extensive experiments on multiple datasets show HiFi-BBrg outperforms state-of-the-art methods in multi-modal image translation and multi-image super-resolution.
☆ AnnoPage Dataset: Dataset of Non-Textual Elements in Documents with Fine-Grained Categorization ICDAR25
We introduce the AnnoPage Dataset, a novel collection of 7550 pages from historical documents, primarily in Czech and German, spanning from 1485 to the present, focusing on the late 19th and early 20th centuries. The dataset is designed to support research in document layout analysis and object detection. Each page is annotated with axis-aligned bounding boxes (AABB) representing elements of 25 categories of non-textual elements, such as images, maps, decorative elements, or charts, following the Czech Methodology of image document processing. The annotations were created by expert librarians to ensure accuracy and consistency. The dataset also incorporates pages from multiple, mainly historical, document datasets to enhance variability and maintain continuity. The dataset is divided into development and test subsets, with the test set carefully selected to maintain the category distribution. We provide baseline results using YOLO and DETR object detectors, offering a reference point for future research. The AnnoPage Dataset is publicly available on Zenodo (https://doi.org/10.5281/zenodo.12788419), along with ground-truth annotations in YOLO format.
comment: 15 pages, 2 tables, 6 figures; Submitted to ICDAR25
☆ Exploiting Mixture-of-Experts Redundancy Unlocks Multimodal Generative Abilities
In this work, we undertake the challenge of augmenting the existing generative capabilities of pre-trained text-only large language models (LLMs) with multi-modal generation capability while satisfying two core constraints: C1 preserving the preservation of original language generative capabilities with negligible performance degradation, and C2 adhering to a small parameter budget to learn the new modality, ensuring scalability and efficiency. In contrast to current approaches that add dedicated modules, thereby significantly increasing the parameter count, we propose a method that leverages the underutilized capacity inherent in deep models. Specifically, we exploit the parameter redundancy within Mixture-of-Experts (MoEs) as a source of additional capacity for learning a new modality, enabling better parameter efficiency (C1). Moreover, we preserve the original language generation capabilities by applying low-rank adaptation exclusively to the tokens of the new modality (C2). Furthermore, we introduce a novel parameter initialization scheme based on the Gromov-Wasserstein distance to improve convergence and training stability. Through an extensive analysis of the routing mechanism, we uncover the emergence of modality-specific pathways and decreased redundancy within the experts that can efficiently unlock multi-modal generative capabilities. Overall, our method can be seamlessly applied to a wide range of contemporary LLMs, providing a new pathway for transitioning from uni-modal to multi-modal architectures.
☆ Masked Self-Supervised Pre-Training for Text Recognition Transformers on Large-Scale Datasets ICDAR25
Self-supervised learning has emerged as a powerful approach for leveraging large-scale unlabeled data to improve model performance in various domains. In this paper, we explore masked self-supervised pre-training for text recognition transformers. Specifically, we propose two modifications to the pre-training phase: progressively increasing the masking probability, and modifying the loss function to incorporate both masked and non-masked patches. We conduct extensive experiments using a dataset of 50M unlabeled text lines for pre-training and four differently sized annotated datasets for fine-tuning. Furthermore, we compare our pre-trained models against those trained with transfer learning, demonstrating the effectiveness of the self-supervised pre-training. In particular, pre-training consistently improves the character error rate of models, in some cases up to 30 % relatively. It is also on par with transfer learning but without relying on extra annotated text lines.
comment: 18 pages, 7 tables, 6 figures; Submitted to ICDAR25
☆ Scenario Dreamer: Vectorized Latent Diffusion for Generating Driving Simulation Environments CVPR 2025
We introduce Scenario Dreamer, a fully data-driven generative simulator for autonomous vehicle planning that generates both the initial traffic scene - comprising a lane graph and agent bounding boxes - and closed-loop agent behaviours. Existing methods for generating driving simulation environments encode the initial traffic scene as a rasterized image and, as such, require parameter-heavy networks that perform unnecessary computation due to many empty pixels in the rasterized scene. Moreover, we find that existing methods that employ rule-based agent behaviours lack diversity and realism. Scenario Dreamer instead employs a novel vectorized latent diffusion model for initial scene generation that directly operates on the vectorized scene elements and an autoregressive Transformer for data-driven agent behaviour simulation. Scenario Dreamer additionally supports scene extrapolation via diffusion inpainting, enabling the generation of unbounded simulation environments. Extensive experiments show that Scenario Dreamer outperforms existing generative simulators in realism and efficiency: the vectorized scene-generation base model achieves superior generation quality with around 2x fewer parameters, 6x lower generation latency, and 10x fewer GPU training hours compared to the strongest baseline. We confirm its practical utility by showing that reinforcement learning planning agents are more challenged in Scenario Dreamer environments than traditional non-generative simulation environments, especially on long and adversarial driving environments.
comment: CVPR 2025
☆ SemAlign3D: Semantic Correspondence between RGB-Images through Aligning 3D Object-Class Representations CVPR 2025
Semantic correspondence made tremendous progress through the recent advancements of large vision models (LVM). While these LVMs have been shown to reliably capture local semantics, the same can currently not be said for capturing global geometric relationships between semantic object regions. This problem leads to unreliable performance for semantic correspondence between images with extreme view variation. In this work, we aim to leverage monocular depth estimates to capture these geometric relationships for more robust and data-efficient semantic correspondence. First, we introduce a simple but effective method to build 3D object-class representations from monocular depth estimates and LVM features using a sparsely annotated image correspondence dataset. Second, we formulate an alignment energy that can be minimized using gradient descent to obtain an alignment between the 3D object-class representation and the object-class instance in the input RGB-image. Our method achieves state-of-the-art matching accuracy in multiple categories on the challenging SPair-71k dataset, increasing the PCK@0.1 score by more than 10 points on three categories and overall by 3.3 points from 85.6% to 88.9%. Additional resources and code are available at https://dub.sh/semalign3d.
comment: Accepted to CVPR 2025. Poster: https://cvpr.thecvf.com/virtual/2025/poster/32799
☆ EndoLRMGS: Complete Endoscopic Scene Reconstruction combining Large Reconstruction Modelling and Gaussian Splatting
Complete reconstruction of surgical scenes is crucial for robot-assisted surgery (RAS). Deep depth estimation is promising but existing works struggle with depth discontinuities, resulting in noisy predictions at object boundaries and do not achieve complete reconstruction omitting occluded surfaces. To address these issues we propose EndoLRMGS, that combines Large Reconstruction Modelling (LRM) and Gaussian Splatting (GS), for complete surgical scene reconstruction. GS reconstructs deformable tissues and LRM generates 3D models for surgical tools while position and scale are subsequently optimized by introducing orthogonal perspective joint projection optimization (OPjPO) to enhance accuracy. In experiments on four surgical videos from three public datasets, our method improves the Intersection-over-union (IoU) of tool 3D models in 2D projections by>40%. Additionally, EndoLRMGS improves the PSNR of the tools projection from 3.82% to 11.07%. Tissue rendering quality also improves, with PSNR increasing from 0.46% to 49.87%, and SSIM from 1.53% to 29.21% across all test videos.
☆ NuGrounding: A Multi-View 3D Visual Grounding Framework in Autonomous Driving
Multi-view 3D visual grounding is critical for autonomous driving vehicles to interpret natural languages and localize target objects in complex environments. However, existing datasets and methods suffer from coarse-grained language instructions, and inadequate integration of 3D geometric reasoning with linguistic comprehension. To this end, we introduce NuGrounding, the first large-scale benchmark for multi-view 3D visual grounding in autonomous driving. We present a Hierarchy of Grounding (HoG) method to construct NuGrounding to generate hierarchical multi-level instructions, ensuring comprehensive coverage of human instruction patterns. To tackle this challenging dataset, we propose a novel paradigm that seamlessly combines instruction comprehension abilities of multi-modal LLMs (MLLMs) with precise localization abilities of specialist detection models. Our approach introduces two decoupled task tokens and a context query to aggregate 3D geometric information and semantic instructions, followed by a fusion decoder to refine spatial-semantic feature fusion for precise localization. Extensive experiments demonstrate that our method significantly outperforms the baselines adapted from representative 3D scene understanding methods by a significant margin and achieves 0.59 in precision and 0.64 in recall, with improvements of 50.8% and 54.7%.
☆ MVSAnywhere: Zero-Shot Multi-View Stereo CVPR 2025
Computing accurate depth from multiple views is a fundamental and longstanding challenge in computer vision. However, most existing approaches do not generalize well across different domains and scene types (e.g. indoor vs. outdoor). Training a general-purpose multi-view stereo model is challenging and raises several questions, e.g. how to best make use of transformer-based architectures, how to incorporate additional metadata when there is a variable number of input views, and how to estimate the range of valid depths which can vary considerably across different scenes and is typically not known a priori? To address these issues, we introduce MVSA, a novel and versatile Multi-View Stereo architecture that aims to work Anywhere by generalizing across diverse domains and depth ranges. MVSA combines monocular and multi-view cues with an adaptive cost volume to deal with scale-related issues. We demonstrate state-of-the-art zero-shot depth estimation on the Robust Multi-View Depth Benchmark, surpassing existing multi-view stereo and monocular baselines.
comment: CVPR 2025
☆ Unveiling the Mist over 3D Vision-Language Understanding: Object-centric Evaluation with Chain-of-Analysis CVPR 2025
Existing 3D vision-language (3D-VL) benchmarks fall short in evaluating 3D-VL models, creating a "mist" that obscures rigorous insights into model capabilities and 3D-VL tasks. This mist persists due to three key limitations. First, flawed test data, like ambiguous referential text in the grounding task, can yield incorrect and unreliable test results. Second, oversimplified metrics such as simply averaging accuracy per question answering (QA) pair, cannot reveal true model capability due to their vulnerability to language variations. Third, existing benchmarks isolate the grounding and QA tasks, disregarding the underlying coherence that QA should be based on solid grounding capabilities. To unveil the "mist", we propose Beacon3D, a benchmark for 3D-VL grounding and QA tasks, delivering a perspective shift in the evaluation of 3D-VL understanding. Beacon3D features (i) high-quality test data with precise and natural language, (ii) object-centric evaluation with multiple tests per object to ensure robustness, and (iii) a novel chain-of-analysis paradigm to address language robustness and model performance coherence across grounding and QA. Our evaluation of state-of-the-art 3D-VL models on Beacon3D reveals that (i) object-centric evaluation elicits true model performance and particularly weak generalization in QA; (ii) grounding-QA coherence remains fragile in current 3D-VL models, and (iii) incorporating large language models (LLMs) to 3D-VL models, though as a prevalent practice, hinders grounding capabilities and has yet to elevate QA capabilities. We hope Beacon3D and our comprehensive analysis could benefit the 3D-VL community towards faithful developments.
comment: CVPR 2025. Project page: https://beacon-3d.github.io
☆ DF2023: The Digital Forensics 2023 Dataset for Image Forgery Detection
The deliberate manipulation of public opinion, especially through altered images, which are frequently disseminated through online social networks, poses a significant danger to society. To fight this issue on a technical level we support the research community by releasing the Digital Forensics 2023 (DF2023) training and validation dataset, comprising one million images from four major forgery categories: splicing, copy-move, enhancement and removal. This dataset enables an objective comparison of network architectures and can significantly reduce the time and effort of researchers preparing datasets.
comment: Published at the 25th Irish Machine Vision and Image Processing Conference (IMVIP) --- Proceedings: https://iprcs.github.io/pdf/IMVIP2023_Proceeding.pdf --- Dataset download: https://zenodo.org/records/7326540/files/DF2023_train.zip https://zenodo.org/records/7326540/files/DF2023_val.zip Kaggle: https://www.kaggle.com/datasets/davidfischinger/df2023-digital-forensics-2023-dataset/data
☆ Modeling Multiple Normal Action Representations for Error Detection in Procedural Tasks
Error detection in procedural activities is essential for consistent and correct outcomes in AR-assisted and robotic systems. Existing methods often focus on temporal ordering errors or rely on static prototypes to represent normal actions. However, these approaches typically overlook the common scenario where multiple, distinct actions are valid following a given sequence of executed actions. This leads to two issues: (1) the model cannot effectively detect errors using static prototypes when the inference environment or action execution distribution differs from training; and (2) the model may also use the wrong prototypes to detect errors if the ongoing action label is not the same as the predicted one. To address this problem, we propose an Adaptive Multiple Normal Action Representation (AMNAR) framework. AMNAR predicts all valid next actions and reconstructs their corresponding normal action representations, which are compared against the ongoing action to detect errors. Extensive experiments demonstrate that AMNAR achieves state-of-the-art performance, highlighting the effectiveness of AMNAR and the importance of modeling multiple valid next actions in error detection. The code is available at https://github.com/iSEE-Laboratory/AMNAR.
☆ VITAL: More Understandable Feature Visualization through Distribution Alignment and Relevant Information Flow
Neural networks are widely adopted to solve complex and challenging tasks. Especially in high-stakes decision-making, understanding their reasoning process is crucial, yet proves challenging for modern deep networks. Feature visualization (FV) is a powerful tool to decode what information neurons are responding to and hence to better understand the reasoning behind such networks. In particular, in FV we generate human-understandable images that reflect the information detected by neurons of interest. However, current methods often yield unrecognizable visualizations, exhibiting repetitive patterns and visual artifacts that are hard to understand for a human. To address these problems, we propose to guide FV through statistics of real image features combined with measures of relevant network flow to generate prototypical images. Our approach yields human-understandable visualizations that both qualitatively and quantitatively improve over state-of-the-art FVs across various architectures. As such, it can be used to decode which information the network uses, complementing mechanistic circuits that identify where it is encoded. Code is available at: https://github.com/adagorgun/VITAL
comment: Code is available at: https://github.com/adagorgun/VITAL
☆ DF-Net: The Digital Forensics Network for Image Forgery Detection
The orchestrated manipulation of public opinion, particularly through manipulated images, often spread via online social networks (OSN), has become a serious threat to society. In this paper we introduce the Digital Forensics Net (DF-Net), a deep neural network for pixel-wise image forgery detection. The released model outperforms several state-of-the-art methods on four established benchmark datasets. Most notably, DF-Net's detection is robust against lossy image operations (e.g resizing, compression) as they are automatically performed by social networks.
comment: Published in 2023 at the 25th Irish Machine Vision and Image Processing Conference (IMVIP), https://iprcs.github.io/pdf/IMVIP2023_Proceeding.pdf
☆ GAITGen: Disentangled Motion-Pathology Impaired Gait Generative Model -- Bringing Motion Generation to the Clinical Domain
Gait analysis is crucial for the diagnosis and monitoring of movement disorders like Parkinson's Disease. While computer vision models have shown potential for objectively evaluating parkinsonian gait, their effectiveness is limited by scarce clinical datasets and the challenge of collecting large and well-labelled data, impacting model accuracy and risk of bias. To address these gaps, we propose GAITGen, a novel framework that generates realistic gait sequences conditioned on specified pathology severity levels. GAITGen employs a Conditional Residual Vector Quantized Variational Autoencoder to learn disentangled representations of motion dynamics and pathology-specific factors, coupled with Mask and Residual Transformers for conditioned sequence generation. GAITGen generates realistic, diverse gait sequences across severity levels, enriching datasets and enabling large-scale model training in parkinsonian gait analysis. Experiments on our new PD-GaM (real) dataset demonstrate that GAITGen outperforms adapted state-of-the-art models in both reconstruction fidelity and generation quality, accurately capturing critical pathology-specific gait features. A clinical user study confirms the realism and clinical relevance of our generated sequences. Moreover, incorporating GAITGen-generated data into downstream tasks improves parkinsonian gait severity estimation, highlighting its potential for advancing clinical gait analysis.
☆ Endo-TTAP: Robust Endoscopic Tissue Tracking via Multi-Facet Guided Attention and Hybrid Flow-point Supervision
Accurate tissue point tracking in endoscopic videos is critical for robotic-assisted surgical navigation and scene understanding, but remains challenging due to complex deformations, instrument occlusion, and the scarcity of dense trajectory annotations. Existing methods struggle with long-term tracking under these conditions due to limited feature utilization and annotation dependence. We present Endo-TTAP, a novel framework addressing these challenges through: (1) A Multi-Facet Guided Attention (MFGA) module that synergizes multi-scale flow dynamics, DINOv2 semantic embeddings, and explicit motion patterns to jointly predict point positions with uncertainty and occlusion awareness; (2) A two-stage curriculum learning strategy employing an Auxiliary Curriculum Adapter (ACA) for progressive initialization and hybrid supervision. Stage I utilizes synthetic data with optical flow ground truth for uncertainty-occlusion regularization, while Stage II combines unsupervised flow consistency and semi-supervised learning with refined pseudo-labels from off-the-shelf trackers. Extensive validation on two MICCAI Challenge datasets and our collected dataset demonstrates that Endo-TTAP achieves state-of-the-art performance in tissue point tracking, particularly in scenarios characterized by complex endoscopic conditions. The source code and dataset will be available at https://anonymous.4open.science/r/Endo-TTAP-36E5.
☆ Data Quality Matters: Quantifying Image Quality Impact on Machine Learning Performance
Precise perception of the environment is essential in highly automated driving systems, which rely on machine learning tasks such as object detection and segmentation. Compression of sensor data is commonly used for data handling, while virtualization is used for hardware-in-the-loop validation. Both methods can alter sensor data and degrade model performance. This necessitates a systematic approach to quantifying image validity. This paper presents a four-step framework to evaluate the impact of image modifications on machine learning tasks. First, a dataset with modified images is prepared to ensure one-to-one matching image pairs, enabling measurement of deviations resulting from compression and virtualization. Second, image deviations are quantified by comparing the effects of compression and virtualization against original camera-based sensor data. Third, the performance of state-of-the-art object detection models is analyzed to determine how altered input data affects perception tasks, including bounding box accuracy and reliability. Finally, a correlation analysis is performed to identify relationships between image quality and model performance. As a result, the LPIPS metric achieves the highest correlation between image deviation and machine learning performance across all evaluated machine learning tasks.
comment: Submitted to IEEE IV 2025, Under Review
☆ ViSketch-GPT: Collaborative Multi-Scale Feature Extraction for Sketch Recognition and Generation
Understanding the nature of human sketches is challenging because of the wide variation in how they are created. Recognizing complex structural patterns improves both the accuracy in recognizing sketches and the fidelity of the generated sketches. In this work, we introduce ViSketch-GPT, a novel algorithm designed to address these challenges through a multi-scale context extraction approach. The model captures intricate details at multiple scales and combines them using an ensemble-like mechanism, where the extracted features work collaboratively to enhance the recognition and generation of key details crucial for classification and generation tasks. The effectiveness of ViSketch-GPT is validated through extensive experiments on the QuickDraw dataset. Our model establishes a new benchmark, significantly outperforming existing methods in both classification and generation tasks, with substantial improvements in accuracy and the fidelity of generated sketches. The proposed algorithm offers a robust framework for understanding complex structures by extracting features that collaborate to recognize intricate details, enhancing the understanding of structures like sketches and making it a versatile tool for various applications in computer vision and machine learning.
☆ ForcePose: A Deep Learning Approach for Force Calculation Based on Action Recognition Using MediaPipe Pose Estimation Combined with Object Detection
Force estimation in human-object interactions is crucial for various fields like ergonomics, physical therapy, and sports science. Traditional methods depend on specialized equipment such as force plates and sensors, which makes accurate assessments both expensive and restricted to laboratory settings. In this paper, we introduce ForcePose, a novel deep learning framework that estimates applied forces by combining human pose estimation with object detection. Our approach leverages MediaPipe for skeletal tracking and SSD MobileNet for object recognition to create a unified representation of human-object interaction. We've developed a specialized neural network that processes both spatial and temporal features to predict force magnitude and direction without needing any physical sensors. After training on our dataset of 850 annotated videos with corresponding force measurements, our model achieves a mean absolute error of 5.83 N in force magnitude and 7.4 degrees in force direction. When compared to existing computer vision approaches, our method performs 27.5% better while still offering real-time performance on standard computing hardware. ForcePose opens up new possibilities for force analysis in diverse real-world scenarios where traditional measurement tools are impractical or intrusive. This paper discusses our methodology, the dataset creation process, evaluation metrics, and potential applications across rehabilitation, ergonomics assessment, and athletic performance analysis.
☆ Mitigating Knowledge Discrepancies among Multiple Datasets for Task-agnostic Unified Face Alignment
Despite the similar structures of human faces, existing face alignment methods cannot learn unified knowledge from multiple datasets with different landmark annotations. The limited training samples in a single dataset commonly result in fragile robustness in this field. To mitigate knowledge discrepancies among different datasets and train a task-agnostic unified face alignment (TUFA) framework, this paper presents a strategy to unify knowledge from multiple datasets. Specifically, we calculate a mean face shape for each dataset. To explicitly align these mean shapes on an interpretable plane based on their semantics, each shape is then incorporated with a group of semantic alignment embeddings. The 2D coordinates of these aligned shapes can be viewed as the anchors of the plane. By encoding them into structure prompts and further regressing the corresponding facial landmarks using image features, a mapping from the plane to the target faces is finally established, which unifies the learning target of different datasets. Consequently, multiple datasets can be utilized to boost the generalization ability of the model. The successful mitigation of discrepancies also enhances the efficiency of knowledge transferring to a novel dataset, significantly boosts the performance of few-shot face alignment. Additionally, the interpretable plane endows TUFA with a task-agnostic characteristic, enabling it to locate landmarks unseen during training in a zero-shot manner. Extensive experiments are carried on seven benchmarks and the results demonstrate an impressive improvement in face alignment brought by knowledge discrepancies mitigation.
comment: 24 Pages, 9 Figures
☆ EchoFlow: A Foundation Model for Cardiac Ultrasound Image and Video Generation
Advances in deep learning have significantly enhanced medical image analysis, yet the availability of large-scale medical datasets remains constrained by patient privacy concerns. We present EchoFlow, a novel framework designed to generate high-quality, privacy-preserving synthetic echocardiogram images and videos. EchoFlow comprises four key components: an adversarial variational autoencoder for defining an efficient latent representation of cardiac ultrasound images, a latent image flow matching model for generating accurate latent echocardiogram images, a latent re-identification model to ensure privacy by filtering images anatomically, and a latent video flow matching model for animating latent images into realistic echocardiogram videos conditioned on ejection fraction. We rigorously evaluate our synthetic datasets on the clinically relevant task of ejection fraction regression and demonstrate, for the first time, that downstream models trained exclusively on EchoFlow-generated synthetic datasets achieve performance parity with models trained on real datasets. We release our models and synthetic datasets, enabling broader, privacy-compliant research in medical ultrasound imaging at https://huggingface.co/spaces/HReynaud/EchoFlow.
comment: This work has been submitted to the IEEE for possible publication
☆ Meta-LoRA: Meta-Learning LoRA Components for Domain-Aware ID Personalization
Recent advancements in text-to-image generative models, particularly latent diffusion models (LDMs), have demonstrated remarkable capabilities in synthesizing high-quality images from textual prompts. However, achieving identity personalization-ensuring that a model consistently generates subject-specific outputs from limited reference images-remains a fundamental challenge. To address this, we introduce Meta-Low-Rank Adaptation (Meta-LoRA), a novel framework that leverages meta-learning to encode domain-specific priors into LoRA-based identity personalization. Our method introduces a structured three-layer LoRA architecture that separates identity-agnostic knowledge from identity-specific adaptation. In the first stage, the LoRA Meta-Down layers are meta-trained across multiple subjects, learning a shared manifold that captures general identity-related features. In the second stage, only the LoRA-Mid and LoRA-Up layers are optimized to specialize on a given subject, significantly reducing adaptation time while improving identity fidelity. To evaluate our approach, we introduce Meta-PHD, a new benchmark dataset for identity personalization, and compare Meta-LoRA against state-of-the-art methods. Our results demonstrate that Meta-LoRA achieves superior identity retention, computational efficiency, and adaptability across diverse identity conditions. The code, model weights, and dataset will be released publicly upon acceptance.
☆ One Look is Enough: A Novel Seamless Patchwise Refinement for Zero-Shot Monocular Depth Estimation Models on High-Resolution Images
Zero-shot depth estimation (DE) models exhibit strong generalization performance as they are trained on large-scale datasets. However, existing models struggle with high-resolution images due to the discrepancy in image resolutions of training (with smaller resolutions) and inference (for high resolutions). Processing them at full resolution leads to decreased estimation accuracy on depth with tremendous memory consumption, while downsampling to the training resolution results in blurred edges in the estimated depth images. Prevailing high-resolution depth estimation methods adopt a patch-based approach, which introduces depth discontinuity issues when reassembling the estimated depth patches and results in test-time inefficiency. Additionally, to obtain fine-grained depth details, these methods rely on synthetic datasets due to the real-world sparse ground truth depth, leading to poor generalizability. To tackle these limitations, we propose Patch Refine Once (PRO), an efficient and generalizable tile-based framework. Our PRO consists of two key components: (i) Grouped Patch Consistency Training that enhances test-time efficiency while mitigating the depth discontinuity problem by jointly processing four overlapping patches and enforcing a consistency loss on their overlapping regions within a single backpropagation step, and (ii) Bias Free Masking that prevents the DE models from overfitting to dataset-specific biases, enabling better generalization to real-world datasets even after training on synthetic data. Zero-shot evaluation on Booster, ETH3D, Middlebury 2014, and NuScenes demonstrates into which our PRO can be well harmonized, making their DE capabilities still effective for the grid input of high-resolution images with little depth discontinuities at the grid boundaries. Our PRO runs fast at inference time.
comment: Please visit our project page this https://kaist-viclab.github.io/One-Look-is-Enough_site
☆ GCRayDiffusion: Pose-Free Surface Reconstruction via Geometric Consistent Ray Diffusion
Accurate surface reconstruction from unposed images is crucial for efficient 3D object or scene creation. However, it remains challenging, particularly for the joint camera pose estimation. Previous approaches have achieved impressive pose-free surface reconstruction results in dense-view settings, but could easily fail for sparse-view scenarios without sufficient visual overlap. In this paper, we propose a new technique for pose-free surface reconstruction, which follows triplane-based signed distance field (SDF) learning but regularizes the learning by explicit points sampled from ray-based diffusion of camera pose estimation. Our key contribution is a novel Geometric Consistent Ray Diffusion model (GCRayDiffusion), where we represent camera poses as neural bundle rays and regress the distribution of noisy rays via a diffusion model. More importantly, we further condition the denoising process of RGRayDiffusion using the triplane-based SDF of the entire scene, which provides effective 3D consistent regularization to achieve multi-view consistent camera pose estimation. Finally, we incorporate RGRayDiffusion into the triplane-based SDF learning by introducing on-surface geometric regularization from the sampling points of the neural bundle rays, which leads to highly accurate pose-free surface reconstruction results even for sparse-view inputs. Extensive evaluations on public datasets show that our GCRayDiffusion achieves more accurate camera pose estimation than previous approaches, with geometrically more consistent surface reconstruction results, especially given sparse-view inputs.
☆ ArchCAD-400K: An Open Large-Scale Architectural CAD Dataset and New Baseline for Panoptic Symbol Spotting
Recognizing symbols in architectural CAD drawings is critical for various advanced engineering applications. In this paper, we propose a novel CAD data annotation engine that leverages intrinsic attributes from systematically archived CAD drawings to automatically generate high-quality annotations, thus significantly reducing manual labeling efforts. Utilizing this engine, we construct ArchCAD-400K, a large-scale CAD dataset consisting of 413,062 chunks from 5538 highly standardized drawings, making it over 26 times larger than the largest existing CAD dataset. ArchCAD-400K boasts an extended drawing diversity and broader categories, offering line-grained annotations. Furthermore, we present a new baseline model for panoptic symbol spotting, termed Dual-Pathway Symbol Spotter (DPSS). It incorporates an adaptive fusion module to enhance primitive features with complementary image features, achieving state-of-the-art performance and enhanced robustness. Extensive experiments validate the effectiveness of DPSS, demonstrating the value of ArchCAD-400K and its potential to drive innovation in architectural design and construction.
☆ Semantix: An Energy Guided Sampler for Semantic Style Transfer ICLR 2025
Recent advances in style and appearance transfer are impressive, but most methods isolate global style and local appearance transfer, neglecting semantic correspondence. Additionally, image and video tasks are typically handled in isolation, with little focus on integrating them for video transfer. To address these limitations, we introduce a novel task, Semantic Style Transfer, which involves transferring style and appearance features from a reference image to a target visual content based on semantic correspondence. We subsequently propose a training-free method, Semantix an energy-guided sampler designed for Semantic Style Transfer that simultaneously guides both style and appearance transfer based on semantic understanding capacity of pre-trained diffusion models. Additionally, as a sampler, Semantix be seamlessly applied to both image and video models, enabling semantic style transfer to be generic across various visual media. Specifically, once inverting both reference and context images or videos to noise space by SDEs, Semantix utilizes a meticulously crafted energy function to guide the sampling process, including three key components: Style Feature Guidance, Spatial Feature Guidance and Semantic Distance as a regularisation term. Experimental results demonstrate that Semantix not only effectively accomplishes the task of semantic style transfer across images and videos, but also surpasses existing state-of-the-art solutions in both fields. The project website is available at https://huiang-he.github.io/semantix/
comment: 28 pages, 19 figures, Accepted to ICLR 2025
☆ Imperceptible but Forgeable: Practical Invisible Watermark Forgery via Diffusion Models
Invisible watermarking is critical for content provenance and accountability in Generative AI. Although commercial companies have increasingly committed to using watermarks, the robustness of existing watermarking schemes against forgery attacks is understudied. This paper proposes DiffForge, the first watermark forgery framework capable of forging imperceptible watermarks under a no-box setting. We estimate the watermark distribution using an unconditional diffusion model and introduce shallow inversion to inject the watermark into a non-watermarked image seamlessly. This approach facilitates watermark injection while preserving image quality by adaptively selecting the depth of inversion steps, leveraging our key insight that watermarks degrade with added noise during the early diffusion phases. Comprehensive evaluations show that DiffForge deceives open-source watermark detectors with a 96.38% success rate and misleads a commercial watermark system with over 97% success rate, achieving high confidence.1 This work reveals fundamental security limitations in current watermarking paradigms.
☆ VoteFlow: Enforcing Local Rigidity in Self-Supervised Scene Flow CVPR 2025
Scene flow estimation aims to recover per-point motion from two adjacent LiDAR scans. However, in real-world applications such as autonomous driving, points rarely move independently of others, especially for nearby points belonging to the same object, which often share the same motion. Incorporating this locally rigid motion constraint has been a key challenge in self-supervised scene flow estimation, which is often addressed by post-processing or appending extra regularization. While these approaches are able to improve the rigidity of predicted flows, they lack an architectural inductive bias for local rigidity within the model structure, leading to suboptimal learning efficiency and inferior performance. In contrast, we enforce local rigidity with a lightweight add-on module in neural network design, enabling end-to-end learning. We design a discretized voting space that accommodates all possible translations and then identify the one shared by nearby points by differentiable voting. Additionally, to ensure computational efficiency, we operate on pillars rather than points and learn representative features for voting per pillar. We plug the Voting Module into popular model designs and evaluate its benefit on Argoverse 2 and Waymo datasets. We outperform baseline works with only marginal compute overhead. Code is available at https://github.com/tudelft-iv/VoteFlow.
comment: CVPR 2025. Code is available at https://github.com/tudelft-iv/VoteFlow. Yancong Lin and Shiming Wang have equal contributions
☆ AH-GS: Augmented 3D Gaussian Splatting for High-Frequency Detail Representation
The 3D Gaussian Splatting (3D-GS) is a novel method for scene representation and view synthesis. Although Scaffold-GS achieves higher quality real-time rendering compared to the original 3D-GS, its fine-grained rendering of the scene is extremely dependent on adequate viewing angles. The spectral bias of neural network learning results in Scaffold-GS's poor ability to perceive and learn high-frequency information in the scene. In this work, we propose enhancing the manifold complexity of input features and using network-based feature map loss to improve the image reconstruction quality of 3D-GS models. We introduce AH-GS, which enables 3D Gaussians in structurally complex regions to obtain higher-frequency encodings, allowing the model to more effectively learn the high-frequency information of the scene. Additionally, we incorporate high-frequency reinforce loss to further enhance the model's ability to capture detailed frequency information. Our result demonstrates that our model significantly improves rendering fidelity, and in specific scenarios (e.g., MipNeRf360-garden), our method exceeds the rendering quality of Scaffold-GS in just 15K iterations.
☆ A Dataset for Semantic Segmentation in the Presence of Unknowns CVPR 2025
Before deployment in the real-world deep neural networks require thorough evaluation of how they handle both knowns, inputs represented in the training data, and unknowns (anomalies). This is especially important for scene understanding tasks with safety critical applications, such as in autonomous driving. Existing datasets allow evaluation of only knowns or unknowns - but not both, which is required to establish "in the wild" suitability of deep neural network models. To bridge this gap, we propose a novel anomaly segmentation dataset, ISSU, that features a diverse set of anomaly inputs from cluttered real-world environments. The dataset is twice larger than existing anomaly segmentation datasets, and provides a training, validation and test set for controlled in-domain evaluation. The test set consists of a static and temporal part, with the latter comprised of videos. The dataset provides annotations for both closed-set (knowns) and anomalies, enabling closed-set and open-set evaluation. The dataset covers diverse conditions, such as domain and cross-sensor shift, illumination variation and allows ablation of anomaly detection methods with respect to these variations. Evaluation results of current state-of-the-art methods confirm the need for improvements especially in domain-generalization, small and large object segmentation.
comment: Accepted to CVPR 2025
☆ VisTa: Visual-contextual and Text-augmented Zero-shot Object-level OOD Detection
As object detectors are increasingly deployed as black-box cloud services or pre-trained models with restricted access to the original training data, the challenge of zero-shot object-level out-of-distribution (OOD) detection arises. This task becomes crucial in ensuring the reliability of detectors in open-world settings. While existing methods have demonstrated success in image-level OOD detection using pre-trained vision-language models like CLIP, directly applying such models to object-level OOD detection presents challenges due to the loss of contextual information and reliance on image-level alignment. To tackle these challenges, we introduce a new method that leverages visual prompts and text-augmented in-distribution (ID) space construction to adapt CLIP for zero-shot object-level OOD detection. Our method preserves critical contextual information and improves the ability to differentiate between ID and OOD objects, achieving competitive performance across different benchmarks.
comment: 5 pages, 4 figures
☆ RUNA: Object-level Out-of-Distribution Detection via Regional Uncertainty Alignment of Multimodal Representations
Enabling object detectors to recognize out-of-distribution (OOD) objects is vital for building reliable systems. A primary obstacle stems from the fact that models frequently do not receive supervisory signals from unfamiliar data, leading to overly confident predictions regarding OOD objects. Despite previous progress that estimates OOD uncertainty based on the detection model and in-distribution (ID) samples, we explore using pre-trained vision-language representations for object-level OOD detection. We first discuss the limitations of applying image-level CLIP-based OOD detection methods to object-level scenarios. Building upon these insights, we propose RUNA, a novel framework that leverages a dual encoder architecture to capture rich contextual information and employs a regional uncertainty alignment mechanism to distinguish ID from OOD objects effectively. We introduce a few-shot fine-tuning approach that aligns region-level semantic representations to further improve the model's capability to discriminate between similar objects. Our experiments show that RUNA substantially surpasses state-of-the-art methods in object-level OOD detection, particularly in challenging scenarios with diverse and complex object instances.
comment: 9 pages, 5 figures
☆ Divide to Conquer: A Field Decomposition Approach for Multi-Organ Whole-Body CT Image Registration
Image registration is an essential technique for the analysis of Computed Tomography (CT) images in clinical practice. However, existing methodologies are predominantly tailored to a specific organ of interest and often exhibit lower performance on other organs, thus limiting their generalizability and applicability. Multi-organ registration addresses these limitations, but the simultaneous alignment of multiple organs with diverse shapes, sizes and locations requires a highly complex deformation field with a multi-layer composition of individual deformations. This study introduces a novel field decomposition approach to address the high complexity of deformations in multi-organ whole-body CT image registration. The proposed method is trained and evaluated on a longitudinal dataset of 691 patients, each with two CT images obtained at distinct time points. These scans fully encompass the thoracic, abdominal, and pelvic regions. Two baseline registration methods are selected for this study: one based on optimization techniques and another based on deep learning. Experimental results demonstrate that the proposed approach outperforms baseline methods in handling complex deformations in multi-organ whole-body CT image registration.
Efficient Epistemic Uncertainty Estimation in Cerebrovascular Segmentation
Brain vessel segmentation of MR scans is a critical step in the diagnosis of cerebrovascular diseases. Due to the fine vessel structure, manual vessel segmentation is time consuming. Therefore, automatic deep learning (DL) based segmentation techniques are intensively investigated. As conventional DL models yield a high complexity and lack an indication of decision reliability, they are often considered as not trustworthy. This work aims to increase trust in DL based models by incorporating epistemic uncertainty quantification into cerebrovascular segmentation models for the first time. By implementing an efficient ensemble model combining the advantages of Bayesian Approximation and Deep Ensembles, we aim to overcome the high computational costs of conventional probabilistic networks. Areas of high model uncertainty and erroneous predictions are aligned which demonstrates the effectiveness and reliability of the approach. We perform extensive experiments applying the ensemble model on out-of-distribution (OOD) data. We demonstrate that for OOD-images, the estimated uncertainty increases. Additionally, omitting highly uncertain areas improves the segmentation quality, both for in- and out-of-distribution data. The ensemble model explains its limitations in a reliable manner and can maintain trustworthiness also for OOD data and could be considered in clinical applications
☆ Segment Any Motion in Videos CVPR 2025
Moving object segmentation is a crucial task for achieving a high-level understanding of visual scenes and has numerous downstream applications. Humans can effortlessly segment moving objects in videos. Previous work has largely relied on optical flow to provide motion cues; however, this approach often results in imperfect predictions due to challenges such as partial motion, complex deformations, motion blur and background distractions. We propose a novel approach for moving object segmentation that combines long-range trajectory motion cues with DINO-based semantic features and leverages SAM2 for pixel-level mask densification through an iterative prompting strategy. Our model employs Spatio-Temporal Trajectory Attention and Motion-Semantic Decoupled Embedding to prioritize motion while integrating semantic support. Extensive testing on diverse datasets demonstrates state-of-the-art performance, excelling in challenging scenarios and fine-grained segmentation of multiple objects. Our code is available at https://motion-seg.github.io/.
comment: CVPR 2025. Website: https://motion-seg.github.io/
☆ DeepAudio-V1:Towards Multi-Modal Multi-Stage End-to-End Video to Speech and Audio Generation
Currently, high-quality, synchronized audio is synthesized using various multi-modal joint learning frameworks, leveraging video and optional text inputs. In the video-to-audio benchmarks, video-to-audio quality, semantic alignment, and audio-visual synchronization are effectively achieved. However, in real-world scenarios, speech and audio often coexist in videos simultaneously, and the end-to-end generation of synchronous speech and audio given video and text conditions are not well studied. Therefore, we propose an end-to-end multi-modal generation framework that simultaneously produces speech and audio based on video and text conditions. Furthermore, the advantages of video-to-audio (V2A) models for generating speech from videos remain unclear. The proposed framework, DeepAudio, consists of a video-to-audio (V2A) module, a text-to-speech (TTS) module, and a dynamic mixture of modality fusion (MoF) module. In the evaluation, the proposed end-to-end framework achieves state-of-the-art performance on the video-audio benchmark, video-speech benchmark, and text-speech benchmark. In detail, our framework achieves comparable results in the comparison with state-of-the-art models for the video-audio and text-speech benchmarks, and surpassing state-of-the-art models in the video-speech benchmark, with WER 16.57% to 3.15% (+80.99%), SPK-SIM 78.30% to 89.38% (+14.15%), EMO-SIM 66.24% to 75.56% (+14.07%), MCD 8.59 to 7.98 (+7.10%), MCD SL 11.05 to 9.40 (+14.93%) across a variety of dubbing settings.
comment: 11 pages, 5 figures
☆ FLIP: Towards Comprehensive and Reliable Evaluation of Federated Prompt Learning
The increasing emphasis on privacy and data security has driven the adoption of federated learning, a decentralized approach to train machine learning models without sharing raw data. Prompt learning, which fine-tunes prompt embeddings of pretrained models, offers significant advantages in federated settings by reducing computational costs and communication overheads while leveraging the strong performance and generalization capabilities of vision-language models such as CLIP. This paper addresses the intersection of federated learning and prompt learning, particularly for vision-language models. In this work, we introduce a comprehensive framework, named FLIP, to evaluate federated prompt learning algorithms. FLIP assesses the performance of 8 state-of-the-art federated prompt learning methods across 4 federated learning protocols and 12 open datasets, considering 6 distinct evaluation scenarios. Our findings demonstrate that prompt learning maintains strong generalization performance in both in-distribution and out-of-distribution settings with minimal resource consumption. This work highlights the effectiveness of federated prompt learning in environments characterized by data scarcity, unseen classes, and cross-domain distributional shifts. We open-source the code for all implemented algorithms in FLIP to facilitate further research in this domain.
comment: https://github.com/0-ml/flip
☆ Mono2Stereo: A Benchmark and Empirical Study for Stereo Conversion CVPR 2025
With the rapid proliferation of 3D devices and the shortage of 3D content, stereo conversion is attracting increasing attention. Recent works introduce pretrained Diffusion Models (DMs) into this task. However, due to the scarcity of large-scale training data and comprehensive benchmarks, the optimal methodologies for employing DMs in stereo conversion and the accurate evaluation of stereo effects remain largely unexplored. In this work, we introduce the Mono2Stereo dataset, providing high-quality training data and benchmark to support in-depth exploration of stereo conversion. With this dataset, we conduct an empirical study that yields two primary findings. 1) The differences between the left and right views are subtle, yet existing metrics consider overall pixels, failing to concentrate on regions critical to stereo effects. 2) Mainstream methods adopt either one-stage left-to-right generation or warp-and-inpaint pipeline, facing challenges of degraded stereo effect and image distortion respectively. Based on these findings, we introduce a new evaluation metric, Stereo Intersection-over-Union, which prioritizes disparity and achieves a high correlation with human judgments on stereo effect. Moreover, we propose a strong baseline model, harmonizing the stereo effect and image quality simultaneously, and notably surpassing current mainstream methods. Our code and data will be open-sourced to promote further research in stereo conversion. Our models are available at mono2stereo-bench.github.io.
comment: Accepted by CVPR 2025 Project webpage: https://mono2stereo-bench.github.io/
Efficient Building Roof Type Classification: A Domain-Specific Self-Supervised Approach
Accurate classification of building roof types from aerial imagery is crucial for various remote sensing applications, including urban planning, disaster management, and infrastructure monitoring. However, this task is often hindered by the limited availability of labeled data for supervised learning approaches. To address this challenge, this paper investigates the effectiveness of self supervised learning with EfficientNet architectures, known for their computational efficiency, for building roof type classification. We propose a novel framework that incorporates a Convolutional Block Attention Module (CBAM) to enhance the feature extraction capabilities of EfficientNet. Furthermore, we explore the benefits of pretraining on a domain-specific dataset, the Aerial Image Dataset (AID), compared to ImageNet pretraining. Our experimental results demonstrate the superiority of our approach. Employing Simple Framework for Contrastive Learning of Visual Representations (SimCLR) with EfficientNet-B3 and CBAM achieves a 95.5% accuracy on our validation set, matching the performance of state-of-the-art transformer-based models while utilizing significantly fewer parameters. We also provide a comprehensive evaluation on two challenging test sets, demonstrating the generalization capability of our method. Notably, our findings highlight the effectiveness of domain-specific pretraining, consistently leading to higher accuracy compared to models pretrained on the generic ImageNet dataset. Our work establishes EfficientNet based self-supervised learning as a computationally efficient and highly effective approach for building roof type classification, particularly beneficial in scenarios with limited labeled data.
☆ SCHNet: SAM Marries CLIP for Human Parsing
Vision Foundation Model (VFM) such as the Segment Anything Model (SAM) and Contrastive Language-Image Pre-training Model (CLIP) has shown promising performance for segmentation and detection tasks. However, although SAM excels in fine-grained segmentation, it faces major challenges when applying it to semantic-aware segmentation. While CLIP exhibits a strong semantic understanding capability via aligning the global features of language and vision, it has deficiencies in fine-grained segmentation tasks. Human parsing requires to segment human bodies into constituent parts and involves both accurate fine-grained segmentation and high semantic understanding of each part. Based on traits of SAM and CLIP, we formulate high efficient modules to effectively integrate features of them to benefit human parsing. We propose a Semantic-Refinement Module to integrate semantic features of CLIP with SAM features to benefit parsing. Moreover, we formulate a high efficient Fine-tuning Module to adjust the pretrained SAM for human parsing that needs high semantic information and simultaneously demands spatial details, which significantly reduces the training time compared with full-time training and achieves notable performance. Extensive experiments demonstrate the effectiveness of our method on LIP, PPP, and CIHP databases.
☆ Hi3DGen: High-fidelity 3D Geometry Generation from Images via Normal Bridging
With the growing demand for high-fidelity 3D models from 2D images, existing methods still face significant challenges in accurately reproducing fine-grained geometric details due to limitations in domain gaps and inherent ambiguities in RGB images. To address these issues, we propose Hi3DGen, a novel framework for generating high-fidelity 3D geometry from images via normal bridging. Hi3DGen consists of three key components: (1) an image-to-normal estimator that decouples the low-high frequency image pattern with noise injection and dual-stream training to achieve generalizable, stable, and sharp estimation; (2) a normal-to-geometry learning approach that uses normal-regularized latent diffusion learning to enhance 3D geometry generation fidelity; and (3) a 3D data synthesis pipeline that constructs a high-quality dataset to support training. Extensive experiments demonstrate the effectiveness and superiority of our framework in generating rich geometric details, outperforming state-of-the-art methods in terms of fidelity. Our work provides a new direction for high-fidelity 3D geometry generation from images by leveraging normal maps as an intermediate representation.
comment: https://stable-x.github.io/Hi3DGen/static
☆ CoGen: 3D Consistent Video Generation via Adaptive Conditioning for Autonomous Driving
Recent progress in driving video generation has shown significant potential for enhancing self-driving systems by providing scalable and controllable training data. Although pretrained state-of-the-art generation models, guided by 2D layout conditions (e.g., HD maps and bounding boxes), can produce photorealistic driving videos, achieving controllable multi-view videos with high 3D consistency remains a major challenge. To tackle this, we introduce a novel spatial adaptive generation framework, CoGen, which leverages advances in 3D generation to improve performance in two key aspects: (i) To ensure 3D consistency, we first generate high-quality, controllable 3D conditions that capture the geometry of driving scenes. By replacing coarse 2D conditions with these fine-grained 3D representations, our approach significantly enhances the spatial consistency of the generated videos. (ii) Additionally, we introduce a consistency adapter module to strengthen the robustness of the model to multi-condition control. The results demonstrate that this method excels in preserving geometric fidelity and visual realism, offering a reliable video generation solution for autonomous driving.
☆ Follow Your Motion: A Generic Temporal Consistency Portrait Editing Framework with Trajectory Guidance
Pre-trained conditional diffusion models have demonstrated remarkable potential in image editing. However, they often face challenges with temporal consistency, particularly in the talking head domain, where continuous changes in facial expressions intensify the level of difficulty. These issues stem from the independent editing of individual images and the inherent loss of temporal continuity during the editing process. In this paper, we introduce Follow Your Motion (FYM), a generic framework for maintaining temporal consistency in portrait editing. Specifically, given portrait images rendered by a pre-trained 3D Gaussian Splatting model, we first develop a diffusion model that intuitively and inherently learns motion trajectory changes at different scales and pixel coordinates, from the first frame to each subsequent frame. This approach ensures that temporally inconsistent edited avatars inherit the motion information from the rendered avatars. Secondly, to maintain fine-grained expression temporal consistency in talking head editing, we propose a dynamic re-weighted attention mechanism. This mechanism assigns higher weight coefficients to landmark points in space and dynamically updates these weights based on landmark loss, achieving more consistent and refined facial expressions. Extensive experiments demonstrate that our method outperforms existing approaches in terms of temporal consistency and can be used to optimize and compensate for temporally inconsistent outputs in a range of applications, such as text-driven editing, relighting, and various other applications.
comment: https://anonymous-hub1127.github.io/FYM.github.io/
☆ ABC-GS: Alignment-Based Controllable Style Transfer for 3D Gaussian Splatting
3D scene stylization approaches based on Neural Radiance Fields (NeRF) achieve promising results by optimizing with Nearest Neighbor Feature Matching (NNFM) loss. However, NNFM loss does not consider global style information. In addition, the implicit representation of NeRF limits their fine-grained control over the resulting scenes. In this paper, we introduce ABC-GS, a novel framework based on 3D Gaussian Splatting to achieve high-quality 3D style transfer. To this end, a controllable matching stage is designed to achieve precise alignment between scene content and style features through segmentation masks. Moreover, a style transfer loss function based on feature alignment is proposed to ensure that the outcomes of style transfer accurately reflect the global style of the reference image. Furthermore, the original geometric information of the scene is preserved with the depth loss and Gaussian regularization terms. Extensive experiments show that our ABC-GS provides controllability of style transfer and achieves stylization results that are more faithfully aligned with the global style of the chosen artistic reference. Our homepage is available at https://vpx-ecnu.github.io/ABC-GS-website.
comment: 10 pages, 14 figures
☆ Learning to Instruct for Visual Instruction Tuning
We propose LIT, an advancement of visual instruction tuning (VIT). While VIT equips Multimodal LLMs (MLLMs) with promising multimodal capabilities, the current design choices for VIT often result in overfitting and shortcut learning, potentially degrading performance. This gap arises from an overemphasis on instruction-following abilities, while neglecting the proactive understanding of visual information. Inspired by this, LIT adopts a simple yet effective approach by incorporating the loss function into both the instruction and response sequences. It seamlessly expands the training data, and regularizes the MLLMs from overly relying on language priors. Based on this merit, LIT achieves a significant relative improvement of up to 9% on comprehensive multimodal benchmarks, requiring no additional training data and incurring negligible computational overhead. Surprisingly, LIT attains exceptional fundamental visual capabilities, yielding up to an 18% improvement in captioning performance, while simultaneously alleviating hallucination in MLLMs.
comment: 16 pages, 10 figures
☆ Intrinsic Image Decomposition for Robust Self-supervised Monocular Depth Estimation on Reflective Surfaces AAAI 2025
Self-supervised monocular depth estimation (SSMDE) has gained attention in the field of deep learning as it estimates depth without requiring ground truth depth maps. This approach typically uses a photometric consistency loss between a synthesized image, generated from the estimated depth, and the original image, thereby reducing the need for extensive dataset acquisition. However, the conventional photometric consistency loss relies on the Lambertian assumption, which often leads to significant errors when dealing with reflective surfaces that deviate from this model. To address this limitation, we propose a novel framework that incorporates intrinsic image decomposition into SSMDE. Our method synergistically trains for both monocular depth estimation and intrinsic image decomposition. The accurate depth estimation facilitates multi-image consistency for intrinsic image decomposition by aligning different view coordinate systems, while the decomposition process identifies reflective areas and excludes corrupted gradients from the depth training process. Furthermore, our framework introduces a pseudo-depth generation and knowledge distillation technique to further enhance the performance of the student model across both reflective and non-reflective surfaces. Comprehensive evaluations on multiple datasets show that our approach significantly outperforms existing SSMDE baselines in depth prediction, especially on reflective surfaces.
comment: Accepted at AAAI 2025
☆ DeepSound-V1: Start to Think Step-by-Step in the Audio Generation from Videos
Currently, high-quality, synchronized audio is synthesized from video and optional text inputs using various multi-modal joint learning frameworks. However, the precise alignment between the visual and generated audio domains remains far from satisfactory. One key factor is the lack of sufficient temporal and semantic alignment annotations in open-source video-audio and text-audio benchmarks. Therefore, we propose a framework for audio generation from videos, leveraging the internal chain-of-thought (CoT) of a multi-modal large language model (MLLM) to enable step-by-step reasoning without requiring additional annotations. Additionally, a corresponding multi-modal reasoning dataset is constructed to facilitate the learning of initial reasoning in audio generation. In the experiments, we demonstrate the effectiveness of the proposed framework in reducing misalignment (voice-over) in generated audio and achieving competitive performance compared to various state-of-the-art models. The evaluation results show that the proposed method outperforms state-of-the-art approaches across multiple metrics. Specifically, the F DP aSST indicator is reduced by up to 10.07%, the F DP AN N s indicator by up to 11.62%, and the F DV GG indicator by up to 38.61%. Furthermore, the IS indicator improves by up to 4.95%, the IB-score indicator increases by up to 6.39%, and the DeSync indicator is reduced by up to 0.89%.
comment: 11 pages, 6 figures
☆ Data-Free Universal Attack by Exploiting the Intrinsic Vulnerability of Deep Models AAAI 2025
Deep neural networks (DNNs) are susceptible to Universal Adversarial Perturbations (UAPs), which are instance agnostic perturbations that can deceive a target model across a wide range of samples. Unlike instance-specific adversarial examples, UAPs present a greater challenge as they must generalize across different samples and models. Generating UAPs typically requires access to numerous examples, which is a strong assumption in real-world tasks. In this paper, we propose a novel data-free method called Intrinsic UAP (IntriUAP), by exploiting the intrinsic vulnerabilities of deep models. We analyze a series of popular deep models composed of linear and nonlinear layers with a Lipschitz constant of 1, revealing that the vulnerability of these models is predominantly influenced by their linear components. Based on this observation, we leverage the ill-conditioned nature of the linear components by aligning the UAP with the right singular vectors corresponding to the maximum singular value of each linear layer. Remarkably, our method achieves highly competitive performance in attacking popular image classification deep models without using any image samples. We also evaluate the black-box attack performance of our method, showing that it matches the state-of-the-art baseline for data-free methods on models that conform to our theoretical framework. Beyond the data-free assumption, IntriUAP also operates under a weaker assumption, where the adversary only can access a few of the victim model's layers. Experiments demonstrate that the attack success rate decreases by only 4% when the adversary has access to just 50% of the linear layers in the victim model.
comment: Accepted in AAAI 2025
☆ Segment then Splat: A Unified Approach for 3D Open-Vocabulary Segmentation based on Gaussian Splatting
Open-vocabulary querying in 3D space is crucial for enabling more intelligent perception in applications such as robotics, autonomous systems, and augmented reality. However, most existing methods rely on 2D pixel-level parsing, leading to multi-view inconsistencies and poor 3D object retrieval. Moreover, they are limited to static scenes and struggle with dynamic scenes due to the complexities of motion modeling. In this paper, we propose Segment then Splat, a 3D-aware open vocabulary segmentation approach for both static and dynamic scenes based on Gaussian Splatting. Segment then Splat reverses the long established approach of "segmentation after reconstruction" by dividing Gaussians into distinct object sets before reconstruction. Once the reconstruction is complete, the scene is naturally segmented into individual objects, achieving true 3D segmentation. This approach not only eliminates Gaussian-object misalignment issues in dynamic scenes but also accelerates the optimization process, as it eliminates the need for learning a separate language field. After optimization, a CLIP embedding is assigned to each object to enable open-vocabulary querying. Extensive experiments on various datasets demonstrate the effectiveness of our proposed method in both static and dynamic scenarios.
comment: Project page: https://vulab-ai.github.io/Segment-then-Splat/
☆ Multi-modal Knowledge Distillation-based Human Trajectory Forecasting CVPR 2025
Pedestrian trajectory forecasting is crucial in various applications such as autonomous driving and mobile robot navigation. In such applications, camera-based perception enables the extraction of additional modalities (human pose, text) to enhance prediction accuracy. Indeed, we find that textual descriptions play a crucial role in integrating additional modalities into a unified understanding. However, online extraction of text requires the use of VLM, which may not be feasible for resource-constrained systems. To address this challenge, we propose a multi-modal knowledge distillation framework: a student model with limited modality is distilled from a teacher model trained with full range of modalities. The comprehensive knowledge of a teacher model trained with trajectory, human pose, and text is distilled into a student model using only trajectory or human pose as a sole supplement. In doing so, we separately distill the core locomotion insights from intra-agent multi-modality and inter-agent interaction. Our generalizable framework is validated with two state-of-the-art models across three datasets on both ego-view (JRDB, SIT) and BEV-view (ETH/UCY) setups, utilizing both annotated and VLM-generated text captions. Distilled student models show consistent improvement in all prediction metrics for both full and instantaneous observations, improving up to ~13%. The code is available at https://github.com/Jaewoo97/KDTF.
comment: Accepted to CVPR 2025
☆ Enhance Generation Quality of Flow Matching V2A Model via Multi-Step CoT-Like Guidance and Combined Preference Optimization
Creating high-quality sound effects from videos and text prompts requires precise alignment between visual and audio domains, both semantically and temporally, along with step-by-step guidance for professional audio generation. However, current state-of-the-art video-guided audio generation models often fall short of producing high-quality audio for both general and specialized use cases. To address this challenge, we introduce a multi-stage, multi-modal, end-to-end generative framework with Chain-of-Thought-like (CoT-like) guidance learning, termed Chain-of-Perform (CoP). First, we employ a transformer-based network architecture designed to achieve CoP guidance, enabling the generation of both general and professional audio. Second, we implement a multi-stage training framework that follows step-by-step guidance to ensure the generation of high-quality sound effects. Third, we develop a CoP multi-modal dataset, guided by video, to support step-by-step sound effects generation. Evaluation results highlight the advantages of the proposed multi-stage CoP generative framework compared to the state-of-the-art models on a variety of datasets, with FAD 0.79 to 0.74 (+6.33%), CLIP 16.12 to 17.70 (+9.80%) on VGGSound, SI-SDR 1.98dB to 3.35dB (+69.19%), MOS 2.94 to 3.49(+18.71%) on PianoYT-2h, and SI-SDR 2.22dB to 3.21dB (+44.59%), MOS 3.07 to 3.42 (+11.40%) on Piano-10h.
comment: 10 pages, 4 figures
☆ Hyperspectral Adapter for Object Tracking based on Hyperspectral Video
Object tracking based on hyperspectral video attracts increasing attention to the rich material and motion information in the hyperspectral videos. The prevailing hyperspectral methods adapt pretrained RGB-based object tracking networks for hyperspectral tasks by fine-tuning the entire network on hyperspectral datasets, which achieves impressive results in challenging scenarios. However, the performance of hyperspectral trackers is limited by the loss of spectral information during the transformation, and fine-tuning the entire pretrained network is inefficient for practical applications. To address the issues, a new hyperspectral object tracking method, hyperspectral adapter for tracking (HyA-T), is proposed in this work. The hyperspectral adapter for the self-attention (HAS) and the hyperspectral adapter for the multilayer perceptron (HAM) are proposed to generate the adaption information and to transfer the multi-head self-attention (MSA) module and the multilayer perceptron (MLP) in pretrained network for the hyperspectral object tracking task by augmenting the adaption information into the calculation of the MSA and MLP. Additionally, the hyperspectral enhancement of input (HEI) is proposed to augment the original spectral information into the input of the tracking network. The proposed methods extract spectral information directly from the hyperspectral images, which prevent the loss of the spectral information. Moreover, only the parameters in the proposed methods are fine-tuned, which is more efficient than the existing methods. Extensive experiments were conducted on four datasets with various spectral bands, verifing the effectiveness of the proposed methods. The HyA-T achieves state-of-the-art performance on all the datasets.
☆ Extremely Simple Out-of-distribution Detection for Audio-visual Generalized Zero-shot Learning
Zero-shot Learning(ZSL) attains knowledge transfer from seen classes to unseen classes by exploring auxiliary category information, which is a promising yet difficult research topic. In this field, Audio-Visual Generalized Zero-Shot Learning~(AV-GZSL) has aroused researchers' great interest in which intricate relations within triple modalities~(audio, video, and natural language) render this task quite challenging but highly research-worthy. However, both existing embedding-based and generative-based AV-GZSL methods tend to suffer from domain shift problem a lot and we propose an extremely simple Out-of-distribution~(OOD) detection based AV-GZSL method~(EZ-AVOOD) to further mitigate bias problem by differentiating seen and unseen samples at the initial beginning. EZ-AVOOD accomplishes effective seen-unseen separation by exploiting the intrinsic discriminative information held in class-specific logits and class-agnostic feature subspace without training an extra OOD detector network. Followed by seen-unseen binary classification, we employ two expert models to classify seen samples and unseen samples separately. Compared to existing state-of-the-art methods, our model achieves superior ZSL and GZSL performances on three audio-visual datasets and becomes the new SOTA, which comprehensively demonstrates the effectiveness of the proposed EZ-AVOOD.
☆ ORIGEN: Zero-Shot 3D Orientation Grounding in Text-to-Image Generation
We introduce ORIGEN, the first zero-shot method for 3D orientation grounding in text-to-image generation across multiple objects and diverse categories. While previous work on spatial grounding in image generation has mainly focused on 2D positioning, it lacks control over 3D orientation. To address this, we propose a reward-guided sampling approach using a pretrained discriminative model for 3D orientation estimation and a one-step text-to-image generative flow model. While gradient-ascent-based optimization is a natural choice for reward-based guidance, it struggles to maintain image realism. Instead, we adopt a sampling-based approach using Langevin dynamics, which extends gradient ascent by simply injecting random noise--requiring just a single additional line of code. Additionally, we introduce adaptive time rescaling based on the reward function to accelerate convergence. Our experiments show that ORIGEN outperforms both training-based and test-time guidance methods across quantitative metrics and user studies.
comment: Project Page: https://origen2025.github.io
☆ Unbiased Max-Min Embedding Classification for Transductive Few-Shot Learning: Clustering and Classification Are All You Need
Convolutional neural networks and supervised learning have achieved remarkable success in various fields but are limited by the need for large annotated datasets. Few-shot learning (FSL) addresses this limitation by enabling models to generalize from only a few labeled examples. Transductive few-shot learning (TFSL) enhances FSL by leveraging both labeled and unlabeled data, though it faces challenges like the hubness problem. To overcome these limitations, we propose the Unbiased Max-Min Embedding Classification (UMMEC) Method, which addresses the key challenges in few-shot learning through three innovative contributions. First, we introduce a decentralized covariance matrix to mitigate the hubness problem, ensuring a more uniform distribution of embeddings. Second, our method combines local alignment and global uniformity through adaptive weighting and nonlinear transformation, balancing intra-class clustering with inter-class separation. Third, we employ a Variational Sinkhorn Few-Shot Classifier to optimize the distances between samples and class prototypes, enhancing classification accuracy and robustness. These combined innovations allow the UMMEC method to achieve superior performance with minimal labeled data. Our UMMEC method significantly improves classification performance with minimal labeled data, advancing the state-of-the-art in TFSL.
☆ Sell It Before You Make It: Revolutionizing E-Commerce with Personalized AI-Generated Items
E-commerce has revolutionized retail, yet its traditional workflows remain inefficient, with significant time and resource costs tied to product design and manufacturing inventory. This paper introduces a novel system deployed at Alibaba that leverages AI-generated items (AIGI) to address these challenges with personalized text-to-image generation for e-commercial product design. AIGI enables an innovative business mode called "sell it before you make it", where merchants can design fashion items and generate photorealistic images with digital models based on textual descriptions. Only when the items have received a certain number of orders, do the merchants start to produce them, which largely reduces reliance on physical prototypes and thus accelerates time to market. For such a promising application, we identify the underlying key scientific challenge, i.e., capturing the users' group-level personalized preferences towards multiple generated candidate images. To this end, we propose a Personalized Group-Level Preference Alignment Framework for Diffusion Models (i.e., PerFusion). We first design PerFusion Reward Model for user preference estimation with a feature-crossing-based personalized plug-in. Then we develop PerFusion with a personalized adaptive network to model diverse preferences across users, and meanwhile derive the group-level preference optimization objective to capture the comparative behaviors among multiple candidates. Both offline and online experiments demonstrate the effectiveness of our proposed algorithm. The AI-generated items have achieved over 13% relative improvements for both click-through rate and conversion rate compared to their human-designed counterparts, validating the revolutionary potential of AI-generated items for e-commercial platforms.
comment: Under Review
☆ Knowledge Rectification for Camouflaged Object Detection: Unlocking Insights from Low-Quality Data
Low-quality data often suffer from insufficient image details, introducing an extra implicit aspect of camouflage that complicates camouflaged object detection (COD). Existing COD methods focus primarily on high-quality data, overlooking the challenges posed by low-quality data, which leads to significant performance degradation. Therefore, we propose KRNet, the first framework explicitly designed for COD on low-quality data. KRNet presents a Leader-Follower framework where the Leader extracts dual gold-standard distributions: conditional and hybrid, from high-quality data to drive the Follower in rectifying knowledge learned from low-quality data. The framework further benefits from a cross-consistency strategy that improves the rectification of these distributions and a time-dependent conditional encoder that enriches the distribution diversity. Extensive experiments on benchmark datasets demonstrate that KRNet outperforms state-of-the-art COD methods and super-resolution-assisted COD approaches, proving its effectiveness in tackling the challenges of low-quality data in COD.
☆ High-Fidelity Diffusion Face Swapping with ID-Constrained Facial Conditioning
Face swapping aims to seamlessly transfer a source facial identity onto a target while preserving target attributes such as pose and expression. Diffusion models, known for their superior generative capabilities, have recently shown promise in advancing face-swapping quality. This paper addresses two key challenges in diffusion-based face swapping: the prioritized preservation of identity over target attributes and the inherent conflict between identity and attribute conditioning. To tackle these issues, we introduce an identity-constrained attribute-tuning framework for face swapping that first ensures identity preservation and then fine-tunes for attribute alignment, achieved through a decoupled condition injection. We further enhance fidelity by incorporating identity and adversarial losses in a post-training refinement stage. Our proposed identity-constrained diffusion-based face-swapping model outperforms existing methods in both qualitative and quantitative evaluations, demonstrating superior identity similarity and attribute consistency, achieving a new state-of-the-art performance in high-fidelity face swapping.
☆ AdaRank: Adaptive Rank Pruning for Enhanced Model Merging
Model merging has emerged as a promising approach for unifying independently fine-tuned models into an integrated framework, significantly enhancing computational efficiency in multi-task learning. Recently, several SVD-based techniques have been introduced to exploit low-rank structures for enhanced merging, but their reliance on such manually designed rank selection often leads to cross-task interference and suboptimal performance. In this paper, we propose AdaRank, a novel model merging framework that adaptively selects the most beneficial singular directions of task vectors to merge multiple models. We empirically show that the dominant singular components of task vectors can cause critical interference with other tasks, and that naive truncation across tasks and layers degrades performance. In contrast, AdaRank dynamically prunes the singular components that cause interference and offers an optimal amount of information to each task vector by learning to prune ranks during test-time via entropy minimization. Our analysis demonstrates that such method mitigates detrimental overlaps among tasks, while empirical results show that AdaRank consistently achieves state-of-the-art performance with various backbones and number of tasks, reducing the performance gap between fine-tuned models to nearly 1%.
comment: Code Available at: https://github.com/david3684/AdaRank
☆ 3D Acetabular Surface Reconstruction from 2D Pre-operative X-ray Images using SRVF Elastic Registration and Deformation Graph
Accurate and reliable selection of the appropriate acetabular cup size is crucial for restoring joint biomechanics in total hip arthroplasty (THA). This paper proposes a novel framework that integrates square-root velocity function (SRVF)-based elastic shape registration technique with an embedded deformation (ED) graph approach to reconstruct the 3D articular surface of the acetabulum by fusing multiple views of 2D pre-operative pelvic X-ray images and a hemispherical surface model. The SRVF-based elastic registration establishes 2D-3D correspondences between the parametric hemispherical model and X-ray images, and the ED framework incorporates the SRVF-derived correspondences as constraints to optimize the 3D acetabular surface reconstruction using nonlinear least-squares optimization. Validations using both simulation and real patient datasets are performed to demonstrate the robustness and the potential clinical value of the proposed algorithm. The reconstruction result can assist surgeons in selecting the correct acetabular cup on the first attempt in primary THA, minimising the need for revision surgery.
comment: 10 pages, 3 figures, conference
☆ A Multi-Site Study on AI-Driven Pathology Detection and Osteoarthritis Grading from Knee X-Ray
Introduction: Bone health disorders like osteoarthritis and osteoporosis pose major global health challenges, often leading to delayed diagnoses due to limited diagnostic tools. This study presents an AI-powered system that analyzes knee X-rays to detect key pathologies, including joint space narrowing, sclerosis, osteophytes, tibial spikes, alignment issues, and soft tissue anomalies. It also grades osteoarthritis severity, enabling timely, personalized treatment. Study Design: The research used 1.3 million knee X-rays from a multi-site Indian clinical trial across government, private, and SME hospitals. The dataset ensured diversity in demographics, imaging equipment, and clinical settings. Rigorous annotation and preprocessing yielded high-quality training datasets for pathology-specific models like ResNet15 for joint space narrowing and DenseNet for osteoarthritis grading. Performance: The AI system achieved strong diagnostic accuracy across diverse imaging environments. Pathology-specific models excelled in precision, recall, and NPV, validated using Mean Squared Error (MSE), Intersection over Union (IoU), and Dice coefficient. Subgroup analyses across age, gender, and manufacturer variations confirmed generalizability for real-world applications. Conclusion: This scalable, cost-effective solution for bone health diagnostics demonstrated robust performance in a multi-site trial. It holds promise for widespread adoption, especially in resource-limited healthcare settings, transforming bone health management and enabling proactive patient care.
comment: 15 pages, 2 figures
Efficient Continual Learning through Frequency Decomposition and Integration
Continual learning (CL) aims to learn new tasks while retaining past knowledge, addressing the challenge of forgetting during task adaptation. Rehearsal-based methods, which replay previous samples, effectively mitigate forgetting. However, research on enhancing the efficiency of these methods, especially in resource-constrained environments, remains limited, hindering their application in real-world systems with dynamic data streams. The human perceptual system processes visual scenes through complementary frequency channels: low-frequency signals capture holistic cues, while high-frequency components convey structural details vital for fine-grained discrimination. Inspired by this, we propose the Frequency Decomposition and Integration Network (FDINet), a novel framework that decomposes and integrates information across frequencies. FDINet designs two lightweight networks to independently process low- and high-frequency components of images. When integrated with rehearsal-based methods, this frequency-aware design effectively enhances cross-task generalization through low-frequency information, preserves class-specific details using high-frequency information, and facilitates efficient training due to its lightweight architecture. Experiments demonstrate that FDINet reduces backbone parameters by 78%, improves accuracy by up to 7.49% over state-of-the-art (SOTA) methods, and decreases peak memory usage by up to 80%. Additionally, on edge devices, FDINet accelerates training by up to 5$\times$.
☆ Synergistic Bleeding Region and Point Detection in Surgical Videos
Intraoperative bleeding in laparoscopic surgery causes rapid obscuration of the operative field to hinder the surgical process. Intelligent detection of bleeding regions can quantify the blood loss to assist decision-making, while locating the bleeding point helps surgeons quickly identify the source of bleeding and achieve hemostasis in time. In this study, we first construct a real-world surgical bleeding detection dataset, named SurgBlood, comprising 5,330 frames from 95 surgical video clips with bleeding region and point annotations. Accordingly, we develop a dual-task synergistic online detector called BlooDet, designed to perform simultaneous detection of bleeding regions and points in surgical videos. Our framework embraces a dual-branch bidirectional guidance design based on Segment Anything Model 2 (SAM 2). The mask branch detects bleeding regions through adaptive edge and point prompt embeddings, while the point branch leverages mask memory to induce bleeding point memory modeling and captures the direction of bleed point movement through inter-frame optical flow. By interactive guidance and prompts, the two branches explore potential spatial-temporal relationships while leveraging memory modeling from previous frames to infer the current bleeding condition. Extensive experiments demonstrate that our approach outperforms other counterparts on SurgBlood in both bleeding region and point detection tasks, e.g., achieving 64.88% IoU for bleeding region detection and 83.69% PCK-10% for bleeding point detection.
☆ Concept-Aware LoRA for Domain-Aligned Segmentation Dataset Generation
This paper addresses the challenge of data scarcity in semantic segmentation by generating datasets through text-to-image (T2I) generation models, reducing image acquisition and labeling costs. Segmentation dataset generation faces two key challenges: 1) aligning generated samples with the target domain and 2) producing informative samples beyond the training data. Fine-tuning T2I models can help generate samples aligned with the target domain. However, it often overfits and memorizes training data, limiting their ability to generate diverse and well-aligned samples. To overcome these issues, we propose Concept-Aware LoRA (CA-LoRA), a novel fine-tuning approach that selectively identifies and updates only the weights associated with necessary concepts (e.g., style or viewpoint) for domain alignment while preserving the pretrained knowledge of the T2I model to produce informative samples. We demonstrate its effectiveness in generating datasets for urban-scene segmentation, outperforming baseline and state-of-the-art methods in in-domain (few-shot and fully-supervised) settings, as well as in domain generalization tasks, especially under challenging conditions such as adverse weather and varying illumination, further highlighting its superiority.
☆ An Empirical Study of Validating Synthetic Data for Text-Based Person Retrieval
Data plays a pivotal role in Text-Based Person Retrieval (TBPR) research. Mainstream research paradigm necessitates real-world person images with manual textual annotations for training models, posing privacy-sensitive and labor-intensive issues. Several pioneering efforts explore synthetic data for TBPR but still rely on real data, keeping the aforementioned issues and also resulting in diversity-deficient issue in synthetic datasets, thus impacting TBPR performance. Moreover, these works tend to explore synthetic data for TBPR through limited perspectives, leading to exploration-restricted issue. In this paper, we conduct an empirical study to explore the potential of synthetic data for TBPR, highlighting three key aspects. (1) We propose an inter-class image generation pipeline, in which an automatic prompt construction strategy is introduced to guide generative Artificial Intelligence (AI) models in generating various inter-class images without reliance on original data. (2) We develop an intra-class image augmentation pipeline, in which the generative AI models are applied to further edit the images for obtaining various intra-class images. (3) Building upon the proposed pipelines and an automatic text generation pipeline, we explore the effectiveness of synthetic data in diverse scenarios through extensive experiments. Additionally, we experimentally investigate various noise-robust learning strategies to mitigate the inherent noise in synthetic data. We will release the code, along with the synthetic large-scale dataset generated by our pipelines, which are expected to advance practical TBPR research.
comment: 20 pages,13 figures
☆ Spatial Transport Optimization by Repositioning Attention Map for Training-Free Text-to-Image Synthesis CVPR2025
Diffusion-based text-to-image (T2I) models have recently excelled in high-quality image generation, particularly in a training-free manner, enabling cost-effective adaptability and generalization across diverse tasks. However, while the existing methods have been continuously focusing on several challenges, such as "missing objects" and "mismatched attributes," another critical issue of "mislocated objects" remains where generated spatial positions fail to align with text prompts. Surprisingly, ensuring such seemingly basic functionality remains challenging in popular T2I models due to the inherent difficulty of imposing explicit spatial guidance via text forms. To address this, we propose STORM (Spatial Transport Optimization by Repositioning Attention Map), a novel training-free approach for spatially coherent T2I synthesis. STORM employs Spatial Transport Optimization (STO), rooted in optimal transport theory, to dynamically adjust object attention maps for precise spatial adherence, supported by a Spatial Transport (ST) Cost function that enhances spatial understanding. Our analysis shows that integrating spatial awareness is most effective in the early denoising stages, while later phases refine details. Extensive experiments demonstrate that STORM surpasses existing methods, effectively mitigating mislocated objects while improving missing and mismatched attributes, setting a new benchmark for spatial alignment in T2I synthesis.
comment: CVPR2025
☆ Disentangled 4D Gaussian Splatting: Towards Faster and More Efficient Dynamic Scene Rendering
Novel-view synthesis (NVS) for dynamic scenes from 2D images presents significant challenges due to the spatial complexity and temporal variability of such scenes. Recently, inspired by the remarkable success of NVS using 3D Gaussian Splatting (3DGS), researchers have sought to extend 3D Gaussian models to four dimensions (4D) for dynamic novel-view synthesis. However, methods based on 4D rotation and scaling introduce spatiotemporal deformation into the 4D covariance matrix, necessitating the slicing of 4D Gaussians into 3D Gaussians. This process increases redundant computations as timestamps change-an inherent characteristic of dynamic scene rendering. Additionally, performing calculations on a four-dimensional matrix is computationally intensive. In this paper, we introduce Disentangled 4D Gaussian Splatting (Disentangled4DGS), a novel representation and rendering approach that disentangles temporal and spatial deformations, thereby eliminating the reliance on 4D matrix computations. We extend the 3DGS rendering process to 4D, enabling the projection of temporal and spatial deformations into dynamic 2D Gaussians in ray space. Consequently, our method facilitates faster dynamic scene synthesis. Moreover, it reduces storage requirements by at least 4.5\% due to our efficient presentation method. Our approach achieves an unprecedented average rendering speed of 343 FPS at a resolution of $1352\times1014$ on an RTX 3090 GPU, with experiments across multiple benchmarks demonstrating its competitive performance in both monocular and multi-view scenarios.
☆ Permutation-Invariant and Orientation-Aware Dataset Distillation for 3D Point Clouds
We should collect large amount of data to train deep neural networks for various applications. Recently, the dataset distillation for images and texts has been attracting a lot of attention, that reduces the original dataset to a synthetic dataset while preserving essential task-relevant information. However, 3D point clouds distillation is almost unexplored due to the challenges of unordered structures of points. In this paper, we propose a novel distribution matching-based dataset distillation method for 3D point clouds that jointly optimizes the geometric structures of synthetic dataset as well as the orientations of synthetic models. To ensure the consistent feature alignment between different 3D point cloud models, we devise a permutation invariant distribution matching loss with the sorted feature vectors. We also employ learnable rotation angles to transform each syntheic model according to the optimal orientation best representing the original feature distribution. Extensive experimental results on widely used four benchmark datasets, including ModelNet10, ModelNet40, ShapeNet, and ScanObjectNN, demonstrate that the proposed method consistently outperforms the existing methods.
☆ EgoToM: Benchmarking Theory of Mind Reasoning from Egocentric Videos
We introduce EgoToM, a new video question-answering benchmark that extends Theory-of-Mind (ToM) evaluation to egocentric domains. Using a causal ToM model, we generate multi-choice video QA instances for the Ego4D dataset to benchmark the ability to predict a camera wearer's goals, beliefs, and next actions. We study the performance of both humans and state of the art multimodal large language models (MLLMs) on these three interconnected inference problems. Our evaluation shows that MLLMs achieve close to human-level accuracy on inferring goals from egocentric videos. However, MLLMs (including the largest ones we tested with over 100B parameters) fall short of human performance when inferring the camera wearers' in-the-moment belief states and future actions that are most consistent with the unseen video future. We believe that our results will shape the future design of an important class of egocentric digital assistants which are equipped with a reasonable model of the user's internal mental states.
☆ Tokenization of Gaze Data
A considerable part of the performance of today's large language models (LLM's) and multimodal large language models (MLLM's) depends on their tokenization strategies. While tokenizers are extensively researched for textual and visual input, there is no research on tokenization strategies for gaze data due to its nature. However, a corresponding tokenization strategy would allow using the vision capabilities of pre-trained MLLM's for gaze data, for example, through fine-tuning. In this paper, we aim to close this research gap by analyzing five different tokenizers for gaze data on three different datasets for the forecasting and generation of gaze data through LLMs (cf.~\cref{fig:teaser}). We evaluate the tokenizers regarding their reconstruction and compression abilities. Further, we train an LLM for each tokenization strategy, measuring its generative and predictive performance. Overall, we found that a quantile tokenizer outperforms all others in predicting the gaze positions and k-means is best when predicting gaze velocities.
☆ A Self-Supervised Learning of a Foundation Model for Analog Layout Design Automation
We propose a UNet-based foundation model and its self-supervised learning method to address two key challenges: 1) lack of qualified annotated analog layout data, and 2) excessive variety in analog layout design tasks. For self-supervised learning, we propose random patch sampling and random masking techniques automatically to obtain enough training data from a small unannotated layout dataset. The obtained data are greatly augmented, less biased, equally sized, and contain enough information for excessive varieties of qualified layout patterns. By pre-training with the obtained data, the proposed foundation model can learn implicit general knowledge on layout patterns so that it can be fine-tuned for various downstream layout tasks with small task-specific datasets. Fine-tuning provides an efficient and consolidated methodology for diverse downstream tasks, reducing the enormous human effort to develop a model per task separately. In experiments, the foundation model was pre-trained using 324,000 samples obtained from 6 silicon-proved manually designed analog circuits, then it was fine-tuned for the five example downstream tasks: generating contacts, vias, dummy fingers, N-wells, and metal routings. The fine-tuned models successfully performed these tasks for more than one thousand unseen layout inputs, generating DRC/LVS-clean layouts for 96.6% of samples. Compared with training the model from scratch for the metal routing task, fine-tuning required only 1/8 of the data to achieve the same dice score of 0.95. With the same data, fine-tuning achieved a 90% lower validation loss and a 40% higher benchmark score than training from scratch.
comment: 8 pages, 11 figures
☆ Score-Based Turbo Message Passing for Plug-and-Play Compressive Image Recovery
Message passing algorithms have been tailored for compressive imaging applications by plugging in different types of off-the-shelf image denoisers. These off-the-shelf denoisers mostly rely on some generic or hand-crafted priors for denoising. Due to their insufficient accuracy in capturing the true image prior, these methods often fail to produce satisfactory results, especially in largely underdetermined scenarios. On the other hand, score-based generative modeling offers a promising way to accurately characterize the sophisticated image distribution. In this paper, by exploiting the close relation between score-based modeling and empirical Bayes-optimal denoising, we devise a message passing framework that integrates a score-based minimum mean squared error (MMSE) denoiser for compressive image recovery. This framework is firmly rooted in Bayesian formalism, in which state evolution (SE) equations accurately predict its asymptotic performance. Experiments on the FFHQ dataset demonstrate that our method strikes a significantly better performance-complexity tradeoff than conventional message passing, regularized linear regression, and score-based posterior sampling baselines. Remarkably, our method typically requires less than 20 neural function evaluations (NFEs) to converge.
☆ Enhancing Dance-to-Music Generation via Negative Conditioning Latent Diffusion Model
Conditional diffusion models have gained increasing attention since their impressive results for cross-modal synthesis, where the strong alignment between conditioning input and generated output can be achieved by training a time-conditioned U-Net augmented with cross-attention mechanism. In this paper, we focus on the problem of generating music synchronized with rhythmic visual cues of the given dance video. Considering that bi-directional guidance is more beneficial for training a diffusion model, we propose to enhance the quality of generated music and its synchronization with dance videos by adopting both positive rhythmic information and negative ones (PN-Diffusion) as conditions, where a dual diffusion and reverse processes is devised. Specifically, to train a sequential multi-modal U-Net structure, PN-Diffusion consists of a noise prediction objective for positive conditioning and an additional noise prediction objective for negative conditioning. To accurately define and select both positive and negative conditioning, we ingeniously utilize temporal correlations in dance videos, capturing positive and negative rhythmic cues by playing them forward and backward, respectively. Through subjective and objective evaluations of input-output correspondence in terms of dance-music beat alignment and the quality of generated music, experimental results on the AIST++ and TikTok dance video datasets demonstrate that our model outperforms SOTA dance-to-music generation models.
☆ Beyond Background Shift: Rethinking Instance Replay in Continual Semantic Segmentation
In this work, we focus on continual semantic segmentation (CSS), where segmentation networks are required to continuously learn new classes without erasing knowledge of previously learned ones. Although storing images of old classes and directly incorporating them into the training of new models has proven effective in mitigating catastrophic forgetting in classification tasks, this strategy presents notable limitations in CSS. Specifically, the stored and new images with partial category annotations leads to confusion between unannotated categories and the background, complicating model fitting. To tackle this issue, this paper proposes a novel Enhanced Instance Replay (EIR) method, which not only preserves knowledge of old classes while simultaneously eliminating background confusion by instance storage of old classes, but also mitigates background shifts in the new images by integrating stored instances with new images. By effectively resolving background shifts in both stored and new images, EIR alleviates catastrophic forgetting in the CSS task, thereby enhancing the model's capacity for CSS. Experimental results validate the efficacy of our approach, which significantly outperforms state-of-the-art CSS methods.
☆ Semantic segmentation for building houses from wooden cubes
Automated construction is one of the most promising areas that can improve efficiency, reduce costs and minimize errors in the process of building construction. In this paper, a comparative analysis of three neural network models for semantic segmentation, U-Net(light), LinkNet and PSPNet, is performed. Two specialized datasets with images of houses built from wooden cubes were created for the experiments. The first dataset contains 4 classes (background, foundation, walls, roof ) and is designed for basic model evaluation, while the second dataset includes 44 classes where each cube is labeled as a separate object. The models were trained with the same hyperparameters and their accuracy was evaluated using MeanIoU and F1 Score metrics. According to the results obtained, U-Net(light) showed the best performance with 78% MeanIoU and 87% F1 Score on the first dataset and 17% and 25% respectively on the second dataset. The poor results on the second dataset are due to the limited amount of data, the complexity of the partitioning and the imbalance of classes, making it difficult to accurately select individual cubes. In addition, overtraining was observed in all experiments, manifested by high accuracy on the training dataset and its significant decrease on the validation dataset. The present work is the basis for the development of algorithms for automatic generation of staged building plans, which can be further scaled to design complete buildings. Future research is planned to extend the datasets and apply methods to combat overfitting (L1/L2 regularization, Early Stopping). The next stage of work will be the development of algorithms for automatic generation of a step-by-step plan for building houses from cubes using manipulators. Index Terms-Deep Learning, Computer vision, CNN, Semantic segmentation, Construction materials.
comment: 10 pages, 6 figures, 2 tables
☆ REMAC: Self-Reflective and Self-Evolving Multi-Agent Collaboration for Long-Horizon Robot Manipulation
Vision-language models (VLMs) have demonstrated remarkable capabilities in robotic planning, particularly for long-horizon tasks that require a holistic understanding of the environment for task decomposition. Existing methods typically rely on prior environmental knowledge or carefully designed task-specific prompts, making them struggle with dynamic scene changes or unexpected task conditions, e.g., a robot attempting to put a carrot in the microwave but finds the door was closed. Such challenges underscore two critical issues: adaptability and efficiency. To address them, in this work, we propose an adaptive multi-agent planning framework, termed REMAC, that enables efficient, scene-agnostic multi-robot long-horizon task planning and execution through continuous reflection and self-evolution. REMAC incorporates two key modules: a self-reflection module performing pre-condition and post-condition checks in the loop to evaluate progress and refine plans, and a self-evolvement module dynamically adapting plans based on scene-specific reasoning. It offers several appealing benefits: 1) Robots can initially explore and reason about the environment without complex prompt design. 2) Robots can keep reflecting on potential planning errors and adapting the plan based on task-specific insights. 3) After iterations, a robot can call another one to coordinate tasks in parallel, maximizing the task execution efficiency. To validate REMAC's effectiveness, we build a multi-agent environment for long-horizon robot manipulation and navigation based on RoboCasa, featuring 4 task categories with 27 task styles and 50+ different objects. Based on it, we further benchmark state-of-the-art reasoning models, including DeepSeek-R1, o3-mini, QwQ, and Grok3, demonstrating REMAC's superiority by boosting average success rates by 40% and execution efficiency by 52.7% over the single robot baseline.
☆ Detecting Localized Deepfake Manipulations Using Action Unit-Guided Video Representations
With rapid advancements in generative modeling, deepfake techniques are increasingly narrowing the gap between real and synthetic videos, raising serious privacy and security concerns. Beyond traditional face swapping and reenactment, an emerging trend in recent state-of-the-art deepfake generation methods involves localized edits such as subtle manipulations of specific facial features like raising eyebrows, altering eye shapes, or modifying mouth expressions. These fine-grained manipulations pose a significant challenge for existing detection models, which struggle to capture such localized variations. To the best of our knowledge, this work presents the first detection approach explicitly designed to generalize to localized edits in deepfake videos by leveraging spatiotemporal representations guided by facial action units. Our method leverages a cross-attention-based fusion of representations learned from pretext tasks like random masking and action unit detection, to create an embedding that effectively encodes subtle, localized changes. Comprehensive evaluations across multiple deepfake generation methods demonstrate that our approach, despite being trained solely on the traditional FF+ dataset, sets a new benchmark in detecting recent deepfake-generated videos with fine-grained local edits, achieving a $20\%$ improvement in accuracy over current state-of-the-art detection methods. Additionally, our method delivers competitive performance on standard datasets, highlighting its robustness and generalization across diverse types of local and global forgeries.
☆ Camera Model Identification with SPAIR-Swin and Entropy based Non-Homogeneous Patches
Source camera model identification (SCMI) plays a pivotal role in image forensics with applications including authenticity verification and copyright protection. For identifying the camera model used to capture a given image, we propose SPAIR-Swin, a novel model combining a modified spatial attention mechanism and inverted residual block (SPAIR) with a Swin Transformer. SPAIR-Swin effectively captures both global and local features, enabling robust identification of artifacts such as noise patterns that are particularly effective for SCMI. Additionally, unlike conventional methods focusing on homogeneous patches, we propose a patch selection strategy for SCMI that emphasizes high-entropy regions rich in patterns and textures. Extensive evaluations on four benchmark SCMI datasets demonstrate that SPAIR-Swin outperforms existing methods, achieving patch-level accuracies of 99.45%, 98.39%, 99.45%, and 97.46% and image-level accuracies of 99.87%, 99.32%, 100%, and 98.61% on the Dresden, Vision, Forchheim, and Socrates datasets, respectively. Our findings highlight that high-entropy patches, which contain high-frequency information such as edge sharpness, noise, and compression artifacts, are more favorable in improving SCMI accuracy. Code will be made available upon request.
comment: 10 pages, 5 figures
☆ How Well Can Vison-Language Models Understand Humans' Intention? An Open-ended Theory of Mind Question Evaluation Benchmark AAAI25
Vision Language Models (VLMs) have demonstrated strong reasoning capabilities in Visual Question Answering (VQA) tasks; However, their ability to perform Theory of Mind (ToM) tasks such as accurately inferring human intentions, beliefs, and other mental states remains underexplored. In this work, we propose an open-ended question framework to comprehensively evaluate VLMs' performance across diverse categories of ToM tasks. We curated and annotated a benchmark dataset composed of 30 images. We then assessed the performance of four VLMs of varying sizes on this dataset. Our experimental results show that the GPT-4 model outperformed all others, with only one smaller model, GPT-4o-mini, achieving comparable performance. Additionally, we observed that VLMs often struggle to accurately infer intentions in complex scenarios such as bullying or cheating. Moreover, our findings also reveal that smaller models can sometimes infer correct intentions despite relying on incorrect visual cues.
comment: 2 pages, accepted by ToM@AAAI25
☆ Mitigating Trade-off: Stream and Query-guided Aggregation for Efficient and Effective 3D Occupancy Prediction
3D occupancy prediction has emerged as a key perception task for autonomous driving, as it reconstructs 3D environments to provide a comprehensive scene understanding. Recent studies focus on integrating spatiotemporal information obtained from past observations to improve prediction accuracy, using a multi-frame fusion approach that processes multiple past frames together. However, these methods struggle with a trade-off between efficiency and accuracy, which significantly limits their practicality. To mitigate this trade-off, we propose StreamOcc, a novel framework that aggregates spatio-temporal information in a stream-based manner. StreamOcc consists of two key components: (i) Stream-based Voxel Aggregation, which effectively accumulates past observations while minimizing computational costs, and (ii) Query-guided Aggregation, which recurrently aggregates instance-level features of dynamic objects into corresponding voxel features, refining fine-grained details of dynamic objects. Experiments on the Occ3D-nuScenes dataset show that StreamOcc achieves state-of-the-art performance in real-time settings, while reducing memory usage by more than 50% compared to previous methods.
☆ A Survey on Remote Sensing Foundation Models: From Vision to Multimodality
The rapid advancement of remote sensing foundation models, particularly vision and multimodal models, has significantly enhanced the capabilities of intelligent geospatial data interpretation. These models combine various data modalities, such as optical, radar, and LiDAR imagery, with textual and geographic information, enabling more comprehensive analysis and understanding of remote sensing data. The integration of multiple modalities allows for improved performance in tasks like object detection, land cover classification, and change detection, which are often challenged by the complex and heterogeneous nature of remote sensing data. However, despite these advancements, several challenges remain. The diversity in data types, the need for large-scale annotated datasets, and the complexity of multimodal fusion techniques pose significant obstacles to the effective deployment of these models. Moreover, the computational demands of training and fine-tuning multimodal models require significant resources, further complicating their practical application in remote sensing image interpretation tasks. This paper provides a comprehensive review of the state-of-the-art in vision and multimodal foundation models for remote sensing, focusing on their architecture, training methods, datasets and application scenarios. We discuss the key challenges these models face, such as data alignment, cross-modal transfer learning, and scalability, while also identifying emerging research directions aimed at overcoming these limitations. Our goal is to provide a clear understanding of the current landscape of remote sensing foundation models and inspire future research that can push the boundaries of what these models can achieve in real-world applications. The list of resources collected by the paper can be found in the https://github.com/IRIP-BUAA/A-Review-for-remote-sensing-vision-language-models.
☆ A Semantic-Enhanced Heterogeneous Graph Learning Method for Flexible Objects Recognition ICME 2025
Flexible objects recognition remains a significant challenge due to its inherently diverse shapes and sizes, translucent attributes, and subtle inter-class differences. Graph-based models, such as graph convolution networks and graph vision models, are promising in flexible objects recognition due to their ability of capturing variable relations within the flexible objects. These methods, however, often focus on global visual relationships or fail to align semantic and visual information. To alleviate these limitations, we propose a semantic-enhanced heterogeneous graph learning method. First, an adaptive scanning module is employed to extract discriminative semantic context, facilitating the matching of flexible objects with varying shapes and sizes while aligning semantic and visual nodes to enhance cross-modal feature correlation. Second, a heterogeneous graph generation module aggregates global visual and local semantic node features, improving the recognition of flexible objects. Additionally, We introduce the FSCW, a large-scale flexible dataset curated from existing sources. We validate our method through extensive experiments on flexible datasets (FDA and FSCW), and challenge benchmarks (CIFAR-100 and ImageNet-Hard), demonstrating competitive performance.
comment: Accepted by ICME 2025
☆ Contrasting Low and High-Resolution Features for HER2 Scoring using Deep Learning
Breast cancer, the most common malignancy among women, requires precise detection and classification for effective treatment. Immunohistochemistry (IHC) biomarkers like HER2, ER, and PR are critical for identifying breast cancer subtypes. However, traditional IHC classification relies on pathologists' expertise, making it labor-intensive and subject to significant inter-observer variability. To address these challenges, this study introduces the India Pathology Breast Cancer Dataset (IPD-Breast), comprising of 1,272 IHC slides (HER2, ER, and PR) aimed at automating receptor status classification. The primary focus is on developing predictive models for HER2 3-way classification (0, Low, High) to enhance prognosis. Evaluation of multiple deep learning models revealed that an end-to-end ConvNeXt network utilizing low-resolution IHC images achieved an AUC, F1, and accuracy of 91.79%, 83.52%, and 83.56%, respectively, for 3-way classification, outperforming patch-based methods by over 5.35% in F1 score. This study highlights the potential of simple yet effective deep learning techniques to significantly improve accuracy and reproducibility in breast cancer classification, supporting their integration into clinical workflows for better patient outcomes.
☆ Deep Depth Estimation from Thermal Image: Dataset, Benchmark, and Challenges
Achieving robust and accurate spatial perception under adverse weather and lighting conditions is crucial for the high-level autonomy of self-driving vehicles and robots. However, existing perception algorithms relying on the visible spectrum are highly affected by weather and lighting conditions. A long-wave infrared camera (i.e., thermal imaging camera) can be a potential solution to achieve high-level robustness. However, the absence of large-scale datasets and standardized benchmarks remains a significant bottleneck to progress in active research for robust visual perception from thermal images. To this end, this manuscript provides a large-scale Multi-Spectral Stereo (MS$^2$) dataset that consists of stereo RGB, stereo NIR, stereo thermal, stereo LiDAR data, and GNSS/IMU information along with semi-dense depth ground truth. MS$^2$ dataset includes 162K synchronized multi-modal data pairs captured across diverse locations (e.g., urban city, residential area, campus, and high-way road) at different times (e.g., morning, daytime, and nighttime) and under various weather conditions (e.g., clear-sky, cloudy, and rainy). Secondly, we conduct a thorough evaluation of monocular and stereo depth estimation networks across RGB, NIR, and thermal modalities to establish standardized benchmark results on MS$^2$ depth test sets (e.g., day, night, and rainy). Lastly, we provide in-depth analyses and discuss the challenges revealed by the benchmark results, such as the performance variability for each modality under adverse conditions, domain shift between different sensor modalities, and potential research direction for thermal perception. Our dataset and source code are publicly available at https://sites.google.com/view/multi-spectral-stereo-dataset and https://github.com/UkcheolShin/SupDepth4Thermal.
comment: MS^2 dataset: https://sites.google.com/view/multi-spectral-stereo-dataset, Source code: https://github.com/UkcheolShin/SupDepth4Thermal
☆ Improving the generalization of deep learning models in the segmentation of mammography images
Mammography stands as the main screening method for detecting breast cancer early, enhancing treatment success rates. The segmentation of landmark structures in mammography images can aid the medical assessment in the evaluation of cancer risk and the image acquisition adequacy. We introduce a series of data-centric strategies aimed at enriching the training data for deep learning-based segmentation of landmark structures. Our approach involves augmenting the training samples through annotation-guided image intensity manipulation and style transfer to achieve better generalization than standard training procedures. These augmentations are applied in a balanced manner to ensure the model learns to process a diverse range of images generated by different vendor equipments while retaining its efficacy on the original data. We present extensive numerical and visual results that demonstrate the superior generalization capabilities of our methods when compared to the standard training. For this evaluation, we consider a large dataset that includes mammography images generated by different vendor equipments. Further, we present complementary results that show both the strengths and limitations of our methods across various scenarios. The accuracy and robustness demonstrated in the experiments suggest that our method is well-suited for integration into clinical practice.
☆ A Deep Learning Framework for Boundary-Aware Semantic Segmentation
As a fundamental task in computer vision, semantic segmentation is widely applied in fields such as autonomous driving, remote sensing image analysis, and medical image processing. In recent years, Transformer-based segmentation methods have demonstrated strong performance in global feature modeling. However, they still struggle with blurred target boundaries and insufficient recognition of small targets. To address these issues, this study proposes a Mask2Former-based semantic segmentation algorithm incorporating a boundary enhancement feature bridging module (BEFBM). The goal is to improve target boundary accuracy and segmentation consistency. Built upon the Mask2Former framework, this method constructs a boundary-aware feature map and introduces a feature bridging mechanism. This enables effective cross-scale feature fusion, enhancing the model's ability to focus on target boundaries. Experiments on the Cityscapes dataset demonstrate that, compared to mainstream segmentation methods, the proposed approach achieves significant improvements in metrics such as mIOU, mDICE, and mRecall. It also exhibits superior boundary retention in complex scenes. Visual analysis further confirms the model's advantages in fine-grained regions. Future research will focus on optimizing computational efficiency and exploring its potential in other high-precision segmentation tasks.
♻ ☆ LOCATEdit: Graph Laplacian Optimized Cross Attention for Localized Text-Guided Image Editing
Text-guided image editing aims to modify specific regions of an image according to natural language instructions while maintaining the general structure and the background fidelity. Existing methods utilize masks derived from cross-attention maps generated from diffusion models to identify the target regions for modification. However, since cross-attention mechanisms focus on semantic relevance, they struggle to maintain the image integrity. As a result, these methods often lack spatial consistency, leading to editing artifacts and distortions. In this work, we address these limitations and introduce LOCATEdit, which enhances cross-attention maps through a graph-based approach utilizing self-attention-derived patch relationships to maintain smooth, coherent attention across image regions, ensuring that alterations are limited to the designated items while retaining the surrounding structure. LOCATEdit consistently and substantially outperforms existing baselines on PIE-Bench, demonstrating its state-of-the-art performance and effectiveness on various editing tasks. Code can be found on https://github.com/LOCATEdit/LOCATEdit/
♻ ☆ LandMarkSystem Technical Report
3D reconstruction is vital for applications in autonomous driving, virtual reality, augmented reality, and the metaverse. Recent advancements such as Neural Radiance Fields(NeRF) and 3D Gaussian Splatting (3DGS) have transformed the field, yet traditional deep learning frameworks struggle to meet the increasing demands for scene quality and scale. This paper introduces LandMarkSystem, a novel computing framework designed to enhance multi-scale scene reconstruction and rendering. By leveraging a componentized model adaptation layer, LandMarkSystem supports various NeRF and 3DGS structures while optimizing computational efficiency through distributed parallel computing and model parameter offloading. Our system addresses the limitations of existing frameworks, providing dedicated operators for complex 3D sparse computations, thus facilitating efficient training and rapid inference over extensive scenes. Key contributions include a modular architecture, a dynamic loading strategy for limited resources, and proven capabilities across multiple representative algorithms.This comprehensive solution aims to advance the efficiency and effectiveness of 3D reconstruction tasks.To facilitate further research and collaboration, the source code and documentation for the LandMarkSystem project are publicly available in an open-source repository, accessing the repository at: https://github.com/InternLandMark/LandMarkSystem.
♻ ☆ Structure Modeling Activation Free Fourier Network for Spacecraft Image Denoising
Spacecraft image denoising is a crucial fundamental technology closely related to aerospace research. However, the existing deep learning-based image denoising methods are primarily designed for natural image and fail to adequately consider the characteristics of spacecraft image(e.g. low-light conditions, repetitive periodic structures), resulting in suboptimal performance in the spacecraft image denoising task. To address the aforementioned problems, we propose a Structure modeling Activation Free Fourier Network (SAFFN), which is an efficient spacecraft image denoising method including Structure Modeling Block (SMB) and Activation Free Fourier Block (AFFB). We present SMB to effectively extract edge information and model the structure for better identification of spacecraft components from dark regions in spacecraft noise image. We present AFFB and utilize an improved Fast Fourier block to extract repetitive periodic features and long-range information in noisy spacecraft image. Extensive experimental results demonstrate that our SAFFN performs competitively compared to the state-of-the-art methods on spacecraft noise image datasets. The codes are available at: https://github.com/shenduke/SAFFN.
comment: Published in Neurocomputing, 2025
♻ ☆ Generalizable Prompt Learning of CLIP: A Brief Overview
Existing vision-language models (VLMs) such as CLIP have showcased an impressive capability to generalize well across various downstream tasks. These models leverage the synergy between visual and textual information, enabling them to understand and reason about the content present in images and text in a unified manner. This article provides a brief overview of CLIP based on few-shot prompt learning, including experimental data and technical characteristics of some methods. The purpose of this review is to provide a reference for researchers who have just started their research in generalizable prompting of CLIP through few-shot training for classification across 15 datasets and also to facilitate the integration of this field by researchers in other downstream tasks.
♻ ☆ Multi-Scale Invertible Neural Network for Wide-Range Variable-Rate Learned Image Compression
Autoencoder-based structures have dominated recent learned image compression methods. However, the inherent information loss associated with autoencoders limits their rate-distortion performance at high bit rates and restricts their flexibility of rate adaptation. In this paper, we present a variable-rate image compression model based on invertible transform to overcome these limitations. Specifically, we design a lightweight multi-scale invertible neural network, which bijectively maps the input image into multi-scale latent representations. To improve the compression efficiency, a multi-scale spatial-channel context model with extended gain units is devised to estimate the entropy of the latent representation from high to low levels. Experimental results demonstrate that the proposed method achieves state-of-the-art performance compared to existing variable-rate methods, and remains competitive with recent multi-model approaches. Notably, our method is the first learned image compression solution that outperforms VVC across a very wide range of bit rates using a single model, especially at high bit rates. The source code is available at https://github.com/hytu99/MSINN-VRLIC.
comment: Accepted for publication in IEEE Transactions on Multimedia 2025
♻ ☆ Omni-AD: Learning to Reconstruct Global and Local Features for Multi-class Anomaly Detection
In multi-class unsupervised anomaly detection(MUAD), reconstruction-based methods learn to map input images to normal patterns to identify anomalous pixels. However, this strategy easily falls into the well-known "learning shortcut" issue when decoders fail to capture normal patterns and reconstruct both normal and abnormal samples naively. To address that, we propose to learn the input features in global and local manners, forcing the network to memorize the normal patterns more comprehensively. Specifically, we design a two-branch decoder block, named Omni-block. One branch corresponds to global feature learning, where we serialize two self-attention blocks but replace the query and (key, value) with learnable tokens, respectively, thus capturing global features of normal patterns concisely and thoroughly. The local branch comprises depth-separable convolutions, whose locality enables effective and efficient learning of local features for normal patterns. By stacking Omni-blocks, we build a framework, Omni-AD, to learn normal patterns of different granularity and reconstruct them progressively. Comprehensive experiments on public anomaly detection benchmarks show that our method outperforms state-of-the-art approaches in MUAD. Code is available at https://github.com/easyoo/Omni-AD.git
♻ ☆ VinaBench: Benchmark for Faithful and Consistent Visual Narratives CVPR 2025
Visual narrative generation transforms textual narratives into sequences of images illustrating the content of the text. However, generating visual narratives that are faithful to the input text and self-consistent across generated images remains an open challenge, due to the lack of knowledge constraints used for planning the stories. In this work, we propose a new benchmark, VinaBench, to address this challenge. Our benchmark annotates the underlying commonsense and discourse constraints in visual narrative samples, offering systematic scaffolds for learning the implicit strategies of visual storytelling. Based on the incorporated narrative constraints, we further propose novel metrics to closely evaluate the consistency of generated narrative images and the alignment of generations with the input textual narrative. Our results across three generative vision models demonstrate that learning with VinaBench's knowledge constraints effectively improves the faithfulness and cohesion of generated visual narratives.
comment: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2025)
♻ ☆ Feature4X: Bridging Any Monocular Video to 4D Agentic AI with Versatile Gaussian Feature Fields
Recent advancements in 2D and multimodal models have achieved remarkable success by leveraging large-scale training on extensive datasets. However, extending these achievements to enable free-form interactions and high-level semantic operations with complex 3D/4D scenes remains challenging. This difficulty stems from the limited availability of large-scale, annotated 3D/4D or multi-view datasets, which are crucial for generalizable vision and language tasks such as open-vocabulary and prompt-based segmentation, language-guided editing, and visual question answering (VQA). In this paper, we introduce Feature4X, a universal framework designed to extend any functionality from 2D vision foundation model into the 4D realm, using only monocular video input, which is widely available from user-generated content. The "X" in Feature4X represents its versatility, enabling any task through adaptable, model-conditioned 4D feature field distillation. At the core of our framework is a dynamic optimization strategy that unifies multiple model capabilities into a single representation. Additionally, to the best of our knowledge, Feature4X is the first method to distill and lift the features of video foundation models (e.g., SAM2, InternVideo2) into an explicit 4D feature field using Gaussian Splatting. Our experiments showcase novel view segment anything, geometric and appearance scene editing, and free-form VQA across all time steps, empowered by LLMs in feedback loops. These advancements broaden the scope of agentic AI applications by providing a foundation for scalable, contextually and spatiotemporally aware systems capable of immersive dynamic 4D scene interaction.
♻ ☆ VidTwin: Video VAE with Decoupled Structure and Dynamics CVPR 2025
Recent advancements in video autoencoders (Video AEs) have significantly improved the quality and efficiency of video generation. In this paper, we propose a novel and compact video autoencoder, VidTwin, that decouples video into two distinct latent spaces: Structure latent vectors, which capture overall content and global movement, and Dynamics latent vectors, which represent fine-grained details and rapid movements. Specifically, our approach leverages an Encoder-Decoder backbone, augmented with two submodules for extracting these latent spaces, respectively. The first submodule employs a Q-Former to extract low-frequency motion trends, followed by downsampling blocks to remove redundant content details. The second averages the latent vectors along the spatial dimension to capture rapid motion. Extensive experiments show that VidTwin achieves a high compression rate of 0.20% with high reconstruction quality (PSNR of 28.14 on the MCL-JCV dataset), and performs efficiently and effectively in downstream generative tasks. Moreover, our model demonstrates explainability and scalability, paving the way for future research in video latent representation and generation. Check our project page for more details: https://vidtwin.github.io/.
comment: Accepted by CVPR 2025; Project page: https://vidtwin.github.io/; Code: https://github.com/microsoft/VidTok/tree/main/vidtwin
♻ ☆ RAP: Retrieval-Augmented Personalization for Multimodal Large Language Models CVPR 2025
The development of large language models (LLMs) has significantly enhanced the capabilities of multimodal LLMs (MLLMs) as general assistants. However, lack of user-specific knowledge still restricts their application in human's daily life. In this paper, we introduce the Retrieval Augmented Personalization (RAP) framework for MLLMs' personalization. Starting from a general MLLM, we turn it into a personalized assistant in three steps. (a) Remember: We design a key-value database to store user-related information, e.g., user's name, avatar and other attributes. (b) Retrieve: When the user initiates a conversation, RAP will retrieve relevant information from the database using a multimodal retriever. (c) Generate: The input query and retrieved concepts' information are fed into MLLMs to generate personalized, knowledge-augmented responses. Unlike previous methods, RAP allows real-time concept editing via updating the external database. To further improve generation quality and alignment with user-specific information, we design a pipeline for data collection and create a specialized dataset for personalized training of MLLMs. Based on the dataset, we train a series of MLLMs as personalized multimodal assistants. By pretraining on large-scale dataset, RAP-MLLMs can generalize to infinite visual concepts without additional finetuning. Our models demonstrate outstanding flexibility and generation quality across a variety of tasks, such as personalized image captioning, question answering and visual recognition. The code, data and models are available at https://hoar012.github.io/RAP-Project/.
comment: Accepted by CVPR 2025. Code: https://github.com/Hoar012/RAP-MLLM
♻ ☆ RelDenClu: A Relative Density based Biclustering Method for identifying non-linear feature relations
The existing biclustering algorithms for finding feature relation based biclusters often depend on assumptions like monotonicity or linearity. Though a few algorithms overcome this problem by using density-based methods, they tend to miss out many biclusters because they use global criteria for identifying dense regions. The proposed method, RelDenClu uses the local variations in marginal and joint densities for each pair of features to find the subset of observations, which forms the bases of the relation between them. It then finds the set of features connected by a common set of observations, resulting in a bicluster. To show the effectiveness of the proposed methodology, experimentation has been carried out on fifteen types of simulated datasets. Further, it has been applied to six real-life datasets. For three of these real-life datasets, the proposed method is used for unsupervised learning, while for other three real-life datasets it is used as an aid to supervised learning. For all the datasets the performance of the proposed method is compared with that of seven different state-of-the-art algorithms and the proposed algorithm is seen to produce better results. The efficacy of proposed algorithm is also seen by its use on COVID-19 dataset for identifying some features (genetic, demographics and others) that are likely to affect the spread of COVID-19.
♻ ☆ A Progressive Risk Formulation for Enhanced Deep Learning based Total Knee Replacement Prediction in Knee Osteoarthritis
We developed deep learning models for predicting Total Knee Replacement (TKR) need within various time horizons in knee osteoarthritis patients, with a novel capability: the models can perform TKR prediction using a single scan, and furthermore when a previous scan is available, they leverage a progressive risk formulation to improve their predictions. Unlike conventional approaches that treat each scan of a patient independently, our method incorporates a constraint based on disease's progressive nature, ensuring that predicted TKR risk either increases or remains stable over time when multiple scans of a knee are available. This was achieved by enforcing a progressive risk formulation constraint during training with patients who have more than one available scan in the studies. Knee radiographs and MRIs from the Osteoarthritis Initiative (OAI) and Multicenter Osteoarthritis Study (MOST) were used in this work and deep learning models were trained to predict TKR within 1, 2, and 4-year time periods. The proposed approach, utilizing a dual-model risk constraint architecture, demonstrated superior performance compared to baseline - conventional models trained with standard binary cross entropy loss. It achieved an AUROC of 0.87 and AUPRC of 0.47 for 1-year TKR prediction on the OAI radiograph test set, considerably improving over the baseline AUROC of 0.79 and AUPRC of 0.34. For the MOST radiograph test set, the proposed approach achieved an AUROC of 0.77 and AUPRC of 0.25 for 1-year predictions, outperforming the baseline AUROC of 0.71 and AUPRC of 0.19. Similar trends were observed in the MRI testsets
♻ ☆ Exploring Saliency Bias in Manipulation Detection ICIP
The social media-fuelled explosion of fake news and misinformation supported by tampered images has led to growth in the development of models and datasets for image manipulation detection. However, existing detection methods mostly treat media objects in isolation, without considering the impact of specific manipulations on viewer perception. Forensic datasets are usually analyzed based on the manipulation operations and corresponding pixel-based masks, but not on the semantics of the manipulation, i.e., type of scene, objects, and viewers' attention to scene content. The semantics of the manipulation play an important role in spreading misinformation through manipulated images. In an attempt to encourage further development of semantic-aware forensic approaches to understand visual misinformation, we propose a framework to analyze the trends of visual and semantic saliency in popular image manipulation datasets and their impact on detection.
comment: Published in: 2024 IEEE International Conference on Image Processing (ICIP)
♻ ☆ TULIP: Token-length Upgraded CLIP
We address the challenge of representing long captions in vision-language models, such as CLIP. By design these models are limited by fixed, absolute positional encodings, restricting inputs to a maximum of 77 tokens and hindering performance on tasks requiring longer descriptions. Although recent work has attempted to overcome this limit, their proposed approaches struggle to model token relationships over longer distances and simply extend to a fixed new token length. Instead, we propose a generalizable method, named TULIP, able to upgrade the token length to any length for CLIP-like models. We do so by improving the architecture with relative position encodings, followed by a training procedure that (i) distills the original CLIP text encoder into an encoder with relative position encodings and (ii) enhances the model for aligning longer captions with images. By effectively encoding captions longer than the default 77 tokens, our model outperforms baselines on cross-modal tasks such as retrieval and text-to-image generation. The code repository is available at https://github.com/ivonajdenkoska/tulip.
♻ ☆ USC: Uncompromising Spatial Constraints for Safety-Oriented 3D Object Detectors in Autonomous Driving
In this work, we consider the safety-oriented performance of 3D object detectors in autonomous driving contexts. Specifically, despite impressive results shown by the mass literature, developers often find it hard to ensure the safe deployment of these learning-based perception models. Attributing the challenge to the lack of safety-oriented metrics, we hereby present uncompromising spatial constraints (USC), which characterize a simple yet important localization requirement demanding the predictions to fully cover the objects when seen from the autonomous vehicle. The constraints, as we formulate using the perspective and bird's-eye views, can be naturally reflected by quantitative measures, such that having an object detector with a higher score implies a lower risk of collision. Finally, beyond model evaluation, we incorporate the quantitative measures into common loss functions to enable safety-oriented fine-tuning for existing models. With experiments using the nuScenes dataset and a closed-loop simulation, our work demonstrates such considerations of safety notions at the perception level not only improve model performances beyond accuracy but also allow for a more direct linkage to actual system safety.
comment: Accepted by ITSC 2024, 8 pages (IEEE double column format), 7 figures, 2 tables
♻ ☆ Towards Stabilized and Efficient Diffusion Transformers through Long-Skip-Connections with Spectral Constraints
Diffusion Transformers (DiT) have emerged as a powerful architecture for image and video generation, offering superior quality and scalability. However, their practical application suffers from inherent dynamic feature instability, leading to error amplification during cached inference. Through systematic analysis, we identify the absence of long-range feature preservation mechanisms as the root cause of unstable feature propagation and perturbation sensitivity. To this end, we propose Skip-DiT, a novel DiT variant enhanced with Long-Skip-Connections (LSCs) - the key efficiency component in U-Nets. Theoretical spectral norm and visualization analysis demonstrate how LSCs stabilize feature dynamics. Skip-DiT architecture and its stabilized dynamic feature enable an efficient statical caching mechanism that reuses deep features across timesteps while updating shallow components. Extensive experiments across image and video generation tasks demonstrate that Skip-DiT achieves: (1) 4.4 times training acceleration and faster convergence, (2) 1.5-2 times inference acceleration without quality loss and high fidelity to original output, outperforming existing DiT caching methods across various quantitative metrics. Our findings establish long-skip connections as critical architectural components for training stable and efficient diffusion transformers.
comment: 17 pages, 8 figures
♻ ☆ Advancing the Biological Plausibility and Efficacy of Hebbian Convolutional Neural Networks
The research presented in this paper advances the integration of Hebbian learning into Convolutional Neural Networks (CNNs) for image processing, systematically exploring different architectures to build an optimal configuration, adhering to biological tenability. Hebbian learning operates on local unsupervised neural information to form feature representations, providing an alternative to the popular but arguably biologically implausible and computationally intensive backpropagation learning algorithm. The suggested optimal architecture significantly enhances recent research aimed at integrating Hebbian learning with competition mechanisms and CNNs, expanding their representational capabilities by incorporating hard Winner-Takes-All (WTA) competition, Gaussian lateral inhibition mechanisms, and Bienenstock-Cooper-Munro (BCM) learning rule in a single model. Mean accuracy classification measures during the last half of test epochs on CIFAR-10 revealed that the resulting optimal model matched its end-to-end backpropagation variant with 75.2% each, critically surpassing the state-of-the-art hard-WTA performance in CNNs of the same network depth (64.6%) by 10.6%. It also achieved competitive performance on MNIST (98%) and STL-10 (69.5%). Moreover, results showed clear indications of sparse hierarchical learning through increasingly complex and abstract receptive fields. In summary, our implementation enhances both the performance and the generalisability of the learnt representations and constitutes a crucial step towards more biologically realistic artificial neural networks.
comment: 47 pages, 15 figures
♻ ☆ Cross-Modal and Uncertainty-Aware Agglomeration for Open-Vocabulary 3D Scene Understanding CVPR 2025
The lack of a large-scale 3D-text corpus has led recent works to distill open-vocabulary knowledge from vision-language models (VLMs). However, these methods typically rely on a single VLM to align the feature spaces of 3D models within a common language space, which limits the potential of 3D models to leverage the diverse spatial and semantic capabilities encapsulated in various foundation models. In this paper, we propose Cross-modal and Uncertainty-aware Agglomeration for Open-vocabulary 3D Scene Understanding dubbed CUA-O3D, the first model to integrate multiple foundation models-such as CLIP, DINOv2, and Stable Diffusion-into 3D scene understanding. We further introduce a deterministic uncertainty estimation to adaptively distill and harmonize the heterogeneous 2D feature embeddings from these models. Our method addresses two key challenges: (1) incorporating semantic priors from VLMs alongside the geometric knowledge of spatially-aware vision foundation models, and (2) using a novel deterministic uncertainty estimation to capture model-specific uncertainties across diverse semantic and geometric sensitivities, helping to reconcile heterogeneous representations during training. Extensive experiments on ScanNetV2 and Matterport3D demonstrate that our method not only advances open-vocabulary segmentation but also achieves robust cross-domain alignment and competitive spatial perception capabilities. The code will be available at: https://github.com/TyroneLi/CUA_O3D.
comment: Accepted by CVPR 2025
♻ ☆ CoRPA: Adversarial Image Generation for Chest X-rays Using Concept Vector Perturbations and Generative Models
Deep learning models for medical image classification tasks are becoming widely implemented in AI-assisted diagnostic tools, aiming to enhance diagnostic accuracy, reduce clinician workloads, and improve patient outcomes. However, their vulnerability to adversarial attacks poses significant risks to patient safety. Current attack methodologies use general techniques such as model querying or pixel value perturbations to generate adversarial examples designed to fool a model. These approaches may not adequately address the unique characteristics of clinical errors stemming from missed or incorrectly identified clinical features. We propose the Concept-based Report Perturbation Attack (CoRPA), a clinically-focused black-box adversarial attack framework tailored to the medical imaging domain. CoRPA leverages clinical concepts to generate adversarial radiological reports and images that closely mirror realistic clinical misdiagnosis scenarios. We demonstrate the utility of CoRPA using the MIMIC-CXR-JPG dataset of chest X-rays and radiological reports. Our evaluation reveals that deep learning models exhibiting strong resilience to conventional adversarial attacks are significantly less robust when subjected to CoRPA's clinically-focused perturbations. This underscores the importance of addressing domain-specific vulnerabilities in medical AI systems. By introducing a specialized adversarial attack framework, this study provides a foundation for developing robust, real-world-ready AI models in healthcare, ensuring their safe and reliable deployment in high-stakes clinical environments.
♻ ☆ Leveraging Expert Input for Robust and Explainable AI-Assisted Lung Cancer Detection in Chest X-rays
Deep learning models show significant potential for advancing AI-assisted medical diagnostics, particularly in detecting lung cancer through medical image modalities such as chest X-rays. However, the black-box nature of these models poses challenges to their interpretability and trustworthiness, limiting their adoption in clinical practice. This study examines both the interpretability and robustness of a high-performing lung cancer detection model based on InceptionV3, utilizing a public dataset of chest X-rays and radiological reports. We evaluate the clinical utility of multiple explainable AI (XAI) techniques, including both post-hoc and ante-hoc approaches, and find that existing methods often fail to provide clinically relevant explanations, displaying inconsistencies and divergence from expert radiologist assessments. To address these limitations, we collaborated with a radiologist to define diagnosis-specific clinical concepts and developed ClinicXAI, an expert-driven approach leveraging the concept bottleneck methodology. ClinicXAI generated clinically meaningful explanations which closely aligned with the practical requirements of clinicians while maintaining high diagnostic accuracy. We also assess the robustness of ClinicXAI in comparison to the original InceptionV3 model by subjecting both to a series of widely utilized adversarial attacks. Our analysis demonstrates that ClinicXAI exhibits significantly greater resilience to adversarial perturbations. These findings underscore the importance of incorporating domain expertise into the design of interpretable and robust AI systems for medical diagnostics, paving the way for more trustworthy and effective AI solutions in healthcare.
♻ ☆ Evaluating the evaluators: Towards human-aligned metrics for missing markers reconstruction
Animation data is often obtained through optical motion capture systems, which utilize a multitude of cameras to establish the position of optical markers. However, system errors or occlusions can result in missing markers, the manual cleaning of which can be time-consuming. This has sparked interest in machine learning-based solutions for missing marker reconstruction in the academic community. Most academic papers utilize a simplistic mean square error as the main metric. In this paper, we show that this metric does not correlate with subjective perception of the fill quality. Additionally, we introduce and evaluate a set of better-correlated metrics that can drive progress in the field.
♻ ☆ UniCon: Unidirectional Information Flow for Effective Control of Large-Scale Diffusion Models ICLR
We introduce UniCon, a novel architecture designed to enhance control and efficiency in training adapters for large-scale diffusion models. Unlike existing methods that rely on bidirectional interaction between the diffusion model and control adapter, UniCon implements a unidirectional flow from the diffusion network to the adapter, allowing the adapter alone to generate the final output. UniCon reduces computational demands by eliminating the need for the diffusion model to compute and store gradients during adapter training. Our results indicate that UniCon reduces GPU memory usage by one-third and increases training speed by 2.3 times, while maintaining the same adapter parameter size. Additionally, without requiring extra computational resources, UniCon enables the training of adapters with double the parameter volume of existing ControlNets. In a series of image conditional generation tasks, UniCon has demonstrated precise responsiveness to control inputs and exceptional generation capabilities.
comment: This work has been accepted for publication at the International Conference on Learning Representations (ICLR) 2025
♻ ☆ Patch-Depth Fusion: Dichotomous Image Segmentation via Fine-Grained Patch Strategy and Depth Integrity-Prior
Dichotomous Image Segmentation (DIS) is a high-precision object segmentation task for high-resolution natural images. The current mainstream methods focus on the optimization of local details but overlook the fundamental challenge of modeling the integrity of objects. We have found that the depth integrity-prior implicit in the the pseudo-depth maps generated by Depth Anything Model v2 and the local detail features of image patches can jointly address the above dilemmas. Based on the above findings, we have designed a novel Patch-Depth Fusion Network (PDFNet) for high-precision dichotomous image segmentation. The core of PDFNet consists of three aspects. Firstly, the object perception is enhanced through multi-modal input fusion. By utilizing the patch fine-grained strategy, coupled with patch selection and enhancement, the sensitivity to details is improved. Secondly, by leveraging the depth integrity-prior distributed in the depth maps, we propose an integrity-prior loss to enhance the uniformity of the segmentation results in the depth maps. Finally, we utilize the features of the shared encoder and, through a simple depth refinement decoder, improve the ability of the shared encoder to capture subtle depth-related information in the images. Experiments on the DIS-5K dataset show that PDFNet significantly outperforms state-of-the-art non-diffusion methods. Due to the incorporation of the depth integrity-prior, PDFNet achieves or even surpassing the performance of the latest diffusion-based methods while using less than 11% of the parameters of diffusion-based methods. The source code at https://github.com/Tennine2077/PDFNet
♻ ☆ Adaptive Weighted Parameter Fusion with CLIP for Class-Incremental Learning ICME2025
Class-incremental Learning (CIL) enables the model to incrementally absorb knowledge from new classes and build a generic classifier across all previously encountered classes. When the model optimizes with new classes, the knowledge of previous classes is inevitably erased, leading to catastrophic forgetting. Addressing this challenge requires making a trade-off between retaining old knowledge and accommodating new information. However, this balancing process often requires sacrificing some information, which can lead to a partial loss in the model's ability to discriminate between classes. To tackle this issue, we design the adaptive weighted parameter fusion with Contrastive Language-Image Pre-training (CLIP), which not only takes into account the variability of the data distribution of different tasks, but also retains all the effective information of the parameter matrix to the greatest extent. In addition, we introduce a balance factor that can balance the data distribution alignment and distinguishability of adjacent tasks. Experimental results on several traditional benchmarks validate the superiority of the proposed method.
comment: Accepted by ICME2025
♻ ☆ Rethinking Efficient and Effective Point-based Networks for Event Camera Classification and Regression: EventMamba
Event cameras draw inspiration from biological systems, boasting low latency and high dynamic range while consuming minimal power. The most current approach to processing Event Cloud often involves converting it into frame-based representations, which neglects the sparsity of events, loses fine-grained temporal information, and increases the computational burden. In contrast, Point Cloud is a popular representation for processing 3-dimensional data and serves as an alternative method to exploit local and global spatial features. Nevertheless, previous point-based methods show an unsatisfactory performance compared to the frame-based method in dealing with spatio-temporal event streams. In order to bridge the gap, we propose EventMamba, an efficient and effective framework based on Point Cloud representation by rethinking the distinction between Event Cloud and Point Cloud, emphasizing vital temporal information. The Event Cloud is subsequently fed into a hierarchical structure with staged modules to process both implicit and explicit temporal features. Specifically, we redesign the global extractor to enhance explicit temporal extraction among a long sequence of events with temporal aggregation and State Space Model (SSM) based Mamba. Our model consumes minimal computational resources in the experiments and still exhibits SOTA point-based performance on six different scales of action recognition datasets. It even outperformed all frame-based methods on both Camera Pose Relocalization (CPR) and eye-tracking regression tasks. Our code is available at: https://github.com/rhwxmx/EventMamba.
comment: Accepted by TPAMI
♻ ☆ DyCoke: Dynamic Compression of Tokens for Fast Video Large Language Models
Video large language models (VLLMs) have significantly advanced recently in processing complex video content, yet their inference efficiency remains constrained because of the high computational cost stemming from the thousands of visual tokens generated from the video inputs. We empirically observe that, unlike single image inputs, VLLMs typically attend visual tokens from different frames at different decoding iterations, making a one-shot pruning strategy prone to removing important tokens by mistake. Motivated by this, we present DyCoke, a training-free token compression method to optimize token representation and accelerate VLLMs. DyCoke incorporates a plug-and-play temporal compression module to minimize temporal redundancy by merging redundant tokens across frames, and applies dynamic KV cache reduction to prune spatially redundant tokens selectively. It ensures high-quality inference by dynamically retaining the critical tokens at each decoding step. Extensive experimental results demonstrate that DyCoke can outperform the prior SoTA counterparts, achieving 1.5X inference speedup, 1.4X memory reduction against the baseline VLLM, while still improving the performance, with no training.
comment: 13 pages, 7 figures
♻ ☆ Knowledge Bridger: Towards Training-free Missing Multi-modality Completion CVPR 2025
Previous successful approaches to missing modality completion rely on carefully designed fusion techniques and extensive pre-training on complete data, which can limit their generalizability in out-of-domain (OOD) scenarios. In this study, we pose a new challenge: can we develop a missing modality completion model that is both resource-efficient and robust to OOD generalization? To address this, we present a training-free framework for missing modality completion that leverages large multimodal models (LMMs). Our approach, termed the "Knowledge Bridger", is modality-agnostic and integrates generation and ranking of missing modalities. By defining domain-specific priors, our method automatically extracts structured information from available modalities to construct knowledge graphs. These extracted graphs connect the missing modality generation and ranking modules through the LMM, resulting in high-quality imputations of missing modalities. Experimental results across both general and medical domains show that our approach consistently outperforms competing methods, including in OOD generalization. Additionally, our knowledge-driven generation and ranking techniques demonstrate superiority over variants that directly employ LMMs for generation and ranking, offering insights that may be valuable for applications in other domains.
comment: Accepted to CVPR 2025
♻ ☆ ShadowHack: Hacking Shadows via Luminance-Color Divide and Conquer
Shadows introduce challenges such as reduced brightness, texture deterioration, and color distortion in images, complicating a holistic solution. This study presents \textbf{ShadowHack}, a divide-and-conquer strategy that tackles these complexities by decomposing the original task into luminance recovery and color remedy. To brighten shadow regions and repair the corrupted textures in the luminance space, we customize LRNet, a U-shaped network with a rectified attention module, to enhance information interaction and recalibrate contaminated attention maps. With luminance recovered, CRNet then leverages cross-attention mechanisms to revive vibrant colors, producing visually compelling results. Extensive experiments on multiple datasets are conducted to demonstrate the superiority of ShadowHack over existing state-of-the-art solutions both quantitatively and qualitatively, highlighting the effectiveness of our design. Our code will be made publicly available.
♻ ☆ GaussianUDF: Inferring Unsigned Distance Functions through 3D Gaussian Splatting CVPR 2025
Reconstructing open surfaces from multi-view images is vital in digitalizing complex objects in daily life. A widely used strategy is to learn unsigned distance functions (UDFs) by checking if their appearance conforms to the image observations through neural rendering. However, it is still hard to learn continuous and implicit UDF representations through 3D Gaussians splatting (3DGS) due to the discrete and explicit scene representation, i.e., 3D Gaussians. To resolve this issue, we propose a novel approach to bridge the gap between 3D Gaussians and UDFs. Our key idea is to overfit thin and flat 2D Gaussian planes on surfaces, and then, leverage the self-supervision and gradient-based inference to supervise unsigned distances in both near and far area to surfaces. To this end, we introduce novel constraints and strategies to constrain the learning of 2D Gaussians to pursue more stable optimization and more reliable self-supervision, addressing the challenges brought by complicated gradient field on or near the zero level set of UDFs. We report numerical and visual comparisons with the state-of-the-art on widely used benchmarks and real data to show our advantages in terms of accuracy, efficiency, completeness, and sharpness of reconstructed open surfaces with boundaries.
comment: Accepted by CVPR 2025. Project page: https://lisj575.github.io/GaussianUDF/
♻ ☆ CT-AGRG: Automated Abnormality-Guided Report Generation from 3D Chest CT Volumes
The rapid increase of computed tomography (CT) scans and their time-consuming manual analysis have created an urgent need for robust automated analysis techniques in clinical settings. These aim to assist radiologists and help them managing their growing workload. Existing methods typically generate entire reports directly from 3D CT images, without explicitly focusing on observed abnormalities. This unguided approach often results in repetitive content or incomplete reports, failing to prioritize anomaly-specific descriptions. We propose a new anomaly-guided report generation model, which first predicts abnormalities and then generates targeted descriptions for each. Evaluation on a public dataset demonstrates significant improvements in report quality and clinical relevance. We extend our work by conducting an ablation study to demonstrate its effectiveness.
comment: Paper accepted to ISBI 2025
♻ ☆ AI-Driven MRI Spine Pathology Detection: A Comprehensive Deep Learning Approach for Automated Diagnosis in Diverse Clinical Settings
Study Design: This study presents the development of an autonomous AI system for MRI spine pathology detection, trained on a dataset of 2 million MRI spine scans sourced from diverse healthcare facilities across India. The AI system integrates advanced architectures, including Vision Transformers, U-Net with cross-attention, MedSAM, and Cascade R-CNN, enabling comprehensive classification, segmentation, and detection of 43 distinct spinal pathologies. The dataset is balanced across age groups, genders, and scanner manufacturers to ensure robustness and adaptability. Subgroup analyses were conducted to validate the model's performance across different patient demographics, imaging conditions, and equipment types. Performance: The AI system achieved up to 97.9 percent multi-pathology detection, demonstrating consistent performance across age, gender, and manufacturer subgroups. The normal vs. abnormal classification achieved 98.0 percent accuracy, and the system was deployed across 13 major healthcare enterprises in India, encompassing diagnostic centers, large hospitals, and government facilities. During deployment, it processed approximately 100,000 plus MRI spine scans, leading to reduced reporting times and increased diagnostic efficiency by automating the identification of common spinal conditions. Conclusion: The AI system's high precision and recall validate its capability as a reliable tool for autonomous normal/abnormal classification, pathology segmentation, and detection. Its scalability and adaptability address critical diagnostic gaps, optimize radiology workflows, and improve patient care across varied healthcare environments in India.
comment: 20 pages , 3 figurea
♻ ☆ Advancing Chronic Tuberculosis Diagnostics Using Vision-Language Models: A Multi modal Framework for Precision Analysis
Background: This study proposes a Vision-Language Model (VLM) leveraging the SIGLIP encoder and Gemma-3b transformer decoder to enhance automated chronic tuberculosis (TB) screening. By integrating chest X-ray images with clinical data, the model addresses the challenges of manual interpretation, improving diagnostic consistency and accessibility, particularly in resource-constrained settings. Methods: The VLM architecture combines a Vision Transformer (ViT) for visual encoding and a transformer-based text encoder to process clinical context, such as patient histories and treatment records. Cross-modal attention mechanisms align radiographic features with textual information, while the Gemma-3b decoder generates comprehensive diagnostic reports. The model was pre-trained on 5 million paired medical images and texts and fine-tuned using 100,000 chronic TB-specific chest X-rays. Results: The model demonstrated high precision (94 percent) and recall (94 percent) for detecting key chronic TB pathologies, including fibrosis, calcified granulomas, and bronchiectasis. Area Under the Curve (AUC) scores exceeded 0.93, and Intersection over Union (IoU) values were above 0.91, validating its effectiveness in detecting and localizing TB-related abnormalities. Conclusion: The VLM offers a robust and scalable solution for automated chronic TB diagnosis, integrating radiographic and clinical data to deliver actionable and context-aware insights. Future work will address subtle pathologies and dataset biases to enhance the model's generalizability, ensuring equitable performance across diverse populations and healthcare settings.
comment: 10 pages , 3 figures
♻ ☆ Gradient entropy (GradEn): The two dimensional version of slope entropy for image analysis
Information theory and Shannon entropy are essential for quantifying irregularity in complex systems or signals. Recently, two-dimensional entropy methods, such as two-dimensional sample entropy, distribution entropy, and permutation entropy, have been proposed for analyzing 2D texture or image data. This paper introduces Gradient entropy (GradEn), an extension of slope entropy to 2D, which considers both symbolic patterns and amplitude information, enabling better feature extraction from image data. We evaluate GradEn with simulated data, including 2D colored noise, 2D mixed processes, and the logistic map. Results show the ability of GradEn to distinguish images with various characteristics while maintaining low computational cost. Real-world datasets, consist of texture, fault gear, and railway corrugation signals, demonstrate the superior performance of GradEn in classification tasks compared to other 2D entropy methods. In conclusion, GradEn is an effective tool for image characterization, offering a novel approach for image processing and recognition.
♻ ☆ Circumventing shortcuts in audio-visual deepfake detection datasets with unsupervised learning
Good datasets are essential for developing and benchmarking any machine learning system. Their importance is even more extreme for safety critical applications such as deepfake detection - the focus of this paper. Here we reveal that two of the most widely used audio-video deepfake datasets suffer from a previously unidentified spurious feature: the leading silence. Fake videos start with a very brief moment of silence and based on this feature alone, we can separate the real and fake samples almost perfectly. As such, previous audio-only and audio-video models exploit the presence of silence in the fake videos and consequently perform worse when the leading silence is removed. To circumvent latching on such unwanted artifact and possibly other unrevealed ones we propose a shift from supervised to unsupervised learning by training models exclusively on real data. We show that by aligning self-supervised audio-video representations we remove the risk of relying on dataset-specific biases and improve robustness in deepfake detection.
♻ ☆ Combating Semantic Contamination in Learning with Label Noise AAAI2025
Noisy labels can negatively impact the performance of deep neural networks. One common solution is label refurbishment, which involves reconstructing noisy labels through predictions and distributions. However, these methods may introduce problematic semantic associations, a phenomenon that we identify as Semantic Contamination. Through an analysis of Robust LR, a representative label refurbishment method, we found that utilizing the logits of views for refurbishment does not adequately balance the semantic information of individual classes. Conversely, using the logits of models fails to maintain consistent semantic relationships across models, which explains why label refurbishment methods frequently encounter issues related to Semantic Contamination. To address this issue, we propose a novel method called Collaborative Cross Learning, which utilizes semi-supervised learning on refurbished labels to extract appropriate semantic associations from embeddings across views and models. Experimental results show that our method outperforms existing approaches on both synthetic and real-world noisy datasets, effectively mitigating the impact of label noise and Semantic Contamination.
comment: AAAI2025
♻ ☆ Light Transport-aware Diffusion Posterior Sampling for Single-View Reconstruction of 3D Volumes CVPR 2025
We introduce a single-view reconstruction technique of volumetric fields in which multiple light scattering effects are omnipresent, such as in clouds. We model the unknown distribution of volumetric fields using an unconditional diffusion model trained on a novel benchmark dataset comprising 1,000 synthetically simulated volumetric density fields. The neural diffusion model is trained on the latent codes of a novel, diffusion-friendly, monoplanar representation. The generative model is used to incorporate a tailored parametric diffusion posterior sampling technique into different reconstruction tasks. A physically-based differentiable volume renderer is employed to provide gradients with respect to light transport in the latent space. This stands in contrast to classic NeRF approaches and makes the reconstructions better aligned with observed data. Through various experiments, we demonstrate single-view reconstruction of volumetric clouds at a previously unattainable quality.
comment: CVPR 2025
♻ ☆ A Comprehensive Review of Few-shot Action Recognition
Few-shot action recognition aims to address the high cost and impracticality of manually labeling complex and variable video data in action recognition. It requires accurately classifying human actions in videos using only a few labeled examples per class. Compared to few-shot learning in image scenarios, few-shot action recognition is more challenging due to the intrinsic complexity of video data. Numerous approaches have driven significant advancements in few-shot action recognition, which underscores the need for a comprehensive survey. Unlike early surveys that focus on few-shot image or text classification, we deeply consider the unique challenges of few-shot action recognition. In this survey, we provide a comprehensive review of recent methods and introduce a novel and systematic taxonomy of existing approaches, accompanied by a detailed analysis. We categorize the methods into generative-based and meta-learning frameworks, and further elaborate on the methods within the meta-learning framework, covering aspects: video instance representation, category prototype learning, and generalized video alignment. Additionally, the survey presents the commonly used benchmarks and discusses relevant advanced topics and promising future directions. We hope this survey can serve as a valuable resource for researchers, offering essential guidance to newcomers and stimulating seasoned researchers with fresh insights.
comment: 35 pages
♻ ☆ DoubleDiffusion: Combining Heat Diffusion with Denoising Diffusion for Generative Learning on 3D Meshes
This paper proposes DoubleDiffusion, a novel framework that combines heat dissipation diffusion and denoising diffusion for direct generative learning on 3D mesh surfaces. Our approach addresses the challenges of generating continuous signal distributions residing on a curve manifold surface. Unlike previous methods that rely on unrolling 3D meshes into 2D or adopting field representations, DoubleDiffusion leverages the Laplacian-Beltrami operator to process features respecting the mesh structure. This combination enables effective geometry-aware signal diffusion across the underlying geometry. As shown in Fig.1, we demonstrate that DoubleDiffusion has the ability to generate RGB signal distributions on complex 3D mesh surfaces and achieves per-category shape-conditioned texture generation across different shape geometry. Our work contributes a new direction in diffusion-based generative modeling on 3D surfaces, with potential applications in the field of 3D asset generation.
comment: Codes: https://github.com/Wxyxixixi/DoubleDiffusion_3D_Mesh
SkillMimic: Learning Basketball Interaction Skills from Demonstrations
Traditional reinforcement learning methods for human-object interaction (HOI) rely on labor-intensive, manually designed skill rewards that do not generalize well across different interactions. We introduce SkillMimic, a unified data-driven framework that fundamentally changes how agents learn interaction skills by eliminating the need for skill-specific rewards. Our key insight is that a unified HOI imitation reward can effectively capture the essence of diverse interaction patterns from HOI datasets. This enables SkillMimic to learn a single policy that not only masters multiple interaction skills but also facilitates skill transitions, with both diversity and generalization improving as the HOI dataset grows. For evaluation, we collect and introduce two basketball datasets containing approximately 35 minutes of diverse basketball skills. Extensive experiments show that SkillMimic successfully masters a wide range of basketball skills including stylistic variations in dribbling, layup, and shooting. Moreover, these learned skills can be effectively composed by a high-level controller to accomplish complex and long-horizon tasks such as consecutive scoring, opening new possibilities for scalable and generalizable interaction skill learning. Project page: https://ingrid789.github.io/SkillMimic/
♻ ☆ PromptLA: Towards Integrity Verification of Black-box Text-to-Image Diffusion Models
Despite the impressive synthesis quality of text-to-image (T2I) diffusion models, their black-box deployment poses significant regulatory challenges: Malicious actors can fine-tune these models to generate illegal content, circumventing existing safeguards through parameter manipulation. Therefore, it is essential to verify the integrity of T2I diffusion models. To this end, considering the randomness within the outputs of generative models and the high costs in interacting with them, we discern model tampering via the KL divergence between the distributions of the features of generated images. We propose a novel prompt selection algorithm based on learning automaton (PromptLA) for efficient and accurate verification. Evaluations on four advanced T2I models (e.g., SDXL, FLUX.1) demonstrate that our method achieves a mean AUC of over 0.96 in integrity detection, exceeding baselines by more than 0.2, showcasing strong effectiveness and generalization. Additionally, our approach achieves lower cost and is robust against image-level post-processing. To the best of our knowledge, this paper is the first work addressing the integrity verification of T2I diffusion models, which establishes quantifiable standards for AI copyright litigation in practice.
comment: 9 pages, 6 figures
♻ ☆ Solving Instance Detection from an Open-World Perspective CVPR 2025
Instance detection (InsDet) aims to localize specific object instances within a novel scene imagery based on given visual references. Technically, it requires proposal detection to identify all possible object instances, followed by instance-level matching to pinpoint the ones of interest. Its open-world nature supports its broad applications from robotics to AR/VR but also presents significant challenges: methods must generalize to unknown testing data distributions because (1) the testing scene imagery is unseen during training, and (2) there are domain gaps between visual references and detected proposals. Existing methods tackle these challenges by synthesizing diverse training examples or utilizing off-the-shelf foundation models (FMs). However, they only partially capitalize the available open-world information. In contrast, we approach InsDet from an Open-World perspective, introducing our method IDOW. We find that, while pretrained FMs yield high recall in instance detection, they are not specifically optimized for instance-level feature matching. Therefore, we adapt pretrained FMs for improved instance-level matching using open-world data. Our approach incorporates metric learning along with novel data augmentations, which sample distractors as negative examples and synthesize novel-view instances to enrich the visual references. Extensive experiments demonstrate that our method significantly outperforms prior works, achieving >10 AP over previous results on two recently released challenging benchmark datasets in both conventional and novel instance detection settings.
comment: Accepted at CVPR 2025
♻ ☆ LeviTor: 3D Trajectory Oriented Image-to-Video Synthesis
The intuitive nature of drag-based interaction has led to its growing adoption for controlling object trajectories in image-to-video synthesis. Still, existing methods that perform dragging in the 2D space usually face ambiguity when handling out-of-plane movements. In this work, we augment the interaction with a new dimension, i.e., the depth dimension, such that users are allowed to assign a relative depth for each point on the trajectory. That way, our new interaction paradigm not only inherits the convenience from 2D dragging, but facilitates trajectory control in the 3D space, broadening the scope of creativity. We propose a pioneering method for 3D trajectory control in image-to-video synthesis by abstracting object masks into a few cluster points. These points, accompanied by the depth information and the instance information, are finally fed into a video diffusion model as the control signal. Extensive experiments validate the effectiveness of our approach, dubbed LeviTor, in precisely manipulating the object movements when producing photo-realistic videos from static images. Our code is available at: https://github.com/ant-research/LeviTor.
comment: Project page available at https://github.com/ant-research/LeviTor
♻ ☆ Vocabulary-Free 3D Instance Segmentation with Vision and Language Assistant 3DV
Most recent 3D instance segmentation methods are open vocabulary, offering a greater flexibility than closed-vocabulary methods. Yet, they are limited to reasoning within a specific set of concepts, \ie the vocabulary, prompted by the user at test time. In essence, these models cannot reason in an open-ended fashion, i.e., answering "List the objects in the scene.''. We introduce the first method to address 3D instance segmentation in a setting that is void of any vocabulary prior, namely a vocabulary-free setting. We leverage a large vision-language assistant and an open-vocabulary 2D instance segmenter to discover and ground semantic categories on the posed images. To form 3D instance mask, we first partition the input point cloud into dense superpoints, which are then merged into 3D instance masks. We propose a novel superpoint merging strategy via spectral clustering, accounting for both mask coherence and semantic coherence that are estimated from the 2D object instance masks. We evaluate our method using ScanNet200 and Replica, outperforming existing methods in both vocabulary-free and open-vocabulary settings. Code will be made available. Project page: https://gfmei.github.io/PoVo
comment: Accepted by 3DV
♻ ☆ Asymptotic Unbiased Sample Sampling to Speed Up Sharpness-Aware Minimization
Sharpness-Aware Minimization (SAM) has emerged as a promising approach for effectively reducing the generalization error. However, SAM incurs twice the computational cost compared to base optimizer (e.g., SGD). We propose Asymptotic Unbiased Sampling with respect to iterations to accelerate SAM (AUSAM), which maintains the model's generalization capacity while significantly enhancing computational efficiency. Concretely, we probabilistically sample a subset of data points beneficial for SAM optimization based on a theoretically guaranteed criterion, i.e., the Gradient Norm of each Sample (GNS). We further approximate the GNS by the difference in loss values before and after perturbation in SAM. As a plug-and-play, architecture-agnostic method, our approach consistently accelerates SAM across a range of tasks and networks, i.e., classification, human pose estimation and network quantization. On CIFAR10/100 and Tiny-ImageNet, AUSAM achieves results comparable to SAM while providing a speedup of over 70%. Compared to recent dynamic data pruning methods, AUSAM is better suited for SAM and excels in maintaining performance. Additionally, AUSAM accelerates optimization in human pose estimation and model quantization without sacrificing performance, demonstrating its broad practicality.
♻ ☆ PromptMono: Cross Prompting Attention for Self-Supervised Monocular Depth Estimation in Challenging Environments
Considerable efforts have been made to improve monocular depth estimation under ideal conditions. However, in challenging environments, monocular depth estimation still faces difficulties. In this paper, we introduce visual prompt learning for predicting depth across different environments within a unified model, and present a self-supervised learning framework called PromptMono. It employs a set of learnable parameters as visual prompts to capture domain-specific knowledge. To integrate prompting information into image representations, a novel gated cross prompting attention (GCPA) module is proposed, which enhances the depth estimation in diverse conditions. We evaluate the proposed PromptMono on the Oxford Robotcar dataset and the nuScenes dataset. Experimental results demonstrate the superior performance of the proposed method.
comment: 10 pages
♻ ☆ Stacking Brick by Brick: Aligned Feature Isolation for Incremental Face Forgery Detection
The rapid advancement of face forgery techniques has introduced a growing variety of forgeries. Incremental Face Forgery Detection (IFFD), involving gradually adding new forgery data to fine-tune the previously trained model, has been introduced as a promising strategy to deal with evolving forgery methods. However, a naively trained IFFD model is prone to catastrophic forgetting when new forgeries are integrated, as treating all forgeries as a single ''Fake" class in the Real/Fake classification can cause different forgery types overriding one another, thereby resulting in the forgetting of unique characteristics from earlier tasks and limiting the model's effectiveness in learning forgery specificity and generality. In this paper, we propose to stack the latent feature distributions of previous and new tasks brick by brick, $\textit{i.e.}$, achieving $\textbf{aligned feature isolation}$. In this manner, we aim to preserve learned forgery information and accumulate new knowledge by minimizing distribution overriding, thereby mitigating catastrophic forgetting. To achieve this, we first introduce Sparse Uniform Replay (SUR) to obtain the representative subsets that could be treated as the uniformly sparse versions of the previous global distributions. We then propose a Latent-space Incremental Detector (LID) that leverages SUR data to isolate and align distributions. For evaluation, we construct a more advanced and comprehensive benchmark tailored for IFFD. The leading experimental results validate the superiority of our method.
♻ ☆ StreamMind: Unlocking Full Frame Rate Streaming Video Dialogue through Event-Gated Cognition
With the rise of real-world human-AI interaction applications, such as AI assistants, the need for Streaming Video Dialogue is critical. To address this need, we introduce StreamMind, a video LLM framework that achieves ultra-FPS streaming video processing (100 fps on a single A100) and enables proactive, always-on responses in real time, without explicit user intervention. To solve the key challenge of the contradiction between linear video streaming speed and quadratic transformer computation cost, we propose a novel perception-cognition interleaving paradigm named ''event-gated LLM invocation'', in contrast to the existing per-time-step LLM invocation. By introducing a Cognition Gate network between the video encoder and the LLM, LLM is only invoked when relevant events occur. To realize the event feature extraction with constant cost, we propose Event-Preserving Feature Extractor (EPFE) based on state-space method, generating a single perception token for spatiotemporal features. These techniques enable the video LLM with full-FPS perception and real-time cognition response. Experiments on Ego4D and SoccerNet streaming tasks, as well as standard offline benchmarks, demonstrate state-of-the-art performance in both model capability and real-time efficiency, paving the way for ultra-high-FPS applications, such as Game AI and interactive media. The code and data is available at https://aka.ms/StreamMind.
♻ ☆ CRAFT: Designing Creative and Functional 3D Objects WACV 2025
For designing a wide range of everyday objects, the design process should be aware of both the human body and the underlying semantics of the design specification. However, these two objectives present significant challenges to the current AI-based designing tools. In this work, we present a method to synthesize body-aware 3D objects from a base mesh given an input body geometry and either text or image as guidance. The generated objects can be simulated on virtual characters, or fabricated for real-world use. We propose to use a mesh deformation procedure that optimizes for both semantic alignment as well as contact and penetration losses. Using our method, users can generate both virtual or real-world objects from text, image, or sketch, without the need for manual artist intervention. We present both qualitative and quantitative results on various object categories, demonstrating the effectiveness of our approach.
comment: Project webpage: https://miatang13.github.io/Craft/. Published at WACV 2025
♻ ☆ MM-GTUNets: Unified Multi-Modal Graph Deep Learning for Brain Disorders Prediction
Graph deep learning (GDL) has demonstrated impressive performance in predicting population-based brain disorders (BDs) through the integration of both imaging and non-imaging data. However, the effectiveness of GDL based methods heavily depends on the quality of modeling the multi-modal population graphs and tends to degrade as the graph scale increases. Furthermore, these methods often constrain interactions between imaging and non-imaging data to node-edge interactions within the graph, overlooking complex inter-modal correlations, leading to suboptimal outcomes. To overcome these challenges, we propose MM-GTUNets, an end-to-end graph transformer based multi-modal graph deep learning (MMGDL) framework designed for brain disorders prediction at large scale. Specifically, to effectively leverage rich multi-modal information related to diseases, we introduce Modality Reward Representation Learning (MRRL) which adaptively constructs population graphs using a reward system. Additionally, we employ variational autoencoder to reconstruct latent representations of non-imaging features aligned with imaging features. Based on this, we propose Adaptive Cross-Modal Graph Learning (ACMGL), which captures critical modality-specific and modality-shared features through a unified GTUNet encoder taking advantages of Graph UNet and Graph Transformer, and feature fusion module. We validated our method on two public multi-modal datasets ABIDE and ADHD-200, demonstrating its superior performance in diagnosing BDs. Our code is available at https://github.com/NZWANG/MM-GTUNets.
♻ ☆ LVMark: Robust Watermark for Latent Video Diffusion Models
Rapid advancements in video diffusion models have enabled the creation of realistic videos, raising concerns about unauthorized use and driving the demand for techniques to protect model ownership. Existing watermarking methods, while effective for image diffusion models, do not account for temporal consistency, leading to degraded video quality and reduced robustness against video distortions. To address this issue, we introduce LVMark, a novel watermarking method for video diffusion models. We propose a new watermark decoder tailored for generated videos by learning the consistency between adjacent frames. It ensures accurate message decoding, even under malicious attacks, by combining the low-frequency components of the 3D wavelet domain with the RGB features of the video. Additionally, our approach minimizes video quality degradation by embedding watermark messages in layers with minimal impact on visual appearance using an importance-based weight modulation strategy. We optimize both the watermark decoder and the latent decoder of diffusion model, effectively balancing the trade-off between visual quality and bit accuracy. Our experiments show that our method embeds invisible watermarks into video diffusion models, ensuring robust decoding accuracy with 512-bit capacity, even under video distortions.
♻ ☆ TADFormer : Task-Adaptive Dynamic Transformer for Efficient Multi-Task Learning CVPR 2025
Transfer learning paradigm has driven substantial advancements in various vision tasks. However, as state-of-the-art models continue to grow, classical full fine-tuning often becomes computationally impractical, particularly in multi-task learning (MTL) setup where training complexity increases proportional to the number of tasks. Consequently, recent studies have explored Parameter-Efficient Fine-Tuning (PEFT) for MTL architectures. Despite some progress, these approaches still exhibit limitations in capturing fine-grained, task-specific features that are crucial to MTL. In this paper, we introduce Task-Adaptive Dynamic transFormer, termed TADFormer, a novel PEFT framework that performs task-aware feature adaptation in the fine-grained manner by dynamically considering task-specific input contexts. TADFormer proposes the parameter-efficient prompting for task adaptation and the Dynamic Task Filter (DTF) to capture task information conditioned on input contexts. Experiments on the PASCAL-Context benchmark demonstrate that the proposed method achieves higher accuracy in dense scene understanding tasks, while reducing the number of trainable parameters by up to 8.4 times when compared to full fine-tuning of MTL models. TADFormer also demonstrates superior parameter efficiency and accuracy compared to recent PEFT methods.
comment: CVPR 2025 accepted
♻ ☆ Diffusion-4K: Ultra-High-Resolution Image Synthesis with Latent Diffusion Models CVPR 2025
In this paper, we present Diffusion-4K, a novel framework for direct ultra-high-resolution image synthesis using text-to-image diffusion models. The core advancements include: (1) Aesthetic-4K Benchmark: addressing the absence of a publicly available 4K image synthesis dataset, we construct Aesthetic-4K, a comprehensive benchmark for ultra-high-resolution image generation. We curated a high-quality 4K dataset with carefully selected images and captions generated by GPT-4o. Additionally, we introduce GLCM Score and Compression Ratio metrics to evaluate fine details, combined with holistic measures such as FID, Aesthetics and CLIPScore for a comprehensive assessment of ultra-high-resolution images. (2) Wavelet-based Fine-tuning: we propose a wavelet-based fine-tuning approach for direct training with photorealistic 4K images, applicable to various latent diffusion models, demonstrating its effectiveness in synthesizing highly detailed 4K images. Consequently, Diffusion-4K achieves impressive performance in high-quality image synthesis and text prompt adherence, especially when powered by modern large-scale diffusion models (e.g., SD3-2B and Flux-12B). Extensive experimental results from our benchmark demonstrate the superiority of Diffusion-4K in ultra-high-resolution image synthesis.
comment: Accepted to CVPR 2025
♻ ☆ Find Any Part in 3D
Why don't we have foundation models in 3D yet? A key limitation is data scarcity. For 3D object part segmentation, existing datasets are small in size and lack diversity. We show that it is possible to break this data barrier by building a data engine powered by 2D foundation models. Our data engine automatically annotates any number of object parts: 1755x more unique part types than existing datasets combined. By training on our annotated data with a simple contrastive objective, we obtain an open-world model that generalizes to any part in any object based on any text query. Even when evaluated zero-shot, we outperform existing methods on the datasets they train on. We achieve 260% improvement in mIoU and boost speed by 6x to 300x. Our scaling analysis confirms that this generalization stems from the data scale, which underscores the impact of our data engine. Finally, to advance general-category open-world 3D part segmentation, we release a benchmark covering a wide range of objects and parts. Project website: https://ziqi-ma.github.io/find3dsite/
comment: Project website: https://ziqi-ma.github.io/find3dsite/
♻ ☆ Single Image Unlearning: Efficient Machine Unlearning in Multimodal Large Language Models
Machine unlearning empowers individuals with the `right to be forgotten' by removing their private or sensitive information encoded in machine learning models. However, it remains uncertain whether MU can be effectively applied to Multimodal Large Language Models (MLLMs), particularly in scenarios of forgetting the leaked visual data of concepts. To overcome the challenge, we propose an efficient method, Single Image Unlearning (SIU), to unlearn the visual recognition of a concept by fine-tuning a single associated image for few steps. SIU consists of two key aspects: (i) Constructing Multifaceted fine-tuning data. We introduce four targets, based on which we construct fine-tuning data for the concepts to be forgotten; (ii) Jointly training loss. To synchronously forget the visual recognition of concepts and preserve the utility of MLLMs, we fine-tune MLLMs through a novel Dual Masked KL-divergence Loss combined with Cross Entropy loss. Alongside our method, we establish MMUBench, a new benchmark for MU in MLLMs and introduce a collection of metrics for its evaluation. Experimental results on MMUBench show that SIU completely surpasses the performance of existing methods. Furthermore, we surprisingly find that SIU can avoid invasive membership inference attacks and jailbreak attacks. To the best of our knowledge, we are the first to explore MU in MLLMs. We will release the code and benchmark in the near future.
♻ ☆ MixRT: Mixed Neural Representations For Real-Time NeRF Rendering 3DV'24
Neural Radiance Field (NeRF) has emerged as a leading technique for novel view synthesis, owing to its impressive photorealistic reconstruction and rendering capability. Nevertheless, achieving real-time NeRF rendering in large-scale scenes has presented challenges, often leading to the adoption of either intricate baked mesh representations with a substantial number of triangles or resource-intensive ray marching in baked representations. We challenge these conventions, observing that high-quality geometry, represented by meshes with substantial triangles, is not necessary for achieving photorealistic rendering quality. Consequently, we propose MixRT, a novel NeRF representation that includes a low-quality mesh, a view-dependent displacement map, and a compressed NeRF model. This design effectively harnesses the capabilities of existing graphics hardware, thus enabling real-time NeRF rendering on edge devices. Leveraging a highly-optimized WebGL-based rendering framework, our proposed MixRT attains real-time rendering speeds on edge devices (over 30 FPS at a resolution of 1280 x 720 on a MacBook M1 Pro laptop), better rendering quality (0.2 PSNR higher in indoor scenes of the Unbounded-360 datasets), and a smaller storage size (less than 80% compared to state-of-the-art methods).
comment: Accepted by 3DV'24. Project Page: https://licj15.github.io/MixRT/
♻ ☆ Does Your Vision-Language Model Get Lost in the Long Video Sampling Dilemma?
The rise of Large Vision-Language Models (LVLMs) has significantly advanced video understanding. However, efficiently processing long videos remains a challenge due to the ``Sampling Dilemma'': low-density sampling risks missing critical information, while high-density sampling introduces redundancy. To address this issue, we introduce LSDBench, the first benchmark designed to evaluate LVLMs on long-video tasks by constructing high Necessary Sampling Density (NSD) questions, where NSD represents the minimum sampling density required to accurately answer a given question. LSDBench focuses on dense, short-duration actions to rigorously assess the sampling strategies employed by LVLMs. To tackle the challenges posed by high-NSD questions, we propose a novel Reasoning-Driven Hierarchical Sampling (RHS) framework, which combines global localization of question-relevant cues with local dense sampling for precise inference. Additionally, we develop a lightweight Semantic-Guided Frame Selector to prioritize informative frames, enabling RHS to achieve comparable or superior performance with significantly fewer sampled frames. Together, our LSDBench and RHS framework address the unique challenges of high-NSD long-video tasks, setting a new standard for evaluating and improving LVLMs in this domain. Our benchmark and evaluation codes has been released at: https://github.com/dvlab-research/LSDBench
♻ ☆ Can video generation replace cinematographers? Research on the cinematic language of generated video
Recent advancements in text-to-video (T2V) generation have leveraged diffusion models to enhance visual coherence in videos synthesized from textual descriptions. However, existing research primarily focuses on object motion, often overlooking cinematic language, which is crucial for conveying emotion and narrative pacing in cinematography. To address this, we propose a threefold approach to improve cinematic control in T2V models. First, we introduce a meticulously annotated cinematic language dataset with twenty subcategories, covering shot framing, shot angles, and camera movements, enabling models to learn diverse cinematic styles. Second, we present CameraDiff, which employs LoRA for precise and stable cinematic control, ensuring flexible shot generation. Third, we propose CameraCLIP, designed to evaluate cinematic alignment and guide multi-shot composition. Building on CameraCLIP, we introduce CLIPLoRA, a CLIP-guided dynamic LoRA composition method that adaptively fuses multiple pre-trained cinematic LoRAs, enabling smooth transitions and seamless style blending. Experimental results demonstrate that CameraDiff ensures stable and precise cinematic control, CameraCLIP achieves an R@1 score of 0.83, and CLIPLoRA significantly enhances multi-shot composition within a single video, bridging the gap between automated video generation and professional cinematography.\textsuperscript{1}
comment: 10 pages
♻ ☆ TIMotion: Temporal and Interactive Framework for Efficient Human-Human Motion Generation CVPR 2025
Human-human motion generation is essential for understanding humans as social beings. Current methods fall into two main categories: single-person-based methods and separate modeling-based methods. To delve into this field, we abstract the overall generation process into a general framework MetaMotion, which consists of two phases: temporal modeling and interaction mixing. For temporal modeling, the single-person-based methods concatenate two people into a single one directly, while the separate modeling-based methods skip the modeling of interaction sequences. The inadequate modeling described above resulted in sub-optimal performance and redundant model parameters. In this paper, we introduce TIMotion (Temporal and Interactive Modeling), an efficient and effective framework for human-human motion generation. Specifically, we first propose Causal Interactive Injection to model two separate sequences as a causal sequence leveraging the temporal and causal properties. Then we present Role-Evolving Scanning to adjust to the change in the active and passive roles throughout the interaction. Finally, to generate smoother and more rational motion, we design Localized Pattern Amplification to capture short-term motion patterns. Extensive experiments on InterHuman and InterX demonstrate that our method achieves superior performance. Project page: https://aigc-explorer.github.io/TIMotion-page/
comment: Accepted to CVPR 2025. Project page: https://aigc-explorer.github.io/TIMotion-page/
♻ ☆ JoyType: A Robust Design for Multilingual Visual Text Creation
Generating images with accurately represented text, especially in non-Latin languages, poses a significant challenge for diffusion models. Existing approaches, such as the integration of hint condition diagrams via auxiliary networks (e.g., ControlNet), have made strides towards addressing this issue. However, diffusion models often fall short in tasks requiring controlled text generation, such as specifying particular fonts or producing text in small fonts. In this paper, we introduce a novel approach for multilingual visual text creation, named JoyType, designed to maintain the font style of text during the image generation process. Our methodology begins with assembling a training dataset, JoyType-1M, comprising 1 million pairs of data. Each pair includes an image, its description, and glyph instructions corresponding to the font style within the image. We then developed a text control network, Font ControlNet, tasked with extracting font style information to steer the image generation. To further enhance our model's ability to maintain font style, notably in generating small-font text, we incorporated a multi-layer OCR-aware loss into the diffusion process. This enhancement allows JoyType to direct text rendering using low-level descriptors. Our evaluations, based on both visual and accuracy metrics, demonstrate that JoyType significantly outperforms existing state-of-the-art methods. Additionally, JoyType can function as a plugin, facilitating the creation of varied image styles in conjunction with other stable diffusion models on HuggingFace and CivitAI. Our project is open-sourced on https://jdh-algo.github.io/JoyType/.
♻ ☆ MambaBEV: An efficient 3D detection model with Mamba2
Accurate 3D object detection in autonomous driving relies on Bird's Eye View (BEV) perception and effective temporal fusion.However, existing fusion strategies based on convolutional layers or deformable self attention struggle with global context modeling in BEV space,leading to lower accuracy for large objects. To address this, we introduce MambaBEV, a novel BEV based 3D object detection model that leverages Mamba2, an advanced state space model (SSM) optimized for long sequence processing.Our key contribution is TemporalMamba, a temporal fusion module that enhances global awareness by introducing a BEV feature discrete rearrangement mechanism tailored for Mamba's sequential processing. Additionally, we propose Mamba based DETR as the detection head to improve multi object representation.Evaluations on the nuScenes dataset demonstrate that MambaBEV base achieves an NDS of 51.7\% and an mAP of 42.7\%.Furthermore, an end to end autonomous driving paradigm validates its effectiveness in motion forecasting and planning.Our results highlight the potential of SSMs in autonomous driving perception, particularly in enhancing global context understanding and large object detection.
♻ ☆ Frame-Voyager: Learning to Query Frames for Video Large Language Models ICLR 2025
Video Large Language Models (Video-LLMs) have made remarkable progress in video understanding tasks. However, they are constrained by the maximum length of input tokens, making it impractical to input entire videos. Existing frame selection approaches, such as uniform frame sampling and text-frame retrieval, fail to account for the information density variations in the videos or the complex instructions in the tasks, leading to sub-optimal performance. In this paper, we propose Frame-Voyager that learns to query informative frame combinations, based on the given textual queries in the task. To train Frame-Voyager, we introduce a new data collection and labeling pipeline, by ranking frame combinations using a pre-trained Video-LLM. Given a video of M frames, we traverse its T-frame combinations, feed them into a Video-LLM, and rank them based on Video-LLM's prediction losses. Using this ranking as supervision, we train Frame-Voyager to query the frame combinations with lower losses. In experiments, we evaluate Frame-Voyager on four Video Question Answering benchmarks by plugging it into two different Video-LLMs. The experimental results demonstrate that Frame-Voyager achieves impressive results in all settings, highlighting its potential as a plug-and-play solution for Video-LLMs.
comment: ICLR 2025, Camera-ready Version
♻ ☆ Improving SAM for Camouflaged Object Detection via Dual Stream Adapters
Segment anything model (SAM) has shown impressive general-purpose segmentation performance on natural images, but its performance on camouflaged object detection (COD) is unsatisfactory. In this paper, we propose SAM-COD that performs camouflaged object detection for RGB-D inputs. While keeping the SAM architecture intact, dual stream adapters are expanded on the image encoder to learn potential complementary information from RGB images and depth images, and fine-tune the mask decoder and its depth replica to perform dual-stream mask prediction. In practice, the dual stream adapters are embedded into the attention block of the image encoder in a parallel manner to facilitate the refinement and correction of the two types of image embeddings. To mitigate channel discrepancies arising from dual stream embeddings that do not directly interact with each other, we augment the association of dual stream embeddings using bidirectional knowledge distillation including a model distiller and a modal distiller. In addition, to predict the masks for RGB and depth attention maps, we hybridize the two types of image embeddings which are jointly learned with the prompt embeddings to update the initial prompt, and then feed them into the mask decoders to synchronize the consistency of image embeddings and prompt embeddings. Experimental results on four COD benchmarks show that our SAM-COD achieves excellent detection performance gains over SAM and achieves state-of-the-art results with a given fine-tuning paradigm.
♻ ☆ Visual Agentic AI for Spatial Reasoning with a Dynamic API
Visual reasoning -- the ability to interpret the visual world -- is crucial for embodied agents that operate within three-dimensional scenes. Progress in AI has led to vision and language models capable of answering questions from images. However, their performance declines when tasked with 3D spatial reasoning. To tackle the complexity of such reasoning problems, we introduce an agentic program synthesis approach where LLM agents collaboratively generate a Pythonic API with new functions to solve common subproblems. Our method overcomes limitations of prior approaches that rely on a static, human-defined API, allowing it to handle a wider range of queries. To assess AI capabilities for 3D understanding, we introduce a new benchmark of queries involving multiple steps of grounding and inference. We show that our method outperforms prior zero-shot models for visual reasoning in 3D and empirically validate the effectiveness of our agentic framework for 3D spatial reasoning tasks. Project website: https://glab-caltech.github.io/vadar/
comment: Project website: https://glab-caltech.github.io/vadar/
♻ ☆ INGeo: Accelerating Instant Neural Scene Reconstruction with Noisy Geometry Priors ECCV'22
We present a method that accelerates reconstruction of 3D scenes and objects, aiming to enable instant reconstruction on edge devices such as mobile phones and AR/VR headsets. While recent works have accelerated scene reconstruction training to minute/second-level on high-end GPUs, there is still a large gap to the goal of instant training on edge devices which is yet highly desired in many emerging applications such as immersive AR/VR. To this end, this work aims to further accelerate training by leveraging geometry priors of the target scene. Our method proposes strategies to alleviate the noise of the imperfect geometry priors to accelerate the training speed on top of the highly optimized Instant-NGP. On the NeRF Synthetic dataset, our work uses half of the training iterations to reach an average test PSNR of >30.
comment: Accepted by Computer Vision for Metaverse Workshop @ ECCV'22
♻ ☆ FBNetV5: Neural Architecture Search for Multiple Tasks in One Run
Neural Architecture Search (NAS) has been widely adopted to design accurate and efficient image classification models. However, applying NAS to a new computer vision task still requires a huge amount of effort. This is because 1) previous NAS research has been over-prioritized on image classification while largely ignoring other tasks; 2) many NAS works focus on optimizing task-specific components that cannot be favorably transferred to other tasks; and 3) existing NAS methods are typically designed to be "proxyless" and require significant effort to be integrated with each new task's training pipelines. To tackle these challenges, we propose FBNetV5, a NAS framework that can search for neural architectures for a variety of vision tasks with much reduced computational cost and human effort. Specifically, we design 1) a search space that is simple yet inclusive and transferable; 2) a multitask search process that is disentangled with target tasks' training pipeline; and 3) an algorithm to simultaneously search for architectures for multiple tasks with a computational cost agnostic to the number of tasks. We evaluate the proposed FBNetV5 targeting three fundamental vision tasks -- image classification, object detection, and semantic segmentation. Models searched by FBNetV5 in a single run of search have outperformed the previous stateof-the-art in all the three tasks: image classification (e.g., +1.3% ImageNet top-1 accuracy under the same FLOPs as compared to FBNetV3), semantic segmentation (e.g., +1.8% higher ADE20K val. mIoU than SegFormer with 3.6x fewer FLOPs), and object detection (e.g., +1.1% COCO val. mAP with 1.2x fewer FLOPs as compared to YOLOX).
♻ ☆ Multi-modal Speech Transformer Decoders: When Do Multiple Modalities Improve Accuracy?
Decoder-only discrete-token language models have recently achieved significant success in automatic speech recognition. However, systematic analyses of how different modalities impact performance in specific scenarios remain limited. In this paper, we investigate the effects of multiple modalities on recognition accuracy on both synthetic and real-world datasets. Our experiments suggest that: (1) Integrating more modalities can increase accuracy; in particular, our paper is, to our best knowledge, the first to show the benefit of combining audio, image context, and lip information; (2) Images as a supplementary modality for speech recognition provide the greatest benefit at moderate noise levels, moreover, they exhibit a different trend compared to inherently synchronized modalities like lip movements; (3) Performance improves on both synthetic and real-world datasets when the most relevant visual information is filtered as a preprocessing step.
♻ ☆ DANCE: DAta-Network Co-optimization for Efficient Segmentation Model Training and Inference
Semantic segmentation for scene understanding is nowadays widely demanded, raising significant challenges for the algorithm efficiency, especially its applications on resource-limited platforms. Current segmentation models are trained and evaluated on massive high-resolution scene images ("data level") and suffer from the expensive computation arising from the required multi-scale aggregation("network level"). In both folds, the computational and energy costs in training and inference are notable due to the often desired large input resolutions and heavy computational burden of segmentation models. To this end, we propose DANCE, general automated DAta-Network Co-optimization for Efficient segmentation model training and inference. Distinct from existing efficient segmentation approaches that focus merely on light-weight network design, DANCE distinguishes itself as an automated simultaneous data-network co-optimization via both input data manipulation and network architecture slimming. Specifically, DANCE integrates automated data slimming which adaptively downsamples/drops input images and controls their corresponding contribution to the training loss guided by the images' spatial complexity. Such a downsampling operation, in addition to slimming down the cost associated with the input size directly, also shrinks the dynamic range of input object and context scales, therefore motivating us to also adaptively slim the network to match the downsampled data. Extensive experiments and ablating studies (on four SOTA segmentation models with three popular segmentation datasets under two training settings) demonstrate that DANCE can achieve "all-win" towards efficient segmentation(reduced training cost, less expensive inference, and better mean Intersection-over-Union (mIoU)).
comment: 16 pages, 6 figures
♻ ☆ How Can Time Series Analysis Benefit From Multiple Modalities? A Survey and Outlook
Time series analysis (TSA) is a longstanding research topic in the data mining community and has wide real-world significance. Compared to "richer" modalities such as language and vision, which have recently experienced explosive development and are densely connected, the time-series modality remains relatively underexplored and isolated. We notice that many recent TSA works have formed a new research field, i.e., Multiple Modalities for TSA (MM4TSA). In general, these MM4TSA works follow a common motivation: how TSA can benefit from multiple modalities. This survey is the first to offer a comprehensive review and a detailed outlook for this emerging field. Specifically, we systematically discuss three benefits: (1) reusing foundation models of other modalities for efficient TSA, (2) multimodal extension for enhanced TSA, and (3) cross-modality interaction for advanced TSA. We further group the works by the introduced modality type, including text, images, audio, tables, and others, within each perspective. Finally, we identify the gaps with future opportunities, including the reused modalities selections, heterogeneous modality combinations, and unseen tasks generalizations, corresponding to the three benefits. We release an up-to-date GitHub repository that includes key papers and resources.
comment: Github Repo: https://github.com/AdityaLab/MM4TSA
Machine Learning 142
☆ DSO: Aligning 3D Generators with Simulation Feedback for Physical Soundness
Most 3D object generators focus on aesthetic quality, often neglecting physical constraints necessary in applications. One such constraint is that the 3D object should be self-supporting, i.e., remains balanced under gravity. Prior approaches to generating stable 3D objects used differentiable physics simulators to optimize geometry at test-time, which is slow, unstable, and prone to local optima. Inspired by the literature on aligning generative models to external feedback, we propose Direct Simulation Optimization (DSO), a framework to use the feedback from a (non-differentiable) simulator to increase the likelihood that the 3D generator outputs stable 3D objects directly. We construct a dataset of 3D objects labeled with a stability score obtained from the physics simulator. We can then fine-tune the 3D generator using the stability score as the alignment metric, via direct preference optimization (DPO) or direct reward optimization (DRO), a novel objective, which we introduce, to align diffusion models without requiring pairwise preferences. Our experiments show that the fine-tuned feed-forward generator, using either DPO or DRO objective, is much faster and more likely to produce stable objects than test-time optimization. Notably, the DSO framework works even without any ground-truth 3D objects for training, allowing the 3D generator to self-improve by automatically collecting simulation feedback on its own outputs.
comment: Project page: https://ruiningli.com/dso
☆ QuestBench: Can LLMs ask the right question to acquire information in reasoning tasks?
Recently, a large amount of work has focused on improving large language models' (LLMs') performance on reasoning benchmarks such as math and logic. However, past work has largely assumed that tasks are well-defined. In the real world, queries to LLMs are often underspecified, only solvable through acquiring missing information. We formalize this as a constraint satisfaction problem (CSP) with missing variable assignments. Using a special case of this formalism where only one necessary variable assignment is missing, we can rigorously evaluate an LLM's ability to identify the minimal necessary question to ask and quantify axes of difficulty levels for each problem. We present QuestBench, a set of underspecified reasoning tasks solvable by asking at most one question, which includes: (1) Logic-Q: Logical reasoning tasks with one missing proposition, (2) Planning-Q: PDDL planning problems with initial states that are partially-observed, (3) GSM-Q: Human-annotated grade school math problems with one missing variable assignment, and (4) GSME-Q: a version of GSM-Q where word problems are translated into equations by human annotators. The LLM is tasked with selecting the correct clarification question(s) from a list of options. While state-of-the-art models excel at GSM-Q and GSME-Q, their accuracy is only 40-50% on Logic-Q and Planning-Q. Analysis demonstrates that the ability to solve well-specified reasoning problems may not be sufficient for success on our benchmark: models have difficulty identifying the right question to ask, even when they can solve the fully specified version of the problem. Furthermore, in the Planning-Q domain, LLMs tend not to hedge, even when explicitly presented with the option to predict ``not sure.'' This highlights the need for deeper investigation into models' information acquisition capabilities.
comment: Code and dataset are available at \url{https://github.com/google-deepmind/questbench}
☆ Evaluation of Machine-generated Biomedical Images via A Tally-based Similarity Measure
Super-resolution, in-painting, whole-image generation, unpaired style-transfer, and network-constrained image reconstruction each include an aspect of machine-learned image synthesis where the actual ground truth is not known at time of use. It is generally difficult to quantitatively and authoritatively evaluate the quality of synthetic images; however, in mission-critical biomedical scenarios robust evaluation is paramount. In this work, all practical image-to-image comparisons really are relative qualifications, not absolute difference quantifications; and, therefore, meaningful evaluation of generated image quality can be accomplished using the Tversky Index, which is a well-established measure for assessing perceptual similarity. This evaluation procedure is developed and then demonstrated using multiple image data sets, both real and simulated. The main result is that when the subjectivity and intrinsic deficiencies of any feature-encoding choice are put upfront, Tversky's method leads to intuitive results, whereas traditional methods based on summarizing distances in deep feature spaces do not.
comment: 13 pages. Manuscript under review at IEEE. Data available at https://doi.org/10.13012/B2IDB-2642688_V1
☆ Differential equation quantum solvers: engineering measurements to reduce cost
Quantum computers have been proposed as a solution for efficiently solving non-linear differential equations (DEs), a fundamental task across diverse technological and scientific domains. However, a crucial milestone in this regard is to design protocols that are hardware-aware, making efficient use of limited available quantum resources. We focus here on promising variational methods derived from scientific machine learning: differentiable quantum circuits (DQC), addressing specifically their cost in number of circuit evaluations. Reducing the number of quantum circuit evaluations is particularly valuable in hybrid quantum/classical protocols, where the time required to interface and run quantum hardware at each cycle can impact the total wall-time much more than relatively inexpensive classical post-processing overhead. Here, we propose and test two sample-efficient protocols for solving non-linear DEs, achieving exponential savings in quantum circuit evaluations. These protocols are based on redesigning the extraction of information from DQC in a ``measure-first" approach, by introducing engineered cost operators similar to the randomized-measurement toolbox (i.e. classical shadows). In benchmark simulations on one and two-dimensional DEs, we report up to $\sim$ 100 fold reductions in circuit evaluations. Our protocols thus hold the promise to unlock larger and more challenging non-linear differential equation demonstrations with existing quantum hardware.
comment: 15 pages, 4 figures
☆ Tropical Bisectors and Carlini-Wagner Attacks
Pasque et al. showed that using a tropical symmetric metric as an activation function in the last layer can improve the robustness of convolutional neural networks (CNNs) against state-of-the-art attacks, including the Carlini-Wagner attack. This improvement occurs when the attacks are not specifically adapted to the non-differentiability of the tropical layer. Moreover, they showed that the decision boundary of a tropical CNN is defined by tropical bisectors. In this paper, we explore the combinatorics of tropical bisectors and analyze how the tropical embedding layer enhances robustness against Carlini-Wagner attacks. We prove an upper bound on the number of linear segments the decision boundary of a tropical CNN can have. We then propose a refined version of the Carlini-Wagner attack, specifically tailored for the tropical architecture. Computational experiments with MNIST and LeNet5 showcase our attacks improved success rate.
comment: 23 pages, 8 figures, 5 tables, 1 appendix
☆ Sentiment Classification of Thai Central Bank Press Releases Using Supervised Learning
Central bank communication plays a critical role in shaping economic expectations and monetary policy effectiveness. This study applies supervised machine learning techniques to classify the sentiment of press releases from the Bank of Thailand, addressing gaps in research that primarily focus on lexicon-based approaches. My findings show that supervised learning can be an effective method, even with smaller datasets, and serves as a starting point for further automation. However, achieving higher accuracy and better generalization requires a substantial amount of labeled data, which is time-consuming and demands expertise. Using models such as Na\"ive Bayes, Random Forest and SVM, this study demonstrates the applicability of machine learning for central bank sentiment analysis, with English-language communications from the Thai Central Bank as a case study.
☆ Challenges and Paths Towards AI for Software Engineering
AI for software engineering has made remarkable progress recently, becoming a notable success within generative AI. Despite this, there are still many challenges that need to be addressed before automated software engineering reaches its full potential. It should be possible to reach high levels of automation where humans can focus on the critical decisions of what to build and how to balance difficult tradeoffs while most routine development effort is automated away. Reaching this level of automation will require substantial research and engineering efforts across academia and industry. In this paper, we aim to discuss progress towards this in a threefold manner. First, we provide a structured taxonomy of concrete tasks in AI for software engineering, emphasizing the many other tasks in software engineering beyond code generation and completion. Second, we outline several key bottlenecks that limit current approaches. Finally, we provide an opinionated list of promising research directions toward making progress on these bottlenecks, hoping to inspire future research in this rapidly maturing field.
comment: 75 pages
☆ Using Machine Learning for Lunar Mineralogy-I: Hyperspectral Imaging of Volcanic Samples
This study examines the mineral composition of volcanic samples similar to lunar materials, focusing on olivine and pyroxene. Using hyperspectral imaging from 400 to 1000 nm, we created data cubes to analyze the reflectance characteristics of samples from samples from Vulcano, a volcanically active island in the Aeolian Archipelago, north of Sicily, Italy, categorizing them into nine regions of interest and analyzing spectral data for each. We applied various unsupervised clustering algorithms, including K-Means, Hierarchical Clustering, GMM, and Spectral Clustering, to classify the spectral profiles. Principal Component Analysis revealed distinct spectral signatures associated with specific minerals, facilitating precise identification. Clustering performance varied by region, with K-Means achieving the highest silhouette-score of 0.47, whereas GMM performed poorly with a score of only 0.25. Non-negative Matrix Factorization aided in identifying similarities among clusters across different methods and reference spectra for olivine and pyroxene. Hierarchical clustering emerged as the most reliable technique, achieving a 94\% similarity with the olivine spectrum in one sample, whereas GMM exhibited notable variability. Overall, the analysis indicated that both Hierarchical and K-Means methods yielded lower errors in total measurements, with K-Means demonstrating superior performance in estimated dispersion and clustering. Additionally, GMM showed a higher root mean square error compared to the other models. The RMSE analysis confirmed K-Means as the most consistent algorithm across all samples, suggesting a predominance of olivine in the Vulcano region relative to pyroxene. This predominance is likely linked to historical formation conditions similar to volcanic processes on the Moon, where olivine-rich compositions are common in ancient lava flows and impact melt rocks.
comment: 18 pages, 7 Figure, Accepted to the Special Issue: Planetary Radar Astronomy - Universe: Planetary Sciences Journal
☆ Evaluating Multimodal Language Models as Visual Assistants for Visually Impaired Users
This paper explores the effectiveness of Multimodal Large Language models (MLLMs) as assistive technologies for visually impaired individuals. We conduct a user survey to identify adoption patterns and key challenges users face with such technologies. Despite a high adoption rate of these models, our findings highlight concerns related to contextual understanding, cultural sensitivity, and complex scene understanding, particularly for individuals who may rely solely on them for visual interpretation. Informed by these results, we collate five user-centred tasks with image and video inputs, including a novel task on Optical Braille Recognition. Our systematic evaluation of twelve MLLMs reveals that further advancements are necessary to overcome limitations related to cultural context, multilingual support, Braille reading comprehension, assistive object recognition, and hallucinations. This work provides critical insights into the future direction of multimodal AI for accessibility, underscoring the need for more inclusive, robust, and trustworthy visual assistance technologies.
☆ Generative Latent Neural PDE Solver using Flow Matching
Autoregressive next-step prediction models have become the de-facto standard for building data-driven neural solvers to forecast time-dependent partial differential equations (PDEs). Denoise training that is closely related to diffusion probabilistic model has been shown to enhance the temporal stability of neural solvers, while its stochastic inference mechanism enables ensemble predictions and uncertainty quantification. In principle, such training involves sampling a series of discretized diffusion timesteps during both training and inference, inevitably increasing computational overhead. In addition, most diffusion models apply isotropic Gaussian noise on structured, uniform grids, limiting their adaptability to irregular domains. We propose a latent diffusion model for PDE simulation that embeds the PDE state in a lower-dimensional latent space, which significantly reduces computational costs. Our framework uses an autoencoder to map different types of meshes onto a unified structured latent grid, capturing complex geometries. By analyzing common diffusion paths, we propose to use a coarsely sampled noise schedule from flow matching for both training and testing. Numerical experiments show that the proposed model outperforms several deterministic baselines in both accuracy and long-term stability, highlighting the potential of diffusion-based approaches for robust data-driven PDE learning.
comment: work in progress
☆ Reinforcement Learning for Machine Learning Model Deployment: Evaluating Multi-Armed Bandits in ML Ops Environments
In modern ML Ops environments, model deployment is a critical process that traditionally relies on static heuristics such as validation error comparisons and A/B testing. However, these methods require human intervention to adapt to real-world deployment challenges, such as model drift or unexpected performance degradation. We investigate whether reinforcement learning, specifically multi-armed bandit (MAB) algorithms, can dynamically manage model deployment decisions more effectively. Our approach enables more adaptive production environments by continuously evaluating deployed models and rolling back underperforming ones in real-time. We test six model selection strategies across two real-world datasets and find that RL based approaches match or exceed traditional methods in performance. Our findings suggest that reinforcement learning (RL)-based model management can improve automation, reduce reliance on manual interventions, and mitigate risks associated with post-deployment model failures.
☆ Using AI to Summarize US Presidential Campaign TV Advertisement Videos, 1952-2012
This paper introduces the largest and most comprehensive dataset of US presidential campaign television advertisements, available in digital format. The dataset also includes machine-searchable transcripts and high-quality summaries designed to facilitate a variety of academic research. To date, there has been great interest in collecting and analyzing US presidential campaign advertisements, but the need for manual procurement and annotation led many to rely on smaller subsets. We design a large-scale parallelized, AI-based analysis pipeline that automates the laborious process of preparing, transcribing, and summarizing videos. We then apply this methodology to the 9,707 presidential ads from the Julian P. Kanter Political Commercial Archive. We conduct extensive human evaluations to show that these transcripts and summaries match the quality of manually generated alternatives. We illustrate the value of this data by including an application that tracks the genesis and evolution of current focal issue areas over seven decades of presidential elections. Our analysis pipeline and codebase also show how to use LLM-based tools to obtain high-quality summaries for other video datasets.
comment: 17 pages, 7 tables, 4 figures, and linked datasets
☆ Comparing Methods for Bias Mitigation in Graph Neural Networks
This paper examines the critical role of Graph Neural Networks (GNNs) in data preparation for generative artificial intelligence (GenAI) systems, with a particular focus on addressing and mitigating biases. We present a comparative analysis of three distinct methods for bias mitigation: data sparsification, feature modification, and synthetic data augmentation. Through experimental analysis using the german credit dataset, we evaluate these approaches using multiple fairness metrics, including statistical parity, equality of opportunity, and false positive rates. Our research demonstrates that while all methods improve fairness metrics compared to the original dataset, stratified sampling and synthetic data augmentation using GraphSAGE prove particularly effective in balancing demographic representation while maintaining model performance. The results provide practical insights for developing more equitable AI systems while maintaining model performance.
☆ Benchmarking Ultra-Low-Power $μ$NPUs
Efficient on-device neural network (NN) inference has various advantages over cloud-based processing, including predictable latency, enhanced privacy, greater reliability, and reduced operating costs for vendors. This has sparked the recent rapid development of microcontroller-scale NN accelerators, often referred to as neural processing units ($\mu$NPUs), designed specifically for ultra-low-power applications. In this paper we present the first comparative evaluation of a number of commercially-available $\mu$NPUs, as well as the first independent benchmarks for several of these platforms. We develop and open-source a model compilation framework to enable consistent benchmarking of quantized models across diverse $\mu$NPU hardware. Our benchmark targets end-to-end performance and includes model inference latency, power consumption, and memory overhead, alongside other factors. The resulting analysis uncovers both expected performance trends as well as surprising disparities between hardware specifications and actual performance, including $\mu$NPUs exhibiting unexpected scaling behaviors with increasing model complexity. Our framework provides a foundation for further evaluation of $\mu$NPU platforms alongside valuable insights for both hardware designers and software developers in this rapidly evolving space.
☆ Niyama : Breaking the Silos of LLM Inference Serving
The widespread adoption of Large Language Models (LLMs) has enabled diverse applications with very different latency requirements. Existing LLM serving frameworks rely on siloed infrastructure with coarse-grained workload segregation -- interactive and batch -- leading to inefficient resource utilization and limited support for fine-grained Quality-of-Service (QoS) differentiation. This results in operational inefficiencies, over-provisioning and poor load management during traffic surges. We present Niyama, a novel QoS-driven inference serving system that enables efficient co-scheduling of diverse workloads on shared infrastructure. Niyama introduces fine-grained QoS classification allowing applications to specify precise latency requirements, and dynamically adapts scheduling decisions based on real-time system state. Leveraging the predictable execution characteristics of LLM inference, Niyama implements a dynamic chunking mechanism to improve overall throughput while maintaining strict QoS guarantees. Additionally, Niyama employs a hybrid prioritization policy that balances fairness and efficiency, and employs selective request relegation that enables graceful service degradation during overload conditions. Our evaluation demonstrates that Niyama increases serving capacity by 32% compared to current siloed deployments, while maintaining QoS guarantees. Notably, under extreme load, our system reduces SLO violations by an order of magnitude compared to current strategies.
☆ Bridging the Dimensional Chasm: Uncover Layer-wise Dimensional Reduction in Transformers through Token Correlation
The geometric evolution of token representations in large language models (LLMs) presents a fundamental paradox: while human language inherently organizes semantic information in low-dimensional spaces ($\sim 10^1$ dimensions), modern LLMs employ high-dimensional embeddings ($\sim 10^3$ dimensions) processed through Transformer architectures. To resolve this paradox, this work bridges this conceptual gap by developing a geometric framework that tracks token dynamics across Transformers layers. Through layer-wise analysis of intrinsic dimensions across multiple architectures, we reveal an expansion-contraction pattern where tokens diffuse to a "working space" and then progressively project onto lower-dimensional submanifolds. Our finding implies a negative correlation between the working space dimension and parameter-sensitive performance of the LLMs, and indicates that effective models tend to compress tokens into approximately 10-dimensional submanifolds, closely resembling human semantic spaces. This work not only advances LLM interpretability by reframing Transformers layers as projectors that mediate between high-dimensional computation and low-dimensional semantics, but also provides practical tools for model diagnostics that do not rely on task-specific evaluations.
comment: 17 pages, 9 figures, 2 tables
Efficient Verified Machine Unlearning For Distillation
Growing data privacy demands, driven by regulations like GDPR and CCPA, require machine unlearning methods capable of swiftly removing the influence of specific training points. Although verified approaches like SISA, using data slicing and checkpointing, achieve efficient unlearning for single models by reverting to intermediate states, these methods struggle in teacher-student knowledge distillation settings. Unlearning in the teacher typically forces costly, complete student retraining due to pervasive information propagation during distillation. Our primary contribution is PURGE (Partitioned Unlearning with Retraining Guarantee for Ensembles), a novel framework integrating verified unlearning with distillation. We introduce constituent mapping and an incremental multi-teacher strategy that partitions the distillation process, confines each teacher constituent's impact to distinct student data subsets, and crucially maintains data isolation. The PURGE framework substantially reduces retraining overhead, requiring only partial student updates when teacher-side unlearning occurs. We provide both theoretical analysis, quantifying significant speed-ups in the unlearning process, and empirical validation on multiple datasets, demonstrating that PURGE achieves these efficiency gains while maintaining student accuracy comparable to standard baselines.
☆ Deterministic Medical Image Translation via High-fidelity Brownian Bridges
Recent studies have shown that diffusion models produce superior synthetic images when compared to Generative Adversarial Networks (GANs). However, their outputs are often non-deterministic and lack high fidelity to the ground truth due to the inherent randomness. In this paper, we propose a novel High-fidelity Brownian bridge model (HiFi-BBrg) for deterministic medical image translations. Our model comprises two distinct yet mutually beneficial mappings: a generation mapping and a reconstruction mapping. The Brownian bridge training process is guided by the fidelity loss and adversarial training in the reconstruction mapping. This ensures that translated images can be accurately reversed to their original forms, thereby achieving consistent translations with high fidelity to the ground truth. Our extensive experiments on multiple datasets show HiFi-BBrg outperforms state-of-the-art methods in multi-modal image translation and multi-image super-resolution.
☆ MixFunn: A Neural Network for Differential Equations with Improved Generalization and Interpretability
We introduce MixFunn, a novel neural network architecture designed to solve differential equations with enhanced precision, interpretability, and generalization capability. The architecture comprises two key components: the mixed-function neuron, which integrates multiple parameterized nonlinear functions to improve representational flexibility, and the second-order neuron, which combines a linear transformation of its inputs with a quadratic term to capture cross-combinations of input variables. These features significantly enhance the expressive power of the network, enabling it to achieve comparable or superior results with drastically fewer parameters and a reduction of up to four orders of magnitude compared to conventional approaches. We applied MixFunn in a physics-informed setting to solve differential equations in classical mechanics, quantum mechanics, and fluid dynamics, demonstrating its effectiveness in achieving higher accuracy and improved generalization to regions outside the training domain relative to standard machine learning models. Furthermore, the architecture facilitates the extraction of interpretable analytical expressions, offering valuable insights into the underlying solutions.
comment: 21 pages
☆ AnnoPage Dataset: Dataset of Non-Textual Elements in Documents with Fine-Grained Categorization ICDAR25
We introduce the AnnoPage Dataset, a novel collection of 7550 pages from historical documents, primarily in Czech and German, spanning from 1485 to the present, focusing on the late 19th and early 20th centuries. The dataset is designed to support research in document layout analysis and object detection. Each page is annotated with axis-aligned bounding boxes (AABB) representing elements of 25 categories of non-textual elements, such as images, maps, decorative elements, or charts, following the Czech Methodology of image document processing. The annotations were created by expert librarians to ensure accuracy and consistency. The dataset also incorporates pages from multiple, mainly historical, document datasets to enhance variability and maintain continuity. The dataset is divided into development and test subsets, with the test set carefully selected to maintain the category distribution. We provide baseline results using YOLO and DETR object detectors, offering a reference point for future research. The AnnoPage Dataset is publicly available on Zenodo (https://doi.org/10.5281/zenodo.12788419), along with ground-truth annotations in YOLO format.
comment: 15 pages, 2 tables, 6 figures; Submitted to ICDAR25
☆ Assessing Foundation Models for Sea Ice Type Segmentation in Sentinel-1 SAR Imagery
Accurate segmentation of sea ice types is essential for mapping and operational forecasting of sea ice conditions for safe navigation and resource extraction in ice-covered waters, as well as for understanding polar climate processes. While deep learning methods have shown promise in automating sea ice segmentation, they often rely on extensive labeled datasets which require expert knowledge and are time-consuming to create. Recently, foundation models (FMs) have shown excellent results for segmenting remote sensing images by utilizing pre-training on large datasets using self-supervised techniques. However, their effectiveness for sea ice segmentation remains unexplored, especially given sea ice's complex structures, seasonal changes, and unique spectral signatures, as well as peculiar Synthetic Aperture Radar (SAR) imagery characteristics including banding and scalloping noise, and varying ice backscatter characteristics, which are often missing in standard remote sensing pre-training datasets. In particular, SAR images over polar regions are acquired using different modes than used to capture the images at lower latitudes by the same sensors that form training datasets for FMs. This study evaluates ten remote sensing FMs for sea ice type segmentation using Sentinel-1 SAR imagery, focusing on their seasonal and spatial generalization. Among the selected models, Prithvi-600M outperforms the baseline models, while CROMA achieves a very similar performance in F1-score. Our contributions include offering a systematic methodology for selecting FMs for sea ice data analysis, a comprehensive benchmarking study on performances of FMs for sea ice segmentation with tailored performance metrics, and insights into existing gaps and future directions for improving domain-specific models in polar applications using SAR data.
☆ Masked Self-Supervised Pre-Training for Text Recognition Transformers on Large-Scale Datasets ICDAR25
Self-supervised learning has emerged as a powerful approach for leveraging large-scale unlabeled data to improve model performance in various domains. In this paper, we explore masked self-supervised pre-training for text recognition transformers. Specifically, we propose two modifications to the pre-training phase: progressively increasing the masking probability, and modifying the loss function to incorporate both masked and non-masked patches. We conduct extensive experiments using a dataset of 50M unlabeled text lines for pre-training and four differently sized annotated datasets for fine-tuning. Furthermore, we compare our pre-trained models against those trained with transfer learning, demonstrating the effectiveness of the self-supervised pre-training. In particular, pre-training consistently improves the character error rate of models, in some cases up to 30 % relatively. It is also on par with transfer learning but without relying on extra annotated text lines.
comment: 18 pages, 7 tables, 6 figures; Submitted to ICDAR25
☆ Learnable cut flow
Neural networks have emerged as a powerful paradigm for tasks in high energy physics, yet their opaque training process renders them as a black box. In contrast, the traditional cut flow method offers simplicity and interpretability but demands human effort to identify optimal boundaries. To merge the strengths of both approaches, we propose the Learnable Cut Flow (LCF), a neural network that transforms the traditional cut selection into a fully differentiable, data-driven process. LCF implements two cut strategies-parallel, where observable distributions are treated independently, and sequential, where prior cuts shape subsequent ones-to flexibly determine optimal boundaries. Building on this, we introduce the Learnable Importance, a metric that quantifies feature importance and adjusts their contributions to the loss accordingly, offering model-driven insights unlike ad-hoc metrics. To ensure differentiability, a modified loss function replaces hard cuts with mask operations, preserving data shape throughout the training process. LCF is tested on six varied mock datasets and a realistic diboson vs. QCD dataset. Results demonstrate that LCF (1) accurately learns cut boundaries across typical feature distributions in both parallel and sequential strategies, (2) assigns higher importance to discriminative features with minimal overlap, (3) handles redundant or correlated features robustly, and (4) performs effectively in real-world scenarios. In diboson dataset, LCF initially underperforms boosted decision trees and multiplayer perceptrons when using all observables. However, pruning less critical features-guided by learned importance-boosts its performance to match or exceed these baselines. LCF bridges the gap between traditional cut flow method and modern black-box neural networks, delivering actionable insights into the training process and feature importance.
comment: 26 pages, 33 figures
☆ SPDNet: Seasonal-Periodic Decomposition Network for Advanced Residential Demand Forecasting
Residential electricity demand forecasting is critical for efficient energy management and grid stability. Accurate predictions enable utility companies to optimize planning and operations. However, real-world residential electricity demand data often exhibit intricate temporal variability, including multiple seasonalities, periodicities, and abrupt fluctuations, which pose significant challenges for forecasting models. Previous models that rely on statistical methods, recurrent, convolutional neural networks, and transformers often struggle to capture these intricate temporal dynamics. To address these challenges, we propose the Seasonal-Periodic Decomposition Network (SPDNet), a novel deep learning framework consisting of two main modules. The first is the Seasonal-Trend Decomposition Module (STDM), which decomposes the input data into trend, seasonal, and residual components. The second is the Periodical Decomposition Module (PDM), which employs the Fast Fourier Transform to identify the dominant periods. For each dominant period, 1D input data is reshaped into a 2D tensor, where rows represent periods and columns correspond to frequencies. The 2D representations are then processed through three submodules: a 1D convolution to capture sharp fluctuations, a transformer-based encoder to model global patterns, and a 2D convolution to capture interactions between periods. Extensive experiments conducted on real-world residential electricity load data demonstrate that SPDNet outperforms traditional and advanced models in both forecasting accuracy and computational efficiency. The code is available in this repository: https://github.com/Tims2D/SPDNet.
☆ Probabilistic Uncertain Reward Model: A Natural Generalization of Bradley-Terry Reward Model
Reinforcement Learning from Human Feedback (RLHF) has emerged as a critical technique for training large language models. However, reward hacking-a phenomenon where models exploit flaws in the reward model-remains a significant barrier to achieving robust and scalable intelligence through long-term training. Existing studies have proposed uncertain reward model to address reward hacking, however, they often lack systematic or theoretical foundations, failing to model the uncertainty intrinsically emerging from preference data. In this paper, we propose the Probabilistic Uncertain Reward Model (PURM), a natural generalization of the classical Bradley-Terry reward model. PURM learns reward distributions directly from preference data and quantifies per-sample uncertainty via the average overlap area between reward distributions. To mitigate reward hacking, we further introduce an uncertainty-aware penalty into Proximal Policy Optimization (PPO), which leverages the learned uncertainty to dynamically balance reward optimization and exploration. We propose a lightweight and easy-to-use implementation of PURM. Experiments demonstrate that PURM significantly delays the onset of reward hacking while improving final reward performance, outperforming baseline methods in both stability and effectiveness.
☆ Almost Bayesian: The Fractal Dynamics of Stochastic Gradient Descent
We show that the behavior of stochastic gradient descent is related to Bayesian statistics by showing that SGD is effectively diffusion on a fractal landscape, where the fractal dimension can be accounted for in a purely Bayesian way. By doing this we show that SGD can be regarded as a modified Bayesian sampler which accounts for accessibility constraints induced by the fractal structure of the loss landscape. We verify our results experimentally by examining the diffusion of weights during training. These results offer insight into the factors which determine the learning process, and seemingly answer the question of how SGD and purely Bayesian sampling are related.
☆ DeepOFormer: Deep Operator Learning with Domain-informed Features for Fatigue Life Prediction
Fatigue life characterizes the duration a material can function before failure under specific environmental conditions, and is traditionally assessed using stress-life (S-N) curves. While machine learning and deep learning offer promising results for fatigue life prediction, they face the overfitting challenge because of the small size of fatigue experimental data in specific materials. To address this challenge, we propose, DeepOFormer, by formulating S-N curve prediction as an operator learning problem. DeepOFormer improves the deep operator learning framework with a transformer-based encoder and a mean L2 relative error loss function. We also consider Stussi, Weibull, and Pascual and Meeker (PM) features as domain-informed features. These features are motivated by empirical fatigue models. To evaluate the performance of our DeepOFormer, we compare it with different deep learning models and XGBoost on a dataset with 54 S-N curves of aluminum alloys. With seven different aluminum alloys selected for testing, our DeepOFormer achieves an R2 of 0.9515, a mean absolute error of 0.2080, and a mean relative error of 0.5077, significantly outperforming state-of-the-art deep/machine learning methods including DeepONet, TabTransformer, and XGBoost, etc. The results highlight that our Deep0Former integrating with domain-informed features substantially improves prediction accuracy and generalization capabilities for fatigue life prediction in aluminum alloys.
comment: 6 pages, 4 figures
☆ Entropy-guided sequence weighting for efficient exploration in RL-based LLM fine-tuning
We introduce Entropy-Guided Sequence Weighting (EGSW), a novel approach that enhances the exploration-exploitation tradeoff by dynamically assigning weights to generated outputs based on their advantage and entropy for Reinforcement Learning-based Large Language Model fine-tuning. EGSW integrates entropy regularization with advantage-based weighting to balance policy updates, enabling efficient exploration in high-dimensional state spaces. By employing temperature-scaled softmax weighting over sequences, EGSW prioritizing high-reward, high-uncertainty steps while maintaining training stability. Although originally developed to improve Group Relative Policy Optimization (GRPO) during large language model (LLM) fine-tuning, EGSW is generalizable to other reinforcement learning (RL) algorithms and can be implemented in both step-wise and trajectory-wise settings. Empirical evaluations demonstrate that EGSW enhances GRPO reasoning ability, yielding improvements in sample efficiency. Future work will explore the application of EGSW to advanced RL methodologies.
☆ A Causal Framework to Measure and Mitigate Non-binary Treatment Discrimination
Fairness studies of algorithmic decision-making systems often simplify complex decision processes, such as bail or loan approvals, into binary classification tasks. However, these approaches overlook that such decisions are not inherently binary (e.g., approve or not approve bail or loan); they also involve non-binary treatment decisions (e.g., bail conditions or loan terms) that can influence the downstream outcomes (e.g., loan repayment or reoffending). In this paper, we argue that non-binary treatment decisions are integral to the decision process and controlled by decision-makers and, therefore, should be central to fairness analyses in algorithmic decision-making. We propose a causal framework that extends fairness analyses and explicitly distinguishes between decision-subjects' covariates and the treatment decisions. This specification allows decision-makers to use our framework to (i) measure treatment disparity and its downstream effects in historical data and, using counterfactual reasoning, (ii) mitigate the impact of past unfair treatment decisions when automating decision-making. We use our framework to empirically analyze four widely used loan approval datasets to reveal potential disparity in non-binary treatment decisions and their discriminatory impact on outcomes, highlighting the need to incorporate treatment decisions in fairness assessments. Moreover, by intervening in treatment decisions, we show that our framework effectively mitigates treatment discrimination from historical data to ensure fair risk score estimation and (non-binary) decision-making processes that benefit all stakeholders.
comment: 24 pages, 5 figures
☆ STADE: Standard Deviation as a Pruning Metric
Recently, Large Language Models (LLMs) have become very widespread and are used to solve a wide variety of tasks. To successfully handle these tasks, LLMs require longer training times and larger model sizes. This makes LLMs ideal candidates for pruning methods that reduce computational demands while maintaining performance. Previous methods require a retraining phase after pruning to maintain the original model's performance. However, state-of-the-art pruning methods, such as Wanda, prune the model without retraining, making the pruning process faster and more efficient. Building upon Wanda's work, this study provides a theoretical explanation of why the method is effective and leverages these insights to enhance the pruning process. Specifically, a theoretical analysis of the pruning problem reveals a common scenario in Machine Learning where Wanda is the optimal pruning method. Furthermore, this analysis is extended to cases where Wanda is no longer optimal, leading to the development of a new method, STADE, based on the standard deviation of the input. From a theoretical standpoint, STADE demonstrates better generality across different scenarios. Finally, extensive experiments on Llama and Open Pre-trained Transformers (OPT) models validate these theoretical findings, showing that depending on the training conditions, Wanda's optimal performance varies as predicted by the theoretical framework. These insights contribute to a more robust understanding of pruning strategies and their practical implications. Code is available at: https://github.com/Coello-dev/STADE/
☆ Comparison between neural network clustering, hierarchical clustering and k-means clustering: Applications using fluidic lenses
A comparison between neural network clustering (NNC), hierarchical clustering (HC) and K-means clustering (KMC) is performed to evaluate the computational superiority of these three machine learning (ML) techniques for organizing large datasets into clusters. For NNC, a self-organizing map (SOM) training was applied to a collection of wavefront sensor reconstructions, decomposed in terms of 15 Zernike coefficients, characterizing the optical aberrations of the phase front transmitted by fluidic lenses. In order to understand the distribution and structure of the 15 Zernike variables within an input space, SOM-neighboring weight distances, SOM-sample hits, SOM-weight positions and SOM-weight planes were analyzed to form a visual interpretation of the system's structural properties. In the case of HC, the data was partitioned using a combined dissimilarity-linkage matrix computation. The effectiveness of this method was confirmed by a high cophenetic correlation coefficient value (c=0.9651). Additionally, a maximum number of clusters was established by setting an inconsistency cutoff of 0.8, yielding a total of 7 clusters for system segmentation. In addition, a KMC approach was employed to establish a quantitative measure of clustering segmentation efficiency, obtaining a sillhoute average value of 0.905 for data segmentation into K=5 non-overlapping clusters. On the other hand, the NNC analysis revealed that the 15 variables could be characterized through the collective influence of 8 clusters. It was established that the formation of clusters through the combined linkage and dissimilarity algorithms of HC alongside KMC is a more dependable clustering solution than separate assessment via NNC or HC, where altering the SOM size or inconsistency cutoff can lead to completely new clustering configurations.
comment: 19 pages, 9 figures
☆ Robustness quantification and how it allows for reliable classification, even in the presence of distribution shift and for small training sets
Based on existing ideas in the field of imprecise probabilities, we present a new approach for assessing the reliability of the individual predictions of a generative probabilistic classifier. We call this approach robustness quantification, compare it to uncertainty quantification, and demonstrate that it continues to work well even for classifiers that are learned from small training sets that are sampled from a shifted distribution.
☆ Instance-Level Data-Use Auditing of Visual ML Models
The growing trend of legal disputes over the unauthorized use of data in machine learning (ML) systems highlights the urgent need for reliable data-use auditing mechanisms to ensure accountability and transparency in ML. In this paper, we present the first proactive instance-level data-use auditing method designed to enable data owners to audit the use of their individual data instances in ML models, providing more fine-grained auditing results. Our approach integrates any black-box membership inference technique with a sequential hypothesis test, providing a quantifiable and tunable false-detection rate. We evaluate our method on three types of visual ML models: image classifiers, visual encoders, and Contrastive Image-Language Pretraining (CLIP) models. In additional, we apply our method to evaluate the performance of two state-of-the-art approximate unlearning methods. Our findings reveal that neither method successfully removes the influence of the unlearned data instances from image classifiers and CLIP models even if sacrificing model utility by $10.33\%$.
☆ Generative Reliability-Based Design Optimization Using In-Context Learning Capabilities of Large Language Models
Large Language Models (LLMs) have demonstrated remarkable in-context learning capabilities, enabling flexible utilization of limited historical information to play pivotal roles in reasoning, problem-solving, and complex pattern recognition tasks. Inspired by the successful applications of LLMs in multiple domains, this paper proposes a generative design method by leveraging the in-context learning capabilities of LLMs with the iterative search mechanisms of metaheuristic algorithms for solving reliability-based design optimization problems. In detail, reliability analysis is performed by engaging the LLMs and Kriging surrogate modeling to overcome the computational burden. By dynamically providing critical information of design points to the LLMs with prompt engineering, the method enables rapid generation of high-quality design alternatives that satisfy reliability constraints while achieving performance optimization. With the Deepseek-V3 model, three case studies are used to demonstrated the performance of the proposed approach. Experimental results indicate that the proposed LLM-RBDO method successfully identifies feasible solutions that meet reliability constraints while achieving a comparable convergence rate compared to traditional genetic algorithms.
comment: 17 pages, 11 figures, 4tables
☆ On-site estimation of battery electrochemical parameters via transfer learning based physics-informed neural network approach
This paper presents a novel physical parameter estimation framework for on-site model characterization, using a two-phase modelling strategy with Physics-Informed Neural Networks (PINNs) and transfer learning (TL). In the first phase, a PINN is trained using only the physical principles of the single particle model (SPM) equations. In the second phase, the majority of the PINN parameters are frozen, while critical electrochemical parameters are set as trainable and adjusted using real-world voltage profile data. The proposed approach significantly reduces computational costs, making it suitable for real-time implementation on Battery Management Systems (BMS). Additionally, as the initial phase does not require field data, the model is easy to deploy with minimal setup requirements. With the proposed methodology, we have been able to effectively estimate relevant electrochemical parameters with operating data. This has been proved estimating diffusivities and active material volume fractions with charge data in different degradation conditions. The methodology is experimentally validated in a Raspberry Pi device using data from a standard charge profile with a 3.89\% relative accuracy estimating the active material volume fractions of a NMC cell with 82.09\% of its nominal capacity.
☆ MASCOTS: Model-Agnostic Symbolic COunterfactual explanations for Time Series
Counterfactual explanations provide an intuitive way to understand model decisions by identifying minimal changes required to alter an outcome. However, applying counterfactual methods to time series models remains challenging due to temporal dependencies, high dimensionality, and the lack of an intuitive human-interpretable representation. We introduce MASCOTS, a method that leverages the Bag-of-Receptive-Fields representation alongside symbolic transformations inspired by Symbolic Aggregate Approximation. By operating in a symbolic feature space, it enhances interpretability while preserving fidelity to the original data and model. Unlike existing approaches that either depend on model structure or autoencoder-based sampling, MASCOTS directly generates meaningful and diverse counterfactual observations in a model-agnostic manner, operating on both univariate and multivariate data. We evaluate MASCOTS on univariate and multivariate benchmark datasets, demonstrating comparable validity, proximity, and plausibility to state-of-the-art methods, while significantly improving interpretability and sparsity. Its symbolic nature allows for explanations that can be expressed visually, in natural language, or through semantic representations, making counterfactual reasoning more accessible and actionable.
☆ Grasping a Handful: Sequential Multi-Object Dexterous Grasp Generation
We introduce the sequential multi-object robotic grasp sampling algorithm SeqGrasp that can robustly synthesize stable grasps on diverse objects using the robotic hand's partial Degrees of Freedom (DoF). We use SeqGrasp to construct the large-scale Allegro Hand sequential grasping dataset SeqDataset and use it for training the diffusion-based sequential grasp generator SeqDiffuser. We experimentally evaluate SeqGrasp and SeqDiffuser against the state-of-the-art non-sequential multi-object grasp generation method MultiGrasp in simulation and on a real robot. The experimental results demonstrate that SeqGrasp and SeqDiffuser reach an 8.71%-43.33% higher grasp success rate than MultiGrasp. Furthermore, SeqDiffuser is approximately 1000 times faster at generating grasps than SeqGrasp and MultiGrasp.
comment: 8 pages, 7 figures
☆ Hybrid Time-Domain Behavior Model Based on Neural Differential Equations and RNNs
Nonlinear dynamics system identification is crucial for circuit emulation. Traditional continuous-time domain modeling approaches have limitations in fitting capability and computational efficiency when used for modeling circuit IPs and device behaviors.This paper presents a novel continuous-time domain hybrid modeling paradigm. It integrates neural network differential models with recurrent neural networks (RNNs), creating NODE-RNN and NCDE-RNN models based on neural ordinary differential equations (NODE) and neural controlled differential equations (NCDE), respectively.Theoretical analysis shows that this hybrid model has mathematical advantages in event-driven dynamic mutation response and gradient propagation stability. Validation using real data from PIN diodes in high-power microwave environments shows NCDE-RNN improves fitting accuracy by 33\% over traditional NCDE, and NODE-RNN by 24\% over CTRNN, especially in capturing nonlinear memory effects.The model has been successfully deployed in Verilog-A and validated through circuit emulation, confirming its compatibility with existing platforms and practical value.This hybrid dynamics paradigm, by restructuring the neural differential equation solution path, offers new ideas for high-precision circuit time-domain modeling and is significant for complex nonlinear circuit system modeling.
comment: 7 pages,5 figures
☆ Machine Learning Models for Soil Parameter Prediction Based on Satellite, Weather, Clay and Yield Data
Efficient nutrient management and precise fertilization are essential for advancing modern agriculture, particularly in regions striving to optimize crop yields sustainably. The AgroLens project endeavors to address this challenge by develop ing Machine Learning (ML)-based methodologies to predict soil nutrient levels without reliance on laboratory tests. By leveraging state of the art techniques, the project lays a foundation for acionable insights to improve agricultural productivity in resource-constrained areas, such as Africa. The approach begins with the development of a robust European model using the LUCAS Soil dataset and Sentinel-2 satellite imagery to estimate key soil properties, including phosphorus, potassium, nitrogen, and pH levels. This model is then enhanced by integrating supplementary features, such as weather data, harvest rates, and Clay AI-generated embeddings. This report details the methodological framework, data preprocessing strategies, and ML pipelines employed in this project. Advanced algorithms, including Random Forests, Extreme Gradient Boosting (XGBoost), and Fully Connected Neural Networks (FCNN), were implemented and finetuned for precise nutrient prediction. Results showcase robust model performance, with root mean square error values meeting stringent accuracy thresholds. By establishing a reproducible and scalable pipeline for soil nutrient prediction, this research paves the way for transformative agricultural applications, including precision fertilization and improved resource allocation in underresourced regions like Africa.
comment: This technical report is the documentation of a student project collaboration between Technische Hochschule Ingolstadt and MI4People
☆ FLIP: Towards Comprehensive and Reliable Evaluation of Federated Prompt Learning
The increasing emphasis on privacy and data security has driven the adoption of federated learning, a decentralized approach to train machine learning models without sharing raw data. Prompt learning, which fine-tunes prompt embeddings of pretrained models, offers significant advantages in federated settings by reducing computational costs and communication overheads while leveraging the strong performance and generalization capabilities of vision-language models such as CLIP. This paper addresses the intersection of federated learning and prompt learning, particularly for vision-language models. In this work, we introduce a comprehensive framework, named FLIP, to evaluate federated prompt learning algorithms. FLIP assesses the performance of 8 state-of-the-art federated prompt learning methods across 4 federated learning protocols and 12 open datasets, considering 6 distinct evaluation scenarios. Our findings demonstrate that prompt learning maintains strong generalization performance in both in-distribution and out-of-distribution settings with minimal resource consumption. This work highlights the effectiveness of federated prompt learning in environments characterized by data scarcity, unseen classes, and cross-domain distributional shifts. We open-source the code for all implemented algorithms in FLIP to facilitate further research in this domain.
comment: https://github.com/0-ml/flip
☆ DynaGraph: Interpretable Multi-Label Prediction from EHRs via Dynamic Graph Learning and Contrastive Augmentation
Learning from longitudinal electronic health records is limited if it does not capture the temporal trajectories of the patient's state in a clinical setting. Graph models allow us to capture the hidden dependencies of the multivariate time-series when the graphs are constructed in a similar dynamic manner. Previous dynamic graph models require a pre-defined and/or static graph structure, which is unknown in most cases, or they only capture the spatial relations between the features. Furthermore in healthcare, the interpretability of the model is an essential requirement to build trust with clinicians. In addition to previously proposed attention mechanisms, there has not been an interpretable dynamic graph framework for data from multivariate electronic health records (EHRs). Here, we propose DynaGraph, an end-to-end interpretable contrastive graph model that learns the dynamics of multivariate time-series EHRs as part of optimisation. We validate our model in four real-world clinical datasets, ranging from primary care to secondary care settings with broad demographics, in challenging settings where tasks are imbalanced and multi-labelled. Compared to state-of-the-art models, DynaGraph achieves significant improvements in balanced accuracy and sensitivity over the nearest complex competitors in time-series or dynamic graph modelling across three ICU and one primary care datasets. Through a pseudo-attention approach to graph construction, our model also indicates the importance of clinical covariates over time, providing means for clinical validation.
☆ Data-driven modeling of fluid flow around rotating structures with graph neural networks
Graph neural networks, recently introduced into the field of fluid flow surrogate modeling, have been successfully applied to model the temporal evolution of various fluid flow systems. Existing applications, however, are mostly restricted to cases where the domain is time-invariant. The present work extends the application of graph neural network-based modeling to fluid flow around structures rotating with respect to a certain axis. Specifically, we propose to apply a graph neural network-based surrogate modeling for fluid flow with the mesh corotating with the structure. Unlike conventional data-driven approaches that rely on structured Cartesian meshes, our framework operates on unstructured co-rotating meshes, enforcing rotation equivariance of the learned model by leveraging co-rotating polar (2D) and cylindrical (3D) coordinate systems. To model the pressure for systems without Dirichlet pressure boundaries, we propose a novel local directed pressure difference formulation that is invariant to the reference pressure point and value. For flow systems with large mesh sizes, we introduce a scheme to train the network in single or distributed graphics processing units by accumulating the backpropagated gradients from partitions of the mesh. The effectiveness of our proposed framework is examined on two test cases: (i) fluid flow in a 2D rotating mixer, and (ii) the flow past a 3D rotating cube. Our results show that the model achieves stable and accurate rollouts for over 2000 time steps in periodic regimes while capturing accurate short-term dynamics in chaotic flow regimes. In addition, the drag and lift force predictions closely match the CFD calculations, highlighting the potential of the framework for modeling both periodic and chaotic fluid flow around rotating structures.
☆ FLAM: Foundation Model-Based Body Stabilization for Humanoid Locomotion and Manipulation
Humanoid robots have attracted significant attention in recent years. Reinforcement Learning (RL) is one of the main ways to control the whole body of humanoid robots. RL enables agents to complete tasks by learning from environment interactions, guided by task rewards. However, existing RL methods rarely explicitly consider the impact of body stability on humanoid locomotion and manipulation. Achieving high performance in whole-body control remains a challenge for RL methods that rely solely on task rewards. In this paper, we propose a Foundation model-based method for humanoid Locomotion And Manipulation (FLAM for short). FLAM integrates a stabilizing reward function with a basic policy. The stabilizing reward function is designed to encourage the robot to learn stable postures, thereby accelerating the learning process and facilitating task completion. Specifically, the robot pose is first mapped to the 3D virtual human model. Then, the human pose is stabilized and reconstructed through a human motion reconstruction model. Finally, the pose before and after reconstruction is used to compute the stabilizing reward. By combining this stabilizing reward with the task reward, FLAM effectively guides policy learning. Experimental results on a humanoid robot benchmark demonstrate that FLAM outperforms state-of-the-art RL methods, highlighting its effectiveness in improving stability and overall performance.
comment: 8 pages, 7 figures
☆ CRLLK: Constrained Reinforcement Learning for Lane Keeping in Autonomous Driving AAMAS 2025
Lane keeping in autonomous driving systems requires scenario-specific weight tuning for different objectives. We formulate lane-keeping as a constrained reinforcement learning problem, where weight coefficients are automatically learned along with the policy, eliminating the need for scenario-specific tuning. Empirically, our approach outperforms traditional RL in efficiency and reliability. Additionally, real-world demonstrations validate its practical value for real-world autonomous driving.
comment: Accepted at AAMAS 2025 (Demonstration Track), 3 pages, 2 figures, 1 table
☆ Analysis of On-policy Policy Gradient Methods under the Distribution Mismatch
Policy gradient methods are one of the most successful methods for solving challenging reinforcement learning problems. However, despite their empirical successes, many SOTA policy gradient algorithms for discounted problems deviate from the theoretical policy gradient theorem due to the existence of a distribution mismatch. In this work, we analyze the impact of this mismatch on the policy gradient methods. Specifically, we first show that in the case of tabular parameterizations, the methods under the mismatch remain globally optimal. Then, we extend this analysis to more general parameterizations by leveraging the theory of biased stochastic gradient descent. Our findings offer new insights into the robustness of policy gradient methods as well as the gap between theoretical foundations and practical implementations.
☆ WeatherMesh-3: Fast and accurate operational global weather forecasting
We present WeatherMesh-3 (WM-3), an operational transformer-based global weather forecasting system that improves the state of the art in both accuracy and computational efficiency. We introduce the following advances: 1) a latent rollout that enables arbitrary-length predictions in latent space without intermediate encoding or decoding; and 2) a modular architecture that flexibly utilizes mixed-horizon processors and encodes multiple real-time analyses to create blended initial conditions. WM-3 generates 14-day global forecasts at 0.25-degree resolution in 12 seconds on a single RTX 4090. This represents a >100,000-fold speedup over traditional NWP approaches while achieving superior accuracy with up to 37.7% improvement in RMSE over operational models, requiring only a single consumer-grade GPU for deployment. We aim for WM-3 to democratize weather forecasting by providing an accessible, lightweight model for operational use while pushing the performance boundaries of machine learning-based weather prediction.
Process Reward Modeling with Entropy-Driven Uncertainty
This paper presents the Entropy-Driven Unified Process Reward Model (EDU-PRM), a novel framework that approximates state-of-the-art performance in process supervision while drastically reducing training costs. EDU-PRM introduces an entropy-guided dynamic step partitioning mechanism, using logit distribution entropy to pinpoint high-uncertainty regions during token generation dynamically. This self-assessment capability enables precise step-level feedback without manual fine-grained annotation, addressing a critical challenge in process supervision. Experiments on the Qwen2.5-72B model with only 7,500 EDU-PRM-generated training queries demonstrate accuracy closely approximating the full Qwen2.5-72B-PRM (71.1% vs. 71.6%), achieving a 98% reduction in query cost compared to prior methods. This work establishes EDU-PRM as an efficient approach for scalable process reward model training.
☆ Exploring Data Scaling Trends and Effects in Reinforcement Learning from Human Feedback
Reinforcement Learning from Human Feedback (RLHF) is crucial for aligning large language models with human preferences. While recent research has focused on algorithmic improvements, the importance of prompt-data construction has been overlooked. This paper addresses this gap by exploring data-driven bottlenecks in RLHF performance scaling, particularly reward hacking and decreasing response diversity. We introduce a hybrid reward system combining reasoning task verifiers (RTV) and a generative reward model (GenRM) to mitigate reward hacking. We also propose a novel prompt-selection method, Pre-PPO, to maintain response diversity and enhance learning effectiveness. Additionally, we find that prioritizing mathematical and coding tasks early in RLHF training significantly improves performance. Experiments across two model sizes validate our methods' effectiveness and scalability. Results show that RTV is most resistant to reward hacking, followed by GenRM with ground truth, and then GenRM with SFT Best-of-N responses. Our strategies enable rapid capture of subtle task-specific distinctions, leading to substantial improvements in overall RLHF performance. This work highlights the importance of careful data construction and provides practical methods to overcome performance barriers in RLHF.
☆ MFH: A Multi-faceted Heuristic Algorithm Selection Approach for Software Verification
Currently, many verification algorithms are available to improve the reliability of software systems. Selecting the appropriate verification algorithm typically demands domain expertise and non-trivial manpower. An automated algorithm selector is thus desired. However, existing selectors, either depend on machine-learned strategies or manually designed heuristics, encounter issues such as reliance on high-quality samples with algorithm labels and limited scalability. In this paper, an automated algorithm selection approach, namely MFH, is proposed for software verification. Our approach leverages the heuristics that verifiers producing correct results typically implement certain appropriate algorithms, and the supported algorithms by these verifiers indirectly reflect which ones are potentially applicable. Specifically, MFH embeds the code property graph (CPG) of a semantic-preserving transformed program to enhance the robustness of the prediction model. Furthermore, our approach decomposes the selection task into the sub-tasks of predicting potentially applicable algorithms and matching the most appropriate verifiers. Additionally, MFH also introduces a feedback loop on incorrect predictions to improve model prediction accuracy. We evaluate MFH on 20 verifiers and over 15,000 verification tasks. Experimental results demonstrate the effectiveness of MFH, achieving a prediction accuracy of 91.47% even without ground truth algorithm labels provided during the training phase. Moreover, the prediction accuracy decreases only by 0.84% when introducing 10 new verifiers, indicating the strong scalability of the proposed approach.
comment: The implementation, along with all relevant publicly available data, can be accessed on the Figshare platform: https://figshare.com/s/4f34e1f6adaf98d9be53
☆ DREMnet: An Interpretable Denoising Framework for Semi-Airborne Transient Electromagnetic Signal
The semi-airborne transient electromagnetic method (SATEM) is capable of conducting rapid surveys over large-scale and hard-to-reach areas. However, the acquired signals are often contaminated by complex noise, which can compromise the accuracy of subsequent inversion interpretations. Traditional denoising techniques primarily rely on parameter selection strategies, which are insufficient for processing field data in noisy environments. With the advent of deep learning, various neural networks have been employed for SATEM signal denoising. However, existing deep learning methods typically use single-mapping learning approaches that struggle to effectively separate signal from noise. These methods capture only partial information and lack interpretability. To overcome these limitations, we propose an interpretable decoupled representation learning framework, termed DREMnet, that disentangles data into content and context factors, enabling robust and interpretable denoising in complex conditions. To address the limitations of CNN and Transformer architectures, we utilize the RWKV architecture for data processing and introduce the Contextual-WKV mechanism, which allows unidirectional WKV to perform bidirectional signal modeling. Our proposed Covering Embedding technique retains the strong local perception of convolutional networks through stacked embedding. Experimental results on test datasets demonstrate that the DREMnet method outperforms existing techniques, with processed field data that more accurately reflects the theoretical signal, offering improved identification of subsurface electrical structures.
☆ Learning to Instruct for Visual Instruction Tuning
We propose LIT, an advancement of visual instruction tuning (VIT). While VIT equips Multimodal LLMs (MLLMs) with promising multimodal capabilities, the current design choices for VIT often result in overfitting and shortcut learning, potentially degrading performance. This gap arises from an overemphasis on instruction-following abilities, while neglecting the proactive understanding of visual information. Inspired by this, LIT adopts a simple yet effective approach by incorporating the loss function into both the instruction and response sequences. It seamlessly expands the training data, and regularizes the MLLMs from overly relying on language priors. Based on this merit, LIT achieves a significant relative improvement of up to 9% on comprehensive multimodal benchmarks, requiring no additional training data and incurring negligible computational overhead. Surprisingly, LIT attains exceptional fundamental visual capabilities, yielding up to an 18% improvement in captioning performance, while simultaneously alleviating hallucination in MLLMs.
comment: 16 pages, 10 figures
☆ Interpretable Deep Learning Paradigm for Airborne Transient Electromagnetic Inversion
The extraction of geoelectric structural information from airborne transient electromagnetic(ATEM)data primarily involves data processing and inversion. Conventional methods rely on empirical parameter selection, making it difficult to process complex field data with high noise levels. Additionally, inversion computations are time consuming and often suffer from multiple local minima. Existing deep learning-based approaches separate the data processing steps, where independently trained denoising networks struggle to ensure the reliability of subsequent inversions. Moreover, end to end networks lack interpretability. To address these issues, we propose a unified and interpretable deep learning inversion paradigm based on disentangled representation learning. The network explicitly decomposes noisy data into noise and signal factors, completing the entire data processing workflow based on the signal factors while incorporating physical information for guidance. This approach enhances the network's reliability and interpretability. The inversion results on field data demonstrate that our method can directly use noisy data to accurately reconstruct the subsurface electrical structure. Furthermore, it effectively processes data severely affected by environmental noise, which traditional methods struggle with, yielding improved lateral structural resolution.
☆ Fuzzy Cluster-Aware Contrastive Clustering for Time Series
The rapid growth of unlabeled time series data, driven by the Internet of Things (IoT), poses significant challenges in uncovering underlying patterns. Traditional unsupervised clustering methods often fail to capture the complex nature of time series data. Recent deep learning-based clustering approaches, while effective, struggle with insufficient representation learning and the integration of clustering objectives. To address these issues, we propose a fuzzy cluster-aware contrastive clustering framework (FCACC) that jointly optimizes representation learning and clustering. Our approach introduces a novel three-view data augmentation strategy to enhance feature extraction by leveraging various characteristics of time series data. Additionally, we propose a cluster-aware hard negative sample generation mechanism that dynamically constructs high-quality negative samples using clustering structure information, thereby improving the model's discriminative ability. By leveraging fuzzy clustering, FCACC dynamically generates cluster structures to guide the contrastive learning process, resulting in more accurate clustering. Extensive experiments on 40 benchmark datasets show that FCACC outperforms the selected baseline methods (eight in total), providing an effective solution for unsupervised time series learning.
☆ Intrinsic Image Decomposition for Robust Self-supervised Monocular Depth Estimation on Reflective Surfaces AAAI 2025
Self-supervised monocular depth estimation (SSMDE) has gained attention in the field of deep learning as it estimates depth without requiring ground truth depth maps. This approach typically uses a photometric consistency loss between a synthesized image, generated from the estimated depth, and the original image, thereby reducing the need for extensive dataset acquisition. However, the conventional photometric consistency loss relies on the Lambertian assumption, which often leads to significant errors when dealing with reflective surfaces that deviate from this model. To address this limitation, we propose a novel framework that incorporates intrinsic image decomposition into SSMDE. Our method synergistically trains for both monocular depth estimation and intrinsic image decomposition. The accurate depth estimation facilitates multi-image consistency for intrinsic image decomposition by aligning different view coordinate systems, while the decomposition process identifies reflective areas and excludes corrupted gradients from the depth training process. Furthermore, our framework introduces a pseudo-depth generation and knowledge distillation technique to further enhance the performance of the student model across both reflective and non-reflective surfaces. Comprehensive evaluations on multiple datasets show that our approach significantly outperforms existing SSMDE baselines in depth prediction, especially on reflective surfaces.
comment: Accepted at AAAI 2025
☆ Data-Free Universal Attack by Exploiting the Intrinsic Vulnerability of Deep Models AAAI 2025
Deep neural networks (DNNs) are susceptible to Universal Adversarial Perturbations (UAPs), which are instance agnostic perturbations that can deceive a target model across a wide range of samples. Unlike instance-specific adversarial examples, UAPs present a greater challenge as they must generalize across different samples and models. Generating UAPs typically requires access to numerous examples, which is a strong assumption in real-world tasks. In this paper, we propose a novel data-free method called Intrinsic UAP (IntriUAP), by exploiting the intrinsic vulnerabilities of deep models. We analyze a series of popular deep models composed of linear and nonlinear layers with a Lipschitz constant of 1, revealing that the vulnerability of these models is predominantly influenced by their linear components. Based on this observation, we leverage the ill-conditioned nature of the linear components by aligning the UAP with the right singular vectors corresponding to the maximum singular value of each linear layer. Remarkably, our method achieves highly competitive performance in attacking popular image classification deep models without using any image samples. We also evaluate the black-box attack performance of our method, showing that it matches the state-of-the-art baseline for data-free methods on models that conform to our theoretical framework. Beyond the data-free assumption, IntriUAP also operates under a weaker assumption, where the adversary only can access a few of the victim model's layers. Experiments demonstrate that the attack success rate decreases by only 4% when the adversary has access to just 50% of the linear layers in the victim model.
comment: Accepted in AAAI 2025
☆ ORIGEN: Zero-Shot 3D Orientation Grounding in Text-to-Image Generation
We introduce ORIGEN, the first zero-shot method for 3D orientation grounding in text-to-image generation across multiple objects and diverse categories. While previous work on spatial grounding in image generation has mainly focused on 2D positioning, it lacks control over 3D orientation. To address this, we propose a reward-guided sampling approach using a pretrained discriminative model for 3D orientation estimation and a one-step text-to-image generative flow model. While gradient-ascent-based optimization is a natural choice for reward-based guidance, it struggles to maintain image realism. Instead, we adopt a sampling-based approach using Langevin dynamics, which extends gradient ascent by simply injecting random noise--requiring just a single additional line of code. Additionally, we introduce adaptive time rescaling based on the reward function to accelerate convergence. Our experiments show that ORIGEN outperforms both training-based and test-time guidance methods across quantitative metrics and user studies.
comment: Project Page: https://origen2025.github.io
☆ An Advanced Ensemble Deep Learning Framework for Stock Price Prediction Using VAE, Transformer, and LSTM Model
This research proposes a cutting-edge ensemble deep learning framework for stock price prediction by combining three advanced neural network architectures: The particular areas of interest for the research include but are not limited to: Variational Autoencoder (VAE), Transformer, and Long Short-Term Memory (LSTM) networks. The presented framework is aimed to substantially utilize the advantages of each model which would allow for achieving the identification of both linear and non-linear relations in stock price movements. To improve the accuracy of its predictions it uses rich set of technical indicators and it scales its predictors based on the current market situation. By trying out the framework on several stock data sets, and benchmarking the results against single models and conventional forecasting, the ensemble method exhibits consistently high accuracy and reliability. The VAE is able to learn linear representation on high-dimensional data while the Transformer outstandingly perform in recognizing long-term patterns on the stock price data. LSTM, based on its characteristics of being a model that can deal with sequences, brings additional improvements to the given framework, especially regarding temporal dynamics and fluctuations. Combined, these components provide exceptional directional performance and a very small disparity in the predicted results. The present solution has given a probable concept that can handle the inherent problem of stock price prediction with high reliability and scalability. Compared to the performance of individual proposals based on the neural network, as well as classical methods, the proposed ensemble framework demonstrates the advantages of combining different architectures. It has a very important application in algorithmic trading, risk analysis, and control and decision-making for finance professions and scholars.
☆ AdaRank: Adaptive Rank Pruning for Enhanced Model Merging
Model merging has emerged as a promising approach for unifying independently fine-tuned models into an integrated framework, significantly enhancing computational efficiency in multi-task learning. Recently, several SVD-based techniques have been introduced to exploit low-rank structures for enhanced merging, but their reliance on such manually designed rank selection often leads to cross-task interference and suboptimal performance. In this paper, we propose AdaRank, a novel model merging framework that adaptively selects the most beneficial singular directions of task vectors to merge multiple models. We empirically show that the dominant singular components of task vectors can cause critical interference with other tasks, and that naive truncation across tasks and layers degrades performance. In contrast, AdaRank dynamically prunes the singular components that cause interference and offers an optimal amount of information to each task vector by learning to prune ranks during test-time via entropy minimization. Our analysis demonstrates that such method mitigates detrimental overlaps among tasks, while empirical results show that AdaRank consistently achieves state-of-the-art performance with various backbones and number of tasks, reducing the performance gap between fine-tuned models to nearly 1%.
comment: Code Available at: https://github.com/david3684/AdaRank
☆ Reasoning of Large Language Models over Knowledge Graphs with Super-Relations
While large language models (LLMs) have made significant progress in processing and reasoning over knowledge graphs, current methods suffer from a high non-retrieval rate. This limitation reduces the accuracy of answering questions based on these graphs. Our analysis reveals that the combination of greedy search and forward reasoning is a major contributor to this issue. To overcome these challenges, we introduce the concept of super-relations, which enables both forward and backward reasoning by summarizing and connecting various relational paths within the graph. This holistic approach not only expands the search space, but also significantly improves retrieval efficiency. In this paper, we propose the ReKnoS framework, which aims to Reason over Knowledge Graphs with Super-Relations. Our framework's key advantages include the inclusion of multiple relation paths through super-relations, enhanced forward and backward reasoning capabilities, and increased efficiency in querying LLMs. These enhancements collectively lead to a substantial improvement in the successful retrieval rate and overall reasoning performance. We conduct extensive experiments on nine real-world datasets to evaluate ReKnoS, and the results demonstrate the superior performance of ReKnoS over existing state-of-the-art baselines, with an average accuracy gain of 2.92%.
☆ Landscape of Thoughts: Visualizing the Reasoning Process of Large Language Models
Numerous applications of large language models (LLMs) rely on their ability to perform step-by-step reasoning. However, the reasoning behavior of LLMs remains poorly understood, posing challenges to research, development, and safety. To address this gap, we introduce landscape of thoughts-the first visualization tool for users to inspect the reasoning paths of chain-of-thought and its derivatives on any multi-choice dataset. Specifically, we represent the states in a reasoning path as feature vectors that quantify their distances to all answer choices. These features are then visualized in two-dimensional plots using t-SNE. Qualitative and quantitative analysis with the landscape of thoughts effectively distinguishes between strong and weak models, correct and incorrect answers, as well as different reasoning tasks. It also uncovers undesirable reasoning patterns, such as low consistency and high uncertainty. Additionally, users can adapt our tool to a model that predicts the property they observe. We showcase this advantage by adapting our tool to a lightweight verifier that evaluates the correctness of reasoning paths. The code is publicly available at: https://github.com/tmlr-group/landscape-of-thoughts.
☆ T-CIL: Temperature Scaling using Adversarial Perturbation for Calibration in Class-Incremental Learning CVPR 2025
We study model confidence calibration in class-incremental learning, where models learn from sequential tasks with different class sets. While existing works primarily focus on accuracy, maintaining calibrated confidence has been largely overlooked. Unfortunately, most post-hoc calibration techniques are not designed to work with the limited memories of old-task data typical in class-incremental learning, as retaining a sufficient validation set would be impractical. Thus, we propose T-CIL, a novel temperature scaling approach for class-incremental learning without a validation set for old tasks, that leverages adversarially perturbed exemplars from memory. Directly using exemplars is inadequate for temperature optimization, since they are already used for training. The key idea of T-CIL is to perturb exemplars more strongly for old tasks than for the new task by adjusting the perturbation direction based on feature distance, with the single magnitude determined using the new-task validation set. This strategy makes the perturbation magnitude computed from the new task also applicable to old tasks, leveraging the tendency that the accuracy of old tasks is lower than that of the new task. We empirically show that T-CIL significantly outperforms various baselines in terms of calibration on real datasets and can be integrated with existing class-incremental learning techniques with minimal impact on accuracy.
comment: Accepted to CVPR 2025
☆ Characterizing Non-Markovian Dynamics of Open Quantum Systems
Characterizing non-Markovian quantum dynamics is essential for accurately modeling open quantum systems, particularly in near-term quantum technologies. In this work, we develop a structure-preserving approach to characterizing non-Markovian evolution using the time-convolutionless (TCL) master equation, considering both linear and nonlinear formulations. To parameterize the master equation, we explore two distinct techniques: the Karhunen-Loeve (KL) expansion, which provides an optimal basis representation of the dynamics, and neural networks, which offer a data-driven approach to learning system-environment interactions. We demonstrate our methodology using experimental data from a superconducting qubit at the Quantum Device Integration Testbed (QuDIT) at Lawrence Livermore National Laboratory (LLNL). Our results show that while neural networks can capture complex dependencies, the KL expansion yields the most accurate predictions of the qubit's non-Markovian dynamics, highlighting its effectiveness in structure-preserving quantum system characterization. These findings provide valuable insights into efficient modeling strategies for open quantum systems, with implications for quantum control and error mitigation in near-term quantum processors.
☆ Tokenization of Gaze Data
A considerable part of the performance of today's large language models (LLM's) and multimodal large language models (MLLM's) depends on their tokenization strategies. While tokenizers are extensively researched for textual and visual input, there is no research on tokenization strategies for gaze data due to its nature. However, a corresponding tokenization strategy would allow using the vision capabilities of pre-trained MLLM's for gaze data, for example, through fine-tuning. In this paper, we aim to close this research gap by analyzing five different tokenizers for gaze data on three different datasets for the forecasting and generation of gaze data through LLMs (cf.~\cref{fig:teaser}). We evaluate the tokenizers regarding their reconstruction and compression abilities. Further, we train an LLM for each tokenization strategy, measuring its generative and predictive performance. Overall, we found that a quantile tokenizer outperforms all others in predicting the gaze positions and k-means is best when predicting gaze velocities.
☆ A Self-Supervised Learning of a Foundation Model for Analog Layout Design Automation
We propose a UNet-based foundation model and its self-supervised learning method to address two key challenges: 1) lack of qualified annotated analog layout data, and 2) excessive variety in analog layout design tasks. For self-supervised learning, we propose random patch sampling and random masking techniques automatically to obtain enough training data from a small unannotated layout dataset. The obtained data are greatly augmented, less biased, equally sized, and contain enough information for excessive varieties of qualified layout patterns. By pre-training with the obtained data, the proposed foundation model can learn implicit general knowledge on layout patterns so that it can be fine-tuned for various downstream layout tasks with small task-specific datasets. Fine-tuning provides an efficient and consolidated methodology for diverse downstream tasks, reducing the enormous human effort to develop a model per task separately. In experiments, the foundation model was pre-trained using 324,000 samples obtained from 6 silicon-proved manually designed analog circuits, then it was fine-tuned for the five example downstream tasks: generating contacts, vias, dummy fingers, N-wells, and metal routings. The fine-tuned models successfully performed these tasks for more than one thousand unseen layout inputs, generating DRC/LVS-clean layouts for 96.6% of samples. Compared with training the model from scratch for the metal routing task, fine-tuning required only 1/8 of the data to achieve the same dice score of 0.95. With the same data, fine-tuning achieved a 90% lower validation loss and a 40% higher benchmark score than training from scratch.
comment: 8 pages, 11 figures
☆ Time-resolved dynamic CBCT reconstruction using prior-model-free spatiotemporal Gaussian representation (PMF-STGR)
Time-resolved CBCT imaging, which reconstructs a dynamic sequence of CBCTs reflecting intra-scan motion (one CBCT per x-ray projection without phase sorting or binning), is highly desired for regular and irregular motion characterization, patient setup, and motion-adapted radiotherapy. Representing patient anatomy and associated motion fields as 3D Gaussians, we developed a Gaussian representation-based framework (PMF-STGR) for fast and accurate dynamic CBCT reconstruction. PMF-STGR comprises three major components: a dense set of 3D Gaussians to reconstruct a reference-frame CBCT for the dynamic sequence; another 3D Gaussian set to capture three-level, coarse-to-fine motion-basis-components (MBCs) to model the intra-scan motion; and a CNN-based motion encoder to solve projection-specific temporal coefficients for the MBCs. Scaled by the temporal coefficients, the learned MBCs will combine into deformation vector fields to deform the reference CBCT into projection-specific, time-resolved CBCTs to capture the dynamic motion. Due to the strong representation power of 3D Gaussians, PMF-STGR can reconstruct dynamic CBCTs in a 'one-shot' training fashion from a standard 3D CBCT scan, without using any prior anatomical or motion model. We evaluated PMF-STGR using XCAT phantom simulations and real patient scans. Metrics including the image relative error, structural-similarity-index-measure, tumor center-of-mass-error, and landmark localization error were used to evaluate the accuracy of solved dynamic CBCTs and motion. PMF-STGR shows clear advantages over a state-of-the-art, INR-based approach, PMF-STINR. Compared with PMF-STINR, PMF-STGR reduces reconstruction time by 50% while reconstructing less blurred images with better motion accuracy. With improved efficiency and accuracy, PMF-STGR enhances the applicability of dynamic CBCT imaging for potential clinical translation.
comment: 25 pages, 5 figures
☆ Sharpe Ratio-Guided Active Learning for Preference Optimization in RLHF
Reinforcement learning from human feedback (RLHF) has become a cornerstone of the training and alignment pipeline for large language models (LLMs). Recent advances, such as direct preference optimization (DPO), have simplified the preference learning step. However, collecting preference data remains a challenging and costly process, often requiring expert annotation. This cost can be mitigated by carefully selecting the data points presented for annotation. In this work, we propose an active learning approach to efficiently select prompt and preference pairs using a risk assessment strategy based on the Sharpe Ratio. To address the challenge of unknown preferences prior to annotation, our method evaluates the gradients of all potential preference annotations to assess their impact on model updates. These gradient-based evaluations enable risk assessment of data points regardless of the annotation outcome. By leveraging the DPO loss derivations, we derive a closed-form expression for computing these Sharpe ratios on a per-tuple basis, ensuring our approach remains both tractable and computationally efficient. We also introduce two variants of our method, each making different assumptions about prior information. Experimental results demonstrate that our method outperforms the baseline by up to 5% in win rates against the chosen completion with limited human preference data across several language models and real-world datasets.
☆ Long-Term Electricity Demand Prediction Using Non-negative Tensor Factorization and Genetic Algorithm-Driven Temporal Modeling
This study proposes a novel framework for long-term electricity demand prediction based solely on historical consumption data, without relying on external variables such as temperature or economic indicators. The method combines Non-negative Tensor Factorization (NTF) to extract low-dimensional temporal features from multi-way electricity usage data, with a Genetic Algorithm that optimizes the hyperparameters of time series models applied to the latent annual factors. We model the dataset as a third-order tensor spanning electric utilities, industrial sectors, and years, and apply canonical polyadic decomposition under non-negativity constraints. The annual component is forecasted using autoregressive models, with hyperparameter tuning guided by the prediction error or reconstruction accuracy on a validation set. Comparative experiments using real-world electricity data from Japan demonstrate that the proposed method achieves lower mean squared error than baseline approaches without tensor decomposition or evolutionary optimization. Moreover, we find that reducing the model's degrees of freedom via tensor decomposition improves generalization performance, and that initialization sensitivity in NTF can be mitigated through multiple runs or ensemble strategies. These findings suggest that the proposed framework offers an interpretable, flexible, and scalable approach to long-term electricity demand prediction and can be extended to other structured time series forecasting tasks.
comment: 17 pages, 9 figures, 10 tables
☆ Multimodal Machine Learning for Real Estate Appraisal: A Comprehensive Survey
Real estate appraisal has undergone a significant transition from manual to automated valuation and is entering a new phase of evolution. Leveraging comprehensive attention to various data sources, a novel approach to automated valuation, multimodal machine learning, has taken shape. This approach integrates multimodal data to deeply explore the diverse factors influencing housing prices. Furthermore, multimodal machine learning significantly outperforms single-modality or fewer-modality approaches in terms of prediction accuracy, with enhanced interpretability. However, systematic and comprehensive survey work on the application in the real estate domain is still lacking. In this survey, we aim to bridge this gap by reviewing the research efforts. We begin by reviewing the background of real estate appraisal and propose two research questions from the perspecve of performance and fusion aimed at improving the accuracy of appraisal results. Subsequently, we explain the concept of multimodal machine learning and provide a comprehensive classification and definition of modalities used in real estate appraisal for the first time. To ensure clarity, we explore works related to data and techniques, along with their evaluation methods, under the framework of these two research questions. Furthermore, specific application domains are summarized. Finally, we present insights into future research directions including multimodal complementarity, technology and modality contribution.
comment: 13 pages, 5 figures
☆ Estimating City-wide operating mode Distribution of Light-Duty Vehicles: A Neural Network-based Approach
Driving cycles are a set of driving conditions and are crucial for the existing emission estimation model to evaluate vehicle performance, fuel efficiency, and emissions, by matching them with average speed to calculate the operating modes, such as braking, idling, and cruising. While existing emission estimation models, such as the Motor Vehicle Emission Simulator (MOVES), are powerful tools, their reliance on predefined driving cycles can be limiting, as these cycles often do not accurately represent regional driving conditions, making the models less effective for city-wide analyses. To solve this problem, this paper proposes a modular neural network (NN)-based framework to estimate operating mode distributions bypassing the driving cycle development phase, utilizing macroscopic variables such as speed, flow, and link infrastructure attributes. The proposed method is validated using a well-calibrated microsimulation model of Brookline MA, the United States. The results indicate that the proposed framework outperforms the operating mode distribution calculated by MOVES based on default driving cycles, providing a closer match to the actual operating mode distribution derived from trajectory data. Specifically, the proposed model achieves an average RMSE of 0.04 in predicting operating mode distribution, compared to 0.08 for MOVES. The average error in emission estimation across pollutants is 8.57% for the proposed method, lower than the 32.86% error for MOVES. In particular, for the estimation of CO2, the proposed method has an error of just 4%, compared to 35% for MOVES. The proposed model can be utilized for real-time emissions monitoring by providing rapid and accurate emissions estimates with easily accessible inputs.
☆ Few-Shot Graph Out-of-Distribution Detection with LLMs
Existing methods for graph out-of-distribution (OOD) detection typically depend on training graph neural network (GNN) classifiers using a substantial amount of labeled in-distribution (ID) data. However, acquiring high-quality labeled nodes in text-attributed graphs (TAGs) is challenging and costly due to their complex textual and structural characteristics. Large language models (LLMs), known for their powerful zero-shot capabilities in textual tasks, show promise but struggle to naturally capture the critical structural information inherent to TAGs, limiting their direct effectiveness. To address these challenges, we propose LLM-GOOD, a general framework that effectively combines the strengths of LLMs and GNNs to enhance data efficiency in graph OOD detection. Specifically, we first leverage LLMs' strong zero-shot capabilities to filter out likely OOD nodes, significantly reducing the human annotation burden. To minimize the usage and cost of the LLM, we employ it only to annotate a small subset of unlabeled nodes. We then train a lightweight GNN filter using these noisy labels, enabling efficient predictions of ID status for all other unlabeled nodes by leveraging both textual and structural information. After obtaining node embeddings from the GNN filter, we can apply informativeness-based methods to select the most valuable nodes for precise human annotation. Finally, we train the target ID classifier using these accurately annotated ID nodes. Extensive experiments on four real-world TAG datasets demonstrate that LLM-GOOD significantly reduces human annotation costs and outperforms state-of-the-art baselines in terms of both ID classification accuracy and OOD detection performance.
☆ ReLU Networks as Random Functions: Their Distribution in Probability Space
This paper presents a novel framework for understanding trained ReLU networks as random, affine functions, where the randomness is induced by the distribution over the inputs. By characterizing the probability distribution of the network's activation patterns, we derive the discrete probability distribution over the affine functions realizable by the network. We extend this analysis to describe the probability distribution of the network's outputs. Our approach provides explicit, numerically tractable expressions for these distributions in terms of Gaussian orthant probabilities. Additionally, we develop approximation techniques to identify the support of affine functions a trained ReLU network can realize for a given distribution of inputs. Our work provides a framework for understanding the behavior and performance of ReLU networks corresponding to stochastic inputs, paving the way for more interpretable and reliable models.
☆ Concise One-Layer Transformers Can Do Function Evaluation (Sometimes)
While transformers have proven enormously successful in a range of tasks, their fundamental properties as models of computation are not well understood. This paper contributes to the study of the expressive capacity of transformers, focusing on their ability to perform the fundamental computational task of evaluating an arbitrary function from $[n]$ to $[n]$ at a given argument. We prove that concise 1-layer transformers (i.e., with a polylog bound on the product of the number of heads, the embedding dimension, and precision) are capable of doing this task under some representations of the input, but not when the function's inputs and values are only encoded in different input positions. Concise 2-layer transformers can perform the task even with the more difficult input representation. Experimentally, we find a rough alignment between what we have proven can be computed by concise transformers and what can be practically learned.
☆ A Proposal for Networks Capable of Continual Learning ICLR 2025
We analyze the ability of computational units to retain past responses after parameter updates, a key property for system-wide continual learning. Neural networks trained with gradient descent lack this capability, prompting us to propose Modelleyen, an alternative approach with inherent response preservation. We demonstrate through experiments on modeling the dynamics of a simple environment and on MNIST that, despite increased computational complexity and some representational limitations at its current stage, Modelleyen achieves continual learning without relying on sample replay or predefined task boundaries.
comment: Published at ICLR 2025 World Models Workshop
☆ Arch-LLM: Taming LLMs for Neural Architecture Generation via Unsupervised Discrete Representation Learning
Unsupervised representation learning has been widely explored across various modalities, including neural architectures, where it plays a key role in downstream applications like Neural Architecture Search (NAS). These methods typically learn an unsupervised representation space before generating/ sampling architectures for the downstream search. A common approach involves the use of Variational Autoencoders (VAEs) to map discrete architectures onto a continuous representation space, however, sampling from these spaces often leads to a high percentage of invalid or duplicate neural architectures. This could be due to the unnatural mapping of inherently discrete architectural space onto a continuous space, which emphasizes the need for a robust discrete representation of these architectures. To address this, we introduce a Vector Quantized Variational Autoencoder (VQ-VAE) to learn a discrete latent space more naturally aligned with the discrete neural architectures. In contrast to VAEs, VQ-VAEs (i) map each architecture into a discrete code sequence and (ii) allow the prior to be learned by any generative model rather than assuming a normal distribution. We then represent these architecture latent codes as numerical sequences and train a text-to-text model leveraging a Large Language Model to learn and generate sequences representing architectures. We experiment our method with Inception/ ResNet-like cell-based search spaces, namely NAS-Bench-101 and NAS-Bench-201. Compared to VAE-based methods, our approach improves the generation of valid and unique architectures by over 80% on NASBench-101 and over 8% on NASBench-201. Finally, we demonstrate the applicability of our method in NAS employing a sequence-modeling-based NAS algorithm.
☆ Low Rank and Sparse Fourier Structure in Recurrent Networks Trained on Modular Addition
Modular addition tasks serve as a useful test bed for observing empirical phenomena in deep learning, including the phenomenon of \emph{grokking}. Prior work has shown that one-layer transformer architectures learn Fourier Multiplication circuits to solve modular addition tasks. In this paper, we show that Recurrent Neural Networks (RNNs) trained on modular addition tasks also use a Fourier Multiplication strategy. We identify low rank structures in the model weights, and attribute model components to specific Fourier frequencies, resulting in a sparse representation in the Fourier space. We also show empirically that the RNN is robust to removing individual frequencies, while the performance degrades drastically as more frequencies are ablated from the model.
comment: To appear at ICASSP 2025
♻ ☆ The Procedural Content Generation Benchmark: An Open-source Testbed for Generative Challenges in Games
This paper introduces the Procedural Content Generation Benchmark for evaluating generative algorithms on different game content creation tasks. The benchmark comes with 12 game-related problems with multiple variants on each problem. Problems vary from creating levels of different kinds to creating rule sets for simple arcade games. Each problem has its own content representation, control parameters, and evaluation metrics for quality, diversity, and controllability. This benchmark is intended as a first step towards a standardized way of comparing generative algorithms. We use the benchmark to score three baseline algorithms: a random generator, an evolution strategy, and a genetic algorithm. Results show that some problems are easier to solve than others, as well as the impact the chosen objective has on quality, diversity, and controllability of the generated artifacts.
comment: 12 pages, 4 figures, 2 tables, published at FDG2025
♻ ☆ Nearest Neighbour Equilibrium Clustering
A novel and intuitive nearest neighbours based clustering algorithm is introduced, in which a cluster is defined in terms of an equilibrium condition which balances its size and cohesiveness. The formulation of the equilibrium condition allows for a quantification of the strength of alignment of each point to a cluster, with these cluster alignment strengths leading naturally to a model selection criterion which renders the proposed approach fully automatable. The algorithm is simple to implement and computationally efficient, and produces clustering solutions of extremely high quality in comparison with relevant benchmarks from the literature. R code to implement the approach is available from https://github.com/DavidHofmeyr/NNEC.
comment: Currently being considered for publication by IEEE
♻ ☆ AcL: Action Learner for Fault-Tolerant Quadruped Locomotion Control
Quadrupedal robots can learn versatile locomotion skills but remain vulnerable when one or more joints lose power. In contrast, dogs and cats can adopt limping gaits when injured, demonstrating their remarkable ability to adapt to physical conditions. Inspired by such adaptability, this paper presents Action Learner (AcL), a novel teacher-student reinforcement learning framework that enables quadrupeds to autonomously adapt their gait for stable walking under multiple joint faults. Unlike conventional teacher-student approaches that enforce strict imitation, AcL leverages teacher policies to generate style rewards, guiding the student policy without requiring precise replication. We train multiple teacher policies, each corresponding to a different fault condition, and subsequently distill them into a single student policy with an encoder-decoder architecture. While prior works primarily address single-joint faults, AcL enables quadrupeds to walk with up to four faulty joints across one or two legs, autonomously switching between different limping gaits when faults occur. We validate AcL on a real Go2 quadruped robot under single- and double-joint faults, demonstrating fault-tolerant, stable walking, smooth gait transitions between normal and lamb gaits, and robustness against external disturbances.
♻ ☆ Optimizing Large Model Training through Overlapped Activation Recomputation
Large model training often uses recomputation to alleviate memory pressure and pipelines to exploit the parallelism of data, tensors, and devices. However, existing recomputation approaches may incur high overhead when training real-world models, as they are executed on demand in the critical training path. In this paper, we present Lynx, a new recomputation framework to reduce overhead by overlapping recomputation with communication in training pipelines. To reduce the large search space for recomputation strategies, we propose a heuristic-based recomputation scheduling algorithm, which is based on the observation that there are identical structures in large DNN models so that we can apply the same scheduling policy to all such structures. Additionally, we propose a recomputation-aware model partitioning method to balance each stage's execution time for improved training throughput. Our comprehensive evaluation using GPT models with 1.3B-23B parameters shows that Lynx outperforms existing recomputation approaches by up to 1.37x.
comment: 13 pages
♻ ☆ MegaTTS 3: Sparse Alignment Enhanced Latent Diffusion Transformer for Zero-Shot Speech Synthesis
While recent zero-shot text-to-speech (TTS) models have significantly improved speech quality and expressiveness, mainstream systems still suffer from issues related to speech-text alignment modeling: 1) models without explicit speech-text alignment modeling exhibit less robustness, especially for hard sentences in practical applications; 2) predefined alignment-based models suffer from naturalness constraints of forced alignments. This paper introduces \textit{MegaTTS 3}, a TTS system featuring an innovative sparse alignment algorithm that guides the latent diffusion transformer (DiT). Specifically, we provide sparse alignment boundaries to MegaTTS 3 to reduce the difficulty of alignment without limiting the search space, thereby achieving high naturalness. Moreover, we employ a multi-condition classifier-free guidance strategy for accent intensity adjustment and adopt the piecewise rectified flow technique to accelerate the generation process. Experiments demonstrate that MegaTTS 3 achieves state-of-the-art zero-shot TTS speech quality and supports highly flexible control over accent intensity. Notably, our system can generate high-quality one-minute speech with only 8 sampling steps. Audio samples are available at https://sditdemo.github.io/sditdemo/.
♻ ☆ QCPINN: Quantum Classical Physics-Informed Neural Networks for Solving PDEs
Physics-informed neural networks (PINNs) have emerged as promising methods for solving partial differential equations (PDEs) by embedding physical laws into neural architectures. However, these classical approaches often require large number of parameters for solving complex problems or achieving reasonable accuracy. We investigate whether quantum-enhanced architectures can achieve comparable performance while significantly reducing model complexity. We propose a quantum-classical physics-informed neural network (QCPINN) combining quantum and classical components to solve PDEs with fewer parameters while maintaining comparable accuracy and training convergence. Our approach systematically evaluates two quantum circuit paradigms (e.g., continuous-variable (CV) and discrete-variable (DV)) implementations with four circuit topologies (e.g., alternate, cascade, cross-mesh, and layered), two embedding schemes (e.g., amplitude and angle) on five benchmark PDEs (e.g., Helmholtz, lid-driven cavity, wave, Klein-Gordon, and convection-diffusion equations). Results demonstrate that QCPINNs achieve comparable accuracy to classical PINNs while requiring approximately 10\% trainable parameters across different PDEs, and resulting in a further 40\% reduction in relative $L_2$ error for the convection-diffusion equation. DV-based circuits with angle embedding and cascade configurations consistently exhibited enhanced convergence stability across all problem types. Our finding establishes parameter efficiency as a quantifiable quantum advantage in physics-informed machine learning. By significantly reducing model complexity while maintaining solution quality, QCPINNs represent a potential direction for overcoming computational bottlenecks in scientific computing applications where traditional approaches require large parameter spaces.
♻ ☆ Quantum Neural Network Restatement of Markov Jump Process
Despite the many challenges in exploratory data analysis, artificial neural networks have motivated strong interests in scientists and researchers both in theoretical as well as practical applications. Among sources of such popularity of artificial neural networks the ability of modeling non-linear dynamical systems, generalization, and adaptation possibilities should be mentioned. Despite this, there is still significant debate about the role of various underlying stochastic processes in stabilizing a unique structure for data learning and prediction. One of such obstacles to the theoretical and numerical study of machine intelligent systems is the curse of dimensionality and the sampling from high-dimensional probability distributions. In general, this curse prevents efficient description of states, providing a significant complexity barrier for the system to be efficiently described and studied. In this strand of research, direct treatment and description of such abstract notions of learning theory in terms of quantum information be one of the most favorable candidates. Hence, the subject matter of these articles is devoted to problems of design, adaptation and the formulations of computationally hard problems in terms of quantum mechanical systems. In order to characterize the microscopic description of such dynamics in the language of inferential statistics, covariance matrix estimation of d-dimensional Gaussian densities and Bayesian interpretation of eigenvalue problem for dynamical systems is assessed.
♻ ☆ Data-driven Seasonal Climate Predictions via Variational Inference and Transformers
Most operational climate services providers base their seasonal predictions on initialised general circulation models (GCMs) or statistical techniques that fit past observations. GCMs require substantial computational resources, which limits their capacity. In contrast, statistical methods often lack robustness due to short historical records. Recent works propose machine learning methods trained on climate model output, leveraging larger sample sizes and simulated scenarios. Yet, many of these studies focus on prediction tasks that might be restricted in spatial extent or temporal coverage, opening a gap with existing operational predictions. Thus, the present study evaluates the effectiveness of a methodology that combines variational inference with transformer models to predict fields of seasonal anomalies. The predictions cover all four seasons and are initialised one month before the start of each season. The model was trained on climate model output from CMIP6 and tested using ERA5 reanalysis data. We analyse the method's performance in predicting interannual anomalies beyond the climate change-induced trend. We also test the proposed methodology in a regional context with a use case focused on Europe. While climate change trends dominate the skill of temperature predictions, the method presents additional skill over the climatological forecast in regions influenced by known teleconnections. We reach similar conclusions based on the validation of precipitation predictions. Despite underperforming SEAS5 in most tropics, our model offers added value in numerous extratropical inland regions. This work demonstrates the effectiveness of training generative models on climate model output for seasonal predictions, providing skilful predictions beyond the induced climate change trend at time scales and lead times relevant for user applications.
♻ ☆ Personalized Privacy Amplification via Importance Sampling
For scalable machine learning on large data sets, subsampling a representative subset is a common approach for efficient model training. This is often achieved through importance sampling, whereby informative data points are sampled more frequently. In this paper, we examine the privacy properties of importance sampling, focusing on an individualized privacy analysis. We find that, in importance sampling, privacy is well aligned with utility but at odds with sample size. Based on this insight, we propose two approaches for constructing sampling distributions: one that optimizes the privacy-efficiency trade-off; and one based on a utility guarantee in the form of coresets. We evaluate both approaches empirically in terms of privacy, efficiency, and accuracy on the differentially private $k$-means problem. We observe that both approaches yield similar outcomes and consistently outperform uniform sampling across a wide range of data sets. Our code is available on GitHub: https://github.com/smair/personalized-privacy-amplification-via-importance-sampling
comment: 28 pages, 7 figures
♻ ☆ VidTwin: Video VAE with Decoupled Structure and Dynamics CVPR 2025
Recent advancements in video autoencoders (Video AEs) have significantly improved the quality and efficiency of video generation. In this paper, we propose a novel and compact video autoencoder, VidTwin, that decouples video into two distinct latent spaces: Structure latent vectors, which capture overall content and global movement, and Dynamics latent vectors, which represent fine-grained details and rapid movements. Specifically, our approach leverages an Encoder-Decoder backbone, augmented with two submodules for extracting these latent spaces, respectively. The first submodule employs a Q-Former to extract low-frequency motion trends, followed by downsampling blocks to remove redundant content details. The second averages the latent vectors along the spatial dimension to capture rapid motion. Extensive experiments show that VidTwin achieves a high compression rate of 0.20% with high reconstruction quality (PSNR of 28.14 on the MCL-JCV dataset), and performs efficiently and effectively in downstream generative tasks. Moreover, our model demonstrates explainability and scalability, paving the way for future research in video latent representation and generation. Check our project page for more details: https://vidtwin.github.io/.
comment: Accepted by CVPR 2025; Project page: https://vidtwin.github.io/; Code: https://github.com/microsoft/VidTok/tree/main/vidtwin
♻ ☆ RAP: Retrieval-Augmented Personalization for Multimodal Large Language Models CVPR 2025
The development of large language models (LLMs) has significantly enhanced the capabilities of multimodal LLMs (MLLMs) as general assistants. However, lack of user-specific knowledge still restricts their application in human's daily life. In this paper, we introduce the Retrieval Augmented Personalization (RAP) framework for MLLMs' personalization. Starting from a general MLLM, we turn it into a personalized assistant in three steps. (a) Remember: We design a key-value database to store user-related information, e.g., user's name, avatar and other attributes. (b) Retrieve: When the user initiates a conversation, RAP will retrieve relevant information from the database using a multimodal retriever. (c) Generate: The input query and retrieved concepts' information are fed into MLLMs to generate personalized, knowledge-augmented responses. Unlike previous methods, RAP allows real-time concept editing via updating the external database. To further improve generation quality and alignment with user-specific information, we design a pipeline for data collection and create a specialized dataset for personalized training of MLLMs. Based on the dataset, we train a series of MLLMs as personalized multimodal assistants. By pretraining on large-scale dataset, RAP-MLLMs can generalize to infinite visual concepts without additional finetuning. Our models demonstrate outstanding flexibility and generation quality across a variety of tasks, such as personalized image captioning, question answering and visual recognition. The code, data and models are available at https://hoar012.github.io/RAP-Project/.
comment: Accepted by CVPR 2025. Code: https://github.com/Hoar012/RAP-MLLM
♻ ☆ RelDenClu: A Relative Density based Biclustering Method for identifying non-linear feature relations
The existing biclustering algorithms for finding feature relation based biclusters often depend on assumptions like monotonicity or linearity. Though a few algorithms overcome this problem by using density-based methods, they tend to miss out many biclusters because they use global criteria for identifying dense regions. The proposed method, RelDenClu uses the local variations in marginal and joint densities for each pair of features to find the subset of observations, which forms the bases of the relation between them. It then finds the set of features connected by a common set of observations, resulting in a bicluster. To show the effectiveness of the proposed methodology, experimentation has been carried out on fifteen types of simulated datasets. Further, it has been applied to six real-life datasets. For three of these real-life datasets, the proposed method is used for unsupervised learning, while for other three real-life datasets it is used as an aid to supervised learning. For all the datasets the performance of the proposed method is compared with that of seven different state-of-the-art algorithms and the proposed algorithm is seen to produce better results. The efficacy of proposed algorithm is also seen by its use on COVID-19 dataset for identifying some features (genetic, demographics and others) that are likely to affect the spread of COVID-19.
♻ ☆ USC: Uncompromising Spatial Constraints for Safety-Oriented 3D Object Detectors in Autonomous Driving
In this work, we consider the safety-oriented performance of 3D object detectors in autonomous driving contexts. Specifically, despite impressive results shown by the mass literature, developers often find it hard to ensure the safe deployment of these learning-based perception models. Attributing the challenge to the lack of safety-oriented metrics, we hereby present uncompromising spatial constraints (USC), which characterize a simple yet important localization requirement demanding the predictions to fully cover the objects when seen from the autonomous vehicle. The constraints, as we formulate using the perspective and bird's-eye views, can be naturally reflected by quantitative measures, such that having an object detector with a higher score implies a lower risk of collision. Finally, beyond model evaluation, we incorporate the quantitative measures into common loss functions to enable safety-oriented fine-tuning for existing models. With experiments using the nuScenes dataset and a closed-loop simulation, our work demonstrates such considerations of safety notions at the perception level not only improve model performances beyond accuracy but also allow for a more direct linkage to actual system safety.
comment: Accepted by ITSC 2024, 8 pages (IEEE double column format), 7 figures, 2 tables
♻ ☆ MCI-GRU: Stock Prediction Model Based on Multi-Head Cross-Attention and Improved GRU
As financial markets grow increasingly complex in the big data era, accurate stock prediction has become more critical. Traditional time series models, such as GRUs, have been widely used but often struggle to capture the intricate nonlinear dynamics of markets, particularly in the flexible selection and effective utilization of key historical information. Recently, methods like Graph Neural Networks and Reinforcement Learning have shown promise in stock prediction but require high data quality and quantity, and they tend to exhibit instability when dealing with data sparsity and noise. Moreover, the training and inference processes for these models are typically complex and computationally expensive, limiting their broad deployment in practical applications. Existing approaches also generally struggle to capture unobservable latent market states effectively, such as market sentiment and expectations, microstructural factors, and participant behavior patterns, leading to an inadequate understanding of market dynamics and subsequently impact prediction accuracy. To address these challenges, this paper proposes a stock prediction model, MCI-GRU, based on a multi-head cross-attention mechanism and an improved GRU. First, we enhance the GRU model by replacing the reset gate with an attention mechanism, thereby increasing the model's flexibility in selecting and utilizing historical information. Second, we design a multi-head cross-attention mechanism for learning unobservable latent market state representations, which are further enriched through interactions with both temporal features and cross-sectional features. Finally, extensive experiments on four main stock markets show that the proposed method outperforms SOTA techniques across multiple metrics. Additionally, its successful application in real-world fund management operations confirms its effectiveness and practicality.
♻ ☆ Neural Network Approach to Stochastic Dynamics for Smooth Multimodal Density Estimation
In this paper we consider a new probability sampling methods based on Langevin diffusion dynamics to resolve the problem of existing Monte Carlo algorithms when draw samples from high dimensional target densities. We extent Metropolis-Adjusted Langevin Diffusion algorithm by modelling the stochasticity of precondition matrix as a random matrix. An advantage compared to other proposal method is that it only requires the gradient of log-posterior. The proposed method provides fully adaptation mechanisms to tune proposal densities to exploits and adapts the geometry of local structures of statistical models. We clarify the benefits of the new proposal by modelling a Quantum Probability Density Functions of a free particle in a plane (energy Eigen-functions). The proposed model represents a remarkable improvement in terms of performance accuracy and computational time over standard MCMC method.
♻ ☆ Borsuk-Ulam and Replicable Learning of Large-Margin Halfspaces
Recent remarkable advances in learning theory have established that, for total concept classes, list replicability, global stability, differentially private (DP) learnability, and shared-randomness replicability all coincide with the finiteness of Littlestone dimension. Does this equivalence extend to partial concept classes? We answer this question by proving that the list replicability number of $d$-dimensional $\gamma$-margin half-spaces satisfies \[ \frac{d}{2}+1 \le \mathrm{LR}(H^d_\gamma) \le d, \] which grows with dimension. Consequently, for partial classes, list replicability and global stability do not necessarily follow from bounded Littlestone dimension, pure DP-learnability, or shared-randomness replicability. Applying our main theorem, we resolve several open problems: $\bullet$ Every disambiguation of infinite-dimensional large-margin half-spaces to a total concept class has unbounded Littlestone dimension, answering an open question of Alon, Hanneke, Holzman, and Moran (FOCS '21). $\bullet$ The maximum list-replicability number of any finite set of points and homogeneous half-spaces in $d$-dimensional Euclidean space is $d$, resolving a problem of Chase, Moran, and Yehudayoff (FOCS '23). $\bullet$ Every disambiguation of the Gap Hamming Distance problem in the large gap regime has unbounded public-coin randomized communication complexity. This answers an open question of Fang, G\"o\"os, Harms, and Hatami (STOC '25). Our lower bound follows from a topological argument based on the local Borsuk-Ulam theorem of Chase, Chornomaz, Moran, and Yehudayoff (STOC '24). For the upper bound, we construct a list-replicable learning rule using the generalization properties of SVMs.
comment: Simplified the proof of the upper bound in the main theorem and updated references to earlier works
♻ ☆ Spectral-factorized Positive-definite Curvature Learning for NN Training
Many training methods, such as Adam(W) and Shampoo, learn a positive-definite curvature matrix and apply an inverse root before preconditioning. Recently, non-diagonal training methods, such as Shampoo, have gained significant attention; however, they remain computationally inefficient and are limited to specific types of curvature information due to the costly matrix root computation via matrix decomposition. To address this, we propose a Riemannian optimization approach that dynamically adapts spectral-factorized positive-definite curvature estimates, enabling the efficient application of arbitrary matrix roots and generic curvature learning. We demonstrate the efficacy and versatility of our approach in positive-definite matrix optimization and covariance adaptation for gradient-free optimization, as well as its efficiency in curvature learning for neural net training.
comment: fixed some typos in the appendix
♻ ☆ Metric Entropy-Free Sample Complexity Bounds for Sample Average Approximation in Convex Stochastic Programming
This paper studies sample average approximation (SAA) in solving convex or strongly convex stochastic programming (SP) problems. In estimating SAA's sample efficiency, the state-of-the-art sample complexity bounds entail metric entropy terms (such as the logarithm of the feasible region's covering number), which often grow polynomially with problem dimensionality. While it has been shown that metric entropy-free complexity rates are attainable under a uniform Lipschitz condition, such an assumption can be overly critical for many important SP problem settings. In response, this paper presents perhaps the first set of metric entropy-free sample complexity bounds for the SAA under standard SP assumptions -- in the absence of the uniform Lipschitz condition. The new results often lead to an $O(d)$-improvement in the complexity rate than the state-of-the-art. From the newly established complexity bounds, an important revelation is that SAA and the canonical stochastic mirror descent (SMD) method, two mainstream solution approaches to SP, entail almost identical rates of sample efficiency, lifting a theoretical discrepancy of SAA from SMD also by the order of $O(d)$. Furthermore, this paper explores non-Lipschitzian scenarios where SAA maintains provable efficacy but the corresponding results for SMD remain mostly unexplored, indicating the potential of SAA's better applicability in some irregular settings. Our numerical experiment results on SAA for solving a simulated SP problem align with our theoretical findings.
♻ ☆ Leveraging Expert Input for Robust and Explainable AI-Assisted Lung Cancer Detection in Chest X-rays
Deep learning models show significant potential for advancing AI-assisted medical diagnostics, particularly in detecting lung cancer through medical image modalities such as chest X-rays. However, the black-box nature of these models poses challenges to their interpretability and trustworthiness, limiting their adoption in clinical practice. This study examines both the interpretability and robustness of a high-performing lung cancer detection model based on InceptionV3, utilizing a public dataset of chest X-rays and radiological reports. We evaluate the clinical utility of multiple explainable AI (XAI) techniques, including both post-hoc and ante-hoc approaches, and find that existing methods often fail to provide clinically relevant explanations, displaying inconsistencies and divergence from expert radiologist assessments. To address these limitations, we collaborated with a radiologist to define diagnosis-specific clinical concepts and developed ClinicXAI, an expert-driven approach leveraging the concept bottleneck methodology. ClinicXAI generated clinically meaningful explanations which closely aligned with the practical requirements of clinicians while maintaining high diagnostic accuracy. We also assess the robustness of ClinicXAI in comparison to the original InceptionV3 model by subjecting both to a series of widely utilized adversarial attacks. Our analysis demonstrates that ClinicXAI exhibits significantly greater resilience to adversarial perturbations. These findings underscore the importance of incorporating domain expertise into the design of interpretable and robust AI systems for medical diagnostics, paving the way for more trustworthy and effective AI solutions in healthcare.
♻ ☆ Evaluating the evaluators: Towards human-aligned metrics for missing markers reconstruction
Animation data is often obtained through optical motion capture systems, which utilize a multitude of cameras to establish the position of optical markers. However, system errors or occlusions can result in missing markers, the manual cleaning of which can be time-consuming. This has sparked interest in machine learning-based solutions for missing marker reconstruction in the academic community. Most academic papers utilize a simplistic mean square error as the main metric. In this paper, we show that this metric does not correlate with subjective perception of the fill quality. Additionally, we introduce and evaluate a set of better-correlated metrics that can drive progress in the field.
♻ ☆ Policy Learning with Competing Agents
Decision makers often aim to learn a treatment assignment policy under a capacity constraint on the number of agents that they can treat. When agents can respond strategically to such policies, competition arises, complicating estimation of the optimal policy. In this paper, we study capacity-constrained treatment assignment in the presence of such interference. We consider a dynamic model where the decision maker allocates treatments at each time step and heterogeneous agents myopically best respond to the previous treatment assignment policy. When the number of agents is large but finite, we show that the threshold for receiving treatment under a given policy converges to the policy's mean-field equilibrium threshold. Based on this result, we develop a consistent estimator for the policy gradient. In a semi-synthetic experiment with data from the National Education Longitudinal Study of 1988, we demonstrate that this estimator can be used for learning capacity-constrained policies in the presence of strategic behavior.
comment: Forthcoming in Operations Research
♻ ☆ Large Engagement Networks for Classifying Coordinated Campaigns and Organic Twitter Trends
Social media users and inauthentic accounts, such as bots, may coordinate in promoting their topics. Such topics may give the impression that they are organically popular among the public, even though they are astroturfing campaigns that are centrally managed. It is challenging to predict if a topic is organic or a coordinated campaign due to the lack of reliable ground truth. In this paper, we create such ground truth by detecting the campaigns promoted by ephemeral astroturfing attacks. These attacks push any topic to Twitter's (X) trends list by employing bots that tweet in a coordinated manner in a short period and then immediately delete their tweets. We manually curate a dataset of organic Twitter trends. We then create engagement networks out of these datasets which can serve as a challenging testbed for graph classification task to distinguish between campaigns and organic trends. Engagement networks consist of users as nodes and engagements as edges (retweets, replies, and quotes) between users. We release the engagement networks for 179 campaigns and 135 non-campaigns, and also provide finer-grain labels to characterize the type of the campaigns and non-campaigns. Our dataset, LEN (Large Engagement Networks), is available in the URL below. In comparison to traditional graph classification datasets, which are small with tens of nodes and hundreds of edges at most, graphs in LEN are larger. The average graph in LEN has ~11K nodes and ~23K edges. We show that state-of-the-art GNN methods give only mediocre results for campaign vs. non-campaign and campaign type classification on LEN. LEN offers a unique and challenging playfield for the graph classification problem. We believe that LEN will help advance the frontiers of graph classification techniques on large networks and also provide an interesting use case in terms of distinguishing coordinated campaigns and organic trends.
comment: 14 Pages
♻ ☆ Hybrid Action Based Reinforcement Learning for Multi-Objective Compatible Autonomous Driving
Reinforcement Learning (RL) has shown excellent performance in solving decision-making and control problems of autonomous driving, which is increasingly applied in diverse driving scenarios. However, driving is a multi-attribute problem, leading to challenges in achieving multi-objective compatibility for current RL methods, especially in both policy execution and policy iteration. On the one hand, the common action space structure with single action type limits driving flexibility or results in large behavior fluctuations during policy execution. On the other hand, the multi-attribute weighted single reward function result in the agent's disproportionate attention to certain objectives during policy iterations. To this end, we propose a Multi-objective Ensemble-Critic reinforcement learning method with Hybrid Parametrized Action for multi-objective compatible autonomous driving. Specifically, a parameterized action space is constructed to generate hybrid driving actions, combining both abstract guidance and concrete control commands. A multi-objective critics architecture is constructed considering multiple attribute rewards, to ensure simultaneously focusing on different driving objectives. Additionally, uncertainty-based exploration strategy is introduced to help the agent faster approach viable driving policy. The experimental results in both the simulated traffic environment and the HighD dataset demonstrate that our method can achieve multi-objective compatible autonomous driving in terms of driving efficiency, action consistency, and safety. It enhances the general performance of the driving while significantly increasing training efficiency.
comment: 12 pages, 9 figures, 5 tables
♻ ☆ LoRD: Adapting Differentiable Driving Policies to Distribution Shifts ICRA 2025
Distribution shifts between operational domains can severely affect the performance of learned models in self-driving vehicles (SDVs). While this is a well-established problem, prior work has mostly explored naive solutions such as fine-tuning, focusing on the motion prediction task. In this work, we explore novel adaptation strategies for differentiable autonomy stacks consisting of prediction, planning, and control, perform evaluation in closed-loop, and investigate the often-overlooked issue of catastrophic forgetting. Specifically, we introduce two simple yet effective techniques: a low-rank residual decoder (LoRD) and multi-task fine-tuning. Through experiments across three models conducted on two real-world autonomous driving datasets (nuPlan, exiD), we demonstrate the effectiveness of our methods and highlight a significant performance gap between open-loop and closed-loop evaluation in prior approaches. Our approach improves forgetting by up to 23.33% and the closed-loop OOD driving score by 9.93% in comparison to standard fine-tuning.
comment: IEEE International Conference on Robotics & Automation, ICRA 2025
♻ ☆ Neuromorphic Wireless Split Computing with Multi-Level Spikes
Inspired by biological processes, neuromorphic computing leverages spiking neural networks (SNNs) to perform inference tasks, offering significant efficiency gains for workloads involving sequential data. Recent advances in hardware and software have shown that embedding a small payload within each spike exchanged between spiking neurons can enhance inference accuracy without increasing energy consumption. To scale neuromorphic computing to larger workloads, split computing - where an SNN is partitioned across two devices - is a promising solution. In such architectures, the device hosting the initial layers must transmit information about the spikes generated by its output neurons to the second device. This establishes a trade-off between the benefits of multi-level spikes, which carry additional payload information, and the communication resources required for transmitting extra bits between devices. This paper presents the first comprehensive study of a neuromorphic wireless split computing architecture that employs multi-level SNNs. We propose digital and analog modulation schemes for an orthogonal frequency division multiplexing (OFDM) radio interface to enable efficient communication. Simulation and experimental results using software-defined radios reveal performance improvements achieved by multi-level SNN models and provide insights into the optimal payload size as a function of the connection quality between the transmitter and receiver.
♻ ☆ Tackling the Accuracy-Interpretability Trade-off in a Hierarchy of Machine Learning Models for the Prediction of Extreme Heatwaves
When performing predictions that use Machine Learning (ML), we are mainly interested in performance and interpretability. This generates a natural trade-off, where complex models generally have higher skills but are harder to explain and thus trust. Interpretability is particularly important in the climate community, where we aim at gaining a physical understanding of the underlying phenomena. Even more so when the prediction concerns extreme weather events with high impact on society. In this paper, we perform probabilistic forecasts of extreme heatwaves over France, using a hierarchy of increasingly complex ML models, which allows us to find the best compromise between accuracy and interpretability. More precisely, we use models that range from a global Gaussian Approximation (GA) to deep Convolutional Neural Networks (CNNs), with the intermediate steps of a simple Intrinsically Interpretable Neural Network (IINN) and a model using the Scattering Transform (ScatNet). Our findings reveal that CNNs provide higher accuracy, but their black-box nature severely limits interpretability, even when using state-of-the-art Explainable Artificial Intelligence (XAI) tools. In contrast, ScatNet achieves similar performance to CNNs while providing greater transparency, identifying key scales and patterns in the data that drive predictions. This study underscores the potential of interpretability in ML models for climate science, demonstrating that simpler models can rival the performance of their more complex counterparts, all the while being much easier to understand. This gained interpretability is crucial for building trust in model predictions and uncovering new scientific insights, ultimately advancing our understanding and management of extreme weather events.
comment: Accepted for publication at Artificial Intelligence for the Earth Systems (AIES) (ISSN: 2769-7525). Authors Alessandro Lovo and Amaury Lancelin contributed equally as first authors
♻ ☆ Multimodal Learning with Uncertainty Quantification based on Discounted Belief Fusion
Multimodal AI models are increasingly used in fields like healthcare, finance, and autonomous driving, where information is drawn from multiple sources or modalities such as images, texts, audios, videos. However, effectively managing uncertainty - arising from noise, insufficient evidence, or conflicts between modalities - is crucial for reliable decision-making. Current uncertainty-aware machine learning methods leveraging, for example, evidence averaging, or evidence accumulation underestimate uncertainties in high-conflict scenarios. Moreover, the state-of-the-art evidence averaging strategy is not order invariant and fails to scale to multiple modalities. To address these challenges, we propose a novel multimodal learning method with order-invariant evidence fusion and introduce a conflict-based discounting mechanism that reallocates uncertain mass when unreliable modalities are detected. We provide both theoretical analysis and experimental validation, demonstrating that unlike the previous work, the proposed approach effectively distinguishes between conflicting and non-conflicting samples based on the provided uncertainty estimates, and outperforms the previous models in uncertainty-based conflict detection.
♻ ☆ DyCoke: Dynamic Compression of Tokens for Fast Video Large Language Models
Video large language models (VLLMs) have significantly advanced recently in processing complex video content, yet their inference efficiency remains constrained because of the high computational cost stemming from the thousands of visual tokens generated from the video inputs. We empirically observe that, unlike single image inputs, VLLMs typically attend visual tokens from different frames at different decoding iterations, making a one-shot pruning strategy prone to removing important tokens by mistake. Motivated by this, we present DyCoke, a training-free token compression method to optimize token representation and accelerate VLLMs. DyCoke incorporates a plug-and-play temporal compression module to minimize temporal redundancy by merging redundant tokens across frames, and applies dynamic KV cache reduction to prune spatially redundant tokens selectively. It ensures high-quality inference by dynamically retaining the critical tokens at each decoding step. Extensive experimental results demonstrate that DyCoke can outperform the prior SoTA counterparts, achieving 1.5X inference speedup, 1.4X memory reduction against the baseline VLLM, while still improving the performance, with no training.
comment: 13 pages, 7 figures
♻ ☆ Compress Then Test: Powerful Kernel Testing in Near-linear Time AISTATS 2023
Kernel two-sample testing provides a powerful framework for distinguishing any pair of distributions based on $n$ sample points. However, existing kernel tests either run in $n^2$ time or sacrifice undue power to improve runtime. To address these shortcomings, we introduce Compress Then Test (CTT), a new framework for high-powered kernel testing based on sample compression. CTT cheaply approximates an expensive test by compressing each $n$ point sample into a small but provably high-fidelity coreset. For standard kernels and subexponential distributions, CTT inherits the statistical behavior of a quadratic-time test -- recovering the same optimal detection boundary -- while running in near-linear time. We couple these advances with cheaper permutation testing, justified by new power analyses; improved time-vs.-quality guarantees for low-rank approximation; and a fast aggregation procedure for identifying especially discriminating kernels. In our experiments with real and simulated data, CTT and its extensions provide 20--200x speed-ups over state-of-the-art approximate MMD tests with no loss of power.
comment: Accepted as a paper at AISTATS 2023. This version fixes a bug in Fig. 2 and clarifies the Fig. 2 sample size and CTT (median lambda) definition
♻ ☆ Manifold learning in Wasserstein space
This paper aims at building the theoretical foundations for manifold learning algorithms in the space of absolutely continuous probability measures $\mathcal{P}_{\mathrm{a.c.}}(\Omega)$ with $\Omega$ a compact and convex subset of $\mathbb{R}^d$, metrized with the Wasserstein-2 distance $\mathbb{W}$. We begin by introducing a construction of submanifolds $\Lambda$ in $\mathcal{P}_{\mathrm{a.c.}}(\Omega)$ equipped with metric $\mathbb{W}_\Lambda$, the geodesic restriction of $\mathbb{W}$ to $\Lambda$. In contrast to other constructions, these submanifolds are not necessarily flat, but still allow for local linearizations in a similar fashion to Riemannian submanifolds of $\mathbb{R}^d$. We then show how the latent manifold structure of $(\Lambda,\mathbb{W}_{\Lambda})$ can be learned from samples $\{\lambda_i\}_{i=1}^N$ of $\Lambda$ and pairwise extrinsic Wasserstein distances $\mathbb{W}$ on $\mathcal{P}_{\mathrm{a.c.}}(\Omega)$ only. In particular, we show that the metric space $(\Lambda,\mathbb{W}_{\Lambda})$ can be asymptotically recovered in the sense of Gromov--Wasserstein from a graph with nodes $\{\lambda_i\}_{i=1}^N$ and edge weights $W(\lambda_i,\lambda_j)$. In addition, we demonstrate how the tangent space at a sample $\lambda$ can be asymptotically recovered via spectral analysis of a suitable ``covariance operator'' using optimal transport maps from $\lambda$ to sufficiently close and diverse samples $\{\lambda_i\}_{i=1}^N$. The paper closes with some explicit constructions of submanifolds $\Lambda$ and numerical examples on the recovery of tangent spaces through spectral analysis.
♻ ☆ Knowledge Bridger: Towards Training-free Missing Multi-modality Completion CVPR 2025
Previous successful approaches to missing modality completion rely on carefully designed fusion techniques and extensive pre-training on complete data, which can limit their generalizability in out-of-domain (OOD) scenarios. In this study, we pose a new challenge: can we develop a missing modality completion model that is both resource-efficient and robust to OOD generalization? To address this, we present a training-free framework for missing modality completion that leverages large multimodal models (LMMs). Our approach, termed the "Knowledge Bridger", is modality-agnostic and integrates generation and ranking of missing modalities. By defining domain-specific priors, our method automatically extracts structured information from available modalities to construct knowledge graphs. These extracted graphs connect the missing modality generation and ranking modules through the LMM, resulting in high-quality imputations of missing modalities. Experimental results across both general and medical domains show that our approach consistently outperforms competing methods, including in OOD generalization. Additionally, our knowledge-driven generation and ranking techniques demonstrate superiority over variants that directly employ LMMs for generation and ranking, offering insights that may be valuable for applications in other domains.
comment: Accepted to CVPR 2025
♻ ☆ Adversarially Robust Topological Inference
The distance function to a compact set plays a crucial role in the paradigm of topological data analysis. In particular, the sublevel sets of the distance function are used in the computation of persistent homology -- a backbone of the topological data analysis pipeline. Despite its stability to perturbations in the Hausdorff distance, persistent homology is highly sensitive to outliers. In this work, we develop a framework of statistical inference for persistent homology in the presence of outliers. Drawing inspiration from recent developments in robust statistics, we propose a \textit{median-of-means} variant of the distance function (\textsf{MoM Dist}) and establish its statistical properties. In particular, we show that, even in the presence of outliers, the sublevel filtrations and weighted filtrations induced by \textsf{MoM Dist} are both consistent estimators of the true underlying population counterpart and exhibit near minimax-optimal performance in adversarial settings. Finally, we demonstrate the advantages of the proposed methodology through simulations and applications.
comment: 54 pages, 13 figures
♻ ☆ Whispering in Amharic: Fine-tuning Whisper for Low-resource Language
This work explores fine-tuning OpenAI's Whisper automatic speech recognition (ASR) model for Amharic, a low-resource language, to improve transcription accuracy. While the foundational Whisper model struggles with Amharic due to limited representation in its training data, we fine-tune it using datasets like Mozilla Common Voice, FLEURS, and the BDU-speech dataset. The best-performing model, Whispersmall-am, significantly improves when finetuned on a mix of existing FLEURS data and new, unseen Amharic datasets. Training solely on new data leads to poor performance, but combining it with FLEURS data reinforces the model, enabling better specialization in Amharic. We also demonstrate that normalizing Amharic homophones significantly enhances Word Error Rate (WER) and Bilingual Evaluation Understudy (BLEU) scores. This study underscores the importance of fine-tuning strategies and dataset composition for improving ASR in low-resource languages, providing insights for future Amharic speech recognition research.
♻ ☆ DeltaProduct: Improving State-Tracking in Linear RNNs via Householder Products ICLR 2025
Linear Recurrent Neural Networks (linear RNNs) have emerged as competitive alternatives to Transformers for sequence modeling, offering efficient training and linear-time inference. However, existing architectures face a fundamental trade-off between expressivity and efficiency, dictated by the structure of their state-transition matrices. While diagonal matrices used in architectures like Mamba, GLA, or mLSTM yield fast runtime, they suffer from severely limited expressivity. To address this, recent architectures such as (Gated) DeltaNet and RWKV-7 adopted a diagonal plus rank-1 structure, allowing simultaneous token-channel mixing, which overcomes some expressivity limitations with only a slight decrease in training efficiency. Building on the interpretation of DeltaNet's recurrence as performing one step of online gradient descent per token on an associative recall loss, we introduce DeltaProduct, which instead takes multiple ($n_h$) steps per token. This naturally leads to diagonal plus rank-$n_h$ state-transition matrices, formed as products of $n_h$ generalized Householder transformations, providing a tunable mechanism to balance expressivity and efficiency and a stable recurrence. Through extensive experiments, we demonstrate that DeltaProduct achieves superior state-tracking and language modeling capabilities while exhibiting significantly improved length extrapolation compared to DeltaNet. Additionally, we also strengthen the theoretical foundation of DeltaNet by proving that it can solve dihedral group word problems in just two layers.
comment: Accepted at ICLR 2025 Workshop on Foundation Models in the Wild
♻ ☆ $Λ$CDM and early dark energy in latent space: a data-driven parametrization of the CMB temperature power spectrum
Finding the best parametrization for cosmological models in the absence of first-principle theories is an open question. We propose a data-driven parametrization of cosmological models given by the disentangled 'latent' representation of a variational autoencoder (VAE) trained to compress cosmic microwave background (CMB) temperature power spectra. We consider a broad range of $\Lambda$CDM and beyond-$\Lambda$CDM cosmologies with an additional early dark energy (EDE) component. We show that these spectra can be compressed into 5 ($\Lambda$CDM) or 8 (EDE) independent latent parameters, as expected when using temperature power spectra alone, and which reconstruct spectra at an accuracy well within the Planck errors. These latent parameters have a physical interpretation in terms of well-known features of the CMB temperature spectrum: these include the position, height and even-odd modulation of the acoustic peaks, as well as the gravitational lensing effect. The VAE also discovers one latent parameter which entirely isolates the EDE effects from those related to $\Lambda$CDM parameters, thus revealing a previously unknown degree of freedom in the CMB temperature power spectrum. We further showcase how to place constraints on the latent parameters using Planck data as typically done for cosmological parameters, obtaining latent values consistent with previous $\Lambda$CDM and EDE cosmological constraints. Our work demonstrates the potential of a data-driven reformulation of current beyond-$\Lambda$CDM phenomenological models into the independent degrees of freedom to which the data observables are sensitive.
comment: 18 pages, 12 figures. Minor changes to match version published in PRD
♻ ☆ Convergence analysis of controlled particle systems arising in deep learning: from finite to infinite sample size
This paper deals with a class of neural SDEs and studies the limiting behavior of the associated sampled optimal control problems as the sample size grows to infinity. The neural SDEs with N samples can be linked to the N-particle systems with centralized control. We analyze the Hamilton--Jacobi--Bellman equation corresponding to the N-particle system and establish regularity results which are uniform in N. The uniform regularity estimates are obtained by the stochastic maximum principle and the analysis of a backward stochastic Riccati equation. Using these uniform regularity results, we show the convergence of the minima of objective functionals and optimal parameters of the neural SDEs as the sample size N tends to infinity. The limiting objects can be identified with suitable functions defined on the Wasserstein space of Borel probability measures. Furthermore, quantitative algebraic convergence rates are also obtained.
comment: 45 pages, 2 figures
♻ ☆ Efficient Data Selection for Training Genomic Perturbation Models
Genomic studies, including CRISPR-based PerturbSeq analyses, face a vast hypothesis space, while gene perturbations remain costly and time-consuming. Gene expression models based on graph neural networks are trained to predict the outcomes of gene perturbations to facilitate such experiments. Active learning methods are often employed to train these models due to the cost of the genomic experiments required to build the training set. However, poor model initialization in active learning can result in suboptimal early selections, wasting time and valuable resources. While typical active learning mitigates this issue over many iterations, the limited number of experimental cycles in genomic studies exacerbates the risk. To this end, we propose graph-based one-shot data selection methods for training gene expression models. Unlike active learning, one-shot data selection predefines the gene perturbations before training, hence removing the initialization bias. The data selection is motivated by theoretical studies of graph neural network generalization. The criteria are defined over the input graph and are optimized with submodular maximization. We compare them empirically to baselines and active learning methods that are state-of-the-art on this problem. The results demonstrate that graph-based one-shot data selection achieves comparable accuracy while alleviating the aforementioned risks.
comment: 19 pages
♻ ☆ Unified ODE Analysis of Smooth Q-Learning Algorithms
Convergence of Q-learning has been the focus of extensive research over the past several decades. Recently, an asymptotic convergence analysis for Q-learning was introduced using a switching system framework. This approach applies the so-called ordinary differential equation (ODE) approach to prove the convergence of the asynchronous Q-learning modeled as a continuous-time switching system, where notions from switching system theory are used to prove its asymptotic stability without using explicit Lyapunov arguments. However, to prove stability, restrictive conditions, such as quasi-monotonicity, must be satisfied for the underlying switching systems, which makes it hard to easily generalize the analysis method to other reinforcement learning algorithms, such as the smooth Q-learning variants. In this paper, we present a more general and unified convergence analysis that improves upon the switching system approach and can analyze Q-learning and its smooth variants. The proposed analysis is motivated by previous work on the convergence of synchronous Q-learning based on $p$-norm serving as a Lyapunov function. However, the proposed analysis addresses more general ODE models that can cover both asynchronous Q-learning and its smooth versions with simpler frameworks.
♻ ☆ Improving probabilistic forecasts of extreme wind speeds by training statistical post-processing models with weighted scoring rules
Accurate forecasts of extreme wind speeds are of high importance for many applications. Such forecasts are usually generated by ensembles of numerical weather prediction (NWP) models, which however can be biased and have errors in dispersion, thus necessitating the application of statistical post-processing techniques. In this work we aim to improve statistical post-processing models for probabilistic predictions of extreme wind speeds. We do this by adjusting the training procedure used to fit ensemble model output statistics (EMOS) models - a commonly applied post-processing technique - and propose estimating parameters using the so-called threshold-weighted continuous ranked probability score (twCRPS), a proper scoring rule that places special emphasis on predictions over a threshold. We show that training using the twCRPS leads to improved extreme event performance of post-processing models for a variety of thresholds. We find a distribution body-tail trade-off where improved performance for probabilistic predictions of extreme events comes with worse performance for predictions of the distribution body. However, we introduce strategies to mitigate this trade-off based on weighted training and linear pooling. Finally, we consider some synthetic experiments to explain the training impact of the twCRPS and derive closed-form expressions of the twCRPS for a number of distributions, giving the first such collection in the literature. The results will enable researchers and practitioners alike to improve the performance of probabilistic forecasting models for extremes and other events of interest.
♻ ☆ OThink-MR1: Stimulating multimodal generalized reasoning capabilities via dynamic reinforcement learning
Multimodal Large Language Models (MLLMs) have gained significant traction for their ability to process diverse input data types and generate coherent, contextually relevant outputs across various applications. While supervised fine-tuning (SFT) has been the predominant approach to enhance MLLM capabilities in task-specific optimization, it often falls short in fostering crucial generalized reasoning abilities. Although reinforcement learning (RL) holds great promise in overcoming these limitations, it encounters two significant challenges: (1) its generalized capacities in multimodal tasks remain largely unexplored, and (2) its training constraints, including the constant Kullback-Leibler divergence or the clamp strategy, often result in suboptimal bottlenecks. To address these challenges, we propose OThink-MR1, an advanced MLLM equipped with profound comprehension and reasoning capabilities across multimodal tasks. Specifically, we introduce Group Relative Policy Optimization with a dynamic Kullback-Leibler strategy (GRPO-D), which markedly enhances reinforcement learning (RL) performance. For Qwen2-VL-2B-Instruct, GRPO-D achieves a relative improvement of more than 5.72% over SFT and more than 13.59% over GRPO in same-task evaluation on two adapted datasets. Furthermore, GRPO-D demonstrates remarkable cross-task generalization capabilities, with an average relative improvement of more than 61.63% over SFT in cross-task evaluation. These results highlight that the MLLM trained with GRPO-D on one multimodal task can be effectively transferred to another task, underscoring the superior generalized reasoning capabilities of our proposed OThink-MR1 model.
♻ ☆ Advancing Chronic Tuberculosis Diagnostics Using Vision-Language Models: A Multi modal Framework for Precision Analysis
Background: This study proposes a Vision-Language Model (VLM) leveraging the SIGLIP encoder and Gemma-3b transformer decoder to enhance automated chronic tuberculosis (TB) screening. By integrating chest X-ray images with clinical data, the model addresses the challenges of manual interpretation, improving diagnostic consistency and accessibility, particularly in resource-constrained settings. Methods: The VLM architecture combines a Vision Transformer (ViT) for visual encoding and a transformer-based text encoder to process clinical context, such as patient histories and treatment records. Cross-modal attention mechanisms align radiographic features with textual information, while the Gemma-3b decoder generates comprehensive diagnostic reports. The model was pre-trained on 5 million paired medical images and texts and fine-tuned using 100,000 chronic TB-specific chest X-rays. Results: The model demonstrated high precision (94 percent) and recall (94 percent) for detecting key chronic TB pathologies, including fibrosis, calcified granulomas, and bronchiectasis. Area Under the Curve (AUC) scores exceeded 0.93, and Intersection over Union (IoU) values were above 0.91, validating its effectiveness in detecting and localizing TB-related abnormalities. Conclusion: The VLM offers a robust and scalable solution for automated chronic TB diagnosis, integrating radiographic and clinical data to deliver actionable and context-aware insights. Future work will address subtle pathologies and dataset biases to enhance the model's generalizability, ensuring equitable performance across diverse populations and healthcare settings.
comment: 10 pages , 3 figures
♻ ☆ A Parameter-Efficient Quantum Anomaly Detection Method on a Superconducting Quantum Processor
Quantum machine learning has gained attention for its potential to address computational challenges. However, whether those algorithms can effectively solve practical problems and outperform their classical counterparts, especially on current quantum hardware, remains a critical question. In this work, we propose a novel quantum machine learning method, called Parameter-Efficient Quantum Anomaly Detection (PEQAD), for practical image anomaly detection, which aims to achieve both parameter efficiency and superior accuracy compared to classical models. Emulation results indicate that PEQAD demonstrates favourable recognition capabilities compared to classical baselines, achieving an average accuracy of over 90% on benchmarks with significantly fewer trainable parameters. Theoretical analysis confirms that PEQAD has a comparable expressivity to classical counterparts while requiring only a fraction of the parameters. Furthermore, we demonstrate the first implementation of a quantum anomaly detection method for general image datasets on a superconducting quantum processor. Specifically, we achieve an accuracy of over 80% with only 16 parameters on the device, providing initial evidence of PEQAD's practical viability in the noisy intermediate-scale quantum era and highlighting its significant reduction in parameter requirements.
comment: 22 pages, 10 figures
♻ ☆ Tomography of Quantum States from Structured Measurements via quantum-aware transformer
Quantum state tomography (QST) is the process of reconstructing the state of a quantum system (mathematically described as a density matrix) through a series of different measurements, which can be solved by learning a parameterized function to translate experimentally measured statistics into physical density matrices. However, the specific structure of quantum measurements for characterizing a quantum state has been neglected in previous work. In this paper, we explore the similarity between highly structured sentences in natural language and intrinsically structured measurements in QST. To fully leverage the intrinsic quantum characteristics involved in QST, we design a quantum-aware transformer (QAT) model to capture the complex relationship between measured frequencies and density matrices. In particular, we query quantum operators in the architecture to facilitate informative representations of quantum data and integrate the Bures distance into the loss function to evaluate quantum state fidelity, thereby enabling the reconstruction of quantum states from measured data with high fidelity. Extensive simulations and experiments (on IBM quantum computers) demonstrate the superiority of the QAT in reconstructing quantum states with favorable robustness against experimental noise.
♻ ☆ Evil twins are not that evil: Qualitative insights into machine-generated prompts
It has been widely observed that language models (LMs) respond in predictable ways to algorithmically generated prompts that are seemingly unintelligible. This is both a sign that we lack a full understanding of how LMs work, and a practical challenge, because opaqueness can be exploited for harmful uses of LMs, such as jailbreaking. We present the first thorough analysis of opaque machine-generated prompts, or autoprompts, pertaining to 6 LMs of different sizes and families. We find that machine-generated prompts are characterized by a last token that is often intelligible and strongly affects the generation. A small but consistent proportion of the previous tokens are prunable, probably appearing in the prompt as a by-product of the fact that the optimization process fixes the number of tokens. The remaining tokens fall into two categories: filler tokens, which can be replaced with semantically unrelated substitutes, and keywords, that tend to have at least a loose semantic relation with the generation, although they do not engage in well-formed syntactic relations with it. Additionally, human experts can reliably identify the most influential tokens in an autoprompt a posteriori, suggesting these prompts are not entirely opaque. Finally, some of the ablations we applied to autoprompts yield similar effects in natural language inputs, suggesting that autoprompts emerge naturally from the way LMs process linguistic inputs in general.
♻ ☆ Risk-based Calibration for Generative Classifiers
Generative classifiers are constructed on the basis of a joint probability distribution and are typically learned using closed-form procedures that rely on data statistics and maximize scores related to data fitting. However, these scores are not directly linked to supervised classification metrics such as the error, i.e., the expected 0-1 loss. To address this limitation, we propose a learning procedure called risk-based calibration (RC) that iteratively refines the generative classifier by adjusting its joint probability distribution according to the 0-1 loss in training samples. This is achieved by reinforcing data statistics associated with the true classes while weakening those of incorrect classes. As a result, the classifier progressively assigns higher probability to the correct labels, improving its training error. Results on 20 heterogeneous datasets using both na\"ive Bayes and quadratic discriminant analysis show that RC significantly outperforms closed-form learning procedures in terms of both training error and generalization error. In this way, RC bridges the gap between traditional generative approaches and learning procedures guided by performance measures, ensuring a closer alignment with supervised classification objectives.
♻ ☆ Circumventing shortcuts in audio-visual deepfake detection datasets with unsupervised learning
Good datasets are essential for developing and benchmarking any machine learning system. Their importance is even more extreme for safety critical applications such as deepfake detection - the focus of this paper. Here we reveal that two of the most widely used audio-video deepfake datasets suffer from a previously unidentified spurious feature: the leading silence. Fake videos start with a very brief moment of silence and based on this feature alone, we can separate the real and fake samples almost perfectly. As such, previous audio-only and audio-video models exploit the presence of silence in the fake videos and consequently perform worse when the leading silence is removed. To circumvent latching on such unwanted artifact and possibly other unrevealed ones we propose a shift from supervised to unsupervised learning by training models exclusively on real data. We show that by aligning self-supervised audio-video representations we remove the risk of relying on dataset-specific biases and improve robustness in deepfake detection.
♻ ☆ Light Transport-aware Diffusion Posterior Sampling for Single-View Reconstruction of 3D Volumes CVPR 2025
We introduce a single-view reconstruction technique of volumetric fields in which multiple light scattering effects are omnipresent, such as in clouds. We model the unknown distribution of volumetric fields using an unconditional diffusion model trained on a novel benchmark dataset comprising 1,000 synthetically simulated volumetric density fields. The neural diffusion model is trained on the latent codes of a novel, diffusion-friendly, monoplanar representation. The generative model is used to incorporate a tailored parametric diffusion posterior sampling technique into different reconstruction tasks. A physically-based differentiable volume renderer is employed to provide gradients with respect to light transport in the latent space. This stands in contrast to classic NeRF approaches and makes the reconstructions better aligned with observed data. Through various experiments, we demonstrate single-view reconstruction of volumetric clouds at a previously unattainable quality.
comment: CVPR 2025
♻ ☆ High-dimensional Asymptotics of VAEs: Threshold of Posterior Collapse and Dataset-Size Dependence of Rate-Distortion Curve
In variational autoencoders (VAEs), the variational posterior often collapses to the prior, known as posterior collapse, which leads to poor representation learning quality. An adjustable hyperparameter beta has been introduced in VAEs to address this issue. This study sharply evaluates the conditions under which the posterior collapse occurs with respect to beta and dataset size by analyzing a minimal VAE in a high-dimensional limit. Additionally, this setting enables the evaluation of the rate-distortion curve of the VAE. Our results show that, unlike typical regularization parameters, VAEs face "inevitable posterior collapse" beyond a certain beta threshold, regardless of dataset size. Moreover, the dataset-size dependence of the derived rate-distortion curve suggests that relatively large datasets are required to achieve a rate-distortion curve with high rates. These findings robustly explain generalization behavior observed in various real datasets with highly non-linear VAEs.
comment: 25 pages, 7 figures
♻ ☆ Feature Responsiveness Scores: Model-Agnostic Explanations for Recourse ICLR 2025
Machine learning models routinely automate decisions in applications like lending and hiring. In such settings, consumer protection rules require companies that deploy models to explain predictions to decision subjects. These rules are motivated, in part, by the belief that explanations can promote recourse by revealing information that individuals can use to contest or improve their outcomes. In practice, many companies comply with these rules by providing individuals with a list of the most important features for their prediction, which they identify based on feature importance scores from feature attribution methods such as SHAP or LIME. In this work, we show how these practices can undermine consumers by highlighting features that would not lead to an improved outcome and by explaining predictions that cannot be changed. We propose to address these issues by highlighting features based on their responsiveness score -- i.e., the probability that an individual can attain a target prediction by changing a specific feature. We develop efficient methods to compute responsiveness scores for any model and any dataset. We conduct an extensive empirical study on the responsiveness of explanations in lending. Our results show that standard practices in consumer finance can backfire by presenting consumers with reasons without recourse, and demonstrate how our approach improves consumer protection by highlighting responsive features and identifying fixed predictions.
comment: 10 pages, 9 figures in body, ICLR 2025
SkillMimic: Learning Basketball Interaction Skills from Demonstrations
Traditional reinforcement learning methods for human-object interaction (HOI) rely on labor-intensive, manually designed skill rewards that do not generalize well across different interactions. We introduce SkillMimic, a unified data-driven framework that fundamentally changes how agents learn interaction skills by eliminating the need for skill-specific rewards. Our key insight is that a unified HOI imitation reward can effectively capture the essence of diverse interaction patterns from HOI datasets. This enables SkillMimic to learn a single policy that not only masters multiple interaction skills but also facilitates skill transitions, with both diversity and generalization improving as the HOI dataset grows. For evaluation, we collect and introduce two basketball datasets containing approximately 35 minutes of diverse basketball skills. Extensive experiments show that SkillMimic successfully masters a wide range of basketball skills including stylistic variations in dribbling, layup, and shooting. Moreover, these learned skills can be effectively composed by a high-level controller to accomplish complex and long-horizon tasks such as consecutive scoring, opening new possibilities for scalable and generalizable interaction skill learning. Project page: https://ingrid789.github.io/SkillMimic/
♻ ☆ Tightening Robustness Verification of MaxPool-based Neural Networks via Minimizing the Over-Approximation Zone CVPR 2025
The robustness of neural network classifiers is important in the safety-critical domain and can be quantified by robustness verification. At present, efficient and scalable verification techniques are always sound but incomplete, and thus, the improvement of verified robustness results is the key criterion to evaluate the performance of incomplete verification approaches. The multi-variate function MaxPool is widely adopted yet challenging to verify. In this paper, we present Ti-Lin, a robustness verifier for MaxPool-based CNNs with Tight Linear Approximation. Following the sequel of minimizing the over-approximation zone of the non-linear function of CNNs, we are the first to propose the provably neuron-wise tightest linear bounds for the MaxPool function. By our proposed linear bounds, we can certify larger robustness results for CNNs. We evaluate the effectiveness of Ti-Lin on different verification frameworks with open-sourced benchmarks, including LeNet, PointNet, and networks trained on the MNIST, CIFAR-10, Tiny ImageNet and ModelNet40 datasets. Experimental results show that Ti-Lin significantly outperforms the state-of-the-art methods across all networks with up to 78.6% improvement in terms of the certified accuracy with almost the same time consumption as the fastest tool. Our code is available at https://github.com/xiaoyuanpigo/Ti-Lin-Hybrid-Lin.
comment: Accepted to CVPR 2025. Code Link: https://github.com/xiaoyuanpigo/Ti-Lin-Hybrid-Lin
♻ ☆ FedLWS: Federated Learning with Adaptive Layer-wise Weight Shrinking ICLR 2025
In Federated Learning (FL), weighted aggregation of local models is conducted to generate a new global model, and the aggregation weights are typically normalized to 1. A recent study identifies the global weight shrinking effect in FL, indicating an enhancement in the global model's generalization when the sum of weights (i.e., the shrinking factor) is smaller than 1, where how to learn the shrinking factor becomes crucial. However, principled approaches to this solution have not been carefully studied from the adequate consideration of privacy concerns and layer-wise distinctions. To this end, we propose a novel model aggregation strategy, Federated Learning with Adaptive Layer-wise Weight Shrinking (FedLWS), which adaptively designs the shrinking factor in a layer-wise manner and avoids optimizing the shrinking factors on a proxy dataset. We initially explored the factors affecting the shrinking factor during the training process. Then we calculate the layer-wise shrinking factors by considering the distinctions among each layer of the global model. FedLWS can be easily incorporated with various existing methods due to its flexibility. Extensive experiments under diverse scenarios demonstrate the superiority of our method over several state-of-the-art approaches, providing a promising tool for enhancing the global model in FL.
comment: Accepted in ICLR 2025
♻ ☆ Retrieval Backward Attention without Additional Training: Enhance Embeddings of Large Language Models via Repetition
Language models can be viewed as functions that embed text into Euclidean space, where the quality of the embedding vectors directly determines model performance, training such neural networks involves various uncertainties. This paper focuses on improving the performance of pre-trained language models in zero-shot settings through a simple and easily implementable method. We propose a novel backward attention mechanism to enhance contextual information encoding. Evaluated on the Chinese Massive Text Embedding Benchmark (C-MTEB), our approach achieves significant improvements across multiple tasks, providing valuable insights for advancing zero-shot learning capabilities.
♻ ☆ Asymptotic Unbiased Sample Sampling to Speed Up Sharpness-Aware Minimization
Sharpness-Aware Minimization (SAM) has emerged as a promising approach for effectively reducing the generalization error. However, SAM incurs twice the computational cost compared to base optimizer (e.g., SGD). We propose Asymptotic Unbiased Sampling with respect to iterations to accelerate SAM (AUSAM), which maintains the model's generalization capacity while significantly enhancing computational efficiency. Concretely, we probabilistically sample a subset of data points beneficial for SAM optimization based on a theoretically guaranteed criterion, i.e., the Gradient Norm of each Sample (GNS). We further approximate the GNS by the difference in loss values before and after perturbation in SAM. As a plug-and-play, architecture-agnostic method, our approach consistently accelerates SAM across a range of tasks and networks, i.e., classification, human pose estimation and network quantization. On CIFAR10/100 and Tiny-ImageNet, AUSAM achieves results comparable to SAM while providing a speedup of over 70%. Compared to recent dynamic data pruning methods, AUSAM is better suited for SAM and excels in maintaining performance. Additionally, AUSAM accelerates optimization in human pose estimation and model quantization without sacrificing performance, demonstrating its broad practicality.
♻ ☆ Population Transformer: Learning Population-level Representations of Neural Activity ICLR 2025
We present a self-supervised framework that learns population-level codes for arbitrary ensembles of neural recordings at scale. We address key challenges in scaling models with neural time-series data, namely, sparse and variable electrode distribution across subjects and datasets. The Population Transformer (PopT) stacks on top of pretrained temporal embeddings and enhances downstream decoding by enabling learned aggregation of multiple spatially-sparse data channels. The pretrained PopT lowers the amount of data required for downstream decoding experiments, while increasing accuracy, even on held-out subjects and tasks. Compared to end-to-end methods, this approach is computationally lightweight, while achieving similar or better decoding performance. We further show how our framework is generalizable to multiple time-series embeddings and neural data modalities. Beyond decoding, we interpret the pretrained and fine-tuned PopT models to show how they can be used to extract neuroscience insights from large amounts of data. We release our code as well as a pretrained PopT to enable off-the-shelf improvements in multi-channel intracranial data decoding and interpretability. Code is available at https://github.com/czlwang/PopulationTransformer.
comment: ICLR 2025, Project page https://glchau.github.io/population-transformer/
♻ ☆ StreamMind: Unlocking Full Frame Rate Streaming Video Dialogue through Event-Gated Cognition
With the rise of real-world human-AI interaction applications, such as AI assistants, the need for Streaming Video Dialogue is critical. To address this need, we introduce StreamMind, a video LLM framework that achieves ultra-FPS streaming video processing (100 fps on a single A100) and enables proactive, always-on responses in real time, without explicit user intervention. To solve the key challenge of the contradiction between linear video streaming speed and quadratic transformer computation cost, we propose a novel perception-cognition interleaving paradigm named ''event-gated LLM invocation'', in contrast to the existing per-time-step LLM invocation. By introducing a Cognition Gate network between the video encoder and the LLM, LLM is only invoked when relevant events occur. To realize the event feature extraction with constant cost, we propose Event-Preserving Feature Extractor (EPFE) based on state-space method, generating a single perception token for spatiotemporal features. These techniques enable the video LLM with full-FPS perception and real-time cognition response. Experiments on Ego4D and SoccerNet streaming tasks, as well as standard offline benchmarks, demonstrate state-of-the-art performance in both model capability and real-time efficiency, paving the way for ultra-high-FPS applications, such as Game AI and interactive media. The code and data is available at https://aka.ms/StreamMind.
♻ ☆ RILQ: Rank-Insensitive LoRA-based Quantization Error Compensation for Boosting 2-bit Large Language Model Accuracy AAAI 2025
Low-rank adaptation (LoRA) has become the dominant method for parameter-efficient LLM fine-tuning, with LoRA-based quantization error compensation (LQEC) emerging as a powerful tool for recovering accuracy in compressed LLMs. However, LQEC has underperformed in sub-4-bit scenarios, with no prior investigation into understanding this limitation. We propose RILQ (Rank-Insensitive LoRA-based Quantization Error Compensation) to understand fundamental limitation and boost 2-bit LLM accuracy. Based on rank analysis revealing model-wise activation discrepancy loss's rank-insensitive nature, RILQ employs this loss to adjust adapters cooperatively across layers, enabling robust error compensation with low-rank adapters. Evaluations on LLaMA-2 and LLaMA-3 demonstrate RILQ's consistent improvements in 2-bit quantized inference across various state-of-the-art quantizers and enhanced accuracy in task-specific fine-tuning. RILQ maintains computational efficiency comparable to existing LoRA methods, enabling adapter-merged weight-quantized LLM inference with significantly enhanced accuracy, making it a promising approach for boosting 2-bit LLM performance. Our code is available at https://github.com/aiha-lab/RILQ.
comment: Accepted at AAAI 2025
♻ ☆ FTS: A Framework to Find a Faithful TimeSieve
The field of time series forecasting has garnered significant attention in recent years, prompting the development of advanced models like TimeSieve, which demonstrates impressive performance. However, an analysis reveals certain unfaithfulness issues, including high sensitivity to random seeds and minute input noise perturbations. Recognizing these challenges, we embark on a quest to define the concept of \textbf{\underline{F}aithful \underline{T}ime\underline{S}ieve \underline{(FTS)}}, a model that consistently delivers reliable and robust predictions. To address these issues, we propose a novel framework aimed at identifying and rectifying unfaithfulness in TimeSieve. Our framework is designed to enhance the model's stability and resilience, ensuring that its outputs are less susceptible to the aforementioned factors. Experimentation validates the effectiveness of our proposed framework, demonstrating improved faithfulness in the model's behavior. Looking forward, we plan to expand our experimental scope to further validate and optimize our algorithm, ensuring comprehensive faithfulness across a wide range of scenarios. Ultimately, we aspire to make this framework can be applied to enhance the faithfulness of not just TimeSieve but also other state-of-the-art temporal methods, thereby contributing to the reliability and robustness of temporal modeling as a whole.
♻ ☆ ERSAM: Neural Architecture Search For Energy-Efficient and Real-Time Social Ambiance Measurement
Social ambiance describes the context in which social interactions happen, and can be measured using speech audio by counting the number of concurrent speakers. This measurement has enabled various mental health tracking and human-centric IoT applications. While on-device Socal Ambiance Measure (SAM) is highly desirable to ensure user privacy and thus facilitate wide adoption of the aforementioned applications, the required computational complexity of state-of-the-art deep neural networks (DNNs) powered SAM solutions stands at odds with the often constrained resources on mobile devices. Furthermore, only limited labeled data is available or practical when it comes to SAM under clinical settings due to various privacy constraints and the required human effort, further challenging the achievable accuracy of on-device SAM solutions. To this end, we propose a dedicated neural architecture search framework for Energy-efficient and Real-time SAM (ERSAM). Specifically, our ERSAM framework can automatically search for DNNs that push forward the achievable accuracy vs. hardware efficiency frontier of mobile SAM solutions. For example, ERSAM-delivered DNNs only consume 40 mW x 12 h energy and 0.05 seconds processing latency for a 5 seconds audio segment on a Pixel 3 phone, while only achieving an error rate of 14.3% on a social ambiance dataset generated by LibriSpeech. We can expect that our ERSAM framework can pave the way for ubiquitous on-device SAM solutions which are in growing demand.
comment: Accepted by ICASSP'23
♻ ☆ A Survey of Deep Graph Learning under Distribution Shifts: from Graph Out-of-Distribution Generalization to Adaptation
Distribution shifts on graphs -- the discrepancies in data distribution between training and employing a graph machine learning model -- are ubiquitous and often unavoidable in real-world scenarios. These shifts may severely deteriorate model performance, posing significant challenges for reliable graph machine learning. Consequently, there has been a surge in research on graph machine learning under distribution shifts, aiming to train models to achieve satisfactory performance on out-of-distribution (OOD) test data. In our survey, we provide an up-to-date and forward-looking review of deep graph learning under distribution shifts. Specifically, we cover three primary scenarios: graph OOD generalization, training-time graph OOD adaptation, and test-time graph OOD adaptation. We begin by formally formulating the problems and discussing various types of distribution shifts that can affect graph learning, such as covariate shifts and concept shifts. To provide a better understanding of the literature, we introduce a systematic taxonomy that classifies existing methods into model-centric and data-centric approaches, investigating the techniques used in each category. We also summarize commonly used datasets in this research area to facilitate further investigation. Finally, we point out promising research directions and the corresponding challenges to encourage further study in this vital domain. We also provide a continuously updated reading list at https://github.com/kaize0409/Awesome-Graph-OOD.
comment: 19 pages, 3 figures. arXiv admin note: text overlap with arXiv:2402.11153
♻ ☆ Dist Loss: Enhancing Regression in Few-Shot Region through Distribution Distance Constraint
Imbalanced data distributions are prevalent in real-world scenarios, posing significant challenges in both imbalanced classification and imbalanced regression tasks. They often cause deep learning models to overfit in areas of high sample density (many-shot regions) while underperforming in areas of low sample density (few-shot regions). This characteristic restricts the utility of deep learning models in various sectors, notably healthcare, where areas with few-shot data hold greater clinical relevance. While recent studies have shown the benefits of incorporating distribution information in imbalanced classification tasks, such strategies are rarely explored in imbalanced regression. In this paper, we address this issue by introducing a novel loss function, termed Dist Loss, designed to minimize the distribution distance between the model's predictions and the target labels in a differentiable manner, effectively integrating distribution information into model training. Dist Loss enables deep learning models to regularize their output distribution during training, effectively enhancing their focus on few-shot regions. We have conducted extensive experiments across three datasets spanning computer vision and healthcare: IMDB-WIKI-DIR, AgeDB-DIR, and ECG-Ka-DIR. The results demonstrate that Dist Loss effectively mitigates the negative impact of imbalanced data distribution on model performance, achieving state-of-the-art results in sparse data regions. Furthermore, Dist Loss is easy to integrate, complementing existing methods.
♻ ☆ AnyAttack: Towards Large-scale Self-supervised Adversarial Attacks on Vision-language Models CVPR 2025
Due to their multimodal capabilities, Vision-Language Models (VLMs) have found numerous impactful applications in real-world scenarios. However, recent studies have revealed that VLMs are vulnerable to image-based adversarial attacks. Traditional targeted adversarial attacks require specific targets and labels, limiting their real-world impact.We present AnyAttack, a self-supervised framework that transcends the limitations of conventional attacks through a novel foundation model approach. By pre-training on the massive LAION-400M dataset without label supervision, AnyAttack achieves unprecedented flexibility - enabling any image to be transformed into an attack vector targeting any desired output across different VLMs.This approach fundamentally changes the threat landscape, making adversarial capabilities accessible at an unprecedented scale. Our extensive validation across five open-source VLMs (CLIP, BLIP, BLIP2, InstructBLIP, and MiniGPT-4) demonstrates AnyAttack's effectiveness across diverse multimodal tasks. Most concerning, AnyAttack seamlessly transfers to commercial systems including Google Gemini, Claude Sonnet, Microsoft Copilot and OpenAI GPT, revealing a systemic vulnerability requiring immediate attention.
comment: CVPR 2025
♻ ☆ DRExplainer: Quantifiable Interpretability in Drug Response Prediction with Directed Graph Convolutional Network
Predicting the response of a cancer cell line to a therapeutic drug is pivotal for personalized medicine. Despite numerous deep learning methods that have been developed for drug response prediction, integrating diverse information about biological entities and predicting the directional response remain major challenges. Here, we propose a novel interpretable predictive model, DRExplainer, which leverages a directed graph convolutional network to enhance the prediction in a directed bipartite network framework. DRExplainer constructs a directed bipartite network integrating multi-omics profiles of cell lines, the chemical structure of drugs and known drug response to achieve directed prediction. Then, DRExplainer identifies the most relevant subgraph to each prediction in this directed bipartite network by learning a mask, facilitating critical medical decision-making. Additionally, we introduce a quantifiable method for model interpretability that leverages a ground truth benchmark dataset curated from biological features. In computational experiments, DRExplainer outperforms state-of-the-art predictive methods and another graph-based explanation method under the same experimental setting. Finally, the case studies further validate the interpretability and the effectiveness of DRExplainer in predictive novel drug response. Our code is available at: https://github.com/vshy-dream/DRExplainer.
♻ ☆ Dynamics-Guided Diffusion Model for Sensor-less Robot Manipulator Design
We present Dynamics-Guided Diffusion Model (DGDM), a data-driven framework for generating task-specific manipulator designs without task-specific training. Given object shapes and task specifications, DGDM generates sensor-less manipulator designs that can blindly manipulate objects towards desired motions and poses using an open-loop parallel motion. This framework 1) flexibly represents manipulation tasks as interaction profiles, 2) represents the design space using a geometric diffusion model, and 3) efficiently searches this design space using the gradients provided by a dynamics network trained without any task information. We evaluate DGDM on various manipulation tasks ranging from shifting/rotating objects to converging objects to a specific pose. Our generated designs outperform optimization-based and unguided diffusion baselines relatively by 31.5% and 45.3% on average success rate. With the ability to generate a new design within 0.8s, DGDM facilitates rapid design iteration and enhances the adoption of data-driven approaches for robot mechanism design. Qualitative results are best viewed on our project website https://dgdm-robot.github.io/.
♻ ☆ Auditing language models for hidden objectives
We study the feasibility of conducting alignment audits: investigations into whether models have undesired objectives. As a testbed, we train a language model with a hidden objective. Our training pipeline first teaches the model about exploitable errors in RLHF reward models (RMs), then trains the model to exploit some of these errors. We verify via out-of-distribution evaluations that the model generalizes to exhibit whatever behaviors it believes RMs rate highly, including ones not reinforced during training. We leverage this model to study alignment audits in two ways. First, we conduct a blind auditing game where four teams, unaware of the model's hidden objective or training, investigate it for concerning behaviors and their causes. Three teams successfully uncovered the model's hidden objective using techniques including interpretability with sparse autoencoders (SAEs), behavioral attacks, and training data analysis. Second, we conduct an unblinded follow-up study of eight techniques for auditing the model, analyzing their strengths and limitations. Overall, our work provides a concrete example of using alignment audits to discover a model's hidden objective and proposes a methodology for practicing and validating progress in alignment auditing.
♻ ☆ DANCE: DAta-Network Co-optimization for Efficient Segmentation Model Training and Inference
Semantic segmentation for scene understanding is nowadays widely demanded, raising significant challenges for the algorithm efficiency, especially its applications on resource-limited platforms. Current segmentation models are trained and evaluated on massive high-resolution scene images ("data level") and suffer from the expensive computation arising from the required multi-scale aggregation("network level"). In both folds, the computational and energy costs in training and inference are notable due to the often desired large input resolutions and heavy computational burden of segmentation models. To this end, we propose DANCE, general automated DAta-Network Co-optimization for Efficient segmentation model training and inference. Distinct from existing efficient segmentation approaches that focus merely on light-weight network design, DANCE distinguishes itself as an automated simultaneous data-network co-optimization via both input data manipulation and network architecture slimming. Specifically, DANCE integrates automated data slimming which adaptively downsamples/drops input images and controls their corresponding contribution to the training loss guided by the images' spatial complexity. Such a downsampling operation, in addition to slimming down the cost associated with the input size directly, also shrinks the dynamic range of input object and context scales, therefore motivating us to also adaptively slim the network to match the downsampled data. Extensive experiments and ablating studies (on four SOTA segmentation models with three popular segmentation datasets under two training settings) demonstrate that DANCE can achieve "all-win" towards efficient segmentation(reduced training cost, less expensive inference, and better mean Intersection-over-Union (mIoU)).
comment: 16 pages, 6 figures
♻ ☆ How Can Time Series Analysis Benefit From Multiple Modalities? A Survey and Outlook
Time series analysis (TSA) is a longstanding research topic in the data mining community and has wide real-world significance. Compared to "richer" modalities such as language and vision, which have recently experienced explosive development and are densely connected, the time-series modality remains relatively underexplored and isolated. We notice that many recent TSA works have formed a new research field, i.e., Multiple Modalities for TSA (MM4TSA). In general, these MM4TSA works follow a common motivation: how TSA can benefit from multiple modalities. This survey is the first to offer a comprehensive review and a detailed outlook for this emerging field. Specifically, we systematically discuss three benefits: (1) reusing foundation models of other modalities for efficient TSA, (2) multimodal extension for enhanced TSA, and (3) cross-modality interaction for advanced TSA. We further group the works by the introduced modality type, including text, images, audio, tables, and others, within each perspective. Finally, we identify the gaps with future opportunities, including the reused modalities selections, heterogeneous modality combinations, and unseen tasks generalizations, corresponding to the three benefits. We release an up-to-date GitHub repository that includes key papers and resources.
comment: Github Repo: https://github.com/AdityaLab/MM4TSA
Computer Vision and Pattern Recognition 249
☆ Semantic Library Adaptation: LoRA Retrieval and Fusion for Open-Vocabulary Semantic Segmentation CVPR 2025
Open-vocabulary semantic segmentation models associate vision and text to label pixels from an undefined set of classes using textual queries, providing versatile performance on novel datasets. However, large shifts between training and test domains degrade their performance, requiring fine-tuning for effective real-world applications. We introduce Semantic Library Adaptation (SemLA), a novel framework for training-free, test-time domain adaptation. SemLA leverages a library of LoRA-based adapters indexed with CLIP embeddings, dynamically merging the most relevant adapters based on proximity to the target domain in the embedding space. This approach constructs an ad-hoc model tailored to each specific input without additional training. Our method scales efficiently, enhances explainability by tracking adapter contributions, and inherently protects data privacy, making it ideal for sensitive applications. Comprehensive experiments on a 20-domain benchmark built over 10 standard datasets demonstrate SemLA's superior adaptability and performance across diverse settings, establishing a new standard in domain adaptation for open-vocabulary semantic segmentation.
comment: CVPR 2025. Project page: https://thegoodailab.org/semla Code: https://github.com/rezaqorbani/SemLA
VideoMage: Multi-Subject and Motion Customization of Text-to-Video Diffusion Models CVPR 2025
Customized text-to-video generation aims to produce high-quality videos that incorporate user-specified subject identities or motion patterns. However, existing methods mainly focus on personalizing a single concept, either subject identity or motion pattern, limiting their effectiveness for multiple subjects with the desired motion patterns. To tackle this challenge, we propose a unified framework VideoMage for video customization over both multiple subjects and their interactive motions. VideoMage employs subject and motion LoRAs to capture personalized content from user-provided images and videos, along with an appearance-agnostic motion learning approach to disentangle motion patterns from visual appearance. Furthermore, we develop a spatial-temporal composition scheme to guide interactions among subjects within the desired motion patterns. Extensive experiments demonstrate that VideoMage outperforms existing methods, generating coherent, user-controlled videos with consistent subject identities and interactions.
comment: CVPR 2025. Project Page: https://jasper0314-huang.github.io/videomage-customization
☆ Mobile-VideoGPT: Fast and Accurate Video Understanding Language Model
Video understanding models often struggle with high computational requirements, extensive parameter counts, and slow inference speed, making them inefficient for practical use. To tackle these challenges, we propose Mobile-VideoGPT, an efficient multimodal framework designed to operate with fewer than a billion parameters. Unlike traditional video large multimodal models (LMMs), Mobile-VideoGPT consists of lightweight dual visual encoders, efficient projectors, and a small language model (SLM), enabling real-time throughput. To further improve efficiency, we present an Attention-Based Frame Scoring mechanism to select the key-frames, along with an efficient token projector that prunes redundant visual tokens and preserves essential contextual cues. We evaluate our model across well-established six video understanding benchmarks (e.g., MVBench, EgoSchema, NextQA, and PercepTest). Our results show that Mobile-VideoGPT-0.5B can generate up to 46 tokens per second while outperforming existing state-of-the-art 0.5B-parameter models by 6 points on average with 40% fewer parameters and more than 2x higher throughput. Our code and models are publicly available at: https://github.com/Amshaker/Mobile-VideoGPT.
comment: Technical Report. Project Page: https://amshaker.github.io/Mobile-VideoGPT
☆ X$^{2}$-Gaussian: 4D Radiative Gaussian Splatting for Continuous-time Tomographic Reconstruction
Four-dimensional computed tomography (4D CT) reconstruction is crucial for capturing dynamic anatomical changes but faces inherent limitations from conventional phase-binning workflows. Current methods discretize temporal resolution into fixed phases with respiratory gating devices, introducing motion misalignment and restricting clinical practicality. In this paper, We propose X$^2$-Gaussian, a novel framework that enables continuous-time 4D-CT reconstruction by integrating dynamic radiative Gaussian splatting with self-supervised respiratory motion learning. Our approach models anatomical dynamics through a spatiotemporal encoder-decoder architecture that predicts time-varying Gaussian deformations, eliminating phase discretization. To remove dependency on external gating devices, we introduce a physiology-driven periodic consistency loss that learns patient-specific breathing cycles directly from projections via differentiable optimization. Extensive experiments demonstrate state-of-the-art performance, achieving a 9.93 dB PSNR gain over traditional methods and 2.25 dB improvement against prior Gaussian splatting techniques. By unifying continuous motion modeling with hardware-free period learning, X$^2$-Gaussian advances high-fidelity 4D CT reconstruction for dynamic clinical imaging. Project website at: https://x2-gaussian.github.io/.
comment: Project Page: https://x2-gaussian.github.io/
☆ HS-SLAM: Hybrid Representation with Structural Supervision for Improved Dense SLAM ICRA 2025
NeRF-based SLAM has recently achieved promising results in tracking and reconstruction. However, existing methods face challenges in providing sufficient scene representation, capturing structural information, and maintaining global consistency in scenes emerging significant movement or being forgotten. To this end, we present HS-SLAM to tackle these problems. To enhance scene representation capacity, we propose a hybrid encoding network that combines the complementary strengths of hash-grid, tri-planes, and one-blob, improving the completeness and smoothness of reconstruction. Additionally, we introduce structural supervision by sampling patches of non-local pixels rather than individual rays to better capture the scene structure. To ensure global consistency, we implement an active global bundle adjustment (BA) to eliminate camera drifts and mitigate accumulative errors. Experimental results demonstrate that HS-SLAM outperforms the baselines in tracking and reconstruction accuracy while maintaining the efficiency required for robotics.
comment: ICRA 2025. Project Page: https://zorangong.github.io/HS-SLAM/
☆ Test-Time Visual In-Context Tuning CVPR 2025
Visual in-context learning (VICL), as a new paradigm in computer vision, allows the model to rapidly adapt to various tasks with only a handful of prompts and examples. While effective, the existing VICL paradigm exhibits poor generalizability under distribution shifts. In this work, we propose test-time Visual In-Context Tuning (VICT), a method that can adapt VICL models on the fly with a single test sample. Specifically, we flip the role between the task prompts and the test sample and use a cycle consistency loss to reconstruct the original task prompt output. Our key insight is that a model should be aware of a new test distribution if it can successfully recover the original task prompts. Extensive experiments on six representative vision tasks ranging from high-level visual understanding to low-level image processing, with 15 common corruptions, demonstrate that our VICT can improve the generalizability of VICL to unseen new domains. In addition, we show the potential of applying VICT for unseen tasks at test time. Code: https://github.com/Jiahao000/VICT.
comment: CVPR 2025. Code: https://github.com/Jiahao000/VICT
Video-R1: Reinforcing Video Reasoning in MLLMs
Inspired by DeepSeek-R1's success in eliciting reasoning abilities through rule-based reinforcement learning (RL), we introduce Video-R1 as the first attempt to systematically explore the R1 paradigm for eliciting video reasoning within multimodal large language models (MLLMs). However, directly applying RL training with the GRPO algorithm to video reasoning presents two primary challenges: (i) a lack of temporal modeling for video reasoning, and (ii) the scarcity of high-quality video-reasoning data. To address these issues, we first propose the T-GRPO algorithm, which encourages models to utilize temporal information in videos for reasoning. Additionally, instead of relying solely on video data, we incorporate high-quality image-reasoning data into the training process. We have constructed two datasets: Video-R1-COT-165k for SFT cold start and Video-R1-260k for RL training, both comprising image and video data. Experimental results demonstrate that Video-R1 achieves significant improvements on video reasoning benchmarks such as VideoMMMU and VSI-Bench, as well as on general video benchmarks including MVBench and TempCompass, etc. Notably, Video-R1-7B attains a 35.8% accuracy on video spatial reasoning benchmark VSI-bench, surpassing the commercial proprietary model GPT-4o. All codes, models, data are released.
comment: Project page: https://github.com/tulerfeng/Video-R1
☆ Optimal Stepsize for Diffusion Sampling
Diffusion models achieve remarkable generation quality but suffer from computational intensive sampling due to suboptimal step discretization. While existing works focus on optimizing denoising directions, we address the principled design of stepsize schedules. This paper proposes Optimal Stepsize Distillation, a dynamic programming framework that extracts theoretically optimal schedules by distilling knowledge from reference trajectories. By reformulating stepsize optimization as recursive error minimization, our method guarantees global discretization bounds through optimal substructure exploitation. Crucially, the distilled schedules demonstrate strong robustness across architectures, ODE solvers, and noise schedules. Experiments show 10x accelerated text-to-image generation while preserving 99.4% performance on GenEval. Our code is available at https://github.com/bebebe666/OptimalSteps.
☆ StyleMotif: Multi-Modal Motion Stylization using Style-Content Cross Fusion
We present StyleMotif, a novel Stylized Motion Latent Diffusion model, generating motion conditioned on both content and style from multiple modalities. Unlike existing approaches that either focus on generating diverse motion content or transferring style from sequences, StyleMotif seamlessly synthesizes motion across a wide range of content while incorporating stylistic cues from multi-modal inputs, including motion, text, image, video, and audio. To achieve this, we introduce a style-content cross fusion mechanism and align a style encoder with a pre-trained multi-modal model, ensuring that the generated motion accurately captures the reference style while preserving realism. Extensive experiments demonstrate that our framework surpasses existing methods in stylized motion generation and exhibits emergent capabilities for multi-modal motion stylization, enabling more nuanced motion synthesis. Source code and pre-trained models will be released upon acceptance. Project Page: https://stylemotif.github.io
comment: Project Page: https://stylemotif.github.io
☆ LOCORE: Image Re-ranking with Long-Context Sequence Modeling CVPR 2025
We introduce LOCORE, Long-Context Re-ranker, a model that takes as input local descriptors corresponding to an image query and a list of gallery images and outputs similarity scores between the query and each gallery image. This model is used for image retrieval, where typically a first ranking is performed with an efficient similarity measure, and then a shortlist of top-ranked images is re-ranked based on a more fine-grained similarity measure. Compared to existing methods that perform pair-wise similarity estimation with local descriptors or list-wise re-ranking with global descriptors, LOCORE is the first method to perform list-wise re-ranking with local descriptors. To achieve this, we leverage efficient long-context sequence models to effectively capture the dependencies between query and gallery images at the local-descriptor level. During testing, we process long shortlists with a sliding window strategy that is tailored to overcome the context size limitations of sequence models. Our approach achieves superior performance compared with other re-rankers on established image retrieval benchmarks of landmarks (ROxf and RPar), products (SOP), fashion items (In-Shop), and bird species (CUB-200) while having comparable latency to the pair-wise local descriptor re-rankers.
comment: CVPR 2025
☆ A Unified Image-Dense Annotation Generation Model for Underwater Scenes CVPR 2025
Underwater dense prediction, especially depth estimation and semantic segmentation, is crucial for gaining a comprehensive understanding of underwater scenes. Nevertheless, high-quality and large-scale underwater datasets with dense annotations remain scarce because of the complex environment and the exorbitant data collection costs. This paper proposes a unified Text-to-Image and DEnse annotation generation method (TIDE) for underwater scenes. It relies solely on text as input to simultaneously generate realistic underwater images and multiple highly consistent dense annotations. Specifically, we unify the generation of text-to-image and text-to-dense annotations within a single model. The Implicit Layout Sharing mechanism (ILS) and cross-modal interaction method called Time Adaptive Normalization (TAN) are introduced to jointly optimize the consistency between image and dense annotations. We synthesize a large-scale underwater dataset using TIDE to validate the effectiveness of our method in underwater dense prediction tasks. The results demonstrate that our method effectively improves the performance of existing underwater dense prediction models and mitigates the scarcity of underwater data with dense annotations. We hope our method can offer new perspectives on alleviating data scarcity issues in other fields. The code is available at https: //github.com/HongkLin/TIDE.
comment: Accepted by CVPR 2025. The code is available at https: //github.com/HongkLin/TIDE
☆ Visual Jenga: Discovering Object Dependencies via Counterfactual Inpainting
This paper proposes a novel scene understanding task called Visual Jenga. Drawing inspiration from the game Jenga, the proposed task involves progressively removing objects from a single image until only the background remains. Just as Jenga players must understand structural dependencies to maintain tower stability, our task reveals the intrinsic relationships between scene elements by systematically exploring which objects can be removed while preserving scene coherence in both physical and geometric sense. As a starting point for tackling the Visual Jenga task, we propose a simple, data-driven, training-free approach that is surprisingly effective on a range of real-world images. The principle behind our approach is to utilize the asymmetry in the pairwise relationships between objects within a scene and employ a large inpainting model to generate a set of counterfactuals to quantify the asymmetry.
comment: project page: https://visualjenga.github.io/
☆ Semantic Consistent Language Gaussian Splatting for Point-Level Open-vocabulary Querying
Open-vocabulary querying in 3D Gaussian Splatting aims to identify semantically relevant regions within a 3D Gaussian representation based on a given text query. Prior work, such as LangSplat, addressed this task by retrieving these regions in the form of segmentation masks on 2D renderings. More recently, OpenGaussian introduced point-level querying, which directly selects a subset of 3D Gaussians. In this work, we propose a point-level querying method that builds upon LangSplat's framework. Our approach improves the framework in two key ways: (a) we leverage masklets from the Segment Anything Model 2 (SAM2) to establish semantic consistent ground-truth for distilling the language Gaussians; (b) we introduces a novel two-step querying approach that first retrieves the distilled ground-truth and subsequently uses the ground-truth to query the individual Gaussians. Experimental evaluations on three benchmark datasets demonstrate that the proposed method achieves better performance compared to state-of-the-art approaches. For instance, our method achieves an mIoU improvement of +20.42 on the 3D-OVS dataset.
☆ Stable-SCore: A Stable Registration-based Framework for 3D Shape Correspondence CVPR 2025
Establishing character shape correspondence is a critical and fundamental task in computer vision and graphics, with diverse applications including re-topology, attribute transfer, and shape interpolation. Current dominant functional map methods, while effective in controlled scenarios, struggle in real situations with more complex challenges such as non-isometric shape discrepancies. In response, we revisit registration-for-correspondence methods and tap their potential for more stable shape correspondence estimation. To overcome their common issues including unstable deformations and the necessity for careful pre-alignment or high-quality initial 3D correspondences, we introduce Stable-SCore: A Stable Registration-based Framework for 3D Shape Correspondence. We first re-purpose a foundation model for 2D character correspondence that ensures reliable and stable 2D mappings. Crucially, we propose a novel Semantic Flow Guided Registration approach that leverages 2D correspondence to guide mesh deformations. Our framework significantly surpasses existing methods in challenging scenarios, and brings possibilities for a wide array of real applications, as demonstrated in our results.
comment: Accepted by CVPR 2025. Homepage: https://haolinliu97.github.io/Stable-Score/
☆ Exploring the Evolution of Physics Cognition in Video Generation: A Survey
Recent advancements in video generation have witnessed significant progress, especially with the rapid advancement of diffusion models. Despite this, their deficiencies in physical cognition have gradually received widespread attention - generated content often violates the fundamental laws of physics, falling into the dilemma of ''visual realism but physical absurdity". Researchers began to increasingly recognize the importance of physical fidelity in video generation and attempted to integrate heuristic physical cognition such as motion representations and physical knowledge into generative systems to simulate real-world dynamic scenarios. Considering the lack of a systematic overview in this field, this survey aims to provide a comprehensive summary of architecture designs and their applications to fill this gap. Specifically, we discuss and organize the evolutionary process of physical cognition in video generation from a cognitive science perspective, while proposing a three-tier taxonomy: 1) basic schema perception for generation, 2) passive cognition of physical knowledge for generation, and 3) active cognition for world simulation, encompassing state-of-the-art methods, classical paradigms, and benchmarks. Subsequently, we emphasize the inherent key challenges in this domain and delineate potential pathways for future research, contributing to advancing the frontiers of discussion in both academia and industry. Through structured review and interdisciplinary analysis, this survey aims to provide directional guidance for developing interpretable, controllable, and physically consistent video generation paradigms, thereby propelling generative models from the stage of ''visual mimicry'' towards a new phase of ''human-like physical comprehension''.
comment: A comprehensive list of papers studied in this survey is available at https://github.com/minnie-lin/Awesome-Physics-Cognition-based-Video-Generation
☆ Uni4D: Unifying Visual Foundation Models for 4D Modeling from a Single Video CVPR 2025
This paper presents a unified approach to understanding dynamic scenes from casual videos. Large pretrained vision foundation models, such as vision-language, video depth prediction, motion tracking, and segmentation models, offer promising capabilities. However, training a single model for comprehensive 4D understanding remains challenging. We introduce Uni4D, a multi-stage optimization framework that harnesses multiple pretrained models to advance dynamic 3D modeling, including static/dynamic reconstruction, camera pose estimation, and dense 3D motion tracking. Our results show state-of-the-art performance in dynamic 4D modeling with superior visual quality. Notably, Uni4D requires no retraining or fine-tuning, highlighting the effectiveness of repurposing visual foundation models for 4D understanding.
comment: CVPR 2025. Project page (with code): https://davidyao99.github.io/uni4d
☆ Fwd2Bot: LVLM Visual Token Compression with Double Forward Bottleneck
In this work, we aim to compress the vision tokens of a Large Vision Language Model (LVLM) into a representation that is simultaneously suitable for (a) generative and (b) discriminative tasks, (c) is nearly lossless, and (d) is storage-efficient. We propose a novel compression approach, called Fwd2Bot, that uses the LVLM itself to compress the visual information in a task-agnostic manner. At the core of Fwd2bot there exists a "double-forward pass" training strategy, whereby, during the first forward pass, the LLM (of the LVLM) creates a bottleneck by condensing the visual information into a small number of summary tokens. Then, using the same LLM, the second forward pass processes the language instruction(s) alongside the summary tokens, used as a direct replacement for the image ones. The training signal is provided by two losses: an autoregressive one applied after the second pass that provides a direct optimization objective for compression, and a contrastive loss, applied after the first pass, that further boosts the representation strength, especially for discriminative tasks. The training is further enhanced by stage-specific adapters. We accompany the proposed method by an in-depth ablation study. Overall, Fwd2Bot results in highly-informative compressed representations suitable for both generative and discriminative tasks. For generative tasks, we offer a 2x higher compression rate without compromising the generative capabilities, setting a new state-of-the-art result. For discriminative tasks, we set a new state-of-the-art on image retrieval and compositionality.
☆ Lumina-Image 2.0: A Unified and Efficient Image Generative Framework
We introduce Lumina-Image 2.0, an advanced text-to-image generation framework that achieves significant progress compared to previous work, Lumina-Next. Lumina-Image 2.0 is built upon two key principles: (1) Unification - it adopts a unified architecture (Unified Next-DiT) that treats text and image tokens as a joint sequence, enabling natural cross-modal interactions and allowing seamless task expansion. Besides, since high-quality captioners can provide semantically well-aligned text-image training pairs, we introduce a unified captioning system, Unified Captioner (UniCap), specifically designed for T2I generation tasks. UniCap excels at generating comprehensive and accurate captions, accelerating convergence and enhancing prompt adherence. (2) Efficiency - to improve the efficiency of our proposed model, we develop multi-stage progressive training strategies and introduce inference acceleration techniques without compromising image quality. Extensive evaluations on academic benchmarks and public text-to-image arenas show that Lumina-Image 2.0 delivers strong performances even with only 2.6B parameters, highlighting its scalability and design efficiency. We have released our training details, code, and models at https://github.com/Alpha-VLLM/Lumina-Image-2.0.
comment: Tech Report, 21 pages, 12 figures
☆ VBench-2.0: Advancing Video Generation Benchmark Suite for Intrinsic Faithfulness
Video generation has advanced significantly, evolving from producing unrealistic outputs to generating videos that appear visually convincing and temporally coherent. To evaluate these video generative models, benchmarks such as VBench have been developed to assess their faithfulness, measuring factors like per-frame aesthetics, temporal consistency, and basic prompt adherence. However, these aspects mainly represent superficial faithfulness, which focus on whether the video appears visually convincing rather than whether it adheres to real-world principles. While recent models perform increasingly well on these metrics, they still struggle to generate videos that are not just visually plausible but fundamentally realistic. To achieve real "world models" through video generation, the next frontier lies in intrinsic faithfulness to ensure that generated videos adhere to physical laws, commonsense reasoning, anatomical correctness, and compositional integrity. Achieving this level of realism is essential for applications such as AI-assisted filmmaking and simulated world modeling. To bridge this gap, we introduce VBench-2.0, a next-generation benchmark designed to automatically evaluate video generative models for their intrinsic faithfulness. VBench-2.0 assesses five key dimensions: Human Fidelity, Controllability, Creativity, Physics, and Commonsense, each further broken down into fine-grained capabilities. Tailored for individual dimensions, our evaluation framework integrates generalists such as state-of-the-art VLMs and LLMs, and specialists, including anomaly detection methods proposed for video generation. We conduct extensive annotations to ensure alignment with human judgment. By pushing beyond superficial faithfulness toward intrinsic faithfulness, VBench-2.0 aims to set a new standard for the next generation of video generative models in pursuit of intrinsic faithfulness.
comment: Equal contributions from first two authors. Project page: https://vchitect.github.io/VBench-2.0-project/ Code: https://github.com/Vchitect/VBench
☆ Reconstructing Humans with a Biomechanically Accurate Skeleton CVPR 2025
In this paper, we introduce a method for reconstructing 3D humans from a single image using a biomechanically accurate skeleton model. To achieve this, we train a transformer that takes an image as input and estimates the parameters of the model. Due to the lack of training data for this task, we build a pipeline to produce pseudo ground truth model parameters for single images and implement a training procedure that iteratively refines these pseudo labels. Compared to state-of-the-art methods for 3D human mesh recovery, our model achieves competitive performance on standard benchmarks, while it significantly outperforms them in settings with extreme 3D poses and viewpoints. Additionally, we show that previous reconstruction methods frequently violate joint angle limits, leading to unnatural rotations. In contrast, our approach leverages the biomechanically plausible degrees of freedom making more realistic joint rotation estimates. We validate our approach across multiple human pose estimation benchmarks. We make the code, models and data available at: https://isshikihugh.github.io/HSMR/
comment: CVPR 2025. Project Webpage: https://isshikihugh.github.io/HSMR/
☆ LeX-Art: Rethinking Text Generation via Scalable High-Quality Data Synthesis
We introduce LeX-Art, a comprehensive suite for high-quality text-image synthesis that systematically bridges the gap between prompt expressiveness and text rendering fidelity. Our approach follows a data-centric paradigm, constructing a high-quality data synthesis pipeline based on Deepseek-R1 to curate LeX-10K, a dataset of 10K high-resolution, aesthetically refined 1024$\times$1024 images. Beyond dataset construction, we develop LeX-Enhancer, a robust prompt enrichment model, and train two text-to-image models, LeX-FLUX and LeX-Lumina, achieving state-of-the-art text rendering performance. To systematically evaluate visual text generation, we introduce LeX-Bench, a benchmark that assesses fidelity, aesthetics, and alignment, complemented by Pairwise Normalized Edit Distance (PNED), a novel metric for robust text accuracy evaluation. Experiments demonstrate significant improvements, with LeX-Lumina achieving a 79.81% PNED gain on CreateBench, and LeX-FLUX outperforming baselines in color (+3.18%), positional (+4.45%), and font accuracy (+3.81%). Our codes, models, datasets, and demo are publicly available.
comment: Project page: https://zhaoshitian.github.io/lexart/
☆ CTRL-O: Language-Controllable Object-Centric Visual Representation Learning CVPR 2025
Object-centric representation learning aims to decompose visual scenes into fixed-size vectors called "slots" or "object files", where each slot captures a distinct object. Current state-of-the-art object-centric models have shown remarkable success in object discovery in diverse domains, including complex real-world scenes. However, these models suffer from a key limitation: they lack controllability. Specifically, current object-centric models learn representations based on their preconceived understanding of objects, without allowing user input to guide which objects are represented. Introducing controllability into object-centric models could unlock a range of useful capabilities, such as the ability to extract instance-specific representations from a scene. In this work, we propose a novel approach for user-directed control over slot representations by conditioning slots on language descriptions. The proposed ConTRoLlable Object-centric representation learning approach, which we term CTRL-O, achieves targeted object-language binding in complex real-world scenes without requiring mask supervision. Next, we apply these controllable slot representations on two downstream vision language tasks: text-to-image generation and visual question answering. The proposed approach enables instance-specific text-to-image generation and also achieves strong performance on visual question answering.
comment: Accepted at CVPR 2025
☆ 3DGen-Bench: Comprehensive Benchmark Suite for 3D Generative Models
3D generation is experiencing rapid advancements, while the development of 3D evaluation has not kept pace. How to keep automatic evaluation equitably aligned with human perception has become a well-recognized challenge. Recent advances in the field of language and image generation have explored human preferences and showcased respectable fitting ability. However, the 3D domain still lacks such a comprehensive preference dataset over generative models. To mitigate this absence, we develop 3DGen-Arena, an integrated platform in a battle manner. Then, we carefully design diverse text and image prompts and leverage the arena platform to gather human preferences from both public users and expert annotators, resulting in a large-scale multi-dimension human preference dataset 3DGen-Bench. Using this dataset, we further train a CLIP-based scoring model, 3DGen-Score, and a MLLM-based automatic evaluator, 3DGen-Eval. These two models innovatively unify the quality evaluation of text-to-3D and image-to-3D generation, and jointly form our automated evaluation system with their respective strengths. Extensive experiments demonstrate the efficacy of our scoring model in predicting human preferences, exhibiting a superior correlation with human ranks compared to existing metrics. We believe that our 3DGen-Bench dataset and automated evaluation system will foster a more equitable evaluation in the field of 3D generation, further promoting the development of 3D generative models and their downstream applications.
☆ SparseFlex: High-Resolution and Arbitrary-Topology 3D Shape Modeling
Creating high-fidelity 3D meshes with arbitrary topology, including open surfaces and complex interiors, remains a significant challenge. Existing implicit field methods often require costly and detail-degrading watertight conversion, while other approaches struggle with high resolutions. This paper introduces SparseFlex, a novel sparse-structured isosurface representation that enables differentiable mesh reconstruction at resolutions up to $1024^3$ directly from rendering losses. SparseFlex combines the accuracy of Flexicubes with a sparse voxel structure, focusing computation on surface-adjacent regions and efficiently handling open surfaces. Crucially, we introduce a frustum-aware sectional voxel training strategy that activates only relevant voxels during rendering, dramatically reducing memory consumption and enabling high-resolution training. This also allows, for the first time, the reconstruction of mesh interiors using only rendering supervision. Building upon this, we demonstrate a complete shape modeling pipeline by training a variational autoencoder (VAE) and a rectified flow transformer for high-quality 3D shape generation. Our experiments show state-of-the-art reconstruction accuracy, with a ~82% reduction in Chamfer Distance and a ~88% increase in F-score compared to previous methods, and demonstrate the generation of high-resolution, detailed 3D shapes with arbitrary topology. By enabling high-resolution, differentiable mesh reconstruction and generation with rendering losses, SparseFlex significantly advances the state-of-the-art in 3D shape representation and modeling.
comment: Project page: https://xianglonghe.github.io/TripoSF
☆ OccRobNet : Occlusion Robust Network for Accurate 3D Interacting Hand-Object Pose Estimation
Occlusion is one of the challenging issues when estimating 3D hand pose. This problem becomes more prominent when hand interacts with an object or two hands are involved. In the past works, much attention has not been given to these occluded regions. But these regions contain important and beneficial information that is vital for 3D hand pose estimation. Thus, in this paper, we propose an occlusion robust and accurate method for the estimation of 3D hand-object pose from the input RGB image. Our method includes first localising the hand joints using a CNN based model and then refining them by extracting contextual information. The self attention transformer then identifies the specific joints along with the hand identity. This helps the model to identify the hand belongingness of a particular joint which helps to detect the joint even in the occluded region. Further, these joints with hand identity are then used to estimate the pose using cross attention mechanism. Thus, by identifying the joints in the occluded region, the obtained network becomes robust to occlusion. Hence, this network achieves state-of-the-art results when evaluated on the InterHand2.6M, HO3D and H$_2$O3D datasets.
comment: Accepted in NATIONAL CONFERENCE ON COMMUNICATIONS (NCC) 2025
☆ Evaluating Text-to-Image Synthesis with a Conditional Fréchet Distance
Evaluating text-to-image synthesis is challenging due to misalignment between established metrics and human preferences. We propose cFreD, a metric based on the notion of Conditional Fr\'echet Distance that explicitly accounts for both visual fidelity and text-prompt alignment. Existing metrics such as Inception Score (IS), Fr\'echet Inception Distance (FID) and CLIPScore assess either image quality or image-text alignment but not both which limits their correlation with human preferences. Scoring models explicitly trained to replicate human preferences require constant updates and may not generalize to novel generation techniques or out-of-domain inputs. Through extensive experiments across multiple recently proposed text-to-image models and diverse prompt datasets, we demonstrate that cFreD exhibits a higher correlation with human judgments compared to statistical metrics, including metrics trained with human preferences. Our findings validate cFreD as a robust, future-proof metric for the systematic evaluation of text-to-image models, standardizing benchmarking in this rapidly evolving field. We release our evaluation toolkit and benchmark in the appendix.
☆ MAVERIX: Multimodal Audio-Visual Evaluation Reasoning IndeX
Frontier models have either been language-only or have primarily focused on vision and language modalities. Although recent advancements in models with vision and audio understanding capabilities have shown substantial progress, the field lacks a standardized evaluation framework for thoroughly assessing their cross-modality perception performance. We introduce MAVERIX~(Multimodal Audio-Visual Evaluation Reasoning IndeX), a novel benchmark with 700 videos and 2,556 questions explicitly designed to evaluate multimodal models through tasks that necessitate close integration of video and audio information. MAVERIX uniquely provides models with audiovisual tasks, closely mimicking the multimodal perceptual experiences available to humans during inference and decision-making processes. To our knowledge, MAVERIX is the first benchmark aimed explicitly at assessing comprehensive audiovisual integration. Experiments with state-of-the-art models, including Gemini 1.5 Pro and o1, show performance approaching human levels (around 70% accuracy), while human experts reach near-ceiling performance (95.1%). With standardized evaluation protocols, a rigorously annotated pipeline, and a public toolkit, MAVERIX establishes a challenging testbed for advancing audiovisual multimodal intelligence.
☆ Embodied-Reasoner: Synergizing Visual Search, Reasoning, and Action for Embodied Interactive Tasks
Recent advances in deep thinking models have demonstrated remarkable reasoning capabilities on mathematical and coding tasks. However, their effectiveness in embodied domains which require continuous interaction with environments through image action interleaved trajectories remains largely -unexplored. We present Embodied Reasoner, a model that extends o1 style reasoning to interactive embodied search tasks. Unlike mathematical reasoning that relies primarily on logical deduction, embodied scenarios demand spatial understanding, temporal reasoning, and ongoing self-reflection based on interaction history. To address these challenges, we synthesize 9.3k coherent Observation-Thought-Action trajectories containing 64k interactive images and 90k diverse thinking processes (analysis, spatial reasoning, reflection, planning, and verification). We develop a three-stage training pipeline that progressively enhances the model's capabilities through imitation learning, self-exploration via rejection sampling, and self-correction through reflection tuning. The evaluation shows that our model significantly outperforms those advanced visual reasoning models, e.g., it exceeds OpenAI o1, o3-mini, and Claude-3.7 by +9\%, 24\%, and +13\%. Analysis reveals our model exhibits fewer repeated searches and logical inconsistencies, with particular advantages in complex long-horizon tasks. Real-world environments also show our superiority while exhibiting fewer repeated searches and logical inconsistency cases.
comment: Code: https://github.com/zwq2018/embodied_reasoner Dataset: https://huggingface.co/datasets/zwq2018/embodied_reasoner
☆ AMA-SAM: Adversarial Multi-Domain Alignment of Segment Anything Model for High-Fidelity Histology Nuclei Segmentation
Accurate segmentation of cell nuclei in histopathology images is essential for numerous biomedical research and clinical applications. However, existing cell nucleus segmentation methods only consider a single dataset (i.e., primary domain), while neglecting to leverage supplementary data from diverse sources (i.e., auxiliary domains) to reduce overfitting and enhance the performance. Although incorporating multiple datasets could alleviate overfitting, it often exacerbates performance drops caused by domain shifts. In this work, we introduce Adversarial Multi-domain Alignment of Segment Anything Model (AMA-SAM) that extends the Segment Anything Model (SAM) to overcome these obstacles through two key innovations. First, we propose a Conditional Gradient Reversal Layer (CGRL), a multi-domain alignment module that harmonizes features from diverse domains to promote domain-invariant representation learning while preserving crucial discriminative features for the primary dataset. Second, we address SAM's inherent low-resolution output by designing a High-Resolution Decoder (HR-Decoder), which directly produces fine-grained segmentation maps in order to capture intricate nuclei boundaries in high-resolution histology images. To the best of our knowledge, this is the first attempt to adapt SAM for multi-dataset learning with application to histology nuclei segmentation. We validate our method on several publicly available datasets, demonstrating consistent and significant improvements over state-of-the-art approaches.
comment: 13 pages, 4 tables, 2 figures
Progressive Rendering Distillation: Adapting Stable Diffusion for Instant Text-to-Mesh Generation without 3D Data CVPR 2025
It is highly desirable to obtain a model that can generate high-quality 3D meshes from text prompts in just seconds. While recent attempts have adapted pre-trained text-to-image diffusion models, such as Stable Diffusion (SD), into generators of 3D representations (e.g., Triplane), they often suffer from poor quality due to the lack of sufficient high-quality 3D training data. Aiming at overcoming the data shortage, we propose a novel training scheme, termed as Progressive Rendering Distillation (PRD), eliminating the need for 3D ground-truths by distilling multi-view diffusion models and adapting SD into a native 3D generator. In each iteration of training, PRD uses the U-Net to progressively denoise the latent from random noise for a few steps, and in each step it decodes the denoised latent into 3D output. Multi-view diffusion models, including MVDream and RichDreamer, are used in joint with SD to distill text-consistent textures and geometries into the 3D outputs through score distillation. Since PRD supports training without 3D ground-truths, we can easily scale up the training data and improve generation quality for challenging text prompts with creative concepts. Meanwhile, PRD can accelerate the inference speed of the generation model in just a few steps. With PRD, we train a Triplane generator, namely TriplaneTurbo, which adds only $2.5\%$ trainable parameters to adapt SD for Triplane generation. TriplaneTurbo outperforms previous text-to-3D generators in both efficiency and quality. Specifically, it can produce high-quality 3D meshes in 1.2 seconds and generalize well for challenging text input. The code is available at https://github.com/theEricMa/TriplaneTurbo.
comment: Accepted to CVPR 2025. Code:https://github.com/theEricMa/TriplaneTurbo. Demo:https://huggingface.co/spaces/ZhiyuanthePony/TriplaneTurbo
☆ RapidPoseTriangulation: Multi-view Multi-person Whole-body Human Pose Triangulation in a Millisecond
The integration of multi-view imaging and pose estimation represents a significant advance in computer vision applications, offering new possibilities for understanding human movement and interactions. This work presents a new algorithm that improves multi-view multi-person pose estimation, focusing on fast triangulation speeds and good generalization capabilities. The approach extends to whole-body pose estimation, capturing details from facial expressions to finger movements across multiple individuals and viewpoints. Adaptability to different settings is demonstrated through strong performance across unseen datasets and configurations. To support further progress in this field, all of this work is publicly accessible.
☆ CMED: A Child Micro-Expression Dataset
Micro-expressions are short bursts of emotion that are difficult to hide. Their detection in children is an important cue to assist psychotherapists in conducting better therapy. However, existing research on the detection of micro-expressions has focused on adults, whose expressions differ in their characteristics from those of children. The lack of research is a direct consequence of the lack of a child-based micro-expressions dataset as it is much more challenging to capture children's facial expressions due to the lack of predictability and controllability. This study compiles a dataset of spontaneous child micro-expression videos, the first of its kind, to the best of the authors knowledge. The dataset is captured in the wild using video conferencing software. This dataset enables us to then explore key features and differences between adult and child micro-expressions. This study also establishes a baseline for the automated spotting and recognition of micro-expressions in children using three approaches comprising of hand-created and learning-based approaches.
☆ Cognitive Science-Inspired Evaluation of Core Capabilities for Object Understanding in AI
One of the core components of our world models is 'intuitive physics' - an understanding of objects, space, and causality. This capability enables us to predict events, plan action and navigate environments, all of which rely on a composite sense of objecthood. Despite its importance, there is no single, unified account of objecthood, though multiple theoretical frameworks provide insights. In the first part of this paper, we present a comprehensive overview of the main theoretical frameworks in objecthood research - Gestalt psychology, enactive cognition, and developmental psychology - and identify the core capabilities each framework attributes to object understanding, as well as what functional roles they play in shaping world models in biological agents. Given the foundational role of objecthood in world modelling, understanding objecthood is also essential in AI. In the second part of the paper, we evaluate how current AI paradigms approach and test objecthood capabilities compared to those in cognitive science. We define an AI paradigm as a combination of how objecthood is conceptualised, the methods used for studying objecthood, the data utilised, and the evaluation techniques. We find that, whilst benchmarks can detect that AI systems model isolated aspects of objecthood, the benchmarks cannot detect when AI systems lack functional integration across these capabilities, not solving the objecthood challenge fully. Finally, we explore novel evaluation approaches that align with the integrated vision of objecthood outlined in this paper. These methods are promising candidates for advancing from isolated object capabilities toward general-purpose AI with genuine object understanding in real-world contexts.
☆ InteractionMap: Improving Online Vectorized HDMap Construction with Interaction
Vectorized high-definition (HD) maps are essential for an autonomous driving system. Recently, state-of-the-art map vectorization methods are mainly based on DETR-like framework to generate HD maps in an end-to-end manner. In this paper, we propose InteractionMap, which improves previous map vectorization methods by fully leveraging local-to-global information interaction in both time and space. Firstly, we explore enhancing DETR-like detectors by explicit position relation prior from point-level to instance-level, since map elements contain strong shape priors. Secondly, we propose a key-frame-based hierarchical temporal fusion module, which interacts temporal information from local to global. Lastly, the separate classification branch and regression branch lead to the problem of misalignment in the output distribution. We interact semantic information with geometric information by introducing a novel geometric-aware classification loss in optimization and a geometric-aware matching cost in label assignment. InteractionMap achieves state-of-the-art performance on both nuScenes and Argoverse2 benchmarks.
☆ When Astronomy Meets AI: Manazel For Crescent Visibility Prediction in Morocco
The accurate determination of the beginning of each Hijri month is essential for religious, cultural, and administrative purposes. Manazel (The code and datasets are available at https://github.com/lairgiyassir/manazel) addresses this challenge in Morocco by leveraging 13 years of crescent visibility data to refine the ODEH criterion, a widely used standard for lunar crescent visibility prediction. The study integrates two key features, the Arc of Vision (ARCV) and the total width of the crescent (W), to enhance the accuracy of lunar visibility assessments. A machine learning approach utilizing the Logistic Regression algorithm is employed to classify crescent visibility conditions, achieving a predictive accuracy of 98.83%. This data-driven methodology offers a robust and reliable framework for determining the start of the Hijri month, comparing different data classification tools, and improving the consistency of lunar calendar calculations in Morocco. The findings demonstrate the effectiveness of machine learning in astronomical applications and highlight the potential for further enhancements in the modeling of crescent visibility.
☆ The MVTec AD 2 Dataset: Advanced Scenarios for Unsupervised Anomaly Detection CVPR 2025
In recent years, performance on existing anomaly detection benchmarks like MVTec AD and VisA has started to saturate in terms of segmentation AU-PRO, with state-of-the-art models often competing in the range of less than one percentage point. This lack of discriminatory power prevents a meaningful comparison of models and thus hinders progress of the field, especially when considering the inherent stochastic nature of machine learning results. We present MVTec AD 2, a collection of eight anomaly detection scenarios with more than 8000 high-resolution images. It comprises challenging and highly relevant industrial inspection use cases that have not been considered in previous datasets, including transparent and overlapping objects, dark-field and back light illumination, objects with high variance in the normal data, and extremely small defects. We provide comprehensive evaluations of state-of-the-art methods and show that their performance remains below 60% average AU-PRO. Additionally, our dataset provides test scenarios with lighting condition changes to assess the robustness of methods under real-world distribution shifts. We host a publicly accessible evaluation server that holds the pixel-precise ground truth of the test set (https://benchmark.mvtec.com/). All image data is available at https://www.mvtec.com/company/research/datasets/mvtec-ad-2.
comment: paper under review; dataset first released for the VAND3.0 challenge @ CVPR 2025 https://sites.google.com/view/vand30cvpr2025/challenge
☆ Audio-driven Gesture Generation via Deviation Feature in the Latent Space
Gestures are essential for enhancing co-speech communication, offering visual emphasis and complementing verbal interactions. While prior work has concentrated on point-level motion or fully supervised data-driven methods, we focus on co-speech gestures, advocating for weakly supervised learning and pixel-level motion deviations. We introduce a weakly supervised framework that learns latent representation deviations, tailored for co-speech gesture video generation. Our approach employs a diffusion model to integrate latent motion features, enabling more precise and nuanced gesture representation. By leveraging weakly supervised deviations in latent space, we effectively generate hand gestures and mouth movements, crucial for realistic video production. Experiments show our method significantly improves video quality, surpassing current state-of-the-art techniques.
comment: 6 pages, 5 figures
☆ FusionSegReID: Advancing Person Re-Identification with Multimodal Retrieval and Precise Segmentation
Person re-identification (ReID) plays a critical role in applications like security surveillance and criminal investigations by matching individuals across large image galleries captured by non-overlapping cameras. Traditional ReID methods rely on unimodal inputs, typically images, but face limitations due to challenges like occlusions, lighting changes, and pose variations. While advancements in image-based and text-based ReID systems have been made, the integration of both modalities has remained under-explored. This paper presents FusionSegReID, a multimodal model that combines both image and text inputs for enhanced ReID performance. By leveraging the complementary strengths of these modalities, our model improves matching accuracy and robustness, particularly in complex, real-world scenarios where one modality may struggle. Our experiments show significant improvements in Top-1 accuracy and mean Average Precision (mAP) for ReID, as well as better segmentation results in challenging scenarios like occlusion and low-quality images. Ablation studies further confirm that multimodal fusion and segmentation modules contribute to enhanced re-identification and mask accuracy. The results show that FusionSegReID outperforms traditional unimodal models, offering a more robust and flexible solution for real-world person ReID tasks.
☆ AlignDiff: Learning Physically-Grounded Camera Alignment via Diffusion
Accurate camera calibration is a fundamental task for 3D perception, especially when dealing with real-world, in-the-wild environments where complex optical distortions are common. Existing methods often rely on pre-rectified images or calibration patterns, which limits their applicability and flexibility. In this work, we introduce a novel framework that addresses these challenges by jointly modeling camera intrinsic and extrinsic parameters using a generic ray camera model. Unlike previous approaches, AlignDiff shifts focus from semantic to geometric features, enabling more accurate modeling of local distortions. We propose AlignDiff, a diffusion model conditioned on geometric priors, enabling the simultaneous estimation of camera distortions and scene geometry. To enhance distortion prediction, we incorporate edge-aware attention, focusing the model on geometric features around image edges, rather than semantic content. Furthermore, to enhance generalizability to real-world captures, we incorporate a large database of ray-traced lenses containing over three thousand samples. This database characterizes the distortion inherent in a diverse variety of lens forms. Our experiments demonstrate that the proposed method significantly reduces the angular error of estimated ray bundles by ~8.2 degrees and overall calibration accuracy, outperforming existing approaches on challenging, real-world datasets.
☆ Bearing fault diagnosis based on multi-scale spectral images and convolutional neural network
To address the challenges of low diagnostic accuracy in traditional bearing fault diagnosis methods, this paper proposes a novel fault diagnosis approach based on multi-scale spectrum feature images and deep learning. Firstly, the vibration signal are preprocessed through mean removal and then converted to multi-length spectrum with fast Fourier transforms (FFT). Secondly, a novel feature called multi-scale spectral image (MSSI) is constructed by multi-length spectrum paving scheme. Finally, a deep learning framework, convolutional neural network (CNN), is formulated to diagnose the bearing faults. Two experimental cases are utilized to verify the effectiveness of the proposed method. Experimental results demonstrate that the proposed method significantly improves the accuracy of fault diagnosis.
comment: 12pages, 10 figures and 8 tables
☆ uLayout: Unified Room Layout Estimation for Perspective and Panoramic Images WACV-2025
We present uLayout, a unified model for estimating room layout geometries from both perspective and panoramic images, whereas traditional solutions require different model designs for each image type. The key idea of our solution is to unify both domains into the equirectangular projection, particularly, allocating perspective images into the most suitable latitude coordinate to effectively exploit both domains seamlessly. To address the Field-of-View (FoV) difference between the input domains, we design uLayout with a shared feature extractor with an extra 1D-Convolution layer to condition each domain input differently. This conditioning allows us to efficiently formulate a column-wise feature regression problem regardless of the FoV input. This simple yet effective approach achieves competitive performance with current state-of-the-art solutions and shows for the first time a single end-to-end model for both domains. Extensive experiments in the real-world datasets, LSUN, Matterport3D, PanoContext, and Stanford 2D-3D evidence the contribution of our approach. Code is available at https://github.com/JonathanLee112/uLayout.
comment: Accepted to WACV-2025
☆ SyncSDE: A Probabilistic Framework for Diffusion Synchronization CVPR2025
There have been many attempts to leverage multiple diffusion models for collaborative generation, extending beyond the original domain. A prominent approach involves synchronizing multiple diffusion trajectories by mixing the estimated scores to artificially correlate the generation processes. However, existing methods rely on naive heuristics, such as averaging, without considering task specificity. These approaches do not clarify why such methods work and often fail when a heuristic suitable for one task is blindly applied to others. In this paper, we present a probabilistic framework for analyzing why diffusion synchronization works and reveal where heuristics should be focused - modeling correlations between multiple trajectories and adapting them to each specific task. We further identify optimal correlation models per task, achieving better results than previous approaches that apply a single heuristic across all tasks without justification.
comment: Accepted to CVPR2025
☆ LOCATEdit: Graph Laplacian Optimized Cross Attention for Localized Text-Guided Image Editing
Text-guided image editing aims to modify specific regions of an image according to natural language instructions while maintaining the general structure and the background fidelity. Existing methods utilize masks derived from cross-attention maps generated from diffusion models to identify the target regions for modification. However, since cross-attention mechanisms focus on semantic relevance, they struggle to maintain the image integrity. As a result, these methods often lack spatial consistency, leading to editing artifacts and distortions. In this work, we address these limitations and introduce LOCATEdit, which enhances cross-attention maps through a graph-based approach utilizing self-attention-derived patch relationships to maintain smooth, coherent attention across image regions, ensuring that alterations are limited to the designated items while retaining the surrounding structure. \method consistently and substantially outperforms existing baselines on PIE-Bench, demonstrating its state-of-the-art performance and effectiveness on various editing tasks. Code can be found on https://github.com/LOCATEdit/LOCATEdit/
☆ ICG-MVSNet: Learning Intra-view and Cross-view Relationships for Guidance in Multi-View Stereo
Multi-view Stereo (MVS) aims to estimate depth and reconstruct 3D point clouds from a series of overlapping images. Recent learning-based MVS frameworks overlook the geometric information embedded in features and correlations, leading to weak cost matching. In this paper, we propose ICG-MVSNet, which explicitly integrates intra-view and cross-view relationships for depth estimation. Specifically, we develop an intra-view feature fusion module that leverages the feature coordinate correlations within a single image to enhance robust cost matching. Additionally, we introduce a lightweight cross-view aggregation module that efficiently utilizes the contextual information from volume correlations to guide regularization. Our method is evaluated on the DTU dataset and Tanks and Temples benchmark, consistently achieving competitive performance against state-of-the-art works, while requiring lower computational resources.
☆ Uncertainty-aware Bayesian machine learning modelling of land cover classification
Land cover classification involves the production of land cover maps, which determine the type of land through remote sensing imagery. Over recent years, such classification is being performed by machine learning classification models, which can give highly accurate predictions on land cover per pixel using large quantities of input training data. However, such models do not currently take account of input measurement uncertainty, which is vital for traceability in metrology. In this work we propose a Bayesian classification framework using generative modelling to take account of input measurement uncertainty. We take the specific case of Bayesian quadratic discriminant analysis, and apply it to land cover datasets from Copernicus Sentinel-2 in 2020 and 2021. We benchmark the performance of the model against more popular classification models used in land cover maps such as random forests and neural networks. We find that such Bayesian models are more trustworthy, in the sense that they are more interpretable, explicitly model the input measurement uncertainty, and maintain predictive performance of class probability outputs across datasets of different years and sizes, whilst also being computationally efficient.
comment: 31 pages, 10 figures
☆ Fine-Grained Evaluation of Large Vision-Language Models in Autonomous Driving
Existing benchmarks for Vision-Language Model (VLM) on autonomous driving (AD) primarily assess interpretability through open-form visual question answering (QA) within coarse-grained tasks, which remain insufficient to assess capabilities in complex driving scenarios. To this end, we introduce $\textbf{VLADBench}$, a challenging and fine-grained dataset featuring close-form QAs that progress from static foundational knowledge and elements to advanced reasoning for dynamic on-road situations. The elaborate $\textbf{VLADBench}$ spans 5 key domains: Traffic Knowledge Understanding, General Element Recognition, Traffic Graph Generation, Target Attribute Comprehension, and Ego Decision-Making and Planning. These domains are further broken down into 11 secondary aspects and 29 tertiary tasks for a granular evaluation. A thorough assessment of general and domain-specific (DS) VLMs on this benchmark reveals both their strengths and critical limitations in AD contexts. To further exploit the cognitive and reasoning interactions among the 5 domains for AD understanding, we start from a small-scale VLM and train the DS models on individual domain datasets (collected from 1.4M DS QAs across public sources). The experimental results demonstrate that the proposed benchmark provides a crucial step toward a more comprehensive assessment of VLMs in AD, paving the way for the development of more cognitively sophisticated and reasoning-capable AD systems.
☆ Keyword-Oriented Multimodal Modeling for Euphemism Identification
Euphemism identification deciphers the true meaning of euphemisms, such as linking "weed" (euphemism) to "marijuana" (target keyword) in illicit texts, aiding content moderation and combating underground markets. While existing methods are primarily text-based, the rise of social media highlights the need for multimodal analysis, incorporating text, images, and audio. However, the lack of multimodal datasets for euphemisms limits further research. To address this, we regard euphemisms and their corresponding target keywords as keywords and first introduce a keyword-oriented multimodal corpus of euphemisms (KOM-Euph), involving three datasets (Drug, Weapon, and Sexuality), including text, images, and speech. We further propose a keyword-oriented multimodal euphemism identification method (KOM-EI), which uses cross-modal feature alignment and dynamic fusion modules to explicitly utilize the visual and audio features of the keywords for efficient euphemism identification. Extensive experiments demonstrate that KOM-EI outperforms state-of-the-art models and large language models, and show the importance of our multimodal datasets.
☆ Double Blind Imaging with Generative Modeling
Blind inverse problems in imaging arise from uncertainties in the system used to collect (noisy) measurements of images. Recovering clean images from these measurements typically requires identifying the imaging system, either implicitly or explicitly. A common solution leverages generative models as priors for both the images and the imaging system parameters (e.g., a class of point spread functions). To learn these priors in a straightforward manner requires access to a dataset of clean images as well as samples of the imaging system. We propose an AmbientGAN-based generative technique to identify the distribution of parameters in unknown imaging systems, using only unpaired clean images and corrupted measurements. This learned distribution can then be used in model-based recovery algorithms to solve blind inverse problems such as blind deconvolution. We successfully demonstrate our technique for learning Gaussian blur and motion blur priors from noisy measurements and show their utility in solving blind deconvolution with diffusion posterior sampling.
☆ Shape Modeling of Longitudinal Medical Images: From Diffeomorphic Metric Mapping to Deep Learning
Living biological tissue is a complex system, constantly growing and changing in response to external and internal stimuli. These processes lead to remarkable and intricate changes in shape. Modeling and understanding both natural and pathological (or abnormal) changes in the shape of anatomical structures is highly relevant, with applications in diagnostic, prognostic, and therapeutic healthcare. Nevertheless, modeling the longitudinal shape change of biological tissue is a non-trivial task due to its inherent nonlinear nature. In this review, we highlight several existing methodologies and tools for modeling longitudinal shape change (i.e., spatiotemporal shape modeling). These methods range from diffeomorphic metric mapping to deep-learning based approaches (e.g., autoencoders, generative networks, recurrent neural networks, etc.). We discuss the synergistic combinations of existing technologies and potential directions for future research, underscoring key deficiencies in the current research landscape.
☆ Invert2Restore: Zero-Shot Degradation-Blind Image Restoration
Two of the main challenges of image restoration in real-world scenarios are the accurate characterization of an image prior and the precise modeling of the image degradation operator. Pre-trained diffusion models have been very successfully used as image priors in zero-shot image restoration methods. However, how to best handle the degradation operator is still an open problem. In real-world data, methods that rely on specific parametric assumptions about the degradation model often face limitations in their applicability. To address this, we introduce Invert2Restore, a zero-shot, training-free method that operates in both fully blind and partially blind settings -- requiring no prior knowledge of the degradation model or only partial knowledge of its parametric form without known parameters. Despite this, Invert2Restore achieves high-fidelity results and generalizes well across various types of image degradation. It leverages a pre-trained diffusion model as a deterministic mapping between normal samples and undistorted image samples. The key insight is that the input noise mapped by a diffusion model to a degraded image lies in a low-probability density region of the standard normal distribution. Thus, we can restore the degraded image by carefully guiding its input noise toward a higher-density region. We experimentally validate Invert2Restore across several image restoration tasks, demonstrating that it achieves state-of-the-art performance in scenarios where the degradation operator is either unknown or partially known.
☆ BOLT: Boost Large Vision-Language Model Without Training for Long-form Video Understanding CVPR 2025
Large video-language models (VLMs) have demonstrated promising progress in various video understanding tasks. However, their effectiveness in long-form video analysis is constrained by limited context windows. Traditional approaches, such as uniform frame sampling, often inevitably allocate resources to irrelevant content, diminishing their effectiveness in real-world scenarios. In this paper, we introduce BOLT, a method to BOost Large VLMs without additional Training through a comprehensive study of frame selection strategies. First, to enable a more realistic evaluation of VLMs in long-form video understanding, we propose a multi-source retrieval evaluation setting. Our findings reveal that uniform sampling performs poorly in noisy contexts, underscoring the importance of selecting the right frames. Second, we explore several frame selection strategies based on query-frame similarity and analyze their effectiveness at inference time. Our results show that inverse transform sampling yields the most significant performance improvement, increasing accuracy on the Video-MME benchmark from 53.8% to 56.1% and MLVU benchmark from 58.9% to 63.4%. Our code is available at https://github.com/sming256/BOLT.
comment: Accepted to CVPR 2025
☆ Fine-Grained Behavior and Lane Constraints Guided Trajectory Prediction Method
Trajectory prediction, as a critical component of autonomous driving systems, has attracted the attention of many researchers. Existing prediction algorithms focus on extracting more detailed scene features or selecting more reasonable trajectory destinations. However, in the face of dynamic and evolving future movements of the target vehicle, these algorithms cannot provide a fine-grained and continuous description of future behaviors and lane constraints, which degrades the prediction accuracy. To address this challenge, we present BLNet, a novel dualstream architecture that synergistically integrates behavioral intention recognition and lane constraint modeling through parallel attention mechanisms. The framework generates fine-grained behavior state queries (capturing spatial-temporal movement patterns) and lane queries (encoding lane topology constraints), supervised by two auxiliary losses, respectively. Subsequently, a two-stage decoder first produces trajectory proposals, then performs point-level refinement by jointly incorporating both the continuity of passed lanes and future motion features. Extensive experiments on two large datasets, nuScenes and Argoverse, show that our network exhibits significant performance gains over existing direct regression and goal-based algorithms.
comment: This work has been submitted to the IEEE TIM for possible publication
☆ Embedding Compression Distortion in Video Coding for Machines
Currently, video transmission serves not only the Human Visual System (HVS) for viewing but also machine perception for analysis. However, existing codecs are primarily optimized for pixel-domain and HVS-perception metrics rather than the needs of machine vision tasks. To address this issue, we propose a Compression Distortion Representation Embedding (CDRE) framework, which extracts machine-perception-related distortion representation and embeds it into downstream models, addressing the information lost during compression and improving task performance. Specifically, to better analyze the machine-perception-related distortion, we design a compression-sensitive extractor that identifies compression degradation in the feature domain. For efficient transmission, a lightweight distortion codec is introduced to compress the distortion information into a compact representation. Subsequently, the representation is progressively embedded into the downstream model, enabling it to be better informed about compression degradation and enhancing performance. Experiments across various codecs and downstream tasks demonstrate that our framework can effectively boost the rate-task performance of existing codecs with minimal overhead in terms of bitrate, execution time, and number of parameters. Our codes and supplementary materials are released in https://github.com/Ws-Syx/CDRE/.
☆ Retinal Fundus Multi-Disease Image Classification using Hybrid CNN-Transformer-Ensemble Architectures
Our research is motivated by the urgent global issue of a large population affected by retinal diseases, which are evenly distributed but underserved by specialized medical expertise, particularly in non-urban areas. Our primary objective is to bridge this healthcare gap by developing a comprehensive diagnostic system capable of accurately predicting retinal diseases solely from fundus images. However, we faced significant challenges due to limited, diverse datasets and imbalanced class distributions. To overcome these issues, we have devised innovative strategies. Our research introduces novel approaches, utilizing hybrid models combining deeper Convolutional Neural Networks (CNNs), Transformer encoders, and ensemble architectures sequentially and in parallel to classify retinal fundus images into 20 disease labels. Our overarching goal is to assess these advanced models' potential in practical applications, with a strong focus on enhancing retinal disease diagnosis accuracy across a broader spectrum of conditions. Importantly, our efforts have surpassed baseline model results, with the C-Tran ensemble model emerging as the leader, achieving a remarkable model score of 0.9166, surpassing the baseline score of 0.9. Additionally, experiments with the IEViT model showcased equally promising outcomes with improved computational efficiency. We've also demonstrated the effectiveness of dynamic patch extraction and the integration of domain knowledge in computer vision tasks. In summary, our research strives to contribute significantly to retinal disease diagnosis, addressing the critical need for accessible healthcare solutions in underserved regions while aiming for comprehensive and accurate disease prediction.
comment: 17 pages, 3 figures, 7 tables. Conference paper presented at the International Health Informatics Conference (IHIC 2023)
☆ RoadSocial: A Diverse VideoQA Dataset and Benchmark for Road Event Understanding from Social Video Narratives CVPR 2025
We introduce RoadSocial, a large-scale, diverse VideoQA dataset tailored for generic road event understanding from social media narratives. Unlike existing datasets limited by regional bias, viewpoint bias and expert-driven annotations, RoadSocial captures the global complexity of road events with varied geographies, camera viewpoints (CCTV, handheld, drones) and rich social discourse. Our scalable semi-automatic annotation framework leverages Text LLMs and Video LLMs to generate comprehensive question-answer pairs across 12 challenging QA tasks, pushing the boundaries of road event understanding. RoadSocial is derived from social media videos spanning 14M frames and 414K social comments, resulting in a dataset with 13.2K videos, 674 tags and 260K high-quality QA pairs. We evaluate 18 Video LLMs (open-source and proprietary, driving-specific and general-purpose) on our road event understanding benchmark. We also demonstrate RoadSocial's utility in improving road event understanding capabilities of general-purpose Video LLMs.
comment: Accepted at CVPR 2025; Project Page: https://roadsocial.github.io/
☆ FaceBench: A Multi-View Multi-Level Facial Attribute VQA Dataset for Benchmarking Face Perception MLLMs CVPR2025
Multimodal large language models (MLLMs) have demonstrated remarkable capabilities in various tasks. However, effectively evaluating these MLLMs on face perception remains largely unexplored. To address this gap, we introduce FaceBench, a dataset featuring hierarchical multi-view and multi-level attributes specifically designed to assess the comprehensive face perception abilities of MLLMs. Initially, we construct a hierarchical facial attribute structure, which encompasses five views with up to three levels of attributes, totaling over 210 attributes and 700 attribute values. Based on the structure, the proposed FaceBench consists of 49,919 visual question-answering (VQA) pairs for evaluation and 23,841 pairs for fine-tuning. Moreover, we further develop a robust face perception MLLM baseline, Face-LLaVA, by training with our proposed face VQA data. Extensive experiments on various mainstream MLLMs and Face-LLaVA are conducted to test their face perception ability, with results also compared against human performance. The results reveal that, the existing MLLMs are far from satisfactory in understanding the fine-grained facial attributes, while our Face-LLaVA significantly outperforms existing open-source models with a small amount of training data and is comparable to commercial ones like GPT-4o and Gemini. The dataset will be released at https://github.com/CVI-SZU/FaceBench.
comment: Accepted by CVPR2025
☆ Towards Generating Realistic 3D Semantic Training Data for Autonomous Driving
Semantic scene understanding is crucial for robotics and computer vision applications. In autonomous driving, 3D semantic segmentation plays an important role for enabling safe navigation. Despite significant advances in the field, the complexity of collecting and annotating 3D data is a bottleneck in this developments. To overcome that data annotation limitation, synthetic simulated data has been used to generate annotated data on demand. There is still however a domain gap between real and simulated data. More recently, diffusion models have been in the spotlight, enabling close-to-real data synthesis. Those generative models have been recently applied to the 3D data domain for generating scene-scale data with semantic annotations. Still, those methods either rely on image projection or decoupled models trained with different resolutions in a coarse-to-fine manner. Such intermediary representations impact the generated data quality due to errors added in those transformations. In this work, we propose a novel approach able to generate 3D semantic scene-scale data without relying on any projection or decoupled trained multi-resolution models, achieving more realistic semantic scene data generation compared to previous state-of-the-art methods. Besides improving 3D semantic scene-scale data synthesis, we thoroughly evaluate the use of the synthetic scene samples as labeled data to train a semantic segmentation network. In our experiments, we show that using the synthetic annotated data generated by our method as training data together with the real semantic segmentation labels, leads to an improvement in the semantic segmentation model performance. Our results show the potential of generated scene-scale point clouds to generate more training data to extend existing datasets, reducing the data annotation effort. Our code is available at https://github.com/PRBonn/3DiSS.
☆ Sparse Bayesian Learning for Label Efficiency in Cardiac Real-Time MRI
Cardiac real-time magnetic resonance imaging (MRI) is an emerging technology that images the heart at up to 50 frames per second, offering insight into the respiratory effects on the heartbeat. However, this method significantly increases the number of images that must be segmented to derive critical health indicators. Although neural networks perform well on inner slices, predictions on outer slices are often unreliable. This work proposes sparse Bayesian learning (SBL) to predict the ventricular volume on outer slices with minimal manual labeling to address this challenge. The ventricular volume over time is assumed to be dominated by sparse frequencies corresponding to the heart and respiratory rates. Moreover, SBL identifies these sparse frequencies on well-segmented inner slices by optimizing hyperparameters via type -II likelihood, automatically pruning irrelevant components. The identified sparse frequencies guide the selection of outer slice images for labeling, minimizing posterior variance. This work provides performance guarantees for the greedy algorithm. Testing on patient data demonstrates that only a few labeled images are necessary for accurate volume prediction. The labeling procedure effectively avoids selecting inefficient images. Furthermore, the Bayesian approach provides uncertainty estimates, highlighting unreliable predictions (e.g., when choosing suboptimal labels).
☆ RainyGS: Efficient Rain Synthesis with Physically-Based Gaussian Splatting
We consider the problem of adding dynamic rain effects to in-the-wild scenes in a physically-correct manner. Recent advances in scene modeling have made significant progress, with NeRF and 3DGS techniques emerging as powerful tools for reconstructing complex scenes. However, while effective for novel view synthesis, these methods typically struggle with challenging scene editing tasks, such as physics-based rain simulation. In contrast, traditional physics-based simulations can generate realistic rain effects, such as raindrops and splashes, but they often rely on skilled artists to carefully set up high-fidelity scenes. This process lacks flexibility and scalability, limiting its applicability to broader, open-world environments. In this work, we introduce RainyGS, a novel approach that leverages the strengths of both physics-based modeling and 3DGS to generate photorealistic, dynamic rain effects in open-world scenes with physical accuracy. At the core of our method is the integration of physically-based raindrop and shallow water simulation techniques within the fast 3DGS rendering framework, enabling realistic and efficient simulations of raindrop behavior, splashes, and reflections. Our method supports synthesizing rain effects at over 30 fps, offering users flexible control over rain intensity -- from light drizzles to heavy downpours. We demonstrate that RainyGS performs effectively for both real-world outdoor scenes and large-scale driving scenarios, delivering more photorealistic and physically-accurate rain effects compared to state-of-the-art methods. Project page can be found at https://pku-vcl-geometry.github.io/RainyGS/
☆ Dual-Task Learning for Dead Tree Detection and Segmentation with Hybrid Self-Attention U-Nets in Aerial Imagery
Mapping standing dead trees is critical for assessing forest health, monitoring biodiversity, and mitigating wildfire risks, for which aerial imagery has proven useful. However, dense canopy structures, spectral overlaps between living and dead vegetation, and over-segmentation errors limit the reliability of existing methods. This study introduces a hybrid postprocessing framework that refines deep learning-based tree segmentation by integrating watershed algorithms with adaptive filtering, enhancing boundary delineation, and reducing false positives in complex forest environments. Tested on high-resolution aerial imagery from boreal forests, the framework improved instance-level segmentation accuracy by 41.5% and reduced positional errors by 57%, demonstrating robust performance in densely vegetated regions. By balancing detection accuracy and over-segmentation artifacts, the method enabled the precise identification of individual dead trees, which is critical for ecological monitoring. The framework's computational efficiency supports scalable applications, such as wall-to-wall tree mortality mapping over large geographic regions using aerial or satellite imagery. These capabilities directly benefit wildfire risk assessment (identifying fuel accumulations), carbon stock estimation (tracking emissions from decaying biomass), and precision forestry (targeting salvage loggings). By bridging advanced remote sensing techniques with practical forest management needs, this work advances tools for large-scale ecological conservation and climate resilience planning.
comment: 11 pages, 4 figures, 4 tables
☆ STAMICS: Splat, Track And Map with Integrated Consistency and Semantics for Dense RGB-D SLAM
Simultaneous Localization and Mapping (SLAM) is a critical task in robotics, enabling systems to autonomously navigate and understand complex environments. Current SLAM approaches predominantly rely on geometric cues for mapping and localization, but they often fail to ensure semantic consistency, particularly in dynamic or densely populated scenes. To address this limitation, we introduce STAMICS, a novel method that integrates semantic information with 3D Gaussian representations to enhance both localization and mapping accuracy. STAMICS consists of three key components: a 3D Gaussian-based scene representation for high-fidelity reconstruction, a graph-based clustering technique that enforces temporal semantic consistency, and an open-vocabulary system that allows for the classification of unseen objects. Extensive experiments show that STAMICS significantly improves camera pose estimation and map quality, outperforming state-of-the-art methods while reducing reconstruction errors. Code will be public available.
Diffusion Image Prior
Zero-shot image restoration (IR) methods based on pretrained diffusion models have recently achieved significant success. These methods typically require at least a parametric form of the degradation model. However, in real-world scenarios, the degradation may be too complex to define explicitly. To handle this general case, we introduce the Diffusion Image Prior (DIIP). We take inspiration from the Deep Image Prior (DIP)[16], since it can be used to remove artifacts without the need for an explicit degradation model. However, in contrast to DIP, we find that pretrained diffusion models offer a much stronger prior, despite being trained without knowledge from corrupted data. We show that, the optimization process in DIIP first reconstructs a clean version of the image before eventually overfitting to the degraded input, but it does so for a broader range of degradations than DIP. In light of this result, we propose a blind image restoration (IR) method based on early stopping, which does not require prior knowledge of the degradation model. We validate DIIP on various degradation-blind IR tasks, including JPEG artifact removal, waterdrop removal, denoising and super-resolution with state-of-the-art results.
☆ VALLR: Visual ASR Language Model for Lip Reading
Lip Reading, or Visual Automatic Speech Recognition (V-ASR), is a complex task requiring the interpretation of spoken language exclusively from visual cues, primarily lip movements and facial expressions. This task is especially challenging due to the absence of auditory information and the inherent ambiguity when visually distinguishing phonemes that have overlapping visemes where different phonemes appear identical on the lips. Current methods typically attempt to predict words or characters directly from these visual cues, but this approach frequently encounters high error rates due to coarticulation effects and viseme ambiguity. We propose a novel two-stage, phoneme-centric framework for Visual Automatic Speech Recognition (V-ASR) that addresses these longstanding challenges. First, our model predicts a compact sequence of phonemes from visual inputs using a Video Transformer with a CTC head, thereby reducing the task complexity and achieving robust speaker invariance. This phoneme output then serves as the input to a fine-tuned Large Language Model (LLM), which reconstructs coherent words and sentences by leveraging broader linguistic context. Unlike existing methods that either predict words directly-often faltering on visually similar phonemes-or rely on large-scale multimodal pre-training, our approach explicitly encodes intermediate linguistic structure while remaining highly data efficient. We demonstrate state-of-the-art performance on two challenging datasets, LRS2 and LRS3, where our method achieves significant reductions in Word Error Rate (WER) achieving a SOTA WER of 18.7 on LRS3 despite using 99.4% less labelled data than the next best approach.
☆ ProHOC: Probabilistic Hierarchical Out-of-Distribution Classification via Multi-Depth Networks CVPR2025
Out-of-distribution (OOD) detection in deep learning has traditionally been framed as a binary task, where samples are either classified as belonging to the known classes or marked as OOD, with little attention given to the semantic relationships between OOD samples and the in-distribution (ID) classes. We propose a framework for detecting and classifying OOD samples in a given class hierarchy. Specifically, we aim to predict OOD data to their correct internal nodes of the class hierarchy, whereas the known ID classes should be predicted as their corresponding leaf nodes. Our approach leverages the class hierarchy to create a probabilistic model and we implement this model by using networks trained for ID classification at multiple hierarchy depths. We conduct experiments on three datasets with predefined class hierarchies and show the effectiveness of our method. Our code is available at https://github.com/walline/prohoc.
comment: CVPR2025
☆ Unsupervised Real-World Denoising: Sparsity is All You Need
Supervised training for real-world denoising presents challenges due to the difficulty of collecting large datasets of paired noisy and clean images. Recent methods have attempted to address this by utilizing unpaired datasets of clean and noisy images. Some approaches leverage such unpaired data to train denoisers in a supervised manner by generating synthetic clean-noisy pairs. However, these methods often fall short due to the distribution gap between synthetic and real noisy images. To mitigate this issue, we propose a solution based on input sparsification, specifically using random input masking. Our method, which we refer to as Mask, Inpaint and Denoise (MID), trains a denoiser to simultaneously denoise and inpaint synthetic clean-noisy pairs. On one hand, input sparsification reduces the gap between synthetic and real noisy images. On the other hand, an inpainter trained in a supervised manner can still accurately reconstruct sparse inputs by predicting missing clean pixels using the remaining unmasked pixels. Our approach begins with a synthetic Gaussian noise sampler and iteratively refines it using a noise dataset derived from the denoiser's predictions. The noise dataset is created by subtracting predicted pseudo-clean images from real noisy images at each iteration. The core intuition is that improving the denoiser results in a more accurate noise dataset and, consequently, a better noise sampler. We validate our method through extensive experiments on real-world noisy image datasets, demonstrating competitive performance compared to existing unsupervised denoising methods.
☆ Multimodal surface defect detection from wooden logs for sawing optimization
We propose a novel, good-quality, and less demanding method for detecting knots on the surface of wooden logs using multimodal data fusion. Knots are a primary factor affecting the quality of sawn timber, making their detection fundamental to any timber grading or cutting optimization system. While X-ray computed tomography provides accurate knot locations and internal structures, it is often too slow or expensive for practical use. An attractive alternative is to use fast and cost-effective log surface measurements, such as laser scanners or RGB cameras, to detect surface knots and estimate the internal structure of wood. However, due to the small size of knots and noise caused by factors, such as bark and other natural variations, detection accuracy often remains low when only one measurement modality is used. In this paper, we demonstrate that by using a data fusion pipeline consisting of separate streams for RGB and point cloud data, combined by a late fusion module, higher knot detection accuracy can be achieved compared to using either modality alone. We further propose a simple yet efficient sawing angle optimization method that utilizes surface knot detections and cross-correlation to minimize the amount of unwanted arris knots, demonstrating its benefits over randomized sawing angles.
☆ LandMarkSystem Technical Report
3D reconstruction is vital for applications in autonomous driving, virtual reality, augmented reality, and the metaverse. Recent advancements such as Neural Radiance Fields(NeRF) and 3D Gaussian Splatting (3DGS) have transformed the field, yet traditional deep learning frameworks struggle to meet the increasing demands for scene quality and scale. This paper introduces LandMarkSystem, a novel computing framework designed to enhance multi-scale scene reconstruction and rendering. By leveraging a componentized model adaptation layer, LandMarkSystem supports various NeRF and 3DGS structures while optimizing computational efficiency through distributed parallel computing and model parameter offloading. Our system addresses the limitations of existing frameworks, providing dedicated operators for complex 3D sparse computations, thus facilitating efficient training and rapid inference over extensive scenes. Key contributions include a modular architecture, a dynamic loading strategy for limited resources, and proven capabilities across multiple representative algorithms.This comprehensive solution aims to advance the efficiency and effectiveness of 3D reconstruction tasks.To facilitate further research and collaboration, the source code and documentation for the LandMarkSystem project are publicly available in an open-source repository, accessing the repository at: https://github.com/InternLandMark/LandMarkSystem.
UGNA-VPR: A Novel Training Paradigm for Visual Place Recognition Based on Uncertainty-Guided NeRF Augmentation
Visual place recognition (VPR) is crucial for robots to identify previously visited locations, playing an important role in autonomous navigation in both indoor and outdoor environments. However, most existing VPR datasets are limited to single-viewpoint scenarios, leading to reduced recognition accuracy, particularly in multi-directional driving or feature-sparse scenes. Moreover, obtaining additional data to mitigate these limitations is often expensive. This paper introduces a novel training paradigm to improve the performance of existing VPR networks by enhancing multi-view diversity within current datasets through uncertainty estimation and NeRF-based data augmentation. Specifically, we initially train NeRF using the existing VPR dataset. Then, our devised self-supervised uncertainty estimation network identifies places with high uncertainty. The poses of these uncertain places are input into NeRF to generate new synthetic observations for further training of VPR networks. Additionally, we propose an improved storage method for efficient organization of augmented and original training data. We conducted extensive experiments on three datasets and tested three different VPR backbone networks. The results demonstrate that our proposed training paradigm significantly improves VPR performance by fully utilizing existing data, outperforming other training approaches. We further validated the effectiveness of our approach on self-recorded indoor and outdoor datasets, consistently demonstrating superior results. Our dataset and code have been released at \href{https://github.com/nubot-nudt/UGNA-VPR}{https://github.com/nubot-nudt/UGNA-VPR}.
comment: Accepted to IEEE Robotics and Automation Letters (RA-L)
☆ DuckSegmentation: A segmentation model based on the AnYue Hemp Duck Dataset
The modernization of smart farming is a way to improve agricultural production efficiency, and improve the agricultural production environment. Although many large models have achieved high accuracy in the task of object recognition and segmentation, they cannot really be put into use in the farming industry due to their own poor interpretability and limitations in computational volume. In this paper, we built AnYue Shelduck Dateset, which contains a total of 1951 Shelduck datasets, and performed target detection and segmentation annotation with the help of professional annotators. Based on AnYue ShelduckDateset, this paper describes DuckProcessing, an efficient and powerful module for duck identification based on real shelduckfarms. First of all, using the YOLOv8 module designed to divide the mahjong between them, Precision reached 98.10%, Recall reached 96.53% and F1 score reached 0.95 on the test set. Again using the DuckSegmentation segmentation model, DuckSegmentation reached 96.43% mIoU. Finally, the excellent DuckSegmentation was used as the teacher model, and through knowledge distillation, Deeplabv3 r50 was used as the student model, and the final student model achieved 94.49% mIoU on the test set. The method provides a new way of thinking in practical sisal duck smart farming.
☆ HORT: Monocular Hand-held Objects Reconstruction with Transformers
Reconstructing hand-held objects in 3D from monocular images remains a significant challenge in computer vision. Most existing approaches rely on implicit 3D representations, which produce overly smooth reconstructions and are time-consuming to generate explicit 3D shapes. While more recent methods directly reconstruct point clouds with diffusion models, the multi-step denoising makes high-resolution reconstruction inefficient. To address these limitations, we propose a transformer-based model to efficiently reconstruct dense 3D point clouds of hand-held objects. Our method follows a coarse-to-fine strategy, first generating a sparse point cloud from the image and progressively refining it into a dense representation using pixel-aligned image features. To enhance reconstruction accuracy, we integrate image features with 3D hand geometry to jointly predict the object point cloud and its pose relative to the hand. Our model is trained end-to-end for optimal performance. Experimental results on both synthetic and real datasets demonstrate that our method achieves state-of-the-art accuracy with much faster inference speed, while generalizing well to in-the-wild images.
comment: Project Page: https://zerchen.github.io/projects/hort.html
☆ FineCIR: Explicit Parsing of Fine-Grained Modification Semantics for Composed Image Retrieval
Composed Image Retrieval (CIR) facilitates image retrieval through a multimodal query consisting of a reference image and modification text. The reference image defines the retrieval context, while the modification text specifies desired alterations. However, existing CIR datasets predominantly employ coarse-grained modification text (CoarseMT), which inadequately captures fine-grained retrieval intents. This limitation introduces two key challenges: (1) ignoring detailed differences leads to imprecise positive samples, and (2) greater ambiguity arises when retrieving visually similar images. These issues degrade retrieval accuracy, necessitating manual result filtering or repeated queries. To address these limitations, we develop a robust fine-grained CIR data annotation pipeline that minimizes imprecise positive samples and enhances CIR systems' ability to discern modification intents accurately. Using this pipeline, we refine the FashionIQ and CIRR datasets to create two fine-grained CIR datasets: Fine-FashionIQ and Fine-CIRR. Furthermore, we introduce FineCIR, the first CIR framework explicitly designed to parse the modification text. FineCIR effectively captures fine-grained modification semantics and aligns them with ambiguous visual entities, enhancing retrieval precision. Extensive experiments demonstrate that FineCIR consistently outperforms state-of-the-art CIR baselines on both fine-grained and traditional CIR benchmark datasets. Our FineCIR code and fine-grained CIR datasets are available at https://github.com/SDU-L/FineCIR.git.
☆ InternVL-X: Advancing and Accelerating InternVL Series with Efficient Visual Token Compression
Most multimodal large language models (MLLMs) treat visual tokens as "a sequence of text", integrating them with text tokens into a large language model (LLM). However, a great quantity of visual tokens significantly increases the demand for computational resources and time. In this paper, we propose InternVL-X, which outperforms the InternVL model in both performance and efficiency by incorporating three visual token compression methods. First, we propose a novel vision-language projector, PVTC. This component integrates adjacent visual embeddings to form a local query and utilizes the transformed CLS token as a global query, then performs point-to-region cross-attention through these local and global queries to more effectively convert visual features. Second, we present a layer-wise visual token compression module, LVTC, which compresses tokens in the LLM shallow layers and then expands them through upsampling and residual connections in the deeper layers. This significantly enhances the model computational efficiency. Futhermore, we propose an efficient high resolution slicing method, RVTC, which dynamically adjusts the number of visual tokens based on image area or length filtering. RVTC greatly enhances training efficiency with only a slight reduction in performance. By utilizing 20% or fewer visual tokens, InternVL-X achieves state-of-the-art performance on 7 public MLLM benchmarks, and improves the average metric by 2.34% across 12 tasks.
☆ Multi-Scale Invertible Neural Network for Wide-Range Variable-Rate Learned Image Compression
Autoencoder-based structures have dominated recent learned image compression methods. However, the inherent information loss associated with autoencoders limits their rate-distortion performance at high bit rates and restricts their flexibility of rate adaptation. In this paper, we present a variable-rate image compression model based on invertible transform to overcome these limitations. Specifically, we design a lightweight multi-scale invertible neural network, which bijectively maps the input image into multi-scale latent representations. To improve the compression efficiency, a multi-scale spatial-channel context model with extended gain units is devised to estimate the entropy of the latent representation from high to low levels. Experimental results demonstrate that the proposed method achieves state-of-the-art performance compared to existing variable-rate methods, and remains competitive with recent multi-model approaches. Notably, our method is the first learned image compression solution that outperforms VVC across a very wide range of bit rates using a single model, especially at high bit rates.The source code is available at \href{https://github.com/hytu99/MSINN-VRLIC}{https://github.com/hytu99/MSINN-VRLIC}.
comment: Accepted to IEEE Transactions on Multimedia 2025
☆ Zero-Shot Visual Concept Blending Without Text Guidance
We propose a novel, zero-shot image generation technique called "Visual Concept Blending" that provides fine-grained control over which features from multiple reference images are transferred to a source image. If only a single reference image is available, it is difficult to isolate which specific elements should be transferred. However, using multiple reference images, the proposed approach distinguishes between common and unique features by selectively incorporating them into a generated output. By operating within a partially disentangled Contrastive Language-Image Pre-training (CLIP) embedding space (from IP-Adapter), our method enables the flexible transfer of texture, shape, motion, style, and more abstract conceptual transformations without requiring additional training or text prompts. We demonstrate its effectiveness across a diverse range of tasks, including style transfer, form metamorphosis, and conceptual transformations, showing how subtle or abstract attributes (e.g., brushstroke style, aerodynamic lines, and dynamism) can be seamlessly combined into a new image. In a user study, participants accurately recognized which features were intended to be transferred. Its simplicity, flexibility, and high-level control make Visual Concept Blending valuable for creative fields such as art, design, and content creation, where combining specific visual qualities from multiple inspirations is crucial.
☆ Delving Deep into Semantic Relation Distillation
Knowledge distillation has become a cornerstone technique in deep learning, facilitating the transfer of knowledge from complex models to lightweight counterparts. Traditional distillation approaches focus on transferring knowledge at the instance level, but fail to capture nuanced semantic relationships within the data. In response, this paper introduces a novel methodology, Semantics-based Relation Knowledge Distillation (SeRKD), which reimagines knowledge distillation through a semantics-relation lens among each sample. By leveraging semantic components, \ie, superpixels, SeRKD enables a more comprehensive and context-aware transfer of knowledge, which skillfully integrates superpixel-based semantic extraction with relation-based knowledge distillation for a sophisticated model compression and distillation. Particularly, the proposed method is naturally relevant in the domain of Vision Transformers (ViTs), where visual tokens serve as fundamental units of representation. Experimental evaluations on benchmark datasets demonstrate the superiority of SeRKD over existing methods, underscoring its efficacy in enhancing model performance and generalization capabilities.
☆ ClimbingCap: Multi-Modal Dataset and Method for Rock Climbing in World Coordinate CVPR2025
Human Motion Recovery (HMR) research mainly focuses on ground-based motions such as running. The study on capturing climbing motion, an off-ground motion, is sparse. This is partly due to the limited availability of climbing motion datasets, especially large-scale and challenging 3D labeled datasets. To address the insufficiency of climbing motion datasets, we collect AscendMotion, a large-scale well-annotated, and challenging climbing motion dataset. It consists of 412k RGB, LiDAR frames, and IMU measurements, including the challenging climbing motions of 22 skilled climbing coaches across 12 different rock walls. Capturing the climbing motions is challenging as it requires precise recovery of not only the complex pose but also the global position of climbers. Although multiple global HMR methods have been proposed, they cannot faithfully capture climbing motions. To address the limitations of HMR methods for climbing, we propose ClimbingCap, a motion recovery method that reconstructs continuous 3D human climbing motion in a global coordinate system. One key insight is to use the RGB and LiDAR modalities to separately reconstruct motions in camera coordinates and global coordinates and to optimize them jointly. We demonstrate the quality of the AscendMotion dataset and present promising results from ClimbingCap. The AscendMotion dataset and source code release publicly at \href{this link}{http://www.lidarhumanmotion.net/climbingcap/}
comment: CVPR2025, project in \href{this link}{http://www.lidarhumanmotion.net/climbingcap/}
☆ vGamba: Attentive State Space Bottleneck for efficient Long-range Dependencies in Visual Recognition
Capturing long-range dependencies efficiently is essential for visual recognition tasks, yet existing methods face limitations. Convolutional neural networks (CNNs) struggle with restricted receptive fields, while Vision Transformers (ViTs) achieve global context and long-range modeling at a high computational cost. State-space models (SSMs) offer an alternative, but their application in vision remains underexplored. This work introduces vGamba, a hybrid vision backbone that integrates SSMs with attention mechanisms to enhance efficiency and expressiveness. At its core, the Gamba bottleneck block that includes, Gamba Cell, an adaptation of Mamba for 2D spatial structures, alongside a Multi-Head Self-Attention (MHSA) mechanism and a Gated Fusion Module for effective feature representation. The interplay of these components ensures that vGamba leverages the low computational demands of SSMs while maintaining the accuracy of attention mechanisms for modeling long-range dependencies in vision tasks. Additionally, the Fusion module enables seamless interaction between these components. Extensive experiments on classification, detection, and segmentation tasks demonstrate that vGamba achieves a superior trade-off between accuracy and computational efficiency, outperforming several existing models.
☆ Reducing CT Metal Artifacts by Learning Latent Space Alignment with Gemstone Spectral Imaging Data
Metal artifacts in CT slices have long posed challenges in medical diagnostics. These artifacts degrade image quality, resulting in suboptimal visualization and complicating the accurate interpretation of tissues adjacent to metal implants. To address these issues, we introduce the Latent Gemstone Spectral Imaging (GSI) Alignment Framework, which effectively reduces metal artifacts while avoiding the introduction of noise information. Our work is based on a key finding that even artifact-affected ordinary CT sequences contain sufficient information to discern detailed structures. The challenge lies in the inability to clearly represent this information. To address this issue, we developed an Alignment Framework that adjusts the representation of ordinary CT images to match GSI CT sequences. GSI is an advanced imaging technique using multiple energy levels to mitigate artifacts caused by metal implants. By aligning the representation to GSI data, we can effectively suppress metal artifacts while clearly revealing detailed structure, without introducing extraneous information into CT sequences. To facilitate the application, we propose a new dataset, Artifacts-GSI, captured from real patients with metal implants, and establish a new benchmark based on this dataset. Experimental results show that our method significantly reduces metal artifacts and greatly enhances the readability of CT slices. All our code and data are available at: https://um-lab.github.io/GSI-MAR/
☆ Learn by Reasoning: Analogical Weight Generation for Few-Shot Class-Incremental Learning
Few-shot class-incremental Learning (FSCIL) enables models to learn new classes from limited data while retaining performance on previously learned classes. Traditional FSCIL methods often require fine-tuning parameters with limited new class data and suffer from a separation between learning new classes and utilizing old knowledge. Inspired by the analogical learning mechanisms of the human brain, we propose a novel analogical generative method. Our approach includes the Brain-Inspired Analogical Generator (BiAG), which derives new class weights from existing classes without parameter fine-tuning during incremental stages. BiAG consists of three components: Weight Self-Attention Module (WSA), Weight & Prototype Analogical Attention Module (WPAA), and Semantic Conversion Module (SCM). SCM uses Neural Collapse theory for semantic conversion, WSA supplements new class weights, and WPAA computes analogies to generate new class weights. Experiments on miniImageNet, CUB-200, and CIFAR-100 datasets demonstrate that our method achieves higher final and average accuracy compared to SOTA methods.
☆ Vision-to-Music Generation: A Survey
Vision-to-music Generation, including video-to-music and image-to-music tasks, is a significant branch of multimodal artificial intelligence demonstrating vast application prospects in fields such as film scoring, short video creation, and dance music synthesis. However, compared to the rapid development of modalities like text and images, research in vision-to-music is still in its preliminary stage due to its complex internal structure and the difficulty of modeling dynamic relationships with video. Existing surveys focus on general music generation without comprehensive discussion on vision-to-music. In this paper, we systematically review the research progress in the field of vision-to-music generation. We first analyze the technical characteristics and core challenges for three input types: general videos, human movement videos, and images, as well as two output types of symbolic music and audio music. We then summarize the existing methodologies on vision-to-music generation from the architecture perspective. A detailed review of common datasets and evaluation metrics is provided. Finally, we discuss current challenges and promising directions for future research. We hope our survey can inspire further innovation in vision-to-music generation and the broader field of multimodal generation in academic research and industrial applications. To follow latest works and foster further innovation in this field, we are continuously maintaining a GitHub repository at https://github.com/wzk1015/Awesome-Vision-to-Music-Generation.
☆ Orange Quality Grading with Deep Learning
Orange grading is a crucial step in the fruit industry, as it helps to sort oranges according to different criteria such as size, quality, ripeness, and health condition, ensuring safety for human consumption and better price allocation and client satisfaction. Automated grading enables faster processing, precision, and reduced human labor. In this paper, we implement a deep learning-based solution for orange grading via machine vision. Unlike typical grading systems that analyze fruits from a single view, we capture multiview images of each single orange in order to enable a richer representation. Afterwards, we compose the acquired images into one collage. This enables the analysis of the whole orange skin. We train a convolutional neural network (CNN) on the composed images to grade the oranges into three classes, namely good, bad, and undefined. We also evaluate the performance with two different CNNs (ResNet-18 and SqueezeNet). We show experimentally that multi-view grading is superior to single view grading.
☆ DynamiCtrl: Rethinking the Basic Structure and the Role of Text for High-quality Human Image Animation
Human image animation has recently gained significant attention due to advancements in generative models. However, existing methods still face two major challenges: (1) architectural limitations, most models rely on U-Net, which underperforms compared to the MM-DiT; and (2) the neglect of textual information, which can enhance controllability. In this work, we introduce DynamiCtrl, a novel framework that not only explores different pose-guided control structures in MM-DiT, but also reemphasizes the crucial role of text in this task. Specifically, we employ a Shared VAE encoder for both reference images and driving pose videos, eliminating the need for an additional pose encoder and simplifying the overall framework. To incorporate pose features into the full attention blocks, we propose Pose-adaptive Layer Norm (PadaLN), which utilizes adaptive layer normalization to encode sparse pose features. The encoded features are directly added to the visual input, preserving the spatiotemporal consistency of the backbone while effectively introducing pose control into MM-DiT. Furthermore, within the full attention mechanism, we align textual and visual features to enhance controllability. By leveraging text, we not only enable fine-grained control over the generated content, but also, for the first time, achieve simultaneous control over both background and motion. Experimental results verify the superiority of DynamiCtrl on benchmark datasets, demonstrating its strong identity preservation, heterogeneous character driving, background controllability, and high-quality synthesis. The project page is available at https://gulucaptain.github.io/DynamiCtrl/.
comment: 11 pages, 10 figures
☆ PLAIN: Scalable Estimation Architecture for Integrated Sensing and Communication
Integrated sensing and communication (ISAC) is envisioned be to one of the paradigms upon which next-generation mobile networks will be built, extending localization and tracking capabilities, as well as giving birth to environment-aware wireless access. A key aspect of sensing integration is parameter estimation, which involves extracting information about the surrounding environment, such as the direction, distance, and velocity of various objects within. This is typically of a high-dimensional nature, which leads to significant computational complexity, if performed jointly across multiple sensing dimensions, such as space, frequency, and time. Additionally, due to the incorporation of sensing on top of the data transmission, the time window available for sensing is likely to be short, resulting in an estimation problem where only a single snapshot is accessible. In this work, we propose PLAIN, a tensor-based estimation architecture that flexibly scales with multiple sensing dimensions and can handle high dimensionality, limited measurement time, and super-resolution requirements. It consists of three stages: a compression stage, where the high dimensional input is converted into lower dimensionality, without sacrificing resolution; a decoupled estimation stage, where the parameters across the different dimensions are estimated in parallel with low complexity; an input-based fusion stage, where the decoupled parameters are fused together to form a paired multidimensional estimate. We investigate the performance of the architecture for different configurations and compare it against practical sequential and joint estimation baselines, as well as theoretical bounds. Our results show that PLAIN, using tools from tensor algebra, subspace-based processing, and compressed sensing, can scale flexibly with dimensionality, while operating with low complexity and maintaining super-resolution.
comment: Submitted to the IEEE Transactions on Wireless Communications. Code available at GitHub: https://github.com/bashar-tahir/plain
☆ Clean Image May be Dangerous: Data Poisoning Attacks Against Deep Hashing
Large-scale image retrieval using deep hashing has become increasingly popular due to the exponential growth of image data and the remarkable feature extraction capabilities of deep neural networks (DNNs). However, deep hashing methods are vulnerable to malicious attacks, including adversarial and backdoor attacks. It is worth noting that these attacks typically involve altering the query images, which is not a practical concern in real-world scenarios. In this paper, we point out that even clean query images can be dangerous, inducing malicious target retrieval results, like undesired or illegal images. To the best of our knowledge, we are the first to study data \textbf{p}oisoning \textbf{a}ttacks against \textbf{d}eep \textbf{hash}ing \textbf{(\textit{PADHASH})}. Specifically, we first train a surrogate model to simulate the behavior of the target deep hashing model. Then, a strict gradient matching strategy is proposed to generate the poisoned images. Extensive experiments on different models, datasets, hash methods, and hash code lengths demonstrate the effectiveness and generality of our attack method.
comment: Accepted by TMM
☆ Frequency-Aware Gaussian Splatting Decomposition
3D Gaussian Splatting (3D-GS) has revolutionized novel view synthesis with its efficient, explicit representation. However, it lacks frequency interpretability, making it difficult to separate low-frequency structures from fine details. We introduce a frequency-decomposed 3D-GS framework that groups 3D Gaussians that correspond to subbands in the Laplacian Pyrmaids of the input images. Our approach enforces coherence within each subband (i.e., group of 3D Gaussians) through dedicated regularization, ensuring well-separated frequency components. We extend color values to both positive and negative ranges, allowing higher-frequency layers to add or subtract residual details. To stabilize optimization, we employ a progressive training scheme that refines details in a coarse-to-fine manner. Beyond interpretability, this frequency-aware design unlocks a range of practical benefits. Explicit frequency separation enables advanced 3D editing and stylization, allowing precise manipulation of specific frequency bands. It also supports dynamic level-of-detail control for progressive rendering, streaming, foveated rendering and fast geometry interaction. Through extensive experiments, we demonstrate that our method provides improved control and flexibility for emerging applications in scene editing and interactive rendering. Our code will be made publicly available.
☆ GenFusion: Closing the Loop between Reconstruction and Generation via Videos
Recently, 3D reconstruction and generation have demonstrated impressive novel view synthesis results, achieving high fidelity and efficiency. However, a notable conditioning gap can be observed between these two fields, e.g., scalable 3D scene reconstruction often requires densely captured views, whereas 3D generation typically relies on a single or no input view, which significantly limits their applications. We found that the source of this phenomenon lies in the misalignment between 3D constraints and generative priors. To address this problem, we propose a reconstruction-driven video diffusion model that learns to condition video frames on artifact-prone RGB-D renderings. Moreover, we propose a cyclical fusion pipeline that iteratively adds restoration frames from the generative model to the training set, enabling progressive expansion and addressing the viewpoint saturation limitations seen in previous reconstruction and generation pipelines. Our evaluation, including view synthesis from sparse view and masked input, validates the effectiveness of our approach.
☆ VoxRep: Enhancing 3D Spatial Understanding in 2D Vision-Language Models via Voxel Representation
Comprehending 3D environments is vital for intelligent systems in domains like robotics and autonomous navigation. Voxel grids offer a structured representation of 3D space, but extracting high-level semantic meaning remains challenging. This paper proposes a novel approach utilizing a Vision-Language Model (VLM) to extract "voxel semantics"-object identity, color, and location-from voxel data. Critically, instead of employing complex 3D networks, our method processes the voxel space by systematically slicing it along a primary axis (e.g., the Z-axis, analogous to CT scan slices). These 2D slices are then formatted and sequentially fed into the image encoder of a standard VLM. The model learns to aggregate information across slices and correlate spatial patterns with semantic concepts provided by the language component. This slice-based strategy aims to leverage the power of pre-trained 2D VLMs for efficient 3D semantic understanding directly from voxel representations.
☆ FakeReasoning: Towards Generalizable Forgery Detection and Reasoning
Accurate and interpretable detection of AI-generated images is essential for mitigating risks associated with AI misuse. However, the substantial domain gap among generative models makes it challenging to develop a generalizable forgery detection model. Moreover, since every pixel in an AI-generated image is synthesized, traditional saliency-based forgery explanation methods are not well suited for this task. To address these challenges, we propose modeling AI-generated image detection and explanation as a Forgery Detection and Reasoning task (FDR-Task), leveraging vision-language models (VLMs) to provide accurate detection through structured and reliable reasoning over forgery attributes. To facilitate this task, we introduce the Multi-Modal Forgery Reasoning dataset (MMFR-Dataset), a large-scale dataset containing 100K images across 10 generative models, with 10 types of forgery reasoning annotations, enabling comprehensive evaluation of FDR-Task. Additionally, we propose FakeReasoning, a forgery detection and reasoning framework with two key components. First, Forgery-Aligned Contrastive Learning enhances VLMs' understanding of forgery-related semantics through both cross-modal and intra-modal contrastive learning between images and forgery attribute reasoning. Second, a Classification Probability Mapper bridges the optimization gap between forgery detection and language modeling by mapping the output logits of VLMs to calibrated binary classification probabilities. Experiments across multiple generative models demonstrate that FakeReasoning not only achieves robust generalization but also outperforms state-of-the-art methods on both detection and reasoning tasks.
☆ An improved EfficientNetV2 for garbage classification
This paper presents an enhanced waste classification framework based on EfficientNetV2 to address challenges in data acquisition cost, generalization, and real-time performance. We propose a Channel-Efficient Attention (CE-Attention) module that mitigates feature loss during global pooling without introducing dimensional scaling, effectively enhancing critical feature extraction. Additionally, a lightweight multi-scale spatial feature extraction module (SAFM) is developed by integrating depthwise separable convolutions, significantly reducing model complexity. Comprehensive data augmentation strategies are further employed to improve generalization. Experiments on the Huawei Cloud waste classification dataset demonstrate that our method achieves a classification accuracy of 95.4\%, surpassing the baseline by 3.2\% and outperforming mainstream models. The results validate the effectiveness of our approach in balancing accuracy and efficiency for practical waste classification scenarios.
☆ WVSC: Wireless Video Semantic Communication with Multi-frame Compensation
Existing wireless video transmission schemes directly conduct video coding in pixel level, while neglecting the inner semantics contained in videos. In this paper, we propose a wireless video semantic communication framework, abbreviated as WVSC, which integrates the idea of semantic communication into wireless video transmission scenarios. WVSC first encodes original video frames as semantic frames and then conducts video coding based on such compact representations, enabling the video coding in semantic level rather than pixel level. Moreover, to further reduce the communication overhead, a reference semantic frame is introduced to substitute motion vectors of each frame in common video coding methods. At the receiver, multi-frame compensation (MFC) is proposed to produce compensated current semantic frame with a multi-frame fusion attention module. With both the reference frame transmission and MFC, the bandwidth efficiency improves with satisfying video transmission performance. Experimental results verify the performance gain of WVSC over other DL-based methods e.g. DVSC about 1 dB and traditional schemes about 2 dB in terms of PSNR.
☆ UGen: Unified Autoregressive Multimodal Model with Progressive Vocabulary Learning
We introduce UGen, a unified autoregressive multimodal model that demonstrates strong performance across text processing, image understanding, and image generation tasks simultaneously. UGen converts both texts and images into discrete token sequences and utilizes a single transformer to generate them uniformly in an autoregressive manner. To address the challenges associated with unified multimodal learning, UGen is trained using a novel mechanism, namely progressive vocabulary learning. In this process, visual token IDs are incrementally activated and integrated into the training phase, ultimately enhancing the effectiveness of unified multimodal learning. Experiments on comprehensive text and image tasks show that UGen achieves a significant overall performance improvement of 13.3% compared to the vanilla unified autoregressive method, and it also delivers competitive results across all tasks against several task-specific models.
☆ Leveraging LLMs with Iterative Loop Structure for Enhanced Social Intelligence in Video Question Answering
Social intelligence, the ability to interpret emotions, intentions, and behaviors, is essential for effective communication and adaptive responses. As robots and AI systems become more prevalent in caregiving, healthcare, and education, the demand for AI that can interact naturally with humans grows. However, creating AI that seamlessly integrates multiple modalities, such as vision and speech, remains a challenge. Current video-based methods for social intelligence rely on general video recognition or emotion recognition techniques, often overlook the unique elements inherent in human interactions. To address this, we propose the Looped Video Debating (LVD) framework, which integrates Large Language Models (LLMs) with visual information, such as facial expressions and body movements, to enhance the transparency and reliability of question-answering tasks involving human interaction videos. Our results on the Social-IQ 2.0 benchmark show that LVD achieves state-of-the-art performance without fine-tuning. Furthermore, supplementary human annotations on existing datasets provide insights into the model's accuracy, guiding future improvements in AI-driven social intelligence.
☆ DGSUnet: An Improved Unet Model with DINO-Guided SAM2 for Multi-Scale Feature Collaboration
Despite the significant advancements in general image segmentation achieved by large-scale pre-trained foundation models (such as Meta's Segment Any-thing Model (SAM) series and DINOv2), their performance in specialized fields remains limited by two critical issues: the excessive training costs due to large model parameters, and the insufficient ability to represent specific domain characteristics. This paper proposes a multi-scale feature collabora-tion framework guided by DINOv2 for SAM2, with core innovations in three aspects: (1) Establishing a feature collaboration mechanism between DINOv2 and SAM2 backbones, where high-dimensional semantic features extracted by the self-supervised model guide multi-scale feature fusion; (2) Designing lightweight adapter modules and cross-modal, cross-layer feature fusion units to inject cross-domain knowledge while freezing the base model parameters; (3) Constructing a U-shaped network structure based on U-net, which utilizes attention mechanisms to achieve adaptive aggregation decoding of multi-granularity features. This framework surpasses existing state-of-the-art meth-ods in downstream tasks such as camouflage target detection and salient ob-ject detection, without requiring costly training processes. It provides a tech-nical pathway for efficient deployment of visual image segmentation, demon-strating significant application value in a wide range of downstream tasks and specialized fields within image segmentation.Project page: https://github.com/CheneyXuYiMin/SAM2DINO-Seg
☆ Model as a Game: On Numerical and Spatial Consistency for Generative Games
Recent advances in generative models have significantly impacted game generation. However, despite producing high-quality graphics and adequately receiving player input, existing models often fail to maintain fundamental game properties such as numerical and spatial consistency. Numerical consistency ensures gameplay mechanics correctly reflect score changes and other quantitative elements, while spatial consistency prevents jarring scene transitions, providing seamless player experiences. In this paper, we revisit the paradigm of generative games to explore what truly constitutes a Model as a Game (MaaG) with a well-developed mechanism. We begin with an empirical study on ``Traveler'', a 2D game created by an LLM featuring minimalist rules yet challenging generative models in maintaining consistency. Based on the DiT architecture, we design two specialized modules: (1) a numerical module that integrates a LogicNet to determine event triggers, with calculations processed externally as conditions for image generation; and (2) a spatial module that maintains a map of explored areas, retrieving location-specific information during generation and linking new observations to ensure continuity. Experiments across three games demonstrate that our integrated modules significantly enhance performance on consistency metrics compared to baselines, while incurring minimal time overhead during inference.
comment: Technical Report
☆ VADMamba: Exploring State Space Models for Fast Video Anomaly Detection ICME 2025
Video anomaly detection (VAD) methods are mostly CNN-based or Transformer-based, achieving impressive results, but the focus on detection accuracy often comes at the expense of inference speed. The emergence of state space models in computer vision, exemplified by the Mamba model, demonstrates improved computational efficiency through selective scans and showcases the great potential for long-range modeling. Our study pioneers the application of Mamba to VAD, dubbed VADMamba, which is based on multi-task learning for frame prediction and optical flow reconstruction. Specifically, we propose the VQ-Mamba Unet (VQ-MaU) framework, which incorporates a Vector Quantization (VQ) layer and Mamba-based Non-negative Visual State Space (NVSS) block. Furthermore, two individual VQ-MaU networks separately predict frames and reconstruct corresponding optical flows, further boosting accuracy through a clip-level fusion evaluation strategy. Experimental results validate the efficacy of the proposed VADMamba across three benchmark datasets, demonstrating superior performance in inference speed compared to previous work. Code is available at https://github.com/jLooo/VADMamba.
comment: Accpeted by ICME 2025
☆ Adversarial Wear and Tear: Exploiting Natural Damage for Generating Physical-World Adversarial Examples
The presence of adversarial examples in the physical world poses significant challenges to the deployment of Deep Neural Networks in safety-critical applications such as autonomous driving. Most existing methods for crafting physical-world adversarial examples are ad-hoc, relying on temporary modifications like shadows, laser beams, or stickers that are tailored to specific scenarios. In this paper, we introduce a new class of physical-world adversarial examples, AdvWT, which draws inspiration from the naturally occurring phenomenon of `wear and tear', an inherent property of physical objects. Unlike manually crafted perturbations, `wear and tear' emerges organically over time due to environmental degradation, as seen in the gradual deterioration of outdoor signboards. To achieve this, AdvWT follows a two-step approach. First, a GAN-based, unsupervised image-to-image translation network is employed to model these naturally occurring damages, particularly in the context of outdoor signboards. The translation network encodes the characteristics of damaged signs into a latent `damage style code'. In the second step, we introduce adversarial perturbations into the style code, strategically optimizing its transformation process. This manipulation subtly alters the damage style representation, guiding the network to generate adversarial images where the appearance of damages remains perceptually realistic, while simultaneously ensuring their effectiveness in misleading neural networks. Through comprehensive experiments on two traffic sign datasets, we show that AdvWT effectively misleads DNNs in both digital and physical domains. AdvWT achieves an effective attack success rate, greater robustness, and a more natural appearance compared to existing physical-world adversarial examples. Additionally, integrating AdvWT into training enhances a model's generalizability to real-world damaged signs.
comment: 11 pages, 9 figures
☆ Integrating Travel Behavior Forecasting and Generative Modeling for Predicting Future Urban Mobility and Spatial Transformations
Transportation planning plays a critical role in shaping urban development, economic mobility, and infrastructure sustainability. However, traditional planning methods often struggle to accurately predict long-term urban growth and transportation demands. This may sometimes result in infrastructure demolition to make room for current transportation planning demands. This study integrates a Temporal Fusion Transformer to predict travel patterns from demographic data with a Generative Adversarial Network to predict future urban settings through satellite imagery. The framework achieved a 0.76 R-square score in travel behavior prediction and generated high-fidelity satellite images with a Structural Similarity Index of 0.81. The results demonstrate that integrating predictive analytics and spatial visualization can significantly improve the decision-making process, fostering more sustainable and efficient urban development. This research highlights the importance of data-driven methodologies in modern transportation planning and presents a step toward optimizing infrastructure placement, capacity, and long-term viability.
☆ The Devil is in Low-Level Features for Cross-Domain Few-Shot Segmentation CVPR 2025
Cross-Domain Few-Shot Segmentation (CDFSS) is proposed to transfer the pixel-level segmentation capabilities learned from large-scale source-domain datasets to downstream target-domain datasets, with only a few annotated images per class. In this paper, we focus on a well-observed but unresolved phenomenon in CDFSS: for target domains, particularly those distant from the source domain, segmentation performance peaks at the very early epochs, and declines sharply as the source-domain training proceeds. We delve into this phenomenon for an interpretation: low-level features are vulnerable to domain shifts, leading to sharper loss landscapes during the source-domain training, which is the devil of CDFSS. Based on this phenomenon and interpretation, we further propose a method that includes two plug-and-play modules: one to flatten the loss landscapes for low-level features during source-domain training as a novel sharpness-aware minimization method, and the other to directly supplement target-domain information to the model during target-domain testing by low-level-based calibration. Extensive experiments on four target datasets validate our rationale and demonstrate that our method surpasses the state-of-the-art method in CDFSS signifcantly by 3.71% and 5.34% average MIoU in 1-shot and 5-shot scenarios, respectively.
comment: Accepted by CVPR 2025
☆ ChatAnyone: Stylized Real-time Portrait Video Generation with Hierarchical Motion Diffusion Model
Real-time interactive video-chat portraits have been increasingly recognized as the future trend, particularly due to the remarkable progress made in text and voice chat technologies. However, existing methods primarily focus on real-time generation of head movements, but struggle to produce synchronized body motions that match these head actions. Additionally, achieving fine-grained control over the speaking style and nuances of facial expressions remains a challenge. To address these limitations, we introduce a novel framework for stylized real-time portrait video generation, enabling expressive and flexible video chat that extends from talking head to upper-body interaction. Our approach consists of the following two stages. The first stage involves efficient hierarchical motion diffusion models, that take both explicit and implicit motion representations into account based on audio inputs, which can generate a diverse range of facial expressions with stylistic control and synchronization between head and body movements. The second stage aims to generate portrait video featuring upper-body movements, including hand gestures. We inject explicit hand control signals into the generator to produce more detailed hand movements, and further perform face refinement to enhance the overall realism and expressiveness of the portrait video. Additionally, our approach supports efficient and continuous generation of upper-body portrait video in maximum 512 * 768 resolution at up to 30fps on 4090 GPU, supporting interactive video-chat in real-time. Experimental results demonstrate the capability of our approach to produce portrait videos with rich expressiveness and natural upper-body movements.
comment: Project Page: https://humanaigc.github.io/chat-anyone/
☆ Recurrent Feature Mining and Keypoint Mixup Padding for Category-Agnostic Pose Estimation
Category-agnostic pose estimation aims to locate keypoints on query images according to a few annotated support images for arbitrary novel classes. Existing methods generally extract support features via heatmap pooling, and obtain interacted features from support and query via cross-attention. Hence, these works neglect to mine fine-grained and structure-aware (FGSA) features from both support and query images, which are crucial for pixel-level keypoint localization. To this end, we propose a novel yet concise framework, which recurrently mines FGSA features from both support and query images. Specifically, we design a FGSA mining module based on deformable attention mechanism. On the one hand, we mine fine-grained features by applying deformable attention head over multi-scale feature maps. On the other hand, we mine structure-aware features by offsetting the reference points of keypoints to their linked keypoints. By means of above module, we recurrently mine FGSA features from support and query images, and thus obtain better support features and query estimations. In addition, we propose to use mixup keypoints to pad various classes to a unified keypoint number, which could provide richer supervision than the zero padding used in existing works. We conduct extensive experiments and in-depth studies on large-scale MP-100 dataset, and outperform SOTA method dramatically (+3.2\%PCK@0.05). Code is avaiable at https://github.com/chenbys/FMMP.
VideoMix: Aggregating How-To Videos for Task-Oriented Learning
Tutorial videos are a valuable resource for people looking to learn new tasks. People often learn these skills by viewing multiple tutorial videos to get an overall understanding of a task by looking at different approaches to achieve the task. However, navigating through multiple videos can be time-consuming and mentally demanding as these videos are scattered and not easy to skim. We propose VideoMix, a system that helps users gain a holistic understanding of a how-to task by aggregating information from multiple videos on the task. Insights from our formative study (N=12) reveal that learners value understanding potential outcomes, required materials, alternative methods, and important details shared by different videos. Powered by a Vision-Language Model pipeline, VideoMix extracts and organizes this information, presenting concise textual summaries alongside relevant video clips, enabling users to quickly digest and navigate the content. A comparative user study (N=12) demonstrated that VideoMix enabled participants to gain a more comprehensive understanding of tasks with greater efficiency than a baseline video interface, where videos are viewed independently. Our findings highlight the potential of a task-oriented, multi-video approach where videos are organized around a shared goal, offering an enhanced alternative to conventional video-based learning.
comment: In Proceedings of the 30th International Conference on Intelligent User Interfaces (IUI '25) 2025
☆ Omni-AD: Learning to Reconstruct Global and Local Features for Multi-class Anomaly Detection
In multi-class unsupervised anomaly detection(MUAD), reconstruction-based methods learn to map input images to normal patterns to identify anomalous pixels. However, this strategy easily falls into the well-known "learning shortcut" issue when decoders fail to capture normal patterns and reconstruct both normal and abnormal samples naively. To address that, we propose to learn the input features in global and local manners, forcing the network to memorize the normal patterns more comprehensively. Specifically, we design a two-branch decoder block, named Omni-block. One branch corresponds to global feature learning, where we serialize two self-attention blocks but replace the query and (key, value) with learnable tokens, respectively, thus capturing global features of normal patterns concisely and thoroughly. The local branch comprises depth-separable convolutions, whose locality enables effective and efficient learning of local features for normal patterns. By stacking Omni-blocks, we build a framework, Omni-AD, to learn normal patterns of different granularity and reconstruct them progressively. Comprehensive experiments on public anomaly detection benchmarks show that our method outperforms state-of-the-art approaches in MUAD. Code is available at https://github.com/easyoo/Omni-AD.git.
☆ AdaMHF: Adaptive Multimodal Hierarchical Fusion for Survival Prediction ICME 2025
The integration of pathologic images and genomic data for survival analysis has gained increasing attention with advances in multimodal learning. However, current methods often ignore biological characteristics, such as heterogeneity and sparsity, both within and across modalities, ultimately limiting their adaptability to clinical practice. To address these challenges, we propose AdaMHF: Adaptive Multimodal Hierarchical Fusion, a framework designed for efficient, comprehensive, and tailored feature extraction and fusion. AdaMHF is specifically adapted to the uniqueness of medical data, enabling accurate predictions with minimal resource consumption, even under challenging scenarios with missing modalities. Initially, AdaMHF employs an experts expansion and residual structure to activate specialized experts for extracting heterogeneous and sparse features. Extracted tokens undergo refinement via selection and aggregation, reducing the weight of non-dominant features while preserving comprehensive information. Subsequently, the encoded features are hierarchically fused, allowing multi-grained interactions across modalities to be captured. Furthermore, we introduce a survival prediction benchmark designed to resolve scenarios with missing modalities, mirroring real-world clinical conditions. Extensive experiments on TCGA datasets demonstrate that AdaMHF surpasses current state-of-the-art (SOTA) methods, showcasing exceptional performance in both complete and incomplete modality settings.
comment: Accepted by ICME 2025
☆ One Snapshot is All You Need: A Generalized Method for mmWave Signal Generation
Wireless sensing systems, particularly those using mmWave technology, offer distinct advantages over traditional vision-based approaches, such as enhanced privacy and effectiveness in poor lighting conditions. These systems, leveraging FMCW signals, have shown success in human-centric applications like localization, gesture recognition, and so on. However, comprehensive mmWave datasets for diverse applications are scarce, often constrained by pre-processed signatures (e.g., point clouds or RA heatmaps) and inconsistent annotation formats. To overcome these limitations, we propose mmGen, a novel and generalized framework tailored for full-scene mmWave signal generation. By constructing physical signal transmission models, mmGen synthesizes human-reflected and environment-reflected mmWave signals from the constructed 3D meshes. Additionally, we incorporate methods to account for material properties, antenna gains, and multipath reflections, enhancing the realism of the synthesized signals. We conduct extensive experiments using a prototype system with commercial mmWave devices and Kinect sensors. The results show that the average similarity of Range-Angle and micro-Doppler signatures between the synthesized and real-captured signals across three different environments exceeds 0.91 and 0.89, respectively, demonstrating the effectiveness and practical applicability of mmGen.
comment: IEEE INFOCOM 2025
☆ StyledStreets: Multi-style Street Simulator with Spatial and Temporal Consistency
Urban scene reconstruction requires modeling both static infrastructure and dynamic elements while supporting diverse environmental conditions. We present \textbf{StyledStreets}, a multi-style street simulator that achieves instruction-driven scene editing with guaranteed spatial and temporal consistency. Building on a state-of-the-art Gaussian Splatting framework for street scenarios enhanced by our proposed pose optimization and multi-view training, our method enables photorealistic style transfers across seasons, weather conditions, and camera setups through three key innovations: First, a hybrid embedding scheme disentangles persistent scene geometry from transient style attributes, allowing realistic environmental edits while preserving structural integrity. Second, uncertainty-aware rendering mitigates supervision noise from diffusion priors, enabling robust training across extreme style variations. Third, a unified parametric model prevents geometric drift through regularized updates, maintaining multi-view consistency across seven vehicle-mounted cameras. Our framework preserves the original scene's motion patterns and geometric relationships. Qualitative results demonstrate plausible transitions between diverse conditions (snow, sandstorm, night), while quantitative evaluations show state-of-the-art geometric accuracy under style transfers. The approach establishes new capabilities for urban simulation, with applications in autonomous vehicle testing and augmented reality systems requiring reliable environmental consistency. Codes will be publicly available upon publication.
comment: 14 pages
☆ Learning Class Prototypes for Unified Sparse Supervised 3D Object Detection CVPR 2025
Both indoor and outdoor scene perceptions are essential for embodied intelligence. However, current sparse supervised 3D object detection methods focus solely on outdoor scenes without considering indoor settings. To this end, we propose a unified sparse supervised 3D object detection method for both indoor and outdoor scenes through learning class prototypes to effectively utilize unlabeled objects. Specifically, we first propose a prototype-based object mining module that converts the unlabeled object mining into a matching problem between class prototypes and unlabeled features. By using optimal transport matching results, we assign prototype labels to high-confidence features, thereby achieving the mining of unlabeled objects. We then present a multi-label cooperative refinement module to effectively recover missed detections through pseudo label quality control and prototype label cooperation. Experiments show that our method achieves state-of-the-art performance under the one object per scene sparse supervised setting across indoor and outdoor datasets. With only one labeled object per scene, our method achieves about 78%, 90%, and 96% performance compared to the fully supervised detector on ScanNet V2, SUN RGB-D, and KITTI, respectively, highlighting the scalability of our method. Code is available at https://github.com/zyrant/CPDet3D.
comment: Accepted by CVPR 2025
☆ ZJUKLAB at SemEval-2025 Task 4: Unlearning via Model Merging
This paper presents the ZJUKLAB team's submission for SemEval-2025 Task 4: Unlearning Sensitive Content from Large Language Models. This task aims to selectively erase sensitive knowledge from large language models, avoiding both over-forgetting and under-forgetting issues. We propose an unlearning system that leverages Model Merging (specifically TIES-Merging), combining two specialized models into a more balanced unlearned model. Our system achieves competitive results, ranking second among 26 teams, with an online score of 0.944 for Task Aggregate and 0.487 for overall Aggregate. In this paper, we also conduct local experiments and perform a comprehensive analysis of the unlearning process, examining performance trajectories, loss dynamics, and weight perspectives, along with several supplementary experiments, to understand the effectiveness of our method. Furthermore, we analyze the shortcomings of our method and evaluation metrics, emphasizing that MIA scores and ROUGE-based metrics alone are insufficient to fully evaluate successful unlearning. Finally, we emphasize the need for more comprehensive evaluation methodologies and rethinking of unlearning objectives in future research. Code is available at https://github.com/zjunlp/unlearn/tree/main/semeval25.
comment: Work in progress
☆ Can Video Diffusion Model Reconstruct 4D Geometry?
Reconstructing dynamic 3D scenes (i.e., 4D geometry) from monocular video is an important yet challenging problem. Conventional multiview geometry-based approaches often struggle with dynamic motion, whereas recent learning-based methods either require specialized 4D representation or sophisticated optimization. In this paper, we present Sora3R, a novel framework that taps into the rich spatiotemporal priors of large-scale video diffusion models to directly infer 4D pointmaps from casual videos. Sora3R follows a two-stage pipeline: (1) we adapt a pointmap VAE from a pretrained video VAE, ensuring compatibility between the geometry and video latent spaces; (2) we finetune a diffusion backbone in combined video and pointmap latent space to generate coherent 4D pointmaps for every frame. Sora3R operates in a fully feedforward manner, requiring no external modules (e.g., depth, optical flow, or segmentation) or iterative global alignment. Extensive experiments demonstrate that Sora3R reliably recovers both camera poses and detailed scene geometry, achieving performance on par with state-of-the-art methods for dynamic 4D reconstruction across diverse scenarios.
☆ KAC: Kolmogorov-Arnold Classifier for Continual Learning CVPR 2025
Continual learning requires models to train continuously across consecutive tasks without forgetting. Most existing methods utilize linear classifiers, which struggle to maintain a stable classification space while learning new tasks. Inspired by the success of Kolmogorov-Arnold Networks (KAN) in preserving learning stability during simple continual regression tasks, we set out to explore their potential in more complex continual learning scenarios. In this paper, we introduce the Kolmogorov-Arnold Classifier (KAC), a novel classifier developed for continual learning based on the KAN structure. We delve into the impact of KAN's spline functions and introduce Radial Basis Functions (RBF) for improved compatibility with continual learning. We replace linear classifiers with KAC in several recent approaches and conduct experiments across various continual learning benchmarks, all of which demonstrate performance improvements, highlighting the effectiveness and robustness of KAC in continual learning. The code is available at https://github.com/Ethanhuhuhu/KAC.
comment: CVPR 2025
☆ Rerouting Connection: Hybrid Computer Vision Analysis Reveals Visual Similarity Between Indus and Tibetan-Yi Corridor Writing Systems
This thesis employs a hybrid CNN-Transformer architecture, in conjunction with a detailed anthropological framework, to investigate potential historical connections between the visual morphology of the Indus Valley script and pictographic systems of the Tibetan-Yi Corridor. Through an ensemble methodology of three target scripts across 15 independently trained models, we demonstrate that Tibetan-Yi Corridor scripts exhibit approximately six-fold higher visual similarity to the Indus script (61.7%-63.5%) than to the Bronze Age Proto-Cuneiform (10.2%-10.9%) or Proto-Elamite (7.6%-8.7%) systems. Additionally and contrarily to our current understanding of the networks of the Indus Valley Civilization, the Indus script unexpectedly maps closer to Tibetan-Yi Corridor scripts, with a mean cosine similarity of 0.629, than to the aforementioned contemporaneous West Asian signaries, both of which recorded mean cosine similarities of 0.104 and 0.080 despite their close geographic proximity and evident trade relations. Across various dimensionality reduction practices and clustering methodologies, the Indus script consistently clusters closest to Tibetan-Yi Corridor scripts. Our computational results align with qualitative observations of specific pictorial parallels in numeral systems, gender markers, and key iconographic elements; this is further supported by archaeological evidence of sustained contact networks along the ancient Shu-Shendu road in tandem with the Indus Valley Civilization's decline, providing a plausible transmission pathway. While alternative explanations cannot be ruled out, the specificity and consistency of observed similarities challenge conventional narratives of isolated script development and suggest more complex ancient cultural transmission networks between South and East Asia than previously recognized.
comment: 106 pages total (main text: 42, 48 w/refs, 100 w/appendices). 21 figures, 4 tables in main; 106 figs, 8 tables total. Code and data at this URL: https://github.com/oohalakkadi/ivc2tyc. Submitted as undergrad thesis at Duke Kunshan University; accepted for presentation at the 2025 Computer Applications and Quantitative Methods in Archaeology Conference, Athens
☆ HSLiNets: Evaluating Band Ordering Strategies in Hyperspectral and LiDAR Fusion
The integration of hyperspectral imaging (HSI) and Light Detection and Ranging (LiDAR) data provides complementary spectral and spatial information for remote sensing applications. While previous studies have explored the role of band selection and grouping in HSI classification, little attention has been given to how the spectral sequence or band order affects classification outcomes when fused with LiDAR. In this work, we systematically investigate the influence of band order on HSI-LiDAR fusion performance. Through extensive experiments, we demonstrate that band order significantly impacts classification accuracy, revealing a previously overlooked factor in fusion-based models. Motivated by this observation, we propose a novel fusion architecture that not only integrates HSI and LiDAR data but also learns from multiple band order configurations. The proposed method enhances feature representation by adaptively fusing different spectral sequences, leading to improved classification accuracy. Experimental results on the Houston 2013 and Trento datasets show that our approach outperforms state-of-the-art fusion models. Data and code are available at https://github.com/Judyxyang/HSLiNets.
comment: 2 figures, 5 pages
Efficient Multi-Instance Generation with Janus-Pro-Dirven Prompt Parsing
Recent advances in text-guided diffusion models have revolutionized conditional image generation, yet they struggle to synthesize complex scenes with multiple objects due to imprecise spatial grounding and limited scalability. We address these challenges through two key modules: 1) Janus-Pro-driven Prompt Parsing, a prompt-layout parsing module that bridges text understanding and layout generation via a compact 1B-parameter architecture, and 2) MIGLoRA, a parameter-efficient plug-in integrating Low-Rank Adaptation (LoRA) into UNet (SD1.5) and DiT (SD3) backbones. MIGLoRA is capable of preserving the base model's parameters and ensuring plug-and-play adaptability, minimizing architectural intrusion while enabling efficient fine-tuning. To support a comprehensive evaluation, we create DescripBox and DescripBox-1024, benchmarks that span diverse scenes and resolutions. The proposed method achieves state-of-the-art performance on COCO and LVIS benchmarks while maintaining parameter efficiency, demonstrating superior layout fidelity and scalability for open-world synthesis.
☆ Neural Architecture Search by Learning a Hierarchical Search Space
Monte-Carlo Tree Search (MCTS) is a powerful tool for many non-differentiable search related problems such as adversarial games. However, the performance of such approach highly depends on the order of the nodes that are considered at each branching of the tree. If the first branches cannot distinguish between promising and deceiving configurations for the final task, the efficiency of the search is exponentially reduced. In Neural Architecture Search (NAS), as only the final architecture matters, the visiting order of the branching can be optimized to improve learning. In this paper, we study the application of MCTS to NAS for image classification. We analyze several sampling methods and branching alternatives for MCTS and propose to learn the branching by hierarchical clustering of architectures based on their similarity. The similarity is measured by the pairwise distance of output vectors of architectures. Extensive experiments on two challenging benchmarks on CIFAR10 and ImageNet show that MCTS, if provided with a good branching hierarchy, can yield promising solutions more efficiently than other approaches for NAS problems.
☆ Online Reasoning Video Segmentation with Just-in-Time Digital Twins
Reasoning segmentation (RS) aims to identify and segment objects of interest based on implicit text queries. As such, RS is a catalyst for embodied AI agents, enabling them to interpret high-level commands without requiring explicit step-by-step guidance. However, current RS approaches rely heavily on the visual perception capabilities of multimodal large language models (LLMs), leading to several major limitations. First, they struggle with queries that require multiple steps of reasoning or those that involve complex spatial/temporal relationships. Second, they necessitate LLM fine-tuning, which may require frequent updates to maintain compatibility with contemporary LLMs and may increase risks of catastrophic forgetting during fine-tuning. Finally, being primarily designed for static images or offline video processing, they scale poorly to online video data. To address these limitations, we propose an agent framework that disentangles perception and reasoning for online video RS without LLM fine-tuning. Our innovation is the introduction of a just-in-time digital twin concept, where -- given an implicit query -- a LLM plans the construction of a low-level scene representation from high-level video using specialist vision models. We refer to this approach to creating a digital twin as "just-in-time" because the LLM planner will anticipate the need for specific information and only request this limited subset instead of always evaluating every specialist model. The LLM then performs reasoning on this digital twin representation to identify target objects. To evaluate our approach, we introduce a new comprehensive video reasoning segmentation benchmark comprising 200 videos with 895 implicit text queries. The benchmark spans three reasoning categories (semantic, spatial, and temporal) with three different reasoning chain complexity.
☆ What Changed and What Could Have Changed? State-Change Counterfactuals for Procedure-Aware Video Representation Learning
Understanding a procedural activity requires modeling both how action steps transform the scene, and how evolving scene transformations can influence the sequence of action steps, even those that are accidental or erroneous. Existing work has studied procedure-aware video representations by proposing novel approaches such as modeling the temporal order of actions and has not explicitly learned the state changes (scene transformations). In this work, we study procedure-aware video representation learning by incorporating state-change descriptions generated by Large Language Models (LLMs) as supervision signals for video encoders. Moreover, we generate state-change counterfactuals that simulate hypothesized failure outcomes, allowing models to learn by imagining the unseen ``What if'' scenarios. This counterfactual reasoning facilitates the model's ability to understand the cause and effect of each step in an activity. To verify the procedure awareness of our model, we conduct extensive experiments on procedure-aware tasks, including temporal action segmentation and error detection. Our results demonstrate the effectiveness of the proposed state-change descriptions and their counterfactuals and achieve significant improvements on multiple tasks. We will make our source code and data publicly available soon.
comment: 16 pages, 4 figures
☆ Multispectral Demosaicing via Dual Cameras
Multispectral (MS) images capture detailed scene information across a wide range of spectral bands, making them invaluable for applications requiring rich spectral data. Integrating MS imaging into multi camera devices, such as smartphones, has the potential to enhance both spectral applications and RGB image quality. A critical step in processing MS data is demosaicing, which reconstructs color information from the mosaic MS images captured by the camera. This paper proposes a method for MS image demosaicing specifically designed for dual-camera setups where both RGB and MS cameras capture the same scene. Our approach leverages co-captured RGB images, which typically have higher spatial fidelity, to guide the demosaicing of lower-fidelity MS images. We introduce the Dual-camera RGB-MS Dataset - a large collection of paired RGB and MS mosaiced images with ground-truth demosaiced outputs - that enables training and evaluation of our method. Experimental results demonstrate that our method achieves state-of-the-art accuracy compared to existing techniques.
☆ CoT-VLA: Visual Chain-of-Thought Reasoning for Vision-Language-Action Models
Vision-language-action models (VLAs) have shown potential in leveraging pretrained vision-language models and diverse robot demonstrations for learning generalizable sensorimotor control. While this paradigm effectively utilizes large-scale data from both robotic and non-robotic sources, current VLAs primarily focus on direct input--output mappings, lacking the intermediate reasoning steps crucial for complex manipulation tasks. As a result, existing VLAs lack temporal planning or reasoning capabilities. In this paper, we introduce a method that incorporates explicit visual chain-of-thought (CoT) reasoning into vision-language-action models (VLAs) by predicting future image frames autoregressively as visual goals before generating a short action sequence to achieve these goals. We introduce CoT-VLA, a state-of-the-art 7B VLA that can understand and generate visual and action tokens. Our experimental results demonstrate that CoT-VLA achieves strong performance, outperforming the state-of-the-art VLA model by 17% in real-world manipulation tasks and 6% in simulation benchmarks. Project website: https://cot-vla.github.io/
comment: Project website: https://cot-vla.github.io/
☆ AGILE: A Diffusion-Based Attention-Guided Image and Label Translation for Efficient Cross-Domain Plant Trait Identification
Semantically consistent cross-domain image translation facilitates the generation of training data by transferring labels across different domains, making it particularly useful for plant trait identification in agriculture. However, existing generative models struggle to maintain object-level accuracy when translating images between domains, especially when domain gaps are significant. In this work, we introduce AGILE (Attention-Guided Image and Label Translation for Efficient Cross-Domain Plant Trait Identification), a diffusion-based framework that leverages optimized text embeddings and attention guidance to semantically constrain image translation. AGILE utilizes pretrained diffusion models and publicly available agricultural datasets to improve the fidelity of translated images while preserving critical object semantics. Our approach optimizes text embeddings to strengthen the correspondence between source and target images and guides attention maps during the denoising process to control object placement. We evaluate AGILE on cross-domain plant datasets and demonstrate its effectiveness in generating semantically accurate translated images. Quantitative experiments show that AGILE enhances object detection performance in the target domain while maintaining realism and consistency. Compared to prior image translation methods, AGILE achieves superior semantic alignment, particularly in challenging cases where objects vary significantly or domain gaps are substantial.
☆ DeCompress: Denoising via Neural Compression
Learning-based denoising algorithms achieve state-of-the-art performance across various denoising tasks. However, training such models relies on access to large training datasets consisting of clean and noisy image pairs. On the other hand, in many imaging applications, such as microscopy, collecting ground truth images is often infeasible. To address this challenge, researchers have recently developed algorithms that can be trained without requiring access to ground truth data. However, training such models remains computationally challenging and still requires access to large noisy training samples. In this work, inspired by compression-based denoising and recent advances in neural compression, we propose a new compression-based denoising algorithm, which we name DeCompress, that i) does not require access to ground truth images, ii) does not require access to large training dataset - only a single noisy image is sufficient, iii) is robust to overfitting, and iv) achieves superior performance compared with zero-shot or unsupervised learning-based denoisers.
☆ FACETS: Efficient Once-for-all Object Detection via Constrained Iterative Search
Neural Architecture Search (NAS) for deep learning object detection frameworks typically involves multiple modules, each performing distinct tasks. These modules contribute to a vast search space, resulting in searches that can take several GPU hours or even days, depending on the complexity of the search space. This makes joint optimization both challenging and computationally expensive. Furthermore, satisfying target device constraints across modules adds additional complexity to the optimization process. To address these challenges, we propose \textbf{FACETS}, e\textbf{\underline{F}}ficient Once-for-\textbf{\underline{A}}ll Object Detection via \textbf{\underline{C}}onstrained it\textbf{\underline{E}}ra\textbf{\underline{T}}ive\textbf{\underline{S}}earch, a novel unified iterative NAS method that refines the architecture of all modules in a cyclical manner. FACETS leverages feedback from previous iterations, alternating between fixing one module's architecture and optimizing the others. This approach reduces the overall search space while preserving interdependencies among modules and incorporates constraints based on the target device's computational budget. In a controlled comparison against progressive and single-module search strategies, FACETS achieves architectures with up to $4.75\%$ higher accuracy twice as fast as progressive search strategies in earlier stages, while still being able to achieve a global optimum. Moreover, FACETS demonstrates the ability to iteratively refine the search space, producing better performing architectures over time. The refined search space yields candidates with a mean accuracy up to $27\%$ higher than global search and $5\%$ higher than progressive search methods via random sampling.
comment: 10 pages, 6 figures
☆ BOOTPLACE: Bootstrapped Object Placement with Detection Transformers CVPR 2025
In this paper, we tackle the copy-paste image-to-image composition problem with a focus on object placement learning. Prior methods have leveraged generative models to reduce the reliance for dense supervision. However, this often limits their capacity to model complex data distributions. Alternatively, transformer networks with a sparse contrastive loss have been explored, but their over-relaxed regularization often leads to imprecise object placement. We introduce BOOTPLACE, a novel paradigm that formulates object placement as a placement-by-detection problem. Our approach begins by identifying suitable regions of interest for object placement. This is achieved by training a specialized detection transformer on object-subtracted backgrounds, enhanced with multi-object supervisions. It then semantically associates each target compositing object with detected regions based on their complementary characteristics. Through a boostrapped training approach applied to randomly object-subtracted images, our model enforces meaningful placements through extensive paired data augmentation. Experimental results on established benchmarks demonstrate BOOTPLACE's superior performance in object repositioning, markedly surpassing state-of-the-art baselines on Cityscapes and OPA datasets with notable improvements in IOU scores. Additional ablation studies further showcase the compositionality and generalizability of our approach, supported by user study evaluations.
comment: CVPR 2025. Project page: https://ryanhangzhou.github.io/bootplace/ , code: https://github.com/RyanHangZhou/BOOTPLACE
☆ AgRowStitch: A High-fidelity Image Stitching Pipeline for Ground-based Agricultural Images
Agricultural imaging often requires individual images to be stitched together into a final mosaic for analysis. However, agricultural images can be particularly challenging to stitch because feature matching across images is difficult due to repeated textures, plants are non-planar, and mosaics built from many images can accumulate errors that cause drift. Although these issues can be mitigated by using georeferenced images or taking images at high altitude, there is no general solution for images taken close to the crop. To address this, we created a user-friendly and open source pipeline for stitching ground-based images of a linear row of crops that does not rely on additional data. First, we use SuperPoint and LightGlue to extract and match features within small batches of images. Then we stitch the images in each batch in series while imposing constraints on the camera movement. After straightening and rescaling each batch mosaic, all batch mosaics are stitched together in series and then straightened into a final mosaic. We tested the pipeline on images collected along 72 m long rows of crops using two different agricultural robots and a camera manually carried over the row. In all three cases, the pipeline produced high-quality mosaics that could be used to georeference real world positions with a mean absolute error of 20 cm. This approach provides accessible leaf-scale stitching to users who need to coarsely georeference positions within a row, but do not have access to accurate positional data or sophisticated imaging systems.
☆ Differential Evolution for Grassmann Manifold Optimization: A Projection Approach
We propose a novel evolutionary algorithm for optimizing real-valued objective functions defined on the Grassmann manifold Gr}(k,n), the space of all k-dimensional linear subspaces of R^n. While existing optimization techniques on Gr}(k,n) predominantly rely on first- or second-order Riemannian methods, these inherently local methods often struggle with nonconvex or multimodal landscapes. To address this limitation, we adapt the Differential Evolution algorithm - a global, population based optimization method - to operate effectively on the Grassmannian. Our approach incorporates adaptive control parameter schemes, and introduces a projection mechanism that maps trial vectors onto the manifold via QR decomposition. The resulting algorithm maintains feasibility with respect to the manifold structure while enabling exploration beyond local neighborhoods. This framework provides a flexible and geometry-aware alternative to classical Riemannian optimization methods and is well-suited to applications in machine learning, signal processing, and low-rank matrix recovery where subspace representations play a central role. We test the methodology on a number of examples of optimization problems on Grassmann manifolds.
☆ Harmonizing Visual Representations for Unified Multimodal Understanding and Generation
Unifying visual understanding and generation within a single multimodal framework remains a significant challenge, as the two inherently heterogeneous tasks require representations at different levels of granularity. Current approaches that utilize vector quantization (VQ) or variational autoencoders (VAE) for unified visual representation prioritize intrinsic imagery features over semantics, compromising understanding performance. In this work, we take inspiration from masked image modelling (MIM) that learns rich semantics via a mask-and-reconstruct pre-training and its successful extension to masked autoregressive (MAR) image generation. A preliminary study on the MAR encoder's representation reveals exceptional linear probing accuracy and precise feature response to visual concepts, which indicates MAR's potential for visual understanding tasks beyond its original generation role. Based on these insights, we present \emph{Harmon}, a unified autoregressive framework that harmonizes understanding and generation tasks with a shared MAR encoder. Through a three-stage training procedure that progressively optimizes understanding and generation capabilities, Harmon achieves state-of-the-art image generation results on the GenEval, MJHQ30K and WISE benchmarks while matching the performance of methods with dedicated semantic encoders (e.g., Janus) on image understanding benchmarks. Our code and models will be available at https://github.com/wusize/Harmon.
☆ Q-MambaIR: Accurate Quantized Mamba for Efficient Image Restoration
State-Space Models (SSMs) have attracted considerable attention in Image Restoration (IR) due to their ability to scale linearly sequence length while effectively capturing long-distance dependencies. However, deploying SSMs to edge devices is challenging due to the constraints in memory, computing capacity, and power consumption, underscoring the need for efficient compression strategies. While low-bit quantization is an efficient model compression strategy for reducing size and accelerating IR tasks, SSM suffers substantial performance drops at ultra-low bit-widths (2-4 bits), primarily due to outliers that exacerbate quantization error. To address this challenge, we propose Q-MambaIR, an accurate, efficient, and flexible Quantized Mamba for IR tasks. Specifically, we introduce a Statistical Dynamic-balancing Learnable Scalar (DLS) to dynamically adjust the quantization mapping range, thereby mitigating the peak truncation loss caused by extreme values. Furthermore, we design a Range-floating Flexible Allocator (RFA) with an adaptive threshold to flexibly round values. This approach preserves high-frequency details and maintains the SSM's feature extraction capability. Notably, RFA also enables pre-deployment weight quantization, striking a balance between computational efficiency and model accuracy. Extensive experiments on IR tasks demonstrate that Q-MambaIR consistently outperforms existing quantized SSMs, achieving much higher state-of-the-art (SOTA) accuracy results with only a negligible increase in training computation and storage saving.
☆ NeRF-based Point Cloud Reconstruction using a Stationary Camera for Agricultural Applications
This paper presents a NeRF-based framework for point cloud (PCD) reconstruction, specifically designed for indoor high-throughput plant phenotyping facilities. Traditional NeRF-based reconstruction methods require cameras to move around stationary objects, but this approach is impractical for high-throughput environments where objects are rapidly imaged while moving on conveyors or rotating pedestals. To address this limitation, we develop a variant of NeRF-based PCD reconstruction that uses a single stationary camera to capture images as the object rotates on a pedestal. Our workflow comprises COLMAP-based pose estimation, a straightforward pose transformation to simulate camera movement, and subsequent standard NeRF training. A defined Region of Interest (ROI) excludes irrelevant scene data, enabling the generation of high-resolution point clouds (10M points). Experimental results demonstrate excellent reconstruction fidelity, with precision-recall analyses yielding an F-score close to 100.00 across all evaluated plant objects. Although pose estimation remains computationally intensive with a stationary camera setup, overall training and reconstruction times are competitive, validating the method's feasibility for practical high-throughput indoor phenotyping applications. Our findings indicate that high-quality NeRF-based 3D reconstructions are achievable using a stationary camera, eliminating the need for complex camera motion or costly imaging equipment. This approach is especially beneficial when employing expensive and delicate instruments, such as hyperspectral cameras, for 3D plant phenotyping. Future work will focus on optimizing pose estimation techniques and further streamlining the methodology to facilitate seamless integration into automated, high-throughput 3D phenotyping pipelines.
☆ Enhancing Pavement Crack Classification with Bidirectional Cascaded Neural Networks
Pavement distress, such as cracks and potholes, is a significant issue affecting road safety and maintenance. In this study, we present the implementation and evaluation of Bidirectional Cascaded Neural Networks (BCNNs) for the classification of pavement crack images following image augmentation. We classified pavement cracks into three main categories: linear cracks, potholes, and fatigue cracks on an enhanced dataset utilizing U-Net 50 for image augmentation. The augmented dataset comprised 599 images. Our proposed BCNN model was designed to leverage both forward and backward information flows, with detection accuracy enhanced by its cascaded structure wherein each layer progressively refines the output of the preceding one. Our model achieved an overall accuracy of 87%, with precision, recall, and F1-score measures indicating high effectiveness across the categories. For fatigue cracks, the model recorded a precision of 0.87, recall of 0.83, and F1-score of 0.85 on 205 images. Linear cracks were detected with a precision of 0.81, recall of 0.89, and F1-score of 0.85 on 205 images, and potholes with a precision of 0.96, recall of 0.90, and F1-score of 0.93 on 189 images. The macro and weighted average of precision, recall, and F1-score were identical at 0.88, confirming the BCNN's excellent performance in classifying complex pavement crack patterns. This research demonstrates the potential of BCNNs to significantly enhance the accuracy and reliability of pavement distress classification, resulting in more effective and efficient pavement maintenance and management systems.
☆ Comprehensive segmentation of deep grey nuclei from structural MRI data
Motivation: Lack of tools for comprehensive and complete segmentation of deep grey nuclei using a single software for reproducibility and repeatability Goal(s): A fast accurate and robust method for segmentation of deep grey nuclei (thalamic nuclei, basal ganglia, claustrum, red nucleus) from structural T1 MRI data at conventional field strengths Approach: We leverage the improved contrast of white-matter-nulled imaging by using the recently proposed Histogram-based Polynomial Synthesis (HIPS) to synthesize WMn-like images from standard T1 and then use a multi-atlas segmentation with joint label fusion to segment deep grey nuclei. Results: The method worked robustly on all field strengths (1.5/3/7) and Dice coefficients of 0.7 or more were achieved for all structures compared against manual segmentation ground truth. Impact: This method facilitates careful investigation of the role of deep grey nuclei by enabling the use of conventional T1 data from large public databases, which has not been possible, hitherto, due to lack of robust reproducible segmentation tools.
comment: 7 Figures 2 Tables 2 Supplemental Figures 1 Supplemental Table
☆ Parametric Shadow Control for Portrait Generationin Text-to-Image Diffusion Models
Text-to-image diffusion models excel at generating diverse portraits, but lack intuitive shadow control. Existing editing approaches, as post-processing, struggle to offer effective manipulation across diverse styles. Additionally, these methods either rely on expensive real-world light-stage data collection or require extensive computational resources for training. To address these limitations, we introduce Shadow Director, a method that extracts and manipulates hidden shadow attributes within well-trained diffusion models. Our approach uses a small estimation network that requires only a few thousand synthetic images and hours of training-no costly real-world light-stage data needed. Shadow Director enables parametric and intuitive control over shadow shape, placement, and intensity during portrait generation while preserving artistic integrity and identity across diverse styles. Despite training only on synthetic data built on real-world identities, it generalizes effectively to generated portraits with diverse styles, making it a more accessible and resource-friendly solution.
comment: ShadowDirector Arxiv Version
☆ Flexible Moment-Invariant Bases from Irreducible Tensors
Moment invariants are a powerful tool for the generation of rotation-invariant descriptors needed for many applications in pattern detection, classification, and machine learning. A set of invariants is optimal if it is complete, independent, and robust against degeneracy in the input. In this paper, we show that the current state of the art for the generation of these bases of moment invariants, despite being robust against moment tensors being identically zero, is vulnerable to a degeneracy that is common in real-world applications, namely spherical functions. We show how to overcome this vulnerability by combining two popular moment invariant approaches: one based on spherical harmonics and one based on Cartesian tensor algebra.
☆ Multimodal Data Integration for Sustainable Indoor Gardening: Tracking Anyplant with Time Series Foundation Model
Indoor gardening within sustainable buildings offers a transformative solution to urban food security and environmental sustainability. By 2030, urban farming, including Controlled Environment Agriculture (CEA) and vertical farming, is expected to grow at a compound annual growth rate (CAGR) of 13.2% from 2024 to 2030, according to market reports. This growth is fueled by advancements in Internet of Things (IoT) technologies, sustainable innovations such as smart growing systems, and the rising interest in green interior design. This paper presents a novel framework that integrates computer vision, machine learning (ML), and environmental sensing for the automated monitoring of plant health and growth. Unlike previous approaches, this framework combines RGB imagery, plant phenotyping data, and environmental factors such as temperature and humidity, to predict plant water stress in a controlled growth environment. The system utilizes high-resolution cameras to extract phenotypic features, such as RGB, plant area, height, and width while employing the Lag-Llama time series model to analyze and predict water stress. Experimental results demonstrate that integrating RGB, size ratios, and environmental data significantly enhances predictive accuracy, with the Fine-tuned model achieving the lowest errors (MSE = 0.420777, MAE = 0.595428) and reduced uncertainty. These findings highlight the potential of multimodal data and intelligent systems to automate plant care, optimize resource consumption, and align indoor gardening with sustainable building management practices, paving the way for resilient, green urban spaces.
comment: Accepted at ASCE International Conference on Computing in Civil Engineering (i3ce)
Locally Orderless Images for Optimization in Differentiable Rendering CVPR 2025
Problems in differentiable rendering often involve optimizing scene parameters that cause motion in image space. The gradients for such parameters tend to be sparse, leading to poor convergence. While existing methods address this sparsity through proxy gradients such as topological derivatives or lagrangian derivatives, they make simplifying assumptions about rendering. Multi-resolution image pyramids offer an alternative approach but prove unreliable in practice. We introduce a method that uses locally orderless images, where each pixel maps to a histogram of intensities that preserves local variations in appearance. Using an inverse rendering objective that minimizes histogram distance, our method extends support for sparsely defined image gradients and recovers optimal parameters. We validate our method on various inverse problems using both synthetic and real data.
comment: CVPR 2025. Project: https://ishit.github.io/loir/
☆ PyUAT: Open-source Python framework for efficient and scalable cell tracking
Tracking individual cells in live-cell imaging provides fundamental insights, inevitable for studying causes and consequences of phenotypic heterogeneity, responses to changing environmental conditions or stressors. Microbial cell tracking, characterized by stochastic cell movements and frequent cell divisions, remains a challenging task when imaging frame rates must be limited to avoid counterfactual results. A promising way to overcome this limitation is uncertainty-aware tracking (UAT), which uses statistical models, calibrated to empirically observed cell behavior, to predict likely cell associations. We present PyUAT, an efficient and modular Python implementation of UAT for tracking microbial cells in time-lapse imaging. We demonstrate its performance on a large 2D+t data set and investigate the influence of modular biological models and imaging intervals on the tracking performance. The open-source PyUAT software is available at https://github.com/JuBiotech/PyUAT, including example notebooks for immediate use in Google Colab.
KernelFusion: Assumption-Free Blind Super-Resolution via Patch Diffusion
Traditional super-resolution (SR) methods assume an ``ideal'' downscaling SR-kernel (e.g., bicubic downscaling) between the high-resolution (HR) image and the low-resolution (LR) image. Such methods fail once the LR images are generated differently. Current blind-SR methods aim to remove this assumption, but are still fundamentally restricted to rather simplistic downscaling SR-kernels (e.g., anisotropic Gaussian kernels), and fail on more complex (out of distribution) downscaling degradations. However, using the correct SR-kernel is often more important than using a sophisticated SR algorithm. In ``KernelFusion'' we introduce a zero-shot diffusion-based method that makes no assumptions about the kernel. Our method recovers the unique image-specific SR-kernel directly from the LR input image, while simultaneously recovering its corresponding HR image. KernelFusion exploits the principle that the correct SR-kernel is the one that maximizes patch similarity across different scales of the LR image. We first train an image-specific patch-based diffusion model on the single LR input image, capturing its unique internal patch statistics. We then reconstruct a larger HR image with the same learned patch distribution, while simultaneously recovering the correct downscaling SR-kernel that maintains this cross-scale relation between the HR and LR images. Empirical results show that KernelFusion vastly outperforms all SR baselines on complex downscaling degradations, where existing SotA Blind-SR methods fail miserably. By breaking free from predefined kernel assumptions, KernelFusion pushes Blind-SR into a new assumption-free paradigm, handling downscaling kernels previously thought impossible.
☆ AssistPDA: An Online Video Surveillance Assistant for Video Anomaly Prediction, Detection, and Analysis
The rapid advancements in large language models (LLMs) have spurred growing interest in LLM-based video anomaly detection (VAD). However, existing approaches predominantly focus on video-level anomaly question answering or offline detection, ignoring the real-time nature essential for practical VAD applications. To bridge this gap and facilitate the practical deployment of LLM-based VAD, we introduce AssistPDA, the first online video anomaly surveillance assistant that unifies video anomaly prediction, detection, and analysis (VAPDA) within a single framework. AssistPDA enables real-time inference on streaming videos while supporting interactive user engagement. Notably, we introduce a novel event-level anomaly prediction task, enabling proactive anomaly forecasting before anomalies fully unfold. To enhance the ability to model intricate spatiotemporal relationships in anomaly events, we propose a Spatio-Temporal Relation Distillation (STRD) module. STRD transfers the long-term spatiotemporal modeling capabilities of vision-language models (VLMs) from offline settings to real-time scenarios. Thus it equips AssistPDA with a robust understanding of complex temporal dependencies and long-sequence memory. Additionally, we construct VAPDA-127K, the first large-scale benchmark designed for VLM-based online VAPDA. Extensive experiments demonstrate that AssistPDA outperforms existing offline VLM-based approaches, setting a new state-of-the-art for real-time VAPDA. Our dataset and code will be open-sourced to facilitate further research in the community.
comment: 13 pages
☆ Exponentially Weighted Instance-Aware Repeat Factor Sampling for Long-Tailed Object Detection Model Training in Unmanned Aerial Vehicles Surveillance Scenarios
Object detection models often struggle with class imbalance, where rare categories appear significantly less frequently than common ones. Existing sampling-based rebalancing strategies, such as Repeat Factor Sampling (RFS) and Instance-Aware Repeat Factor Sampling (IRFS), mitigate this issue by adjusting sample frequencies based on image and instance counts. However, these methods are based on linear adjustments, which limit their effectiveness in long-tailed distributions. This work introduces Exponentially Weighted Instance-Aware Repeat Factor Sampling (E-IRFS), an extension of IRFS that applies exponential scaling to better differentiate between rare and frequent classes. E-IRFS adjusts sampling probabilities using an exponential function applied to the geometric mean of image and instance frequencies, ensuring a more adaptive rebalancing strategy. We evaluate E-IRFS on a dataset derived from the Fireman-UAV-RGBT Dataset and four additional public datasets, using YOLOv11 object detection models to identify fire, smoke, people and lakes in emergency scenarios. The results show that E-IRFS improves detection performance by 22\% over the baseline and outperforms RFS and IRFS, particularly for rare categories. The analysis also highlights that E-IRFS has a stronger effect on lightweight models with limited capacity, as these models rely more on data sampling strategies to address class imbalance. The findings demonstrate that E-IRFS improves rare object detection in resource-constrained environments, making it a suitable solution for real-time applications such as UAV-based emergency monitoring.
comment: 6 pages, 2 figures, 9 tables, 6 formulas, conference paper
☆ StarFlow: Generating Structured Workflow Outputs From Sketch Images
Workflows are a fundamental component of automation in enterprise platforms, enabling the orchestration of tasks, data processing, and system integrations. Despite being widely used, building workflows can be complex, often requiring manual configuration through low-code platforms or visual programming tools. To simplify this process, we explore the use of generative foundation models, particularly vision-language models (VLMs), to automatically generate structured workflows from visual inputs. Translating hand-drawn sketches or computer-generated diagrams into executable workflows is challenging due to the ambiguity of free-form drawings, variations in diagram styles, and the difficulty of inferring execution logic from visual elements. To address this, we introduce StarFlow, a framework for generating structured workflow outputs from sketches using vision-language models. We curate a diverse dataset of workflow diagrams -- including synthetic, manually annotated, and real-world samples -- to enable robust training and evaluation. We finetune and benchmark multiple vision-language models, conducting a series of ablation studies to analyze the strengths and limitations of our approach. Our results show that finetuning significantly enhances structured workflow generation, outperforming large vision-language models on this task.
☆ Refined Geometry-guided Head Avatar Reconstruction from Monocular RGB Video
High-fidelity reconstruction of head avatars from monocular videos is highly desirable for virtual human applications, but it remains a challenge in the fields of computer graphics and computer vision. In this paper, we propose a two-phase head avatar reconstruction network that incorporates a refined 3D mesh representation. Our approach, in contrast to existing methods that rely on coarse template-based 3D representations derived from 3DMM, aims to learn a refined mesh representation suitable for a NeRF that captures complex facial nuances. In the first phase, we train 3DMM-stored NeRF with an initial mesh to utilize geometric priors and integrate observations across frames using a consistent set of latent codes. In the second phase, we leverage a novel mesh refinement procedure based on an SDF constructed from the density field of the initial NeRF. To mitigate the typical noise in the NeRF density field without compromising the features of the 3DMM, we employ Laplace smoothing on the displacement field. Subsequently, we apply a second-phase training with these refined meshes, directing the learning process of the network towards capturing intricate facial details. Our experiments demonstrate that our method further enhances the NeRF rendering based on the initial mesh and achieves performance superior to state-of-the-art methods in reconstructing high-fidelity head avatars with such input.
☆ ManipTrans: Efficient Dexterous Bimanual Manipulation Transfer via Residual Learning CVPR 2025
Human hands play a central role in interacting, motivating increasing research in dexterous robotic manipulation. Data-driven embodied AI algorithms demand precise, large-scale, human-like manipulation sequences, which are challenging to obtain with conventional reinforcement learning or real-world teleoperation. To address this, we introduce ManipTrans, a novel two-stage method for efficiently transferring human bimanual skills to dexterous robotic hands in simulation. ManipTrans first pre-trains a generalist trajectory imitator to mimic hand motion, then fine-tunes a specific residual module under interaction constraints, enabling efficient learning and accurate execution of complex bimanual tasks. Experiments show that ManipTrans surpasses state-of-the-art methods in success rate, fidelity, and efficiency. Leveraging ManipTrans, we transfer multiple hand-object datasets to robotic hands, creating DexManipNet, a large-scale dataset featuring previously unexplored tasks like pen capping and bottle unscrewing. DexManipNet comprises 3.3K episodes of robotic manipulation and is easily extensible, facilitating further policy training for dexterous hands and enabling real-world deployments.
comment: Accepted to CVPR 2025
☆ Foveated Instance Segmentation
Instance segmentation is essential for augmented reality and virtual reality (AR/VR) as it enables precise object recognition and interaction, enhancing the integration of virtual and real-world elements for an immersive experience. However, the high computational overhead of segmentation limits its application on resource-constrained AR/VR devices, causing large processing latency and degrading user experience. In contrast to conventional scenarios, AR/VR users typically focus on only a few regions within their field of view before shifting perspective, allowing segmentation to be concentrated on gaze-specific areas. This insight drives the need for efficient segmentation methods that prioritize processing instance of interest, reducing computational load and enhancing real-time performance. In this paper, we present a foveated instance segmentation (FovealSeg) framework that leverages real-time user gaze data to perform instance segmentation exclusively on instance of interest, resulting in substantial computational savings. Evaluation results show that FSNet achieves an IoU of 0.56 on ADE20K and 0.54 on LVIS, notably outperforming the baseline. The code is available at https://github.com/SAI-
☆ On Large Multimodal Models as Open-World Image Classifiers
Traditional image classification requires a predefined list of semantic categories. In contrast, Large Multimodal Models (LMMs) can sidestep this requirement by classifying images directly using natural language (e.g., answering the prompt "What is the main object in the image?"). Despite this remarkable capability, most existing studies on LMM classification performance are surprisingly limited in scope, often assuming a closed-world setting with a predefined set of categories. In this work, we address this gap by thoroughly evaluating LMM classification performance in a truly open-world setting. We first formalize the task and introduce an evaluation protocol, defining various metrics to assess the alignment between predicted and ground truth classes. We then evaluate 13 models across 10 benchmarks, encompassing prototypical, non-prototypical, fine-grained, and very fine-grained classes, demonstrating the challenges LMMs face in this task. Further analyses based on the proposed metrics reveal the types of errors LMMs make, highlighting challenges related to granularity and fine-grained capabilities, showing how tailored prompting and reasoning can alleviate them.
comment: 23 pages, 13 figures, code is available at https://github.com/altndrr/lmms-owc
☆ Comparative Analysis of Image, Video, and Audio Classifiers for Automated News Video Segmentation
News videos require efficient content organisation and retrieval systems, but their unstructured nature poses significant challenges for automated processing. This paper presents a comprehensive comparative analysis of image, video, and audio classifiers for automated news video segmentation. This work presents the development and evaluation of multiple deep learning approaches, including ResNet, ViViT, AST, and multimodal architectures, to classify five distinct segment types: advertisements, stories, studio scenes, transitions, and visualisations. Using a custom-annotated dataset of 41 news videos comprising 1,832 scene clips, our experiments demonstrate that image-based classifiers achieve superior performance (84.34\% accuracy) compared to more complex temporal models. Notably, the ResNet architecture outperformed state-of-the-art video classifiers while requiring significantly fewer computational resources. Binary classification models achieved high accuracy for transitions (94.23\%) and advertisements (92.74\%). These findings advance the understanding of effective architectures for news video segmentation and provide practical insights for implementing automated content organisation systems in media applications. These include media archiving, personalised content delivery, and intelligent video search.
comment: Preprint for paper in CAI 2025, 7 pages, 5 tables, 3 tables
☆ CMD-HAR: Cross-Modal Disentanglement for Wearable Human Activity Recognition
Human Activity Recognition (HAR) is a fundamental technology for numerous human - centered intelligent applications. Although deep learning methods have been utilized to accelerate feature extraction, issues such as multimodal data mixing, activity heterogeneity, and complex model deployment remain largely unresolved. The aim of this paper is to address issues such as multimodal data mixing, activity heterogeneity, and complex model deployment in sensor-based human activity recognition. We propose a spatiotemporal attention modal decomposition alignment fusion strategy to tackle the problem of the mixed distribution of sensor data. Key discriminative features of activities are captured through cross-modal spatio-temporal disentangled representation, and gradient modulation is combined to alleviate data heterogeneity. In addition, a wearable deployment simulation system is constructed. We conducted experiments on a large number of public datasets, demonstrating the effectiveness of the model.
♻ ☆ Reason-RFT: Reinforcement Fine-Tuning for Visual Reasoning
Visual reasoning abilities play a crucial role in understanding complex multimodal data, advancing both domain-specific applications and artificial general intelligence (AGI). Existing methods improve VLM reasoning via Chain-of-Thought (CoT) supervised fine-tuning, using meticulously annotated training data to enhance visual reasoning capabilities. However, this training paradigm may lead to overfitting and cognitive rigidity, restricting the model's ability to transfer visual reasoning skills across domains and limiting its real-world applicability. To address these limitations, we propose Reason-RFT, a novel reinforcement fine-tuning framework that significantly enhances generalization capabilities in visual reasoning tasks. Reason-RFT introduces a two-phase training framework for visual reasoning: (1) Supervised Fine-Tuning (SFT) with curated Chain-of-Thought (CoT) data activates the reasoning potential of Vision-Language Models (VLMs), followed by (2) Group Relative Policy Optimization (GRPO)-based reinforcement learning that generates multiple reasoning-response pairs, significantly enhancing generalization in visual reasoning tasks. To evaluate Reason-RFT's visual reasoning capabilities, we reconstructed a comprehensive dataset spanning visual counting, structure perception, and spatial transformation. Experimental results demonstrate Reasoning-RFT's three key advantages: (1) Performance Enhancement: achieving state-of-the-art results across multiple tasks, outperforming most mainstream open-source and proprietary models; (2) Generalization Superiority: consistently maintaining robust performance across diverse tasks and domains, outperforming alternative training paradigms; (3) Data Efficiency: excelling in few-shot learning scenarios while surpassing full-dataset SFT baselines. Project website: https://tanhuajie.github.io/ReasonRFT
comment: 35 pages, 22 figures
♻ ☆ Demand Estimation with Text and Image Data
We propose a demand estimation method that leverages unstructured text and image data to infer substitution patterns. Using pre-trained deep learning models, we extract embeddings from product images and textual descriptions and incorporate them into a random coefficients logit model. This approach enables researchers to estimate demand even when they lack data on product attributes or when consumers value hard-to-quantify attributes, such as visual design or functional benefits. Using data from a choice experiment, we show that our approach outperforms standard attribute-based models in counterfactual predictions of consumers' second choices. We also apply it across 40 product categories on Amazon and consistently find that text and image data help identify close substitutes within each category.
♻ ☆ Flip Learning: Weakly Supervised Erase to Segment Nodules in Breast Ultrasound
Accurate segmentation of nodules in both 2D breast ultrasound (BUS) and 3D automated breast ultrasound (ABUS) is crucial for clinical diagnosis and treatment planning. Therefore, developing an automated system for nodule segmentation can enhance user independence and expedite clinical analysis. Unlike fully-supervised learning, weakly-supervised segmentation (WSS) can streamline the laborious and intricate annotation process. However, current WSS methods face challenges in achieving precise nodule segmentation, as many of them depend on inaccurate activation maps or inefficient pseudo-mask generation algorithms. In this study, we introduce a novel multi-agent reinforcement learning-based WSS framework called Flip Learning, which relies solely on 2D/3D boxes for accurate segmentation. Specifically, multiple agents are employed to erase the target from the box to facilitate classification tag flipping, with the erased region serving as the predicted segmentation mask. The key contributions of this research are as follows: (1) Adoption of a superpixel/supervoxel-based approach to encode the standardized environment, capturing boundary priors and expediting the learning process. (2) Introduction of three meticulously designed rewards, comprising a classification score reward and two intensity distribution rewards, to steer the agents' erasing process precisely, thereby avoiding both under- and over-segmentation. (3) Implementation of a progressive curriculum learning strategy to enable agents to interact with the environment in a progressively challenging manner, thereby enhancing learning efficiency. Extensively validated on the large in-house BUS and ABUS datasets, our Flip Learning method outperforms state-of-the-art WSS methods and foundation models, and achieves comparable performance as fully-supervised learning algorithms.
comment: Accepted by Medical Image Analysis. 24 pages, 13 figures, 20 tabels
♻ ☆ Mitigating Low-Level Visual Hallucinations Requires Self-Awareness: Database, Model and Training Strategy
The rapid development of multimodal large language models has resulted in remarkable advancements in visual perception and understanding, consolidating several tasks into a single visual question-answering framework. However, these models are prone to hallucinations, which limit their reliability as artificial intelligence systems. While this issue is extensively researched in natural language processing and image captioning, there remains a lack of investigation of hallucinations in Low-level Visual Perception and Understanding (HLPU), especially in the context of image quality assessment tasks. We consider that these hallucinations arise from an absence of clear self-awareness within the models. To address this issue, we first introduce the HLPU instruction database, the first instruction database specifically focused on hallucinations in low-level vision tasks. This database contains approximately 200K question-answer pairs and comprises four subsets, each covering different types of instructions. Subsequently, we propose the Self-Awareness Failure Elimination (SAFEQA) model, which utilizes image features, salient region features and quality features to improve the perception and comprehension abilities of the model in low-level vision tasks. Furthermore, we propose the Enhancing Self-Awareness Preference Optimization (ESA-PO) framework to increase the model's awareness of knowledge boundaries, thereby mitigating the incidence of hallucination. Finally, we conduct comprehensive experiments on low-level vision tasks, with the results demonstrating that our proposed method significantly enhances self-awareness of the model in these tasks and reduces hallucinations. Notably, our proposed method improves both accuracy and self-awareness of the proposed model and outperforms close-source models in terms of various evaluation metrics.
♻ ☆ Imitating Radiological Scrolling: A Global-Local Attention Model for 3D Chest CT Volumes Multi-Label Anomaly Classification
The rapid increase in the number of Computed Tomography (CT) scan examinations has created an urgent need for automated tools, such as organ segmentation, anomaly classification, and report generation, to assist radiologists with their growing workload. Multi-label classification of Three-Dimensional (3D) CT scans is a challenging task due to the volumetric nature of the data and the variety of anomalies to be detected. Existing deep learning methods based on Convolutional Neural Networks (CNNs) struggle to capture long-range dependencies effectively, while Vision Transformers require extensive pre-training, posing challenges for practical use. Additionally, these existing methods do not explicitly model the radiologist's navigational behavior while scrolling through CT scan slices, which requires both global context understanding and local detail awareness. In this study, we present CT-Scroll, a novel global-local attention model specifically designed to emulate the scrolling behavior of radiologists during the analysis of 3D CT scans. Our approach is evaluated on two public datasets, demonstrating its efficacy through comprehensive experiments and an ablation study that highlights the contribution of each model component.
comment: 13 pages, 4 figures. Accepted for MIDL 2025
♻ ☆ MAR-3D: Progressive Masked Auto-regressor for High-Resolution 3D Generation CVPR 2025
Recent advances in auto-regressive transformers have revolutionized generative modeling across different domains, from language processing to visual generation, demonstrating remarkable capabilities. However, applying these advances to 3D generation presents three key challenges: the unordered nature of 3D data conflicts with sequential next-token prediction paradigm, conventional vector quantization approaches incur substantial compression loss when applied to 3D meshes, and the lack of efficient scaling strategies for higher resolution latent prediction. To address these challenges, we introduce MAR-3D, which integrates a pyramid variational autoencoder with a cascaded masked auto-regressive transformer (Cascaded MAR) for progressive latent upscaling in the continuous space. Our architecture employs random masking during training and auto-regressive denoising in random order during inference, naturally accommodating the unordered property of 3D latent tokens. Additionally, we propose a cascaded training strategy with condition augmentation that enables efficiently up-scale the latent token resolution with fast convergence. Extensive experiments demonstrate that MAR-3D not only achieves superior performance and generalization capabilities compared to existing methods but also exhibits enhanced scaling capabilities compared to joint distribution modeling approaches (e.g., diffusion transformers).
comment: Accepted to CVPR 2025
♻ ☆ Consistency Trajectory Matching for One-Step Generative Super-Resolution
Current diffusion-based super-resolution (SR) approaches achieve commendable performance at the cost of high inference overhead. Therefore, distillation techniques are utilized to accelerate the multi-step teacher model into one-step student model. Nevertheless, these methods significantly raise training costs and constrain the performance of the student model by the teacher model. To overcome these tough challenges, we propose Consistency Trajectory Matching for Super-Resolution (CTMSR), a distillation-free strategy that is able to generate photo-realistic SR results in one step. Concretely, we first formulate a Probability Flow Ordinary Differential Equation (PF-ODE) trajectory to establish a deterministic mapping from low-resolution (LR) images with noise to high-resolution (HR) images. Then we apply the Consistency Training (CT) strategy to directly learn the mapping in one step, eliminating the necessity of pre-trained diffusion model. To further enhance the performance and better leverage the ground-truth during the training process, we aim to align the distribution of SR results more closely with that of the natural images. To this end, we propose to minimize the discrepancy between their respective PF-ODE trajectories from the LR image distribution by our meticulously designed Distribution Trajectory Matching (DTM) loss, resulting in improved realism of our recovered HR images. Comprehensive experimental results demonstrate that the proposed methods can attain comparable or even superior capabilities on both synthetic and real datasets while maintaining minimal inference latency.
♻ ☆ Recovering Dynamic 3D Sketches from Videos CVPR 2025
Understanding 3D motion from videos presents inherent challenges due to the diverse types of movement, ranging from rigid and deformable objects to articulated structures. To overcome this, we propose Liv3Stroke, a novel approach for abstracting objects in motion with deformable 3D strokes. The detailed movements of an object may be represented by unstructured motion vectors or a set of motion primitives using a pre-defined articulation from a template model. Just as a free-hand sketch can intuitively visualize scenes or intentions with a sparse set of lines, we utilize a set of parametric 3D curves to capture a set of spatially smooth motion elements for general objects with unknown structures. We first extract noisy, 3D point cloud motion guidance from video frames using semantic features, and our approach deforms a set of curves to abstract essential motion features as a set of explicit 3D representations. Such abstraction enables an understanding of prominent components of motions while maintaining robustness to environmental factors. Our approach allows direct analysis of 3D object movements from video, tackling the uncertainty that typically occurs when translating real-world motion into recorded footage. The project page is accessible via: https://jaeah.me/liv3stroke_web
comment: Accepted to CVPR 2025
♻ ☆ Perceptually Accurate 3D Talking Head Generation: New Definitions, Speech-Mesh Representation, and Evaluation Metrics CVPR 2025
Recent advancements in speech-driven 3D talking head generation have made significant progress in lip synchronization. However, existing models still struggle to capture the perceptual alignment between varying speech characteristics and corresponding lip movements. In this work, we claim that three criteria -- Temporal Synchronization, Lip Readability, and Expressiveness -- are crucial for achieving perceptually accurate lip movements. Motivated by our hypothesis that a desirable representation space exists to meet these three criteria, we introduce a speech-mesh synchronized representation that captures intricate correspondences between speech signals and 3D face meshes. We found that our learned representation exhibits desirable characteristics, and we plug it into existing models as a perceptual loss to better align lip movements to the given speech. In addition, we utilize this representation as a perceptual metric and introduce two other physically grounded lip synchronization metrics to assess how well the generated 3D talking heads align with these three criteria. Experiments show that training 3D talking head generation models with our perceptual loss significantly improve all three aspects of perceptually accurate lip synchronization. Codes and datasets are available at https://perceptual-3d-talking-head.github.io/.
comment: CVPR 2025
♻ ☆ Leveraging 3D Geometric Priors in 2D Rotation Symmetry Detection CVPR 2025
Symmetry plays a vital role in understanding structural patterns, aiding object recognition and scene interpretation. This paper focuses on rotation symmetry, where objects remain unchanged when rotated around a central axis, requiring detection of rotation centers and supporting vertices. Traditional methods relied on hand-crafted feature matching, while recent segmentation models based on convolutional neural networks detect rotation centers but struggle with 3D geometric consistency due to viewpoint distortions. To overcome this, we propose a model that directly predicts rotation centers and vertices in 3D space and projects the results back to 2D while preserving structural integrity. By incorporating a vertex reconstruction stage enforcing 3D geometric priors -- such as equal side lengths and interior angles -- our model enhances robustness and accuracy. Experiments on the DENDI dataset show superior performance in rotation axis detection and validate the impact of 3D priors through ablation studies.
comment: Accepted to CVPR 2025
♻ ☆ EventMamba: Enhancing Spatio-Temporal Locality with State Space Models for Event-Based Video Reconstruction
Leveraging its robust linear global modeling capability, Mamba has notably excelled in computer vision. Despite its success, existing Mamba-based vision models have overlooked the nuances of event-driven tasks, especially in video reconstruction. Event-based video reconstruction (EBVR) demands spatial translation invariance and close attention to local event relationships in the spatio-temporal domain. Unfortunately, conventional Mamba algorithms apply static window partitions and standard reshape scanning methods, leading to significant losses in local connectivity. To overcome these limitations, we introduce EventMamba--a specialized model designed for EBVR tasks. EventMamba innovates by incorporating random window offset (RWO) in the spatial domain, moving away from the restrictive fixed partitioning. Additionally, it features a new consistent traversal serialization approach in the spatio-temporal domain, which maintains the proximity of adjacent events both spatially and temporally. These enhancements enable EventMamba to retain Mamba's robust modeling capabilities while significantly preserving the spatio-temporal locality of event data. Comprehensive testing on multiple datasets shows that EventMamba markedly enhances video reconstruction, drastically improving computation speed while delivering superior visual quality compared to Transformer-based methods.
♻ ☆ Do Multimodal Large Language Models See Like Humans?
Multimodal Large Language Models (MLLMs) have achieved impressive results on various vision tasks, leveraging recent advancements in large language models. However, a critical question remains unaddressed: do MLLMs perceive visual information similarly to humans? Current benchmarks lack the ability to evaluate MLLMs from this perspective. To address this challenge, we introduce HVSBench, a large-scale benchmark designed to assess the alignment between MLLMs and the human visual system (HVS) on fundamental vision tasks that mirror human vision. HVSBench curated over 85K multimodal samples, spanning 13 categories and 5 fields in HVS, including Prominence, Subitizing, Prioritizing, Free-Viewing, and Searching. Extensive experiments demonstrate the effectiveness of our benchmark in providing a comprehensive evaluation of MLLMs. Specifically, we evaluate 13 MLLMs, revealing that even the best models show significant room for improvement, with most achieving only moderate results. Our experiments reveal that HVSBench presents a new and significant challenge for cutting-edge MLLMs. Diverse human participants attained strong performance, significantly outperforming MLLMs, which further underscores the benchmark's high quality. We believe that HVSBench will facilitate research on human-aligned and explainable MLLMs, marking a key step in understanding how MLLMs perceive and process visual information.
comment: Project page: https://jiaying.link/HVSBench/
♻ ☆ Gaga: Group Any Gaussians via 3D-aware Memory Bank
We introduce Gaga, a framework that reconstructs and segments open-world 3D scenes by leveraging inconsistent 2D masks predicted by zero-shot class-agnostic segmentation models. Contrasted to prior 3D scene segmentation approaches that rely on video object tracking or contrastive learning methods, Gaga utilizes spatial information and effectively associates object masks across diverse camera poses through a novel 3D-aware memory bank. By eliminating the assumption of continuous view changes in training images, Gaga demonstrates robustness to variations in camera poses, particularly beneficial for sparsely sampled images, ensuring precise mask label consistency. Furthermore, Gaga accommodates 2D segmentation masks from diverse sources and demonstrates robust performance with different open-world zero-shot class-agnostic segmentation models, significantly enhancing its versatility. Extensive qualitative and quantitative evaluations demonstrate that Gaga performs favorably against state-of-the-art methods, emphasizing its potential for real-world applications such as 3D scene understanding and manipulation.
comment: Project Page: https://weijielyu.github.io/Gaga
♻ ☆ ELIP: Enhanced Visual-Language Foundation Models for Image Retrieval
The objective in this paper is to improve the performance of text-to-image retrieval. To this end, we introduce a new framework that can boost the performance of large-scale pre-trained vision-language models, so that they can be used for text-to-image re-ranking. The approach, Enhanced Language-Image Pre-training (ELIP), uses the text query, via a simple MLP mapping network, to predict a set of visual prompts to condition the ViT image encoding. ELIP can easily be applied to the commonly used CLIP, SigLIP and BLIP-2 networks. To train the architecture with limited computing resources, we develop a 'student friendly' best practice, involving global hard sample mining, and curation of a large-scale dataset. On the evaluation side, we set up two new out-of-distribution (OOD) benchmarks, Occluded COCO and ImageNet-R, to assess the zero-shot generalisation of the models to different domains. The results demonstrate that ELIP significantly boosts CLIP/SigLIP/SigLIP-2 text-to-image retrieval performance and outperforms BLIP-2 on several benchmarks, as well as providing an easy means to adapt to OOD datasets.
♻ ☆ VIA: Unified Spatiotemporal Video Adaptation Framework for Global and Local Video Editing
Video editing serves as a fundamental pillar of digital media, spanning applications in entertainment, education, and professional communication. However, previous methods often overlook the necessity of comprehensively understanding both global and local contexts, leading to inaccurate and inconsistent edits in the spatiotemporal dimension, especially for long videos. In this paper, we introduce VIA, a unified spatiotemporal Video Adaptation framework for global and local video editing, pushing the limits of consistently editing minute-long videos. First, to ensure local consistency within individual frames, we designed test-time editing adaptation to adapt a pre-trained image editing model for improving consistency between potential editing directions and the text instruction, and adapts masked latent variables for precise local control. Furthermore, to maintain global consistency over the video sequence, we introduce spatiotemporal adaptation that recursively gather consistent attention variables in key frames and strategically applies them across the whole sequence to realize the editing effects. Extensive experiments demonstrate that, compared to baseline methods, our VIA approach produces edits that are more faithful to the source videos, more coherent in the spatiotemporal context, and more precise in local control. More importantly, we show that VIA can achieve consistent long video editing in minutes, unlocking the potential for advanced video editing tasks over long video sequences.
comment: 18 pages, 16 figures
♻ ☆ A Survey on Computational Solutions for Reconstructing Complete Objects by Reassembling Their Fractured Parts
Reconstructing a complete object from its parts is a fundamental problem in many scientific domains. The purpose of this article is to provide a systematic survey on this topic. The reassembly problem requires understanding the attributes of individual pieces and establishing matches between different pieces. Many approaches also model priors of the underlying complete object. Existing approaches are tightly connected problems of shape segmentation, shape matching, and learning shape priors. We provide existing algorithms in this context and emphasize their similarities and differences to general-purpose approaches. We also survey the trends from early non-deep learning approaches to more recent deep learning approaches. In addition to algorithms, this survey will also describe existing datasets, open-source software packages, and applications. To the best of our knowledge, this is the first comprehensive survey on this topic in computer graphics.
comment: 36 pages, 22 figures
♻ ☆ OVO-Bench: How Far is Your Video-LLMs from Real-World Online Video Understanding? CVPR 2025
Temporal Awareness, the ability to reason dynamically based on the timestamp when a question is raised, is the key distinction between offline and online video LLMs. Unlike offline models, which rely on complete videos for static, post hoc analysis, online models process video streams incrementally and dynamically adapt their responses based on the timestamp at which the question is posed. Despite its significance, temporal awareness has not been adequately evaluated in existing benchmarks. To fill this gap, we present OVO-Bench (Online-VideO-Benchmark), a novel video benchmark that emphasizes the importance of timestamps for advanced online video understanding capability benchmarking. OVO-Bench evaluates the ability of video LLMs to reason and respond to events occurring at specific timestamps under three distinct scenarios: (1) Backward tracing: trace back to past events to answer the question. (2) Real-time understanding: understand and respond to events as they unfold at the current timestamp. (3) Forward active responding: delay the response until sufficient future information becomes available to answer the question accurately. OVO-Bench comprises 12 tasks, featuring 644 unique videos and approximately human-curated 2,800 fine-grained meta-annotations with precise timestamps. We combine automated generation pipelines with human curation. With these high-quality samples, we further developed an evaluation pipeline to systematically query video LLMs along the video timeline. Evaluations of nine Video-LLMs reveal that, despite advancements on traditional benchmarks, current models struggle with online video understanding, showing a significant gap compared to human agents. We hope OVO-Bench will drive progress in video LLMs and inspire future research in online video reasoning. Our benchmark and code can be accessed at https://github.com/JoeLeelyf/OVO-Bench.
comment: CVPR 2025
♻ ☆ Multi-View and Multi-Scale Alignment for Contrastive Language-Image Pre-training in Mammography
Contrastive Language-Image Pre-training (CLIP) demonstrates strong potential in medical image analysis but requires substantial data and computational resources. Due to these restrictions, existing CLIP applications in medical imaging focus mainly on modalities like chest X-rays that have abundant image-report data available, leaving many other important modalities underexplored. Here, we propose one of the first adaptations of the full CLIP model to mammography, which presents significant challenges due to labeled data scarcity, high-resolution images with small regions of interest, and class-wise imbalance. We first develop a specialized supervision framework for mammography that leverages its multi-view nature. Furthermore, we design a symmetric local alignment module to better focus on detailed features in high-resolution images. Lastly, we incorporate a parameter-efficient fine-tuning approach for large language models pre-trained with medical knowledge to address data limitations. Our multi-view and multi-scale alignment (MaMA) method outperforms state-of-the-art baselines for three different tasks on two large real-world mammography datasets, EMBED and RSNA-Mammo, with only 52% model size compared with the largest baseline. The code is available at https://github.com/XYPB/MaMA
comment: This paper is accepted by IPMI 2025 for Oral Presentation
♻ ☆ SlowFast-LLaVA-1.5: A Family of Token-Efficient Video Large Language Models for Long-Form Video Understanding
We introduce SlowFast-LLaVA-1.5 (abbreviated as SF-LLaVA-1.5), a family of video large language models (LLMs) offering a token-efficient solution for long-form video understanding. We incorporate the two-stream SlowFast mechanism into a streamlined training pipeline, and perform joint video-image training on a carefully curated data mixture of only publicly available datasets. Our primary focus is on highly efficient model scales (1B and 3B), demonstrating that even relatively small Video LLMs can achieve state-of-the-art performance on video understanding, meeting the demand for mobile-friendly models. Experimental results demonstrate that SF-LLaVA-1.5 achieves superior performance on a wide range of video and image tasks, with robust results at all model sizes (ranging from 1B to 7B). Notably, SF-LLaVA-1.5 achieves state-of-the-art results in long-form video understanding (e.g., LongVideoBench and MLVU) and excels at small scales across various video benchmarks.
comment: Technical report
♻ ☆ TripoSG: High-Fidelity 3D Shape Synthesis using Large-Scale Rectified Flow Models
Recent advancements in diffusion techniques have propelled image and video generation to unprecedented levels of quality, significantly accelerating the deployment and application of generative AI. However, 3D shape generation technology has so far lagged behind, constrained by limitations in 3D data scale, complexity of 3D data processing, and insufficient exploration of advanced techniques in the 3D domain. Current approaches to 3D shape generation face substantial challenges in terms of output quality, generalization capability, and alignment with input conditions. We present TripoSG, a new streamlined shape diffusion paradigm capable of generating high-fidelity 3D meshes with precise correspondence to input images. Specifically, we propose: 1) A large-scale rectified flow transformer for 3D shape generation, achieving state-of-the-art fidelity through training on extensive, high-quality data. 2) A hybrid supervised training strategy combining SDF, normal, and eikonal losses for 3D VAE, achieving high-quality 3D reconstruction performance. 3) A data processing pipeline to generate 2 million high-quality 3D samples, highlighting the crucial rules for data quality and quantity in training 3D generative models. Through comprehensive experiments, we have validated the effectiveness of each component in our new framework. The seamless integration of these parts has enabled TripoSG to achieve state-of-the-art performance in 3D shape generation. The resulting 3D shapes exhibit enhanced detail due to high-resolution capabilities and demonstrate exceptional fidelity to input images. Moreover, TripoSG demonstrates improved versatility in generating 3D models from diverse image styles and contents, showcasing strong generalization capabilities. To foster progress and innovation in the field of 3D generation, we will make our model publicly available.
♻ ☆ BACON: Improving Clarity of Image Captions via Bag-of-Concept Graphs
Advancements in large Vision-Language Models have brought precise, accurate image captioning, vital for advancing multi-modal image understanding and processing. Yet these captions often carry lengthy, intertwined contexts that are difficult to parse and frequently overlook essential cues, posing a great barrier for models like GroundingDINO and SDXL, which lack the strong text encoding and syntax analysis needed to fully leverage dense captions. To address this, we propose BACON, a prompting method that breaks down VLM-generated captions into disentangled, structured elements such as objects, relationships, styles, and themes. This approach not only minimizes confusion from handling complex contexts but also allows for efficient transfer into a JSON dictionary, enabling models without linguistic processing capabilities to easily access key information. We annotated 100,000 image-caption pairs using BACON with GPT-4V and trained an LLaVA captioner on this dataset, enabling it to produce BACON-style captions without relying on costly GPT-4V. Evaluations of overall quality, precision, and recall-as well as user studies-demonstrate that the resulting caption model consistently outperforms other SOTA VLM models in generating high-quality captions. Besides, we show that BACON-style captions exhibit better clarity when applied to various models, enabling them to accomplish previously unattainable tasks or surpass existing SOTA solutions without training. For example, BACON-style captions help GroundingDINO achieve 1.51x higher recall scores on open-vocabulary object detection tasks compared to leading methods.
♻ ☆ StableMamba: Distillation-free Scaling of Large SSMs for Images and Videos
State-space models (SSMs), exemplified by S4, have introduced a novel context modeling method by integrating state-space techniques into deep learning. However, they struggle with global context modeling due to their data-independent matrices. The Mamba model addressed this with data-dependent variants via the S6 selective-scan algorithm, enhancing context modeling, especially for long sequences. However, Mamba-based architectures are difficult to scale with respect to the number of parameters, which is a major limitation for vision applications. This paper addresses the scalability issue of large SSMs for image classification and action recognition without requiring additional techniques like knowledge distillation. We analyze the distinct characteristics of Mamba-based and Attention-based models, proposing a Mamba-Attention interleaved architecture that enhances scalability, robustness, and performance. We demonstrate that the stable and efficient interleaved architecture resolves the scalability issue of Mamba-based architectures for images and videos and increases robustness to common artifacts like JPEG compression. Our thorough evaluation on the ImageNet-1K, Kinetics-400 and Something-Something-v2 benchmarks demonstrates that our approach improves the accuracy of state-of-the-art Mamba-based architectures by up to $+1.7$.
♻ ☆ Frequency-Controlled Diffusion Model for Versatile Text-Guided Image-to-Image Translation AAAI
Recently, large-scale text-to-image (T2I) diffusion models have emerged as a powerful tool for image-to-image translation (I2I), allowing open-domain image translation via user-provided text prompts. This paper proposes frequency-controlled diffusion model (FCDiffusion), an end-to-end diffusion-based framework that contributes a novel solution to text-guided I2I from a frequency-domain perspective. At the heart of our framework is a feature-space frequency-domain filtering module based on Discrete Cosine Transform, which filters the latent features of the source image in the DCT domain, yielding filtered image features bearing different DCT spectral bands as different control signals to the pre-trained Latent Diffusion Model. We reveal that control signals of different DCT spectral bands bridge the source image and the T2I generated image in different correlations (e.g., style, structure, layout, contour, etc.), and thus enable versatile I2I applications emphasizing different I2I correlations, including style-guided content creation, image semantic manipulation, image scene translation, and image style translation. Different from related approaches, FCDiffusion establishes a unified text-guided I2I framework suitable for diverse image translation tasks simply by switching among different frequency control branches at inference time. The effectiveness and superiority of our method for text-guided I2I are demonstrated with extensive experiments both qualitatively and quantitatively. Our project is publicly available at: https://xianggao1102.github.io/FCDiffusion/.
comment: Proceedings of the 38th AAAI Conference on Artificial Intelligence (AAAI 2024)
♻ ☆ OmniBench: Towards The Future of Universal Omni-Language Models
Recent advancements in multimodal large language models (MLLMs) have focused on integrating multiple modalities, yet their ability to simultaneously process and reason across different inputs remains underexplored. We introduce OmniBench, a novel benchmark designed to evaluate models' ability to recognize, interpret, and reason across visual, acoustic, and textual inputs simultaneously. We define language models capable of such tri-modal processing as omni-language models (OLMs). OmniBench features high-quality human annotations that require integrated understanding across all modalities. Our evaluation reveals that: i) open-source OLMs show significant limitations in instruction-following and reasoning in tri-modal contexts; and ii) most baseline models perform poorly (around 50% accuracy) even with textual alternatives to image/audio inputs. To address these limitations, we develop OmniInstruct, an 96K-sample instruction tuning dataset for training OLMs. We advocate for developing more robust tri-modal integration techniques and training strategies to enhance OLM performance. Codes and data could be found at our repo (https://github.com/multimodal-art-projection/OmniBench).
♻ ☆ Vision language models are blind: Failing to translate detailed visual features into words
While large language models with vision capabilities (VLMs), e.g., GPT-4o and Gemini 1.5 Pro, score high on many vision-understanding benchmarks, they are still struggling with low-level vision tasks that are easy to humans. Specifically, on BlindTest, our suite of 7 very simple tasks, including identifying (a) whether two circles overlap; (b) how many times two lines intersect; (c) which letter is being circled in a word; and (d) the number of circles in an Olympic-like logo, four state-of-the-art VLMs are only 58.07% accurate on average. Claude 3.5 Sonnet performs the best at 77.84% accuracy, far from the human expected accuracy of 100%. Across different image resolutions and line widths, VLMs including slow-thinking models consistently struggle with those tasks that require precise spatial information when geometric primitives overlap or are close. Yet, VLMs perform at near-100% accuracy when much more space is added to separate shapes and letters. Linear probing experiments show that vision encoders contain sufficient visual information to solve BlindTest and that language models fail to decode this information into correct answers. Code and data are at: https://vlmsareblind.github.io
♻ ☆ On the Viability of Semi-Supervised Segmentation Methods for Statistical Shape Modeling
Statistical Shape Models (SSMs) excel at identifying population level anatomical variations, which is at the core of various clinical and biomedical applications, including morphology-based diagnostics and surgical planning. However, the effectiveness of SSM is often constrained by the necessity for expert-driven manual segmentation, a process that is both time-intensive and expensive, thereby restricting their broader application and utility. Recent deep learning approaches enable the direct estimation of Statistical Shape Models (SSMs) from unsegmented images. While these models can predict SSMs without segmentation during deployment, they do not address the challenge of acquiring the manual annotations needed for training, particularly in resource-limited settings. Semi-supervised models for anatomy segmentation can mitigate the annotation burden. Yet, despite the abundance of available approaches, there are no established guidelines to inform end-users on their effectiveness for the downstream task of constructing SSMs. In this study, we systematically evaluate the potential of semi-supervised methods as viable alternatives to manual segmentations for building SSMs. We establish a new performance benchmark by employing various semi-supervised methods for anatomy segmentation under low annotation settings, utilizing the predicted segmentations for the task of SSM. Our results indicate that some methods produce noisy segmentation, which is very unfavorable for SSM tasks, while others can capture the correct modes of variations in the population cohort with 60-80% reduction in required manual annotation
♻ ☆ Self-Contrastive Forward-Forward Algorithm
Agents that operate autonomously benefit from lifelong learning capabilities. However, compatible training algorithms must comply with the decentralized nature of these systems, which imposes constraints on both the parameter counts and the computational resources. The Forward-Forward (FF) algorithm is one of these. FF relies only on feedforward operations, the same used for inference, for optimizing layer-wise objectives. This purely forward approach eliminates the need for transpose operations required in traditional backpropagation. Despite its potential, FF has failed to reach state-of-the-art performance on most standard benchmark tasks, in part due to unreliable negative data generation methods for unsupervised learning. In this work, we propose the Self-Contrastive Forward-Forward (SCFF) algorithm, a competitive training method aimed at closing this performance gap. Inspired by standard self-supervised contrastive learning for vision tasks, SCFF generates positive and negative inputs applicable across various datasets. The method demonstrates superior performance compared to existing unsupervised local learning algorithms on several benchmark datasets, including MNIST, CIFAR-10, STL-10, and Tiny ImageNet. We extend FF's application to training recurrent neural networks, expanding its utility to sequential data tasks. These findings pave the way for high-accuracy, real-time learning on resource-constrained edge devices.
♻ ☆ Layer- and Timestep-Adaptive Differentiable Token Compression Ratios for Efficient Diffusion Transformers CVPR 2025
Diffusion Transformers (DiTs) have achieved state-of-the-art (SOTA) image generation quality but suffer from high latency and memory inefficiency, making them difficult to deploy on resource-constrained devices. One major efficiency bottleneck is that existing DiTs apply equal computation across all regions of an image. However, not all image tokens are equally important, and certain localized areas require more computation, such as objects. To address this, we propose DiffCR, a dynamic DiT inference framework with differentiable compression ratios, which automatically learns to dynamically route computation across layers and timesteps for each image token, resulting in efficient DiTs. Specifically, DiffCR integrates three features: (1) A token-level routing scheme where each DiT layer includes a router that is fine-tuned jointly with model weights to predict token importance scores. In this way, unimportant tokens bypass the entire layer's computation; (2) A layer-wise differentiable ratio mechanism where different DiT layers automatically learn varying compression ratios from a zero initialization, resulting in large compression ratios in redundant layers while others remain less compressed or even uncompressed; (3) A timestep-wise differentiable ratio mechanism where each denoising timestep learns its own compression ratio. The resulting pattern shows higher ratios for noisier timesteps and lower ratios as the image becomes clearer. Extensive experiments on text-to-image and inpainting tasks show that DiffCR effectively captures dynamism across token, layer, and timestep axes, achieving superior trade-offs between generation quality and efficiency compared to prior works. The project website is available at https://www.haoranyou.com/diffcr.
comment: Accepted by CVPR 2025
♻ ☆ Learning Multi-modal Representations by Watching Hundreds of Surgical Video Lectures
Recent advancements in surgical computer vision applications have been driven by vision-only models, which do not explicitly integrate the rich semantics of language into their design. These methods rely on manually annotated surgical videos to predict a fixed set of object categories, limiting their generalizability to unseen surgical procedures and downstream tasks. In this work, we put forward the idea that the surgical video lectures available through open surgical e-learning platforms can provide effective vision and language supervisory signals for multi-modal representation learning without relying on manual annotations. We address the surgery-specific linguistic challenges present in surgical video lectures by employing multiple complementary automatic speech recognition systems to generate text transcriptions. We then present a novel method, SurgVLP - Surgical Vision Language Pre-training, for multi-modal representation learning. Extensive experiments across diverse surgical procedures and tasks demonstrate that the multi-modal representations learned by SurgVLP exhibit strong transferability and adaptability in surgical video analysis. Furthermore, our zero-shot evaluations highlight SurgVLP's potential as a general-purpose foundation model for surgical workflow analysis, reducing the reliance on extensive manual annotations for downstream tasks, and facilitating adaptation methods such as few-shot learning to build a scalable and data-efficient solution for various downstream surgical applications. The [training code](https://github.com/CAMMA-public/SurgVLP) and [weights](https://github.com/CAMMA-public/PeskaVLP) are public.
♻ ☆ GMAI-VL & GMAI-VL-5.5M: A Large Vision-Language Model and A Comprehensive Multimodal Dataset Towards General Medical AI
Despite significant advancements in general AI, its effectiveness in the medical domain is limited by the lack of specialized medical knowledge. To address this, we formulate GMAI-VL-5.5M, a multimodal medical dataset created by converting hundreds of specialized medical datasets with various annotations into high-quality image-text pairs. This dataset offers comprehensive task coverage, diverse modalities, and rich image-text data. Building upon this dataset, we develop GMAI-VL, a general medical vision-language model, with a three-stage training strategy that enhances the integration of visual and textual information. This approach significantly improves the model's ability to process multimodal data, supporting accurate diagnoses and clinical decision-making. Experiments show that GMAI-VL achieves state-of-the-art performance across various multimodal medical tasks, including visual question answering and medical image diagnosis.
♻ ☆ Gaussian Splatting Lucas-Kanade
Gaussian Splatting and its dynamic extensions are effective for reconstructing 3D scenes from 2D images when there is significant camera movement to facilitate motion parallax and when scene objects remain relatively static. However, in many real-world scenarios, these conditions are not met. As a consequence, data-driven semantic and geometric priors have been favored as regularizers, despite their bias toward training data and their neglect of broader movement dynamics. Departing from this practice, we propose a novel analytical approach that adapts the classical Lucas-Kanade method to dynamic Gaussian splatting. By leveraging the intrinsic properties of the forward warp field network, we derive an analytical velocity field that, through time integration, facilitates accurate scene flow computation. This enables the precise enforcement of motion constraints on warp fields, thus constraining both 2D motion and 3D positions of the Gaussians. Our method excels in reconstructing highly dynamic scenes with minimal camera movement, as demonstrated through experiments on both synthetic and real-world scenes.
comment: International Conference on Learning Representations
♻ ☆ Discretized Gaussian Representation for Tomographic Reconstruction
Computed Tomography (CT) is a widely used imaging technique that provides detailed cross-sectional views of objects. Over the past decade, Deep Learning-based Reconstruction (DLR) methods have led efforts to enhance image quality and reduce noise, yet they often require large amounts of data and are computationally intensive. Inspired by recent advancements in scene reconstruction, some approaches have adapted NeRF and 3D Gaussian Splatting (3DGS) techniques for CT reconstruction. However, these methods are not ideal for direct 3D volume reconstruction. In this paper, we propose a novel Discretized Gaussian Representation (DGR) for CT reconstruction, which directly reconstructs the 3D volume using a set of discretized Gaussian functions in an end-to-end manner. To further enhance computational efficiency, we introduce a Fast Volume Reconstruction technique that aggregates the contributions of these Gaussians into a discretized volume in a highly parallelized fashion. Our extensive experiments on both real-world and synthetic datasets demonstrate that DGR achieves superior reconstruction quality and significantly improved computational efficiency compared to existing DLR and instance reconstruction methods. Our code has been provided for review purposes and will be made publicly available upon publication.
♻ ☆ Contextual AD Narration with Interleaved Multimodal Sequence
The Audio Description (AD) task aims to generate descriptions of visual elements for visually impaired individuals to help them access long-form video content, like movies. With video feature, text, character bank and context information as inputs, the generated ADs are able to correspond to the characters by name and provide reasonable, contextual descriptions to help audience understand the storyline of movie. To achieve this goal, we propose to leverage pre-trained foundation models through a simple and unified framework to generate ADs with interleaved multimodal sequence as input, termed as Uni-AD. To enhance the alignment of features across various modalities with finer granularity, we introduce a simple and lightweight module that maps video features into the textual feature space. Moreover, we also propose a character-refinement module to provide more precise information by identifying the main characters who play more significant roles in the video context. With these unique designs, we further incorporate contextual information and a contrastive loss into our architecture to generate smoother and more contextually appropriate ADs. Experiments on multiple AD datasets show that Uni-AD performs well on AD generation, which demonstrates the effectiveness of our approach. Our code is available at: https://github.com/ant-research/UniAD.
♻ ☆ GI-GS: Global Illumination Decomposition on Gaussian Splatting for Inverse Rendering
We present GI-GS, a novel inverse rendering framework that leverages 3D Gaussian Splatting (3DGS) and deferred shading to achieve photo-realistic novel view synthesis and relighting. In inverse rendering, accurately modeling the shading processes of objects is essential for achieving high-fidelity results. Therefore, it is critical to incorporate global illumination to account for indirect lighting that reaches an object after multiple bounces across the scene. Previous 3DGS-based methods have attempted to model indirect lighting by characterizing indirect illumination as learnable lighting volumes or additional attributes of each Gaussian, while using baked occlusion to represent shadow effects. These methods, however, fail to accurately model the complex physical interactions between light and objects, making it impossible to construct realistic indirect illumination during relighting. To address this limitation, we propose to calculate indirect lighting using efficient path tracing with deferred shading. In our framework, we first render a G-buffer to capture the detailed geometry and material properties of the scene. Then, we perform physically-based rendering (PBR) only for direct lighting. With the G-buffer and previous rendering results, the indirect lighting can be calculated through a lightweight path tracing. Our method effectively models indirect lighting under any given lighting conditions, thereby achieving better novel view synthesis and competitive relighting. Quantitative and qualitative results show that our GI-GS outperforms existing baselines in both rendering quality and efficiency.
comment: Camera-ready version. Project page: https://stopaimme.github.io/GI-GS-site/
♻ ☆ Image segmentation of treated and untreated tumor spheroids by Fully Convolutional Networks
Multicellular tumor spheroids (MCTS) are advanced cell culture systems for assessing the impact of combinatorial radio(chemo)therapy. They exhibit therapeutically relevant in-vivo-like characteristics from 3D cell-cell and cell-matrix interactions to radial pathophysiological gradients related to proliferative activity and nutrient/oxygen supply, altering cellular radioresponse. State-of-the-art assays quantify long-term curative endpoints based on collected brightfield image time series from large treated spheroid populations per irradiation dose and treatment arm. Here, spheroid control probabilities are documented analogous to in-vivo tumor control probabilities based on Kaplan-Meier curves. This analyses require laborious spheroid segmentation of up to 100.000 images per treatment arm to extract relevant structural information from the images, e.g., diameter, area, volume and circularity. While several image analysis algorithms are available for spheroid segmentation, they all focus on compact MCTS with clearly distinguishable outer rim throughout growth. However, treated MCTS may partly be detached and destroyed and are usually obscured by dead cell debris. We successfully train two Fully Convolutional Networks, UNet and HRNet, and optimize their hyperparameters to develop an automatic segmentation for both untreated and treated MCTS. We systematically validate the automatic segmentation on larger, independent data sets of spheroids derived from two human head-and-neck cancer cell lines. We find an excellent overlap between manual and automatic segmentation for most images, quantified by Jaccard indices at around 90%. For images with smaller overlap of the segmentations, we demonstrate that this error is comparable to the variations across segmentations from different biological experts, suggesting that these images represent biologically unclear or ambiguous cases.
comment: 30 pages, 23 figures
♻ ☆ TREAD: Token Routing for Efficient Architecture-agnostic Diffusion Training
Diffusion models have emerged as the mainstream approach for visual generation. However, these models typically suffer from sample inefficiency and high training costs. Consequently, methods for efficient finetuning, inference and personalization were quickly adopted by the community. However, training these models in the first place remains very costly. While several recent approaches - including masking, distillation, and architectural modifications - have been proposed to improve training efficiency, each of these methods comes with a tradeoff: they achieve enhanced performance at the expense of increased computational cost or vice versa. In contrast, this work aims to improve training efficiency as well as generative performance at the same time through routes that act as a transport mechanism for randomly selected tokens from early layers to deeper layers of the model. Our method is not limited to the common transformer-based model - it can also be applied to state-space models and achieves this without architectural modifications or additional parameters. Finally, we show that TREAD reduces computational cost and simultaneously boosts model performance on the standard ImageNet-256 benchmark in class-conditional synthesis. Both of these benefits multiply to a convergence speedup of 14x at 400K training iterations compared to DiT and 37x compared to the best benchmark performance of DiT at 7M training iterations. Furthermore, we achieve a competitive FID of 2.09 in a guided and 3.93 in an unguided setting, which improves upon the DiT, without architectural changes.
♻ ☆ Video-Panda: Parameter-efficient Alignment for Encoder-free Video-Language Models CVPR 2025
We present an efficient encoder-free approach for video-language understanding that achieves competitive performance while significantly reducing computational overhead. Current video-language models typically rely on heavyweight image encoders (300M-1.1B parameters) or video encoders (1B-1.4B parameters), creating a substantial computational burden when processing multi-frame videos. Our method introduces a novel Spatio-Temporal Alignment Block (STAB) that directly processes video inputs without requiring pre-trained encoders while using only 45M parameters for visual processing - at least a 6.5$\times$ reduction compared to traditional approaches. The STAB architecture combines Local Spatio-Temporal Encoding for fine-grained feature extraction, efficient spatial downsampling through learned attention and separate mechanisms for modeling frame-level and video-level relationships. Our model achieves comparable or superior performance to encoder-based approaches for open-ended video question answering on standard benchmarks. The fine-grained video question-answering evaluation demonstrates our model's effectiveness, outperforming the encoder-based approaches Video-ChatGPT and Video-LLaVA in key aspects like correctness and temporal understanding. Extensive ablation studies validate our architectural choices and demonstrate the effectiveness of our spatio-temporal modeling approach while achieving 3-4$\times$ faster processing speeds than previous methods. Code is available at https://jh-yi.github.io/Video-Panda.
comment: CVPR 2025 camera-ready version
♻ ☆ Quantization-aware Matrix Factorization for Low Bit Rate Image Compression
Lossy image compression is essential for efficient transmission and storage. Traditional compression methods mainly rely on discrete cosine transform (DCT) or singular value decomposition (SVD), both of which represent image data in continuous domains and, therefore, necessitate carefully designed quantizers. Notably, these methods consider quantization as a separate step, where quantization errors cannot be incorporated into the compression process. The sensitivity of these methods, especially SVD-based ones, to quantization errors significantly degrades reconstruction quality. To address this issue, we introduce a quantization-aware matrix factorization (QMF) to develop a novel lossy image compression method. QMF provides a low-rank representation of the image data as a product of two smaller factor matrices, with elements constrained to bounded integer values, thereby effectively integrating quantization with low-rank approximation. We propose an efficient, provably convergent iterative algorithm for QMF using a block coordinate descent (BCD) scheme, with subproblems having closed-form solutions. Our experiments on the Kodak and CLIC 2024 datasets demonstrate that our QMF compression method consistently outperforms JPEG at low bit rates below 0.25 bits per pixel (bpp) and remains comparable at higher bit rates. We also assessed our method's capability to preserve visual semantics by evaluating an ImageNet pre-trained classifier on compressed images. Remarkably, our method improved top-1 accuracy by over 5 percentage points compared to JPEG at bit rates under 0.25 bpp. The project is available at https://github.com/pashtari/lrf .
comment: 22 pages, 6 figures, 1 table, 1 algorithm
♻ ☆ UAV-DETR: Efficient End-to-End Object Detection for Unmanned Aerial Vehicle Imagery
Unmanned aerial vehicle object detection (UAV-OD) has been widely used in various scenarios. However, most existing UAV-OD algorithms rely on manually designed components, which require extensive tuning. End-to-end models that do not depend on such manually designed components are mainly designed for natural images, which are less effective for UAV imagery. To address such challenges, this paper proposes an efficient detection transformer (DETR) framework tailored for UAV imagery, i.e., UAV-DETR. The framework includes a multi-scale feature fusion with frequency enhancement module, which captures both spatial and frequency information at different scales. In addition, a frequency-focused down-sampling module is presented to retain critical spatial details during down-sampling. A semantic alignment and calibration module is developed to align and fuse features from different fusion paths. Experimental results demonstrate the effectiveness and generalization of our approach across various UAV imagery datasets. On the VisDrone dataset, our method improves AP by 3.1\% and $\text{AP}_{50}$ by 4.2\% over the baseline. Similar enhancements are observed on the UAVVaste dataset. The project page: https://github.com/ValiantDiligent/UAV-DETR
♻ ☆ SegMAN: Omni-scale Context Modeling with State Space Models and Local Attention for Semantic Segmentation CVPR 2025
High-quality semantic segmentation relies on three key capabilities: global context modeling, local detail encoding, and multi-scale feature extraction. However, recent methods struggle to possess all these capabilities simultaneously. Hence, we aim to empower segmentation networks to simultaneously carry out efficient global context modeling, high-quality local detail encoding, and rich multi-scale feature representation for varying input resolutions. In this paper, we introduce SegMAN, a novel linear-time model comprising a hybrid feature encoder dubbed SegMAN Encoder, and a decoder based on state space models. Specifically, the SegMAN Encoder synergistically integrates sliding local attention with dynamic state space models, enabling highly efficient global context modeling while preserving fine-grained local details. Meanwhile, the MMSCopE module in our decoder enhances multi-scale context feature extraction and adaptively scales with the input resolution. Our SegMAN-B Encoder achieves 85.1% ImageNet-1k accuracy (+1.5% over VMamba-S with fewer parameters). When paired with our decoder, the full SegMAN-B model achieves 52.6% mIoU on ADE20K (+1.6% over SegNeXt-L with 15% fewer GFLOPs), 83.8% mIoU on Cityscapes (+2.1% over SegFormer-B3 with half the GFLOPs), and 1.6% higher mIoU than VWFormer-B3 on COCO-Stuff with lower GFLOPs. Our code is available at https://github.com/yunxiangfu2001/SegMAN.
comment: CVPR 2025
♻ ☆ How NeRFs and 3D Gaussian Splatting are Reshaping SLAM: a Survey
Over the past two decades, research in the field of Simultaneous Localization and Mapping (SLAM) has undergone a significant evolution, highlighting its critical role in enabling autonomous exploration of unknown environments. This evolution ranges from hand-crafted methods, through the era of deep learning, to more recent developments focused on Neural Radiance Fields (NeRFs) and 3D Gaussian Splatting (3DGS) representations. Recognizing the growing body of research and the absence of a comprehensive survey on the topic, this paper aims to provide the first comprehensive overview of SLAM progress through the lens of the latest advancements in radiance fields. It sheds light on the background, evolutionary path, inherent strengths and limitations, and serves as a fundamental reference to highlight the dynamic progress and specific challenges.
comment: Updated to November 2024
♻ ☆ Improving Object Detection by Modifying Synthetic Data with Explainable AI
Limited real-world data severely impacts model performance in many computer vision domains, particularly for samples that are underrepresented in training. Synthetically generated images are a promising solution, but 1) it remains unclear how to design synthetic training data to optimally improve model performance (e.g, whether and where to introduce more realism or more abstraction) and 2) the domain expertise, time and effort required from human operators for this design and optimisation process represents a major practical challenge. Here we propose a novel conceptual approach to improve the efficiency of designing synthetic images, by using robust Explainable AI (XAI) techniques to guide a human-in-the-loop process of modifying 3D mesh models used to generate these images. Importantly, this framework allows both modifications that increase and decrease realism in synthetic data, which can both improve model performance. We illustrate this concept using a real-world example where data are sparse; detection of vehicles in infrared imagery. We fine-tune an initial YOLOv8 model on the ATR DSIAC infrared dataset and synthetic images generated from 3D mesh models in the Unity gaming engine, and then use XAI saliency maps to guide modification of our Unity models. We show that synthetic data can improve detection of vehicles in orientations unseen in training by 4.6% (to mAP50 = 94.6%). We further improve performance by an additional 1.5% (to 96.1%) through our new XAI-guided approach, which reduces misclassifications through both increasing and decreasing the realism of different parts of the synthetic data. Our proof-of-concept results pave the way for fine, XAI-controlled curation of synthetic datasets tailored to improve object detection performance, whilst simultaneously reducing the burden on human operators in designing and optimising these datasets.
♻ ☆ Dynamics-Aware Gaussian Splatting Streaming Towards Fast On-the-Fly 4D Reconstruction
The recent development of 3D Gaussian Splatting (3DGS) has led to great interest in 4D dynamic spatial reconstruction. Existing approaches mainly rely on full-length multi-view videos, while there has been limited exploration of online reconstruction methods that enable on-the-fly training and per-timestep streaming. Current 3DGS-based streaming methods treat the Gaussian primitives uniformly and constantly renew the densified Gaussians, thereby overlooking the difference between dynamic and static features as well as neglecting the temporal continuity in the scene. To address these limitations, we propose a novel three-stage pipeline for iterative streamable 4D dynamic spatial reconstruction. Our pipeline comprises a selective inheritance stage to preserve temporal continuity, a dynamics-aware shift stage to distinguish dynamic and static primitives and optimize their movements, and an error-guided densification stage to accommodate emerging objects. Our method achieves state-of-the-art performance in online 4D reconstruction, demonstrating the fastest on-the-fly training, superior representation quality, and real-time rendering capability. Project page: https://www.liuzhening.top/DASS
comment: Project page: https://www.liuzhening.top/DASS
♻ ☆ AnomalyNCD: Towards Novel Anomaly Class Discovery in Industrial Scenarios CVPR2025
Recently, multi-class anomaly classification has garnered increasing attention. Previous methods directly cluster anomalies but often struggle due to the lack of anomaly-prior knowledge. Acquiring this knowledge faces two issues: the non-prominent and weak-semantics anomalies. In this paper, we propose AnomalyNCD, a multi-class anomaly classification network compatible with different anomaly detection methods. To address the non-prominence of anomalies, we design main element binarization (MEBin) to obtain anomaly-centered images, ensuring anomalies are learned while avoiding the impact of incorrect detections. Next, to learn anomalies with weak semantics, we design mask-guided representation learning, which focuses on isolated anomalies guided by masks and reduces confusion from erroneous inputs through corrected pseudo labels. Finally, to enable flexible classification at both region and image levels, we develop a region merging strategy that determines the overall image category based on the classified anomaly regions. Our method outperforms the state-of-the-art works on the MVTec AD and MTD datasets. Compared with the current methods, AnomalyNCD combined with zero-shot anomaly detection method achieves a 10.8% $F_1$ gain, 8.8% NMI gain, and 9.5% ARI gain on MVTec AD, and 12.8% $F_1$ gain, 5.7% NMI gain, and 10.8% ARI gain on MTD. Code is available at https://github.com/HUST-SLOW/AnomalyNCD.
comment: Accepted at CVPR2025
♻ ☆ Training-free Diffusion Acceleration with Bottleneck Sampling
Diffusion models have demonstrated remarkable capabilities in visual content generation but remain challenging to deploy due to their high computational cost during inference. This computational burden primarily arises from the quadratic complexity of self-attention with respect to image or video resolution. While existing acceleration methods often compromise output quality or necessitate costly retraining, we observe that most diffusion models are pre-trained at lower resolutions, presenting an opportunity to exploit these low-resolution priors for more efficient inference without degrading performance. In this work, we introduce Bottleneck Sampling, a training-free framework that leverages low-resolution priors to reduce computational overhead while preserving output fidelity. Bottleneck Sampling follows a high-low-high denoising workflow: it performs high-resolution denoising in the initial and final stages while operating at lower resolutions in intermediate steps. To mitigate aliasing and blurring artifacts, we further refine the resolution transition points and adaptively shift the denoising timesteps at each stage. We evaluate Bottleneck Sampling on both image and video generation tasks, where extensive experiments demonstrate that it accelerates inference by up to 3$\times$ for image generation and 2.5$\times$ for video generation, all while maintaining output quality comparable to the standard full-resolution sampling process across multiple evaluation metrics.
comment: Project Page: https://tyfeld.github.io/BottleneckSampling.github.io/
♻ ☆ Volumetric Surfaces: Representing Fuzzy Geometries with Layered Meshes
High-quality view synthesis relies on volume rendering, splatting, or surface rendering. While surface rendering is typically the fastest, it struggles to accurately model fuzzy geometry like hair. In turn, alpha-blending techniques excel at representing fuzzy materials but require an unbounded number of samples per ray (P1). Further overheads are induced by empty space skipping in volume rendering (P2) and sorting input primitives in splatting (P3). We present a novel representation for real-time view synthesis where the (P1) number of sampling locations is small and bounded, (P2) sampling locations are efficiently found via rasterization, and (P3) rendering is sorting-free. We achieve this by representing objects as semi-transparent multi-layer meshes rendered in a fixed order. First, we model surface layers as signed distance function (SDF) shells with optimal spacing learned during training. Then, we bake them as meshes and fit UV textures. Unlike single-surface methods, our multi-layer representation effectively models fuzzy objects. In contrast to volume and splatting-based methods, our approach enables real-time rendering on low-power laptops and smartphones.
♻ ☆ Video Motion Transfer with Diffusion Transformers CVPR 2025
We propose DiTFlow, a method for transferring the motion of a reference video to a newly synthesized one, designed specifically for Diffusion Transformers (DiT). We first process the reference video with a pre-trained DiT to analyze cross-frame attention maps and extract a patch-wise motion signal called the Attention Motion Flow (AMF). We guide the latent denoising process in an optimization-based, training-free, manner by optimizing latents with our AMF loss to generate videos reproducing the motion of the reference one. We also apply our optimization strategy to transformer positional embeddings, granting us a boost in zero-shot motion transfer capabilities. We evaluate DiTFlow against recently published methods, outperforming all across multiple metrics and human evaluation.
comment: CVPR 2025 - Project page: https://ditflow.github.io/
♻ ☆ LANTERN++: Enhancing Relaxed Speculative Decoding with Static Tree Drafting for Visual Auto-regressive Models ICLR 2025
Speculative decoding has been widely used to accelerate auto-regressive (AR) text generation. However, its effectiveness for visual AR models remains limited due to token selection ambiguity, where multiple tokens share similarly low probabilities and thus reduce acceptance rates. Recently, relaxed speculative decoding with dynamic tree drafting was proposed to mitigate this ambiguity, demonstrating promising results in accelerating visual AR models. However, we observe that token selection ambiguity still negatively affects dynamic tree drafting, resulting in shallow draft trees and limited acceleration. To overcome this issue, we introduce LANTERN++, a refined framework that integrates static tree drafting with a tailored relaxed acceptance condition, allowing drafts to be selected independently of low-confidence predictions. This enables the acceptance of deeper sequences, improving decoding efficiency while preserving image quality. Extensive experiments on state-of-the-art visual AR models demonstrate that LANTERN++ significantly accelerates inference, achieving up to $\mathbf{\times 2.56}$ speedup over standard AR decoding while maintaining high image quality. The code is publicly available at https://github.com/jadohu/LANTERN.
comment: ICLR 2025 Workshop at SCOPE (Oral), 16 pages, 5 figures, short paper (6 pages exclude reference and appendix)
♻ ☆ Rethinking Video Tokenization: A Conditioned Diffusion-based Approach
Existing video tokenizers typically use the traditional Variational Autoencoder (VAE) architecture for video compression and reconstruction. However, to achieve good performance, its training process often relies on complex multi-stage training tricks that go beyond basic reconstruction loss and KL regularization. Among these tricks, the most challenging is the precise tuning of adversarial training with additional Generative Adversarial Networks (GANs) in the final stage, which can hinder stable convergence. In contrast to GANs, diffusion models offer more stable training processes and can generate higher-quality results. Inspired by these advantages, we propose CDT, a novel Conditioned Diffusion-based video Tokenizer, that replaces the GAN-based decoder with a conditional causal diffusion model. The encoder compresses spatio-temporal information into compact latents, while the decoder reconstructs videos through a reverse diffusion process conditioned on these latents. During inference, we incorporate a feature cache mechanism to generate videos of arbitrary length while maintaining temporal continuity and adopt sampling acceleration technique to enhance efficiency. Trained using only a basic MSE diffusion loss for reconstruction, along with KL term and LPIPS perceptual loss from scratch, extensive experiments demonstrate that CDT achieves state-of-the-art performance in video reconstruction tasks with just a single-step sampling. Even a scaled-down version of CDT (3$\times$ inference speedup) still performs comparably with top baselines. Moreover, the latent video generation model trained with CDT also exhibits superior performance. The source code and pretrained weights are available at https://github.com/ali-vilab/CDT.
♻ ☆ Multimodal Feature-Driven Deep Learning for the Prediction of Duck Body Dimensions and Weight
Accurate body dimension and weight measurements are critical for optimizing poultry management, health assessment, and economic efficiency. This study introduces an innovative deep learning-based model leveraging multimodal data-2D RGB images from different views, depth images, and 3D point clouds-for the non-invasive estimation of duck body dimensions and weight. A dataset of 1,023 Linwu ducks, comprising over 5,000 samples with diverse postures and conditions, was collected to support model training. The proposed method innovatively employs PointNet++ to extract key feature points from point clouds, extracts and computes corresponding 3D geometric features, and fuses them with multi-view convolutional 2D features. A Transformer encoder is then utilized to capture long-range dependencies and refine feature interactions, thereby enhancing prediction robustness. The model achieved a mean absolute percentage error (MAPE) of 6.33% and an R2 of 0.953 across eight morphometric parameters, demonstrating strong predictive capability. Unlike conventional manual measurements, the proposed model enables high-precision estimation while eliminating the necessity for physical handling, thereby reducing animal stress and broadening its application scope. This study marks the first application of deep learning techniques to poultry body dimension and weight estimation, providing a valuable reference for the intelligent and precise management of the livestock industry with far-reaching practical significance.
♻ ☆ Temporal-Guided Spiking Neural Networks for Event-Based Human Action Recognition
This paper explores the promising interplay between spiking neural networks (SNNs) and event-based cameras for privacy-preserving human action recognition (HAR). The unique feature of event cameras in capturing only the outlines of motion, combined with SNNs' proficiency in processing spatiotemporal data through spikes, establishes a highly synergistic compatibility for event-based HAR. Previous studies, however, have been limited by SNNs' ability to process long-term temporal information, essential for precise HAR. In this paper, we introduce two novel frameworks to address this: temporal segment-based SNN (\textit{TS-SNN}) and 3D convolutional SNN (\textit{3D-SNN}). The \textit{TS-SNN} extracts long-term temporal information by dividing actions into shorter segments, while the \textit{3D-SNN} replaces 2D spatial elements with 3D components to facilitate the transmission of temporal information. To promote further research in event-based HAR, we create a dataset, \textit{FallingDetection-CeleX}, collected using the high-resolution CeleX-V event camera $(1280 \times 800)$, comprising 7 distinct actions. Extensive experimental results show that our proposed frameworks surpass state-of-the-art SNN methods on our newly collected dataset and three other neuromorphic datasets, showcasing their effectiveness in handling long-range temporal information for event-based HAR.
♻ ☆ FaceID-6M: A Large-Scale, Open-Source FaceID Customization Dataset
Due to the data-driven nature of current face identity (FaceID) customization methods, all state-of-the-art models rely on large-scale datasets containing millions of high-quality text-image pairs for training. However, none of these datasets are publicly available, which restricts transparency and hinders further advancements in the field. To address this issue, in this paper, we collect and release FaceID-6M, the first large-scale, open-source FaceID dataset containing 6 million high-quality text-image pairs. Filtered from LAION-5B \cite{schuhmann2022laion}, FaceID-6M undergoes a rigorous image and text filtering steps to ensure dataset quality, including resolution filtering to maintain high-quality images and faces, face filtering to remove images that lack human faces, and keyword-based strategy to retain descriptions containing human-related terms (e.g., nationality, professions and names). Through these cleaning processes, FaceID-6M provides a high-quality dataset optimized for training powerful FaceID customization models, facilitating advancements in the field by offering an open resource for research and development. We conduct extensive experiments to show the effectiveness of our FaceID-6M, demonstrating that models trained on our FaceID-6M dataset achieve performance that is comparable to, and slightly better than currently available industrial models. Additionally, to support and advance research in the FaceID customization community, we make our code, datasets, and models fully publicly available. Our codes, models, and datasets are available at: https://github.com/ShuheSH/FaceID-6M.
comment: arXiv admin note: text overlap with arXiv:2501.15407
♻ ☆ EnvGS: Modeling View-Dependent Appearance with Environment Gaussian
Reconstructing complex reflections in real-world scenes from 2D images is essential for achieving photorealistic novel view synthesis. Existing methods that utilize environment maps to model reflections from distant lighting often struggle with high-frequency reflection details and fail to account for near-field reflections. In this work, we introduce EnvGS, a novel approach that employs a set of Gaussian primitives as an explicit 3D representation for capturing reflections of environments. These environment Gaussian primitives are incorporated with base Gaussian primitives to model the appearance of the whole scene. To efficiently render these environment Gaussian primitives, we developed a ray-tracing-based renderer that leverages the GPU's RT core for fast rendering. This allows us to jointly optimize our model for high-quality reconstruction while maintaining real-time rendering speeds. Results from multiple real-world and synthetic datasets demonstrate that our method produces significantly more detailed reflections, achieving the best rendering quality in real-time novel view synthesis. The code is available at https://zju3dv.github.io/envgs.
comment: Project page: https://zju3dv.github.io/envgs
♻ ☆ Video-3D LLM: Learning Position-Aware Video Representation for 3D Scene Understanding CVPR 2025
The rapid advancement of Multimodal Large Language Models (MLLMs) has significantly impacted various multimodal tasks. However, these models face challenges in tasks that require spatial understanding within 3D environments. Efforts to enhance MLLMs, such as incorporating point cloud features, have been made, yet a considerable gap remains between the models' learned representations and the inherent complexity of 3D scenes. This discrepancy largely stems from the training of MLLMs on predominantly 2D data, which restricts their effectiveness in comprehending 3D spaces. To address this issue, in this paper, we propose a novel generalist model, i.e., Video-3D LLM, for 3D scene understanding. By treating 3D scenes as dynamic videos and incorporating 3D position encoding into these representations, our Video-3D LLM aligns video representations with real-world spatial contexts more accurately. In addition, we have implemented a maximum coverage sampling technique to optimize the trade-off between computational cost and performance. Extensive experiments demonstrate that our model achieves state-of-the-art performance on several 3D scene understanding benchmarks, including ScanRefer, Multi3DRefer, Scan2Cap, ScanQA, and SQA3D.
comment: Accepted by CVPR 2025
♻ ☆ VIRES: Video Instance Repainting via Sketch and Text Guided Generation
We introduce VIRES, a video instance repainting method with sketch and text guidance, enabling video instance repainting, replacement, generation, and removal. Existing approaches struggle with temporal consistency and accurate alignment with the provided sketch sequence. VIRES leverages the generative priors of text-to-video models to maintain temporal consistency and produce visually pleasing results. We propose the Sequential ControlNet with the standardized self-scaling, which effectively extracts structure layouts and adaptively captures high-contrast sketch details. We further augment the diffusion transformer backbone with the sketch attention to interpret and inject fine-grained sketch semantics. A sketch-aware encoder ensures that repainted results are aligned with the provided sketch sequence. Additionally, we contribute the VireSet, a dataset with detailed annotations tailored for training and evaluating video instance editing methods. Experimental results demonstrate the effectiveness of VIRES, which outperforms state-of-the-art methods in visual quality, temporal consistency, condition alignment, and human ratings. Project page: https://hjzheng.net/projects/VIRES/
♻ ☆ RGB-Th-Bench: A Dense benchmark for Visual-Thermal Understanding of Vision Language Models
We introduce RGB-Th-Bench, the first benchmark designed to evaluate the ability of Vision-Language Models (VLMs) to comprehend RGB-Thermal image pairs. While VLMs have demonstrated remarkable progress in visual reasoning and multimodal understanding, their evaluation has been predominantly limited to RGB-based benchmarks, leaving a critical gap in assessing their capabilities in infrared vision tasks. Existing visible-infrared datasets are either task-specific or lack high-quality annotations necessary for rigorous model evaluation. To address these limitations, RGB-Th-Bench provides a comprehensive evaluation framework covering 14 distinct skill dimensions, with a total of 1,600+ expert-annotated Yes/No questions. The benchmark employs two accuracy metrics: a standard question-level accuracy and a stricter skill-level accuracy, which evaluates model robustness across multiple questions within each skill dimension. This design ensures a thorough assessment of model performance, including resilience to adversarial and hallucinated responses. We conduct extensive evaluations on 19 state-of-the-art VLMs, revealing significant performance gaps in RGB-Thermal understanding. Our results show that even the strongest models struggle with thermal image comprehension, with performance heavily constrained by their RGB-based capabilities. Additionally, the lack of large-scale application-specific and expert-annotated thermal-caption-pair datasets in pre-training is an important reason of the observed performance gap. RGB-Th-Bench highlights the urgent need for further advancements in multimodal learning to bridge the gap between visible and thermal image understanding. The dataset is available through this link, and the evaluation code will also be made publicly available.
♻ ☆ Beyond [cls]: Exploring the true potential of Masked Image Modeling representations
Masked Image Modeling (MIM) has emerged as a promising approach for Self-Supervised Learning (SSL) of visual representations. However, the out-of-the-box performance of MIMs is typically inferior to competing approaches. Most users cannot afford fine-tuning due to the need for large amounts of data, high GPU consumption, and specialized user knowledge. Therefore, the practical use of MIM representations is limited. In this paper we ask what is the reason for the poor out-of-the-box performance of MIMs. Is it due to weaker features produced by MIM models, or is it due to suboptimal usage? Through detailed analysis, we show that attention in MIMs is spread almost uniformly over many patches, leading to ineffective aggregation by the [cls] token. Based on this insight, we propose Selective Aggregation to better capture the rich semantic information retained in patch tokens, which significantly improves the out-of-the-box performance of MIM.
♻ ☆ Structure Modeling Activation Free Fourier Network for Spacecraft Image Denoising
Spacecraft image denoising is a crucial fundamental technology closely related to aerospace research. However, the existing deep learning-based image denoising methods are primarily designed for natural image and fail to adequately consider the characteristics of spacecraft image(e.g. low-light conditions, repetitive periodic structures), resulting in suboptimal performance in the spacecraft image denoising task. To address the aforementioned problems, we propose a Structure modeling Activation Free Fourier Network (SAFFN), which is an efficient spacecraft image denoising method including Structure Modeling Block (SMB) and Activation Free Fourier Block (AFFB). We present SMB to effectively extract edge information and model the structure for better identification of spacecraft components from dark regions in spacecraft noise image. We present AFFB and utilize an improved Fast Fourier block to extract repetitive periodic features and long-range information in noisy spacecraft image. Extensive experimental results demonstrate that our SAFFN performs competitively compared to the state-of-the-art methods on spacecraft noise image datasets. The codes are available at: https://github.com/shenduke/SAFFN.
♻ ☆ ReCap: Better Gaussian Relighting with Cross-Environment Captures
Accurate 3D objects relighting in diverse unseen environments is crucial for realistic virtual object placement. Due to the albedo-lighting ambiguity, existing methods often fall short in producing faithful relights. Without proper constraints, observed training views can be explained by numerous combinations of lighting and material attributes, lacking physical correspondence with the actual environment maps used for relighting. In this work, we present ReCap, treating cross-environment captures as multi-task target to provide the missing supervision that cuts through the entanglement. Specifically, ReCap jointly optimizes multiple lighting representations that share a common set of material attributes. This naturally harmonizes a coherent set of lighting representations around the mutual material attributes, exploiting commonalities and differences across varied object appearances. Such coherence enables physically sound lighting reconstruction and robust material estimation - both essential for accurate relighting. Together with a streamlined shading function and effective post-processing, ReCap outperforms all leading competitors on an expanded relighting benchmark.
♻ ☆ Mapping fMRI Signal and Image Stimuli in an Artificial Neural Network Latent Space: Bringing Artificial and Natural Minds Together
The goal of this study is to investigate whether latent space representations of visual stimuli and fMRI data share common information. Decoding and reconstructing stimuli from fMRI data remains a challenge in AI and neuroscience, with significant implications for understanding neural representations and improving the interpretability of Artificial Neural Networks (ANNs). In this preliminary study, we investigate the feasibility of such reconstruction by examining the similarity between the latent spaces of one autoencoder (AE) and one vision transformer (ViT) trained on fMRI and image data, respectively. Using representational similarity analysis (RSA), we found that the latent spaces of the two domains appear different. However, these initial findings are inconclusive, and further research is needed to explore this relationship more thoroughly.
comment: 4 pages, 3 figures
♻ ☆ What Do You See? Enhancing Zero-Shot Image Classification with Multimodal Large Language Models
Large language models (LLMs) have been effectively used for many computer vision tasks, including image classification. In this paper, we present a simple yet effective approach for zero-shot image classification using multimodal LLMs. Using multimodal LLMs, we generate comprehensive textual representations from input images. These textual representations are then utilized to generate fixed-dimensional features in a cross-modal embedding space. Subsequently, these features are fused together to perform zero-shot classification using a linear classifier. Our method does not require prompt engineering for each dataset; instead, we use a single, straightforward set of prompts across all datasets. We evaluated our method on several datasets and our results demonstrate its remarkable effectiveness, surpassing benchmark accuracy on multiple datasets. On average, for ten benchmarks, our method achieved an accuracy gain of 6.2 percentage points, with an increase of 6.8 percentage points on the ImageNet dataset, compared to prior methods re-evaluated with the same setup. Our findings highlight the potential of multimodal LLMs to enhance computer vision tasks such as zero-shot image classification, offering a significant improvement over traditional methods.
♻ ☆ LongViTU: Instruction Tuning for Long-Form Video Understanding
This paper introduces LongViTU, a large-scale (~121k QA pairs, ~900h videos), automatically generated dataset for long-form video understanding. We propose a systematic approach that organizes videos into a hierarchical tree structure for QA generation and incorporates self-revision mechanisms to ensure high-quality QA pairs. Each QA pair in LongViTU features: 1) long-term context (average certificate length of 4.6 minutes); 2) rich knowledge and condensed reasoning (commonsense, causality, planning, etc.)). We also offer explicit timestamp annotations of relevant events for each QA pair. We have conducted extensive human studies on LongViTU, and the results prove the quality of our dataset. To better evaluate the challenges posed by LongViTU's emphasis on long-term context and condensed reasoning, we manually curate a subset of LongViTU into a benchmark. Evaluations using a state-of-the-art open-source model (LongVU), a proprietary model (Gemini-1.5-Pro), and human annotators yield GPT-4 scores of 49.9, 52.3, and 81.0, respectively, underscoring the substantial difficulty presented by LongViTU questions. Performing supervised fine-tuning (SFT) of LongVU and LLaVA-Video on LongViTU data results in average performance gains of 2.5% and 3.7%, respectively, across a suite of long video understanding benchmarks (EgoSchema, VideoMME-Long, MLVU, LVBench).
♻ ☆ Generalizable Prompt Learning of CLIP: A Brief Overview
Existing vision-language models (VLMs) such as CLIP have showcased an impressive capability to generalize well across various downstream tasks. These models leverage the synergy between visual and textual information, enabling them to understand and reason about the content present in images and text in a unified manner. This article provides a brief overview of CLIP based on few-shot prompt learning, including experimental data and technical characteristics of some methods. The purpose of this review is to provide a reference for researchers who have just started their research in generalizable prompting of CLIP through few-shot training for classification across 15 datasets and also to facilitate the integration of this field by researchers in other downstream tasks.
♻ ☆ Leveraging Textual Anatomical Knowledge for Class-Imbalanced Semi-Supervised Multi-Organ Segmentation
Annotating 3D medical images demands substantial time and expertise, driving the adoption of semi-supervised learning (SSL) for segmentation tasks. However, the complex anatomical structures of organs often lead to significant class imbalances, posing major challenges for deploying SSL in real-world scenarios. Despite the availability of valuable prior information, such as inter-organ relative positions and organ shape priors, existing SSL methods have yet to fully leverage these insights. To address this gap, we propose a novel approach that integrates textual anatomical knowledge (TAK) into the segmentation model. Specifically, we use GPT-4o to generate textual descriptions of anatomical priors, which are then encoded using a CLIP-based model. These encoded priors are injected into the segmentation model as parameters of the segmentation head. Additionally, contrastive learning is employed to enhance the alignment between textual priors and visual features. Extensive experiments demonstrate the superior performance of our method, significantly surpassing state-of-the-art approaches. The source code will be available at: https://github.com/Lunn88/TAK-Semi.
comment: 11 pages
♻ ☆ OmniSplat: Taming Feed-Forward 3D Gaussian Splatting for Omnidirectional Images with Editable Capabilities
Feed-forward 3D Gaussian splatting (3DGS) models have gained significant popularity due to their ability to generate scenes immediately without needing per-scene optimization. Although omnidirectional images are becoming more popular since they reduce the computation required for image stitching to composite a holistic scene, existing feed-forward models are only designed for perspective images. The unique optical properties of omnidirectional images make it difficult for feature encoders to correctly understand the context of the image and make the Gaussian non-uniform in space, which hinders the image quality synthesized from novel views. We propose OmniSplat, a training-free fast feed-forward 3DGS generation framework for omnidirectional images. We adopt a Yin-Yang grid and decompose images based on it to reduce the domain gap between omnidirectional and perspective images. The Yin-Yang grid can use the existing CNN structure as it is, but its quasi-uniform characteristic allows the decomposed image to be similar to a perspective image, so it can exploit the strong prior knowledge of the learned feed-forward network. OmniSplat demonstrates higher reconstruction accuracy than existing feed-forward networks trained on perspective images. Our project page is available on: https://robot0321.github.io/omnisplat/index.html.
♻ ☆ MAP-based Problem-Agnostic diffusion model for Inverse Problems
Diffusion models have indeed shown great promise in solving inverse problems in image processing. In this paper, we propose a novel, problem-agnostic diffusion model called the maximum a posteriori (MAP)-based guided term estimation method for inverse problems. To leverage unconditionally pretrained diffusion models to address conditional generation tasks, we divide the conditional score function into two terms according to Bayes' rule: an unconditional score function (approximated by a pretrained score network) and a guided term, which is estimated using a novel MAP-based method that incorporates a Gaussian-type prior of natural images. This innovation allows us to better capture the intrinsic properties of the data, leading to improved performance. Numerical results demonstrate that our method preserves contents more effectively compared to state-of-the-art methods--for example, maintaining the structure of glasses in super-resolution tasks and producing more coherent results in the neighborhood of masked regions during inpainting.
comment: 17 pages, 10 figures
♻ ☆ Self-Expansion of Pre-trained Models with Mixture of Adapters for Continual Learning
Continual learning (CL) aims to continually accumulate knowledge from a non-stationary data stream without catastrophic forgetting of learned knowledge, requiring a balance between stability and adaptability. Relying on the generalizable representation in pre-trained models (PTMs), PTM-based CL methods perform effective continual adaptation on downstream tasks by adding learnable adapters or prompts upon the frozen PTMs. However, many existing PTM-based CL methods use restricted adaptation on a fixed set of these modules to avoid forgetting, suffering from limited CL ability. Periodically adding task-specific modules results in linear model growth rate and impaired knowledge reuse. We propose Self-Expansion of pre-trained models with Modularized Adaptation (SEMA), a novel approach to enhance the control of stability-plasticity balance in PTM-based CL. SEMA automatically decides to reuse or add adapter modules on demand in CL, depending on whether significant distribution shift that cannot be handled is detected at different representation levels. We design modular adapter consisting of a functional adapter and a representation descriptor. The representation descriptors are trained as a distribution shift indicator and used to trigger self-expansion signals. For better composing the adapters, an expandable weighting router is learned jointly for mixture of adapter outputs. SEMA enables better knowledge reuse and sub-linear expansion rate. Extensive experiments demonstrate the effectiveness of the proposed self-expansion method, achieving state-of-the-art performance compared to PTM-based CL methods without memory rehearsal. Code is available at https://github.com/huiyiwang01/SEMA-CL.
comment: Code available at https: https://github.com/huiyiwang01/SEMA-CL
♻ ☆ SimROD: A Simple Baseline for Raw Object Detection with Global and Local Enhancements
Most visual models are designed for sRGB images, yet RAW data offers significant advantages for object detection by preserving sensor information before ISP processing. This enables improved detection accuracy and more efficient hardware designs by bypassing the ISP. However, RAW object detection is challenging due to limited training data, unbalanced pixel distributions, and sensor noise. To address this, we propose SimROD, a lightweight and effective approach for RAW object detection. We introduce a Global Gamma Enhancement (GGE) module, which applies a learnable global gamma transformation with only four parameters, improving feature representation while keeping the model efficient. Additionally, we leverage the green channel's richer signal to enhance local details, aligning with the human eye's sensitivity and Bayer filter design. Extensive experiments on multiple RAW object detection datasets and detectors demonstrate that SimROD outperforms state-of-the-art methods like RAW-Adapter and DIAP while maintaining efficiency. Our work highlights the potential of RAW data for real-world object detection. Code is available at https://ocean146.github.io/SimROD2025/.
comment: Code is available at https://ocean146.github.io/SimROD2025/
♻ ☆ ATM: Improving Model Merging by Alternating Tuning and Merging
Model merging has recently emerged as a cost-efficient paradigm for multi-task learning. Among current approaches, task arithmetic stands out for its simplicity and effectiveness. In this paper, we motivate the effectiveness of task vectors by linking them to multi-task gradients. We show that in a single-epoch scenario, if the optimization is performed via gradient descent, task vectors are after one step mathematically equivalent to the gradients obtained via gradient descent in a multi-task setting, and still approximate these gradients in subsequent epochs. Furthermore, we show that the effectiveness of task vectors is largely driven by the first epoch's gradient. Given this parallel between task vectors and gradients, we propose viewing model merging as a single step in an iterative process that alternates between tuning and merging (ATM). We then propose two ways to utilize ATM. The first is to replace multi-task learning with ATM in scenarios where data sharing is prohibited, such as federated learning. The second is to improve the outcome of any model merging algorithm by applying a few post-hoc iterations of ATM on a small validation dataset, which is commonly available for hyperparameter tuning. Finally, we provide both empirical and theoretical support for the effectiveness of ATM, demonstrating that it minimizes an upper bound on the loss obtained by jointly finetuning all tasks.
comment: Main paper: 9 Pages, 9 figures, 1 table
♻ ☆ GMTalker: Gaussian Mixture-based Audio-Driven Emotional Talking Video Portraits
Synthesizing high-fidelity and emotion-controllable talking video portraits, with audio-lip sync, vivid expressions, realistic head poses, and eye blinks, has been an important and challenging task in recent years. Most existing methods suffer in achieving personalized and precise emotion control, smooth transitions between different emotion states, and the generation of diverse motions. To tackle these challenges, we present GMTalker, a Gaussian mixture-based emotional talking portraits generation framework. Specifically, we propose a Gaussian mixture-based expression generator that can construct a continuous and disentangled latent space, achieving more flexible emotion manipulation. Furthermore, we introduce a normalizing flow-based motion generator pretrained on a large dataset with a wide-range motion to generate diverse head poses, blinks, and eyeball movements. Finally, we propose a personalized emotion-guided head generator with an emotion mapping network that can synthesize high-fidelity and faithful emotional video portraits. Both quantitative and qualitative experiments demonstrate our method outperforms previous methods in image quality, photo-realism, emotion accuracy, and motion diversity.
comment: Project page: https://bob35buaa.github.io/GMTalker. This work has been submitted to the IEEE journal for possible publication
♻ ☆ Feedback-driven object detection and iterative model improvement
Automated object detection has become increasingly valuable across diverse applications, yet efficient, high-quality annotation remains a persistent challenge. In this paper, we present the development and evaluation of a platform designed to interactively improve object detection models. The platform allows uploading and annotating images as well as fine-tuning object detection models. Users can then manually review and refine annotations, further creating improved snapshots that are used for automatic object detection on subsequent image uploads - a process we refer to as semi-automatic annotation resulting in a significant gain in annotation efficiency. Whereas iterative refinement of model results to speed up annotation has become common practice, we are the first to quantitatively evaluate its benefits with respect to time, effort, and interaction savings. Our experimental results show clear evidence for a significant time reduction of up to 53% for semi-automatic compared to manual annotation. Importantly, these efficiency gains did not compromise annotation quality, while matching or occasionally even exceeding the accuracy of manual annotations. These findings demonstrate the potential of our lightweight annotation platform for creating high-quality object detection datasets and provide best practices to guide future development of annotation platforms. The platform is open-source, with the frontend and backend repositories available on GitHub. To support the understanding of our labeling process, we have created an explanatory video demonstrating the methodology using microscopy images of E. coli bacteria as an example.
comment: Code: https://github.com/ml-lab-htw/iterative-annotate Video: https://www.youtube.com/watch?v=CM9uhE8NN5E
♻ ☆ Not Just Object, But State: Compositional Incremental Learning without Forgetting NeurIPS 2024
Most incremental learners excessively prioritize coarse classes of objects while neglecting various kinds of states (e.g. color and material) attached to the objects. As a result, they are limited in the ability to reason fine-grained compositionality of state-object pairs. To remedy this limitation, we propose a novel task called Compositional Incremental Learning (composition-IL), enabling the model to recognize state-object compositions as a whole in an incremental learning fashion. Since the lack of suitable benchmarks, we re-organize two existing datasets and make them tailored for composition-IL. Then, we propose a prompt-based Composition Incremental Learner (CompILer), to overcome the ambiguous composition boundary problem which challenges composition-IL largely. Specifically, we exploit multi-pool prompt learning, which is regularized by inter-pool prompt discrepancy and intra-pool prompt diversity. Besides, we devise object-injected state prompting by using object prompts to guide the selection of state prompts. Furthermore, we fuse the selected prompts by a generalized-mean strategy, to eliminate irrelevant information learned in the prompts. Extensive experiments on two datasets exhibit state-of-the-art performance achieved by CompILer.
comment: NeurIPS 2024
♻ ☆ Event-boosted Deformable 3D Gaussians for Dynamic Scene Reconstruction
Deformable 3D Gaussian Splatting (3D-GS) is limited by missing intermediate motion information due to the low temporal resolution of RGB cameras. To address this, we introduce the first approach combining event cameras, which capture high-temporal-resolution, continuous motion data, with deformable 3D-GS for dynamic scene reconstruction. We observe that threshold modeling for events plays a crucial role in achieving high-quality reconstruction. Therefore, we propose a GS-Threshold Joint Modeling strategy, creating a mutually reinforcing process that greatly improves both 3D reconstruction and threshold modeling. Moreover, we introduce a Dynamic-Static Decomposition strategy that first identifies dynamic areas by exploiting the inability of static Gaussians to represent motions, then applies a buffer-based soft decomposition to separate dynamic and static areas. This strategy accelerates rendering by avoiding unnecessary deformation in static areas, and focuses on dynamic areas to enhance fidelity. Additionally, we contribute the first event-inclusive 4D benchmark with synthetic and real-world dynamic scenes, on which our method achieves state-of-the-art performance.
♻ ☆ MESA: Effective Matching Redundancy Reduction by Semantic Area Segmentation
We propose MESA and DMESA as novel feature matching methods, which utilize Segment Anything Model (SAM) to effectively mitigate matching redundancy. The key insight of our methods is to establish implicit-semantic area matching prior to point matching, based on advanced image understanding of SAM. Then, informative area matches with consistent internal semantic are able to undergo dense feature comparison, facilitating precise inside-area point matching. Specifically, MESA adopts a sparse matching framework and first obtains candidate areas from SAM results through a novel Area Graph (AG). Then, area matching among the candidates is formulated as graph energy minimization and solved by graphical models derived from AG. To address the efficiency issue of MESA, we further propose DMESA as its dense counterpart, applying a dense matching framework. After candidate areas are identified by AG, DMESA establishes area matches through generating dense matching distributions. The distributions are produced from off-the-shelf patch matching utilizing the Gaussian Mixture Model and refined via the Expectation Maximization. With less repetitive computation, DMESA showcases a speed improvement of nearly five times compared to MESA, while maintaining competitive accuracy. Our methods are extensively evaluated on five datasets encompassing indoor and outdoor scenes. The results illustrate consistent performance improvements from our methods for five distinct point matching baselines across all datasets. Furthermore, our methods exhibit promise generalization and improved robustness against image resolution variations. The code is publicly available at https://github.com/Easonyesheng/A2PM-MESA.
comment: 18pages+suppl
♻ ☆ ProReason: Multi-Modal Proactive Reasoning with Decoupled Eyesight and Wisdom
Large vision-language models (LVLMs) have witnessed significant progress on visual understanding tasks. However, they often prioritize language knowledge over image information on visual reasoning tasks, incurring performance degradation. To tackle this issue, we first identify the drawbacks of existing solutions (i.e., insufficient and irrelevant visual descriptions, and limited multi-modal capacities). We then decompose visual reasoning process into two stages: visual perception (i.e., eyesight) and textual reasoning (i.e., wisdom), and introduce a novel visual reasoning framework named ProReason. This framework features multi-run proactive perception and decoupled vision-reasoning capabilities. Briefly, given a multi-modal question, ProReason iterates proactive information collection and reasoning until the answer can be concluded with necessary and sufficient visual descriptions. Notably, the disassociation of capabilities allows seamless integration of existing large language models (LLMs) to compensate for the reasoning deficits of LVLMs. Our extensive experiments demonstrate that ProReason outperforms both existing multi-step reasoning frameworks and passive peer methods on a wide range of benchmarks for both open-source and closed-source models. In addition, with the assistance of LLMs, ProReason achieves a performance improvement of up to 15% on MMMU benchmark. Our insights into existing solutions and the decoupled perspective for feasible integration of LLMs illuminate future research on visual reasoning techniques, especially LLM-assisted ones.
♻ ☆ Image-to-Text for Medical Reports Using Adaptive Co-Attention and Triple-LSTM Module
Medical report generation requires specialized expertise that general large models often fail to accurately capture. Moreover, the inherent repetition and similarity in medical data make it difficult for models to extract meaningful features, resulting in a tendency to overfit. So in this paper, we propose a multimodal model, Co-Attention Triple-LSTM Network (CA-TriNet), a deep learning model that combines transformer architectures with a Multi-LSTM network. Its Co-Attention module synergistically links a vision transformer with a text transformer to better differentiate medical images with similarities, augmented by an adaptive weight operator to catch and amplify image labels with minor similarities. Furthermore, its Triple-LSTM module refines generated sentences using targeted image objects. Extensive evaluations over three public datasets have demonstrated that CA-TriNet outperforms state-of-the-art models in terms of comprehensive ability, even pre-trained large language models on some metrics.
♻ ☆ StyleStudio: Text-Driven Style Transfer with Selective Control of Style Elements CVPR 2025
Text-driven style transfer aims to merge the style of a reference image with content described by a text prompt. Recent advancements in text-to-image models have improved the nuance of style transformations, yet significant challenges remain, particularly with overfitting to reference styles, limiting stylistic control, and misaligning with textual content. In this paper, we propose three complementary strategies to address these issues. First, we introduce a cross-modal Adaptive Instance Normalization (AdaIN) mechanism for better integration of style and text features, enhancing alignment. Second, we develop a Style-based Classifier-Free Guidance (SCFG) approach that enables selective control over stylistic elements, reducing irrelevant influences. Finally, we incorporate a teacher model during early generation stages to stabilize spatial layouts and mitigate artifacts. Our extensive evaluations demonstrate significant improvements in style transfer quality and alignment with textual prompts. Furthermore, our approach can be integrated into existing style transfer frameworks without fine-tuning.
comment: Accepted by CVPR 2025
♻ ☆ OODFace: Benchmarking Robustness of Face Recognition under Common Corruptions and Appearance Variations
With the rise of deep learning, facial recognition technology has seen extensive research and rapid development. Although facial recognition is considered a mature technology, we find that existing open-source models and commercial algorithms lack robustness in certain complex Out-of-Distribution (OOD) scenarios, raising concerns about the reliability of these systems. In this paper, we introduce OODFace, which explores the OOD challenges faced by facial recognition models from two perspectives: common corruptions and appearance variations. We systematically design 30 OOD scenarios across 9 major categories tailored for facial recognition. By simulating these challenges on public datasets, we establish three robustness benchmarks: LFW-C/V, CFP-FP-C/V, and YTF-C/V. We then conduct extensive experiments on 19 facial recognition models and 3 commercial APIs, along with extended physical experiments on face masks to assess their robustness. Next, we explore potential solutions from two perspectives: defense strategies and Vision-Language Models (VLMs). Based on the results, we draw several key insights, highlighting the vulnerability of facial recognition systems to OOD data and suggesting possible solutions. Additionally, we offer a unified toolkit that includes all corruption and variation types, easily extendable to other datasets. We hope that our benchmarks and findings can provide guidance for future improvements in facial recognition model robustness.
♻ ☆ MouseGPT: A Large-scale Vision-Language Model for Mouse Behavior Analysis
Analyzing animal behavior is crucial in advancing neuroscience, yet quantifying and deciphering its intricate dynamics remains a significant challenge. Traditional machine vision approaches, despite their ability to detect spontaneous behaviors, fall short due to limited interpretability and reliance on manual labeling, which restricts the exploration of the full behavioral spectrum. Here, we introduce MouseGPT, a Vision-Language Model (VLM) that integrates visual cues with natural language to revolutionize mouse behavior analysis. Built upon our first-of-its-kind dataset - incorporating pose dynamics and open-vocabulary behavioral annotations across over 42 million frames of diverse psychiatric conditions - MouseGPT provides a novel, context-rich method for comprehensive behavior interpretation. Our holistic analysis framework enables detailed behavior profiling, clustering, and novel behavior discovery, offering deep insights without the need for labor - intensive manual annotation. Evaluations reveal that MouseGPT surpasses existing models in precision, adaptability, and descriptive richness, positioning it as a transformative tool for ethology and for unraveling complex behavioral dynamics in animal models.
comment: 53 pages, 5 figures, 7 extended figures
♻ ☆ DefectFill: Realistic Defect Generation with Inpainting Diffusion Model for Visual Inspection CVPR 2025
Developing effective visual inspection models remains challenging due to the scarcity of defect data. While image generation models have been used to synthesize defect images, producing highly realistic defects remains difficult. We propose DefectFill, a novel method for realistic defect generation that requires only a few reference defect images. It leverages a fine-tuned inpainting diffusion model, optimized with our custom loss functions incorporating defect, object, and attention terms. It enables precise capture of detailed, localized defect features and their seamless integration into defect-free objects. Additionally, our Low-Fidelity Selection method further enhances the defect sample quality. Experiments show that DefectFill generates high-quality defect images, enabling visual inspection models to achieve state-of-the-art performance on the MVTec AD dataset.
comment: Accepted to CVPR 2025
♻ ☆ MoReVQA: Exploring Modular Reasoning Models for Video Question Answering CVPR 2024
This paper addresses the task of video question answering (videoQA) via a decomposed multi-stage, modular reasoning framework. Previous modular methods have shown promise with a single planning stage ungrounded in visual content. However, through a simple and effective baseline, we find that such systems can lead to brittle behavior in practice for challenging videoQA settings. Thus, unlike traditional single-stage planning methods, we propose a multi-stage system consisting of an event parser, a grounding stage, and a final reasoning stage in conjunction with an external memory. All stages are training-free, and performed using few-shot prompting of large models, creating interpretable intermediate outputs at each stage. By decomposing the underlying planning and task complexity, our method, MoReVQA, improves over prior work on standard videoQA benchmarks (NExT-QA, iVQA, EgoSchema, ActivityNet-QA) with state-of-the-art results, and extensions to related tasks (grounded videoQA, paragraph captioning).
comment: CVPR 2024; updated NExT-GQA results in Appendix
♻ ☆ Frequency-Guided Diffusion Model with Perturbation Training for Skeleton-Based Video Anomaly Detection
Video anomaly detection (VAD) is a vital yet complex open-set task in computer vision, commonly tackled through reconstruction-based methods. However, these methods struggle with two key limitations: (1) insufficient robustness in open-set scenarios, where unseen normal motions are frequently misclassified as anomalies, and (2) an overemphasis on, but restricted capacity for, local motion reconstruction, which are inherently difficult to capture accurately due to their diversity. To overcome these challenges, we introduce a novel frequency-guided diffusion model with perturbation training. First, we enhance robustness by training a generator to produce perturbed samples, which are similar to normal samples and target the weakness of the reconstruction model. This training paradigm expands the reconstruction domain of the model, improving its generalization to unseen normal motions. Second, to address the overemphasis on motion details, we employ the 2D Discrete Cosine Transform (DCT) to separate high-frequency (local) and low-frequency (global) motion components. By guiding the diffusion model with observed high-frequency information, we prioritize the reconstruction of low-frequency components, enabling more accurate and robust anomaly detection. Extensive experiments on five widely used VAD datasets demonstrate that our approach surpasses state-of-the-art methods, underscoring its effectiveness in open-set scenarios and diverse motion contexts. Our project website is https://xiaofeng-tan.github.io/projects/FG-Diff/index.html.
♻ ☆ MotionDiff: Training-free Zero-shot Interactive Motion Editing via Flow-assisted Multi-view Diffusion
Generative models have made remarkable advancements and are capable of producing high-quality content. However, performing controllable editing with generative models remains challenging, due to their inherent uncertainty in outputs. This challenge is praticularly pronounced in motion editing, which involves the processing of spatial information. While some physics-based generative methods have attempted to implement motion editing, they typically operate on single-view images with simple motions, such as translation and dragging. These methods struggle to handle complex rotation and stretching motions and ensure multi-view consistency, often necessitating resource-intensive retraining. To address these challenges, we propose MotionDiff, a training-free zero-shot diffusion method that leverages optical flow for complex multi-view motion editing. Specifically, given a static scene, users can interactively select objects of interest to add motion priors. The proposed Point Kinematic Model (PKM) then estimates corresponding multi-view optical flows during the Multi-view Flow Estimation Stage (MFES). Subsequently, these optical flows are utilized to generate multi-view motion results through decoupled motion representation in the Multi-view Motion Diffusion Stage (MMDS). Extensive experiments demonstrate that MotionDiff outperforms other physics-based generative motion editing methods in achieving high-quality multi-view consistent motion results. Notably, MotionDiff does not require retraining, enabling users to conveniently adapt it for various down-stream tasks.
♻ ☆ SMAFormer: Synergistic Multi-Attention Transformer for Medical Image Segmentation
In medical image segmentation, specialized computer vision techniques, notably transformers grounded in attention mechanisms and residual networks employing skip connections, have been instrumental in advancing performance. Nonetheless, previous models often falter when segmenting small, irregularly shaped tumors. To this end, we introduce SMAFormer, an efficient, Transformer-based architecture that fuses multiple attention mechanisms for enhanced segmentation of small tumors and organs. SMAFormer can capture both local and global features for medical image segmentation. The architecture comprises two pivotal components. First, a Synergistic Multi-Attention (SMA) Transformer block is proposed, which has the benefits of Pixel Attention, Channel Attention, and Spatial Attention for feature enrichment. Second, addressing the challenge of information loss incurred during attention mechanism transitions and feature fusion, we design a Feature Fusion Modulator. This module bolsters the integration between the channel and spatial attention by mitigating reshaping-induced information attrition. To evaluate our method, we conduct extensive experiments on various medical image segmentation tasks, including multi-organ, liver tumor, and bladder tumor segmentation, achieving state-of-the-art results. Code and models are available at: https://github.com/CXH-Research/SMAFormer.
comment: Accepted by IEEE BIBM 2024
♻ ☆ Survey on Monocular Metric Depth Estimation
Monocular Depth Estimation (MDE) is fundamental to computer vision, enabling spatial understanding, 3D reconstruction, and autonomous driving. Deep learning-based MDE predicts relative depth from a single image, but the lack of metric scale introduces inconsistencies, limiting applicability in tasks such as visual SLAM, 3D reconstruction, and novel view synthesis. Monocular Metric Depth Estimation (MMDE) overcomes this limitation by enabling precise scene-scale inference, improving depth consistency, enhancing stability in sequential tasks, and streamlining integration into practical systems. This paper systematically reviews the evolution of depth estimation, from traditional geometric methods to deep learning breakthroughs, emphasizing scale-agnostic approaches in zero-shot generalization which is crucial for advancing MMDE. Recent progress in zero-shot MMDE is examined, focusing on challenges such as model generalization and boundary detail loss. To address these issues, researchers have explored unlabeled data augmentation, image patching, architectural optimization, and generative techniques. This review analyzes these developments, assessing their impact and limitations. Key findings are synthesized, unresolved challenges outlined, and future research direction proposal. By providing a clear technical roadmap and insight into emerging trends, this work aims to drive innovation and expand the real-world applications of MMDE.
♻ ☆ Towards Better Alignment: Training Diffusion Models with Reinforcement Learning Against Sparse Rewards CVPR 2025
Diffusion models have achieved remarkable success in text-to-image generation. However, their practical applications are hindered by the misalignment between generated images and corresponding text prompts. To tackle this issue, reinforcement learning (RL) has been considered for diffusion model fine-tuning. Yet, RL's effectiveness is limited by the challenge of sparse reward, where feedback is only available at the end of the generation process. This makes it difficult to identify which actions during the denoising process contribute positively to the final generated image, potentially leading to ineffective or unnecessary denoising policies. To this end, this paper presents a novel RL-based framework that addresses the sparse reward problem when training diffusion models. Our framework, named $\text{B}^2\text{-DiffuRL}$, employs two strategies: \textbf{B}ackward progressive training and \textbf{B}ranch-based sampling. For one thing, backward progressive training focuses initially on the final timesteps of denoising process and gradually extends the training interval to earlier timesteps, easing the learning difficulty from sparse rewards. For another, we perform branch-based sampling for each training interval. By comparing the samples within the same branch, we can identify how much the policies of the current training interval contribute to the final image, which helps to learn effective policies instead of unnecessary ones. $\text{B}^2\text{-DiffuRL}$ is compatible with existing optimization algorithms. Extensive experiments demonstrate the effectiveness of $\text{B}^2\text{-DiffuRL}$ in improving prompt-image alignment and maintaining diversity in generated images. The code for this work is available.
comment: Accepted to CVPR 2025, add references
♻ ☆ VERA: Explainable Video Anomaly Detection via Verbalized Learning of Vision-Language Models CVPR 2025
The rapid advancement of vision-language models (VLMs) has established a new paradigm in video anomaly detection (VAD): leveraging VLMs to simultaneously detect anomalies and provide comprehendible explanations for the decisions. Existing work in this direction often assumes the complex reasoning required for VAD exceeds the capabilities of pretrained VLMs. Consequently, these approaches either incorporate specialized reasoning modules during inference or rely on instruction tuning datasets through additional training to adapt VLMs for VAD. However, such strategies often incur substantial computational costs or data annotation overhead. To address these challenges in explainable VAD, we introduce a verbalized learning framework named VERA that enables VLMs to perform VAD without model parameter modifications. Specifically, VERA automatically decomposes the complex reasoning required for VAD into reflections on simpler, more focused guiding questions capturing distinct abnormal patterns. It treats these reflective questions as learnable parameters and optimizes them through data-driven verbal interactions between learner and optimizer VLMs, using coarsely labeled training data. During inference, VERA embeds the learned questions into model prompts to guide VLMs in generating segment-level anomaly scores, which are then refined into frame-level scores via the fusion of scene and temporal contexts. Experimental results on challenging benchmarks demonstrate that the learned questions of VERA are highly adaptable, significantly improving both detection performance and explainability of VLMs for VAD.
comment: Accepted in CVPR 2025
♻ ☆ SyncDiff: Synchronized Motion Diffusion for Multi-Body Human-Object Interaction Synthesis
Synthesizing realistic human-object interaction motions is a critical problem in VR/AR and human animation. Unlike the commonly studied scenarios involving a single human or hand interacting with one object, we address a more generic multi-body setting with arbitrary numbers of humans, hands, and objects. This complexity introduces significant challenges in synchronizing motions due to the high correlations and mutual influences among bodies. To address these challenges, we introduce SyncDiff, a novel method for multi-body interaction synthesis using a synchronized motion diffusion strategy. SyncDiff employs a single diffusion model to capture the joint distribution of multi-body motions. To enhance motion fidelity, we propose a frequency-domain motion decomposition scheme. Additionally, we introduce a new set of alignment scores to emphasize the synchronization of different body motions. SyncDiff jointly optimizes both data sample likelihood and alignment likelihood through an explicit synchronization strategy. Extensive experiments across four datasets with various multi-body configurations demonstrate the superiority of SyncDiff over existing state-of-the-art motion synthesis methods.
comment: 26 pages, 10 figures
♻ ☆ RatBodyFormer: Rat Body Surface from Keypoints
Analyzing rat behavior lies at the heart of many scientific studies. Past methods for automated rodent modeling have focused on 3D pose estimation from keypoints, e.g., face and appendages. The pose, however, does not capture the rich body surface movement encoding the subtle rat behaviors like curling and stretching. The body surface lacks features that can be visually defined, evading these established keypoint-based methods. In this paper, we introduce the first method for reconstructing the rat body surface as a dense set of points by learning to predict it from the sparse keypoints that can be detected with past methods. Our method consists of two key contributions. The first is RatDome, a novel multi-camera system for rat behavior capture, and a large-scale dataset captured with it that consists of pairs of 3D keypoints and 3D body surface points. The second is RatBodyFormer, a novel network to transform detected keypoints to 3D body surface points. RatBodyFormer is agnostic to the exact locations of the 3D body surface points in the training data and is trained with masked-learning. We experimentally validate our framework with a number of real-world experiments. Our results collectively serve as a novel foundation for automated rat behavior analysis.
comment: https://vision.ist.i.kyoto-u.ac.jp/research/ratbodyformer/
♻ ☆ Towards Complementary Knowledge Distillation for Efficient Dense Image Prediction
It has been revealed that small efficient dense image prediction (EDIP) models, trained using the knowledge distillation (KD) framework, encounter two key challenges, including maintaining boundary region completeness and preserving target region connectivity, despite their favorable capacity to recognize main object regions. In this work, we propose a complementary boundary and context distillation (BCD) method within the KD framework for EDIPs, which facilitates the targeted knowledge transfer from large accurate teacher models to compact efficient student models. Specifically, the boundary distillation component focuses on extracting explicit object-level semantic boundaries from the hierarchical feature maps of the backbone network to enhance the student model's mask quality in boundary regions. Concurrently, the context distillation component leverages self-relations as a bridge to transfer implicit pixel-level contexts from the teacher model to the student model, ensuring strong connectivity in target regions. Our proposed BCD method is specifically designed for EDIP tasks and is characterized by its simplicity and efficiency. Extensive experimental results across semantic segmentation, object detection, and instance segmentation on various representative datasets demonstrate that our method can outperform existing methods without requiring extra supervisions or incurring increased inference costs, resulting in well-defined object boundaries and smooth connecting regions.
comment: under submission
♻ ☆ SplatFlow: Self-Supervised Dynamic Gaussian Splatting in Neural Motion Flow Field for Autonomous Driving
Most existing Dynamic Gaussian Splatting methods for complex dynamic urban scenarios rely on accurate object-level supervision from expensive manual labeling, limiting their scalability in real-world applications. In this paper, we introduce SplatFlow, a Self-Supervised Dynamic Gaussian Splatting within Neural Motion Flow Fields (NMFF) to learn 4D space-time representations without requiring tracked 3D bounding boxes, enabling accurate dynamic scene reconstruction and novel view RGB/depth/flow synthesis. SplatFlow designs a unified framework to seamlessly integrate time-dependent 4D Gaussian representation within NMFF, where NMFF is a set of implicit functions to model temporal motions of both LiDAR points and Gaussians as continuous motion flow fields. Leveraging NMFF, SplatFlow effectively decomposes static background and dynamic objects, representing them with 3D and 4D Gaussian primitives, respectively. NMFF also models the correspondences of each 4D Gaussian across time, which aggregates temporal features to enhance cross-view consistency of dynamic components. SplatFlow further improves dynamic object identification by distilling features from 2D foundation models into 4D space-time representation. Comprehensive evaluations conducted on the Waymo and KITTI Datasets validate SplatFlow's state-of-the-art (SOTA) performance for both image reconstruction and novel view synthesis in dynamic urban scenarios.
♻ ☆ GCA-SUNet: A Gated Context-Aware Swin-UNet for Exemplar-Free Counting ICME 2025
Exemplar-Free Counting aims to count objects of interest without intensive annotations of objects or exemplars. To achieve this, we propose a Gated Context-Aware Swin-UNet (GCA-SUNet) to directly map an input image to the density map of countable objects. Specifically, a set of Swin transformers form an encoder to derive a robust feature representation, and a Gated Context-Aware Modulation block is designed to suppress irrelevant objects or background through a gate mechanism and exploit the attentive support of objects of interest through a self-similarity matrix. The gate strategy is also incorporated into the bottleneck network and the decoder of the Swin-UNet to highlight the features most relevant to objects of interest. By explicitly exploiting the attentive support among countable objects and eliminating irrelevant features through the gate mechanisms, the proposed GCA-SUNet focuses on and counts objects of interest without relying on predefined categories or exemplars. Experimental results on the real-world datasets such as FSC-147 and CARPK demonstrate that GCA-SUNet significantly and consistently outperforms state-of-the-art methods. The code is available at https://github.com/Amordia/GCA-SUNet.
comment: Accepted by ICME 2025
♻ ☆ VideoHandles: Editing 3D Object Compositions in Videos Using Video Generative Priors
Generative methods for image and video editing use generative models as priors to perform edits despite incomplete information, such as changing the composition of 3D objects shown in a single image. Recent methods have shown promising composition editing results in the image setting, but in the video setting, editing methods have focused on editing object's appearance and motion, or camera motion, and as a result, methods to edit object composition in videos are still missing. We propose \name as a method for editing 3D object compositions in videos of static scenes with camera motion. Our approach allows editing the 3D position of a 3D object across all frames of a video in a temporally consistent manner. This is achieved by lifting intermediate features of a generative model to a 3D reconstruction that is shared between all frames, editing the reconstruction, and projecting the features on the edited reconstruction back to each frame. To the best of our knowledge, this is the first generative approach to edit object compositions in videos. Our approach is simple and training-free, while outperforming state-of-the-art image editing baselines.
comment: Project page: https://videohandles.github.io
♻ ☆ MMMORRF: Multimodal Multilingual Modularized Reciprocal Rank Fusion
Videos inherently contain multiple modalities, including visual events, text overlays, sounds, and speech, all of which are important for retrieval. However, state-of-the-art multimodal language models like VAST and LanguageBind are built on vision-language models (VLMs), and thus overly prioritize visual signals. Retrieval benchmarks further reinforce this bias by focusing on visual queries and neglecting other modalities. We create a search system MMMORRF that extracts text and features from both visual and audio modalities and integrates them with a novel modality-aware weighted reciprocal rank fusion. MMMORRF is both effective and efficient, demonstrating practicality in searching videos based on users' information needs instead of visual descriptive queries. We evaluate MMMORRF on MultiVENT 2.0 and TVR, two multimodal benchmarks designed for more targeted information needs, and find that it improves nDCG@20 by 81% over leading multimodal encoders and 37% over single-modality retrieval, demonstrating the value of integrating diverse modalities.
♻ ☆ ReWind: Understanding Long Videos with Instructed Learnable Memory
Vision-Language Models (VLMs) are crucial for applications requiring integrated understanding textual and visual information. However, existing VLMs struggle with long videos due to computational inefficiency, memory limitations, and difficulties in maintaining coherent understanding across extended sequences. To address these challenges, we introduce ReWind, a novel memory-based VLM designed for efficient long video understanding while preserving temporal fidelity. ReWind operates in a two-stage framework. In the first stage, ReWind maintains a dynamic learnable memory module with a novel \textbf{read-perceive-write} cycle that stores and updates instruction-relevant visual information as the video unfolds. This module utilizes learnable queries and cross-attentions between memory contents and the input stream, ensuring low memory requirements by scaling linearly with the number of tokens. In the second stage, we propose an adaptive frame selection mechanism guided by the memory content to identify instruction-relevant key moments. It enriches the memory representations with detailed spatial information by selecting a few high-resolution frames, which are then combined with the memory contents and fed into a Large Language Model (LLM) to generate the final answer. We empirically demonstrate ReWind's superior performance in visual question answering (VQA) and temporal grounding tasks, surpassing previous methods on long video benchmarks. Notably, ReWind achieves a +13\% score gain and a +12\% accuracy improvement on the MovieChat-1K VQA dataset and an +8\% mIoU increase on Charades-STA for temporal grounding.
♻ ☆ LAGUNA: LAnguage Guided UNsupervised Adaptation with structured spaces
Unsupervised domain adaptation remains a critical challenge in enabling the knowledge transfer of models across unseen domains. Existing methods struggle to balance the need for domain-invariant representations with preserving domain-specific features, which is often due to alignment approaches that impose the projection of samples with similar semantics close in the latent space despite their drastic domain differences. We introduce LAGUNA - LAnguage Guided UNsupervised Adaptation with structured spaces, a novel approach that shifts the focus from aligning representations in absolute coordinates to aligning the relative positioning of equivalent concepts in latent spaces. LAGUNA defines a domain-agnostic structure upon the semantic/geometric relationships between class labels in language space and guides adaptation, ensuring that the organization of samples in visual space reflects reference inter-class relationships while preserving domain-specific characteristics. We empirically demonstrate LAGUNA's superiority in domain adaptation tasks across four diverse images and video datasets. Remarkably, LAGUNA surpasses previous works in 18 different adaptation scenarios across four diverse image and video datasets with average accuracy improvements of +3.32% on DomainNet, +5.75% in GeoPlaces, +4.77% on GeoImnet, and +1.94% mean class accuracy improvement on EgoExo4D.
♻ ☆ GlaLSTM: A Concurrent LSTM Stream Framework for Glaucoma Detection via Biomarker Mining
Glaucoma is a complex group of eye diseases marked by optic nerve damage, commonly linked to elevated intraocular pressure and biomarkers like retinal nerve fiber layer thickness. Understanding how these biomarkers interact is crucial for unraveling glaucoma's underlying mechanisms. In this paper, we propose GlaLSTM, a novel concurrent LSTM stream framework for glaucoma detection, leveraging latent biomarker relationships. Unlike traditional CNN-based models that primarily detect glaucoma from images, GlaLSTM provides deeper interpretability, revealing the key contributing factors and enhancing model transparency. This approach not only improves detection accuracy but also empowers clinicians with actionable insights, facilitating more informed decision-making. Experimental evaluations confirm that GlaLSTM surpasses existing state-of-the-art methods, demonstrating its potential for both advanced biomarker analysis and reliable glaucoma detection.
♻ ☆ Motion Prompting: Controlling Video Generation with Motion Trajectories CVPR 2025
Motion control is crucial for generating expressive and compelling video content; however, most existing video generation models rely mainly on text prompts for control, which struggle to capture the nuances of dynamic actions and temporal compositions. To this end, we train a video generation model conditioned on spatio-temporally sparse or dense motion trajectories. In contrast to prior motion conditioning work, this flexible representation can encode any number of trajectories, object-specific or global scene motion, and temporally sparse motion; due to its flexibility we refer to this conditioning as motion prompts. While users may directly specify sparse trajectories, we also show how to translate high-level user requests into detailed, semi-dense motion prompts, a process we term motion prompt expansion. We demonstrate the versatility of our approach through various applications, including camera and object motion control, "interacting" with an image, motion transfer, and image editing. Our results showcase emergent behaviors, such as realistic physics, suggesting the potential of motion prompts for probing video models and interacting with future generative world models. Finally, we evaluate quantitatively, conduct a human study, and demonstrate strong performance. Video results are available on our webpage: https://motion-prompting.github.io/
comment: CVPR 2025 camera ready. Project page: https://motion-prompting.github.io/
♻ ☆ VidBot: Learning Generalizable 3D Actions from In-the-Wild 2D Human Videos for Zero-Shot Robotic Manipulation CVPR 2025
Future robots are envisioned as versatile systems capable of performing a variety of household tasks. The big question remains, how can we bridge the embodiment gap while minimizing physical robot learning, which fundamentally does not scale well. We argue that learning from in-the-wild human videos offers a promising solution for robotic manipulation tasks, as vast amounts of relevant data already exist on the internet. In this work, we present VidBot, a framework enabling zero-shot robotic manipulation using learned 3D affordance from in-the-wild monocular RGB-only human videos. VidBot leverages a pipeline to extract explicit representations from them, namely 3D hand trajectories from videos, combining a depth foundation model with structure-from-motion techniques to reconstruct temporally consistent, metric-scale 3D affordance representations agnostic to embodiments. We introduce a coarse-to-fine affordance learning model that first identifies coarse actions from the pixel space and then generates fine-grained interaction trajectories with a diffusion model, conditioned on coarse actions and guided by test-time constraints for context-aware interaction planning, enabling substantial generalization to novel scenes and embodiments. Extensive experiments demonstrate the efficacy of VidBot, which significantly outperforms counterparts across 13 manipulation tasks in zero-shot settings and can be seamlessly deployed across robot systems in real-world environments. VidBot paves the way for leveraging everyday human videos to make robot learning more scalable.
comment: Accepted to CVPR 2025
♻ ☆ Approximate Nullspace Augmented Finetuning for Robust Vision Transformers
Enhancing the robustness of deep learning models, particularly in the realm of vision transformers (ViTs), is crucial for their real-world deployment. In this work, we provide a finetuning approach to enhance the robustness of vision transformers inspired by the concept of nullspace from linear algebra. Our investigation centers on whether a vision transformer can exhibit resilience to input variations akin to the nullspace property in linear mappings, which would imply that perturbations sampled from this nullspace do not influence the model's output when added to the input. We start from the observation that many existing ViTs satisfy this property because their patch embedding layer has a non-trivial nullspace. Then, we extend the notion of nullspace to nonlinear settings and demonstrate that it is possible to synthesize approximate nullspace elements for ViT's encoder blocks through optimization. Finally, we propose a finetuning strategy for ViTs wherein we augment the training data with synthesized approximate nullspace noise. We find that our finetuning approach significantly improves the models' robustness to both adversarial and natural image perturbations.\footnote{Code is available at: https://github.com/Liu-Hy/ns-vit.
comment: CPAL 2025, Oral
♻ ☆ Unleashing the Potential of Large Language Models for Text-to-Image Generation through Autoregressive Representation Alignment
We present Autoregressive Representation Alignment (ARRA), a new training framework that unlocks global-coherent text-to-image generation in autoregressive LLMs without architectural changes. Unlike prior work that requires complex architectural redesigns, ARRA aligns LLM hidden states with visual representations from external visual foundational models via a global visual alignment loss and a hybrid token, . This token enforces dual constraints: local next-token prediction and global semantic distillation, enabling LLMs to implicitly learn spatial and contextual coherence while retaining their original autoregressive paradigm. Extensive experiments validate ARRA's plug-and-play versatility. When training from text-generation-only LLMs or random initialization, ARRA reduces FID by 25.5% (MIMIC-CXR), 8.8% (DeepEyeNet), and 7.5% (ImageNet) for advanced autoregressive LLMs like Chameleon and LlamaGen, all without framework modifications. For domain adaption, ARRA aligns general-purpose LLMs with specialized models (e.g., BioMedCLIP), achieving an 18.6% FID reduction over direct fine-tuning on medical imaging (MIMIC-CXR). By demonstrating that training objective redesign -- not just architectural innovation -- can resolve cross-modal global coherence challenges, ARRA offers a complementary paradigm for advancing autoregressive models. Code and models will be released to advance autoregressive image generation.
♻ ☆ Geometry Field Splatting with Gaussian Surfels
Geometric reconstruction of opaque surfaces from images is a longstanding challenge in computer vision, with renewed interest from volumetric view synthesis algorithms using radiance fields. We leverage the geometry field proposed in recent work for stochastic opaque surfaces, which can then be converted to volume densities. We adapt Gaussian kernels or surfels to splat the geometry field rather than the volume, enabling precise reconstruction of opaque solids. Our first contribution is to derive an efficient and almost exact differentiable rendering algorithm for geometry fields parameterized by Gaussian surfels, while removing current approximations involving Taylor series and no self-attenuation. Next, we address the discontinuous loss landscape when surfels cluster near geometry, showing how to guarantee that the rendered color is a continuous function of the colors of the kernels, irrespective of ordering. Finally, we use latent representations with spherical harmonics encoded reflection vectors rather than spherical harmonics encoded colors to better address specular surfaces. We demonstrate significant improvement in the quality of reconstructed 3D surfaces on widely-used datasets.
♻ ☆ Autoassociative Learning of Structural Representations for Modeling and Classification in Medical Imaging
Deep learning architectures based on convolutional neural networks tend to rely on continuous, smooth features. While this characteristics provides significant robustness and proves useful in many real-world tasks, it is strikingly incompatible with the physical characteristic of the world, which, at the scale in which humans operate, comprises crisp objects, typically representing well-defined categories. This study proposes a class of neurosymbolic systems that learn by reconstructing images in terms of visual primitives and are thus forced to form high-level, structural explanations of them. When applied to the task of diagnosing abnormalities in histological imaging, the method proved superior to a conventional deep learning architecture in terms of classification accuracy, while being more transparent.
comment: 15 pages, 9 figures
♻ ☆ DOF-GS: Adjustable Depth-of-Field 3D Gaussian Splatting for Post-Capture Refocusing, Defocus Rendering and Blur Removal
3D Gaussian Splatting (3DGS) techniques have recently enabled high-quality 3D scene reconstruction and real-time novel view synthesis. These approaches, however, are limited by the pinhole camera model and lack effective modeling of defocus effects. Departing from this, we introduce DOF-GS--a new 3DGS-based framework with a finite-aperture camera model and explicit, differentiable defocus rendering, enabling it to function as a post-capture control tool. By training with multi-view images with moderate defocus blur, DOF-GS learns inherent camera characteristics and reconstructs sharp details of the underlying scene, particularly, enabling rendering of varying DOF effects through on-demand aperture and focal distance control, post-capture and optimization. Additionally, our framework extracts circle-of-confusion cues during optimization to identify in-focus regions in input views, enhancing the reconstructed 3D scene details. Experimental results demonstrate that DOF-GS supports post-capture refocusing, adjustable defocus and high-quality all-in-focus rendering, from multi-view images with uncalibrated defocus blur.
♻ ☆ Accelerate High-Quality Diffusion Models with Inner Loop Feedback
We propose Inner Loop Feedback (ILF), a novel approach to accelerate diffusion models' inference. ILF trains a lightweight module to predict future features in the denoising process by leveraging the outputs from a chosen diffusion backbone block at a given time step. This approach exploits two key intuitions; (1) the outputs of a given block at adjacent time steps are similar, and (2) performing partial computations for a step imposes a lower burden on the model than skipping the step entirely. Our method is highly flexible, since we find that the feedback module itself can simply be a block from the diffusion backbone, with all settings copied. Its influence on the diffusion forward can be tempered with a learnable scaling factor from zero initialization. We train this module using distillation losses; however, unlike some prior work where a full diffusion backbone serves as the student, our model freezes the backbone, training only the feedback module. While many efforts to optimize diffusion models focus on achieving acceptable image quality in extremely few steps (1-4 steps), our emphasis is on matching best case results (typically achieved in 20 steps) while significantly reducing runtime. ILF achieves this balance effectively, demonstrating strong performance for both class-to-image generation with diffusion transformer (DiT) and text-to-image generation with DiT-based PixArt-alpha and PixArt-sigma. The quality of ILF's 1.7x-1.8x speedups are confirmed by FID, CLIP score, CLIP Image Quality Assessment, ImageReward, and qualitative comparisons. Project information is available at https://mgwillia.github.io/ilf.
comment: submission currently under review; 20 pages, 17 figures, 6 tables
♻ ☆ Multimodal Object Detection using Depth and Image Data for Manufacturing Parts
Manufacturing requires reliable object detection methods for precise picking and handling of diverse types of manufacturing parts and components. Traditional object detection methods utilize either only 2D images from cameras or 3D data from lidars or similar 3D sensors. However, each of these sensors have weaknesses and limitations. Cameras do not have depth perception and 3D sensors typically do not carry color information. These weaknesses can undermine the reliability and robustness of industrial manufacturing systems. To address these challenges, this work proposes a multi-sensor system combining an red-green-blue (RGB) camera and a 3D point cloud sensor. The two sensors are calibrated for precise alignment of the multimodal data captured from the two hardware devices. A novel multimodal object detection method is developed to process both RGB and depth data. This object detector is based on the Faster R-CNN baseline that was originally designed to process only camera images. The results show that the multimodal model significantly outperforms the depth-only and RGB-only baselines on established object detection metrics. More specifically, the multimodal model improves mAP by 13% and raises Mean Precision by 11.8% in comparison to the RGB-only baseline. Compared to the depth-only baseline, it improves mAP by 78% and raises Mean Precision by 57%. Hence, this method facilitates more reliable and robust object detection in service to smart manufacturing applications.
Machine Learning 185
☆ Test-Time Visual In-Context Tuning CVPR 2025
Visual in-context learning (VICL), as a new paradigm in computer vision, allows the model to rapidly adapt to various tasks with only a handful of prompts and examples. While effective, the existing VICL paradigm exhibits poor generalizability under distribution shifts. In this work, we propose test-time Visual In-Context Tuning (VICT), a method that can adapt VICL models on the fly with a single test sample. Specifically, we flip the role between the task prompts and the test sample and use a cycle consistency loss to reconstruct the original task prompt output. Our key insight is that a model should be aware of a new test distribution if it can successfully recover the original task prompts. Extensive experiments on six representative vision tasks ranging from high-level visual understanding to low-level image processing, with 15 common corruptions, demonstrate that our VICT can improve the generalizability of VICL to unseen new domains. In addition, we show the potential of applying VICT for unseen tasks at test time. Code: https://github.com/Jiahao000/VICT.
comment: CVPR 2025. Code: https://github.com/Jiahao000/VICT
☆ StyleMotif: Multi-Modal Motion Stylization using Style-Content Cross Fusion
We present StyleMotif, a novel Stylized Motion Latent Diffusion model, generating motion conditioned on both content and style from multiple modalities. Unlike existing approaches that either focus on generating diverse motion content or transferring style from sequences, StyleMotif seamlessly synthesizes motion across a wide range of content while incorporating stylistic cues from multi-modal inputs, including motion, text, image, video, and audio. To achieve this, we introduce a style-content cross fusion mechanism and align a style encoder with a pre-trained multi-modal model, ensuring that the generated motion accurately captures the reference style while preserving realism. Extensive experiments demonstrate that our framework surpasses existing methods in stylized motion generation and exhibits emergent capabilities for multi-modal motion stylization, enabling more nuanced motion synthesis. Source code and pre-trained models will be released upon acceptance. Project Page: https://stylemotif.github.io
comment: Project Page: https://stylemotif.github.io
☆ Uni4D: Unifying Visual Foundation Models for 4D Modeling from a Single Video CVPR 2025
This paper presents a unified approach to understanding dynamic scenes from casual videos. Large pretrained vision foundation models, such as vision-language, video depth prediction, motion tracking, and segmentation models, offer promising capabilities. However, training a single model for comprehensive 4D understanding remains challenging. We introduce Uni4D, a multi-stage optimization framework that harnesses multiple pretrained models to advance dynamic 3D modeling, including static/dynamic reconstruction, camera pose estimation, and dense 3D motion tracking. Our results show state-of-the-art performance in dynamic 4D modeling with superior visual quality. Notably, Uni4D requires no retraining or fine-tuning, highlighting the effectiveness of repurposing visual foundation models for 4D understanding.
comment: CVPR 2025. Project page (with code): https://davidyao99.github.io/uni4d
☆ Fwd2Bot: LVLM Visual Token Compression with Double Forward Bottleneck
In this work, we aim to compress the vision tokens of a Large Vision Language Model (LVLM) into a representation that is simultaneously suitable for (a) generative and (b) discriminative tasks, (c) is nearly lossless, and (d) is storage-efficient. We propose a novel compression approach, called Fwd2Bot, that uses the LVLM itself to compress the visual information in a task-agnostic manner. At the core of Fwd2bot there exists a "double-forward pass" training strategy, whereby, during the first forward pass, the LLM (of the LVLM) creates a bottleneck by condensing the visual information into a small number of summary tokens. Then, using the same LLM, the second forward pass processes the language instruction(s) alongside the summary tokens, used as a direct replacement for the image ones. The training signal is provided by two losses: an autoregressive one applied after the second pass that provides a direct optimization objective for compression, and a contrastive loss, applied after the first pass, that further boosts the representation strength, especially for discriminative tasks. The training is further enhanced by stage-specific adapters. We accompany the proposed method by an in-depth ablation study. Overall, Fwd2Bot results in highly-informative compressed representations suitable for both generative and discriminative tasks. For generative tasks, we offer a 2x higher compression rate without compromising the generative capabilities, setting a new state-of-the-art result. For discriminative tasks, we set a new state-of-the-art on image retrieval and compositionality.
☆ A Unified Framework for Diffusion Bridge Problems: Flow Matching and Schrödinger Matching into One
The bridge problem is to find an SDE (or sometimes an ODE) that bridges two given distributions. The application areas of the bridge problem are enormous, among which the recent generative modeling (e.g., conditional or unconditional image generation) is the most popular. Also the famous Schr\"{o}dinger bridge problem, a widely known problem for a century, is a special instance of the bridge problem. Two most popular algorithms to tackle the bridge problems in the deep learning era are: (conditional) flow matching and iterative fitting algorithms, where the former confined to ODE solutions, and the latter specifically for the Schr\"{o}dinger bridge problem. The main contribution of this article is in two folds: i) We provide concise reviews of these algorithms with technical details to some extent; ii) We propose a novel unified perspective and framework that subsumes these seemingly unrelated algorithms (and their variants) into one. In particular, we show that our unified framework can instantiate the Flow Matching (FM) algorithm, the (mini-batch) optimal transport FM algorithm, the (mini-batch) Schr\"{o}dinger bridge FM algorithm, and the deep Schr\"{o}dinger bridge matching (DSBM) algorithm as its special cases. We believe that this unified framework will be useful for viewing the bridge problems in a more general and flexible perspective, and in turn can help researchers and practitioners to develop new bridge algorithms in their fields.
☆ CTRL-O: Language-Controllable Object-Centric Visual Representation Learning CVPR 2025
Object-centric representation learning aims to decompose visual scenes into fixed-size vectors called "slots" or "object files", where each slot captures a distinct object. Current state-of-the-art object-centric models have shown remarkable success in object discovery in diverse domains, including complex real-world scenes. However, these models suffer from a key limitation: they lack controllability. Specifically, current object-centric models learn representations based on their preconceived understanding of objects, without allowing user input to guide which objects are represented. Introducing controllability into object-centric models could unlock a range of useful capabilities, such as the ability to extract instance-specific representations from a scene. In this work, we propose a novel approach for user-directed control over slot representations by conditioning slots on language descriptions. The proposed ConTRoLlable Object-centric representation learning approach, which we term CTRL-O, achieves targeted object-language binding in complex real-world scenes without requiring mask supervision. Next, we apply these controllable slot representations on two downstream vision language tasks: text-to-image generation and visual question answering. The proposed approach enables instance-specific text-to-image generation and also achieves strong performance on visual question answering.
comment: Accepted at CVPR 2025
☆ Effective Skill Unlearning through Intervention and Abstention
Large language Models (LLMs) have demonstrated remarkable skills across various domains. Understanding the mechanisms behind their abilities and implementing controls over them is becoming increasingly important for developing better models. In this paper, we focus on skill unlearning in LLMs, specifically unlearning a particular skill while retaining their overall capabilities. We introduce two lightweight, training-free machine skill unlearning techniques for LLMs. First, we observe that the pre-activation distribution of neurons in each Feed-Forward Layer (FFL) differs when the model demonstrates different skills. Additionally, we find that queries triggering the same skill cluster within the FFL key space and can be separated from other queries using a hypercube. Based on these observations, we propose two lightweight, training-free skill unlearning methods via \textit{intervention} and \textit{abstention} respectively: \texttt{Neuron Adjust} and \texttt{Key Space Detection}. We evaluate our methods on unlearning math-solving, Python-coding, and comprehension skills across seven different languages. The results demonstrate their strong unlearning capabilities for the designated skills. Specifically, \texttt{Key Space Detection} achieves over 80\% relative performance drop on the forgetting skill and less than 10\% relative performance drop on other skills and the model's general knowledge (MMLU) for most unlearning tasks. Our code is available at https://github.com/Trustworthy-ML-Lab/effective_skill_unlearning
comment: Accepted to NAACL 2025 main conference
☆ Energy Minimization for Participatory Federated Learning in IoT Analyzed via Game Theory
The Internet of Things requires intelligent decision making in many scenarios. To this end, resources available at the individual nodes for sensing or computing, or both, can be leveraged. This results in approaches known as participatory sensing and federated learning, respectively. We investigate the simultaneous implementation of both, through a distributed approach based on empowering local nodes with game theoretic decision making. A global objective of energy minimization is combined with the individual node's optimization of local expenditure for sensing and transmitting data over multiple learning rounds. We present extensive evaluations of this technique, based on both a theoretical framework and experiments in a simulated network scenario with real data. Such a distributed approach can reach a desired level of accuracy for federated learning without a centralized supervision of the data collector. However, depending on the weight attributed to the local costs of the single node, it may also result in a significantly high Price of Anarchy (from 1.28 onwards). Thus, we argue for the need of incentive mechanisms, possibly based on Age of Information of the single nodes.
comment: 6 pages, 6 figures, 2 tables, conference
☆ Elementwise Layer Normalization
A recent paper proposed Dynamic Tanh (DyT) as a drop-in replacement for Layer Normalization. Although the method is empirically well-motivated and appealing from a practical point of view, it lacks a theoretical foundation. In this work, we derive DyT mathematically and show that a well-defined approximation is needed to do so. By dropping said approximation, an alternative element-wise transformation is obtained, which we call Elementwise Layer Normalization (ELN). We demonstrate that ELN resembles Layer Normalization more accurately than DyT does.
comment: 11 pages, 3 figures
☆ Learning to Represent Individual Differences for Choice Decision Making
Human decision making can be challenging to predict because decisions are affected by a number of complex factors. Adding to this complexity, decision-making processes can differ considerably between individuals, and methods aimed at predicting human decisions need to take individual differences into account. Behavioral science offers methods by which to measure individual differences (e.g., questionnaires, behavioral models), but these are often narrowed down to low dimensions and not tailored to specific prediction tasks. This paper investigates the use of representation learning to measure individual differences from behavioral experiment data. Representation learning offers a flexible approach to create individual embeddings from data that are both structured (e.g., demographic information) and unstructured (e.g., free text), where the flexibility provides more options for individual difference measures for personalization, e.g., free text responses may allow for open-ended questions that are less privacy-sensitive. In the current paper we use representation learning to characterize individual differences in human performance on an economic decision-making task. We demonstrate that models using representation learning to capture individual differences consistently improve decision predictions over models without representation learning, and even outperform well-known theory-based behavioral models used in these environments. Our results propose that representation learning offers a useful and flexible tool to capture individual differences.
comment: Published in IJCAI MRC 2022
☆ Molecular Quantum Transformer
The Transformer model, renowned for its powerful attention mechanism, has achieved state-of-the-art performance in various artificial intelligence tasks but faces challenges such as high computational cost and memory usage. Researchers are exploring quantum computing to enhance the Transformer's design, though it still shows limited success with classical data. With a growing focus on leveraging quantum machine learning for quantum data, particularly in quantum chemistry, we propose the Molecular Quantum Transformer (MQT) for modeling interactions in molecular quantum systems. By utilizing quantum circuits to implement the attention mechanism on the molecular configurations, MQT can efficiently calculate ground-state energies for all configurations. Numerical demonstrations show that in calculating ground-state energies for H_2, LiH, BeH_2, and H_4, MQT outperforms the classical Transformer, highlighting the promise of quantum effects in Transformer structures. Furthermore, its pretraining capability on diverse molecular data facilitates the efficient learning of new molecules, extending its applicability to complex molecular systems with minimal additional effort. Our method offers an alternative to existing quantum algorithms for estimating ground-state energies, opening new avenues in quantum chemistry and materials science.
comment: 13 pages, 8 figures
☆ A Comprehensive Benchmark for RNA 3D Structure-Function Modeling
The RNA structure-function relationship has recently garnered significant attention within the deep learning community, promising to grow in importance as nucleic acid structure models advance. However, the absence of standardized and accessible benchmarks for deep learning on RNA 3D structures has impeded the development of models for RNA functional characteristics. In this work, we introduce a set of seven benchmarking datasets for RNA structure-function prediction, designed to address this gap. Our library builds on the established Python library rnaglib, and offers easy data distribution and encoding, splitters and evaluation methods, providing a convenient all-in-one framework for comparing models. Datasets are implemented in a fully modular and reproducible manner, facilitating for community contributions and customization. Finally, we provide initial baseline results for all tasks using a graph neural network. Source code: https://github.com/cgoliver/rnaglib Documentation: https://rnaglib.org
☆ A tale of two goals: leveraging sequentiality in multi-goal scenarios
Several hierarchical reinforcement learning methods leverage planning to create a graph or sequences of intermediate goals, guiding a lower-level goal-conditioned (GC) policy to reach some final goals. The low-level policy is typically conditioned on the current goal, with the aim of reaching it as quickly as possible. However, this approach can fail when an intermediate goal can be reached in multiple ways, some of which may make it impossible to continue toward subsequent goals. To address this issue, we introduce two instances of Markov Decision Process (MDP) where the optimization objective favors policies that not only reach the current goal but also subsequent ones. In the first, the agent is conditioned on both the current and final goals, while in the second, it is conditioned on the next two goals in the sequence. We conduct a series of experiments on navigation and pole-balancing tasks in which sequences of intermediate goals are given. By evaluating policies trained with TD3+HER on both the standard GC-MDP and our proposed MDPs, we show that, in most cases, conditioning on the next two goals improves stability and sample efficiency over other approaches.
comment: 14 pages, 5 figures
☆ How do language models learn facts? Dynamics, curricula and hallucinations
Large language models accumulate vast knowledge during pre-training, yet the dynamics governing this acquisition remain poorly understood. This work investigates the learning dynamics of language models on a synthetic factual recall task, uncovering three key findings: First, language models learn in three phases, exhibiting a performance plateau before acquiring precise factual knowledge. Mechanistically, this plateau coincides with the formation of attention-based circuits that support recall. Second, the training data distribution significantly impacts learning dynamics, as imbalanced distributions lead to shorter plateaus. Finally, hallucinations emerge simultaneously with knowledge, and integrating new knowledge into the model through fine-tuning is challenging, as it quickly corrupts its existing parametric memories. Our results emphasize the importance of data distribution in knowledge acquisition and suggest novel data scheduling strategies to accelerate neural network training.
☆ Cognitive Science-Inspired Evaluation of Core Capabilities for Object Understanding in AI
One of the core components of our world models is 'intuitive physics' - an understanding of objects, space, and causality. This capability enables us to predict events, plan action and navigate environments, all of which rely on a composite sense of objecthood. Despite its importance, there is no single, unified account of objecthood, though multiple theoretical frameworks provide insights. In the first part of this paper, we present a comprehensive overview of the main theoretical frameworks in objecthood research - Gestalt psychology, enactive cognition, and developmental psychology - and identify the core capabilities each framework attributes to object understanding, as well as what functional roles they play in shaping world models in biological agents. Given the foundational role of objecthood in world modelling, understanding objecthood is also essential in AI. In the second part of the paper, we evaluate how current AI paradigms approach and test objecthood capabilities compared to those in cognitive science. We define an AI paradigm as a combination of how objecthood is conceptualised, the methods used for studying objecthood, the data utilised, and the evaluation techniques. We find that, whilst benchmarks can detect that AI systems model isolated aspects of objecthood, the benchmarks cannot detect when AI systems lack functional integration across these capabilities, not solving the objecthood challenge fully. Finally, we explore novel evaluation approaches that align with the integrated vision of objecthood outlined in this paper. These methods are promising candidates for advancing from isolated object capabilities toward general-purpose AI with genuine object understanding in real-world contexts.
☆ Model Assembly Learning with Heterogeneous Layer Weight Merging ICLR 2025
Model merging acquires general capabilities without extra data or training by combining multiple models' parameters. Previous approaches achieve linear mode connectivity by aligning parameters into the same loss basin using permutation invariance. In this paper, we introduce Model Assembly Learning (MAL), a novel paradigm for model merging that iteratively integrates parameters from diverse models in an open-ended model zoo to enhance the base model's capabilities. Unlike previous works that require identical architectures, MAL allows the merging of heterogeneous architectures and selective parameters across layers. Specifically, the base model can incorporate parameters from different layers of multiple pre-trained models. We systematically investigate the conditions and fundamental settings of heterogeneous parameter merging, addressing all possible mismatches in layer widths between the base and target models. Furthermore, we establish key laws and provide practical guidelines for effectively implementing MAL.
comment: ICLR 2025 Workshop on Neural Network Weights as a New Data Modality
☆ Towards Fully Automated Decision-Making Systems for Greenhouse Control: Challenges and Opportunities
Machine learning has been successful in building control policies to drive a complex system to desired states in various applications (e.g. games, robotics, etc.). To be specific, a number of parameters of policy can be automatically optimized from the observations of environment to be able to generate a sequence of decisions leading to the best performance. In this survey paper, we particularly explore such policy-learning techniques for another unique, practical use-case scenario--farming, in which critical decisions (e.g., water supply, heating, etc.) must be made in a timely manner to minimize risks (e.g., damage to plants) while maximizing the revenue (e.g., healthy crops) in the end. We first provide a broad overview of latest studies on it to identify not only domain-specific challenges but opportunities with potential solutions, some of which are suggested as promising directions for future research. Also, we then introduce our successful approach to being ranked second among 46 teams at the ''3rd Autonomous Greenhouse Challenge'' to use this specific example to discuss the lessons learned about important considerations for design to create autonomous farm-management systems.
☆ Data-Driven Extreme Response Estimation
A method to rapidly estimate extreme ship response events is developed in this paper. The method involves training by a Long Short-Term Memory (LSTM) neural network to correct a lower-fidelity hydrodynamic model to the level of a higher-fidelity simulation. More focus is placed on larger responses by isolating the time-series near peak events identified in the lower-fidelity simulations and training on only the shorter time-series around the large event. The method is tested on the estimation of pitch time-series maxima in Sea State 5 (significant wave height of 4.0 meters and modal period of 15.0 seconds,) generated by a lower-fidelity hydrodynamic solver known as SimpleCode and a higher-fidelity tool known as the Large Amplitude Motion Program (LAMP). The results are also compared with an LSTM trained without special considerations for large events.
comment: From the 35th Symposium on Naval Hydrodynamics
☆ When Astronomy Meets AI: Manazel For Crescent Visibility Prediction in Morocco
The accurate determination of the beginning of each Hijri month is essential for religious, cultural, and administrative purposes. Manazel (The code and datasets are available at https://github.com/lairgiyassir/manazel) addresses this challenge in Morocco by leveraging 13 years of crescent visibility data to refine the ODEH criterion, a widely used standard for lunar crescent visibility prediction. The study integrates two key features, the Arc of Vision (ARCV) and the total width of the crescent (W), to enhance the accuracy of lunar visibility assessments. A machine learning approach utilizing the Logistic Regression algorithm is employed to classify crescent visibility conditions, achieving a predictive accuracy of 98.83%. This data-driven methodology offers a robust and reliable framework for determining the start of the Hijri month, comparing different data classification tools, and improving the consistency of lunar calendar calculations in Morocco. The findings demonstrate the effectiveness of machine learning in astronomical applications and highlight the potential for further enhancements in the modeling of crescent visibility.
☆ ClusterSC: Advancing Synthetic Control with Donor Selection
In causal inference with observational studies, synthetic control (SC) has emerged as a prominent tool. SC has traditionally been applied to aggregate-level datasets, but more recent work has extended its use to individual-level data. As they contain a greater number of observed units, this shift introduces the curse of dimensionality to SC. To address this, we propose Cluster Synthetic Control (ClusterSC), based on the idea that groups of individuals may exist where behavior aligns internally but diverges between groups. ClusterSC incorporates a clustering step to select only the relevant donors for the target. We provide theoretical guarantees on the improvements induced by ClusterSC, supported by empirical demonstrations on synthetic and real-world datasets. The results indicate that ClusterSC consistently outperforms classical SC approaches.
comment: 35 pages, 11 figures, to be published in Proceedings of The 28th International Conference on Artificial Intelligence and Statistics (AIStats) 2025
☆ Provable Reduction in Communication Rounds for Non-Smooth Convex Federated Learning
Multiple local steps are key to communication-efficient federated learning. However, theoretical guarantees for such algorithms, without data heterogeneity-bounding assumptions, have been lacking in general non-smooth convex problems. Leveraging projection-efficient optimization methods, we propose FedMLS, a federated learning algorithm with provable improvements from multiple local steps. FedMLS attains an $\epsilon$-suboptimal solution in $\mathcal{O}(1/\epsilon)$ communication rounds, requiring a total of $\mathcal{O}(1/\epsilon^2)$ stochastic subgradient oracle calls.
☆ Leveraging Language Models for Analyzing Longitudinal Experiential Data in Education
We propose a novel approach to leveraging pre-trained language models (LMs) for early forecasting of academic trajectories in STEM students using high-dimensional longitudinal experiential data. This data, which captures students' study-related activities, behaviors, and psychological states, offers valuable insights for forecasting-based interventions. Key challenges in handling such data include high rates of missing values, limited dataset size due to costly data collection, and complex temporal variability across modalities. Our approach addresses these issues through a comprehensive data enrichment process, integrating strategies for managing missing values, augmenting data, and embedding task-specific instructions and contextual cues to enhance the models' capacity for learning temporal patterns. Through extensive experiments on a curated student learning dataset, we evaluate both encoder-decoder and decoder-only LMs. While our findings show that LMs effectively integrate data across modalities and exhibit resilience to missing data, they primarily rely on high-level statistical patterns rather than demonstrating a deeper understanding of temporal dynamics. Furthermore, their ability to interpret explicit temporal information remains limited. This work advances educational data science by highlighting both the potential and limitations of LMs in modeling student trajectories for early intervention based on longitudinal experiential data.
☆ Nonlinear Multiple Response Regression and Learning of Latent Spaces
Identifying low-dimensional latent structures within high-dimensional data has long been a central topic in the machine learning community, driven by the need for data compression, storage, transmission, and deeper data understanding. Traditional methods, such as principal component analysis (PCA) and autoencoders (AE), operate in an unsupervised manner, ignoring label information even when it is available. In this work, we introduce a unified method capable of learning latent spaces in both unsupervised and supervised settings. We formulate the problem as a nonlinear multiple-response regression within an index model context. By applying the generalized Stein's lemma, the latent space can be estimated without knowing the nonlinear link functions. Our method can be viewed as a nonlinear generalization of PCA. Moreover, unlike AE and other neural network methods that operate as "black boxes", our approach not only offers better interpretability but also reduces computational complexity while providing strong theoretical guarantees. Comprehensive numerical experiments and real data analyses demonstrate the superior performance of our method.
☆ Critical Iterative Denoising: A Discrete Generative Model Applied to Graphs
Discrete Diffusion and Flow Matching models have significantly advanced generative modeling for discrete structures, including graphs. However, the time dependencies in the noising process of these models lead to error accumulation and propagation during the backward process. This issue, particularly pronounced in mask diffusion, is a known limitation in sequence modeling and, as we demonstrate, also impacts discrete diffusion models for graphs. To address this problem, we propose a novel framework called Iterative Denoising, which simplifies discrete diffusion and circumvents the issue by assuming conditional independence across time. Additionally, we enhance our model by incorporating a Critic, which during generation selectively retains or corrupts elements in an instance based on their likelihood under the data distribution. Our empirical evaluations demonstrate that the proposed method significantly outperforms existing discrete diffusion baselines in graph generation tasks.
☆ Generalizable Implicit Neural Representations via Parameterized Latent Dynamics for Baroclinic Ocean Forecasting
Mesoscale ocean dynamics play a critical role in climate systems, governing heat transport, hurricane genesis, and drought patterns. However, simulating these processes at high resolution remains computationally prohibitive due to their nonlinear, multiscale nature and vast spatiotemporal domains. Implicit neural representations (INRs) reduce the computational costs as resolution-independent surrogates but fail in many-query scenarios (inverse modeling) requiring rapid evaluations across diverse parameters. We present PINROD, a novel framework combining dynamics-aware implicit neural representations with parameterized neural ordinary differential equations to address these limitations. By integrating parametric dependencies into latent dynamics, our method efficiently captures nonlinear oceanic behavior across varying boundary conditions and physical parameters. Experiments on ocean mesoscale activity data show superior accuracy over existing baselines and improved computational efficiency compared to standard numerical simulations.
☆ Probabilistic Functional Neural Networks
High-dimensional functional time series (HDFTS) are often characterized by nonlinear trends and high spatial dimensions. Such data poses unique challenges for modeling and forecasting due to the nonlinearity, nonstationarity, and high dimensionality. We propose a novel probabilistic functional neural network (ProFnet) to address these challenges. ProFnet integrates the strengths of feedforward and deep neural networks with probabilistic modeling. The model generates probabilistic forecasts using Monte Carlo sampling and also enables the quantification of uncertainty in predictions. While capturing both temporal and spatial dependencies across multiple regions, ProFnet offers a scalable and unified solution for large datasets. Applications to Japan's mortality rates demonstrate superior performance. This approach enhances predictive accuracy and provides interpretable uncertainty estimates, making it a valuable tool for forecasting complex high-dimensional functional data and HDFTS.
☆ Fusion of Graph Neural Networks via Optimal Transport
In this paper, we explore the idea of combining GCNs into one model. To that end, we align the weights of different models layer-wise using optimal transport (OT). We present and evaluate three types of transportation costs and show that the studied fusion method consistently outperforms the performance of vanilla averaging. Finally, we present results suggesting that model fusion using OT is harder in the case of GCNs than MLPs and that incorporating the graph structure into the process does not improve the performance of the method.
☆ Consistent Multigroup Low-Rank Approximation
We consider the problem of consistent low-rank approximation for multigroup data: we ask for a sequence of $k$ basis vectors such that projecting the data onto their spanned subspace treats all groups as equally as possible, by minimizing the maximum error among the groups. Additionally, we require that the sequence of basis vectors satisfies the natural consistency property: when looking for the best $k$ vectors, the first $d
☆ SyncSDE: A Probabilistic Framework for Diffusion Synchronization CVPR2025
There have been many attempts to leverage multiple diffusion models for collaborative generation, extending beyond the original domain. A prominent approach involves synchronizing multiple diffusion trajectories by mixing the estimated scores to artificially correlate the generation processes. However, existing methods rely on naive heuristics, such as averaging, without considering task specificity. These approaches do not clarify why such methods work and often fail when a heuristic suitable for one task is blindly applied to others. In this paper, we present a probabilistic framework for analyzing why diffusion synchronization works and reveal where heuristics should be focused - modeling correlations between multiple trajectories and adapting them to each specific task. We further identify optimal correlation models per task, achieving better results than previous approaches that apply a single heuristic across all tasks without justification.
comment: Accepted to CVPR2025
☆ SWI: Speaking with Intent in Large Language Models
Intent, typically clearly formulated and planned, functions as a cognitive framework for reasoning and problem-solving. This paper introduces the concept of Speaking with Intent (SWI) in large language models (LLMs), where the explicitly generated intent encapsulates the model's underlying intention and provides high-level planning to guide subsequent analysis and communication. By emulating deliberate and purposeful thoughts in the human mind, SWI is hypothesized to enhance the reasoning capabilities and generation quality of LLMs. Extensive experiments on mathematical reasoning benchmarks consistently demonstrate the superiority of Speaking with Intent over Baseline (i.e., generation without explicit intent). Moreover, SWI outperforms answer-trigger prompting methods Chain-of-Thought and Plan-and-Solve and maintains competitive performance with the strong method ARR (Analyzing, Retrieving, and Reasoning). Additionally, the effectiveness and generalizability of SWI are solidified on reasoning-intensive question answering (QA) and text summarization benchmarks, where SWI brings consistent improvement to the Baseline generation. In text summarization, SWI-generated summaries exhibit greater accuracy, conciseness, and factual correctness, with fewer hallucinations. Furthermore, human evaluations verify the coherence, effectiveness, and interpretability of the intent produced by SWI. This proof-of-concept study creates a novel avenue for enhancing LLMs' reasoning abilities with cognitive notions.
comment: 24 pages. Code: https://github.com/YuweiYin/SWI
☆ Formation Shape Control using the Gromov-Wasserstein Metric
This article introduces a formation shape control algorithm, in the optimal control framework, for steering an initial population of agents to a desired configuration via employing the Gromov-Wasserstein distance. The underlying dynamical system is assumed to be a constrained linear system and the objective function is a sum of quadratic control-dependent stage cost and a Gromov-Wasserstein terminal cost. The inclusion of the Gromov-Wasserstein cost transforms the resulting optimal control problem into a well-known NP-hard problem, making it both numerically demanding and difficult to solve with high accuracy. Towards that end, we employ a recent semi-definite relaxation-driven technique to tackle the Gromov-Wasserstein distance. A numerical example is provided to illustrate our results.
comment: To appear in the proceedings of Learning for Dynamics and Control (L4DC) conference, PMLR, 2025
☆ Exploring the Energy Landscape of RBMs: Reciprocal Space Insights into Bosons, Hierarchical Learning and Symmetry Breaking
Deep generative models have become ubiquitous due to their ability to learn and sample from complex distributions. Despite the proliferation of various frameworks, the relationships among these models remain largely unexplored, a gap that hinders the development of a unified theory of AI learning. We address two central challenges: clarifying the connections between different deep generative models and deepening our understanding of their learning mechanisms. We focus on Restricted Boltzmann Machines (RBMs), known for their universal approximation capabilities for discrete distributions. By introducing a reciprocal space formulation, we reveal a connection between RBMs, diffusion processes, and coupled Bosons. We show that at initialization, the RBM operates at a saddle point, where the local curvature is determined by the singular values, whose distribution follows the Marcenko-Pastur law and exhibits rotational symmetry. During training, this rotational symmetry is broken due to hierarchical learning, where different degrees of freedom progressively capture features at multiple levels of abstraction. This leads to a symmetry breaking in the energy landscape, reminiscent of Landau theory. This symmetry breaking in the energy landscape is characterized by the singular values and the weight matrix eigenvector matrix. We derive the corresponding free energy in a mean-field approximation. We show that in the limit of infinite size RBM, the reciprocal variables are Gaussian distributed. Our findings indicate that in this regime, there will be some modes for which the diffusion process will not converge to the Boltzmann distribution. To illustrate our results, we trained replicas of RBMs with different hidden layer sizes using the MNIST dataset. Our findings bridge the gap between disparate generative frameworks and also shed light on the processes underpinning learning in generative models.
comment: 19pp, 8figs, research article
☆ Bayesian Pseudo Posterior Mechanism for Differentially Private Machine Learning
Differential privacy (DP) is becoming increasingly important for deployed machine learning applications because it provides strong guarantees for protecting the privacy of individuals whose data is used to train models. However, DP mechanisms commonly used in machine learning tend to struggle on many real world distributions, including highly imbalanced or small labeled training sets. In this work, we propose a new scalable DP mechanism for deep learning models, SWAG-PPM, by using a pseudo posterior distribution that downweights by-record likelihood contributions proportionally to their disclosure risks as the randomized mechanism. As a motivating example from official statistics, we demonstrate SWAG-PPM on a workplace injury text classification task using a highly imbalanced public dataset published by the U.S. Occupational Safety and Health Administration (OSHA). We find that SWAG-PPM exhibits only modest utility degradation against a non-private comparator while greatly outperforming the industry standard DP-SGD for a similar privacy budget.
☆ Constraint-based causal discovery with tiered background knowledge and latent variables in single or overlapping datasets
In this paper we consider the use of tiered background knowledge within constraint based causal discovery. Our focus is on settings relaxing causal sufficiency, i.e. allowing for latent variables which may arise because relevant information could not be measured at all, or not jointly, as in the case of multiple overlapping datasets. We first present novel insights into the properties of the 'tiered FCI' (tFCI) algorithm. Building on this, we introduce a new extension of the IOD (integrating overlapping datasets) algorithm incorporating tiered background knowledge, the 'tiered IOD' (tIOD) algorithm. We show that under full usage of the tiered background knowledge tFCI and tIOD are sound, while simple versions of the tIOD and tFCI are sound and complete. We further show that the tIOD algorithm can often be expected to be considerably more efficient and informative than the IOD algorithm even beyond the obvious restriction of the Markov equivalence classes. We provide a formal result on the conditions for this gain in efficiency and informativeness. Our results are accompanied by a series of examples illustrating the exact role and usefulness of tiered background knowledge.
comment: Accepted for the 4th Conference on Causal Learning and Reasoning (CLeaR 2025)
☆ Quantitative Evaluation of Quantum/Classical Neural Network Using a Game Solver Metric
To evaluate the performance of quantum computing systems relative to classical counterparts and explore the potential for quantum advantage, we propose a game-solving benchmark based on Elo ratings in the game of tic-tac-toe. We compare classical convolutional neural networks (CNNs), quantum convolutional neural networks (QCNNs), and hybrid classical-quantum models by assessing their performance against a random-move agent in automated matches. Additionally, we implement a QCNN integrated with quantum communication and evaluate its performance to quantify the overhead introduced by noisy quantum channels. Our results show that the classical-quantum hybrid model achieves Elo ratings comparable to those of classical CNNs, while the standalone QCNN underperforms under current hardware constraints. The communication overhead was found to be modest. These findings demonstrate the viability of using game-based benchmarks for evaluating quantum computing systems and suggest that quantum communication can be incorporated with limited impact on performance, providing a foundation for future hybrid quantum applications.
comment: 11 pages, 16 figures
☆ Uncertainty-aware Bayesian machine learning modelling of land cover classification
Land cover classification involves the production of land cover maps, which determine the type of land through remote sensing imagery. Over recent years, such classification is being performed by machine learning classification models, which can give highly accurate predictions on land cover per pixel using large quantities of input training data. However, such models do not currently take account of input measurement uncertainty, which is vital for traceability in metrology. In this work we propose a Bayesian classification framework using generative modelling to take account of input measurement uncertainty. We take the specific case of Bayesian quadratic discriminant analysis, and apply it to land cover datasets from Copernicus Sentinel-2 in 2020 and 2021. We benchmark the performance of the model against more popular classification models used in land cover maps such as random forests and neural networks. We find that such Bayesian models are more trustworthy, in the sense that they are more interpretable, explicitly model the input measurement uncertainty, and maintain predictive performance of class probability outputs across datasets of different years and sizes, whilst also being computationally efficient.
comment: 31 pages, 10 figures
☆ F-INR: Functional Tensor Decomposition for Implicit Neural Representations
Implicit Neural Representation (INR) has emerged as a powerful tool for encoding discrete signals into continuous, differentiable functions using neural networks. However, these models often have an unfortunate reliance on monolithic architectures to represent high-dimensional data, leading to prohibitive computational costs as dimensionality grows. We propose F-INR, a framework that reformulates INR learning through functional tensor decomposition, breaking down high-dimensional tasks into lightweight, axis-specific sub-networks. Each sub-network learns a low-dimensional data component (e.g., spatial or temporal). Then, we combine these components via tensor operations, reducing forward pass complexity while improving accuracy through specialized learning. F-INR is modular and, therefore, architecture-agnostic, compatible with MLPs, SIREN, WIRE, or other state-of-the-art INR architecture. It is also decomposition-agnostic, supporting CP, TT, and Tucker modes with user-defined rank for speed-accuracy control. In our experiments, F-INR trains $100\times$ faster than existing approaches on video tasks while achieving higher fidelity (+3.4 dB PSNR). Similar gains hold for image compression, physics simulations, and 3D geometry reconstruction. Through this, F-INR offers a new scalable, flexible solution for high-dimensional signal modeling.
comment: 26 pages, 33 figures, 12 tables
☆ Adaptive Resampling with Bootstrap for Noisy Multi-Objective Optimization Problems
The challenge of noisy multi-objective optimization lies in the constant trade-off between exploring new decision points and improving the precision of known points through resampling. This decision should take into account both the variability of the objective functions and the current estimate of a point in relation to the Pareto front. Since the amount and distribution of noise are generally unknown, it is desirable for a decision function to be highly adaptive to the properties of the optimization problem. This paper presents a resampling decision function that incorporates the stochastic nature of the optimization problem by using bootstrapping and the probability of dominance. The distribution-free estimation of the probability of dominance is achieved using bootstrap estimates of the means. To make the procedure applicable even with very few observations, we transfer the distribution observed at other decision points. The efficiency of this resampling approach is demonstrated by applying it in the NSGA-II algorithm with a sequential resampling procedure under multiple noise variations.
comment: 14 pages. 5 figures
☆ Robust DNN Partitioning and Resource Allocation Under Uncertain Inference Time
In edge intelligence systems, deep neural network (DNN) partitioning and data offloading can provide real-time task inference for resource-constrained mobile devices. However, the inference time of DNNs is typically uncertain and cannot be precisely determined in advance, presenting significant challenges in ensuring timely task processing within deadlines. To address the uncertain inference time, we propose a robust optimization scheme to minimize the total energy consumption of mobile devices while meeting task probabilistic deadlines. The scheme only requires the mean and variance information of the inference time, without any prediction methods or distribution functions. The problem is formulated as a mixed-integer nonlinear programming (MINLP) that involves jointly optimizing the DNN model partitioning and the allocation of local CPU/GPU frequencies and uplink bandwidth. To tackle the problem, we first decompose the original problem into two subproblems: resource allocation and DNN model partitioning. Subsequently, the two subproblems with probability constraints are equivalently transformed into deterministic optimization problems using the chance-constrained programming (CCP) method. Finally, the convex optimization technique and the penalty convex-concave procedure (PCCP) technique are employed to obtain the optimal solution of the resource allocation subproblem and a stationary point of the DNN model partitioning subproblem, respectively. The proposed algorithm leverages real-world data from popular hardware platforms and is evaluated on widely used DNN models. Extensive simulations show that our proposed algorithm effectively addresses the inference time uncertainty with probabilistic deadline guarantees while minimizing the energy consumption of mobile devices.
☆ The Procedural Content Generation Benchmark: An Open-source Testbed for Generative Challenges in Games
This paper introduces the Procedural Content Generation Benchmark for evaluating generative algorithms on different game content creation tasks. The benchmark comes with 12 game-related problems with multiple variants on each problem. Problems vary from creating levels of different kinds to creating rule sets for simple arcade games. Each problem has its own content representation, control parameters, and evaluation metrics for quality, diversity, and controllability. This benchmark is intended as a first step towards a standardized way of comparing generative algorithms. We use the benchmark to score three baseline algorithms: a random generator, an evolution strategy, and a genetic algorithm. Results show that some problems are easier to solve than others, as well as the impact the chosen objective has on quality, diversity, and controllability of the generated artifacts.
comment: 12 pages, 4 figures, 2 tables, published at FDG2025
☆ DeepRV: pre-trained spatial priors for accelerated disease mapping
Recently introduced prior-encoding deep generative models (e.g., PriorVAE, $\pi$VAE, and PriorCVAE) have emerged as powerful tools for scalable Bayesian inference by emulating complex stochastic processes like Gaussian processes (GPs). However, these methods remain largely a proof-of-concept and inaccessible to practitioners. We propose DeepRV, a lightweight, decoder-only approach that accelerates training, and enhances real-world applicability in comparison to current VAE-based prior encoding approaches. Leveraging probabilistic programming frameworks (e.g., NumPyro) for inference, DeepRV achieves significant speedups while also improving the quality of parameter inference, closely matching full MCMC sampling. We showcase its effectiveness in process emulation and spatial analysis of the UK using simulated data, gender-wise cancer mortality rates for individuals under 50, and HIV prevalence in Zimbabwe. To bridge the gap between theory and practice, we provide a user-friendly API, enabling scalable and efficient Bayesian inference.
☆ Retinal Fundus Multi-Disease Image Classification using Hybrid CNN-Transformer-Ensemble Architectures
Our research is motivated by the urgent global issue of a large population affected by retinal diseases, which are evenly distributed but underserved by specialized medical expertise, particularly in non-urban areas. Our primary objective is to bridge this healthcare gap by developing a comprehensive diagnostic system capable of accurately predicting retinal diseases solely from fundus images. However, we faced significant challenges due to limited, diverse datasets and imbalanced class distributions. To overcome these issues, we have devised innovative strategies. Our research introduces novel approaches, utilizing hybrid models combining deeper Convolutional Neural Networks (CNNs), Transformer encoders, and ensemble architectures sequentially and in parallel to classify retinal fundus images into 20 disease labels. Our overarching goal is to assess these advanced models' potential in practical applications, with a strong focus on enhancing retinal disease diagnosis accuracy across a broader spectrum of conditions. Importantly, our efforts have surpassed baseline model results, with the C-Tran ensemble model emerging as the leader, achieving a remarkable model score of 0.9166, surpassing the baseline score of 0.9. Additionally, experiments with the IEViT model showcased equally promising outcomes with improved computational efficiency. We've also demonstrated the effectiveness of dynamic patch extraction and the integration of domain knowledge in computer vision tasks. In summary, our research strives to contribute significantly to retinal disease diagnosis, addressing the critical need for accessible healthcare solutions in underserved regions while aiming for comprehensive and accurate disease prediction.
comment: 17 pages, 3 figures, 7 tables. Conference paper presented at the International Health Informatics Conference (IHIC 2023)
☆ DATA-WA: Demand-based Adaptive Task Assignment with Dynamic Worker Availability Windows
With the rapid advancement of mobile networks and the widespread use of mobile devices, spatial crowdsourcing, which involves assigning location-based tasks to mobile workers, has gained significant attention. However, most existing research focuses on task assignment at the current moment, overlooking the fluctuating demand and supply between tasks and workers over time. To address this issue, we introduce an adaptive task assignment problem, which aims to maximize the number of assigned tasks by dynamically adjusting task assignments in response to changing demand and supply. We develop a spatial crowdsourcing framework, namely demand-based adaptive task assignment with dynamic worker availability windows, which consists of two components including task demand prediction and task assignment. In the first component, we construct a graph adjacency matrix representing the demand dependency relationships in different regions and employ a multivariate time series learning approach to predict future task demands. In the task assignment component, we adjust tasks to workers based on these predictions, worker availability windows, and the current task assignments, where each worker has an availability window that indicates the time periods they are available for task assignments. To reduce the search space of task assignments and be efficient, we propose a worker dependency separation approach based on graph partition and a task value function with reinforcement learning. Experiments on real data demonstrate that our proposals are both effective and efficient.
☆ Stochastic Engrams for Efficient Continual Learning with Binarized Neural Networks
The ability to learn continuously in artificial neural networks (ANNs) is often limited by catastrophic forgetting, a phenomenon in which new knowledge becomes dominant. By taking mechanisms of memory encoding in neuroscience (aka. engrams) as inspiration, we propose a novel approach that integrates stochastically-activated engrams as a gating mechanism for metaplastic binarized neural networks (mBNNs). This method leverages the computational efficiency of mBNNs combined with the robustness of probabilistic memory traces to mitigate forgetting and maintain the model's reliability. Previously validated metaplastic optimization techniques have been incorporated to enhance synaptic stability further. Compared to baseline binarized models and benchmark fully connected continual learning approaches, our method is the only strategy capable of reaching average accuracies over 20% in class-incremental scenarios and achieving comparable domain-incremental results to full precision state-of-the-art methods. Furthermore, we achieve a significant reduction in peak GPU and RAM usage, under 5% and 20%, respectively. Our findings demonstrate (A) an improved stability vs. plasticity trade-off, (B) a reduced memory intensiveness, and (C) an enhanced performance in binarized architectures. By uniting principles of neuroscience and efficient computing, we offer new insights into the design of scalable and robust deep learning systems.
☆ Exploring the flavor structure of leptons via diffusion models
We propose a method to explore the flavor structure of leptons using diffusion models, which are known as one of generative artificial intelligence (generative AI). We consider a simple extension of the Standard Model with the type I seesaw mechanism and train a neural network to generate the neutrino mass matrix. By utilizing transfer learning, the diffusion model generates 104 solutions that are consistent with the neutrino mass squared differences and the leptonic mixing angles. The distributions of the CP phases and the sums of neutrino masses, which are not included in the conditional labels but are calculated from the solutions, exhibit non-trivial tendencies. In addition, the effective mass in neutrinoless double beta decay is concentrated near the boundaries of the existing confidence intervals, allowing us to verify the obtained solutions through future experiments. An inverse approach using the diffusion model is expected to facilitate the experimental verification of flavor models from a perspective distinct from conventional analytical methods.
comment: 23 pages, 5 figures
☆ Nearest Neighbour Equilibrium Clustering
A novel and intuitive nearest neighbours based clustering algorithm is introduced, in which a cluster is defined in terms of an equilibrium condition which balances its size and cohesiveness. The formulation of the equilibrium condition allows for a quantification of the strength of alignment of each point to a cluster, with these cluster alignment strengths leading naturally to a model selection criterion which renders the proposed approach fully automatable. The algorithm is simple to implement and computationally efficient, and produces clustering solutions of extremely high quality in comparison with relevant benchmarks from the literature. R code to implement the approach is available from https://github.com/DavidHofmeyr/NNEC.
comment: Currently being considered for publication by IEEE
☆ AdvSGM: Differentially Private Graph Learning via Adversarial Skip-gram Model ICDE 2025
The skip-gram model (SGM), which employs a neural network to generate node vectors, serves as the basis for numerous popular graph embedding techniques. However, since the training datasets contain sensitive linkage information, the parameters of a released SGM may encode private information and pose significant privacy risks. Differential privacy (DP) is a rigorous standard for protecting individual privacy in data analysis. Nevertheless, when applying differential privacy to skip-gram in graphs, it becomes highly challenging due to the complex link relationships, which potentially result in high sensitivity and necessitate substantial noise injection. To tackle this challenge, we present AdvSGM, a differentially private skip-gram for graphs via adversarial training. Our core idea is to leverage adversarial training to privatize skip-gram while improving its utility. Towards this end, we develop a novel adversarial training module by devising two optimizable noise terms that correspond to the parameters of a skip-gram. By fine-tuning the weights between modules within AdvSGM, we can achieve differentially private gradient updates without additional noise injection. Extensive experimental results on six real-world graph datasets show that AdvSGM preserves high data utility across different downstream tasks.
comment: Accepted by ICDE 2025
☆ From Deep Learning to LLMs: A survey of AI in Quantitative Investment
Quantitative investment (quant) is an emerging, technology-driven approach in asset management, increasingy shaped by advancements in artificial intelligence. Recent advances in deep learning and large language models (LLMs) for quant finance have improved predictive modeling and enabled agent-based automation, suggesting a potential paradigm shift in this field. In this survey, taking alpha strategy as a representative example, we explore how AI contributes to the quantitative investment pipeline. We first examine the early stage of quant research, centered on human-crafted features and traditional statistical models with an established alpha pipeline. We then discuss the rise of deep learning, which enabled scalable modeling across the entire pipeline from data processing to order execution. Building on this, we highlight the emerging role of LLMs in extending AI beyond prediction, empowering autonomous agents to process unstructured data, generate alphas, and support self-iterative workflows.
☆ Neuro-Symbolic Imitation Learning: Discovering Symbolic Abstractions for Skill Learning ICRA
Imitation learning is a popular method for teaching robots new behaviors. However, most existing methods focus on teaching short, isolated skills rather than long, multi-step tasks. To bridge this gap, imitation learning algorithms must not only learn individual skills but also an abstract understanding of how to sequence these skills to perform extended tasks effectively. This paper addresses this challenge by proposing a neuro-symbolic imitation learning framework. Using task demonstrations, the system first learns a symbolic representation that abstracts the low-level state-action space. The learned representation decomposes a task into easier subtasks and allows the system to leverage symbolic planning to generate abstract plans. Subsequently, the system utilizes this task decomposition to learn a set of neural skills capable of refining abstract plans into actionable robot commands. Experimental results in three simulated robotic environments demonstrate that, compared to baselines, our neuro-symbolic approach increases data efficiency, improves generalization capabilities, and facilitates interpretability.
comment: IEEE International Conference on Robotics and Automation (ICRA) 2025
☆ AcL: Action Learner for Fault-Tolerant Quadruped Locomotion Control
Quadrupedal robots can learn versatile locomotion skills but remain vulnerable when one or more joints lose power. In contrast, dogs and cats can adopt limping gaits when injured, demonstrating their remarkable ability to adapt to physical conditions. Inspired by such adaptability, this paper presents Action Learner (AcL), a novel teacher-student reinforcement learning framework that enables quadrupeds to autonomously adapt their gait for stable walking under multiple joint faults. Unlike conventional teacher-student approaches that enforce strict imitation, AcL leverages teacher policies to generate style rewards, guiding the student policy without requiring precise replication. We train multiple teacher policies, each corresponding to a different fault condition, and subsequently distill them into a single student policy with an encoder-decoder architecture. While prior works primarily address single-joint faults, AcL enables quadrupeds to walk with up to four faulty joints across one or two legs, autonomously switching between different limping gaits when faults occur. We validate AcL on a real Go2 quadruped robot under single- and double-joint faults, demonstrating fault-tolerant, stable walking, smooth gait transitions between normal and lamb gaits, and robustness against external disturbances.
☆ ProHOC: Probabilistic Hierarchical Out-of-Distribution Classification via Multi-Depth Networks CVPR2025
Out-of-distribution (OOD) detection in deep learning has traditionally been framed as a binary task, where samples are either classified as belonging to the known classes or marked as OOD, with little attention given to the semantic relationships between OOD samples and the in-distribution (ID) classes. We propose a framework for detecting and classifying OOD samples in a given class hierarchy. Specifically, we aim to predict OOD data to their correct internal nodes of the class hierarchy, whereas the known ID classes should be predicted as their corresponding leaf nodes. Our approach leverages the class hierarchy to create a probabilistic model and we implement this model by using networks trained for ID classification at multiple hierarchy depths. We conduct experiments on three datasets with predefined class hierarchies and show the effectiveness of our method. Our code is available at https://github.com/walline/prohoc.
comment: CVPR2025
☆ Controlling Large Language Model with Latent Actions
Adapting Large Language Models (LLMs) to downstream tasks using Reinforcement Learning (RL) has proven to be an effective approach. However, LLMs do not inherently define the structure of an agent for RL training, particularly in terms of defining the action space. This paper studies learning a compact latent action space to enhance the controllability and exploration of RL for LLMs. We propose Controlling Large Language Models with Latent Actions (CoLA), a framework that integrates a latent action space into pre-trained LLMs. We apply CoLA to the Llama-3.1-8B model. Our experiments demonstrate that, compared to RL with token-level actions, CoLA's latent action enables greater semantic diversity in text generation. For enhancing downstream tasks, we show that CoLA with RL achieves a score of 42.4 on the math500 benchmark, surpassing the baseline score of 38.2, and reaches 68.2 when augmented with a Monte Carlo Tree Search variant. Furthermore, CoLA with RL consistently improves performance on agent-based tasks without degrading the pre-trained LLM's capabilities, unlike the baseline. Finally, CoLA reduces computation time by half in tasks involving enhanced thinking prompts for LLMs by RL. These results highlight CoLA's potential to advance RL-based adaptation of LLMs for downstream applications.
☆ Investigating the Duality of Interpretability and Explainability in Machine Learning
The rapid evolution of machine learning (ML) has led to the widespread adoption of complex "black box" models, such as deep neural networks and ensemble methods. These models exhibit exceptional predictive performance, making them invaluable for critical decision-making across diverse domains within society. However, their inherently opaque nature raises concerns about transparency and interpretability, making them untrustworthy decision support systems. To alleviate such a barrier to high-stakes adoption, research community focus has been on developing methods to explain black box models as a means to address the challenges they pose. Efforts are focused on explaining these models instead of developing ones that are inherently interpretable. Designing inherently interpretable models from the outset, however, can pave the path towards responsible and beneficial applications in the field of ML. In this position paper, we clarify the chasm between explaining black boxes and adopting inherently interpretable models. We emphasize the imperative need for model interpretability and, following the purpose of attaining better (i.e., more effective or efficient w.r.t. predictive performance) and trustworthy predictors, provide an experimental evaluation of latest hybrid learning methods that integrates symbolic knowledge into neural network predictors. We demonstrate how interpretable hybrid models could potentially supplant black box ones in different domains.
☆ Fine-Tuning LLMs on Small Medical Datasets: Text Classification and Normalization Effectiveness on Cardiology reports and Discharge records
We investigate the effectiveness of fine-tuning large language models (LLMs) on small medical datasets for text classification and named entity recognition tasks. Using a German cardiology report dataset and the i2b2 Smoking Challenge dataset, we demonstrate that fine-tuning small LLMs locally on limited training data can improve performance achieving comparable results to larger models. Our experiments show that fine-tuning improves performance on both tasks, with notable gains observed with as few as 200-300 training examples. Overall, the study highlights the potential of task-specific fine-tuning of LLMs for automating clinical workflows and efficiently extracting structured data from unstructured medical text.
comment: 4 pages, 2 tables,
☆ Scalable Expectation Estimation with Subtractive Mixture Models
Many Monte Carlo (MC) and importance sampling (IS) methods use mixture models (MMs) for their simplicity and ability to capture multimodal distributions. Recently, subtractive mixture models (SMMs), i.e. MMs with negative coefficients, have shown greater expressiveness and success in generative modeling. However, their negative parameters complicate sampling, requiring costly auto-regressive techniques or accept-reject algorithms that do not scale in high dimensions. In this work, we use the difference representation of SMMs to construct an unbiased IS estimator ($\Delta\text{Ex}$) that removes the need to sample from the SMM, enabling high-dimensional expectation estimation with SMMs. In our experiments, we show that $\Delta\text{Ex}$ can achieve comparable estimation quality to auto-regressive sampling while being considerably faster in MC estimation. Moreover, we conduct initial experiments with $\Delta\text{Ex}$ using hand-crafted proposals, gaining first insights into how to construct safe proposals for $\Delta\text{Ex}$.
☆ DuckSegmentation: A segmentation model based on the AnYue Hemp Duck Dataset
The modernization of smart farming is a way to improve agricultural production efficiency, and improve the agricultural production environment. Although many large models have achieved high accuracy in the task of object recognition and segmentation, they cannot really be put into use in the farming industry due to their own poor interpretability and limitations in computational volume. In this paper, we built AnYue Shelduck Dateset, which contains a total of 1951 Shelduck datasets, and performed target detection and segmentation annotation with the help of professional annotators. Based on AnYue ShelduckDateset, this paper describes DuckProcessing, an efficient and powerful module for duck identification based on real shelduckfarms. First of all, using the YOLOv8 module designed to divide the mahjong between them, Precision reached 98.10%, Recall reached 96.53% and F1 score reached 0.95 on the test set. Again using the DuckSegmentation segmentation model, DuckSegmentation reached 96.43% mIoU. Finally, the excellent DuckSegmentation was used as the teacher model, and through knowledge distillation, Deeplabv3 r50 was used as the student model, and the final student model achieved 94.49% mIoU on the test set. The method provides a new way of thinking in practical sisal duck smart farming.
☆ Explainable Boosting Machine for Predicting Claim Severity and Frequency in Car Insurance
In a context of constant increase in competition and heightened regulatory pressure, accuracy, actuarial precision, as well as transparency and understanding of the tariff, are key issues in non-life insurance. Traditionally used generalized linear models (GLM) result in a multiplicative tariff that favors interpretability. With the rapid development of machine learning and deep learning techniques, actuaries and the rest of the insurance industry have adopted these techniques widely. However, there is a need to associate them with interpretability techniques. In this paper, our study focuses on introducing an Explainable Boosting Machine (EBM) model that combines intrinsically interpretable characteristics and high prediction performance. This approach is described as a glass-box model and relies on the use of a Generalized Additive Model (GAM) and a cyclic gradient boosting algorithm. It accounts for univariate and pairwise interaction effects between features and provides naturally explanations on them. We implement this approach on car insurance frequency and severity data and extensively compare the performance of this approach with classical competitors: a GLM, a GAM, a CART model and an Extreme Gradient Boosting (XGB) algorithm. Finally, we examine the interpretability of these models to capture the main determinants of claim costs.
☆ Tricking Retrievers with Influential Tokens: An Efficient Black-Box Corpus Poisoning Attack
Retrieval-augmented generation (RAG) systems enhance large language models by incorporating external knowledge, addressing issues like outdated internal knowledge and hallucination. However, their reliance on external knowledge bases makes them vulnerable to corpus poisoning attacks, where adversarial passages can be injected to manipulate retrieval results. Existing methods for crafting such passages, such as random token replacement or training inversion models, are often slow and computationally expensive, requiring either access to retriever's gradients or large computational resources. To address these limitations, we propose Dynamic Importance-Guided Genetic Algorithm (DIGA), an efficient black-box method that leverages two key properties of retrievers: insensitivity to token order and bias towards influential tokens. By focusing on these characteristics, DIGA dynamically adjusts its genetic operations to generate effective adversarial passages with significantly reduced time and memory usage. Our experimental evaluation shows that DIGA achieves superior efficiency and scalability compared to existing methods, while maintaining comparable or better attack success rates across multiple datasets.
comment: Accepted to NAACL 2025 Main Track
☆ Simulation-informed deep learning for enhanced SWOT observations of fine-scale ocean dynamics
Oceanic processes at fine scales are crucial yet difficult to observe accurately due to limitations in satellite and in-situ measurements. The Surface Water and Ocean Topography (SWOT) mission provides high-resolution Sea Surface Height (SSH) data, though noise patterns often obscure fine scale structures. Current methods struggle with noisy data or require extensive supervised training, limiting their effectiveness on real-world observations. We introduce SIMPGEN (Simulation-Informed Metric and Prior for Generative Ensemble Networks), an unsupervised adversarial learning framework combining real SWOT observations with simulated reference data. SIMPGEN leverages wavelet-informed neural metrics to distinguish noisy from clean fields, guiding realistic SSH reconstructions. Applied to SWOT data, SIMPGEN effectively removes noise, preserving fine-scale features better than existing neural methods. This robust, unsupervised approach not only improves SWOT SSH data interpretation but also demonstrates strong potential for broader oceanographic applications, including data assimilation and super-resolution.
☆ HOT: Hadamard-based Optimized Training CVPR 2025
It has become increasingly important to optimize backpropagation to reduce memory usage and computational overhead. Achieving this goal is highly challenging, as multiple objectives must be considered jointly while maintaining training quality. In this paper, we focus on matrix multiplication, which accounts for the largest portion of training costs, and analyze its backpropagation in detail to identify lightweight techniques that offer the best benefits. Based on this analysis, we introduce a novel method, Hadamard-based Optimized Training (HOT). In this approach, we apply Hadamard-based optimizations, such as Hadamard quantization and Hadamard low-rank approximation, selectively and with awareness of the suitability of each optimization for different backward paths. Additionally, we introduce two enhancements: activation buffer compression and layer-wise quantizer selection. Our extensive analysis shows that HOT achieves up to 75% memory savings and a 2.6 times acceleration on real GPUs, with negligible accuracy loss compared to FP32 precision.
comment: Accepted in CVPR 2025
☆ Dual-Splitting Conformal Prediction for Multi-Step Time Series Forecasting
Time series forecasting is crucial for applications like resource scheduling and risk management, where multi-step predictions provide a comprehensive view of future trends. Uncertainty Quantification (UQ) is a mainstream approach for addressing forecasting uncertainties, with Conformal Prediction (CP) gaining attention due to its model-agnostic nature and statistical guarantees. However, most variants of CP are designed for single-step predictions and face challenges in multi-step scenarios, such as reliance on real-time data and limited scalability. This highlights the need for CP methods specifically tailored to multi-step forecasting. We propose the Dual-Splitting Conformal Prediction (DSCP) method, a novel CP approach designed to capture inherent dependencies within time-series data for multi-step forecasting. Experimental results on real-world datasets from four different domains demonstrate that the proposed DSCP significantly outperforms existing CP variants in terms of the Winkler Score, achieving a performance improvement of up to 23.59% compared to state-of-the-art methods. Furthermore, we deployed the DSCP approach for renewable energy generation and IT load forecasting in power management of a real-world trajectory-based application, achieving an 11.25% reduction in carbon emissions through predictive optimization of data center operations and controls.
comment: 28 pages, 13 figures, 3 tables. Submitted to Applied Soft Computing. With Editor This is the first public release of the work
☆ Improving $(α, f)$-Byzantine Resilience in Federated Learning via layerwise aggregation and cosine distance
The rapid development of artificial intelligence systems has amplified societal concerns regarding their usage, necessitating regulatory frameworks that encompass data privacy. Federated Learning (FL) is posed as potential solution to data privacy challenges in distributed machine learning by enabling collaborative model training {without data sharing}. However, FL systems remain vulnerable to Byzantine attacks, where malicious nodes contribute corrupted model updates. While Byzantine Resilient operators have emerged as a widely adopted robust aggregation algorithm to mitigate these attacks, its efficacy diminishes significantly in high-dimensional parameter spaces, sometimes leading to poor performing models. This paper introduces Layerwise Cosine Aggregation, a novel aggregation scheme designed to enhance robustness of these rules in such high-dimensional settings while preserving computational efficiency. A theoretical analysis is presented, demonstrating the superior robustness of the proposed Layerwise Cosine Aggregation compared to original robust aggregation operators. Empirical evaluation across diverse image classification datasets, under varying data distributions and Byzantine attack scenarios, consistently demonstrates the improved performance of Layerwise Cosine Aggregation, achieving up to a 16% increase in model accuracy.
comment: Submitted to Knowledge-Based Systems
☆ Feature-Enhanced Machine Learning for All-Cause Mortality Prediction in Healthcare Data
Accurate patient mortality prediction enables effective risk stratification, leading to personalized treatment plans and improved patient outcomes. However, predicting mortality in healthcare remains a significant challenge, with existing studies often focusing on specific diseases or limited predictor sets. This study evaluates machine learning models for all-cause in-hospital mortality prediction using the MIMIC-III database, employing a comprehensive feature engineering approach. Guided by clinical expertise and literature, we extracted key features such as vital signs (e.g., heart rate, blood pressure), laboratory results (e.g., creatinine, glucose), and demographic information. The Random Forest model achieved the highest performance with an AUC of 0.94, significantly outperforming other machine learning and deep learning approaches. This demonstrates Random Forest's robustness in handling high-dimensional, noisy clinical data and its potential for developing effective clinical decision support tools. Our findings highlight the importance of careful feature engineering for accurate mortality prediction. We conclude by discussing implications for clinical adoption and propose future directions, including enhancing model robustness and tailoring prediction models for specific diseases.
Efficient Learning for Entropy-regularized Markov Decision Processes via Multilevel Monte Carlo
Designing efficient learning algorithms with complexity guarantees for Markov decision processes (MDPs) with large or continuous state and action spaces remains a fundamental challenge. We address this challenge for entropy-regularized MDPs with Polish state and action spaces, assuming access to a generative model of the environment. We propose a novel family of multilevel Monte Carlo (MLMC) algorithms that integrate fixed-point iteration with MLMC techniques and a generic stochastic approximation of the Bellman operator. We quantify the precise impact of the chosen approximate Bellman operator on the accuracy of the resulting MLMC estimator. Leveraging this error analysis, we show that using a biased plain MC estimate for the Bellman operator results in quasi-polynomial sample complexity, whereas an unbiased randomized multilevel approximation of the Bellman operator achieves polynomial sample complexity in expectation. Notably, these complexity bounds are independent of the dimensions or cardinalities of the state and action spaces, distinguishing our approach from existing algorithms whose complexities scale with the sizes of these spaces. We validate these theoretical performance guarantees through numerical experiments.
comment: 46 pages, 6 figures
☆ Rethinking Graph Structure Learning in the Era of LLMs
Recently, the emergence of large language models (LLMs) has prompted researchers to explore the integration of language descriptions into graphs, aiming to enhance model encoding capabilities from a data-centric perspective. This graph representation is called text-attributed graphs (TAGs). A review of prior advancements highlights that graph structure learning (GSL) is a pivotal technique for improving data utility, making it highly relevant to efficient TAG learning. However, most GSL methods are tailored for traditional graphs without textual information, underscoring the necessity of developing a new GSL paradigm. Despite clear motivations, it remains challenging: (1) How can we define a reasonable optimization objective for GSL in the era of LLMs, considering the massive parameters in LLM? (2) How can we design an efficient model architecture that enables seamless integration of LLM for this optimization objective? For Question 1, we reformulate existing GSL optimization objectives as a tree optimization framework, shifting the focus from obtaining a well-trained edge predictor to a language-aware tree sampler. For Question 2, we propose decoupled and training-free model design principles for LLM integration, shifting the focus from computation-intensive fine-tuning to more efficient inference. Based on this, we propose Large Language and Tree Assistant (LLaTA), which leverages tree-based LLM in-context learning to enhance the understanding of topology and text, enabling reliable inference and generating improved graph structure. Extensive experiments on 10 TAG datasets demonstrate that LLaTA enjoys flexibility - incorporated with any backbone; scalability - outperforms other LLM-based GSL methods in terms of running efficiency; effectiveness - achieves SOTA performance.
comment: 17 pages, 8 figures
☆ Resource-Efficient Federated Fine-Tuning Large Language Models for Heterogeneous Data
Fine-tuning large language models (LLMs) via federated learning, i.e., FedLLM, has been proposed to adapt LLMs for various downstream applications in a privacy-preserving way. To reduce the fine-tuning costs on resource-constrained devices, FedLoRA is proposed to fine-tune only a small subset of model parameters by integrating low-rank adaptation (LoRA) into FedLLM. However, apart from resource constraints, there is still another critical challenge, i.e., data heterogeneity, severely hindering the implementation of FedLoRA in practical applications. Herein, inspired by the previous group-based federated learning paradigm, we propose a hierarchical FedLoRA framework, termed HierFedLoRA, to address these challenges. Specifically, HierFedLoRA partitions all devices into multiple near-IID groups and adjusts the intra-group aggregation frequency for each group to eliminate the negative effects of non-IID data. Meanwhile, to reduce the computation and communication cost, HierFedLoRA dynamically assigns diverse and suitable fine-tuning depth (i.e., the number of continuous fine-tuning layers from the output) for each group. HierFedLoRA explores jointly optimizing aggregation frequency and depth upon their coupled relationship to better enhance the performance of FedLoRA. Extensive experiments are conducted on a physical platform with 80 commercial devices. The results show that HierFedLoRA improves the final model accuracy by 1.6% to 4.2%, speeding up the fine-tuning process by at least 2.1$\times$, compared to the strong baselines.
☆ Interpretable Cross-Sphere Multiscale Deep Learning Predicts ENSO Skilfully Beyond 2 Years
El Ni\~no-Southern Oscillation (ENSO) exerts global climate and societal impacts, but real-time prediction with lead times beyond one year remains challenging. Dynamical models suffer from large biases and uncertainties, while deep learning struggles with interpretability and multi-scale dynamics. Here, we introduce PTSTnet, an interpretable model that unifies dynamical processes and cross-scale spatiotemporal learning in an innovative neural-network framework with physics-encoding learning. PTSTnet produces interpretable predictions significantly outperforming state-of-the-art benchmarks with lead times beyond 24 months, providing physical insights into error propagation in ocean-atmosphere interactions. PTSTnet learns feature representations with physical consistency from sparse data to tackle inherent multi-scale and multi-physics challenges underlying ocean-atmosphere processes, thereby inherently enhancing long-term prediction skill. Our successful realizations mark substantial steps forward in interpretable insights into innovative neural ocean modelling.
comment: 13 pages, 4 figures
☆ Learning Generalizable Skills from Offline Multi-Task Data for Multi-Agent Cooperation
Learning cooperative multi-agent policy from offline multi-task data that can generalize to unseen tasks with varying numbers of agents and targets is an attractive problem in many scenarios. Although aggregating general behavior patterns among multiple tasks as skills to improve policy transfer is a promising approach, two primary challenges hinder the further advancement of skill learning in offline multi-task MARL. Firstly, extracting general cooperative behaviors from various action sequences as common skills lacks bringing cooperative temporal knowledge into them. Secondly, existing works only involve common skills and can not adaptively choose independent knowledge as task-specific skills in each task for fine-grained action execution. To tackle these challenges, we propose Hierarchical and Separate Skill Discovery (HiSSD), a novel approach for generalizable offline multi-task MARL through skill learning. HiSSD leverages a hierarchical framework that jointly learns common and task-specific skills. The common skills learn cooperative temporal knowledge and enable in-sample exploitation for offline multi-task MARL. The task-specific skills represent the priors of each task and achieve a task-guided fine-grained action execution. To verify the advancement of our method, we conduct experiments on multi-agent MuJoCo and SMAC benchmarks. After training the policy using HiSSD on offline multi-task data, the empirical results show that HiSSD assigns effective cooperative behaviors and obtains superior performance in unseen tasks.
☆ Unveiling the Potential of Superexpressive Networks in Implicit Neural Representations ICLR 2025
In this study, we examine the potential of one of the ``superexpressive'' networks in the context of learning neural functions for representing complex signals and performing machine learning downstream tasks. Our focus is on evaluating their performance on computer vision and scientific machine learning tasks including signal representation/inverse problems and solutions of partial differential equations. Through an empirical investigation in various benchmark tasks, we demonstrate that superexpressive networks, as proposed by [Zhang et al. NeurIPS, 2022], which employ a specialized network structure characterized by having an additional dimension, namely width, depth, and ``height'', can surpass recent implicit neural representations that use highly-specialized nonlinear activation functions.
comment: Accepted at ICLR 2025 Workshop on Neural Network Weights as a New Data Modality
☆ Adversarial Wear and Tear: Exploiting Natural Damage for Generating Physical-World Adversarial Examples
The presence of adversarial examples in the physical world poses significant challenges to the deployment of Deep Neural Networks in safety-critical applications such as autonomous driving. Most existing methods for crafting physical-world adversarial examples are ad-hoc, relying on temporary modifications like shadows, laser beams, or stickers that are tailored to specific scenarios. In this paper, we introduce a new class of physical-world adversarial examples, AdvWT, which draws inspiration from the naturally occurring phenomenon of `wear and tear', an inherent property of physical objects. Unlike manually crafted perturbations, `wear and tear' emerges organically over time due to environmental degradation, as seen in the gradual deterioration of outdoor signboards. To achieve this, AdvWT follows a two-step approach. First, a GAN-based, unsupervised image-to-image translation network is employed to model these naturally occurring damages, particularly in the context of outdoor signboards. The translation network encodes the characteristics of damaged signs into a latent `damage style code'. In the second step, we introduce adversarial perturbations into the style code, strategically optimizing its transformation process. This manipulation subtly alters the damage style representation, guiding the network to generate adversarial images where the appearance of damages remains perceptually realistic, while simultaneously ensuring their effectiveness in misleading neural networks. Through comprehensive experiments on two traffic sign datasets, we show that AdvWT effectively misleads DNNs in both digital and physical domains. AdvWT achieves an effective attack success rate, greater robustness, and a more natural appearance compared to existing physical-world adversarial examples. Additionally, integrating AdvWT into training enhances a model's generalizability to real-world damaged signs.
comment: 11 pages, 9 figures
☆ A Data Balancing and Ensemble Learning Approach for Credit Card Fraud Detection
This research introduces an innovative method for identifying credit card fraud by combining the SMOTE-KMEANS technique with an ensemble machine learning model. The proposed model was benchmarked against traditional models such as logistic regression, decision trees, random forests, and support vector machines. Performance was evaluated using metrics, including accuracy, recall, and area under the curve (AUC). The results demonstrated that the proposed model achieved superior performance, with an AUC of 0.96 when combined with the SMOTE-KMEANS algorithm. This indicates a significant improvement in detecting fraudulent transactions while maintaining high precision and recall. The study also explores the application of different oversampling techniques to enhance the performance of various classifiers. The findings suggest that the proposed method is robust and effective for classification tasks on balanced datasets. Future research directions include further optimization of the SMOTE-KMEANS approach and its integration into existing fraud detection systems to enhance financial security and consumer protection.
☆ Multi-Objective Optimization for Privacy-Utility Balance in Differentially Private Federated Learning
Federated learning (FL) enables collaborative model training across distributed clients without sharing raw data, making it a promising approach for privacy-preserving machine learning. However, ensuring differential privacy (DP) in FL presents challenges due to the trade-off between model utility and privacy protection. Clipping gradients before aggregation is a common strategy to limit privacy loss, but selecting an optimal clipping norm is non-trivial, as excessively high values compromise privacy, while overly restrictive clipping degrades model performance. In this work, we propose an adaptive clipping mechanism that dynamically adjusts the clipping norm using a multi-objective optimization framework. By integrating privacy and utility considerations into the optimization objective, our approach balances privacy preservation with model accuracy. We theoretically analyze the convergence properties of our method and demonstrate its effectiveness through extensive experiments on MNIST, Fashion-MNIST, and CIFAR-10 datasets. Our results show that adaptive clipping consistently outperforms fixed-clipping baselines, achieving improved accuracy under the same privacy constraints. This work highlights the potential of dynamic clipping strategies to enhance privacy-utility trade-offs in differentially private federated learning.
☆ Real-Time Evaluation Models for RAG: Who Detects Hallucinations Best?
This article surveys Evaluation models to automatically detect hallucinations in Retrieval-Augmented Generation (RAG), and presents a comprehensive benchmark of their performance across six RAG applications. Methods included in our study include: LLM-as-a-Judge, Prometheus, Lynx, the Hughes Hallucination Evaluation Model (HHEM), and the Trustworthy Language Model (TLM). These approaches are all reference-free, requiring no ground-truth answers/labels to catch incorrect LLM responses. Our study reveals that, across diverse RAG applications, some of these approaches consistently detect incorrect RAG responses with high precision/recall.
comment: 11 pages, 8 figures
☆ Embedding Domain-Specific Knowledge from LLMs into the Feature Engineering Pipeline
Feature engineering is mandatory in the machine learning pipeline to obtain robust models. While evolutionary computation is well-known for its great results both in feature selection and feature construction, its methods are computationally expensive due to the large number of evaluations required to induce the final model. Part of the reason why these algorithms require a large number of evaluations is their lack of domain-specific knowledge, resulting in a lot of random guessing during evolution. In this work, we propose using Large Language Models (LLMs) as an initial feature construction step to add knowledge to the dataset. By doing so, our results show that the evolution can converge faster, saving us computational resources. The proposed approach only provides the names of the features in the dataset and the target objective to the LLM, making it usable even when working with datasets containing private data. While consistent improvements to test performance were only observed for one-third of the datasets (CSS, PM, and IM10), possibly due to problems being easily explored by LLMs, this approach only decreased the model performance in 1/77 test cases. Additionally, this work introduces the M6GP feature engineering algorithm to symbolic regression, showing it can improve the results of the random forest regressor and produce competitive results with its predecessor, M3GP.
comment: 9 pages, 4 figures, 5 tables
☆ Federated Learning with Differential Privacy: An Utility-Enhanced Approach
Federated learning has emerged as an attractive approach to protect data privacy by eliminating the need for sharing clients' data while reducing communication costs compared with centralized machine learning algorithms. However, recent studies have shown that federated learning alone does not guarantee privacy, as private data may still be inferred from the uploaded parameters to the central server. In order to successfully avoid data leakage, adopting differential privacy (DP) in the local optimization process or in the local update aggregation process has emerged as two feasible ways for achieving sample-level or user-level privacy guarantees respectively, in federated learning models. However, compared to their non-private equivalents, these approaches suffer from a poor utility. To improve the privacy-utility trade-off, we present a modification to these vanilla differentially private algorithms based on a Haar wavelet transformation step and a novel noise injection scheme that significantly lowers the asymptotic bound of the noise variance. We also present a holistic convergence analysis of our proposed algorithm, showing that our method yields better convergence performance than the vanilla DP algorithms. Numerical experiments on real-world datasets demonstrate that our method outperforms existing approaches in model utility while maintaining the same privacy guarantees.
☆ A computational theory of evaluation for parameterisable subject
Evaluation is critical to advance decision making across domains, yet existing methodologies often struggle to balance theoretical rigor and practical scalability. In order to reduce the cost of experimental evaluation, we introduce a computational theory of evaluation for parameterisable subjects. We prove upper bounds of generalized evaluation error and generalized causal effect error of evaluation metric on subject. We also prove efficiency, and consistency to estimated causal effect of subject on metric by prediction. To optimize evaluation models, we propose a meta-learner to handle heterogeneous evaluation subjects space. Comparing with other computational approaches, our (conditional) evaluation model reduced 24.1%-99.0% evaluation errors across 12 scenes, including individual medicine, scientific simulation, business activities, and quantum trade. The evaluation time is reduced 3-7 order of magnitude comparing with experiments or simulations.
☆ MoQa: Rethinking MoE Quantization with Multi-stage Data-model Distribution Awareness
With the advances in artificial intelligence, Mix-of-Experts (MoE) has become the main form of Large Language Models (LLMs), and its demand for model compression is increasing. Quantization is an effective method that not only compresses the models but also significantly accelerates their performance. Existing quantization methods have gradually shifted the focus from parameter scaling to the analysis of data distributions. However, their analysis is designed for dense LLMs and relies on the simple one-model-all-data mapping, which is unsuitable for MoEs. This paper proposes a new quantization framework called MoQa. MoQa decouples the data-model distribution complexity of MoEs in multiple analysis stages, quantitively revealing the dynamics during sparse data activation, data-parameter mapping, and inter-expert correlations. Based on these, MoQa identifies particular experts' and parameters' significance with optimal data-model distribution awareness and proposes a series of fine-grained mix-quantization strategies adaptive to various data activation and expert combination scenarios. Moreover, MoQa discusses the limitations of existing quantization and analyzes the impact of each stage analysis, showing novel insights for MoE quantization. Experiments show that MoQa achieves a 1.69~2.18 perplexity decrease in language modeling tasks and a 1.58%~8.91% accuracy improvement in zero-shot inference tasks. We believe MoQa will play a role in future MoE construction, optimization, and compression.
comment: 6 pages, 6 figures and 3 tables
☆ Squared families: Searching beyond regular probability models
We introduce squared families, which are families of probability densities obtained by squaring a linear transformation of a statistic. Squared families are singular, however their singularity can easily be handled so that they form regular models. After handling the singularity, squared families possess many convenient properties. Their Fisher information is a conformal transformation of the Hessian metric induced from a Bregman generator. The Bregman generator is the normalising constant, and yields a statistical divergence on the family. The normalising constant admits a helpful parameter-integral factorisation, meaning that only one parameter-independent integral needs to be computed for all normalising constants in the family, unlike in exponential families. Finally, the squared family kernel is the only integral that needs to be computed for the Fisher information, statistical divergence and normalising constant. We then describe how squared families are special in the broader class of $g$-families, which are obtained by applying a sufficiently regular function $g$ to a linear transformation of a statistic. After removing special singularities, positively homogeneous families and exponential families are the only $g$-families for which the Fisher information is a conformal transformation of the Hessian metric, where the generator depends on the parameter only through the normalising constant. Even-order monomial families also admit parameter-integral factorisations, unlike exponential families. We study parameter estimation and density estimation in squared families, in the well-specified and misspecified settings. We use a universal approximation property to show that squared families can learn sufficiently well-behaved target densities at a rate of $\mathcal{O}(N^{-1/2})+C n^{-1/4}$, where $N$ is the number of datapoints, $n$ is the number of parameters, and $C$ is some constant.
comment: 43 pages. Preprint
☆ AugWard: Augmentation-Aware Representation Learning for Accurate Graph Classification PAKDD 2025
How can we accurately classify graphs? Graph classification is a pivotal task in data mining with applications in social network analysis, web analysis, drug discovery, molecular property prediction, etc. Graph neural networks have achieved the state-of-the-art performance in graph classification, but they consistently struggle with overfitting. To mitigate overfitting, researchers have introduced various representation learning methods utilizing graph augmentation. However, existing methods rely on simplistic use of graph augmentation, which loses augmentation-induced differences and limits the expressiveness of representations. In this paper, we propose AugWard (Augmentation-Aware Training with Graph Distance and Consistency Regularization), a novel graph representation learning framework that carefully considers the diversity introduced by graph augmentation. AugWard applies augmentation-aware training to predict the graph distance between the augmented graph and its original one, aligning the representation difference directly with graph distance at both feature and structure levels. Furthermore, AugWard employs consistency regularization to encourage the classifier to handle richer representations. Experimental results show that AugWard gives the state-of-the-art performance in supervised, semi-supervised graph classification, and transfer learning.
comment: Accepted to PAKDD 2025 (Oral Presentation)
☆ Low Stein Discrepancy via Message-Passing Monte Carlo ICLR 2025
Message-Passing Monte Carlo (MPMC) was recently introduced as a novel low-discrepancy sampling approach leveraging tools from geometric deep learning. While originally designed for generating uniform point sets, we extend this framework to sample from general multivariate probability distributions with known probability density function. Our proposed method, Stein-Message-Passing Monte Carlo (Stein-MPMC), minimizes a kernelized Stein discrepancy, ensuring improved sample quality. Finally, we show that Stein-MPMC outperforms competing methods, such as Stein Variational Gradient Descent and (greedy) Stein Points, by achieving a lower Stein discrepancy.
comment: 8 pages, 2 figures, Accepted at the ICLR 2025 Workshop on Frontiers in Probabilistic Inference
☆ Confidence Adjusted Surprise Measure for Active Resourceful Trials (CA-SMART): A Data-driven Active Learning Framework for Accelerating Material Discovery under Resource Constraints
Accelerating the discovery and manufacturing of advanced materials with specific properties is a critical yet formidable challenge due to vast search space, high costs of experiments, and time-intensive nature of material characterization. In recent years, active learning, where a surrogate machine learning (ML) model mimics the scientific discovery process of a human scientist, has emerged as a promising approach to address these challenges by guiding experimentation toward high-value outcomes with a limited budget. Among the diverse active learning philosophies, the concept of surprise (capturing the divergence between expected and observed outcomes) has demonstrated significant potential to drive experimental trials and refine predictive models. Scientific discovery often stems from surprise thereby making it a natural driver to guide the search process. Despite its promise, prior studies leveraging surprise metrics such as Shannon and Bayesian surprise lack mechanisms to account for prior confidence, leading to excessive exploration of uncertain regions that may not yield useful information. To address this, we propose the Confidence-Adjusted Surprise Measure for Active Resourceful Trials (CA-SMART), a novel Bayesian active learning framework tailored for optimizing data-driven experimentation. On a high level, CA-SMART incorporates Confidence-Adjusted Surprise (CAS) to dynamically balance exploration and exploitation by amplifying surprises in regions where the model is more certain while discounting them in highly uncertain areas. We evaluated CA-SMART on two benchmark functions (Six-Hump Camelback and Griewank) and in predicting the fatigue strength of steel. The results demonstrate superior accuracy and efficiency compared to traditional surprise metrics, standard Bayesian Optimization (BO) acquisition functions and conventional ML methods.
☆ ZJUKLAB at SemEval-2025 Task 4: Unlearning via Model Merging
This paper presents the ZJUKLAB team's submission for SemEval-2025 Task 4: Unlearning Sensitive Content from Large Language Models. This task aims to selectively erase sensitive knowledge from large language models, avoiding both over-forgetting and under-forgetting issues. We propose an unlearning system that leverages Model Merging (specifically TIES-Merging), combining two specialized models into a more balanced unlearned model. Our system achieves competitive results, ranking second among 26 teams, with an online score of 0.944 for Task Aggregate and 0.487 for overall Aggregate. In this paper, we also conduct local experiments and perform a comprehensive analysis of the unlearning process, examining performance trajectories, loss dynamics, and weight perspectives, along with several supplementary experiments, to understand the effectiveness of our method. Furthermore, we analyze the shortcomings of our method and evaluation metrics, emphasizing that MIA scores and ROUGE-based metrics alone are insufficient to fully evaluate successful unlearning. Finally, we emphasize the need for more comprehensive evaluation methodologies and rethinking of unlearning objectives in future research. Code is available at https://github.com/zjunlp/unlearn/tree/main/semeval25.
comment: Work in progress
☆ Geographical hotspot prediction based on point cloud-voxel-community partition clustering
Existing solutions to the hotspot prediction problem in the field of geographic information remain at a relatively preliminary stage. This study presents a novel approach for detecting and predicting geographical hotspots, utilizing point cloud-voxel-community partition clustering. By analyzing high-dimensional data, we represent spatial information through point clouds, which are then subdivided into multiple voxels to enhance analytical efficiency. Our method identifies spatial voxels with similar characteristics through community partitioning, thereby revealing underlying patterns in hotspot distributions. Experimental results indicate that when applied to a dataset of archaeological sites in Turkey, our approach achieves a 19.31% increase in processing speed, with an accuracy loss of merely 6%, outperforming traditional clustering methods. This method not only provides a fresh perspective for hotspot prediction but also serves as an effective tool for high-dimensional data analysis.
☆ KAC: Kolmogorov-Arnold Classifier for Continual Learning CVPR 2025
Continual learning requires models to train continuously across consecutive tasks without forgetting. Most existing methods utilize linear classifiers, which struggle to maintain a stable classification space while learning new tasks. Inspired by the success of Kolmogorov-Arnold Networks (KAN) in preserving learning stability during simple continual regression tasks, we set out to explore their potential in more complex continual learning scenarios. In this paper, we introduce the Kolmogorov-Arnold Classifier (KAC), a novel classifier developed for continual learning based on the KAN structure. We delve into the impact of KAN's spline functions and introduce Radial Basis Functions (RBF) for improved compatibility with continual learning. We replace linear classifiers with KAC in several recent approaches and conduct experiments across various continual learning benchmarks, all of which demonstrate performance improvements, highlighting the effectiveness and robustness of KAC in continual learning. The code is available at https://github.com/Ethanhuhuhu/KAC.
comment: CVPR 2025
☆ Rerouting Connection: Hybrid Computer Vision Analysis Reveals Visual Similarity Between Indus and Tibetan-Yi Corridor Writing Systems
This thesis employs a hybrid CNN-Transformer architecture, in conjunction with a detailed anthropological framework, to investigate potential historical connections between the visual morphology of the Indus Valley script and pictographic systems of the Tibetan-Yi Corridor. Through an ensemble methodology of three target scripts across 15 independently trained models, we demonstrate that Tibetan-Yi Corridor scripts exhibit approximately six-fold higher visual similarity to the Indus script (61.7%-63.5%) than to the Bronze Age Proto-Cuneiform (10.2%-10.9%) or Proto-Elamite (7.6%-8.7%) systems. Additionally and contrarily to our current understanding of the networks of the Indus Valley Civilization, the Indus script unexpectedly maps closer to Tibetan-Yi Corridor scripts, with a mean cosine similarity of 0.629, than to the aforementioned contemporaneous West Asian signaries, both of which recorded mean cosine similarities of 0.104 and 0.080 despite their close geographic proximity and evident trade relations. Across various dimensionality reduction practices and clustering methodologies, the Indus script consistently clusters closest to Tibetan-Yi Corridor scripts. Our computational results align with qualitative observations of specific pictorial parallels in numeral systems, gender markers, and key iconographic elements; this is further supported by archaeological evidence of sustained contact networks along the ancient Shu-Shendu road in tandem with the Indus Valley Civilization's decline, providing a plausible transmission pathway. While alternative explanations cannot be ruled out, the specificity and consistency of observed similarities challenge conventional narratives of isolated script development and suggest more complex ancient cultural transmission networks between South and East Asia than previously recognized.
comment: 106 pages total (main text: 42, 48 w/refs, 100 w/appendices). 21 figures, 4 tables in main; 106 figs, 8 tables total. Code and data at this URL: https://github.com/oohalakkadi/ivc2tyc. Submitted as undergrad thesis at Duke Kunshan University; accepted for presentation at the 2025 Computer Applications and Quantitative Methods in Archaeology Conference, Athens
☆ Shared Global and Local Geometry of Language Model Embeddings
Researchers have recently suggested that models share common representations. In this work, we find that the token embeddings of language models exhibit common geometric structure. First, we find ``global'' similarities: token embeddings often share similar relative orientations. Next, we characterize local geometry in two ways: (1) by using Locally Linear Embeddings, and (2) by defining a simple measure for the intrinsic dimension of each token embedding. Our intrinsic dimension measure demonstrates that token embeddings lie on a lower dimensional manifold. We qualitatively show that tokens with lower intrinsic dimensions often have semantically coherent clusters, while those with higher intrinsic dimensions do not. Both characterizations allow us to find similarities in the local geometry of token embeddings. Perhaps most surprisingly, we find that alignment in token embeddings persists through the hidden states of language models, allowing us to develop an application for interpretability. Namely, we empirically demonstrate that steering vectors from one language model can be transferred to another, despite the two models having different dimensions.
☆ Purifying Approximate Differential Privacy with Randomized Post-processing
We propose a framework to convert $(\varepsilon, \delta)$-approximate Differential Privacy (DP) mechanisms into $(\varepsilon, 0)$-pure DP mechanisms, a process we call ``purification''. This algorithmic technique leverages randomized post-processing with calibrated noise to eliminate the $\delta$ parameter while preserving utility. By combining the tighter utility bounds and computational efficiency of approximate DP mechanisms with the stronger guarantees of pure DP, our approach achieves the best of both worlds. We illustrate the applicability of this framework in various settings, including Differentially Private Empirical Risk Minimization (DP-ERM), data-dependent DP mechanisms such as Propose-Test-Release (PTR), and query release tasks. To the best of our knowledge, this is the first work to provide a systematic method for transforming approximate DP into pure DP while maintaining competitive accuracy and computational efficiency.
☆ Uncertainty propagation in feed-forward neural network models
We develop new uncertainty propagation methods for feed-forward neural network architectures with leaky ReLu activation functions subject to random perturbations in the input vectors. In particular, we derive analytical expressions for the probability density function (PDF) of the neural network output and its statistical moments as a function of the input uncertainty and the parameters of the network, i.e., weights and biases. A key finding is that an appropriate linearization of the leaky ReLu activation function yields accurate statistical results even for large perturbations in the input vectors. This can be attributed to the way information propagates through the network. We also propose new analytically tractable Gaussian copula surrogate models to approximate the full joint PDF of the neural network output. To validate our theorical results, we conduct Monte Carlo simulations and a thorough error analysis on a multi-layer neural network representing a nonlinear integro-differential operator between two polynomial function spaces. Our findings demonstrate excellent agreement between the theoretical predictions and Monte Carlo simulations.
comment: 21 pages, 13 figures
☆ ThinkEdit: Interpretable Weight Editing to Mitigate Overly Short Thinking in Reasoning Models
Recent studies have shown that Large Language Models (LLMs) augmented with chain-of-thought (CoT) reasoning demonstrate impressive problem-solving abilities. However, in this work, we identify a recurring issue where these models occasionally generate overly short reasoning, leading to degraded performance on even simple mathematical problems. Specifically, we investigate how reasoning length is embedded in the hidden representations of reasoning models and its impact on accuracy. Our analysis reveals that reasoning length is governed by a linear direction in the representation space, allowing us to induce overly short reasoning by steering the model along this direction. Building on this insight, we introduce ThinkEdit, a simple yet effective weight-editing approach to mitigate the issue of overly short reasoning. We first identify a small subset of attention heads (approximately 2%) that predominantly drive short reasoning behavior. We then edit the output projection weights of these heads to suppress the short reasoning direction. With changes to only 0.1% of the model's parameters, ThinkEdit effectively reduces overly short reasoning and yields notable accuracy gains for short reasoning outputs (+5.44%), along with an overall improvement across multiple math benchmarks (+2.43%). Our findings provide new mechanistic insights into how reasoning length is controlled within LLMs and highlight the potential of fine-grained model interventions to improve reasoning quality. Our code is available at https://github.com/Trustworthy-ML-Lab/ThinkEdit
☆ Safeguarding Autonomy: a Focus on Machine Learning Decision Systems
As global discourse on AI regulation gains momentum, this paper focuses on delineating the impact of ML on autonomy and fostering awareness. Respect for autonomy is a basic principle in bioethics that establishes persons as decision-makers. While the concept of autonomy in the context of ML appears in several European normative publications, it remains a theoretical concept that has yet to be widely accepted in ML practice. Our contribution is to bridge the theoretical and practical gap by encouraging the practical application of autonomy in decision-making within ML practice by identifying the conditioning factors that currently prevent it. Consequently, we focus on the different stages of the ML pipeline to identify the potential effects on ML end-users' autonomy. To improve its practical utility, we propose a related question for each detected impact, offering guidance for identifying possible focus points to respect ML end-users autonomy in decision-making.
☆ CoT-VLA: Visual Chain-of-Thought Reasoning for Vision-Language-Action Models
Vision-language-action models (VLAs) have shown potential in leveraging pretrained vision-language models and diverse robot demonstrations for learning generalizable sensorimotor control. While this paradigm effectively utilizes large-scale data from both robotic and non-robotic sources, current VLAs primarily focus on direct input--output mappings, lacking the intermediate reasoning steps crucial for complex manipulation tasks. As a result, existing VLAs lack temporal planning or reasoning capabilities. In this paper, we introduce a method that incorporates explicit visual chain-of-thought (CoT) reasoning into vision-language-action models (VLAs) by predicting future image frames autoregressively as visual goals before generating a short action sequence to achieve these goals. We introduce CoT-VLA, a state-of-the-art 7B VLA that can understand and generate visual and action tokens. Our experimental results demonstrate that CoT-VLA achieves strong performance, outperforming the state-of-the-art VLA model by 17% in real-world manipulation tasks and 6% in simulation benchmarks. Project website: https://cot-vla.github.io/
comment: Project website: https://cot-vla.github.io/
☆ Tune It Up: Music Genre Transfer and Prediction
Deep generative models have been used in style transfer tasks for images. In this study, we adapt and improve CycleGAN model to perform music style transfer on Jazz and Classic genres. By doing so, we aim to easily generate new songs, cover music to different music genres and reduce the arrangements needed in those processes. We train and use music genre classifier to assess the performance of the transfer models. To that end, we obtain 87.7% accuracy with Multi-layer Perceptron algorithm. To improve our style transfer baseline, we add auxiliary discriminators and triplet loss to our model. According to our experiments, we obtain the best accuracies as 69.4% in Jazz to Classic task and 39.3% in Classic to Jazz task with our developed genre classifier. We also run a subjective experiment and results of it show that the overall performance of our transfer model is good and it manages to conserve melody of inputs on the transferred outputs. Our code is available at https://github.com/ fidansamet/tune-it-up
☆ Enhancing Domain-Specific Encoder Models with LLM-Generated Data: How to Leverage Ontologies, and How to Do Without Them
We investigate the use of LLM-generated data for continual pretraining of encoder models in specialized domains with limited training data, using the scientific domain of invasion biology as a case study. To this end, we leverage domain-specific ontologies by enriching them with LLM-generated data and pretraining the encoder model as an ontology-informed embedding model for concept definitions. To evaluate the effectiveness of this method, we compile a benchmark specifically designed for assessing model performance in invasion biology. After demonstrating substantial improvements over standard LLM pretraining, we investigate the feasibility of applying the proposed approach to domains without comprehensive ontologies by substituting ontological concepts with concepts automatically extracted from a small corpus of scientific abstracts and establishing relationships between concepts through distributional statistics. Our results demonstrate that this automated approach achieves comparable performance using only a small set of scientific abstracts, resulting in a fully automated pipeline for enhancing domain-specific understanding of small encoder models that is especially suited for application in low-resource settings and achieves performance comparable to masked language modeling pretraining on much larger datasets.
☆ FACETS: Efficient Once-for-all Object Detection via Constrained Iterative Search
Neural Architecture Search (NAS) for deep learning object detection frameworks typically involves multiple modules, each performing distinct tasks. These modules contribute to a vast search space, resulting in searches that can take several GPU hours or even days, depending on the complexity of the search space. This makes joint optimization both challenging and computationally expensive. Furthermore, satisfying target device constraints across modules adds additional complexity to the optimization process. To address these challenges, we propose \textbf{FACETS}, e\textbf{\underline{F}}ficient Once-for-\textbf{\underline{A}}ll Object Detection via \textbf{\underline{C}}onstrained it\textbf{\underline{E}}ra\textbf{\underline{T}}ive\textbf{\underline{S}}earch, a novel unified iterative NAS method that refines the architecture of all modules in a cyclical manner. FACETS leverages feedback from previous iterations, alternating between fixing one module's architecture and optimizing the others. This approach reduces the overall search space while preserving interdependencies among modules and incorporates constraints based on the target device's computational budget. In a controlled comparison against progressive and single-module search strategies, FACETS achieves architectures with up to $4.75\%$ higher accuracy twice as fast as progressive search strategies in earlier stages, while still being able to achieve a global optimum. Moreover, FACETS demonstrates the ability to iteratively refine the search space, producing better performing architectures over time. The refined search space yields candidates with a mean accuracy up to $27\%$ higher than global search and $5\%$ higher than progressive search methods via random sampling.
comment: 10 pages, 6 figures
☆ Bresa: Bio-inspired Reflexive Safe Reinforcement Learning for Contact-Rich Robotic Tasks
Ensuring safety in reinforcement learning (RL)-based robotic systems is a critical challenge, especially in contact-rich tasks within unstructured environments. While the state-of-the-art safe RL approaches mitigate risks through safe exploration or high-level recovery mechanisms, they often overlook low-level execution safety, where reflexive responses to potential hazards are crucial. Similarly, variable impedance control (VIC) enhances safety by adjusting the robot's mechanical response, yet lacks a systematic way to adapt parameters, such as stiffness and damping throughout the task. In this paper, we propose Bresa, a Bio-inspired Reflexive Hierarchical Safe RL method inspired by biological reflexes. Our method decouples task learning from safety learning, incorporating a safety critic network that evaluates action risks and operates at a higher frequency than the task solver. Unlike existing recovery-based methods, our safety critic functions at a low-level control layer, allowing real-time intervention when unsafe conditions arise. The task-solving RL policy, running at a lower frequency, focuses on high-level planning (decision-making), while the safety critic ensures instantaneous safety corrections. We validate Bresa on multiple tasks including a contact-rich robotic task, demonstrating its reflexive ability to enhance safety, and adaptability in unforeseen dynamic environments. Our results show that Bresa outperforms the baseline, providing a robust and reflexive safety mechanism that bridges the gap between high-level planning and low-level execution. Real-world experiments and supplementary material are available at project website https://jack-sherman01.github.io/Bresa.
comment: submitted to IEEE RA-L
☆ Improving Equivariant Networks with Probabilistic Symmetry Breaking
Equivariance encodes known symmetries into neural networks, often enhancing generalization. However, equivariant networks cannot break symmetries: the output of an equivariant network must, by definition, have at least the same self-symmetries as the input. This poses an important problem, both (1) for prediction tasks on domains where self-symmetries are common, and (2) for generative models, which must break symmetries in order to reconstruct from highly symmetric latent spaces. This fundamental limitation can be addressed by considering equivariant conditional distributions, instead of equivariant functions. We present novel theoretical results that establish necessary and sufficient conditions for representing such distributions. Concretely, this representation provides a practical framework for breaking symmetries in any equivariant network via randomized canonicalization. Our method, SymPE (Symmetry-breaking Positional Encodings), admits a simple interpretation in terms of positional encodings. This approach expands the representational power of equivariant networks while retaining the inductive bias of symmetry, which we justify through generalization bounds. Experimental results demonstrate that SymPE significantly improves performance of group-equivariant and graph neural networks across diffusion models for graphs, graph autoencoders, and lattice spin system modeling.
comment: 28 pages, 7 figures
☆ Differential Evolution for Grassmann Manifold Optimization: A Projection Approach
We propose a novel evolutionary algorithm for optimizing real-valued objective functions defined on the Grassmann manifold Gr}(k,n), the space of all k-dimensional linear subspaces of R^n. While existing optimization techniques on Gr}(k,n) predominantly rely on first- or second-order Riemannian methods, these inherently local methods often struggle with nonconvex or multimodal landscapes. To address this limitation, we adapt the Differential Evolution algorithm - a global, population based optimization method - to operate effectively on the Grassmannian. Our approach incorporates adaptive control parameter schemes, and introduces a projection mechanism that maps trial vectors onto the manifold via QR decomposition. The resulting algorithm maintains feasibility with respect to the manifold structure while enabling exploration beyond local neighborhoods. This framework provides a flexible and geometry-aware alternative to classical Riemannian optimization methods and is well-suited to applications in machine learning, signal processing, and low-rank matrix recovery where subspace representations play a central role. We test the methodology on a number of examples of optimization problems on Grassmann manifolds.
☆ RocketPPA: Ultra-Fast LLM-Based PPA Estimator at Code-Level Abstraction
Large language models have recently transformed hardware design, yet bridging the gap between code synthesis and PPA (power, performance, and area) estimation remains a challenge. In this work, we introduce a novel framework that leverages a 21k dataset of thoroughly cleaned and synthesizable Verilog modules, each annotated with detailed power, delay, and area metrics. By employing chain-of-thought techniques, we automatically debug and curate this dataset to ensure high fidelity in downstream applications. We then fine-tune CodeLlama using LoRA-based parameter-efficient methods, framing the task as a regression problem to accurately predict PPA metrics from Verilog code. Furthermore, we augment our approach with a mixture-of-experts architecture-integrating both LoRA and an additional MLP expert layer-to further refine predictions. Experimental results demonstrate significant improvements: power estimation accuracy is enhanced by 5.9% at a 20% error threshold and by 7.2% at a 10% threshold, delay estimation improves by 5.1% and 3.9%, and area estimation sees gains of 4% and 7.9% for the 20% and 10% thresholds, respectively. Notably, the incorporation of the mixture-of-experts module contributes an additional 3--4% improvement across these tasks. Our results establish a new benchmark for PPA-aware Verilog generation, highlighting the effectiveness of our integrated dataset and modeling strategies for next-generation EDA workflows.
☆ NeuroLIP: Interpretable and Fair Cross-Modal Alignment of fMRI and Phenotypic Text
Integrating functional magnetic resonance imaging (fMRI) connectivity data with phenotypic textual descriptors (e.g., disease label, demographic data) holds significant potential to advance our understanding of neurological conditions. However, existing cross-modal alignment methods often lack interpretability and risk introducing biases by encoding sensitive attributes together with diagnostic-related features. In this work, we propose NeuroLIP, a novel cross-modal contrastive learning framework. We introduce text token-conditioned attention (TTCA) and cross-modal alignment via localized tokens (CALT) to the brain region-level embeddings with each disease-related phenotypic token. It improves interpretability via token-level attention maps, revealing brain region-disease associations. To mitigate bias, we propose a loss for sensitive attribute disentanglement that maximizes the attention distance between disease tokens and sensitive attribute tokens, reducing unintended correlations in downstream predictions. Additionally, we incorporate a negative gradient technique that reverses the sign of CALT loss on sensitive attributes, further discouraging the alignment of these features. Experiments on neuroimaging datasets (ABIDE and ADHD-200) demonstrate NeuroLIP's superiority in terms of fairness metrics while maintaining the overall best standard metric performance. Qualitative visualization of attention maps highlights neuroanatomical patterns aligned with diagnostic characteristics, validated by the neuroscientific literature. Our work advances the development of transparent and equitable neuroimaging AI.
☆ Reward Design for Reinforcement Learning Agents
Reward functions are central in reinforcement learning (RL), guiding agents towards optimal decision-making. The complexity of RL tasks requires meticulously designed reward functions that effectively drive learning while avoiding unintended consequences. Effective reward design aims to provide signals that accelerate the agent's convergence to optimal behavior. Crafting rewards that align with task objectives, foster desired behaviors, and prevent undesirable actions is inherently challenging. This thesis delves into the critical role of reward signals in RL, highlighting their impact on the agent's behavior and learning dynamics and addressing challenges such as delayed, ambiguous, or intricate rewards. In this thesis work, we tackle different aspects of reward shaping. First, we address the problem of designing informative and interpretable reward signals from a teacher's/expert's perspective (teacher-driven). Here, the expert, equipped with the optimal policy and the corresponding value function, designs reward signals that expedite the agent's convergence to optimal behavior. Second, we build on this teacher-driven approach by introducing a novel method for adaptive interpretable reward design. In this scenario, the expert tailors the rewards based on the learner's current policy, ensuring alignment and optimal progression. Third, we propose a meta-learning approach, enabling the agent to self-design its reward signals online without expert input (agent-driven). This self-driven method considers the agent's learning and exploration to establish a self-improving feedback loop.
comment: Doctoral thesis
☆ Lobster: A GPU-Accelerated Framework for Neurosymbolic Programming
Neurosymbolic programs combine deep learning with symbolic reasoning to achieve better data efficiency, interpretability, and generalizability compared to standalone deep learning approaches. However, existing neurosymbolic learning frameworks implement an uneasy marriage between a highly scalable, GPU-accelerated neural component with a slower symbolic component that runs on CPUs. We propose Lobster, a unified framework for harnessing GPUs in an end-to-end manner for neurosymbolic learning. Lobster maps a general neurosymbolic language based on Datalog to the GPU programming paradigm. This mapping is implemented via compilation to a new intermediate language called APM. The extra abstraction provided by APM allows Lobster to be both flexible, supporting discrete, probabilistic, and differentiable modes of reasoning on GPU hardware with a library of provenance semirings, and performant, implementing new optimization passes. We demonstrate that Lobster programs can solve interesting problems spanning the domains of natural language processing, image processing, program reasoning, bioinformatics, and planning. On a suite of 8 applications, Lobster achieves an average speedup of 5.3x over Scallop, a state-of-the-art neurosymbolic framework, and enables scaling of neurosymbolic solutions to previously infeasible tasks.
☆ Multimodal Data Integration for Sustainable Indoor Gardening: Tracking Anyplant with Time Series Foundation Model
Indoor gardening within sustainable buildings offers a transformative solution to urban food security and environmental sustainability. By 2030, urban farming, including Controlled Environment Agriculture (CEA) and vertical farming, is expected to grow at a compound annual growth rate (CAGR) of 13.2% from 2024 to 2030, according to market reports. This growth is fueled by advancements in Internet of Things (IoT) technologies, sustainable innovations such as smart growing systems, and the rising interest in green interior design. This paper presents a novel framework that integrates computer vision, machine learning (ML), and environmental sensing for the automated monitoring of plant health and growth. Unlike previous approaches, this framework combines RGB imagery, plant phenotyping data, and environmental factors such as temperature and humidity, to predict plant water stress in a controlled growth environment. The system utilizes high-resolution cameras to extract phenotypic features, such as RGB, plant area, height, and width while employing the Lag-Llama time series model to analyze and predict water stress. Experimental results demonstrate that integrating RGB, size ratios, and environmental data significantly enhances predictive accuracy, with the Fine-tuned model achieving the lowest errors (MSE = 0.420777, MAE = 0.595428) and reduced uncertainty. These findings highlight the potential of multimodal data and intelligent systems to automate plant care, optimize resource consumption, and align indoor gardening with sustainable building management practices, paving the way for resilient, green urban spaces.
comment: Accepted at ASCE International Conference on Computing in Civil Engineering (i3ce)
Local Normalization Distortion and the Thermodynamic Formalism of Decoding Strategies for Large Language Models
Advances in hardware and language model architecture have spurred a revolution in natural language generation. However, autoregressive models compute probability distributions over next-token choices, and sampling from these distributions, known as decoding, has received significantly less attention than other design choices. Existing decoding strategies are largely based on heuristics, resulting in methods that are hard to apply or improve in a principled manner. We develop the theory of decoding strategies for language models by expressing popular decoding algorithms as equilibrium states in the language of ergodic theory and stating the functions they optimize. Using this, we analyze the effect of the local normalization step of top-k, nucleus, and temperature sampling, used to make probabilities sum to one. We argue that local normalization distortion is a fundamental defect of decoding strategies and quantify the size of this distortion and its effect on mathematical proxies for the quality and diversity of generated text. Contrary to the prevailing explanation, we argue that the major cause of the under-performance of top-k sampling relative to nucleus sampling is local normalization distortion. This yields conclusions for the future design of decoding algorithms and the detection of machine-generated text.
☆ An Efficient Training Algorithm for Models with Block-wise Sparsity
Large-scale machine learning (ML) models are increasingly being used in critical domains like education, lending, recruitment, healthcare, criminal justice, etc. However, the training, deployment, and utilization of these models demand substantial computational resources. To decrease computation and memory costs, machine learning models with sparse weight matrices are widely used in the literature. Among sparse models, those with special sparse structures (e.g., models with block-wise sparse weight matrices) fit better with the hardware accelerators and can decrease the memory and computation costs during the inference. Unfortunately, while there are several efficient training methods, none of them are designed to train a block-wise sparse model efficiently. As a result, the current methods for training block-wise sparse models start with full and dense models leading to inefficient training. In this work, we focus on training models with \textit{block-wise sparse matrices} and propose an efficient training algorithm to decrease both computation and memory costs during training and inference. In addition, we will show that our proposed method enables us to efficiently find the right block size for the sparsity pattern during the training process. Our extensive empirical and theoretical analyses show that our algorithms can decrease the computation and memory costs significantly without a performance drop compared to baselines.
comment: 24 pages, submitted on Transactions on Machine Learning Research
☆ Exponentially Weighted Instance-Aware Repeat Factor Sampling for Long-Tailed Object Detection Model Training in Unmanned Aerial Vehicles Surveillance Scenarios
Object detection models often struggle with class imbalance, where rare categories appear significantly less frequently than common ones. Existing sampling-based rebalancing strategies, such as Repeat Factor Sampling (RFS) and Instance-Aware Repeat Factor Sampling (IRFS), mitigate this issue by adjusting sample frequencies based on image and instance counts. However, these methods are based on linear adjustments, which limit their effectiveness in long-tailed distributions. This work introduces Exponentially Weighted Instance-Aware Repeat Factor Sampling (E-IRFS), an extension of IRFS that applies exponential scaling to better differentiate between rare and frequent classes. E-IRFS adjusts sampling probabilities using an exponential function applied to the geometric mean of image and instance frequencies, ensuring a more adaptive rebalancing strategy. We evaluate E-IRFS on a dataset derived from the Fireman-UAV-RGBT Dataset and four additional public datasets, using YOLOv11 object detection models to identify fire, smoke, people and lakes in emergency scenarios. The results show that E-IRFS improves detection performance by 22\% over the baseline and outperforms RFS and IRFS, particularly for rare categories. The analysis also highlights that E-IRFS has a stronger effect on lightweight models with limited capacity, as these models rely more on data sampling strategies to address class imbalance. The findings demonstrate that E-IRFS improves rare object detection in resource-constrained environments, making it a suitable solution for real-time applications such as UAV-based emergency monitoring.
comment: 6 pages, 2 figures, 9 tables, 6 formulas, conference paper
☆ StarFlow: Generating Structured Workflow Outputs From Sketch Images
Workflows are a fundamental component of automation in enterprise platforms, enabling the orchestration of tasks, data processing, and system integrations. Despite being widely used, building workflows can be complex, often requiring manual configuration through low-code platforms or visual programming tools. To simplify this process, we explore the use of generative foundation models, particularly vision-language models (VLMs), to automatically generate structured workflows from visual inputs. Translating hand-drawn sketches or computer-generated diagrams into executable workflows is challenging due to the ambiguity of free-form drawings, variations in diagram styles, and the difficulty of inferring execution logic from visual elements. To address this, we introduce StarFlow, a framework for generating structured workflow outputs from sketches using vision-language models. We curate a diverse dataset of workflow diagrams -- including synthetic, manually annotated, and real-world samples -- to enable robust training and evaluation. We finetune and benchmark multiple vision-language models, conducting a series of ablation studies to analyze the strengths and limitations of our approach. Our results show that finetuning significantly enhances structured workflow generation, outperforming large vision-language models on this task.
☆ Is Best-of-N the Best of Them? Coverage, Scaling, and Optimality in Inference-Time Alignment
Inference-time computation provides an important axis for scaling language model performance, but naively scaling compute through techniques like Best-of-$N$ sampling can cause performance to degrade due to reward hacking. Toward a theoretical understanding of how to best leverage additional computation, we focus on inference-time alignment which we formalize as the problem of improving a pre-trained policy's responses for a prompt of interest, given access to an imperfect reward model. We analyze the performance of inference-time alignment algorithms in terms of (i) response quality, and (ii) compute, and provide new results that highlight the importance of the pre-trained policy's coverage over high-quality responses for performance and compute scaling: 1. We show that Best-of-$N$ alignment with an ideal choice for $N$ can achieve optimal performance under stringent notions of coverage, but provably suffers from reward hacking when $N$ is large, and fails to achieve tight guarantees under more realistic coverage conditions. 2. We introduce $\texttt{InferenceTimePessimism}$, a new algorithm which mitigates reward hacking through deliberate use of inference-time compute, implementing the principle of pessimism in the face of uncertainty via rejection sampling; we prove that its performance is optimal and does not degrade with $N$, meaning it is scaling-monotonic. We complement our theoretical results with an experimental evaluation that demonstrate the benefits of $\texttt{InferenceTimePessimism}$ across a variety of tasks and models.
☆ M-DocSum: Do LVLMs Genuinely Comprehend Interleaved Image-Text in Document Summarization?
We investigate a critical yet under-explored question in Large Vision-Language Models (LVLMs): Do LVLMs genuinely comprehend interleaved image-text in the document? Existing document understanding benchmarks often assess LVLMs using question-answer formats, which are information-sparse and difficult to guarantee the coverage of long-range dependencies. To address this issue, we introduce a novel and challenging Multimodal Document Summarization Benchmark (M-DocSum-Bench), which comprises 500 high-quality arXiv papers, along with interleaved multimodal summaries aligned with human preferences. M-DocSum-Bench is a reference-based generation task and necessitates the generation of interleaved image-text summaries using provided reference images, thereby simultaneously evaluating capabilities in understanding, reasoning, localization, and summarization within complex multimodal document scenarios. To facilitate this benchmark, we develop an automated framework to construct summaries and propose a fine-grained evaluation method called M-DocEval. Moreover, we further develop a robust summarization baseline, i.e., M-DocSum-7B, by progressive two-stage training with diverse instruction and preference data. The extensive results on our M-DocSum-Bench reveal that the leading LVLMs struggle to maintain coherence and accurately integrate information within long and interleaved contexts, often exhibiting confusion between similar images and a lack of robustness. Notably, M-DocSum-7B achieves state-of-the-art performance compared to larger and closed-source models (including GPT-4o, Gemini Pro, Claude-3.5-Sonnet and Qwen2.5-VL-72B, etc.), demonstrating the potential of LVLMs for improved interleaved image-text understanding. The code, data, and models are available at https://github.com/stepfun-ai/M-DocSum-Bench.
♻ ☆ An Empirical Study of the Impact of Federated Learning on Machine Learning Model Accuracy
Federated Learning (FL) enables distributed ML model training on private user data at the global scale. Despite the potential of FL demonstrated in many domains, an in-depth view of its impact on model accuracy remains unclear. In this paper, we investigate, systematically, how this learning paradigm can affect the accuracy of state-of-the-art ML models for a variety of ML tasks. We present an empirical study that involves various data types: text, image, audio, and video, and FL configuration knobs: data distribution, FL scale, client sampling, and local and global computations. Our experiments are conducted in a unified FL framework to achieve high fidelity, with substantial human efforts and resource investments. Based on the results, we perform a quantitative analysis of the impact of FL, and highlight challenging scenarios where applying FL degrades the accuracy of the model drastically and identify cases where the impact is negligible. The detailed and extensive findings can benefit practical deployments and future development of FL.
♻ ☆ Demand Estimation with Text and Image Data
We propose a demand estimation method that leverages unstructured text and image data to infer substitution patterns. Using pre-trained deep learning models, we extract embeddings from product images and textual descriptions and incorporate them into a random coefficients logit model. This approach enables researchers to estimate demand even when they lack data on product attributes or when consumers value hard-to-quantify attributes, such as visual design or functional benefits. Using data from a choice experiment, we show that our approach outperforms standard attribute-based models in counterfactual predictions of consumers' second choices. We also apply it across 40 product categories on Amazon and consistently find that text and image data help identify close substitutes within each category.
♻ ☆ Flip Learning: Weakly Supervised Erase to Segment Nodules in Breast Ultrasound
Accurate segmentation of nodules in both 2D breast ultrasound (BUS) and 3D automated breast ultrasound (ABUS) is crucial for clinical diagnosis and treatment planning. Therefore, developing an automated system for nodule segmentation can enhance user independence and expedite clinical analysis. Unlike fully-supervised learning, weakly-supervised segmentation (WSS) can streamline the laborious and intricate annotation process. However, current WSS methods face challenges in achieving precise nodule segmentation, as many of them depend on inaccurate activation maps or inefficient pseudo-mask generation algorithms. In this study, we introduce a novel multi-agent reinforcement learning-based WSS framework called Flip Learning, which relies solely on 2D/3D boxes for accurate segmentation. Specifically, multiple agents are employed to erase the target from the box to facilitate classification tag flipping, with the erased region serving as the predicted segmentation mask. The key contributions of this research are as follows: (1) Adoption of a superpixel/supervoxel-based approach to encode the standardized environment, capturing boundary priors and expediting the learning process. (2) Introduction of three meticulously designed rewards, comprising a classification score reward and two intensity distribution rewards, to steer the agents' erasing process precisely, thereby avoiding both under- and over-segmentation. (3) Implementation of a progressive curriculum learning strategy to enable agents to interact with the environment in a progressively challenging manner, thereby enhancing learning efficiency. Extensively validated on the large in-house BUS and ABUS datasets, our Flip Learning method outperforms state-of-the-art WSS methods and foundation models, and achieves comparable performance as fully-supervised learning algorithms.
comment: Accepted by Medical Image Analysis. 24 pages, 13 figures, 20 tabels
♻ ☆ DR-PETS: Learning-Based Control With Planning in Adversarial Environments
Ensuring robustness against epistemic, possibly adversarial, perturbations is essential for reliable real-world decision-making. While the Probabilistic Ensembles with Trajectory Sampling (PETS) algorithm inherently handles uncertainty via ensemble-based probabilistic models, it lacks guarantees against structured adversarial or worst-case uncertainty distributions. To address this, we propose DR-PETS, a distributionally robust extension of PETS that certifies robustness against adversarial perturbations. We formalize uncertainty via a p-Wasserstein ambiguity set, enabling worst-case-aware planning through a min-max optimization framework. While PETS passively accounts for stochasticity, DR-PETS actively optimizes robustness via a tractable convex approximation integrated into PETS planning loop. Experiments on pendulum stabilization and cart-pole balancing show that DR-PETS certifies robustness against adversarial parameter perturbations, achieving consistent performance in worst-case scenarios where PETS deteriorates.
♻ ☆ PVLens: Enhancing Pharmacovigilance Through Automated Label Extraction
Reliable drug safety reference databases are essential for pharmacovigilance, yet existing resources like SIDER are outdated and static. We introduce PVLens, an automated system that extracts labeled safety information from FDA Structured Product Labels (SPLs) and maps terms to MedDRA. PVLens integrates automation with expert oversight through a web-based review tool. In validation against 97 drug labels, PVLens achieved an F1 score of 0.882, with high recall (0.983) and moderate precision (0.799). By offering a scalable, more accurate and continuously updated alternative to SIDER, PVLens enhances real-time pharamcovigilance with improved accuracy and contemporaneous insights.
♻ ☆ RGB-Th-Bench: A Dense benchmark for Visual-Thermal Understanding of Vision Language Models
We introduce RGB-Th-Bench, the first benchmark designed to evaluate the ability of Vision-Language Models (VLMs) to comprehend RGB-Thermal image pairs. While VLMs have demonstrated remarkable progress in visual reasoning and multimodal understanding, their evaluation has been predominantly limited to RGB-based benchmarks, leaving a critical gap in assessing their capabilities in infrared vision tasks. Existing visible-infrared datasets are either task-specific or lack high-quality annotations necessary for rigorous model evaluation. To address these limitations, RGB-Th-Bench provides a comprehensive evaluation framework covering 14 distinct skill dimensions, with a total of 1,600+ expert-annotated Yes/No questions. The benchmark employs two accuracy metrics: a standard question-level accuracy and a stricter skill-level accuracy, which evaluates model robustness across multiple questions within each skill dimension. This design ensures a thorough assessment of model performance, including resilience to adversarial and hallucinated responses. We conduct extensive evaluations on 19 state-of-the-art VLMs, revealing significant performance gaps in RGB-Thermal understanding. Our results show that even the strongest models struggle with thermal image comprehension, with performance heavily constrained by their RGB-based capabilities. Additionally, the lack of large-scale application-specific and expert-annotated thermal-caption-pair datasets in pre-training is an important reason of the observed performance gap. RGB-Th-Bench highlights the urgent need for further advancements in multimodal learning to bridge the gap between visible and thermal image understanding. The dataset is available through this link, and the evaluation code will also be made publicly available.
♻ ☆ Partial Gromov-Wasserstein Metric ICLR 2025
The Gromov-Wasserstein (GW) distance has gained increasing interest in the machine learning community in recent years, as it allows for the comparison of measures in different metric spaces. To overcome the limitations imposed by the equal mass requirements of the classical GW problem, researchers have begun exploring its application in unbalanced settings. However, Unbalanced GW (UGW) can only be regarded as a discrepancy rather than a rigorous metric/distance between two metric measure spaces (mm-spaces). In this paper, we propose a particular case of the UGW problem, termed Partial Gromov-Wasserstein (PGW). We establish that PGW is a well-defined metric between mm-spaces and discuss its theoretical properties, including the existence of a minimizer for the PGW problem and the relationship between PGW and GW, among others. We then propose two variants of the Frank-Wolfe algorithm for solving the PGW problem and show that they are mathematically and computationally equivalent. Moreover, based on our PGW metric, we introduce the analogous concept of barycenters for mm-spaces. Finally, we validate the effectiveness of our PGW metric and related solvers in applications such as shape matching, shape retrieval, and shape interpolation, comparing them against existing baselines. Our code is available at https://github.com/mint-vu/PGW_Metric.
comment: Published at ICLR 2025
♻ ☆ GenoTEX: A Benchmark for Automated Gene Expression Data Analysis in Alignment with Bioinformaticians
Recent advancements in machine learning have significantly improved the identification of disease-associated genes from gene expression datasets. However, these processes often require extensive expertise and manual effort, limiting their scalability. Large Language Model (LLM)-based agents have shown promise in automating these tasks due to their increasing problem-solving abilities. To support the evaluation and development of such methods, we introduce GenoTEX, a benchmark dataset for the automated analysis of gene expression data. GenoTEX provides annotated code and results for solving a wide range of gene identification problems, encompassing dataset selection, preprocessing, and statistical analysis, in a pipeline that follows computational genomics standards. The benchmark includes expert-curated annotations from bioinformaticians to ensure accuracy and reliability. To provide baselines for these tasks, we present GenoAgent, a team of LLM-based agents that adopt a multi-step programming workflow with flexible self-correction, to collaboratively analyze gene expression datasets. Our experiments demonstrate the potential of LLM-based methods in analyzing genomic data, while error analysis highlights the challenges and areas for future improvement. We propose GenoTEX as a promising resource for benchmarking and enhancing automated methods for gene expression data analysis. The benchmark is available at https://github.com/Liu-Hy/GenoTex.
comment: 29 pages, 3 figures
♻ ☆ A Selective Homomorphic Encryption Approach for Faster Privacy-Preserving Federated Learning
Federated learning is a machine learning method that supports training models on decentralized devices or servers, where each holds its local data, removing the need for data exchange. This approach is especially useful in healthcare, as it enables training on sensitive data without needing to share them. The nature of federated learning necessitates robust security precautions due to data leakage concerns during communication. To address this issue, we propose a new approach that employs selective encryption, homomorphic encryption, differential privacy, and bit-wise scrambling to minimize data leakage while achieving good execution performance. Our technique , FAS (fast and secure federated learning) is used to train deep learning models on medical imaging data. We implemented our technique using the Flower framework and compared with a state-of-the-art federated learning approach that also uses selective homomorphic encryption. Our experiments were run in a cluster of eleven physical machines to create a real-world federated learning scenario on different datasets. We observed that our approach is up to 90\% faster than applying fully homomorphic encryption on the model weights. In addition, we can avoid the pretraining step that is required by our competitor and can save up to 46% in terms of total execution time. While our approach was faster, it obtained similar security results as the competitor.
comment: 23 pages, 32 figures
♻ ☆ Multi-View and Multi-Scale Alignment for Contrastive Language-Image Pre-training in Mammography
Contrastive Language-Image Pre-training (CLIP) demonstrates strong potential in medical image analysis but requires substantial data and computational resources. Due to these restrictions, existing CLIP applications in medical imaging focus mainly on modalities like chest X-rays that have abundant image-report data available, leaving many other important modalities underexplored. Here, we propose one of the first adaptations of the full CLIP model to mammography, which presents significant challenges due to labeled data scarcity, high-resolution images with small regions of interest, and class-wise imbalance. We first develop a specialized supervision framework for mammography that leverages its multi-view nature. Furthermore, we design a symmetric local alignment module to better focus on detailed features in high-resolution images. Lastly, we incorporate a parameter-efficient fine-tuning approach for large language models pre-trained with medical knowledge to address data limitations. Our multi-view and multi-scale alignment (MaMA) method outperforms state-of-the-art baselines for three different tasks on two large real-world mammography datasets, EMBED and RSNA-Mammo, with only 52% model size compared with the largest baseline. The code is available at https://github.com/XYPB/MaMA
comment: This paper is accepted by IPMI 2025 for Oral Presentation
♻ ☆ TSKANMixer: Kolmogorov-Arnold Networks with MLP-Mixer Model for Time Series Forecasting AAAI 2025
Time series forecasting has long been a focus of research across diverse fields, including economics, energy, healthcare, and traffic management. Recent works have introduced innovative architectures for time series models, such as the Time-Series Mixer (TSMixer), which leverages multi-layer perceptrons (MLPs) to enhance prediction accuracy by effectively capturing both spatial and temporal dependencies within the data. In this paper, we investigate the capabilities of the Kolmogorov-Arnold Networks (KANs) for time-series forecasting by modifying TSMixer with a KAN layer (TSKANMixer). Experimental results demonstrate that TSKANMixer tends to improve prediction accuracy over the original TSMixer across multiple datasets, ranking among the top-performing models compared to other time series approaches. Our results show that the KANs are promising alternatives to improve the performance of time series forecasting by replacing or extending traditional MLPs.
comment: 8 pages, 4 figures, 7 tables and accepted at the AI4TS: AI for Time Series Analysis workshop, AAAI 2025
♻ ☆ Denoising VAE as an Explainable Feature Reduction and Diagnostic Pipeline for Autism Based on Resting state fMRI
Autism spectrum disorders (ASDs) are developmental conditions characterized by restricted interests and difficulties in communication. The complexity of ASD has resulted in a deficiency of objective diagnostic biomarkers. Deep learning methods have gained recognition for addressing these challenges in neuroimaging analysis, but finding and interpreting such diagnostic biomarkers are still challenging computationally. Here, we propose a feature reduction pipeline using resting-state fMRI data. We used Craddock atlas and Power atlas to extract functional connectivity data from rs-fMRI, resulting in over 30 thousand features. By using a denoising variational autoencoder, our proposed pipeline further compresses the connectivity features into 5 latent Gaussian distributions, providing is a low-dimensional representation of the data to promote computational efficiency and interpretability. To test the method, we employed the extracted latent representations to classify ASD using traditional classifiers such as SVM on a large multi-site dataset. The 95% confidence interval for the prediction accuracy of SVM is [0.63, 0.76] after site harmonization using the extracted latent distributions. Without using DVAE for dimensionality reduction, the prediction accuracy is 0.70, which falls within the interval. The DVAE successfully encoded the diagnostic information from rs-fMRI data without sacrificing prediction performance. The runtime for training the DVAE and obtaining classification results from its extracted latent features was 7 times shorter compared to training classifiers directly on the raw data. Our findings suggest that the Power atlas provides more effective brain connectivity insights for diagnosing ASD than Craddock atlas. Additionally, we visualized the latent representations to gain insights into the brain networks contributing to the differences between ASD and neurotypical brains.
♻ ☆ A Context-Aware Approach for Enhancing Data Imputation with Pre-trained Language Models
This paper presents a novel approach named \textbf{C}ontextually \textbf{R}elevant \textbf{I}mputation leveraging pre-trained \textbf{L}anguage \textbf{M}odels (\textbf{CRILM}) for handling missing data in tabular datasets. Instead of relying on traditional numerical estimations, CRILM uses pre-trained language models (LMs) to create contextually relevant descriptors for missing values. This method aligns datasets with LMs' strengths, allowing large LMs to generate these descriptors and small LMs to be fine-tuned on the enriched datasets for enhanced downstream task performance. Our evaluations demonstrate CRILM's superior performance and robustness across MCAR, MAR, and challenging MNAR scenarios, with up to a 10\% improvement over the best-performing baselines. By mitigating biases, particularly in MNAR settings, CRILM improves downstream task performance and offers a cost-effective solution for resource-constrained environments.
♻ ☆ An Exponential Separation Between Quantum and Quantum-Inspired Classical Algorithms for Linear Systems
Achieving a provable exponential quantum speedup for an important machine learning task has been a central research goal since the seminal HHL quantum algorithm for solving linear systems and the subsequent quantum recommender systems algorithm by Kerenidis and Prakash. These algorithms were initially believed to be strong candidates for exponential speedups, but a lower bound ruling out similar classical improvements remained absent. In breakthrough work by Tang, it was demonstrated that this lack of progress in classical lower bounds was for good reasons. Concretely, she gave a classical counterpart of the quantum recommender systems algorithm, reducing the quantum advantage to a mere polynomial. Her approach is quite general and was named quantum-inspired classical algorithms. Since then, almost all the initially exponential quantum machine learning speedups have been reduced to polynomial via new quantum-inspired classical algorithms. From the current state-of-affairs, it is unclear whether we can hope for exponential quantum speedups for any natural machine learning task. In this work, we present the first such provable exponential separation between quantum and quantum-inspired classical algorithms for the basic problem of solving a linear system when the input matrix is well-conditioned and has sparse rows and columns.
♻ ☆ Self-Contrastive Forward-Forward Algorithm
Agents that operate autonomously benefit from lifelong learning capabilities. However, compatible training algorithms must comply with the decentralized nature of these systems, which imposes constraints on both the parameter counts and the computational resources. The Forward-Forward (FF) algorithm is one of these. FF relies only on feedforward operations, the same used for inference, for optimizing layer-wise objectives. This purely forward approach eliminates the need for transpose operations required in traditional backpropagation. Despite its potential, FF has failed to reach state-of-the-art performance on most standard benchmark tasks, in part due to unreliable negative data generation methods for unsupervised learning. In this work, we propose the Self-Contrastive Forward-Forward (SCFF) algorithm, a competitive training method aimed at closing this performance gap. Inspired by standard self-supervised contrastive learning for vision tasks, SCFF generates positive and negative inputs applicable across various datasets. The method demonstrates superior performance compared to existing unsupervised local learning algorithms on several benchmark datasets, including MNIST, CIFAR-10, STL-10, and Tiny ImageNet. We extend FF's application to training recurrent neural networks, expanding its utility to sequential data tasks. These findings pave the way for high-accuracy, real-time learning on resource-constrained edge devices.
♻ ☆ Graph Anomaly Detection in Time Series: A Survey
With the recent advances in technology, a wide range of systems continue to collect a large amount of data over time and thus generate time series. Time-Series Anomaly Detection (TSAD) is an important task in various time-series applications such as e-commerce, cybersecurity, vehicle maintenance, and healthcare monitoring. However, this task is very challenging as it requires considering both the intra-variable dependency (relationships within a variable over time) and the inter-variable dependency (relationships between multiple variables) existing in time-series data. Recent graph-based approaches have made impressive progress in tackling the challenges of this field. In this survey, we conduct a comprehensive and up-to-date review of TSAD using graphs, referred to as G-TSAD. First, we explore the significant potential of graph representation for time-series data and and its contributions to facilitating anomaly detection. Then, we review state-of-the-art graph anomaly detection techniques, mostly leveraging deep learning architectures, in the context of time series. For each method, we discuss its strengths, limitations, and the specific applications where it excels. Finally, we address both the technical and application challenges currently facing the field, and suggest potential future directions for advancing research and improving practical outcomes.
comment: 20 pages, 7 figures, 6 tables
♻ ☆ Layer- and Timestep-Adaptive Differentiable Token Compression Ratios for Efficient Diffusion Transformers CVPR 2025
Diffusion Transformers (DiTs) have achieved state-of-the-art (SOTA) image generation quality but suffer from high latency and memory inefficiency, making them difficult to deploy on resource-constrained devices. One major efficiency bottleneck is that existing DiTs apply equal computation across all regions of an image. However, not all image tokens are equally important, and certain localized areas require more computation, such as objects. To address this, we propose DiffCR, a dynamic DiT inference framework with differentiable compression ratios, which automatically learns to dynamically route computation across layers and timesteps for each image token, resulting in efficient DiTs. Specifically, DiffCR integrates three features: (1) A token-level routing scheme where each DiT layer includes a router that is fine-tuned jointly with model weights to predict token importance scores. In this way, unimportant tokens bypass the entire layer's computation; (2) A layer-wise differentiable ratio mechanism where different DiT layers automatically learn varying compression ratios from a zero initialization, resulting in large compression ratios in redundant layers while others remain less compressed or even uncompressed; (3) A timestep-wise differentiable ratio mechanism where each denoising timestep learns its own compression ratio. The resulting pattern shows higher ratios for noisier timesteps and lower ratios as the image becomes clearer. Extensive experiments on text-to-image and inpainting tasks show that DiffCR effectively captures dynamism across token, layer, and timestep axes, achieving superior trade-offs between generation quality and efficiency compared to prior works. The project website is available at https://www.haoranyou.com/diffcr.
comment: Accepted by CVPR 2025
♻ ☆ Stochastic Inference of Plate Bending from Heterogeneous Data: Physics-informed Gaussian Processes via Kirchhoff-Love Theory
Advancements in machine learning and an abundance of structural monitoring data have inspired the integration of mechanical models with probabilistic models to identify a structure's state and quantify the uncertainty of its physical parameters and response. In this paper, we propose an inference methodology for classical Kirchhoff-Love plates via physics-informed Gaussian Processes (GP). A probabilistic model is formulated as a multi-output GP by placing a GP prior on the deflection and deriving the covariance function using the linear differential operators of the plate governing equations. The posteriors of the flexural rigidity, hyperparameters, and plate response are inferred in a Bayesian manner using Markov chain Monte Carlo (MCMC) sampling from noisy measurements. We demonstrate the applicability with two examples: a simply supported plate subjected to a sinusoidal load and a fixed plate subjected to a uniform load. The results illustrate how the proposed methodology can be employed to perform stochastic inference for plate rigidity and physical quantities by integrating measurements from various sensor types and qualities. Potential applications of the presented methodology are in structural health monitoring and uncertainty quantification of plate-like structures.
comment: 25 pages, 11 figures
♻ ☆ GNNMerge: Merging of GNN Models Without Accessing Training Data
Model merging has gained prominence in machine learning as a method to integrate multiple trained models into a single model without accessing the original training data. While existing approaches have demonstrated success in domains such as computer vision and NLP, their application to Graph Neural Networks (GNNs) remains unexplored. These methods often rely on the assumption of shared initialization, which is seldom applicable to GNNs. In this work, we undertake the first benchmarking study of model merging algorithms for GNNs, revealing their limited effectiveness in this context. To address these challenges, we propose GNNMerge, which utilizes a task-agnostic node embedding alignment strategy to merge GNNs. Furthermore, we establish that under a mild relaxation, the proposed optimization objective admits direct analytical solutions for widely used GNN architectures, significantly enhancing its computational efficiency. Empirical evaluations across diverse datasets, tasks, and architectures establish GNNMerge to be up to 24% more accurate than existing methods while delivering over 2 orders of magnitude speed-up compared to training from scratch.
♻ ☆ ScalingNoise: Scaling Inference-Time Search for Generating Infinite Videos
Video diffusion models (VDMs) facilitate the generation of high-quality videos, with current research predominantly concentrated on scaling efforts during training through improvements in data quality, computational resources, and model complexity. However, inference-time scaling has received less attention, with most approaches restricting models to a single generation attempt. Recent studies have uncovered the existence of "golden noises" that can enhance video quality during generation. Building on this, we find that guiding the scaling inference-time search of VDMs to identify better noise candidates not only evaluates the quality of the frames generated in the current step but also preserves the high-level object features by referencing the anchor frame from previous multi-chunks, thereby delivering long-term value. Our analysis reveals that diffusion models inherently possess flexible adjustments of computation by varying denoising steps, and even a one-step denoising approach, when guided by a reward signal, yields significant long-term benefits. Based on the observation, we proposeScalingNoise, a plug-and-play inference-time search strategy that identifies golden initial noises for the diffusion sampling process to improve global content consistency and visual diversity. Specifically, we perform one-step denoising to convert initial noises into a clip and subsequently evaluate its long-term value, leveraging a reward model anchored by previously generated content. Moreover, to preserve diversity, we sample candidates from a tilted noise distribution that up-weights promising noises. In this way, ScalingNoise significantly reduces noise-induced errors, ensuring more coherent and spatiotemporally consistent video generation. Extensive experiments on benchmark datasets demonstrate that the proposed ScalingNoise effectively improves long video generation.
♻ ☆ Debiased Offline Representation Learning for Fast Online Adaptation in Non-stationary Dynamics
Developing policies that can adjust to non-stationary environments is essential for real-world reinforcement learning applications. However, learning such adaptable policies in offline settings, with only a limited set of pre-collected trajectories, presents significant challenges. A key difficulty arises because the limited offline data makes it hard for the context encoder to differentiate between changes in the environment dynamics and shifts in the behavior policy, often leading to context misassociations. To address this issue, we introduce a novel approach called Debiased Offline Representation for fast online Adaptation (DORA). DORA incorporates an information bottleneck principle that maximizes mutual information between the dynamics encoding and the environmental data, while minimizing mutual information between the dynamics encoding and the actions of the behavior policy. We present a practical implementation of DORA, leveraging tractable bounds of the information bottleneck principle. Our experimental evaluation across six benchmark MuJoCo tasks with variable parameters demonstrates that DORA not only achieves a more precise dynamics encoding but also significantly outperforms existing baselines in terms of performance.
♻ ☆ Deep Cut-informed Graph Embedding and Clustering
Graph clustering aims to divide the graph into different clusters. The recently emerging deep graph clustering approaches are largely built on graph neural networks (GNN). However, GNN is designed for general graph encoding and there is a common issue of representation collapse in existing GNN-based deep graph clustering algorithms. We attribute two main reasons for such issues: (i) the inductive bias of GNN models: GNNs tend to generate similar representations for proximal nodes. Since graphs often contain a non-negligible amount of inter-cluster links, the bias results in error message passing and leads to biased clustering; (ii) the clustering guided loss function: most traditional approaches strive to make all samples closer to pre-learned cluster centers, which causes a degenerate solution assigning all data points to a single label thus make all samples and less discriminative. To address these challenges, we investigate graph clustering from a graph cut perspective and propose an innovative and non-GNN-based Deep Cut-informed Graph embedding and Clustering framework, namely DCGC. This framework includes two modules: (i) cut-informed graph encoding; (ii) self-supervised graph clustering via optimal transport. For the encoding module, we derive a cut-informed graph embedding objective to fuse graph structure and attributes by minimizing their joint normalized cut. For the clustering module, we utilize the optimal transport theory to obtain the clustering assignments, which can balance the guidance of "proximity to the pre-learned cluster center". With the above two tailored designs, DCGC is more suitable for the graph clustering task, which can effectively alleviate the problem of representation collapse and achieve better performance. We conduct extensive experiments to demonstrate that our method is simple but effective compared with benchmarks.
♻ ☆ GNN-Transformer Cooperative Architecture for Trustworthy Graph Contrastive Learning AAAI 2025
Graph contrastive learning (GCL) has become a hot topic in the field of graph representation learning. In contrast to traditional supervised learning relying on a large number of labels, GCL exploits augmentation strategies to generate multiple views and positive/negative pairs, both of which greatly influence the performance. Unfortunately, commonly used random augmentations may disturb the underlying semantics of graphs. Moreover, traditional GNNs, a type of widely employed encoders in GCL, are inevitably confronted with over-smoothing and over-squashing problems. To address these issues, we propose GNN-Transformer Cooperative Architecture for Trustworthy Graph Contrastive Learning (GTCA), which inherits the advantages of both GNN and Transformer, incorporating graph topology to obtain comprehensive graph representations. Theoretical analysis verifies the trustworthiness of the proposed method. Extensive experiments on benchmark datasets demonstrate state-of-the-art empirical performance.
comment: In Proceedings of AAAI 2025
♻ ☆ Latency Minimization for UAV-Enabled Federated Learning: Trajectory Design and Resource Allocation
Federated learning (FL) has become a transformative paradigm for distributed machine learning across wireless networks. However, the performance of FL is often hindered by the unreliable communication links between resource-constrained Internet of Things (IoT) devices and the central server. To overcome this challenge, we propose a novel framework that employs an unmanned aerial vehicle (UAV) as a mobile server to enhance the FL training process. By capitalizing on the UAV's mobility, we establish strong line-of-sight connections with IoT devices, thereby enhancing communication reliability and capacity. To maximize training efficiency, we formulate a latency minimization problem that jointly optimizes bandwidth allocation, computing frequencies, transmit power for both the UAV and IoT devices, and the UAV's flight trajectory. Subsequently, we analyze the required rounds of the IoT devices training and the UAV aggregation for FL convergence. Based on the convergence constraint, we transform the problem into three subproblems and develop an efficient alternating optimization algorithm to solve this problem effectively. Additionally, we provide a thorough analysis of the algorithm's convergence and computational complexity. Extensive numerical results demonstrate that our proposed scheme not only surpasses existing benchmark schemes in reducing latency up to 15.29%, but also achieves training efficiency that nearly matches the ideal scenario.
comment: This manuscript has been submitted to IEEE
♻ ☆ Passenger hazard perception based on EEG signals for highly automated driving vehicles
Enhancing the safety of autonomous vehicles is crucial, especially given recent accidents involving automated systems. As passengers in these vehicles, humans' sensory perception and decision-making can be integrated with autonomous systems to improve safety. This study explores neural mechanisms in passenger-vehicle interactions, leading to the development of a Passenger Cognitive Model (PCM) and the Passenger EEG Decoding Strategy (PEDS). Central to PEDS is a novel Convolutional Recurrent Neural Network (CRNN) that captures spatial and temporal EEG data patterns. The CRNN, combined with stacking algorithms, achieves an accuracy of $85.0\% \pm 3.18\%$. Our findings highlight the predictive power of pre-event EEG data, enhancing the detection of hazardous scenarios and offering a network-driven framework for safer autonomous vehicles.
comment: We have decided to withdraw this submission due to ongoing revisions and further refinements in our research. A revised version may be resubmitted in the future. We appreciate the feedback and interest from the community
♻ ☆ PAPAYA Federated Analytics Stack: Engineering Privacy, Scalability and Practicality
Cross-device Federated Analytics (FA) is a distributed computation paradigm designed to answer analytics queries about and derive insights from data held locally on users' devices. On-device computations combined with other privacy and security measures ensure that only minimal data is transmitted off-device, achieving a high standard of data protection. Despite FA's broad relevance, the applicability of existing FA systems is limited by compromised accuracy; lack of flexibility for data analytics; and an inability to scale effectively. In this paper, we describe our approach to combine privacy, scalability, and practicality to build and deploy a system that overcomes these limitations. Our FA system leverages trusted execution environments (TEEs) and optimizes the use of on-device computing resources to facilitate federated data processing across large fleets of devices, while ensuring robust, defensible, and verifiable privacy safeguards. We focus on federated analytics (statistics and monitoring), in contrast to systems for federated learning (ML workloads), and we flag the key differences.
♻ ☆ Probabilistic neural operators for functional uncertainty quantification
Neural operators aim to approximate the solution operator of a system of differential equations purely from data. They have shown immense success in modeling complex dynamical systems across various domains. However, the occurrence of uncertainties inherent in both model and data has so far rarely been taken into account\textemdash{}a critical limitation in complex, chaotic systems such as weather forecasting. In this paper, we introduce the probabilistic neural operator (PNO), a framework for learning probability distributions over the output function space of neural operators. PNO extends neural operators with generative modeling based on strictly proper scoring rules, integrating uncertainty information directly into the training process. We provide a theoretical justification for the approach and demonstrate improved performance in quantifying uncertainty across different domains and with respect to different baselines. Furthermore, PNO requires minimal adjustment to existing architectures, shows improved performance for most probabilistic prediction tasks, and leads to well-calibrated predictive distributions and adequate uncertainty representations even for long dynamical trajectories. Implementing our approach into large-scale models for physical applications can lead to improvements in corresponding uncertainty quantification and extreme event identification, ultimately leading to a deeper understanding of the prediction of such surrogate models.
♻ ☆ Unlearning during Learning: An Efficient Federated Machine Unlearning Method
In recent years, Federated Learning (FL) has garnered significant attention as a distributed machine learning paradigm. To facilitate the implementation of the right to be forgotten, the concept of federated machine unlearning (FMU) has also emerged. However, current FMU approaches often involve additional time-consuming steps and may not offer comprehensive unlearning capabilities, which renders them less practical in real FL scenarios. In this paper, we introduce FedAU, an innovative and efficient FMU framework aimed at overcoming these limitations. Specifically, FedAU incorporates a lightweight auxiliary unlearning module into the learning process and employs a straightforward linear operation to facilitate unlearning. This approach eliminates the requirement for extra time-consuming steps, rendering it well-suited for FL. Furthermore, FedAU exhibits remarkable versatility. It not only enables multiple clients to carry out unlearning tasks concurrently but also supports unlearning at various levels of granularity, including individual data samples, specific classes, and even at the client level. We conducted extensive experiments on MNIST, CIFAR10, and CIFAR100 datasets to evaluate the performance of FedAU. The results demonstrate that FedAU effectively achieves the desired unlearning effect while maintaining model accuracy. Our code is availiable at https://github.com/Liar-Mask/FedAU.
comment: Accepted by IJCAI 2024
♻ ☆ FedMIA: An Effective Membership Inference Attack Exploiting "All for One" Principle in Federated Learning CVPR 2025
Federated Learning (FL) is a promising approach for training machine learning models on decentralized data while preserving privacy. However, privacy risks, particularly Membership Inference Attacks (MIAs), which aim to determine whether a specific data point belongs to a target client's training set, remain a significant concern. Existing methods for implementing MIAs in FL primarily analyze updates from the target client, focusing on metrics such as loss, gradient norm, and gradient difference. However, these methods fail to leverage updates from non-target clients, potentially underutilizing available information. In this paper, we first formulate a one-tailed likelihood-ratio hypothesis test based on the likelihood of updates from non-target clients. Building upon this formulation, we introduce a three-step Membership Inference Attack (MIA) method, called FedMIA, which follows the "all for one"--leveraging updates from all clients across multiple communication rounds to enhance MIA effectiveness. Both theoretical analysis and extensive experimental results demonstrate that FedMIA outperforms existing MIAs in both classification and generative tasks. Additionally, it can be integrated as an extension to existing methods and is robust against various defense strategies, Non-IID data, and different federated structures. Our code is available in https://github.com/Liar-Mask/FedMIA.
comment: 14 pages, 6 figures; Accepted by CVPR 2025
♻ ☆ Pretraining with random noise for uncertainty calibration
Uncertainty calibration is crucial for various machine learning applications, yet it remains challenging. Many models exhibit hallucinations - confident yet inaccurate responses - due to miscalibrated confidence. Here, we show that the common practice of random initialization in deep learning, often considered a standard technique, is an underlying cause of this miscalibration, leading to excessively high confidence in untrained networks. Our method, inspired by developmental neuroscience, addresses this issue by simply pretraining networks with random noise and labels, reducing overconfidence and bringing initial confidence levels closer to chance. This ensures optimal calibration, aligning confidence with accuracy during subsequent data training, without the need for additional pre- or post-processing. Pre-calibrated networks excel at identifying "unknown data," showing low confidence for out-of-distribution inputs, thereby resolving confidence miscalibration.
♻ ☆ On best approximation by multivariate ridge functions with applications to generalized translation networks
We prove sharp upper and lower bounds for the approximation of Sobolev functions by sums of multivariate ridge functions, i.e., functions of the form $\mathbb{R}^d \ni x \mapsto \sum_{k=1}^n h_k(A_k x) \in \mathbb{R}$ with $h_k : \mathbb{R}^\ell \to \mathbb{R}$ and $A_k \in \mathbb{R}^{\ell \times d}$. We show that the order of approximation asymptotically behaves as $n^{-r/(d-\ell)}$, where $r$ is the regularity of the Sobolev functions to be approximated. Our lower bound even holds when approximating $L^\infty$-Sobolev functions of regularity $r$ with error measured in $L^1$, while our upper bound applies to the approximation of $L^p$-Sobolev functions in $L^p$ for any $1 \leq p \leq \infty$. These bounds generalize well-known results about the approximation properties of univariate ridge functions to the multivariate case. Moreover, we use these bounds to obtain sharp asymptotic bounds for the approximation of Sobolev functions using generalized translation networks and complex-valued neural networks.
♻ ☆ Volumetric Surfaces: Representing Fuzzy Geometries with Layered Meshes
High-quality view synthesis relies on volume rendering, splatting, or surface rendering. While surface rendering is typically the fastest, it struggles to accurately model fuzzy geometry like hair. In turn, alpha-blending techniques excel at representing fuzzy materials but require an unbounded number of samples per ray (P1). Further overheads are induced by empty space skipping in volume rendering (P2) and sorting input primitives in splatting (P3). We present a novel representation for real-time view synthesis where the (P1) number of sampling locations is small and bounded, (P2) sampling locations are efficiently found via rasterization, and (P3) rendering is sorting-free. We achieve this by representing objects as semi-transparent multi-layer meshes rendered in a fixed order. First, we model surface layers as signed distance function (SDF) shells with optimal spacing learned during training. Then, we bake them as meshes and fit UV textures. Unlike single-surface methods, our multi-layer representation effectively models fuzzy objects. In contrast to volume and splatting-based methods, our approach enables real-time rendering on low-power laptops and smartphones.
♻ ☆ Video Motion Transfer with Diffusion Transformers CVPR 2025
We propose DiTFlow, a method for transferring the motion of a reference video to a newly synthesized one, designed specifically for Diffusion Transformers (DiT). We first process the reference video with a pre-trained DiT to analyze cross-frame attention maps and extract a patch-wise motion signal called the Attention Motion Flow (AMF). We guide the latent denoising process in an optimization-based, training-free, manner by optimizing latents with our AMF loss to generate videos reproducing the motion of the reference one. We also apply our optimization strategy to transformer positional embeddings, granting us a boost in zero-shot motion transfer capabilities. We evaluate DiTFlow against recently published methods, outperforming all across multiple metrics and human evaluation.
comment: CVPR 2025 - Project page: https://ditflow.github.io/
Joint Estimation and Prediction of City-wide Delivery Demand: A Large Language Model Empowered Graph-based Learning Approach
The proliferation of e-commerce and urbanization has significantly intensified delivery operations in urban areas, boosting the volume and complexity of delivery demand. Data-driven predictive methods, especially those utilizing machine learning techniques, have emerged to handle these complexities in urban delivery demand management problems. One particularly pressing issue that has yet to be sufficiently addressed is the joint estimation and prediction of city-wide delivery demand, as well as the generalization of the model to new cities. To this end, we formulate this problem as a transferable graph-based spatiotemporal learning task. First, an individual-collective message-passing neural network model is formalized to capture the interaction between demand patterns of associated regions. Second, by exploiting recent advances in large language models (LLMs), we extract general geospatial knowledge encodings from the unstructured locational data using the embedding generated by LLMs. Last, to encourage the cross-city generalization of the model, we integrate the encoding into the demand predictor in a transferable way. Comprehensive empirical evaluation results on two real-world delivery datasets, including eight cities in China and the US, demonstrate that our model significantly outperforms state-of-the-art baselines in accuracy, efficiency, and transferability.
♻ ☆ Starjob: Dataset for LLM-Driven Job Shop Scheduling
Large Language Models (LLMs) have shown remarkable capabilities across various domains, but their potential for solving combinatorial optimization problems remains largely unexplored. In this paper, we investigate the applicability of LLMs to the Job Shop Scheduling Problem (JSSP), a classic challenge in combinatorial optimization that requires efficient job allocation to machines to minimize makespan. To this end, we introduce Starjob, the first supervised dataset for JSSP, comprising 130k instances specifically designed for training LLMs. Leveraging this dataset, we fine-tune the LLaMA 8B 4-bit quantized model with the LoRA method to develop an end-to-end scheduling approach. Our evaluation on standard benchmarks demonstrates that the proposed LLM-based method not only surpasses traditional Priority Dispatching Rules (PDRs) but also achieves notable improvements over state-of-the-art neural approaches like L2D, with an average improvement of 15.36% on DMU and 7.85% on Taillard benchmarks. These results highlight the untapped potential of LLMs in tackling combinatorial optimization problems, paving the way for future advancements in this area.
comment: arXiv admin note: substantial text overlap with arXiv:2408.06993
♻ ☆ A Logic for Reasoning About Aggregate-Combine Graph Neural Networks
We propose a modal logic in which counting modalities appear in linear inequalities. We show that each formula can be transformed into an equivalent graph neural network (GNN). We also show that a broad class of GNNs can be transformed efficiently into a formula, thus significantly improving upon the literature about the logical expressiveness of GNNs. We also show that the satisfiability problem is PSPACE-complete. These results bring together the promise of using standard logical methods for reasoning about GNNs and their properties, particularly in applications such as GNN querying, equivalence checking, etc. We prove that such natural problems can be solved in polynomial space.
comment: arXiv admin note: text overlap with arXiv:2307.05150
♻ ☆ Improving clustering quality evaluation in noisy Gaussian mixtures
Clustering is a well-established technique in machine learning and data analysis, widely used across various domains. Cluster validity indices, such as the Average Silhouette Width, Calinski-Harabasz, and Davies-Bouldin indices, play a crucial role in assessing clustering quality when external ground truth labels are unavailable. However, these measures can be affected by the feature relevance issue, potentially leading to unreliable evaluations in high-dimensional or noisy data sets. We introduce a theoretically grounded Feature Importance Rescaling (FIR) method that enhances the quality of clustering validation by adjusting feature contributions based on their dispersion. It attenuates noise features, clarifies clustering compactness and separation, and thereby aligns clustering validation more closely with the ground truth. Through extensive experiments on synthetic data sets under different configurations, we demonstrate that FIR consistently improves the correlation between the values of cluster validity indices and the ground truth, particularly in settings with noisy or irrelevant features. The results show that FIR increases the robustness of clustering evaluation, reduces variability in performance across different data sets, and remains effective even when clusters exhibit significant overlap. These findings highlight the potential of FIR as a valuable enhancement of clustering validation, making it a practical tool for unsupervised learning tasks where labelled data is unavailable.
♻ ☆ Automatically Adaptive Conformal Risk Control
Science and technology have a growing need for effective mechanisms that ensure reliable, controlled performance from black-box machine learning algorithms. These performance guarantees should ideally hold conditionally on the input-that is the performance guarantees should hold, at least approximately, no matter what the input. However, beyond stylized discrete groupings such as ethnicity and gender, the right notion of conditioning can be difficult to define. For example, in problems such as image segmentation, we want the uncertainty to reflect the intrinsic difficulty of the test sample, but this may be difficult to capture via a conditioning event. Building on the recent work of Gibbs et al. [2023], we propose a methodology for achieving approximate conditional control of statistical risks-the expected value of loss functions-by adapting to the difficulty of test samples. Our framework goes beyond traditional conditional risk control based on user-provided conditioning events to the algorithmic, data-driven determination of appropriate function classes for conditioning. We apply this framework to various regression and segmentation tasks, enabling finer-grained control over model performance and demonstrating that by continuously monitoring and adjusting these parameters, we can achieve superior precision compared to conventional risk-control methods.
♻ ☆ On learning higher-order cumulants in diffusion models NeurIPS 2024
To analyse how diffusion models learn correlations beyond Gaussian ones, we study the behaviour of higher-order cumulants, or connected n-point functions, under both the forward and backward process. We derive explicit expressions for the moment- and cumulant-generating functionals, in terms of the distribution of the initial data and properties of forward process. It is shown analytically that during the forward process higher-order cumulants are conserved in models without a drift, such as the variance-expanding scheme, and that therefore the endpoint of the forward process maintains nontrivial correlations. We demonstrate that since these correlations are encoded in the score function, higher-order cumulants are learnt in the backward process, also when starting from a normal prior. We confirm our analytical results in an exactly solvable toy model with nonzero cumulants and in scalar lattice field theory.
comment: 21 pages, many figures. Extended version of contribution awarded "best 'physics for AI' paper award" in the NeurIPS 2024 workshop "Machine Learning and the Physical Sciences"; v2: references and minor clarifications added, version to appear in Machine Learning: Science and Technology
♻ ☆ Beyond [cls]: Exploring the true potential of Masked Image Modeling representations
Masked Image Modeling (MIM) has emerged as a promising approach for Self-Supervised Learning (SSL) of visual representations. However, the out-of-the-box performance of MIMs is typically inferior to competing approaches. Most users cannot afford fine-tuning due to the need for large amounts of data, high GPU consumption, and specialized user knowledge. Therefore, the practical use of MIM representations is limited. In this paper we ask what is the reason for the poor out-of-the-box performance of MIMs. Is it due to weaker features produced by MIM models, or is it due to suboptimal usage? Through detailed analysis, we show that attention in MIMs is spread almost uniformly over many patches, leading to ineffective aggregation by the [cls] token. Based on this insight, we propose Selective Aggregation to better capture the rich semantic information retained in patch tokens, which significantly improves the out-of-the-box performance of MIM.
♻ ☆ LongViTU: Instruction Tuning for Long-Form Video Understanding
This paper introduces LongViTU, a large-scale (~121k QA pairs, ~900h videos), automatically generated dataset for long-form video understanding. We propose a systematic approach that organizes videos into a hierarchical tree structure for QA generation and incorporates self-revision mechanisms to ensure high-quality QA pairs. Each QA pair in LongViTU features: 1) long-term context (average certificate length of 4.6 minutes); 2) rich knowledge and condensed reasoning (commonsense, causality, planning, etc.)). We also offer explicit timestamp annotations of relevant events for each QA pair. We have conducted extensive human studies on LongViTU, and the results prove the quality of our dataset. To better evaluate the challenges posed by LongViTU's emphasis on long-term context and condensed reasoning, we manually curate a subset of LongViTU into a benchmark. Evaluations using a state-of-the-art open-source model (LongVU), a proprietary model (Gemini-1.5-Pro), and human annotators yield GPT-4 scores of 49.9, 52.3, and 81.0, respectively, underscoring the substantial difficulty presented by LongViTU questions. Performing supervised fine-tuning (SFT) of LongVU and LLaVA-Video on LongViTU data results in average performance gains of 2.5% and 3.7%, respectively, across a suite of long video understanding benchmarks (EgoSchema, VideoMME-Long, MLVU, LVBench).
♻ ☆ Combining Relevance and Magnitude for Resource-Aware DNN Pruning
Pruning neural networks, i.e., removing some of their parameters whilst retaining their accuracy, is one of the main ways to reduce the latency of a machine learning pipeline, especially in resource- and/or bandwidth-constrained scenarios. In this context, the pruning technique, i.e., how to choose the parameters to remove, is critical to the system performance. In this paper, we propose a novel pruning approach, called FlexRel and predicated upon combining training-time and inference-time information, namely, parameter magnitude and relevance, in order to improve the resulting accuracy whilst saving both computational resources and bandwidth. Our performance evaluation shows that FlexRel is able to achieve higher pruning factors, saving over 35% bandwidth for typical accuracy targets.
♻ ☆ Self-Expansion of Pre-trained Models with Mixture of Adapters for Continual Learning
Continual learning (CL) aims to continually accumulate knowledge from a non-stationary data stream without catastrophic forgetting of learned knowledge, requiring a balance between stability and adaptability. Relying on the generalizable representation in pre-trained models (PTMs), PTM-based CL methods perform effective continual adaptation on downstream tasks by adding learnable adapters or prompts upon the frozen PTMs. However, many existing PTM-based CL methods use restricted adaptation on a fixed set of these modules to avoid forgetting, suffering from limited CL ability. Periodically adding task-specific modules results in linear model growth rate and impaired knowledge reuse. We propose Self-Expansion of pre-trained models with Modularized Adaptation (SEMA), a novel approach to enhance the control of stability-plasticity balance in PTM-based CL. SEMA automatically decides to reuse or add adapter modules on demand in CL, depending on whether significant distribution shift that cannot be handled is detected at different representation levels. We design modular adapter consisting of a functional adapter and a representation descriptor. The representation descriptors are trained as a distribution shift indicator and used to trigger self-expansion signals. For better composing the adapters, an expandable weighting router is learned jointly for mixture of adapter outputs. SEMA enables better knowledge reuse and sub-linear expansion rate. Extensive experiments demonstrate the effectiveness of the proposed self-expansion method, achieving state-of-the-art performance compared to PTM-based CL methods without memory rehearsal. Code is available at https://github.com/huiyiwang01/SEMA-CL.
comment: Code available at https: https://github.com/huiyiwang01/SEMA-CL
♻ ☆ ATM: Improving Model Merging by Alternating Tuning and Merging
Model merging has recently emerged as a cost-efficient paradigm for multi-task learning. Among current approaches, task arithmetic stands out for its simplicity and effectiveness. In this paper, we motivate the effectiveness of task vectors by linking them to multi-task gradients. We show that in a single-epoch scenario, if the optimization is performed via gradient descent, task vectors are after one step mathematically equivalent to the gradients obtained via gradient descent in a multi-task setting, and still approximate these gradients in subsequent epochs. Furthermore, we show that the effectiveness of task vectors is largely driven by the first epoch's gradient. Given this parallel between task vectors and gradients, we propose viewing model merging as a single step in an iterative process that alternates between tuning and merging (ATM). We then propose two ways to utilize ATM. The first is to replace multi-task learning with ATM in scenarios where data sharing is prohibited, such as federated learning. The second is to improve the outcome of any model merging algorithm by applying a few post-hoc iterations of ATM on a small validation dataset, which is commonly available for hyperparameter tuning. Finally, we provide both empirical and theoretical support for the effectiveness of ATM, demonstrating that it minimizes an upper bound on the loss obtained by jointly finetuning all tasks.
comment: Main paper: 9 Pages, 9 figures, 1 table
♻ ☆ Optimizing Large Model Training through Overlapped Activation Recomputation
Large model training often uses recomputation to alleviate memory pressure and pipelines to exploit the parallelism of data, tensors, and devices. However, existing recomputation approaches may incur high overhead when training real-world models, as they are executed on demand in the critical training path. In this paper, we present Lynx, a new recomputation framework to reduce overhead by overlapping recomputation with communication in training pipelines. To reduce the large search space for recomputation strategies, we propose a heuristic-based recomputation scheduling algorithm, which is based on the observation that there are identical structures in large DNN models so that we can apply the same scheduling policy to all such structures. Additionally, we propose a recomputation-aware model partitioning method to balance each stage's execution time for improved training throughput. Our comprehensive evaluation using GPT models with 1.3B-23B parameters shows that Lynx outperforms existing recomputation approaches by up to 1.37x.
comment: 13 pages
♻ ☆ Joint Estimation of Conditional Mean and Covariance for Unbalanced Panels
We develop a nonparametric, kernel-based joint estimator for conditional mean and covariance matrices in large and unbalanced panels. The estimator is supported by rigorous consistency results and finite-sample guarantees, ensuring its reliability for empirical applications. We apply it to an extensive panel of monthly US stock excess returns from 1962 to 2021, using macroeconomic and firm-specific covariates as conditioning variables. The estimator effectively captures time-varying cross-sectional dependencies, demonstrating robust statistical and economic performance. We find that idiosyncratic risk explains, on average, more than 75% of the cross-sectional variance.
♻ ☆ Feedback-driven object detection and iterative model improvement
Automated object detection has become increasingly valuable across diverse applications, yet efficient, high-quality annotation remains a persistent challenge. In this paper, we present the development and evaluation of a platform designed to interactively improve object detection models. The platform allows uploading and annotating images as well as fine-tuning object detection models. Users can then manually review and refine annotations, further creating improved snapshots that are used for automatic object detection on subsequent image uploads - a process we refer to as semi-automatic annotation resulting in a significant gain in annotation efficiency. Whereas iterative refinement of model results to speed up annotation has become common practice, we are the first to quantitatively evaluate its benefits with respect to time, effort, and interaction savings. Our experimental results show clear evidence for a significant time reduction of up to 53% for semi-automatic compared to manual annotation. Importantly, these efficiency gains did not compromise annotation quality, while matching or occasionally even exceeding the accuracy of manual annotations. These findings demonstrate the potential of our lightweight annotation platform for creating high-quality object detection datasets and provide best practices to guide future development of annotation platforms. The platform is open-source, with the frontend and backend repositories available on GitHub. To support the understanding of our labeling process, we have created an explanatory video demonstrating the methodology using microscopy images of E. coli bacteria as an example.
comment: Code: https://github.com/ml-lab-htw/iterative-annotate Video: https://www.youtube.com/watch?v=CM9uhE8NN5E
♻ ☆ Evaluating the effects of Data Sparsity on the Link-level Bicycling Volume Estimation: A Graph Convolutional Neural Network Approach
Accurate bicycling volume estimation is crucial for making informed decisions and planning about future investments in bicycling infrastructure. However, traditional link-level volume estimation models are effective for motorized traffic but face significant challenges when applied to the bicycling context because of sparse data and the intricate nature of bicycling mobility patterns. To the best of our knowledge, we present the first study to utilize a Graph Convolutional Network (GCN) architecture to model link-level bicycling volumes and systematically investigate the impact of varying levels of data sparsity (0%--99%) on model performance, simulating real-world scenarios. We have leveraged Strava Metro data as the primary source of bicycling counts across 15,933 road segments/links in the City of Melbourne, Australia. To evaluate the effectiveness of the GCN model, we benchmark it against traditional machine learning models, such as linear regression, support vector machines, and random forest. Our results show that the GCN model outperforms these traditional models in predicting Annual Average Daily Bicycle (AADB) counts, demonstrating its ability to capture the spatial dependencies inherent in bicycle traffic networks. While GCN remains robust up to 80% sparsity, its performance declines sharply beyond this threshold, highlighting the challenges of extreme data sparsity. These findings underscore the potential of GCNs in enhancing bicycling volume estimation, while also emphasizing the need for further research on methods to improve model resilience under high-sparsity conditions. Our findings offer valuable insights for city planners aiming to improve bicycling infrastructure and promote sustainable transportation.
♻ ☆ Inductive-Associative Meta-learning Pipeline with Human Cognitive Patterns for Unseen Drug-Target Interaction Prediction
Significant differences in protein structures hinder the generalization of existing drug-target interaction (DTI) models, which often rely heavily on pre-learned binding principles or detailed annotations. In contrast, BioBridge designs an Inductive-Associative pipeline inspired by the workflow of scientists who base their accumulated expertise on drawing insights into novel drug-target pairs from weakly related references. BioBridge predicts novel drug-target interactions using limited sequence data, incorporating multi-level encoders with adversarial training to accumulate transferable binding principles. On these principles basis, BioBridge employs a dynamic prototype meta-learning framework to associate insights from weakly related annotations, enabling robust predictions for previously unseen drug-target pairs. Extensive experiments demonstrate that BioBridge surpasses existing models, especially for unseen proteins. Notably, when only homologous protein binding data is available, BioBridge proves effective for virtual screening of the epidermal growth factor receptor and adenosine receptor, underscoring its potential in drug discovery.
♻ ☆ Time and Memory Trade-off of KV-Cache Compression in Tensor Transformer Decoding
The key-value (KV) cache in the tensor version of transformers presents a significant bottleneck during inference. While previous work analyzes the fundamental space complexity barriers in standard attention mechanisms [Haris and Onak, 2025], our work generalizes the space complexity barriers result to tensor attention version. Our theoretical contributions rely on a reduction from communication complexity and deduce the memory lower bound for tensor-structured attention mechanisms when $d = \Omega(\log n)$. Furthermore, we introduce two types of tensor attention cache and present a trade-off between time and memory for two scenarios. Overall, our work provides a theoretical foundation for us to understand the time-memory tradeoff of KV-Cache compression in tensor attention decoding and offers more perspectives in developing more memory-efficient tensor attention Transformer architectures.
♻ ☆ Group Reasoning Emission Estimation Networks
Accurate greenhouse gas (GHG) emission reporting is critical for governments, businesses, and investors. However, adoption remains limited particularly among small and medium enterprises due to high implementation costs, fragmented emission factor databases, and a lack of robust sector classification methods. To address these challenges, we introduce Group Reasoning Emission Estimation Networks (GREEN), an AI-driven carbon accounting framework that standardizes enterprise-level emission estimation, constructs a large-scale benchmark dataset, and leverages a novel reasoning approach with large language models (LLMs). Specifically, we compile textual descriptions for 20,850 companies with validated North American Industry Classification System (NAICS) labels and align these with an economic model of carbon intensity factors. By reframing sector classification as an information retrieval task, we fine-tune Sentence-BERT models using a contrastive learning loss. To overcome the limitations of single-stage models in handling thousands of hierarchical categories, we propose a Group Reasoning method that ensembles LLM classifiers based on the natural NAICS ontology, decomposing the task into multiple sub-classification steps. We theoretically prove that this approach reduces classification uncertainty and computational complexity. Experiments on 1,114 NAICS categories yield state-of-the-art performance (83.68% Top-1, 91.47% Top-10 accuracy), and case studies on 20 companies report a mean absolute percentage error (MAPE) of 45.88%. The project is available at: https://huggingface.co/datasets/Yvnminc/ExioNAICS.
♻ ☆ Sparse Alignment Enhanced Latent Diffusion Transformer for Zero-Shot Speech Synthesis
While recent zero-shot text-to-speech (TTS) models have significantly improved speech quality and expressiveness, mainstream systems still suffer from issues related to speech-text alignment modeling: 1) models without explicit speech-text alignment modeling exhibit less robustness, especially for hard sentences in practical applications; 2) predefined alignment-based models suffer from naturalness constraints of forced alignments. This paper introduces \textit{MegaTTS 3}, a TTS system featuring an innovative sparse alignment algorithm that guides the latent diffusion transformer (DiT). Specifically, we provide sparse alignment boundaries to MegaTTS 3 to reduce the difficulty of alignment without limiting the search space, thereby achieving high naturalness. Moreover, we employ a multi-condition classifier-free guidance strategy for accent intensity adjustment and adopt the piecewise rectified flow technique to accelerate the generation process. Experiments demonstrate that MegaTTS 3 achieves state-of-the-art zero-shot TTS speech quality and supports highly flexible control over accent intensity. Notably, our system can generate high-quality one-minute speech with only 8 sampling steps. Audio samples are available at https://sditdemo.github.io/sditdemo/.
♻ ☆ Sparse Feature Circuits: Discovering and Editing Interpretable Causal Graphs in Language Models
We introduce methods for discovering and applying sparse feature circuits. These are causally implicated subnetworks of human-interpretable features for explaining language model behaviors. Circuits identified in prior work consist of polysemantic and difficult-to-interpret units like attention heads or neurons, rendering them unsuitable for many downstream applications. In contrast, sparse feature circuits enable detailed understanding of unanticipated mechanisms. Because they are based on fine-grained units, sparse feature circuits are useful for downstream tasks: We introduce SHIFT, where we improve the generalization of a classifier by ablating features that a human judges to be task-irrelevant. Finally, we demonstrate an entirely unsupervised and scalable interpretability pipeline by discovering thousands of sparse feature circuits for automatically discovered model behaviors.
comment: Code and data at https://github.com/saprmarks/feature-circuits. Demonstration at https://feature-circuits.xyz
♻ ☆ OODFace: Benchmarking Robustness of Face Recognition under Common Corruptions and Appearance Variations
With the rise of deep learning, facial recognition technology has seen extensive research and rapid development. Although facial recognition is considered a mature technology, we find that existing open-source models and commercial algorithms lack robustness in certain complex Out-of-Distribution (OOD) scenarios, raising concerns about the reliability of these systems. In this paper, we introduce OODFace, which explores the OOD challenges faced by facial recognition models from two perspectives: common corruptions and appearance variations. We systematically design 30 OOD scenarios across 9 major categories tailored for facial recognition. By simulating these challenges on public datasets, we establish three robustness benchmarks: LFW-C/V, CFP-FP-C/V, and YTF-C/V. We then conduct extensive experiments on 19 facial recognition models and 3 commercial APIs, along with extended physical experiments on face masks to assess their robustness. Next, we explore potential solutions from two perspectives: defense strategies and Vision-Language Models (VLMs). Based on the results, we draw several key insights, highlighting the vulnerability of facial recognition systems to OOD data and suggesting possible solutions. Additionally, we offer a unified toolkit that includes all corruption and variation types, easily extendable to other datasets. We hope that our benchmarks and findings can provide guidance for future improvements in facial recognition model robustness.
♻ ☆ DefectFill: Realistic Defect Generation with Inpainting Diffusion Model for Visual Inspection CVPR 2025
Developing effective visual inspection models remains challenging due to the scarcity of defect data. While image generation models have been used to synthesize defect images, producing highly realistic defects remains difficult. We propose DefectFill, a novel method for realistic defect generation that requires only a few reference defect images. It leverages a fine-tuned inpainting diffusion model, optimized with our custom loss functions incorporating defect, object, and attention terms. It enables precise capture of detailed, localized defect features and their seamless integration into defect-free objects. Additionally, our Low-Fidelity Selection method further enhances the defect sample quality. Experiments show that DefectFill generates high-quality defect images, enabling visual inspection models to achieve state-of-the-art performance on the MVTec AD dataset.
comment: Accepted to CVPR 2025
♻ ☆ MoReVQA: Exploring Modular Reasoning Models for Video Question Answering CVPR 2024
This paper addresses the task of video question answering (videoQA) via a decomposed multi-stage, modular reasoning framework. Previous modular methods have shown promise with a single planning stage ungrounded in visual content. However, through a simple and effective baseline, we find that such systems can lead to brittle behavior in practice for challenging videoQA settings. Thus, unlike traditional single-stage planning methods, we propose a multi-stage system consisting of an event parser, a grounding stage, and a final reasoning stage in conjunction with an external memory. All stages are training-free, and performed using few-shot prompting of large models, creating interpretable intermediate outputs at each stage. By decomposing the underlying planning and task complexity, our method, MoReVQA, improves over prior work on standard videoQA benchmarks (NExT-QA, iVQA, EgoSchema, ActivityNet-QA) with state-of-the-art results, and extensions to related tasks (grounded videoQA, paragraph captioning).
comment: CVPR 2024; updated NExT-GQA results in Appendix
♻ ☆ iTool: Boosting Tool Use of Large Language Models via Iterative Reinforced Fine-Tuning
Augmenting large language models (LLMs) with external tools is known as a promising approach to enhancing their capabilities, especially for complex tasks. Synthesizing tool-use data through real-world simulations is an effective way to achieve it. Nevertheless, our investigation reveals that (1) training gains significantly decay as synthetic data increases. The model struggles to benefit from more synthetic data due to potential data diversity issues, resulting in poor performance in complex scenarios. Moreover, we find that (2) this challenge primarily manifests as minor discrepancies between the model's output and the ground truth response (termed as deficiency), such as errors in parameter values that require complex reasoning from the context to resolve. To this end, we propose an iterative reinforced fine-tuning strategy designed to alleviate these challenges. This strategy involves: (1) enhancing the diversity of synthetic data through path exploration of Monte Carlo Tree Search. (2) iteratively identifying deficiency-related data, constructing fine-grained preference pairs to pinpoint deficiencies, and then applying preference optimization to optimize these deficiencies. Our experiments show that models trained using our method achieve about 12\% better performance than baseline models, outperforming larger open-source and closed-source models.
comment: under review ACL
♻ ☆ Robust Feature Learning for Multi-Index Models in High Dimensions ICLR
Recently, there have been numerous studies on feature learning with neural networks, specifically on learning single- and multi-index models where the target is a function of a low-dimensional projection of the input. Prior works have shown that in high dimensions, the majority of the compute and data resources are spent on recovering the low-dimensional projection; once this subspace is recovered, the remainder of the target can be learned independently of the ambient dimension. However, implications of feature learning in adversarial settings remain unexplored. In this work, we take the first steps towards understanding adversarially robust feature learning with neural networks. Specifically, we prove that the hidden directions of a multi-index model offer a Bayes optimal low-dimensional projection for robustness against $\ell_2$-bounded adversarial perturbations under the squared loss, assuming that the multi-index coordinates are statistically independent from the rest of the coordinates. Therefore, robust learning can be achieved by first performing standard feature learning, then robustly tuning a linear readout layer on top of the standard representations. In particular, we show that adversarially robust learning is just as easy as standard learning. Specifically, the additional number of samples needed to robustly learn multi-index models when compared to standard learning does not depend on dimensionality.
comment: 41 pages, 1 figure. To appear in the International Conference on Learning Representations (ICLR), 2025
♻ ☆ Towards Controllable Speech Synthesis in the Era of Large Language Models: A Survey
Text-to-speech (TTS), also known as speech synthesis, is a prominent research area that aims to generate natural-sounding human speech from text. Recently, with the increasing industrial demand, TTS technologies have evolved beyond synthesizing human-like speech to enabling controllable speech generation. This includes fine-grained control over various attributes of synthesized speech such as emotion, prosody, timbre, and duration. In addition, advancements in deep learning, such as diffusion and large language models, have significantly enhanced controllable TTS over the past several years. In this work, we conduct a comprehensive survey of controllable TTS, covering approaches ranging from basic control techniques to methods utilizing natural language prompts, aiming to provide a clear understanding of the current state of research. We examine the general controllable TTS pipeline, challenges, model architectures, and control strategies, offering a comprehensive and clear taxonomy of existing methods. Additionally, we provide a detailed summary of datasets and evaluation metrics and shed some light on the applications and future directions of controllable TTS. To the best of our knowledge, this survey paper provides the first comprehensive review of emerging controllable TTS methods, which can serve as a beneficial resource for both academic researchers and industrial practitioners.
comment: A comprehensive survey on controllable TTS, 26 pages, 7 tables, 6 figures, 317 references. Under review
♻ ☆ Learning Multi-Index Models with Neural Networks via Mean-Field Langevin Dynamics ICLR
We study the problem of learning multi-index models in high-dimensions using a two-layer neural network trained with the mean-field Langevin algorithm. Under mild distributional assumptions on the data, we characterize the effective dimension $d_{\mathrm{eff}}$ that controls both sample and computational complexity by utilizing the adaptivity of neural networks to latent low-dimensional structures. When the data exhibit such a structure, $d_{\mathrm{eff}}$ can be significantly smaller than the ambient dimension. We prove that the sample complexity grows almost linearly with $d_{\mathrm{eff}}$, bypassing the limitations of the information and generative exponents that appeared in recent analyses of gradient-based feature learning. On the other hand, the computational complexity may inevitably grow exponentially with $d_{\mathrm{eff}}$ in the worst-case scenario. Motivated by improving computational complexity, we take the first steps towards polynomial time convergence of the mean-field Langevin algorithm by investigating a setting where the weights are constrained to be on a compact manifold with positive Ricci curvature, such as the hypersphere. There, we study assumptions under which polynomial time convergence is achievable, whereas similar assumptions in the Euclidean setting lead to exponential time complexity.
comment: 36 pages, 2 figures. To appear in the International Conference on Learning Representations (ICLR), 2025
♻ ☆ GR00T N1: An Open Foundation Model for Generalist Humanoid Robots
General-purpose robots need a versatile body and an intelligent mind. Recent advancements in humanoid robots have shown great promise as a hardware platform for building generalist autonomy in the human world. A robot foundation model, trained on massive and diverse data sources, is essential for enabling the robots to reason about novel situations, robustly handle real-world variability, and rapidly learn new tasks. To this end, we introduce GR00T N1, an open foundation model for humanoid robots. GR00T N1 is a Vision-Language-Action (VLA) model with a dual-system architecture. The vision-language module (System 2) interprets the environment through vision and language instructions. The subsequent diffusion transformer module (System 1) generates fluid motor actions in real time. Both modules are tightly coupled and jointly trained end-to-end. We train GR00T N1 with a heterogeneous mixture of real-robot trajectories, human videos, and synthetically generated datasets. We show that our generalist robot model GR00T N1 outperforms the state-of-the-art imitation learning baselines on standard simulation benchmarks across multiple robot embodiments. Furthermore, we deploy our model on the Fourier GR-1 humanoid robot for language-conditioned bimanual manipulation tasks, achieving strong performance with high data efficiency.
comment: Authors are listed alphabetically. Project leads are Linxi "Jim" Fan and Yuke Zhu. For more information, see https://developer.nvidia.com/isaac/gr00t
♻ ☆ Towards Better Alignment: Training Diffusion Models with Reinforcement Learning Against Sparse Rewards CVPR 2025
Diffusion models have achieved remarkable success in text-to-image generation. However, their practical applications are hindered by the misalignment between generated images and corresponding text prompts. To tackle this issue, reinforcement learning (RL) has been considered for diffusion model fine-tuning. Yet, RL's effectiveness is limited by the challenge of sparse reward, where feedback is only available at the end of the generation process. This makes it difficult to identify which actions during the denoising process contribute positively to the final generated image, potentially leading to ineffective or unnecessary denoising policies. To this end, this paper presents a novel RL-based framework that addresses the sparse reward problem when training diffusion models. Our framework, named $\text{B}^2\text{-DiffuRL}$, employs two strategies: \textbf{B}ackward progressive training and \textbf{B}ranch-based sampling. For one thing, backward progressive training focuses initially on the final timesteps of denoising process and gradually extends the training interval to earlier timesteps, easing the learning difficulty from sparse rewards. For another, we perform branch-based sampling for each training interval. By comparing the samples within the same branch, we can identify how much the policies of the current training interval contribute to the final image, which helps to learn effective policies instead of unnecessary ones. $\text{B}^2\text{-DiffuRL}$ is compatible with existing optimization algorithms. Extensive experiments demonstrate the effectiveness of $\text{B}^2\text{-DiffuRL}$ in improving prompt-image alignment and maintaining diversity in generated images. The code for this work is available.
comment: Accepted to CVPR 2025, add references
♻ ☆ VERA: Explainable Video Anomaly Detection via Verbalized Learning of Vision-Language Models CVPR 2025
The rapid advancement of vision-language models (VLMs) has established a new paradigm in video anomaly detection (VAD): leveraging VLMs to simultaneously detect anomalies and provide comprehendible explanations for the decisions. Existing work in this direction often assumes the complex reasoning required for VAD exceeds the capabilities of pretrained VLMs. Consequently, these approaches either incorporate specialized reasoning modules during inference or rely on instruction tuning datasets through additional training to adapt VLMs for VAD. However, such strategies often incur substantial computational costs or data annotation overhead. To address these challenges in explainable VAD, we introduce a verbalized learning framework named VERA that enables VLMs to perform VAD without model parameter modifications. Specifically, VERA automatically decomposes the complex reasoning required for VAD into reflections on simpler, more focused guiding questions capturing distinct abnormal patterns. It treats these reflective questions as learnable parameters and optimizes them through data-driven verbal interactions between learner and optimizer VLMs, using coarsely labeled training data. During inference, VERA embeds the learned questions into model prompts to guide VLMs in generating segment-level anomaly scores, which are then refined into frame-level scores via the fusion of scene and temporal contexts. Experimental results on challenging benchmarks demonstrate that the learned questions of VERA are highly adaptable, significantly improving both detection performance and explainability of VLMs for VAD.
comment: Accepted in CVPR 2025
♻ ☆ SyncDiff: Synchronized Motion Diffusion for Multi-Body Human-Object Interaction Synthesis
Synthesizing realistic human-object interaction motions is a critical problem in VR/AR and human animation. Unlike the commonly studied scenarios involving a single human or hand interacting with one object, we address a more generic multi-body setting with arbitrary numbers of humans, hands, and objects. This complexity introduces significant challenges in synchronizing motions due to the high correlations and mutual influences among bodies. To address these challenges, we introduce SyncDiff, a novel method for multi-body interaction synthesis using a synchronized motion diffusion strategy. SyncDiff employs a single diffusion model to capture the joint distribution of multi-body motions. To enhance motion fidelity, we propose a frequency-domain motion decomposition scheme. Additionally, we introduce a new set of alignment scores to emphasize the synchronization of different body motions. SyncDiff jointly optimizes both data sample likelihood and alignment likelihood through an explicit synchronization strategy. Extensive experiments across four datasets with various multi-body configurations demonstrate the superiority of SyncDiff over existing state-of-the-art motion synthesis methods.
comment: 26 pages, 10 figures
♻ ☆ LSEAttention is All You Need for Time Series Forecasting
Transformer-based architectures have achieved remarkable success in natural language processing and computer vision. However, their performance in multivariate long-term forecasting often falls short compared to simpler linear baselines. Previous research has identified the traditional attention mechanism as a key factor limiting their effectiveness in this domain. To bridge this gap, we introduce LATST, a novel approach designed to mitigate entropy collapse and training instability common challenges in Transformer-based time series forecasting. We rigorously evaluate LATST across multiple real-world multivariate time series datasets, demonstrating its ability to outperform existing state-of-the-art Transformer models. Notably, LATST manages to achieve competitive performance with fewer parameters than some linear models on certain datasets, highlighting its efficiency and effectiveness.
comment: 8 pages with referencing, 1 figure, 5 tables
♻ ☆ Neural Exploratory Landscape Analysis for Meta-Black-Box-Optimization
Recent research in Meta-Black-Box Optimization (MetaBBO) have shown that meta-trained neural networks can effectively guide the design of black-box optimizers, significantly reducing the need for expert tuning and delivering robust performance across complex problem distributions. Despite their success, a paradox remains: MetaBBO still rely on human-crafted Exploratory Landscape Analysis features to inform the meta-level agent about the low-level optimization progress. To address the gap, this paper proposes Neural Exploratory Landscape Analysis (NeurELA), a novel framework that dynamically profiles landscape features through a two-stage, attention-based neural network, executed in an entirely end-to-end fashion. NeurELA is pre-trained over a variety of MetaBBO algorithms using a multi-task neuroevolution strategy. Extensive experiments show that NeurELA achieves consistently superior performance when integrated into different and even unseen MetaBBO tasks and can be efficiently fine-tuned for further performance boost. This advancement marks a pivotal step in making MetaBBO algorithms more autonomous and broadly applicable. The source code of NeurELA can be accessed at https://github.com/GMC-DRL/Neur-ELA.
♻ ☆ QCPINN: Quantum Classical Physics-Informed Neural Networks for Solving PDEs
Physics-informed neural networks (PINNs) have emerged as promising methods for solving partial differential equations (PDEs) by embedding physical laws into neural architectures. However, these classical approaches often require large number of parameters for solving complex problems or achieving reasonable accuracy. We investigate whether quantum-enhanced architectures can achieve comparable performance while significantly reducing model complexity. We propose a quantum-classical physics-informed neural network (QCPINN) combining quantum and classical components to solve PDEs with fewer parameters while maintaining comparable accuracy and training convergence. Our approach systematically evaluates two quantum circuit paradigms (e.g., continuous-variable (CV) and discrete-variable (DV)) implementations with four circuit topologies (e.g., alternate, cascade, cross-mesh, and layered), two embedding schemes (e.g., amplitude and angle) on five benchmark PDEs (e.g., Helmholtz, lid-driven cavity, wave, Klein-Gordon, and convection-diffusion equations). Results demonstrate that QCPINNs achieve comparable accuracy to classical PINNs while requiring approximately 10% trainable parameters across different PDEs, and resulting in a further 40% reduction in relative L2 error for the convection-diffusion equation. DV-based circuits with angle embedding and cascade configurations consistently exhibited enhanced convergence stability across all problem types. Our finding establishes parameter efficiency as a quantifiable quantum advantage in physics-informed machine learning. By significantly reducing model complexity while maintaining solution quality, QCPINNs represent a potential direction for overcoming computational bottlenecks in scientific computing applications where traditional approaches require large parameter spaces.
♻ ☆ Rethinking the Global Knowledge of CLIP in Training-Free Open-Vocabulary Semantic Segmentation
Recent works modify CLIP to perform open-vocabulary semantic segmentation in a training-free manner (TF-OVSS). In vanilla CLIP, patch-wise image representations mainly encode homogeneous image-level properties, which hinders the application of CLIP to the dense prediction task. Previous TF-OVSS works sacrifice globality to enhance the locality of CLIP features, by making each patch mainly attend to itself or its neighboring patches within a narrow local window. With their modifications,the ability of CLIP to aggregate global context information is largely weakened. Differently, in this paper, we rethink the global knowledge encoded by CLIP and propose GCLIP to answer how to extract and utilize beneficial global knowledge of CLIP for TF-OVSS. As the representation of each patch is finally determined by the attention weights and the Value embeddings, we propose to reshape the last-block attention and Value embeddings to aggregate useful global context into final features. Firstly, we aim to equip the last-block attention with image-level properties while not introducing homogeneous attention patterns across patches. To realize the goal, we fuse the attention from the global-token emerging blocks with the Query-Query attention. Secondly, we aim to make Value embeddings of the last-block attention module more semantically correlated. To realize this, we design a novel channel suppression strategy.Extensive experiments on five standard benchmarks demonstrate that our method consistently outperforms previous state-of-the-arts.
comment: Under review
♻ ☆ Vibravox: A Dataset of French Speech Captured with Body-conduction Audio Sensors
Vibravox is a dataset compliant with the General Data Protection Regulation (GDPR) containing audio recordings using five different body-conduction audio sensors: two in-ear microphones, two bone conduction vibration pickups, and a laryngophone. The dataset also includes audio data from an airborne microphone used as a reference. The Vibravox corpus contains 45 hours per sensor of speech samples and physiological sounds recorded by 188 participants under different acoustic conditions imposed by a high order ambisonics 3D spatializer. Annotations about the recording conditions and linguistic transcriptions are also included in the corpus. We conducted a series of experiments on various speech-related tasks, including speech recognition, speech enhancement, and speaker verification. These experiments were carried out using state-of-the-art models to evaluate and compare their performances on signals captured by the different audio sensors offered by the Vibravox dataset, with the aim of gaining a better grasp of their individual characteristics.
comment: 23 pages, 42 figures
♻ ☆ LAGUNA: LAnguage Guided UNsupervised Adaptation with structured spaces
Unsupervised domain adaptation remains a critical challenge in enabling the knowledge transfer of models across unseen domains. Existing methods struggle to balance the need for domain-invariant representations with preserving domain-specific features, which is often due to alignment approaches that impose the projection of samples with similar semantics close in the latent space despite their drastic domain differences. We introduce LAGUNA - LAnguage Guided UNsupervised Adaptation with structured spaces, a novel approach that shifts the focus from aligning representations in absolute coordinates to aligning the relative positioning of equivalent concepts in latent spaces. LAGUNA defines a domain-agnostic structure upon the semantic/geometric relationships between class labels in language space and guides adaptation, ensuring that the organization of samples in visual space reflects reference inter-class relationships while preserving domain-specific characteristics. We empirically demonstrate LAGUNA's superiority in domain adaptation tasks across four diverse images and video datasets. Remarkably, LAGUNA surpasses previous works in 18 different adaptation scenarios across four diverse image and video datasets with average accuracy improvements of +3.32% on DomainNet, +5.75% in GeoPlaces, +4.77% on GeoImnet, and +1.94% mean class accuracy improvement on EgoExo4D.
♻ ☆ GlaLSTM: A Concurrent LSTM Stream Framework for Glaucoma Detection via Biomarker Mining
Glaucoma is a complex group of eye diseases marked by optic nerve damage, commonly linked to elevated intraocular pressure and biomarkers like retinal nerve fiber layer thickness. Understanding how these biomarkers interact is crucial for unraveling glaucoma's underlying mechanisms. In this paper, we propose GlaLSTM, a novel concurrent LSTM stream framework for glaucoma detection, leveraging latent biomarker relationships. Unlike traditional CNN-based models that primarily detect glaucoma from images, GlaLSTM provides deeper interpretability, revealing the key contributing factors and enhancing model transparency. This approach not only improves detection accuracy but also empowers clinicians with actionable insights, facilitating more informed decision-making. Experimental evaluations confirm that GlaLSTM surpasses existing state-of-the-art methods, demonstrating its potential for both advanced biomarker analysis and reliable glaucoma detection.
♻ ☆ Graph Sampling for Scalable and Expressive Graph Neural Networks on Homophilic Graphs
Graph Neural Networks (GNNs) excel in many graph machine learning tasks but face challenges when scaling to large networks. GNN transferability allows training on smaller graphs and applying the model to larger ones, but existing methods often rely on random subsampling, leading to disconnected subgraphs and reduced model expressivity. We propose a novel graph sampling algorithm that leverages feature homophily to preserve graph structure. By minimizing the trace of the data correlation matrix, our method better preserves the graph Laplacian trace -- a proxy for the graph connectivity -- than random sampling, while achieving lower complexity than spectral methods. Experiments on citation networks show improved performance in preserving Laplacian trace and GNN transferability compared to random sampling.
♻ ☆ Approximate Nullspace Augmented Finetuning for Robust Vision Transformers
Enhancing the robustness of deep learning models, particularly in the realm of vision transformers (ViTs), is crucial for their real-world deployment. In this work, we provide a finetuning approach to enhance the robustness of vision transformers inspired by the concept of nullspace from linear algebra. Our investigation centers on whether a vision transformer can exhibit resilience to input variations akin to the nullspace property in linear mappings, which would imply that perturbations sampled from this nullspace do not influence the model's output when added to the input. We start from the observation that many existing ViTs satisfy this property because their patch embedding layer has a non-trivial nullspace. Then, we extend the notion of nullspace to nonlinear settings and demonstrate that it is possible to synthesize approximate nullspace elements for ViT's encoder blocks through optimization. Finally, we propose a finetuning strategy for ViTs wherein we augment the training data with synthesized approximate nullspace noise. We find that our finetuning approach significantly improves the models' robustness to both adversarial and natural image perturbations.\footnote{Code is available at: https://github.com/Liu-Hy/ns-vit.
comment: CPAL 2025, Oral
♻ ☆ RiboGen: RNA Sequence and Structure Co-Generation with Equivariant MultiFlow
Ribonucleic acid (RNA) plays fundamental roles in biological systems, from carrying genetic information to performing enzymatic function. Understanding and designing RNA can enable novel therapeutic application and biotechnological innovation. To enhance RNA design, in this paper we introduce RiboGen, the first deep learning model to simultaneously generate RNA sequence and all-atom 3D structure. RiboGen leverages the standard Flow Matching with Discrete Flow Matching in a multimodal data representation. RiboGen is based on Euclidean Equivariant neural networks for efficiently processing and learning three-dimensional geometry. Our experiments show that RiboGen can efficiently generate chemically plausible and self-consistent RNA samples. Our results suggest that co-generation of sequence and structure is a competitive approach for modeling RNA.
comment: 5 pages
♻ ☆ Autoassociative Learning of Structural Representations for Modeling and Classification in Medical Imaging
Deep learning architectures based on convolutional neural networks tend to rely on continuous, smooth features. While this characteristics provides significant robustness and proves useful in many real-world tasks, it is strikingly incompatible with the physical characteristic of the world, which, at the scale in which humans operate, comprises crisp objects, typically representing well-defined categories. This study proposes a class of neurosymbolic systems that learn by reconstructing images in terms of visual primitives and are thus forced to form high-level, structural explanations of them. When applied to the task of diagnosing abnormalities in histological imaging, the method proved superior to a conventional deep learning architecture in terms of classification accuracy, while being more transparent.
comment: 15 pages, 9 figures
♻ ☆ Controlled Learning of Pointwise Nonlinearities in Neural-Network-Like Architectures
We present a general variational framework for the training of freeform nonlinearities in layered computational architectures subject to some slope constraints. The regularization that we add to the traditional training loss penalizes the second-order total variation of each trainable activation. The slope constraints allow us to impose properties such as 1-Lipschitz stability, firm non-expansiveness, and monotonicity/invertibility. These properties are crucial to ensure the proper functioning of certain classes of signal-processing algorithms (e.g., plug-and-play schemes, unrolled proximal gradient, invertible flows). We prove that the global optimum of the stated constrained-optimization problem is achieved with nonlinearities that are adaptive nonuniform linear splines. We then show how to solve the resulting function-optimization problem numerically by representing the nonlinearities in a suitable (nonuniform) B-spline basis. Finally, we illustrate the use of our framework with the data-driven design of (weakly) convex regularizers for the denoising of images and the resolution of inverse problems.
♻ ☆ RF Challenge: The Data-Driven Radio Frequency Signal Separation Challenge
We address the critical problem of interference rejection in radio-frequency (RF) signals using a data-driven approach that leverages deep-learning methods. A primary contribution of this paper is the introduction of the RF Challenge, which is a publicly available, diverse RF signal dataset for data-driven analyses of RF signal problems. Specifically, we adopt a simplified signal model for developing and analyzing interference rejection algorithms. For this signal model, we introduce a set of carefully chosen deep learning architectures, incorporating key domain-informed modifications alongside traditional benchmark solutions to establish baseline performance metrics for this intricate, ubiquitous problem. Through extensive simulations involving eight different signal mixture types, we demonstrate the superior performance (in some cases, by two orders of magnitude) of architectures such as UNet and WaveNet over traditional methods like matched filtering and linear minimum mean square error estimation. Our findings suggest that the data-driven approach can yield scalable solutions, in the sense that the same architectures may be similarly trained and deployed for different types of signals. Moreover, these findings further corroborate the promising potential of deep learning algorithms for enhancing communication systems, particularly via interference mitigation. This work also includes results from an open competition based on the RF Challenge, hosted at the 2024 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'24).
comment: 17 pages, 16 figures, to appear in the IEEE Open Journal of the Communications Society
Computer Vision and Pattern Recognition 222
☆ Free4D: Tuning-free 4D Scene Generation with Spatial-Temporal Consistency
We present Free4D, a novel tuning-free framework for 4D scene generation from a single image. Existing methods either focus on object-level generation, making scene-level generation infeasible, or rely on large-scale multi-view video datasets for expensive training, with limited generalization ability due to the scarcity of 4D scene data. In contrast, our key insight is to distill pre-trained foundation models for consistent 4D scene representation, which offers promising advantages such as efficiency and generalizability. 1) To achieve this, we first animate the input image using image-to-video diffusion models followed by 4D geometric structure initialization. 2) To turn this coarse structure into spatial-temporal consistent multiview videos, we design an adaptive guidance mechanism with a point-guided denoising strategy for spatial consistency and a novel latent replacement strategy for temporal coherence. 3) To lift these generated observations into consistent 4D representation, we propose a modulation-based refinement to mitigate inconsistencies while fully leveraging the generated information. The resulting 4D representation enables real-time, controllable rendering, marking a significant advancement in single-image-based 4D scene generation.
comment: Project Page: https://free4d.github.io/ , Code: https://github.com/TQTQliu/Free4D
☆ FB-4D: Spatial-Temporal Coherent Dynamic 3D Content Generation with Feature Banks
With the rapid advancements in diffusion models and 3D generation techniques, dynamic 3D content generation has become a crucial research area. However, achieving high-fidelity 4D (dynamic 3D) generation with strong spatial-temporal consistency remains a challenging task. Inspired by recent findings that pretrained diffusion features capture rich correspondences, we propose FB-4D, a novel 4D generation framework that integrates a Feature Bank mechanism to enhance both spatial and temporal consistency in generated frames. In FB-4D, we store features extracted from previous frames and fuse them into the process of generating subsequent frames, ensuring consistent characteristics across both time and multiple views. To ensure a compact representation, the Feature Bank is updated by a proposed dynamic merging mechanism. Leveraging this Feature Bank, we demonstrate for the first time that generating additional reference sequences through multiple autoregressive iterations can continuously improve generation performance. Experimental results show that FB-4D significantly outperforms existing methods in terms of rendering quality, spatial-temporal consistency, and robustness. It surpasses all multi-view generation tuning-free approaches by a large margin and achieves performance on par with training-based methods.
comment: Project page:https://fb-4d.c7w.tech/
☆ Zero-Shot Audio-Visual Editing via Cross-Modal Delta Denoising
In this paper, we introduce zero-shot audio-video editing, a novel task that requires transforming original audio-visual content to align with a specified textual prompt without additional model training. To evaluate this task, we curate a benchmark dataset, AvED-Bench, designed explicitly for zero-shot audio-video editing. AvED-Bench includes 110 videos, each with a 10-second duration, spanning 11 categories from VGGSound. It offers diverse prompts and scenarios that require precise alignment between auditory and visual elements, enabling robust evaluation. We identify limitations in existing zero-shot audio and video editing methods, particularly in synchronization and coherence between modalities, which often result in inconsistent outcomes. To address these challenges, we propose AvED, a zero-shot cross-modal delta denoising framework that leverages audio-video interactions to achieve synchronized and coherent edits. AvED demonstrates superior results on both AvED-Bench and the recent OAVE dataset to validate its generalization capabilities. Results are available at https://genjib.github.io/project_page/AVED/index.html
comment: Project page: https://genjib.github.io/project_page/AVED/index.html
☆ BASKET: A Large-Scale Video Dataset for Fine-Grained Skill Estimation
We present BASKET, a large-scale basketball video dataset for fine-grained skill estimation. BASKET contains 4,477 hours of video capturing 32,232 basketball players from all over the world. Compared to prior skill estimation datasets, our dataset includes a massive number of skilled participants with unprecedented diversity in terms of gender, age, skill level, geographical location, etc. BASKET includes 20 fine-grained basketball skills, challenging modern video recognition models to capture the intricate nuances of player skill through in-depth video analysis. Given a long highlight video (8-10 minutes) of a particular player, the model needs to predict the skill level (e.g., excellent, good, average, fair, poor) for each of the 20 basketball skills. Our empirical analysis reveals that the current state-of-the-art video models struggle with this task, significantly lagging behind the human baseline. We believe that BASKET could be a useful resource for developing new video models with advanced long-range, fine-grained recognition capabilities. In addition, we hope that our dataset will be useful for domain-specific applications such as fair basketball scouting, personalized player development, and many others. Dataset and code are available at https://github.com/yulupan00/BASKET.
☆ Feature4X: Bridging Any Monocular Video to 4D Agentic AI with Versatile Gaussian Feature Fields
Recent advancements in 2D and multimodal models have achieved remarkable success by leveraging large-scale training on extensive datasets. However, extending these achievements to enable free-form interactions and high-level semantic operations with complex 3D/4D scenes remains challenging. This difficulty stems from the limited availability of large-scale, annotated 3D/4D or multi-view datasets, which are crucial for generalizable vision and language tasks such as open-vocabulary and prompt-based segmentation, language-guided editing, and visual question answering (VQA). In this paper, we introduce Feature4X, a universal framework designed to extend any functionality from 2D vision foundation model into the 4D realm, using only monocular video input, which is widely available from user-generated content. The "X" in Feature4X represents its versatility, enabling any task through adaptable, model-conditioned 4D feature field distillation. At the core of our framework is a dynamic optimization strategy that unifies multiple model capabilities into a single representation. Additionally, to the best of our knowledge, Feature4X is the first method to distill and lift the features of video foundation models (e.g. SAM2, InternVideo2) into an explicit 4D feature field using Gaussian Splatting. Our experiments showcase novel view segment anything, geometric and appearance scene editing, and free-form VQA across all time steps, empowered by LLMs in feedback loops. These advancements broaden the scope of agentic AI applications by providing a foundation for scalable, contextually and spatiotemporally aware systems capable of immersive dynamic 4D scene interaction.
☆ Disentangled Source-Free Personalization for Facial Expression Recognition with Neutral Target Data
Facial Expression Recognition (FER) from videos is a crucial task in various application areas, such as human-computer interaction and health monitoring (e.g., pain, depression, fatigue, and stress). Beyond the challenges of recognizing subtle emotional or health states, the effectiveness of deep FER models is often hindered by the considerable variability of expressions among subjects. Source-free domain adaptation (SFDA) methods are employed to adapt a pre-trained source model using only unlabeled target domain data, thereby avoiding data privacy and storage issues. Typically, SFDA methods adapt to a target domain dataset corresponding to an entire population and assume it includes data from all recognition classes. However, collecting such comprehensive target data can be difficult or even impossible for FER in healthcare applications. In many real-world scenarios, it may be feasible to collect a short neutral control video (displaying only neutral expressions) for target subjects before deployment. These videos can be used to adapt a model to better handle the variability of expressions among subjects. This paper introduces the Disentangled Source-Free Domain Adaptation (DSFDA) method to address the SFDA challenge posed by missing target expression data. DSFDA leverages data from a neutral target control video for end-to-end generation and adaptation of target data with missing non-neutral data. Our method learns to disentangle features related to expressions and identity while generating the missing non-neutral target data, thereby enhancing model accuracy. Additionally, our self-supervision strategy improves model adaptation by reconstructing target images that maintain the same identity and source expression.
☆ ADS-Edit: A Multimodal Knowledge Editing Dataset for Autonomous Driving Systems
Recent advancements in Large Multimodal Models (LMMs) have shown promise in Autonomous Driving Systems (ADS). However, their direct application to ADS is hindered by challenges such as misunderstanding of traffic knowledge, complex road conditions, and diverse states of vehicle. To address these challenges, we propose the use of Knowledge Editing, which enables targeted modifications to a model's behavior without the need for full retraining. Meanwhile, we introduce ADS-Edit, a multimodal knowledge editing dataset specifically designed for ADS, which includes various real-world scenarios, multiple data types, and comprehensive evaluation metrics. We conduct comprehensive experiments and derive several interesting conclusions. We hope that our work will contribute to the further advancement of knowledge editing applications in the field of autonomous driving. Code and data are available in https://github.com/zjunlp/EasyEdit.
comment: Work in progress
☆ Reason-RFT: Reinforcement Fine-Tuning for Visual Reasoning
Visual reasoning abilities play a crucial role in understanding complex multimodal data, advancing both domain-specific applications and artificial general intelligence (AGI). Existing methods improve VLM reasoning via Chain-of-Thought (CoT) supervised fine-tuning, using meticulously annotated training data to enhance visual reasoning capabilities. However, this training paradigm may lead to overfitting and cognitive rigidity, restricting the model's ability to transfer visual reasoning skills across domains and limiting its real-world applicability. To address these limitations, we propose Reason-RFT, a novel reinforcement fine-tuning framework that significantly enhances generalization capabilities in visual reasoning tasks. Reason-RFT introduces a two-phase training framework for visual reasoning: (1) Supervised Fine-Tuning (SFT) with curated Chain-of-Thought (CoT) data activates the reasoning potential of Vision-Language Models (VLMs), followed by (2) Group Relative Policy Optimization (GRPO)-based reinforcement learning that generates multiple reasoning-response pairs, significantly enhancing generalization in visual reasoning tasks. To evaluate Reason-RFT's visual reasoning capabilities, we reconstructed a comprehensive dataset spanning visual counting, structure perception, and spatial transformation.cExperimental results demonstrate Reasoning-RFT's three key advantages: (1) Performance Enhancement: achieving state-of-the-art results across multiple tasks, outperforming most mainstream open-source and proprietary models; (2) Generalization Superiority: consistently maintaining robust performance across diverse tasks and domains, outperforming alternative training paradigms; (3) Data Efficiency: excelling in few-shot learning scenarios while surpassing full-dataset SFT baselines.
comment: 35 pages, 22 figures
☆ UniSTD: Towards Unified Spatio-Temporal Learning across Diverse Disciplines CVPR 2025
Traditional spatiotemporal models generally rely on task-specific architectures, which limit their generalizability and scalability across diverse tasks due to domain-specific design requirements. In this paper, we introduce \textbf{UniSTD}, a unified Transformer-based framework for spatiotemporal modeling, which is inspired by advances in recent foundation models with the two-stage pretraining-then-adaption paradigm. Specifically, our work demonstrates that task-agnostic pretraining on 2D vision and vision-text datasets can build a generalizable model foundation for spatiotemporal learning, followed by specialized joint training on spatiotemporal datasets to enhance task-specific adaptability. To improve the learning capabilities across domains, our framework employs a rank-adaptive mixture-of-expert adaptation by using fractional interpolation to relax the discrete variables so that can be optimized in the continuous space. Additionally, we introduce a temporal module to incorporate temporal dynamics explicitly. We evaluate our approach on a large-scale dataset covering 10 tasks across 4 disciplines, demonstrating that a unified spatiotemporal model can achieve scalable, cross-task learning and support up to 10 tasks simultaneously within one model while reducing training costs in multi-domain applications. Code will be available at https://github.com/1hunters/UniSTD.
comment: Accepted to CVPR 2025
☆ PhysGen3D: Crafting a Miniature Interactive World from a Single Image CVPR 2025
Envisioning physically plausible outcomes from a single image requires a deep understanding of the world's dynamics. To address this, we introduce PhysGen3D, a novel framework that transforms a single image into an amodal, camera-centric, interactive 3D scene. By combining advanced image-based geometric and semantic understanding with physics-based simulation, PhysGen3D creates an interactive 3D world from a static image, enabling us to "imagine" and simulate future scenarios based on user input. At its core, PhysGen3D estimates 3D shapes, poses, physical and lighting properties of objects, thereby capturing essential physical attributes that drive realistic object interactions. This framework allows users to specify precise initial conditions, such as object speed or material properties, for enhanced control over generated video outcomes. We evaluate PhysGen3D's performance against closed-source state-of-the-art (SOTA) image-to-video models, including Pika, Kling, and Gen-3, showing PhysGen3D's capacity to generate videos with realistic physics while offering greater flexibility and fine-grained control. Our results show that PhysGen3D achieves a unique balance of photorealism, physical plausibility, and user-driven interactivity, opening new possibilities for generating dynamic, physics-grounded video from an image.
comment: CVPR 2025, Project page: https://by-luckk.github.io/PhysGen3D
☆ MATHGLANCE: Multimodal Large Language Models Do Not Know Where to Look in Mathematical Diagrams
Diagrams serve as a fundamental form of visual language, representing complex concepts and their inter-relationships through structured symbols, shapes, and spatial arrangements. Unlike natural images, their inherently symbolic and abstract nature poses significant challenges for Multimodal Large Language Models (MLLMs). However, current benchmarks conflate perceptual and reasoning tasks, making it difficult to assess whether MLLMs genuinely understand mathematical diagrams beyond superficial pattern recognition. To address this gap, we introduce MATHGLANCE, a benchmark specifically designed to isolate and evaluate mathematical perception in MLLMs. MATHGLANCE comprises 1.2K images and 1.6K carefully curated questions spanning four perception tasks: shape classification, object counting, relationship identification, and object grounding, covering diverse domains including plane geometry, solid geometry, and graphical representations. Our evaluation of MLLMs reveals that their ability to understand diagrams is notably limited, particularly in fine-grained grounding tasks. In response, we construct GeoPeP, a perception-oriented dataset of 200K structured geometry image-text pairs explicitly annotated with geometric primitives and precise spatial relationships. Training MLLM on GeoPeP leads to significant gains in perceptual accuracy, which in turn substantially improves mathematical reasoning. Our benchmark and dataset establish critical standards for evaluating and advancing multimodal mathematical understanding, providing valuable resources and insights to foster future MLLM research.
☆ High Quality Diffusion Distillation on a Single GPU with Relative and Absolute Position Matching
We introduce relative and absolute position matching (RAPM), a diffusion distillation method resulting in high quality generation that can be trained efficiently on a single GPU. Recent diffusion distillation research has achieved excellent results for high-resolution text-to-image generation with methods such as phased consistency models (PCM) and improved distribution matching distillation (DMD2). However, these methods generally require many GPUs (e.g.~8-64) and significant batchsizes (e.g.~128-2048) during training, resulting in memory and compute requirements that are beyond the resources of some researchers. RAPM provides effective single-GPU diffusion distillation training with a batchsize of 1. The new method attempts to mimic the sampling trajectories of the teacher model by matching the relative and absolute positions. The design of relative positions is inspired by PCM. Two discriminators are introduced accordingly in RAPM, one for matching relative positions and the other for absolute positions. Experimental results on StableDiffusion (SD) V1.5 and SDXL indicate that RAPM with 4 timesteps produces comparable FID scores as the best method with 1 timestep under very limited computational resources.
☆ Emotion Detection and Music Recommendation System
As artificial intelligence becomes more and more ingrained in daily life, we present a novel system that uses deep learning for music recommendation and emotion-based detection. Through the use of facial recognition and the DeepFace framework, our method analyses human emotions in real-time and then plays music that reflects the mood it has discovered. The system uses a webcam to take pictures, analyses the most common facial expression, and then pulls a playlist from local storage that corresponds to the mood it has detected. An engaging and customised experience is ensured by allowing users to manually change the song selection via a dropdown menu or navigation buttons. By continuously looping over the playlist, the technology guarantees continuity. The objective of our system is to improve emotional well-being through music therapy by offering a responsive and automated music-selection experience.
☆ SChanger: Change Detection from a Semantic Change and Spatial Consistency Perspective
Change detection is a key task in Earth observation applications. Recently, deep learning methods have demonstrated strong performance and widespread application. However, change detection faces data scarcity due to the labor-intensive process of accurately aligning remote sensing images of the same area, which limits the performance of deep learning algorithms. To address the data scarcity issue, we develop a fine-tuning strategy called the Semantic Change Network (SCN). We initially pre-train the model on single-temporal supervised tasks to acquire prior knowledge of instance feature extraction. The model then employs a shared-weight Siamese architecture and extended Temporal Fusion Module (TFM) to preserve this prior knowledge and is fine-tuned on change detection tasks. The learned semantics for identifying all instances is changed to focus on identifying only the changes. Meanwhile, we observe that the locations of changes between the two images are spatially identical, a concept we refer to as spatial consistency. We introduce this inductive bias through an attention map that is generated by large-kernel convolutions and applied to the features from both time points. This enhances the modeling of multi-scale changes and helps capture underlying relationships in change detection semantics. We develop a binary change detection model utilizing these two strategies. The model is validated against state-of-the-art methods on six datasets, surpassing all benchmark methods and achieving F1 scores of 92.87%, 86.43%, 68.95%, 97.62%, 84.58%, and 93.20% on the LEVIR-CD, LEVIR-CD+, S2Looking, CDD, SYSU-CD, and WHU-CD datasets, respectively.
☆ Dynamic Motion Blending for Versatile Motion Editing
Text-guided motion editing enables high-level semantic control and iterative modifications beyond traditional keyframe animation. Existing methods rely on limited pre-collected training triplets, which severely hinders their versatility in diverse editing scenarios. We introduce MotionCutMix, an online data augmentation technique that dynamically generates training triplets by blending body part motions based on input text. While MotionCutMix effectively expands the training distribution, the compositional nature introduces increased randomness and potential body part incoordination. To model such a rich distribution, we present MotionReFit, an auto-regressive diffusion model with a motion coordinator. The auto-regressive architecture facilitates learning by decomposing long sequences, while the motion coordinator mitigates the artifacts of motion composition. Our method handles both spatial and temporal motion edits directly from high-level human instructions, without relying on additional specifications or Large Language Models. Through extensive experiments, we show that MotionReFit achieves state-of-the-art performance in text-guided motion editing.
☆ A weakly-supervised deep learning model for fast localisation and delineation of the skeleton, internal organs, and spinal canal on Whole-Body Diffusion-Weighted MRI (WB-DWI)
Background: Apparent Diffusion Coefficient (ADC) values and Total Diffusion Volume (TDV) from Whole-body diffusion-weighted MRI (WB-DWI) are recognized cancer imaging biomarkers. However, manual disease delineation for ADC and TDV measurements is unfeasible in clinical practice, demanding automation. As a first step, we propose an algorithm to generate fast and reproducible probability maps of the skeleton, adjacent internal organs (liver, spleen, urinary bladder, and kidneys), and spinal canal. Methods: We developed an automated deep-learning pipeline based on a 3D patch-based Residual U-Net architecture that localizes and delineates these anatomical structures on WB-DWI. The algorithm was trained using "soft-labels" (non-binary segmentations) derived from a computationally intensive atlas-based approach. For training and validation, we employed a multi-center WB-DWI dataset comprising 532 scans from patients with Advanced Prostate Cancer (APC) or Multiple Myeloma (MM), with testing on 45 patients. Results: Our weakly-supervised deep learning model achieved an average dice score/precision/recall of 0.66/0.6/0.73 for skeletal delineations, 0.8/0.79/0.81 for internal organs, and 0.85/0.79/0.94 for spinal canal, with surface distances consistently below 3 mm. Relative median ADC and log-transformed volume differences between automated and manual expert-defined full-body delineations were below 10% and 4%, respectively. The computational time for generating probability maps was 12x faster than the atlas-based registration algorithm (25 s vs. 5 min). An experienced radiologist rated the model's accuracy "good" or "excellent" on test datasets. Conclusion: Our model offers fast and reproducible probability maps for localizing and delineating body regions on WB-DWI, enabling ADC and TDV quantification, potentially supporting clinicians in disease staging and treatment response assessment.
☆ Demand Estimation with Text and Image Data
We propose a demand estimation method that leverages unstructured text and image data to infer substitution patterns. Using pre-trained deep learning models, we extract embeddings from product images and textual descriptions and incorporate them into a random coefficients logit model. This approach enables researchers to estimate demand even when they lack data on product attributes or when consumers value hard-to-quantify attributes, such as visual design or functional benefits. Using data from a choice experiment, we show that our approach outperforms standard attribute-based models in counterfactual predictions of consumers' second choices. We also apply it across 40 product categories on Amazon.com and consistently find that text and image data help identify close substitutes within each category.
☆ MMMORRF: Multimodal Multilingual Modularized Reciprocal Rank Fusion
Videos inherently contain multiple modalities, including visual events, text overlays, sounds, and speech, all of which are important for retrieval. However, state-of-the-art multimodal language models like VAST and LanguageBind are built on vision-language models (VLMs), and thus overly prioritize visual signals. Retrieval benchmarks further reinforce this bias by focusing on visual queries and neglecting other modalities. We create a search system MMMORRF that extracts text and features from both visual and audio modalities and integrates them with a novel modality-aware weighted reciprocal rank fusion. MMMORRF is both effective and efficient, demonstrating practicality in searching videos based on users' information needs instead of visual descriptive queries. We evaluate MMMORRF on MultiVENT 2.0 and TVR, two multimodal benchmarks designed for more targeted information needs, and find that it improves nDCG@20 by 81% over leading multimodal encoders and 37% over single-modality retrieval, demonstrating the value of integrating diverse modalities.
☆ Flip Learning: Weakly Supervised Erase to Segment Nodules in Breast Ultrasound
Accurate segmentation of nodules in both 2D breast ultrasound (BUS) and 3D automated breast ultrasound (ABUS) is crucial for clinical diagnosis and treatment planning. Therefore, developing an automated system for nodule segmentation can enhance user independence and expedite clinical analysis. Unlike fully-supervised learning, weakly-supervised segmentation (WSS) can streamline the laborious and intricate annotation process. However, current WSS methods face challenges in achieving precise nodule segmentation, as many of them depend on inaccurate activation maps or inefficient pseudo-mask generation algorithms. In this study, we introduce a novel multi-agent reinforcement learning-based WSS framework called Flip Learning, which relies solely on 2D/3D boxes for accurate segmentation. Specifically, multiple agents are employed to erase the target from the box to facilitate classification tag flipping, with the erased region serving as the predicted segmentation mask. The key contributions of this research are as follows: (1) Adoption of a superpixel/supervoxel-based approach to encode the standardized environment, capturing boundary priors and expediting the learning process. (2) Introduction of three meticulously designed rewards, comprising a classification score reward and two intensity distribution rewards, to steer the agents' erasing process precisely, thereby avoiding both under- and over-segmentation. (3) Implementation of a progressive curriculum learning strategy to enable agents to interact with the environment in a progressively challenging manner, thereby enhancing learning efficiency. Extensively validated on the large in-house BUS and ABUS datasets, our Flip Learning method outperforms state-of-the-art WSS methods and foundation models, and achieves comparable performance as fully-supervised learning algorithms.
comment: Accepted by Medical Image Analysis. 24 pages, 13 figures, 18 tabels
☆ GLRD: Global-Local Collaborative Reason and Debate with PSL for 3D Open-Vocabulary Detection
The task of LiDAR-based 3D Open-Vocabulary Detection (3D OVD) requires the detector to learn to detect novel objects from point clouds without off-the-shelf training labels. Previous methods focus on the learning of object-level representations and ignore the scene-level information, thus it is hard to distinguish objects with similar classes. In this work, we propose a Global-Local Collaborative Reason and Debate with PSL (GLRD) framework for the 3D OVD task, considering both local object-level information and global scene-level information. Specifically, LLM is utilized to perform common sense reasoning based on object-level and scene-level information, where the detection result is refined accordingly. To further boost the LLM's ability of precise decisions, we also design a probabilistic soft logic solver (OV-PSL) to search for the optimal solution, and a debate scheme to confirm the class of confusable objects. In addition, to alleviate the uneven distribution of classes, a static balance scheme (SBC) and a dynamic balance scheme (DBC) are designed. In addition, to reduce the influence of noise in data and training, we further propose Reflected Pseudo Labels Generation (RPLG) and Background-Aware Object Localization (BAOL). Extensive experiments conducted on ScanNet and SUN RGB-D demonstrate the superiority of GLRD, where absolute improvements in mean average precision are $+2.82\%$ on SUN RGB-D and $+3.72\%$ on ScanNet in the partial open-vocabulary setting. In the full open-vocabulary setting, the absolute improvements in mean average precision are $+4.03\%$ on ScanNet and $+14.11\%$ on SUN RGB-D.
comment: 15 pages
☆ Benchmarking Machine Learning Methods for Distributed Acoustic Sensing
Distributed acoustic sensing (DAS) technology represents an innovative fiber-optic-based sensing methodology that enables real-time acoustic signal monitoring through the detection of minute perturbations along optical fibers. This sensing approach offers compelling advantages, including extensive measurement ranges, exceptional spatial resolution, and an expansive dynamic measurement spectrum. The integration of machine learning (ML) paradigms presents transformative potential for DAS technology, encompassing critical domains such as data augmentation, sophisticated preprocessing techniques, and advanced acoustic event classification and recognition. By leveraging ML algorithms, DAS systems can transition from traditional data processing methodologies to more automated and intelligent analytical frameworks. The computational intelligence afforded by ML-enhanced DAS technologies facilitates unprecedented monitoring capabilities across diverse critical infrastructure sectors. Particularly noteworthy are the technology's applications in transportation infrastructure, energy management systems, and Natural disaster monitoring frameworks, where the precision of data acquisition and the reliability of intelligent decision-making mechanisms are paramount. This research critically examines the comparative performance characteristics of classical machine learning methodologies and state-of-the-art deep learning models in the context of DAS data recognition and interpretation, offering comprehensive insights into the evolving landscape of intelligent sensing technologies.
☆ Vision as LoRA
We introduce Vision as LoRA (VoRA), a novel paradigm for transforming an LLM into an MLLM. Unlike prevalent MLLM architectures that rely on external vision modules for vision encoding, VoRA internalizes visual capabilities by integrating vision-specific LoRA layers directly into the LLM. This design allows the added parameters to be seamlessly merged into the LLM during inference, eliminating structural complexity and minimizing computational overhead. Moreover, inheriting the LLM's ability of handling flexible context, VoRA can process inputs at arbitrary resolutions. To further strengthen VoRA's visual capabilities, we introduce a block-wise distillation method that transfers visual priors from a pre-trained ViT into the LoRA layers, effectively accelerating training by injecting visual knowledge. Additionally, we apply bi-directional attention masks to better capture the context information of an image. We successfully demonstrate that with additional pre-training data, VoRA can perform comparably with conventional encode-based MLLMs. All training data, codes, and model weights will be released at https://github.com/Hon-Wong/VoRA.
☆ Mitigating Low-Level Visual Hallucinations Requires Self-Awareness: Database, Model and Training Strategy
The rapid development of multimodal large language models has resulted in remarkable advancements in visual perception and understanding, consolidating several tasks into a single visual question-answering framework. However, these models are prone to hallucinations, which limit their reliability as artificial intelligence systems. While this issue is extensively researched in natural language processing and image captioning, there remains a lack of investigation of hallucinations in Low-level Visual Perception and Understanding (HLPU), especially in the context of image quality assessment tasks. We consider that these hallucinations arise from an absence of clear self-awareness within the models. To address this issue, we first introduce the HLPU instruction database, the first instruction database specifically focused on hallucinations in low-level vision tasks. This database contains approximately 200K question-answer pairs and comprises four subsets, each covering different types of instructions. Subsequently, we propose the Self-Awareness Failure Elimination (SAFEQA) model, which utilizes image features, salient region features and quality features to improve the perception and comprehension abilities of the model in low-level vision tasks. Furthermore, we propose the Enhancing Self-Awareness Preference Optimization (ESA-PO) framework to increase the model's awareness of knowledge boundaries, thereby mitigating the incidence of hallucination. Finally, we conduct comprehensive experiments on low-level vision tasks, with the results demonstrating that our proposed method significantly enhances self-awareness of the model in these tasks and reduces hallucinations. Notably, our proposed method improves both accuracy and self-awareness of the proposed model and outperforms close-source models in terms of various evaluation metrics.
☆ BizGen: Advancing Article-level Visual Text Rendering for Infographics Generation CVPR 2025
Recently, state-of-the-art text-to-image generation models, such as Flux and Ideogram 2.0, have made significant progress in sentence-level visual text rendering. In this paper, we focus on the more challenging scenarios of article-level visual text rendering and address a novel task of generating high-quality business content, including infographics and slides, based on user provided article-level descriptive prompts and ultra-dense layouts. The fundamental challenges are twofold: significantly longer context lengths and the scarcity of high-quality business content data. In contrast to most previous works that focus on a limited number of sub-regions and sentence-level prompts, ensuring precise adherence to ultra-dense layouts with tens or even hundreds of sub-regions in business content is far more challenging. We make two key technical contributions: (i) the construction of scalable, high-quality business content dataset, i.e., Infographics-650K, equipped with ultra-dense layouts and prompts by implementing a layer-wise retrieval-augmented infographic generation scheme; and (ii) a layout-guided cross attention scheme, which injects tens of region-wise prompts into a set of cropped region latent space according to the ultra-dense layouts, and refine each sub-regions flexibly during inference using a layout conditional CFG. We demonstrate the strong results of our system compared to previous SOTA systems such as Flux and SD3 on our BizEval prompt set. Additionally, we conduct thorough ablation experiments to verify the effectiveness of each component. We hope our constructed Infographics-650K and BizEval can encourage the broader community to advance the progress of business content generation.
comment: Accepted by CVPR 2025. Project Page: https://bizgen-msra.github.io
☆ AutoRad-Lung: A Radiomic-Guided Prompting Autoregressive Vision-Language Model for Lung Nodule Malignancy Prediction
Lung cancer remains one of the leading causes of cancer-related mortality worldwide. A crucial challenge for early diagnosis is differentiating uncertain cases with similar visual characteristics and closely annotation scores. In clinical practice, radiologists rely on quantitative, hand-crafted Radiomic features extracted from Computed Tomography (CT) images, while recent research has primarily focused on deep learning solutions. More recently, Vision-Language Models (VLMs), particularly Contrastive Language-Image Pre-Training (CLIP)-based models, have gained attention for their ability to integrate textual knowledge into lung cancer diagnosis. While CLIP-Lung models have shown promising results, we identified the following potential limitations: (a) dependence on radiologists' annotated attributes, which are inherently subjective and error-prone, (b) use of textual information only during training, limiting direct applicability at inference, and (c) Convolutional-based vision encoder with randomly initialized weights, which disregards prior knowledge. To address these limitations, we introduce AutoRad-Lung, which couples an autoregressively pre-trained VLM, with prompts generated from hand-crafted Radiomics. AutoRad-Lung uses the vision encoder of the Large-Scale Autoregressive Image Model (AIMv2), pre-trained using a multi-modal autoregressive objective. Given that lung tumors are typically small, irregularly shaped, and visually similar to healthy tissue, AutoRad-Lung offers significant advantages over its CLIP-based counterparts by capturing pixel-level differences. Additionally, we introduce conditional context optimization, which dynamically generates context-specific prompts based on input Radiomics, improving cross-modal alignment.
☆ ARMO: Autoregressive Rigging for Multi-Category Objects
Recent advancements in large-scale generative models have significantly improved the quality and diversity of 3D shape generation. However, most existing methods focus primarily on generating static 3D models, overlooking the potentially dynamic nature of certain shapes, such as humanoids, animals, and insects. To address this gap, we focus on rigging, a fundamental task in animation that establishes skeletal structures and skinning for 3D models. In this paper, we introduce OmniRig, the first large-scale rigging dataset, comprising 79,499 meshes with detailed skeleton and skinning information. Unlike traditional benchmarks that rely on predefined standard poses (e.g., A-pose, T-pose), our dataset embraces diverse shape categories, styles, and poses. Leveraging this rich dataset, we propose ARMO, a novel rigging framework that utilizes an autoregressive model to predict both joint positions and connectivity relationships in a unified manner. By treating the skeletal structure as a complete graph and discretizing it into tokens, we encode the joints using an auto-encoder to obtain a latent embedding and an autoregressive model to predict the tokens. A mesh-conditioned latent diffusion model is used to predict the latent embedding for conditional skeleton generation. Our method addresses the limitations of regression-based approaches, which often suffer from error accumulation and suboptimal connectivity estimation. Through extensive experiments on the OmniRig dataset, our approach achieves state-of-the-art performance in skeleton prediction, demonstrating improved generalization across diverse object categories. The code and dataset will be made public for academic use upon acceptance.
☆ AccidentSim: Generating Physically Realistic Vehicle Collision Videos from Real-World Accident Reports
Collecting real-world vehicle accident videos for autonomous driving research is challenging due to their rarity and complexity. While existing driving video generation methods may produce visually realistic videos, they often fail to deliver physically realistic simulations because they lack the capability to generate accurate post-collision trajectories. In this paper, we introduce AccidentSim, a novel framework that generates physically realistic vehicle collision videos by extracting and utilizing the physical clues and contextual information available in real-world vehicle accident reports. Specifically, AccidentSim leverages a reliable physical simulator to replicate post-collision vehicle trajectories from the physical and contextual information in the accident reports and to build a vehicle collision trajectory dataset. This dataset is then used to fine-tune a language model, enabling it to respond to user prompts and predict physically consistent post-collision trajectories across various driving scenarios based on user descriptions. Finally, we employ Neural Radiance Fields (NeRF) to render high-quality backgrounds, merging them with the foreground vehicles that exhibit physically realistic trajectories to generate vehicle collision videos. Experimental results demonstrate that the videos produced by AccidentSim excel in both visual and physical authenticity.
☆ UWarp: A Whole Slide Image Registration Pipeline to Characterize Scanner-Induced Local Domain Shift
Histopathology slide digitization introduces scanner-induced domain shift that can significantly impact computational pathology models based on deep learning methods. In the state-of-the-art, this shift is often characterized at a broad scale (slide-level or dataset-level) but not patch-level, which limits our comprehension of the impact of localized tissue characteristics on the accuracy of the deep learning models. To address this challenge, we present a domain shift analysis framework based on UWarp, a novel registration tool designed to accurately align histological slides scanned under varying conditions. UWarp employs a hierarchical registration approach, combining global affine transformations with fine-grained local corrections to achieve robust tissue patch alignment. We evaluate UWarp using two private datasets, CypathLung and BosomShieldBreast, containing whole slide images scanned by multiple devices. Our experiments demonstrate that UWarp outperforms existing open-source registration methods, achieving a median target registration error (TRE) of less than 4 pixels (<1 micrometer at 40x magnification) while significantly reducing computational time. Additionally, we apply UWarp to characterize scanner-induced local domain shift in the predictions of Breast-NEOprAIdict, a deep learning model for breast cancer pathological response prediction. We find that prediction variability is strongly correlated with tissue density on a given patch. Our findings highlight the importance of localized domain shift analysis and suggest that UWarp can serve as a valuable tool for improving model robustness and domain adaptation strategies in computational pathology.
☆ Imitating Radiological Scrolling: A Global-Local Attention Model for 3D Chest CT Volumes Multi-Label Anomaly Classification
The rapid increase in the number of Computed Tomography (CT) scan examinations has created an urgent need for automated tools, such as organ segmentation, anomaly classification, and report generation, to assist radiologists with their growing workload. Multi-label classification of Three-Dimensional (3D) CT scans is a challenging task due to the volumetric nature of the data and the variety of anomalies to be detected. Existing deep learning methods based on Convolutional Neural Networks (CNNs) struggle to capture long-range dependencies effectively, while Vision Transformers require extensive pre-training, posing challenges for practical use. Additionally, these existing methods do not explicitly model the radiologist's navigational behavior while scrolling through CT scan slices, which requires both global context understanding and local detail awareness. In this study, we present CT-Scroll, a novel global-local attention model specifically designed to emulate the scrolling behavior of radiologists during the analysis of 3D CT scans. Our approach is evaluated on two public datasets, demonstrating its efficacy through comprehensive experiments and an ablation study that highlights the contribution of each model component.
comment: 13 pages, 4 figures, under review for MIDL 2025
☆ MMGen: Unified Multi-modal Image Generation and Understanding in One Go
A unified diffusion framework for multi-modal generation and understanding has the transformative potential to achieve seamless and controllable image diffusion and other cross-modal tasks. In this paper, we introduce MMGen, a unified framework that integrates multiple generative tasks into a single diffusion model. This includes: (1) multi-modal category-conditioned generation, where multi-modal outputs are generated simultaneously through a single inference process, given category information; (2) multi-modal visual understanding, which accurately predicts depth, surface normals, and segmentation maps from RGB images; and (3) multi-modal conditioned generation, which produces corresponding RGB images based on specific modality conditions and other aligned modalities. Our approach develops a novel diffusion transformer that flexibly supports multi-modal output, along with a simple modality-decoupling strategy to unify various tasks. Extensive experiments and applications demonstrate the effectiveness and superiority of MMGen across diverse tasks and conditions, highlighting its potential for applications that require simultaneous generation and understanding.
comment: Our project page: https://jiepengwang.github.io/MMGen/
☆ Robust Flower Cluster Matching Using The Unscented Transform
Monitoring flowers over time is essential for precision robotic pollination in agriculture. To accomplish this, a continuous spatial-temporal observation of plant growth can be done using stationary RGB-D cameras. However, image registration becomes a serious challenge due to changes in the visual appearance of the plant caused by the pollination process and occlusions from growth and camera angles. Plants flower in a manner that produces distinct clusters on branches. This paper presents a method for matching flower clusters using descriptors generated from RGB-D data and considers allowing for spatial uncertainty within the cluster. The proposed approach leverages the Unscented Transform to efficiently estimate plant descriptor uncertainty tolerances, enabling a robust image-registration process despite temporal changes. The Unscented Transform is used to handle the nonlinear transformations by propagating the uncertainty of flower positions to determine the variations in the descriptor domain. A Monte Carlo simulation is used to validate the Unscented Transform results, confirming our method's effectiveness for flower cluster matching. Therefore, it can facilitate improved robotics pollination in dynamic environments.
comment: *CASE2025 Under Review*
☆ IAP: Improving Continual Learning of Vision-Language Models via Instance-Aware Prompting
Recent pre-trained vision-language models (PT-VLMs) often face a Multi-Domain Class-Incremental Learning (MCIL) scenario in practice, where several classes and domains of multi-modal tasks are incrementally arrived. Without access to previously learned tasks and unseen tasks, memory-constrained MCIL suffers from forward and backward forgetting. To alleviate the above challenges, parameter-efficient fine-tuning techniques (PEFT), such as prompt tuning, are employed to adapt the PT-VLM to the diverse incrementally learned tasks. To achieve effective new task adaptation, existing methods only consider the effect of PEFT strategy selection, but neglect the influence of PEFT parameter setting (e.g., prompting). In this paper, we tackle the challenge of optimizing prompt designs for diverse tasks in MCIL and propose an Instance-Aware Prompting (IAP) framework. Specifically, our Instance-Aware Gated Prompting (IA-GP) module enhances adaptation to new tasks while mitigating forgetting by dynamically assigning prompts across transformer layers at the instance level. Our Instance-Aware Class-Distribution-Driven Prompting (IA-CDDP) improves the task adaptation process by determining an accurate task-label-related confidence score for each instance. Experimental evaluations across 11 datasets, using three performance metrics, demonstrate the effectiveness of our proposed method. Code can be found at https://github.com/FerdinandZJU/IAP.
comment: Code can be found at https://github.com/FerdinandZJU/IAP
Diffusion Counterfactuals for Image Regressors
Counterfactual explanations have been successfully applied to create human interpretable explanations for various black-box models. They are handy for tasks in the image domain, where the quality of the explanations benefits from recent advances in generative models. Although counterfactual explanations have been widely applied to classification models, their application to regression tasks remains underexplored. We present two methods to create counterfactual explanations for image regression tasks using diffusion-based generative models to address challenges in sparsity and quality: 1) one based on a Denoising Diffusion Probabilistic Model that operates directly in pixel-space and 2) another based on a Diffusion Autoencoder operating in latent space. Both produce realistic, semantic, and smooth counterfactuals on CelebA-HQ and a synthetic data set, providing easily interpretable insights into the decision-making process of the regression model and reveal spurious correlations. We find that for regression counterfactuals, changes in features depend on the region of the predicted value. Large semantic changes are needed for significant changes in predicted values, making it harder to find sparse counterfactuals than with classifiers. Moreover, pixel space counterfactuals are more sparse while latent space counterfactuals are of higher quality and allow bigger semantic changes.
comment: 24 Pages, 5 Figures, Accepted at 3rd World Conference on eXplainable Artificial Intelligence (xAI-2025), Code and reproduction instructions available on GitHub, see https://github.com/DevinTDHa/Diffusion-Counterfactuals-for-Image-Regressors
☆ Exploring Robustness of Cortical Morphometry in the presence of white matter lesions, using Diffusion Models for Lesion Filling
Cortical thickness measurements from magnetic resonance imaging, an important biomarker in many neurodegenerative and neurological disorders, are derived by many tools from an initial voxel-wise tissue segmentation. White matter (WM) hypointensities in T1-weighted imaging, such as those arising from multiple sclerosis or small vessel disease, are known to affect the output of brain segmentation methods and therefore bias cortical thickness measurements. These effects are well-documented among traditional brain segmentation tools but have not been studied extensively in tools based on deep-learning segmentations, which promise to be more robust. In this paper, we explore the potential of deep learning to enhance the accuracy and efficiency of cortical thickness measurement in the presence of WM lesions, using a high-quality lesion filling algorithm leveraging denoising diffusion networks. A pseudo-3D U-Net architecture trained on the OASIS dataset to generate synthetic healthy tissue, conditioned on binary lesion masks derived from the MSSEG dataset, allows realistic removal of white matter lesions in multiple sclerosis patients. By applying morphometry methods to patient images before and after lesion filling, we analysed robustness of global and regional cortical thickness measurements in the presence of white matter lesions. Methods based on a deep learning-based segmentation of the brain (Fastsurfer, DL+DiReCT, ANTsPyNet) exhibited greater robustness than those using classical segmentation methods (Freesurfer, ANTs).
☆ TerraTorch: The Geospatial Foundation Models Toolkit
TerraTorch is a fine-tuning and benchmarking toolkit for Geospatial Foundation Models built on PyTorch Lightning and tailored for satellite, weather, and climate data. It integrates domain-specific data modules, pre-defined tasks, and a modular model factory that pairs any backbone with diverse decoder heads. These components allow researchers and practitioners to fine-tune supported models in a no-code fashion by simply editing a training configuration. By consolidating best practices for model development and incorporating the automated hyperparameter optimization extension Iterate, TerraTorch reduces the expertise and time required to fine-tune or benchmark models on new Earth Observation use cases. Furthermore, TerraTorch directly integrates with GEO-Bench, allowing for systematic and reproducible benchmarking of Geospatial Foundation Models. TerraTorch is open sourced under Apache 2.0, available at https://github.com/IBM/terratorch, and can be installed via pip install terratorch.
comment: IGARSS 2025
☆ Beyond Intermediate States: Explaining Visual Redundancy through Language
Multi-modal Large Langue Models (MLLMs) often process thousands of visual tokens, which consume a significant portion of the context window and impose a substantial computational burden. Prior work has empirically explored visual token pruning methods based on MLLMs' intermediate states (e.g., attention scores). However, they have limitations in precisely defining visual redundancy due to their inability to capture the influence of visual tokens on MLLMs' visual understanding (i.e., the predicted probabilities for textual token candidates). To address this issue, we manipulate the visual input and investigate variations in the textual output from both token-centric and context-centric perspectives, achieving intuitive and comprehensive analysis. Experimental results reveal that visual tokens with low ViT-[cls] association and low text-to-image attention scores can contain recognizable information and significantly contribute to images' overall information. To develop a more reliable method for identifying and pruning redundant visual tokens, we integrate these two perspectives and introduce a context-independent condition to identify redundant prototypes from training images, which probes the redundancy of each visual token during inference. Extensive experiments on single-image, multi-image and video comprehension tasks demonstrate the effectiveness of our method, notably achieving 90% to 110% of the performance while pruning 80% to 90% of visual tokens.
☆ TD-BFR: Truncated Diffusion Model for Efficient Blind Face Restoration ICME 2025
Diffusion-based methodologies have shown significant potential in blind face restoration (BFR), leveraging their robust generative capabilities. However, they are often criticized for two significant problems: 1) slow training and inference speed, and 2) inadequate recovery of fine-grained facial details. To address these problems, we propose a novel Truncated Diffusion model for efficient Blind Face Restoration (TD-BFR), a three-stage paradigm tailored for the progressive resolution of degraded images. Specifically, TD-BFR utilizes an innovative truncated sampling method, starting from low-quality (LQ) images at low resolution to enhance sampling speed, and then introduces an adaptive degradation removal module to handle unknown degradations and connect the generation processes across different resolutions. Additionally, we further adapt the priors of pre-trained diffusion models to recover rich facial details. Our method efficiently restores high-quality images in a coarse-to-fine manner and experimental results demonstrate that TD-BFR is, on average, \textbf{4.75$\times$} faster than current state-of-the-art diffusion-based BFR methods while maintaining competitive quality.
comment: Accepted by ICME 2025
☆ GAIA-2: A Controllable Multi-View Generative World Model for Autonomous Driving
Generative models offer a scalable and flexible paradigm for simulating complex environments, yet current approaches fall short in addressing the domain-specific requirements of autonomous driving - such as multi-agent interactions, fine-grained control, and multi-camera consistency. We introduce GAIA-2, Generative AI for Autonomy, a latent diffusion world model that unifies these capabilities within a single generative framework. GAIA-2 supports controllable video generation conditioned on a rich set of structured inputs: ego-vehicle dynamics, agent configurations, environmental factors, and road semantics. It generates high-resolution, spatiotemporally consistent multi-camera videos across geographically diverse driving environments (UK, US, Germany). The model integrates both structured conditioning and external latent embeddings (e.g., from a proprietary driving model) to facilitate flexible and semantically grounded scene synthesis. Through this integration, GAIA-2 enables scalable simulation of both common and rare driving scenarios, advancing the use of generative world models as a core tool in the development of autonomous systems. Videos are available at https://wayve.ai/thinking/gaia-2.
comment: Technical Report
☆ MAR-3D: Progressive Masked Auto-regressor for High-Resolution 3D Generation CVPR 2025
Recent advances in auto-regressive transformers have revolutionized generative modeling across different domains, from language processing to visual generation, demonstrating remarkable capabilities. However, applying these advances to 3D generation presents three key challenges: the unordered nature of 3D data conflicts with sequential next-token prediction paradigm, conventional vector quantization approaches incur substantial compression loss when applied to 3D meshes, and the lack of efficient scaling strategies for higher resolution latent prediction. To address these challenges, we introduce MAR-3D, which integrates a pyramid variational autoencoder with a cascaded masked auto-regressive transformer (Cascaded MAR) for progressive latent upscaling in the continuous space. Our architecture employs random masking during training and auto-regressive denoising in random order during inference, naturally accommodating the unordered property of 3D latent tokens. Additionally, we propose a cascaded training strategy with condition augmentation that enables efficiently up-scale the latent token resolution with fast convergence. Extensive experiments demonstrate that MAR-3D not only achieves superior performance and generalization capabilities compared to existing methods but also exhibits enhanced scaling capabilities compared to joint distribution modeling approaches (e.g., diffusion transformers).
comment: Aceepted to CVPR 2025
☆ Small Object Detection: A Comprehensive Survey on Challenges, Techniques and Real-World Applications
Small object detection (SOD) is a critical yet challenging task in computer vision, with applications like spanning surveillance, autonomous systems, medical imaging, and remote sensing. Unlike larger objects, small objects contain limited spatial and contextual information, making accurate detection difficult. Challenges such as low resolution, occlusion, background interference, and class imbalance further complicate the problem. This survey provides a comprehensive review of recent advancements in SOD using deep learning, focusing on articles published in Q1 journals during 2024-2025. We analyzed challenges, state-of-the-art techniques, datasets, evaluation metrics, and real-world applications. Recent advancements in deep learning have introduced innovative solutions, including multi-scale feature extraction, Super-Resolution (SR) techniques, attention mechanisms, and transformer-based architectures. Additionally, improvements in data augmentation, synthetic data generation, and transfer learning have addressed data scarcity and domain adaptation issues. Furthermore, emerging trends such as lightweight neural networks, knowledge distillation (KD), and self-supervised learning offer promising directions for improving detection efficiency, particularly in resource-constrained environments like Unmanned Aerial Vehicles (UAV)-based surveillance and edge computing. We also review widely used datasets, along with standard evaluation metrics such as mean Average Precision (mAP) and size-specific AP scores. The survey highlights real-world applications, including traffic monitoring, maritime surveillance, industrial defect detection, and precision agriculture. Finally, we discuss open research challenges and future directions, emphasizing the need for robust domain adaptation techniques, better feature fusion strategies, and real-time performance optimization.
☆ Vision-Amplified Semantic Entropy for Hallucination Detection in Medical Visual Question Answering
Multimodal large language models (MLLMs) have demonstrated significant potential in medical Visual Question Answering (VQA). Yet, they remain prone to hallucinations-incorrect responses that contradict input images, posing substantial risks in clinical decision-making. Detecting these hallucinations is essential for establishing trust in MLLMs among clinicians and patients, thereby enabling their real-world adoption. Current hallucination detection methods, especially semantic entropy (SE), have demonstrated promising hallucination detection capacity for LLMs. However, adapting SE to medical MLLMs by incorporating visual perturbations presents a dilemma. Weak perturbations preserve image content and ensure clinical validity, but may be overlooked by medical MLLMs, which tend to over rely on language priors. In contrast, strong perturbations can distort essential diagnostic features, compromising clinical interpretation. To address this issue, we propose Vision Amplified Semantic Entropy (VASE), which incorporates weak image transformations and amplifies the impact of visual input, to improve hallucination detection in medical VQA. We first estimate the semantic predictive distribution under weak visual transformations to preserve clinical validity, and then amplify visual influence by contrasting this distribution with that derived from a distorted image. The entropy of the resulting distribution is estimated as VASE. Experiments on two medical open-ended VQA datasets demonstrate that VASE consistently outperforms existing hallucination detection methods.
comment: 11 pages, 2 figures
☆ MLLM-Selector: Necessity and Diversity-driven High-Value Data Selection for Enhanced Visual Instruction Tuning
Visual instruction tuning (VIT) has emerged as a crucial technique for enabling multi-modal large language models (MLLMs) to follow user instructions adeptly. Yet, a significant gap persists in understanding the attributes of high-quality instruction tuning data and frameworks for its automated selection. To address this, we introduce MLLM-Selector, an automated approach that identifies valuable data for VIT by weighing necessity and diversity. Our process starts by randomly sampling a subset from the VIT data pool to fine-tune a pretrained model, thus creating a seed model with an initial ability to follow instructions. Then, leveraging the seed model, we calculate necessity scores for each sample in the VIT data pool to identify samples pivotal for enhancing model performance. Our findings underscore the importance of mixing necessity and diversity in data choice, leading to the creation of MLLM-Selector, our methodology that fuses necessity scoring with strategic sampling for superior data refinement. Empirical results indicate that within identical experimental conditions, MLLM-Selector surpasses LLaVA-1.5 in some benchmarks with less than 1% of the data and consistently exceeds performance across all validated benchmarks when using less than 50%.
comment: Tech Report
☆ Towards Efficient and General-Purpose Few-Shot Misclassification Detection for Vision-Language Models
Reliable prediction by classifiers is crucial for their deployment in high security and dynamically changing situations. However, modern neural networks often exhibit overconfidence for misclassified predictions, highlighting the need for confidence estimation to detect errors. Despite the achievements obtained by existing methods on small-scale datasets, they all require training from scratch and there are no efficient and effective misclassification detection (MisD) methods, hindering practical application towards large-scale and ever-changing datasets. In this paper, we pave the way to exploit vision language model (VLM) leveraging text information to establish an efficient and general-purpose misclassification detection framework. By harnessing the power of VLM, we construct FSMisD, a Few-Shot prompt learning framework for MisD to refrain from training from scratch and therefore improve tuning efficiency. To enhance misclassification detection ability, we use adaptive pseudo sample generation and a novel negative loss to mitigate the issue of overconfidence by pushing category prompts away from pseudo features. We conduct comprehensive experiments with prompt learning methods and validate the generalization ability across various datasets with domain shift. Significant and consistent improvement demonstrates the effectiveness, efficiency and generalizability of our approach.
comment: preprint
☆ VPO: Aligning Text-to-Video Generation Models with Prompt Optimization
Video generation models have achieved remarkable progress in text-to-video tasks. These models are typically trained on text-video pairs with highly detailed and carefully crafted descriptions, while real-world user inputs during inference are often concise, vague, or poorly structured. This gap makes prompt optimization crucial for generating high-quality videos. Current methods often rely on large language models (LLMs) to refine prompts through in-context learning, but suffer from several limitations: they may distort user intent, omit critical details, or introduce safety risks. Moreover, they optimize prompts without considering the impact on the final video quality, which can lead to suboptimal results. To address these issues, we introduce VPO, a principled framework that optimizes prompts based on three core principles: harmlessness, accuracy, and helpfulness. The generated prompts faithfully preserve user intents and, more importantly, enhance the safety and quality of generated videos. To achieve this, VPO employs a two-stage optimization approach. First, we construct and refine a supervised fine-tuning (SFT) dataset based on principles of safety and alignment. Second, we introduce both text-level and video-level feedback to further optimize the SFT model with preference learning. Our extensive experiments demonstrate that VPO significantly improves safety, alignment, and video quality compared to baseline methods. Moreover, VPO shows strong generalization across video generation models. Furthermore, we demonstrate that VPO could outperform and be combined with RLHF methods on video generation models, underscoring the effectiveness of VPO in aligning video generation models. Our code and data are publicly available at https://github.com/thu-coai/VPO.
☆ Contrastive Learning Guided Latent Diffusion Model for Image-to-Image Translation
The diffusion model has demonstrated superior performance in synthesizing diverse and high-quality images for text-guided image translation. However, there remains room for improvement in both the formulation of text prompts and the preservation of reference image content. First, variations in target text prompts can significantly influence the quality of the generated images, and it is often challenging for users to craft an optimal prompt that fully captures the content of the input image. Second, while existing models can introduce desired modifications to specific regions of the reference image, they frequently induce unintended alterations in areas that should remain unchanged. To address these challenges, we propose pix2pix-zeroCon, a zero-shot diffusion-based method that eliminates the need for additional training by leveraging patch-wise contrastive loss. Specifically, we automatically determine the editing direction in the text embedding space based on the reference image and target prompts. Furthermore, to ensure precise content and structural preservation in the edited image, we introduce cross-attention guiding loss and patch-wise contrastive loss between the generated and original image embeddings within a pre-trained diffusion model. Notably, our approach requires no additional training and operates directly on a pre-trained text-to-image diffusion model. Extensive experiments demonstrate that our method surpasses existing models in image-to-image translation, achieving enhanced fidelity and controllability.
comment: 11 pages, 13 figures
☆ Dissecting and Mitigating Diffusion Bias via Mechanistic Interpretability CVPR 2025
Diffusion models have demonstrated impressive capabilities in synthesizing diverse content. However, despite their high-quality outputs, these models often perpetuate social biases, including those related to gender and race. These biases can potentially contribute to harmful real-world consequences, reinforcing stereotypes and exacerbating inequalities in various social contexts. While existing research on diffusion bias mitigation has predominantly focused on guiding content generation, it often neglects the intrinsic mechanisms within diffusion models that causally drive biased outputs. In this paper, we investigate the internal processes of diffusion models, identifying specific decision-making mechanisms, termed bias features, embedded within the model architecture. By directly manipulating these features, our method precisely isolates and adjusts the elements responsible for bias generation, permitting granular control over the bias levels in the generated content. Through experiments on both unconditional and conditional diffusion models across various social bias attributes, we demonstrate our method's efficacy in managing generation distribution while preserving image quality. We also dissect the discovered model mechanism, revealing different intrinsic features controlling fine-grained aspects of generation, boosting further research on mechanistic interpretability of diffusion models.
comment: CVPR 2025; Project Page: https://foundation-model-research.github.io/difflens
☆ From Trial to Triumph: Advancing Long Video Understanding via Visual Context Sample Scaling and Self-reward Alignment
Multi-modal Large language models (MLLMs) show remarkable ability in video understanding. Nevertheless, understanding long videos remains challenging as the models can only process a finite number of frames in a single inference, potentially omitting crucial visual information. To address the challenge, we propose generating multiple predictions through visual context sampling, followed by a scoring mechanism to select the final prediction. Specifically, we devise a bin-wise sampling strategy that enables MLLMs to generate diverse answers based on various combinations of keyframes, thereby enriching the visual context. To determine the final prediction from the sampled answers, we employ a self-reward by linearly combining three scores: (1) a frequency score indicating the prevalence of each option, (2) a marginal confidence score reflecting the inter-intra sample certainty of MLLM predictions, and (3) a reasoning score for different question types, including clue-guided answering for global questions and temporal self-refocusing for local questions. The frequency score ensures robustness through majority correctness, the confidence-aligned score reflects prediction certainty, and the typed-reasoning score addresses cases with sparse key visual information using tailored strategies. Experiments show that this approach covers the correct answer for a high percentage of long video questions, on seven datasets show that our method improves the performance of three MLLMs.
☆ Lipschitz Constant Meets Condition Number: Learning Robust and Compact Deep Neural Networks
Recent research has revealed that high compression of Deep Neural Networks (DNNs), e.g., massive pruning of the weight matrix of a DNN, leads to a severe drop in accuracy and susceptibility to adversarial attacks. Integration of network pruning into an adversarial training framework has been proposed to promote adversarial robustness. It has been observed that a highly pruned weight matrix tends to be ill-conditioned, i.e., increasing the condition number of the weight matrix. This phenomenon aggravates the vulnerability of a DNN to input noise. Although a highly pruned weight matrix is considered to be able to lower the upper bound of the local Lipschitz constant to tolerate large distortion, the ill-conditionedness of such a weight matrix results in a non-robust DNN model. To overcome this challenge, this work develops novel joint constraints to adjust the weight distribution of networks, namely, the Transformed Sparse Constraint joint with Condition Number Constraint (TSCNC), which copes with smoothing distribution and differentiable constraint functions to reduce condition number and thus avoid the ill-conditionedness of weight matrices. Furthermore, our theoretical analyses unveil the relevance between the condition number and the local Lipschitz constant of the weight matrix, namely, the sharply increasing condition number becomes the dominant factor that restricts the robustness of over-sparsified models. Extensive experiments are conducted on several public datasets, and the results show that the proposed constraints significantly improve the robustness of a DNN with high pruning rates.
comment: 13 pages, 6 figures
Attention Xception UNet (AXUNet): A Novel Combination of CNN and Self-Attention for Brain Tumor Segmentation
Accurate segmentation of glioma brain tumors is crucial for diagnosis and treatment planning. Deep learning techniques offer promising solutions, but optimal model architectures remain under investigation. We used the BraTS 2021 dataset, selecting T1 with contrast enhancement (T1CE), T2, and Fluid-Attenuated Inversion Recovery (FLAIR) sequences for model development. The proposed Attention Xception UNet (AXUNet) architecture integrates an Xception backbone with dot-product self-attention modules, inspired by state-of-the-art (SOTA) large language models such as Google Bard and OpenAI ChatGPT, within a UNet-shaped model. We compared AXUNet with SOTA models. Comparative evaluation on the test set demonstrated improved results over baseline models. Inception-UNet and Xception-UNet achieved mean Dice scores of 90.88 and 93.24, respectively. Attention ResUNet (AResUNet) attained a mean Dice score of 92.80, with the highest score of 84.92 for enhancing tumor (ET) among all models. Attention Gate UNet (AGUNet) yielded a mean Dice score of 90.38. AXUNet outperformed all models with a mean Dice score of 93.73. It demonstrated superior Dice scores across whole tumor (WT) and tumor core (TC) regions, achieving 92.59 for WT, 86.81 for TC, and 84.89 for ET. The integration of the Xception backbone and dot-product self-attention mechanisms in AXUNet showcases enhanced performance in capturing spatial and contextual information. The findings underscore the potential utility of AXUNet in facilitating precise tumor delineation.
☆ Siformer: Feature-isolated Transformer for Efficient Skeleton-based Sign Language Recognition
Sign language recognition (SLR) refers to interpreting sign language glosses from given videos automatically. This research area presents a complex challenge in computer vision because of the rapid and intricate movements inherent in sign languages, which encompass hand gestures, body postures, and even facial expressions. Recently, skeleton-based action recognition has attracted increasing attention due to its ability to handle variations in subjects and backgrounds independently. However, current skeleton-based SLR methods exhibit three limitations: 1) they often neglect the importance of realistic hand poses, where most studies train SLR models on non-realistic skeletal representations; 2) they tend to assume complete data availability in both training or inference phases, and capture intricate relationships among different body parts collectively; 3) these methods treat all sign glosses uniformly, failing to account for differences in complexity levels regarding skeletal representations. To enhance the realism of hand skeletal representations, we present a kinematic hand pose rectification method for enforcing constraints. Mitigating the impact of missing data, we propose a feature-isolated mechanism to focus on capturing local spatial-temporal context. This method captures the context concurrently and independently from individual features, thus enhancing the robustness of the SLR model. Additionally, to adapt to varying complexity levels of sign glosses, we develop an input-adaptive inference approach to optimise computational efficiency and accuracy. Experimental results demonstrate the effectiveness of our approach, as evidenced by achieving a new state-of-the-art (SOTA) performance on WLASL100 and LSA64. For WLASL100, we achieve a top-1 accuracy of 86.50\%, marking a relative improvement of 2.39% over the previous SOTA. For LSA64, we achieve a top-1 accuracy of 99.84%.
comment: 10 pages, ACM Multimedia
☆ Latent Beam Diffusion Models for Decoding Image Sequences
While diffusion models excel at generating high-quality images from text prompts, they struggle with visual consistency in image sequences. Existing methods generate each image independently, leading to disjointed narratives - a challenge further exacerbated in non-linear storytelling, where scenes must connect beyond adjacent frames. We introduce a novel beam search strategy for latent space exploration, enabling conditional generation of full image sequences with beam search decoding. Unlike prior approaches that use fixed latent priors, our method dynamically searches for an optimal sequence of latent representations, ensuring coherent visual transitions. To address beam search's quadratic complexity, we integrate a cross-attention mechanism that efficiently scores search paths and enables pruning, prioritizing alignment with both textual prompts and visual context. Human evaluations confirm that our approach outperforms baseline methods, producing full sequences with superior coherence, visual continuity, and textual alignment. By bridging advances in search optimization and latent space refinement, this work sets a new standard for structured image sequence generation.
☆ Evaluating Facial Expression Recognition Datasets for Deep Learning: A Benchmark Study with Novel Similarity Metrics
This study investigates the key characteristics and suitability of widely used Facial Expression Recognition (FER) datasets for training deep learning models. In the field of affective computing, FER is essential for interpreting human emotions, yet the performance of FER systems is highly contingent on the quality and diversity of the underlying datasets. To address this issue, we compiled and analyzed 24 FER datasets, including those targeting specific age groups such as children, adults, and the elderly, and processed them through a comprehensive normalization pipeline. In addition, we enriched the datasets with automatic annotations for age and gender, enabling a more nuanced evaluation of their demographic properties. To further assess dataset efficacy, we introduce three novel metricsLocal, Global, and Paired Similarity, which quantitatively measure dataset difficulty, generalization capability, and cross-dataset transferability. Benchmark experiments using state-of-the-art neural networks reveal that large-scale, automatically collected datasets (e.g., AffectNet, FER2013) tend to generalize better, despite issues with labeling noise and demographic biases, whereas controlled datasets offer higher annotation quality but limited variability. Our findings provide actionable recommendations for dataset selection and design, advancing the development of more robust, fair, and effective FER systems.
☆ Cherry Yield Forecast: Harvest Prediction for Individual Sweet Cherry Trees
This paper is part of a publication series from the For5G project that has the goal of creating digital twins of sweet cherry trees. At the beginning a brief overview of the revious work in this project is provided. Afterwards the focus shifts to a crucial problem in the fruit farming domain: the difficulty of making reliable yield predictions early in the season. Following three Satin sweet cherry trees along the year 2023 enabled the collection of accurate ground truth data about the development of cherries from dormancy until harvest. The methodology used to collect this data is presented, along with its valuation and visualization. The predictive power of counting objects at all relevant vegetative stages of the fruit development cycle in cherry trees with regards to yield predictions is investigated. It is found that all investigated fruit states are suitable for yield predictions based on linear regression. Conceptionally, there is a trade-off between earliness and external events with the potential to invalidate the prediction. Considering this, two optimal timepoints are suggested that are opening cluster stage before the start of the flowering and the early fruit stage right after the second fruit drop. However, both timepoints are challenging to solve with automated procedures based on image data. Counting developing cherries based on images is exceptionally difficult due to the small fruit size and their tendency to be occluded by leaves. It was not possible to obtain satisfying results relying on a state-of-the-art fruit-counting method. Counting the elements within a bursting bud is also challenging, even when using high resolution cameras. It is concluded that accurate yield prediction for sweet cherry trees is possible when objects are manually counted and that automated features extraction with similar accuracy remains an open problem yet to be solved.
☆ ITA-MDT: Image-Timestep-Adaptive Masked Diffusion Transformer Framework for Image-Based Virtual Try-On CVPR 2025
This paper introduces ITA-MDT, the Image-Timestep-Adaptive Masked Diffusion Transformer Framework for Image-Based Virtual Try-On (IVTON), designed to overcome the limitations of previous approaches by leveraging the Masked Diffusion Transformer (MDT) for improved handling of both global garment context and fine-grained details. The IVTON task involves seamlessly superimposing a garment from one image onto a person in another, creating a realistic depiction of the person wearing the specified garment. Unlike conventional diffusion-based virtual try-on models that depend on large pre-trained U-Net architectures, ITA-MDT leverages a lightweight, scalable transformer-based denoising diffusion model with a mask latent modeling scheme, achieving competitive results while reducing computational overhead. A key component of ITA-MDT is the Image-Timestep Adaptive Feature Aggregator (ITAFA), a dynamic feature aggregator that combines all of the features from the image encoder into a unified feature of the same size, guided by diffusion timestep and garment image complexity. This enables adaptive weighting of features, allowing the model to emphasize either global information or fine-grained details based on the requirements of the denoising stage. Additionally, the Salient Region Extractor (SRE) module is presented to identify complex region of the garment to provide high-resolution local information to the denoising model as an additional condition alongside the global information of the full garment image. This targeted conditioning strategy enhances detail preservation of fine details in highly salient garment regions, optimizing computational resources by avoiding unnecessarily processing entire garment image. Comparative evaluations confirms that ITA-MDT improves efficiency while maintaining strong performance, reaching state-of-the-art results in several metrics.
comment: CVPR 2025, Project Page: https://jiwoohong93.github.io/ita-mdt/
☆ RSRWKV: A Linear-Complexity 2D Attention Mechanism for Efficient Remote Sensing Vision Task
High-resolution remote sensing analysis faces challenges in global context modeling due to scene complexity and scale diversity. While CNNs excel at local feature extraction via parameter sharing, their fixed receptive fields fundamentally restrict long-range dependency modeling. Vision Transformers (ViTs) effectively capture global semantic relationships through self-attention mechanisms but suffer from quadratic computational complexity relative to image resolution, creating critical efficiency bottlenecks for high-resolution imagery. The RWKV model's linear-complexity sequence modeling achieves breakthroughs in NLP but exhibits anisotropic limitations in vision tasks due to its 1D scanning mechanism. To address these challenges, we propose RSRWKV, featuring a novel 2D-WKV scanning mechanism that bridges sequential processing and 2D spatial reasoning while maintaining linear complexity. This enables isotropic context aggregation across multiple directions. The MVC-Shift module enhances multi-scale receptive field coverage, while the ECA module strengthens cross-channel feature interaction and semantic saliency modeling. Experimental results demonstrate RSRWKV's superior performance over CNN and Transformer baselines in classification, detection, and segmentation tasks on NWPU RESISC45, VHR-10.v2, and GLH-Water datasets, offering a scalable solution for high-resolution remote sensing analysis.
☆ Pluggable Style Representation Learning for Multi-Style Transfer
Due to the high diversity of image styles, the scalability to various styles plays a critical role in real-world applications. To accommodate a large amount of styles, previous multi-style transfer approaches rely on enlarging the model size while arbitrary-style transfer methods utilize heavy backbones. However, the additional computational cost introduced by more model parameters hinders these methods to be deployed on resource-limited devices. To address this challenge, in this paper, we develop a style transfer framework by decoupling the style modeling and transferring. Specifically, for style modeling, we propose a style representation learning scheme to encode the style information into a compact representation. Then, for style transferring, we develop a style-aware multi-style transfer network (SaMST) to adapt to diverse styles using pluggable style representations. In this way, our framework is able to accommodate diverse image styles in the learned style representations without introducing additional overhead during inference, thereby maintaining efficiency. Experiments show that our style representation can extract accurate style information. Moreover, qualitative and quantitative results demonstrate that our method achieves state-of-the-art performance in terms of both accuracy and efficiency. The codes are available in https://github.com/The-Learning-And-Vision-Atelier-LAVA/SaMST.
comment: 18 pages, 13 figures, 2 tables
☆ Self-ReS: Self-Reflection in Large Vision-Language Models for Long Video Understanding
Large Vision-Language Models (LVLMs) demonstrate remarkable performance in short-video tasks such as video question answering, but struggle in long-video understanding. The linear frame sampling strategy, conventionally used by LVLMs, fails to account for the non-linear distribution of key events in video data, often introducing redundant or irrelevant information in longer contexts while risking the omission of critical events in shorter ones. To address this, we propose SelfReS, a non-linear spatiotemporal self-reflective sampling method that dynamically selects key video fragments based on user prompts. Unlike prior approaches, SelfReS leverages the inherently sparse attention maps of LVLMs to define reflection tokens, enabling relevance-aware token selection without requiring additional training or external modules. Experiments demonstrate that SelfReS can be seamlessly integrated into strong base LVLMs, improving long-video task accuracy and achieving up to 46% faster inference speed within the same GPU memory budget.
☆ SURGEON: Memory-Adaptive Fully Test-Time Adaptation via Dynamic Activation Sparsity CVPR 2025
Despite the growing integration of deep models into mobile terminals, the accuracy of these models declines significantly due to various deployment interferences. Test-time adaptation (TTA) has emerged to improve the performance of deep models by adapting them to unlabeled target data online. Yet, the significant memory cost, particularly in resource-constrained terminals, impedes the effective deployment of most backward-propagation-based TTA methods. To tackle memory constraints, we introduce SURGEON, a method that substantially reduces memory cost while preserving comparable accuracy improvements during fully test-time adaptation (FTTA) without relying on specific network architectures or modifications to the original training procedure. Specifically, we propose a novel dynamic activation sparsity strategy that directly prunes activations at layer-specific dynamic ratios during adaptation, allowing for flexible control of learning ability and memory cost in a data-sensitive manner. Among this, two metrics, Gradient Importance and Layer Activation Memory, are considered to determine the layer-wise pruning ratios, reflecting accuracy contribution and memory efficiency, respectively. Experimentally, our method surpasses the baselines by not only reducing memory usage but also achieving superior accuracy, delivering SOTA performance across diverse datasets, architectures, and tasks.
comment: Accepted to CVPR 2025
☆ Consistency Trajectory Matching for One-Step Generative Super-Resolution
Current diffusion-based super-resolution (SR) approaches achieve commendable performance at the cost of high inference overhead. Therefore, distillation techniques are utilized to accelerate the multi-step teacher model into one-step student model. Nevertheless, these methods significantly raise training costs and constrain the performance of the student model by the teacher model. To overcome these tough challenges, we propose Consistency Trajectory Matching for Super-Resolution (CTMSR), a distillation-free strategy that is able to generate photo-realistic SR results in one step. Concretely, we first formulate a Probability Flow Ordinary Differential Equation (PF-ODE) trajectory to establish a deterministic mapping from low-resolution (LR) images with noise to high-resolution (HR) images. Then we apply the Consistency Training (CT) strategy to directly learn the mapping in one step, eliminating the necessity of pre-trained diffusion model. To further enhance the performance and better leverage the ground-truth during the training process, we aim to align the distribution of SR results more closely with that of the natural images. To this end, we propose to minimize the discrepancy between their respective PF-ODE trajectories from the LR image distribution by our meticulously designed Distribution Trajectory Matching (DTM) loss, resulting in improved realism of our recovered HR images. Comprehensive experimental results demonstrate that the proposed methods can attain comparable or even superior capabilities on both synthetic and real datasets while maintaining minimal inference latency.
VideoGEM: Training-free Action Grounding in Videos
Vision-language foundation models have shown impressive capabilities across various zero-shot tasks, including training-free localization and grounding, primarily focusing on localizing objects in images. However, leveraging those capabilities to localize actions and events in videos is challenging, as actions have less physical outline and are usually described by higher-level concepts. In this work, we propose VideoGEM, the first training-free spatial action grounding method based on pretrained image- and video-language backbones. Namely, we adapt the self-self attention formulation of GEM to spatial activity grounding. We observe that high-level semantic concepts, such as actions, usually emerge in the higher layers of the image- and video-language models. We, therefore, propose a layer weighting in the self-attention path to prioritize higher layers. Additionally, we introduce a dynamic weighting method to automatically tune layer weights to capture each layer`s relevance to a specific prompt. Finally, we introduce a prompt decomposition, processing action, verb, and object prompts separately, resulting in a better spatial localization of actions. We evaluate the proposed approach on three image- and video-language backbones, CLIP, OpenCLIP, and ViCLIP, and on four video grounding datasets, V-HICO, DALY, YouCook-Interactions, and GroundingYouTube, showing that the proposed training-free approach is able to outperform current trained state-of-the-art approaches for spatial video grounding.
☆ Progressive Focused Transformer for Single Image Super-Resolution
Transformer-based methods have achieved remarkable results in image super-resolution tasks because they can capture non-local dependencies in low-quality input images. However, this feature-intensive modeling approach is computationally expensive because it calculates the similarities between numerous features that are irrelevant to the query features when obtaining attention weights. These unnecessary similarity calculations not only degrade the reconstruction performance but also introduce significant computational overhead. How to accurately identify the features that are important to the current query features and avoid similarity calculations between irrelevant features remains an urgent problem. To address this issue, we propose a novel and effective Progressive Focused Transformer (PFT) that links all isolated attention maps in the network through Progressive Focused Attention (PFA) to focus attention on the most important tokens. PFA not only enables the network to capture more critical similar features, but also significantly reduces the computational cost of the overall network by filtering out irrelevant features before calculating similarities. Extensive experiments demonstrate the effectiveness of the proposed method, achieving state-of-the-art performance on various single image super-resolution benchmarks.
☆ Euclidean Distance to Convex Polyhedra and Application to Class Representation in Spectral Images
With the aim of estimating the abundance map from observations only, linear unmixing approaches are not always suitable to spectral images, especially when the number of bands is too small or when the spectra of the observed data are too correlated. To address this issue in the general case, we present a novel approach which provides an adapted spatial density function based on any arbitrary linear classifier. A robust mathematical formulation for computing the Euclidean distance to polyhedral sets is presented, along with an efficient algorithm that provides the exact minimum-norm point in a polyhedron. An empirical evaluation on the widely-used Samson hyperspectral dataset demonstrates that the proposed method surpasses state-of-the-art approaches in reconstructing abundance maps. Furthermore, its application to spectral images of a Lithium-ion battery, incompatible with linear unmixing models, validates the method's generality and effectiveness.
☆ Dynamic Pyramid Network for Efficient Multimodal Large Language Model
Multimodal large language models (MLLMs) have demonstrated impressive performance in various vision-language (VL) tasks, but their expensive computations still limit the real-world application. To address this issue, recent efforts aim to compress the visual features to save the computational costs of MLLMs. However, direct visual compression methods, e.g. efficient projectors, inevitably destroy the visual semantics in MLLM, especially in difficult samples. To overcome this shortcoming, we propose a novel dynamic pyramid network (DPN) for efficient MLLMs. Specifically, DPN formulates MLLM as a hierarchical structure where visual features are gradually compressed with increasing depth. In this case, even with a high compression ratio, fine-grained visual information can still be perceived in shallow layers. To maximize the benefit of DPN, we further propose an innovative Dynamic Pooling Experts (DPE) that can dynamically choose the optimal visual compression rate according to input features. With this design, harder samples will be assigned larger computations, thus preserving the model performance. To validate our approach, we conduct extensive experiments on two popular MLLMs and ten benchmarks. Experimental results show that DPN can save up to 56% average FLOPs on LLaVA while further achieving +0.74% performance gains. Besides, the generalization ability of DPN is also validated on the existing high-resolution MLLM called LLaVA-HR. Our source codes are anonymously released at https://github.com/aihao2000/DPN-LLaVA.
☆ Recovering Dynamic 3D Sketches from Videos CVPR 2025
Understanding 3D motion from videos presents inherent challenges due to the diverse types of movement, ranging from rigid and deformable objects to articulated structures. To overcome this, we propose Liv3Stroke, a novel approach for abstracting objects in motion with deformable 3D strokes. The detailed movements of an object may be represented by unstructured motion vectors or a set of motion primitives using a pre-defined articulation from a template model. Just as a free-hand sketch can intuitively visualize scenes or intentions with a sparse set of lines, we utilize a set of parametric 3D curves to capture a set of spatially smooth motion elements for general objects with unknown structures. We first extract noisy, 3D point cloud motion guidance from video frames using semantic features, and our approach deforms a set of curves to abstract essential motion features as a set of explicit 3D representations. Such abstraction enables an understanding of prominent components of motions while maintaining robustness to environmental factors. Our approach allows direct analysis of 3D object movements from video, tackling the uncertainty that typically occurs when translating real-world motion into recorded footage. The project page is accessible via: https://jaeah.me/liv3stroke_web}
comment: Accepted to CVPR 2025
☆ EditCLIP: Representation Learning for Image Editing
We introduce EditCLIP, a novel representation-learning approach for image editing. Our method learns a unified representation of edits by jointly encoding an input image and its edited counterpart, effectively capturing their transformation. To evaluate its effectiveness, we employ EditCLIP to solve two tasks: exemplar-based image editing and automated edit evaluation. In exemplar-based image editing, we replace text-based instructions in InstructPix2Pix with EditCLIP embeddings computed from a reference exemplar image pair. Experiments demonstrate that our approach outperforms state-of-the-art methods while being more efficient and versatile. For automated evaluation, EditCLIP assesses image edits by measuring the similarity between the EditCLIP embedding of a given image pair and either a textual editing instruction or the EditCLIP embedding of another reference image pair. Experiments show that EditCLIP aligns more closely with human judgments than existing CLIP-based metrics, providing a reliable measure of edit quality and structural preservation.
comment: Project page: https://qianwangx.github.io/EditCLIP/
☆ AI-Driven MRI Spine Pathology Detection: A Comprehensive Deep Learning Approach for Automated Diagnosis in Diverse Clinical Settings
Study Design This study presents the development of an autonomous AI system for MRI spine pathology detection, trained on a dataset of 2 million MRI spine scans sourced from diverse healthcare facilities across India. The AI system integrates advanced architectures, including Vision Transformers, U-Net with cross-attention, MedSAM, and Cascade R-CNN, enabling comprehensive classification, segmentation, and detection of 43 distinct spinal pathologies. The dataset is balanced across age groups, genders, and scanner manufacturers to ensure robustness and adaptability. Subgroup analyses were conducted to validate the model's performance across different patient demographics, imaging conditions, and equipment types. Performance The AI system achieved up to 97.9 percent multi-pathology detection, demonstrating consistent performance across age, gender, and manufacturer subgroups. The normal vs. abnormal classification achieved 98.0 percent accuracy, and the system was deployed across 13 major healthcare enterprises in India, encompassing diagnostic centers, large hospitals, and government facilities. During deployment, it processed approximately 100,000 plus MRI spine scans, leading to reduced reporting times and increased diagnostic efficiency by automating the identification of common spinal conditions. Conclusion The AI system's high precision and recall validate its capability as a reliable tool for autonomous normal/abnormal classification, pathology segmentation, and detection. Its scalability and adaptability address critical diagnostic gaps, optimize radiology workflows, and improve patient care across varied healthcare environments in India.
comment: 20 pages , 3 figurea
☆ SpikeDerain: Unveiling Clear Videos from Rainy Sequences Using Color Spike Streams
Restoring clear frames from rainy videos presents a significant challenge due to the rapid motion of rain streaks. Traditional frame-based visual sensors, which capture scene content synchronously, struggle to capture the fast-moving details of rain accurately. In recent years, neuromorphic sensors have introduced a new paradigm for dynamic scene perception, offering microsecond temporal resolution and high dynamic range. However, existing multimodal methods that fuse event streams with RGB images face difficulties in handling the complex spatiotemporal interference of raindrops in real scenes, primarily due to hardware synchronization errors and computational redundancy. In this paper, we propose a Color Spike Stream Deraining Network (SpikeDerain), capable of reconstructing spike streams of dynamic scenes and accurately removing rain streaks. To address the challenges of data scarcity in real continuous rainfall scenes, we design a physically interpretable rain streak synthesis model that generates parameterized continuous rain patterns based on arbitrary background images. Experimental results demonstrate that the network, trained with this synthetic data, remains highly robust even under extreme rainfall conditions. These findings highlight the effectiveness and robustness of our method across varying rainfall levels and datasets, setting new standards for video deraining tasks. The code will be released soon.
☆ Wan: Open and Advanced Large-Scale Video Generative Models
This report presents Wan, a comprehensive and open suite of video foundation models designed to push the boundaries of video generation. Built upon the mainstream diffusion transformer paradigm, Wan achieves significant advancements in generative capabilities through a series of innovations, including our novel VAE, scalable pre-training strategies, large-scale data curation, and automated evaluation metrics. These contributions collectively enhance the model's performance and versatility. Specifically, Wan is characterized by four key features: Leading Performance: The 14B model of Wan, trained on a vast dataset comprising billions of images and videos, demonstrates the scaling laws of video generation with respect to both data and model size. It consistently outperforms the existing open-source models as well as state-of-the-art commercial solutions across multiple internal and external benchmarks, demonstrating a clear and significant performance superiority. Comprehensiveness: Wan offers two capable models, i.e., 1.3B and 14B parameters, for efficiency and effectiveness respectively. It also covers multiple downstream applications, including image-to-video, instruction-guided video editing, and personal video generation, encompassing up to eight tasks. Consumer-Grade Efficiency: The 1.3B model demonstrates exceptional resource efficiency, requiring only 8.19 GB VRAM, making it compatible with a wide range of consumer-grade GPUs. Openness: We open-source the entire series of Wan, including source code and all models, with the goal of fostering the growth of the video generation community. This openness seeks to significantly expand the creative possibilities of video production in the industry and provide academia with high-quality video foundation models. All the code and models are available at https://github.com/Wan-Video/Wan2.1.
comment: 60 pages, 33 figures
☆ Enabling Heterogeneous Adversarial Transferability via Feature Permutation Attacks PAKDD 2025
Adversarial attacks in black-box settings are highly practical, with transfer-based attacks being the most effective at generating adversarial examples (AEs) that transfer from surrogate models to unseen target models. However, their performance significantly degrades when transferring across heterogeneous architectures -- such as CNNs, MLPs, and Vision Transformers (ViTs) -- due to fundamental architectural differences. To address this, we propose Feature Permutation Attack (FPA), a zero-FLOP, parameter-free method that enhances adversarial transferability across diverse architectures. FPA introduces a novel feature permutation (FP) operation, which rearranges pixel values in selected feature maps to simulate long-range dependencies, effectively making CNNs behave more like ViTs and MLPs. This enhances feature diversity and improves transferability both across heterogeneous architectures and within homogeneous CNNs. Extensive evaluations on 14 state-of-the-art architectures show that FPA achieves maximum absolute gains in attack success rates of 7.68% on CNNs, 14.57% on ViTs, and 14.48% on MLPs, outperforming existing black-box attacks. Additionally, FPA is highly generalizable and can seamlessly integrate with other transfer-based attacks to further boost their performance. Our findings establish FPA as a robust, efficient, and computationally lightweight strategy for enhancing adversarial transferability across heterogeneous architectures.
comment: PAKDD 2025. Main Track
☆ Instruction-Oriented Preference Alignment for Enhancing Multi-Modal Comprehension Capability of MLLMs
Preference alignment has emerged as an effective strategy to enhance the performance of Multimodal Large Language Models (MLLMs) following supervised fine-tuning. While existing preference alignment methods predominantly target hallucination factors, they overlook the factors essential for multi-modal comprehension capabilities, often narrowing their improvements on hallucination mitigation. To bridge this gap, we propose Instruction-oriented Preference Alignment (IPA), a scalable framework designed to automatically construct alignment preferences grounded in instruction fulfillment efficacy. Our method involves an automated preference construction coupled with a dedicated verification process that identifies instruction-oriented factors, avoiding significant variability in response representations. Additionally, IPA incorporates a progressive preference collection pipeline, further recalling challenging samples through model self-evolution and reference-guided refinement. Experiments conducted on Qwen2VL-7B demonstrate IPA's effectiveness across multiple benchmarks, including hallucination evaluation, visual question answering, and text understanding tasks, highlighting its capability to enhance general comprehension.
comment: Technical report
☆ Perceptually Accurate 3D Talking Head Generation: New Definitions, Speech-Mesh Representation, and Evaluation Metrics
Recent advancements in speech-driven 3D talking head generation have made significant progress in lip synchronization. However, existing models still struggle to capture the perceptual alignment between varying speech characteristics and corresponding lip movements. In this work, we claim that three criteria -- Temporal Synchronization, Lip Readability, and Expressiveness -- are crucial for achieving perceptually accurate lip movements. Motivated by our hypothesis that a desirable representation space exists to meet these three criteria, we introduce a speech-mesh synchronized representation that captures intricate correspondences between speech signals and 3D face meshes. We found that our learned representation exhibits desirable characteristics, and we plug it into existing models as a perceptual loss to better align lip movements to the given speech. In addition, we utilize this representation as a perceptual metric and introduce two other physically grounded lip synchronization metrics to assess how well the generated 3D talking heads align with these three criteria. Experiments show that training 3D talking head generation models with our perceptual loss significantly improve all three aspects of perceptually accurate lip synchronization. Codes and datasets are available at https://perceptual-3d-talking-head.github.io/.
☆ 3D Convolutional Neural Networks for Improved Detection of Intracranial bleeding in CT Imaging
Background: Intracranial bleeding (IB) is a life-threatening condition caused by traumatic brain injuries, including epidural, subdural, subarachnoid, and intraparenchymal hemorrhages. Rapid and accurate detection is crucial to prevent severe complications. Traditional imaging can be slow and prone to variability, especially in high-pressure scenarios. Artificial Intelligence (AI) provides a solution by quickly analyzing medical images, identifying subtle hemorrhages, and flagging urgent cases. By enhancing diagnostic speed and accuracy, AI improves workflows and patient care. This article explores AI's role in transforming IB detection in emergency settings. Methods: A U-shaped 3D Convolutional Neural Network (CNN) automates IB detection and classification in volumetric CT scans. Advanced preprocessing, including CLAHE and intensity normalization, enhances image quality. The architecture preserves spatial and contextual details for precise segmentation. A dataset of 2,912 annotated CT scans was used for training and evaluation. Results: The model achieved high performance across major bleed types, with precision, recall, and accuracy exceeding 90 percent in most cases 96 percent precision for epidural hemorrhages and 94 percent accuracy for subarachnoid hemorrhages. Its ability to classify and localize hemorrhages highlights its clinical reliability. Conclusion: This U-shaped 3D CNN offers a scalable solution for automating IB detection, reducing diagnostic delays, and improving emergency care outcomes. Future work will expand dataset diversity, optimize real-time processing, and integrate multimodal data for enhanced clinical applicability.
comment: 12 pages,4 figures
☆ Attribute-formed Class-specific Concept Space: Endowing Language Bottleneck Model with Better Interpretability and Scalability CVPR 2025
Language Bottleneck Models (LBMs) are proposed to achieve interpretable image recognition by classifying images based on textual concept bottlenecks. However, current LBMs simply list all concepts together as the bottleneck layer, leading to the spurious cue inference problem and cannot generalized to unseen classes. To address these limitations, we propose the Attribute-formed Language Bottleneck Model (ALBM). ALBM organizes concepts in the attribute-formed class-specific space, where concepts are descriptions of specific attributes for specific classes. In this way, ALBM can avoid the spurious cue inference problem by classifying solely based on the essential concepts of each class. In addition, the cross-class unified attribute set also ensures that the concept spaces of different classes have strong correlations, as a result, the learned concept classifier can be easily generalized to unseen classes. Moreover, to further improve interpretability, we propose Visual Attribute Prompt Learning (VAPL) to extract visual features on fine-grained attributes. Furthermore, to avoid labor-intensive concept annotation, we propose the Description, Summary, and Supplement (DSS) strategy to automatically generate high-quality concept sets with a complete and precise attribute. Extensive experiments on 9 widely used few-shot benchmarks demonstrate the interpretability, transferability, and performance of our approach. The code and collected concept sets are available at https://github.com/tiggers23/ALBM.
comment: This paper has been accepted to CVPR 2025
☆ Traversing Distortion-Perception Tradeoff using a Single Score-Based Generative Model
The distortion-perception (DP) tradeoff reveals a fundamental conflict between distortion metrics (e.g., MSE and PSNR) and perceptual quality. Recent research has increasingly concentrated on evaluating denoising algorithms within the DP framework. However, existing algorithms either prioritize perceptual quality by sacrificing acceptable distortion, or focus on minimizing MSE for faithful restoration. When the goal shifts or noisy measurements vary, adapting to different points on the DP plane needs retraining or even re-designing the model. Inspired by recent advances in solving inverse problems using score-based generative models, we explore the potential of flexibly and optimally traversing DP tradeoffs using a single pre-trained score-based model. Specifically, we introduce a variance-scaled reverse diffusion process and theoretically characterize the marginal distribution. We then prove that the proposed sample process is an optimal solution to the DP tradeoff for conditional Gaussian distribution. Experimental results on two-dimensional and image datasets illustrate that a single score network can effectively and flexibly traverse the DP tradeoff for general denoising problems.
comment: Accepted by IEEE/CVF Conference on Computer Vision and Pattern Recognition 2025
☆ Context-Aware Weakly Supervised Image Manipulation Localization with SAM Refinement
Malicious image manipulation poses societal risks, increasing the importance of effective image manipulation detection methods. Recent approaches in image manipulation detection have largely been driven by fully supervised approaches, which require labor-intensive pixel-level annotations. Thus, it is essential to explore weakly supervised image manipulation localization methods that only require image-level binary labels for training. However, existing weakly supervised image manipulation methods overlook the importance of edge information for accurate localization, leading to suboptimal localization performance. To address this, we propose a Context-Aware Boundary Localization (CABL) module to aggregate boundary features and learn context-inconsistency for localizing manipulated areas. Furthermore, by leveraging Class Activation Mapping (CAM) and Segment Anything Model (SAM), we introduce the CAM-Guided SAM Refinement (CGSR) module to generate more accurate manipulation localization maps. By integrating two modules, we present a novel weakly supervised framework based on a dual-branch Transformer-CNN architecture. Our method achieves outstanding localization performance across multiple datasets.
☆ CryoSAMU: Enhancing 3D Cryo-EM Density Maps of Protein Structures at Intermediate Resolution with Structure-Aware Multimodal U-Nets
Enhancing cryogenic electron microscopy (cryo-EM) 3D density maps at intermediate resolution (4-8 {\AA}) is crucial in protein structure determination. Recent advances in deep learning have led to the development of automated approaches for enhancing experimental cryo-EM density maps. Yet, these methods are not optimized for intermediate-resolution maps and rely on map density features alone. To address this, we propose CryoSAMU, a novel method designed to enhance 3D cryo-EM density maps of protein structures using structure-aware multimodal U-Nets and trained on curated intermediate-resolution density maps. We comprehensively evaluate CryoSAMU across various metrics and demonstrate its competitive performance compared to state-of-the-art methods. Notably, CryoSAMU achieves significantly faster processing speed, showing promise for future practical applications. Our code is available at https://github.com/chenwei-zhang/CryoSAMU.
comment: 18 pages, 6 main figures, 2 supplementary figures, 3 main tables, 4 supplementary tables
☆ RelTriple: Learning Plausible Indoor Layouts by Integrating Relationship Triples into the Diffusion Process
The generation of indoor furniture layouts has significant applications in augmented reality, smart homes, and architectural design. Successful furniture arrangement requires proper physical relationships (e.g., collision avoidance) and spacing relationships between furniture and their functional zones to be respected. However, manually defined relationships are almost always incomplete and can produce unrealistic layouts. This work instead extracts spacing relationships automatically based on a hierarchical analysis and adopts the Delaunay Triangulation to produce important triple relationships. Compared to pairwise relationship modeling, triple relationships account for interactions and space utilization among multiple objects. To this end, we introduce RelTriple, a novel approach that enhances furniture distribution by learning spacing relationships between objects and regions. We formulate triple relationships as object-to-object (O2O) losses and object-to-region (O2R) losses and integrate them directly into the training process of generative diffusion. Our approach consistently improves over existing state-of-the-art methods in visual results evaluation metrics on unconditional layout generation, floorplan-conditioned layout generation, and scene rearrangement, achieving at least 12% on the introduced spatial relationship metric and superior spatial coherence and practical usability.
InsViE-1M: Effective Instruction-based Video Editing with Elaborate Dataset Construction
Instruction-based video editing allows effective and interactive editing of videos using only instructions without extra inputs such as masks or attributes. However, collecting high-quality training triplets (source video, edited video, instruction) is a challenging task. Existing datasets mostly consist of low-resolution, short duration, and limited amount of source videos with unsatisfactory editing quality, limiting the performance of trained editing models. In this work, we present a high-quality Instruction-based Video Editing dataset with 1M triplets, namely InsViE-1M. We first curate high-resolution and high-quality source videos and images, then design an effective editing-filtering pipeline to construct high-quality editing triplets for model training. For a source video, we generate multiple edited samples of its first frame with different intensities of classifier-free guidance, which are automatically filtered by GPT-4o with carefully crafted guidelines. The edited first frame is propagated to subsequent frames to produce the edited video, followed by another round of filtering for frame quality and motion evaluation. We also generate and filter a variety of video editing triplets from high-quality images. With the InsViE-1M dataset, we propose a multi-stage learning strategy to train our InsViE model, progressively enhancing its instruction following and editing ability. Extensive experiments demonstrate the advantages of our InsViE-1M dataset and the trained model over state-of-the-art works. Codes are available at InsViE.
☆ Faster Parameter-Efficient Tuning with Token Redundancy Reduction CVPR 2025
Parameter-efficient tuning (PET) aims to transfer pre-trained foundation models to downstream tasks by learning a small number of parameters. Compared to traditional fine-tuning, which updates the entire model, PET significantly reduces storage and transfer costs for each task regardless of exponentially increasing pre-trained model capacity. However, most PET methods inherit the inference latency of their large backbone models and often introduce additional computational overhead due to additional modules (e.g. adapters), limiting their practicality for compute-intensive applications. In this paper, we propose Faster Parameter-Efficient Tuning (FPET), a novel approach that enhances inference speed and training efficiency while maintaining high storage efficiency. Specifically, we introduce a plug-and-play token redundancy reduction module delicately designed for PET. This module refines tokens from the self-attention layer using an adapter to learn the accurate similarity between tokens and cuts off the tokens through a fully-differentiable token merging strategy, which uses a straight-through estimator for optimal token reduction. Experimental results prove that our FPET achieves faster inference and higher memory efficiency than the pre-trained backbone while keeping competitive performance on par with state-of-the-art PET methods.
comment: CVPR 2025 Camera-ready
☆ ViLBench: A Suite for Vision-Language Process Reward Modeling
Process-supervised reward models serve as a fine-grained function that provides detailed step-wise feedback to model responses, facilitating effective selection of reasoning trajectories for complex tasks. Despite its advantages, evaluation on PRMs remains less explored, especially in the multimodal domain. To address this gap, this paper first benchmarks current vision large language models (VLLMs) as two types of reward models: output reward models (ORMs) and process reward models (PRMs) on multiple vision-language benchmarks, which reveal that neither ORM nor PRM consistently outperforms across all tasks, and superior VLLMs do not necessarily yield better rewarding performance. To further advance evaluation, we introduce ViLBench, a vision-language benchmark designed to require intensive process reward signals. Notably, OpenAI's GPT-4o with Chain-of-Thought (CoT) achieves only 27.3% accuracy, indicating the benchmark's challenge for current VLLMs. Lastly, we preliminarily showcase a promising pathway towards bridging the gap between general VLLMs and reward models -- by collecting 73.6K vision-language process reward data using an enhanced tree-search algorithm, our 3B model is able to achieve an average improvement of 3.3% over standard CoT and up to 2.5% compared to its untrained counterpart on ViLBench by selecting OpenAI o1's generations. We release the implementations at https://ucsc-vlaa.github.io/ViLBench with our code, model, and data.
☆ EGVD: Event-Guided Video Diffusion Model for Physically Realistic Large-Motion Frame Interpolation
Video frame interpolation (VFI) in scenarios with large motion remains challenging due to motion ambiguity between frames. While event cameras can capture high temporal resolution motion information, existing event-based VFI methods struggle with limited training data and complex motion patterns. In this paper, we introduce Event-Guided Video Diffusion Model (EGVD), a novel framework that leverages the powerful priors of pre-trained stable video diffusion models alongside the precise temporal information from event cameras. Our approach features a Multi-modal Motion Condition Generator (MMCG) that effectively integrates RGB frames and event signals to guide the diffusion process, producing physically realistic intermediate frames. We employ a selective fine-tuning strategy that preserves spatial modeling capabilities while efficiently incorporating event-guided temporal information. We incorporate input-output normalization techniques inspired by recent advances in diffusion modeling to enhance training stability across varying noise levels. To improve generalization, we construct a comprehensive dataset combining both real and simulated event data across diverse scenarios. Extensive experiments on both real and simulated datasets demonstrate that EGVD significantly outperforms existing methods in handling large motion and challenging lighting conditions, achieving substantial improvements in perceptual quality metrics (27.4% better LPIPS on Prophesee and 24.1% on BSRGB) while maintaining competitive fidelity measures. Code and datasets available at: https://github.com/OpenImagingLab/EGVD.
☆ Mamba-3D as Masked Autoencoders for Accurate and Data-Efficient Analysis of Medical Ultrasound Videos
Ultrasound videos are an important form of clinical imaging data, and deep learning-based automated analysis can improve diagnostic accuracy and clinical efficiency. However, the scarcity of labeled data and the inherent challenges of video analysis have impeded the advancement of related methods. In this work, we introduce E-ViM$^3$, a data-efficient Vision Mamba network that preserves the 3D structure of video data, enhancing long-range dependencies and inductive biases to better model space-time correlations. With our design of Enclosure Global Tokens (EGT), the model captures and aggregates global features more effectively than competing methods. To further improve data efficiency, we employ masked video modeling for self-supervised pre-training, with the proposed Spatial-Temporal Chained (STC) masking strategy designed to adapt to various video scenarios. Experiments demonstrate that E-ViM$^3$ performs as the state-of-the-art in two high-level semantic analysis tasks across four datasets of varying sizes: EchoNet-Dynamic, CAMUS, MICCAI-BUV, and WHBUS. Furthermore, our model achieves competitive performance with limited labels, highlighting its potential impact on real-world clinical applications.
☆ LogicQA: Logical Anomaly Detection with Vision Language Model Generated Questions
Anomaly Detection (AD) focuses on detecting samples that differ from the standard pattern, making it a vital tool in process control. Logical anomalies may appear visually normal yet violate predefined constraints on object presence, arrangement, or quantity, depending on reasoning and explainability. We introduce LogicQA, a framework that enhances AD by providing industrial operators with explanations for logical anomalies. LogicQA compiles automatically generated questions into a checklist and collects responses to identify violations of logical constraints. LogicQA is training-free, annotation-free, and operates in a few-shot setting. We achieve state-of-the-art (SOTA) Logical AD performance on public benchmarks, MVTec LOCO AD, with an AUROC of 87.6 percent and an F1-max of 87.0 percent along with the explanations of anomalies. Also, our approach has shown outstanding performance on semiconductor SEM corporate data, further validating its effectiveness in industrial applications.
☆ Incremental Object Keypoint Learning CVPR
Existing progress in object keypoint estimation primarily benefits from the conventional supervised learning paradigm based on numerous data labeled with pre-defined keypoints. However, these well-trained models can hardly detect the undefined new keypoints in test time, which largely hinders their feasibility for diverse downstream tasks. To handle this, various solutions are explored but still suffer from either limited generalizability or transferability. Therefore, in this paper, we explore a novel keypoint learning paradigm in that we only annotate new keypoints in the new data and incrementally train the model, without retaining any old data, called Incremental object Keypoint Learning (IKL). A two-stage learning scheme as a novel baseline tailored to IKL is developed. In the first Knowledge Association stage, given the data labeled with only new keypoints, an auxiliary KA-Net is trained to automatically associate the old keypoints to these new ones based on their spatial and intrinsic anatomical relations. In the second Mutual Promotion stage, based on a keypoint-oriented spatial distillation loss, we jointly leverage the auxiliary KA-Net and the old model for knowledge consolidation to mutually promote the estimation of all old and new keypoints. Owing to the investigation of the correlations between new and old keypoints, our proposed method can not just effectively mitigate the catastrophic forgetting of old keypoints, but may even further improve the estimation of the old ones and achieve a positive transfer beyond anti-forgetting. Such an observation has been solidly verified by extensive experiments on different keypoint datasets, where our method exhibits superiority in alleviating the forgetting issue and boosting performance while enjoying labeling efficiency even under the low-shot data regime.
comment: The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2025
☆ Unconditional Priors Matter! Improving Conditional Generation of Fine-Tuned Diffusion Models
Classifier-Free Guidance (CFG) is a fundamental technique in training conditional diffusion models. The common practice for CFG-based training is to use a single network to learn both conditional and unconditional noise prediction, with a small dropout rate for conditioning. However, we observe that the joint learning of unconditional noise with limited bandwidth in training results in poor priors for the unconditional case. More importantly, these poor unconditional noise predictions become a serious reason for degrading the quality of conditional generation. Inspired by the fact that most CFG-based conditional models are trained by fine-tuning a base model with better unconditional generation, we first show that simply replacing the unconditional noise in CFG with that predicted by the base model can significantly improve conditional generation. Furthermore, we show that a diffusion model other than the one the fine-tuned model was trained on can be used for unconditional noise replacement. We experimentally verify our claim with a range of CFG-based conditional models for both image and video generation, including Zero-1-to-3, Versatile Diffusion, DiT, DynamiCrafter, and InstructPix2Pix.
☆ Leveraging 3D Geometric Priors in 2D Rotation Symmetry Detection CVPR 2025
Symmetry plays a vital role in understanding structural patterns, aiding object recognition and scene interpretation. This paper focuses on rotation symmetry, where objects remain unchanged when rotated around a central axis, requiring detection of rotation centers and supporting vertices. Traditional methods relied on hand-crafted feature matching, while recent segmentation models based on convolutional neural networks detect rotation centers but struggle with 3D geometric consistency due to viewpoint distortions. To overcome this, we propose a model that directly predicts rotation centers and vertices in 3D space and projects the results back to 2D while preserving structural integrity. By incorporating a vertex reconstruction stage enforcing 3D geometric priors -- such as equal side lengths and interior angles -- our model enhances robustness and accuracy. Experiments on the DENDI dataset show superior performance in rotation axis detection and validate the impact of 3D priors through ablation studies.
comment: Accepted to CVPR 2025
☆ TraNCE: Transformative Non-linear Concept Explainer for CNNs
Convolutional neural networks (CNNs) have succeeded remarkably in various computer vision tasks. However, they are not intrinsically explainable. While the feature-level understanding of CNNs reveals where the models looked, concept-based explainability methods provide insights into what the models saw. However, their assumption of linear reconstructability of image activations fails to capture the intricate relationships within these activations. Their Fidelity-only approach to evaluating global explanations also presents a new concern. For the first time, we address these limitations with the novel Transformative Nonlinear Concept Explainer (TraNCE) for CNNs. Unlike linear reconstruction assumptions made by existing methods, TraNCE captures the intricate relationships within the activations. This study presents three original contributions to the CNN explainability literature: (i) An automatic concept discovery mechanism based on variational autoencoders (VAEs). This transformative concept discovery process enhances the identification of meaningful concepts from image activations. (ii) A visualization module that leverages the Bessel function to create a smooth transition between prototypical image pixels, revealing not only what the CNN saw but also what the CNN avoided, thereby mitigating the challenges of concept duplication as documented in previous works. (iii) A new metric, the Faith score, integrates both Coherence and Fidelity for a comprehensive evaluation of explainer faithfulness and consistency.
☆ TC-GS: Tri-plane based compression for 3D Gaussian Splatting ICME 2025
Recently, 3D Gaussian Splatting (3DGS) has emerged as a prominent framework for novel view synthesis, providing high fidelity and rapid rendering speed. However, the substantial data volume of 3DGS and its attributes impede its practical utility, requiring compression techniques for reducing memory cost. Nevertheless, the unorganized shape of 3DGS leads to difficulties in compression. To formulate unstructured attributes into normative distribution, we propose a well-structured tri-plane to encode Gaussian attributes, leveraging the distribution of attributes for compression. To exploit the correlations among adjacent Gaussians, K-Nearest Neighbors (KNN) is used when decoding Gaussian distribution from the Tri-plane. We also introduce Gaussian position information as a prior of the position-sensitive decoder. Additionally, we incorporate an adaptive wavelet loss, aiming to focus on the high-frequency details as iterations increase. Our approach has achieved results that are comparable to or surpass that of SOTA 3D Gaussians Splatting compression work in extensive experiments across multiple datasets. The codes are released at https://github.com/timwang2001/TC-GS.
comment: Accepted by ICME 2025
☆ DINeMo: Learning Neural Mesh Models with no 3D Annotations
Category-level 3D/6D pose estimation is a crucial step towards comprehensive 3D scene understanding, which would enable a broad range of applications in robotics and embodied AI. Recent works explored neural mesh models that approach a range of 2D and 3D tasks from an analysis-by-synthesis perspective. Despite the largely enhanced robustness to partial occlusion and domain shifts, these methods depended heavily on 3D annotations for part-contrastive learning, which confines them to a narrow set of categories and hinders efficient scaling. In this work, we present DINeMo, a novel neural mesh model that is trained with no 3D annotations by leveraging pseudo-correspondence obtained from large visual foundation models. We adopt a bidirectional pseudo-correspondence generation method, which produce pseudo correspondence utilize both local appearance features and global context information. Experimental results on car datasets demonstrate that our DINeMo outperforms previous zero- and few-shot 3D pose estimation by a wide margin, narrowing the gap with fully-supervised methods by 67.3%. Our DINeMo also scales effectively and efficiently when incorporating more unlabeled images during training, which demonstrate the advantages over supervised learning methods that rely on 3D annotations. Our project page is available at https://analysis-by-synthesis.github.io/DINeMo/.
comment: Technical report
Video Motion Graphs
We present Video Motion Graphs, a system designed to generate realistic human motion videos. Using a reference video and conditional signals such as music or motion tags, the system synthesizes new videos by first retrieving video clips with gestures matching the conditions and then generating interpolation frames to seamlessly connect clip boundaries. The core of our approach is HMInterp, a robust Video Frame Interpolation (VFI) model that enables seamless interpolation of discontinuous frames, even for complex motion scenarios like dancing. HMInterp i) employs a dual-branch interpolation approach, combining a Motion Diffusion Model for human skeleton motion interpolation with a diffusion-based video frame interpolation model for final frame generation. ii) adopts condition progressive training to effectively leverage identity strong and weak conditions, such as images and pose. These designs ensure both high video texture quality and accurate motion trajectory. Results show that our Video Motion Graphs outperforms existing generative- and retrieval-based methods for multi-modal conditioned human motion video generation. Project page can be found at https://h-liu1997.github.io/Video-Motion-Graphs/
comment: 14 pages,10 figures
☆ Qwen2.5-Omni Technical Report
In this report, we present Qwen2.5-Omni, an end-to-end multimodal model designed to perceive diverse modalities, including text, images, audio, and video, while simultaneously generating text and natural speech responses in a streaming manner. To enable the streaming of multimodal information inputs, both audio and visual encoders utilize a block-wise processing approach. To synchronize the timestamps of video inputs with audio, we organize the audio and video sequentially in an interleaved manner and propose a novel position embedding approach, named TMRoPE(Time-aligned Multimodal RoPE). To concurrently generate text and speech while avoiding interference between the two modalities, we propose \textbf{Thinker-Talker} architecture. In this framework, Thinker functions as a large language model tasked with text generation, while Talker is a dual-track autoregressive model that directly utilizes the hidden representations from the Thinker to produce audio tokens as output. Both the Thinker and Talker models are designed to be trained and inferred in an end-to-end manner. For decoding audio tokens in a streaming manner, we introduce a sliding-window DiT that restricts the receptive field, aiming to reduce the initial package delay. Qwen2.5-Omni is comparable with the similarly sized Qwen2.5-VL and outperforms Qwen2-Audio. Furthermore, Qwen2.5-Omni achieves state-of-the-art performance on multimodal benchmarks like Omni-Bench. Notably, Qwen2.5-Omni's performance in end-to-end speech instruction following is comparable to its capabilities with text inputs, as evidenced by benchmarks such as MMLU and GSM8K. As for speech generation, Qwen2.5-Omni's streaming Talker outperforms most existing streaming and non-streaming alternatives in robustness and naturalness.
☆ Synthetic-to-Real Self-supervised Robust Depth Estimation via Learning with Motion and Structure Priors
Self-supervised depth estimation from monocular cameras in diverse outdoor conditions, such as daytime, rain, and nighttime, is challenging due to the difficulty of learning universal representations and the severe lack of labeled real-world adverse data. Previous methods either rely on synthetic inputs and pseudo-depth labels or directly apply daytime strategies to adverse conditions, resulting in suboptimal results. In this paper, we present the first synthetic-to-real robust depth estimation framework, incorporating motion and structure priors to capture real-world knowledge effectively. In the synthetic adaptation, we transfer motion-structure knowledge inside cost volumes for better robust representation, using a frozen daytime model to train a depth estimator in synthetic adverse conditions. In the innovative real adaptation, which targets to fix synthetic-real gaps, models trained earlier identify the weather-insensitive regions with a designed consistency-reweighting strategy to emphasize valid pseudo-labels. We introduce a new regularization by gathering explicit depth distributions to constrain the model when facing real-world data. Experiments show that our method outperforms the state-of-the-art across diverse conditions in multi-frame and single-frame evaluations. We achieve improvements of 7.5% and 4.3% in AbsRel and RMSE on average for nuScenes and Robotcar datasets (daytime, nighttime, rain). In zero-shot evaluation of DrivingStereo (rain, fog), our method generalizes better than the previous ones.
☆ BEAR: A Video Dataset For Fine-grained Behaviors Recognition Oriented with Action and Environment Factors ICME2025
Behavior recognition is an important task in video representation learning. An essential aspect pertains to effective feature learning conducive to behavior recognition. Recently, researchers have started to study fine-grained behavior recognition, which provides similar behaviors and encourages the model to concern with more details of behaviors with effective features for distinction. However, previous fine-grained behaviors limited themselves to controlling partial information to be similar, leading to an unfair and not comprehensive evaluation of existing works. In this work, we develop a new video fine-grained behavior dataset, named BEAR, which provides fine-grained (i.e. similar) behaviors that uniquely focus on two primary factors defining behavior: Environment and Action. It includes two fine-grained behavior protocols including Fine-grained Behavior with Similar Environments and Fine-grained Behavior with Similar Actions as well as multiple sub-protocols as different scenarios. Furthermore, with this new dataset, we conduct multiple experiments with different behavior recognition models. Our research primarily explores the impact of input modality, a critical element in studying the environmental and action-based aspects of behavior recognition. Our experimental results yield intriguing insights that have substantial implications for further research endeavors.
comment: Accept by ICME2025
☆ Reasoning and Learning a Perceptual Metric for Self-Training of Reflective Objects in Bin-Picking with a Low-cost Camera
Bin-picking of metal objects using low-cost RGB-D cameras often suffers from sparse depth information and reflective surface textures, leading to errors and the need for manual labeling. To reduce human intervention, we propose a two-stage framework consisting of a metric learning stage and a self-training stage. Specifically, to automatically process data captured by a low-cost camera (LC), we introduce a Multi-object Pose Reasoning (MoPR) algorithm that optimizes pose hypotheses under depth, collision, and boundary constraints. To further refine pose candidates, we adopt a Symmetry-aware Lie-group based Bayesian Gaussian Mixture Model (SaL-BGMM), integrated with the Expectation-Maximization (EM) algorithm, for symmetry-aware filtering. Additionally, we propose a Weighted Ranking Information Noise Contrastive Estimation (WR-InfoNCE) loss to enable the LC to learn a perceptual metric from reconstructed data, supporting self-training on untrained or even unseen objects. Experimental results show that our approach outperforms several state-of-the-art methods on both the ROBI dataset and our newly introduced Self-ROBI dataset.
comment: 9 pages, 10 figures
Assessing SAM for Tree Crown Instance Segmentation from Drone Imagery ICLR 2025
The potential of tree planting as a natural climate solution is often undermined by inadequate monitoring of tree planting projects. Current monitoring methods involve measuring trees by hand for each species, requiring extensive cost, time, and labour. Advances in drone remote sensing and computer vision offer great potential for mapping and characterizing trees from aerial imagery, and large pre-trained vision models, such as the Segment Anything Model (SAM), may be a particularly compelling choice given limited labeled data. In this work, we compare SAM methods for the task of automatic tree crown instance segmentation in high resolution drone imagery of young tree plantations. We explore the potential of SAM for this task, and find that methods using SAM out-of-the-box do not outperform a custom Mask R-CNN, even with well-designed prompts, but that there is potential for methods which tune SAM further. We also show that predictions can be improved by adding Digital Surface Model (DSM) information as an input.
comment: ICLR 2025 ML4RS workshop
☆ Beyond Words: Advancing Long-Text Image Generation via Multimodal Autoregressive Models
Recent advancements in autoregressive and diffusion models have led to strong performance in image generation with short scene text words. However, generating coherent, long-form text in images, such as paragraphs in slides or documents, remains a major challenge for current generative models. We present the first work specifically focused on long text image generation, addressing a critical gap in existing text-to-image systems that typically handle only brief phrases or single sentences. Through comprehensive analysis of state-of-the-art autoregressive generation models, we identify the image tokenizer as a critical bottleneck in text generating quality. To address this, we introduce a novel text-focused, binary tokenizer optimized for capturing detailed scene text features. Leveraging our tokenizer, we develop \ModelName, a multimodal autoregressive model that excels in generating high-quality long-text images with unprecedented fidelity. Our model offers robust controllability, enabling customization of text properties such as font style, size, color, and alignment. Extensive experiments demonstrate that \ModelName~significantly outperforms SD3.5 Large~\cite{sd3} and GPT4o~\cite{gpt4o} with DALL-E 3~\cite{dalle3} in generating long text accurately, consistently, and flexibly. Beyond its technical achievements, \ModelName~opens up exciting opportunities for innovative applications like interleaved document and PowerPoint generation, establishing a new frontier in long-text image generating.
comment: 16 pages
☆ Cross-Modal Prototype Allocation: Unsupervised Slide Representation Learning via Patch-Text Contrast in Computational Pathology
With the rapid advancement of pathology foundation models (FMs), the representation learning of whole slide images (WSIs) attracts increasing attention. Existing studies develop high-quality patch feature extractors and employ carefully designed aggregation schemes to derive slide-level representations. However, mainstream weakly supervised slide representation learning methods, primarily based on multiple instance learning (MIL), are tailored to specific downstream tasks, which limits their generalizability. To address this issue, some studies explore unsupervised slide representation learning. However, these approaches focus solely on the visual modality of patches, neglecting the rich semantic information embedded in textual data. In this work, we propose ProAlign, a cross-modal unsupervised slide representation learning framework. Specifically, we leverage a large language model (LLM) to generate descriptive text for the prototype types present in a WSI, introducing patch-text contrast to construct initial prototype embeddings. Furthermore, we propose a parameter-free attention aggregation strategy that utilizes the similarity between patches and these prototypes to form unsupervised slide embeddings applicable to a wide range of downstream tasks. Extensive experiments on four public datasets show that ProAlign outperforms existing unsupervised frameworks and achieves performance comparable to some weakly supervised models.
comment: 11pages,3 figures
☆ Rethinking Vision-Language Model in Face Forensics: Multi-Modal Interpretable Forged Face Detector
Deepfake detection is a long-established research topic vital for mitigating the spread of malicious misinformation. Unlike prior methods that provide either binary classification results or textual explanations separately, we introduce a novel method capable of generating both simultaneously. Our method harnesses the multi-modal learning capability of the pre-trained CLIP and the unprecedented interpretability of large language models (LLMs) to enhance both the generalization and explainability of deepfake detection. Specifically, we introduce a multi-modal face forgery detector (M2F2-Det) that employs tailored face forgery prompt learning, incorporating the pre-trained CLIP to improve generalization to unseen forgeries. Also, M2F2-Det incorporates an LLM to provide detailed textual explanations of its detection decisions, enhancing interpretability by bridging the gap between natural language and subtle cues of facial forgeries. Empirically, we evaluate M2F2-Det on both detection and explanation generation tasks, where it achieves state-of-the-art performance, demonstrating its effectiveness in identifying and explaining diverse forgeries.
comment: 8 figures; 6 tables
☆ Network Inversion for Generating Confidently Classified Counterfeits
In machine learning, especially with vision classifiers, generating inputs that are confidently classified by the model is essential for understanding its decision boundaries and behavior. However, creating such samples that are confidently classified yet distinct from the training data distribution is a challenge. Traditional methods often modify existing inputs, but they don't always ensure confident classification. In this work, we extend network inversion techniques to generate Confidently Classified Counterfeits-synthetic samples that are confidently classified by the model despite being significantly different from the training data. We achieve this by modifying the generator's conditioning mechanism from soft vector conditioning to one-hot vector conditioning and applying Kullback-Leibler divergence (KLD) between the one-hot vectors and the classifier's output distribution. This encourages the generator to produce samples that are both plausible and confidently classified. Generating Confidently Classified Counterfeits is crucial for ensuring the safety and reliability of machine learning systems, particularly in safety-critical applications where models must exhibit confidence only on data within the training distribution. By generating such counterfeits, we challenge the assumption that high-confidence predictions are always indicative of in-distribution data, providing deeper insights into the model's limitations and decision-making process.
Spectrum from Defocus: Fast Spectral Imaging with Chromatic Focal Stack
Hyperspectral cameras face harsh trade-offs between spatial, spectral, and temporal resolution in an inherently low-photon regime. Computational imaging systems break through these trade-offs with compressive sensing, but require complex optics and/or extensive compute. We present Spectrum from Defocus (SfD), a chromatic focal sweep method that recovers state-of-the-art hyperspectral images with a small system of off-the-shelf optics and < 1 second of compute. Our camera uses two lenses and a grayscale sensor to preserve nearly all incident light in a chromatically-aberrated focal stack. Our physics-based iterative algorithm efficiently demixes, deconvolves, and denoises the blurry grayscale focal stack into a sharp spectral image. The combination of photon efficiency, optical simplicity, and physical modeling makes SfD a promising solution for fast, compact, interpretable hyperspectral imaging.
☆ Devil is in the Uniformity: Exploring Diverse Learners within Transformer for Image Restoration
Transformer-based approaches have gained significant attention in image restoration, where the core component, i.e, Multi-Head Attention (MHA), plays a crucial role in capturing diverse features and recovering high-quality results. In MHA, heads perform attention calculation independently from uniform split subspaces, and a redundancy issue is triggered to hinder the model from achieving satisfactory outputs. In this paper, we propose to improve MHA by exploring diverse learners and introducing various interactions between heads, which results in a Hierarchical multI-head atteNtion driven Transformer model, termed HINT, for image restoration. HINT contains two modules, i.e., the Hierarchical Multi-Head Attention (HMHA) and the Query-Key Cache Updating (QKCU) module, to address the redundancy problem that is rooted in vanilla MHA. Specifically, HMHA extracts diverse contextual features by employing heads to learn from subspaces of varying sizes and containing different information. Moreover, QKCU, comprising intra- and inter-layer schemes, further reduces the redundancy problem by facilitating enhanced interactions between attention heads within and across layers. Extensive experiments are conducted on 12 benchmarks across 5 image restoration tasks, including low-light enhancement, dehazing, desnowing, denoising, and deraining, to demonstrate the superiority of HINT. The source code is available in the supplementary materials.
comment: 11 pages, 10 figures
☆ Guiding Human-Object Interactions with Rich Geometry and Relations CVPR 2025
Human-object interaction (HOI) synthesis is crucial for creating immersive and realistic experiences for applications such as virtual reality. Existing methods often rely on simplified object representations, such as the object's centroid or the nearest point to a human, to achieve physically plausible motions. However, these approaches may overlook geometric complexity, resulting in suboptimal interaction fidelity. To address this limitation, we introduce ROG, a novel diffusion-based framework that models the spatiotemporal relationships inherent in HOIs with rich geometric detail. For efficient object representation, we select boundary-focused and fine-detail key points from the object mesh, ensuring a comprehensive depiction of the object's geometry. This representation is used to construct an interactive distance field (IDF), capturing the robust HOI dynamics. Furthermore, we develop a diffusion-based relation model that integrates spatial and temporal attention mechanisms, enabling a better understanding of intricate HOI relationships. This relation model refines the generated motion's IDF, guiding the motion generation process to produce relation-aware and semantically aligned movements. Experimental evaluations demonstrate that ROG significantly outperforms state-of-the-art methods in the realism and semantic accuracy of synthesized HOIs.
comment: CVPR 2025.Project website: https://lalalfhdh.github.io/rog_page/
☆ EVolSplat: Efficient Volume-based Gaussian Splatting for Urban View Synthesis CVPR2025
Novel view synthesis of urban scenes is essential for autonomous driving-related applications.Existing NeRF and 3DGS-based methods show promising results in achieving photorealistic renderings but require slow, per-scene optimization. We introduce EVolSplat, an efficient 3D Gaussian Splatting model for urban scenes that works in a feed-forward manner. Unlike existing feed-forward, pixel-aligned 3DGS methods, which often suffer from issues like multi-view inconsistencies and duplicated content, our approach predicts 3D Gaussians across multiple frames within a unified volume using a 3D convolutional network. This is achieved by initializing 3D Gaussians with noisy depth predictions, and then refining their geometric properties in 3D space and predicting color based on 2D textures. Our model also handles distant views and the sky with a flexible hemisphere background model. This enables us to perform fast, feed-forward reconstruction while achieving real-time rendering. Experimental evaluations on the KITTI-360 and Waymo datasets show that our method achieves state-of-the-art quality compared to existing feed-forward 3DGS- and NeRF-based methods.
comment: CVPR2025
☆ Operating Room Workflow Analysis via Reasoning Segmentation over Digital Twins
Analyzing operating room (OR) workflows to derive quantitative insights into OR efficiency is important for hospitals to maximize patient care and financial sustainability. Prior work on OR-level workflow analysis has relied on end-to-end deep neural networks. While these approaches work well in constrained settings, they are limited to the conditions specified at development time and do not offer the flexibility necessary to accommodate the OR workflow analysis needs of various OR scenarios (e.g., large academic center vs. rural provider) without data collection, annotation, and retraining. Reasoning segmentation (RS) based on foundation models offers this flexibility by enabling automated analysis of OR workflows from OR video feeds given only an implicit text query related to the objects of interest. Due to the reliance on large language model (LLM) fine-tuning, current RS approaches struggle with reasoning about semantic/spatial relationships and show limited generalization to OR video due to variations in visual characteristics and domain-specific terminology. To address these limitations, we first propose a novel digital twin (DT) representation that preserves both semantic and spatial relationships between the various OR components. Then, building on this foundation, we propose ORDiRS (Operating Room Digital twin representation for Reasoning Segmentation), an LLM-tuning-free RS framework that reformulates RS into a "reason-retrieval-synthesize" paradigm. Finally, we present ORDiRS-Agent, an LLM-based agent that decomposes OR workflow analysis queries into manageable RS sub-queries and generates responses by combining detailed textual explanations with supporting visual evidence from RS. Experimental results on both an in-house and a public OR dataset demonstrate that our ORDiRS achieves a cIoU improvement of 6.12%-9.74% compared to the existing state-of-the-arts.
☆ Reconstructing Gridded Data from Higher Autocorrelations
The higher-order autocorrelations of integer-valued or rational-valued gridded data sets appear naturally in X-ray crystallography, and have applications in computer vision systems, correlation tomography, correlation spectroscopy, and pattern recognition. In this paper, we consider the problem of reconstructing a gridded data set from its higher-order autocorrelations. We describe an explicit reconstruction algorithm, and prove that the autocorrelations up to order 3r + 3 are always sufficient to determine the data up to translation, where r is the dimension of the grid. We also provide examples of rational-valued gridded data sets which are not determined by their autocorrelations up to order 3r + 2.
comment: 13 pages, 1 figure
☆ Forensic Self-Descriptions Are All You Need for Zero-Shot Detection, Open-Set Source Attribution, and Clustering of AI-generated Images CVPR
The emergence of advanced AI-based tools to generate realistic images poses significant challenges for forensic detection and source attribution, especially as new generative techniques appear rapidly. Traditional methods often fail to generalize to unseen generators due to reliance on features specific to known sources during training. To address this problem, we propose a novel approach that explicitly models forensic microstructures - subtle, pixel-level patterns unique to the image creation process. Using only real images in a self-supervised manner, we learn a set of diverse predictive filters to extract residuals that capture different aspects of these microstructures. By jointly modeling these residuals across multiple scales, we obtain a compact model whose parameters constitute a unique forensic self-description for each image. This self-description enables us to perform zero-shot detection of synthetic images, open-set source attribution of images, and clustering based on source without prior knowledge. Extensive experiments demonstrate that our method achieves superior accuracy and adaptability compared to competing techniques, advancing the state of the art in synthetic media forensics.
comment: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2025
☆ MVFNet: Multipurpose Video Forensics Network using Multiple Forms of Forensic Evidence WACV
While videos can be falsified in many different ways, most existing forensic networks are specialized to detect only a single manipulation type (e.g. deepfake, inpainting). This poses a significant issue as the manipulation used to falsify a video is not known a priori. To address this problem, we propose MVFNet - a multipurpose video forensics network capable of detecting multiple types of manipulations including inpainting, deepfakes, splicing, and editing. Our network does this by extracting and jointly analyzing a broad set of forensic feature modalities that capture both spatial and temporal anomalies in falsified videos. To reliably detect and localize fake content of all shapes and sizes, our network employs a novel Multi-Scale Hierarchical Transformer module to identify forensic inconsistencies across multiple spatial scales. Experimental results show that our network obtains state-of-the-art performance in general scenarios where multiple different manipulations are possible, and rivals specialized detectors in targeted scenarios.
comment: Proceedings of the Winter Conference on Applications of Computer Vision (WACV) 2025
☆ Eyes Tell the Truth: GazeVal Highlights Shortcomings of Generative AI in Medical Imaging
The demand for high-quality synthetic data for model training and augmentation has never been greater in medical imaging. However, current evaluations predominantly rely on computational metrics that fail to align with human expert recognition. This leads to synthetic images that may appear realistic numerically but lack clinical authenticity, posing significant challenges in ensuring the reliability and effectiveness of AI-driven medical tools. To address this gap, we introduce GazeVal, a practical framework that synergizes expert eye-tracking data with direct radiological evaluations to assess the quality of synthetic medical images. GazeVal leverages gaze patterns of radiologists as they provide a deeper understanding of how experts perceive and interact with synthetic data in different tasks (i.e., diagnostic or Turing tests). Experiments with sixteen radiologists revealed that 96.6% of the generated images (by the most recent state-of-the-art AI algorithm) were identified as fake, demonstrating the limitations of generative AI in producing clinically accurate images.
☆ LATTE-MV: Learning to Anticipate Table Tennis Hits from Monocular Videos CVPR 2025
Physical agility is a necessary skill in competitive table tennis, but by no means sufficient. Champions excel in this fast-paced and highly dynamic environment by anticipating their opponent's intent - buying themselves the necessary time to react. In this work, we take one step towards designing such an anticipatory agent. Previous works have developed systems capable of real-time table tennis gameplay, though they often do not leverage anticipation. Among the works that forecast opponent actions, their approaches are limited by dataset size and variety. Our paper contributes (1) a scalable system for reconstructing monocular video of table tennis matches in 3D and (2) an uncertainty-aware controller that anticipates opponent actions. We demonstrate in simulation that our policy improves the ball return rate against high-speed hits from 49.9% to 59.0% as compared to a baseline non-anticipatory policy.
comment: CVPR 2025
☆ Prototype Guided Backdoor Defense
Deep learning models are susceptible to {\em backdoor attacks} involving malicious attackers perturbing a small subset of training data with a {\em trigger} to causes misclassifications. Various triggers have been used, including semantic triggers that are easily realizable without requiring the attacker to manipulate the image. The emergence of generative AI has eased the generation of varied poisoned samples. Robustness across types of triggers is crucial to effective defense. We propose Prototype Guided Backdoor Defense (PGBD), a robust post-hoc defense that scales across different trigger types, including previously unsolved semantic triggers. PGBD exploits displacements in the geometric spaces of activations to penalize movements toward the trigger. This is done using a novel sanitization loss of a post-hoc fine-tuning step. The geometric approach scales easily to all types of attacks. PGBD achieves better performance across all settings. We also present the first defense against a new semantic attack on celebrity face images. Project page: \hyperlink{https://venkatadithya9.github.io/pgbd.github.io/}{this https URL}.
☆ Feature Modulation for Semi-Supervised Domain Generalization without Domain Labels
Semi-supervised domain generalization (SSDG) leverages a small fraction of labeled data alongside unlabeled data to enhance model generalization. Most of the existing SSDG methods rely on pseudo-labeling (PL) for unlabeled data, often assuming access to domain labels-a privilege not always available. However, domain shifts introduce domain noise, leading to inconsistent PLs that degrade model performance. Methods derived from FixMatch suffer particularly from lower PL accuracy, reducing the effectiveness of unlabeled data. To address this, we tackle the more challenging domain-label agnostic SSDG, where domain labels for unlabeled data are not available during training. First, we propose a feature modulation strategy that enhances class-discriminative features while suppressing domain-specific information. This modulation shifts features toward Similar Average Representations-a modified version of class prototypes-that are robust across domains, encouraging the classifier to distinguish between closely related classes and feature extractor to form tightly clustered, domain-invariant representations. Second, to mitigate domain noise and improve pseudo-label accuracy, we introduce a loss-scaling function that dynamically lowers the fixed confidence threshold for pseudo-labels, optimizing the use of unlabeled data. With these key innovations, our approach achieves significant improvements on four major domain generalization benchmarks-even without domain labels. We will make the code available.
☆ BioX-CPath: Biologically-driven Explainable Diagnostics for Multistain IHC Computational Pathology CVPR 2025
The development of biologically interpretable and explainable models remains a key challenge in computational pathology, particularly for multistain immunohistochemistry (IHC) analysis. We present BioX-CPath, an explainable graph neural network architecture for whole slide image (WSI) classification that leverages both spatial and semantic features across multiple stains. At its core, BioX-CPath introduces a novel Stain-Aware Attention Pooling (SAAP) module that generates biologically meaningful, stain-aware patient embeddings. Our approach achieves state-of-the-art performance on both Rheumatoid Arthritis and Sjogren's Disease multistain datasets. Beyond performance metrics, BioX-CPath provides interpretable insights through stain attention scores, entropy measures, and stain interaction scores, that permit measuring model alignment with known pathological mechanisms. This biological grounding, combined with strong classification performance, makes BioX-CPath particularly suitable for clinical applications where interpretability is key. Source code and documentation can be found at: https://github.com/AmayaGS/BioX-CPath.
comment: Accepted for publication at CVPR 2025
☆ VinaBench: Benchmark for Faithful and Consistent Visual Narratives CVPR 2025
Visual narrative generation transforms textual narratives into sequences of images illustrating the content of the text. However, generating visual narratives that are faithful to the input text and self-consistent across generated images remains an open challenge, due to the lack of knowledge constraints used for planning the stories. In this work, we propose a new benchmark, VinaBench, to address this challenge. Our benchmark annotates the underlying commonsense and discourse constraints in visual narrative samples, offering systematic scaffolds for learning the implicit strategies of visual storytelling. Based on the incorporated narrative constraints, we further propose novel metrics to closely evaluate the consistency of generated narrative images and the alignment of generations with the input textual narrative. Our results across three generative vision models demonstrate that learning with VinaBench's knowledge constraints effectively improves the faithfulness and cohesion of generated visual narratives.
comment: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2025)
☆ Unified Multimodal Discrete Diffusion
Multimodal generative models that can understand and generate across multiple modalities are dominated by autoregressive (AR) approaches, which process tokens sequentially from left to right, or top to bottom. These models jointly handle images, text, video, and audio for various tasks such as image captioning, question answering, and image generation. In this work, we explore discrete diffusion models as a unified generative formulation in the joint text and image domain, building upon their recent success in text generation. Discrete diffusion models offer several advantages over AR models, including improved control over quality versus diversity of generated samples, the ability to perform joint multimodal inpainting (across both text and image domains), and greater controllability in generation through guidance. Leveraging these benefits, we present the first Unified Multimodal Discrete Diffusion (UniDisc) model which is capable of jointly understanding and generating text and images for a variety of downstream tasks. We compare UniDisc to multimodal AR models, performing a scaling analysis and demonstrating that UniDisc outperforms them in terms of both performance and inference-time compute, enhanced controllability, editability, inpainting, and flexible trade-off between inference time and generation quality. Code and additional visualizations are available at https://unidisc.github.io.
comment: Project Website: https://unidisc.github.io
☆ Generating Synthetic Data with Formal Privacy Guarantees: State of the Art and the Road Ahead
Privacy-preserving synthetic data offers a promising solution to harness segregated data in high-stakes domains where information is compartmentalized for regulatory, privacy, or institutional reasons. This survey provides a comprehensive framework for understanding the landscape of privacy-preserving synthetic data, presenting the theoretical foundations of generative models and differential privacy followed by a review of state-of-the-art methods across tabular data, images, and text. Our synthesis of evaluation approaches highlights the fundamental trade-off between utility for down-stream tasks and privacy guarantees, while identifying critical research gaps: the lack of realistic benchmarks representing specialized domains and insufficient empirical evaluations required to contextualise formal guarantees. Through empirical analysis of four leading methods on five real-world datasets from specialized domains, we demonstrate significant performance degradation under realistic privacy constraints ($\epsilon \leq 4$), revealing a substantial gap between results reported on general domain benchmarks and performance on domain-specific data. %Our findings highlight key challenges including unaccounted privacy leakage, insufficient empirical verification of formal guarantees, and a critical deficit of realistic benchmarks. These challenges underscore the need for robust evaluation frameworks, standardized benchmarks for specialized domains, and improved techniques to address the unique requirements of privacy-sensitive fields such that this technology can deliver on its considerable potential.
comment: 23 pages + references + Appendix. Preprint
♻ ☆ AvatarArtist: Open-Domain 4D Avatarization CVPR 2025
This work focuses on open-domain 4D avatarization, with the purpose of creating a 4D avatar from a portrait image in an arbitrary style. We select parametric triplanes as the intermediate 4D representation and propose a practical training paradigm that takes advantage of both generative adversarial networks (GANs) and diffusion models. Our design stems from the observation that 4D GANs excel at bridging images and triplanes without supervision yet usually face challenges in handling diverse data distributions. A robust 2D diffusion prior emerges as the solution, assisting the GAN in transferring its expertise across various domains. The synergy between these experts permits the construction of a multi-domain image-triplane dataset, which drives the development of a general 4D avatar creator. Extensive experiments suggest that our model, AvatarArtist, is capable of producing high-quality 4D avatars with strong robustness to various source image domains. The code, the data, and the models will be made publicly available to facilitate future studies.
comment: Accepted to CVPR 2025. Project page: https://kumapowerliu.github.io/AvatarArtist
♻ ☆ Attention IoU: Examining Biases in CelebA using Attention Maps CVPR 2025
Computer vision models have been shown to exhibit and amplify biases across a wide array of datasets and tasks. Existing methods for quantifying bias in classification models primarily focus on dataset distribution and model performance on subgroups, overlooking the internal workings of a model. We introduce the Attention-IoU (Attention Intersection over Union) metric and related scores, which use attention maps to reveal biases within a model's internal representations and identify image features potentially causing the biases. First, we validate Attention-IoU on the synthetic Waterbirds dataset, showing that the metric accurately measures model bias. We then analyze the CelebA dataset, finding that Attention-IoU uncovers correlations beyond accuracy disparities. Through an investigation of individual attributes through the protected attribute of Male, we examine the distinct ways biases are represented in CelebA. Lastly, by subsampling the training set to change attribute correlations, we demonstrate that Attention-IoU reveals potential confounding variables not present in dataset labels.
comment: To appear in CVPR 2025. Code and data is available at https://github.com/aaronserianni/attention-iou . 15 pages, 14 figures, including appendix
♻ ☆ In the Blink of an Eye: Instant Game Map Editing using a Generative-AI Smart Brush
With video games steadily increasing in complexity, automated generation of game content has found widespread interest. However, the task of 3D gaming map art creation remains underexplored to date due to its unique complexity and domain-specific challenges. While recent works have addressed related topics such as retro-style level generation and procedural terrain creation, these works primarily focus on simpler data distributions. To the best of our knowledge, we are the first to demonstrate the application of modern AI techniques for high-resolution texture manipulation in complex, highly detailed AAA 3D game environments. We introduce a novel Smart Brush for map editing, designed to assist artists in seamlessly modifying selected areas of a game map with minimal effort. By leveraging generative adversarial networks and diffusion models we propose two variants of the brush that enable efficient and context-aware generation. Our hybrid workflow aims to enhance both artistic flexibility and production efficiency, enabling the refinement of environments without manually reworking every detail, thus helping to bridge the gap between automation and creative control in game development. A comparative evaluation of our two methods with adapted versions of several state-of-the art models shows that our GAN-based brush produces the sharpest and most detailed outputs while preserving image context while the evaluated state-of-the-art models tend towards blurrier results and exhibit difficulties in maintaining contextual consistency.
♻ ☆ A Survey on Event-driven 3D Reconstruction: Development under Different Categories
Event cameras have gained increasing attention for 3D reconstruction due to their high temporal resolution, low latency, and high dynamic range. They capture per-pixel brightness changes asynchronously, allowing accurate reconstruction under fast motion and challenging lighting conditions. In this survey, we provide a comprehensive review of event-driven 3D reconstruction methods, including stereo, monocular, and multimodal systems. We further categorize recent developments based on geometric, learning-based, and hybrid approaches. Emerging trends, such as neural radiance fields and 3D Gaussian splatting with event data, are also covered. The related works are structured chronologically to illustrate the innovations and progression within the field. To support future research, we also highlight key research gaps and future research directions in dataset, experiment, evaluation, event representation, etc.
comment: 6 pages, 1 figure, 6 tables, submitted to an anonymous conference under double-blind review
♻ ☆ FUSE: Label-Free Image-Event Joint Monocular Depth Estimation via Frequency-Decoupled Alignment and Degradation-Robust Fusion
Image-event joint depth estimation methods leverage complementary modalities for robust perception, yet face challenges in generalizability stemming from two factors: 1) limited annotated image-event-depth datasets causing insufficient cross-modal supervision, and 2) inherent frequency mismatches between static images and dynamic event streams with distinct spatiotemporal patterns, leading to ineffective feature fusion. To address this dual challenge, we propose Frequency-decoupled Unified Self-supervised Encoder (FUSE) with two synergistic components: The Parameter-efficient Self-supervised Transfer (PST) establishes cross-modal knowledge transfer through latent space alignment with image foundation models, effectively mitigating data scarcity by enabling joint encoding without depth ground truth. Complementing this, we propose the Frequency-Decoupled Fusion module (FreDFuse) to explicitly decouple high-frequency edge features from low-frequency structural components, resolving modality-specific frequency mismatches through physics-aware fusion. This combined approach enables FUSE to construct a universal image-event encoder that only requires lightweight decoder adaptation for target datasets. Extensive experiments demonstrate state-of-the-art performance with 14% and 24.9% improvements in Abs.Rel on MVSEC and DENSE datasets. The framework exhibits remarkable zero-shot adaptability to challenging scenarios including extreme lighting and motion blur, significantly advancing real-world deployment capabilities. The source code for our method is publicly available at: https://github.com/sunpihai-up/FUSE
comment: 8 pages, 6 figures
♻ ☆ CamSAM2: Segment Anything Accurately in Camouflaged Videos
Video camouflaged object segmentation (VCOS), aiming at segmenting camouflaged objects that seamlessly blend into their environment, is a fundamental vision task with various real-world applications. With the release of SAM2, video segmentation has witnessed significant progress. However, SAM2's capability of segmenting camouflaged videos is suboptimal, especially when given simple prompts such as point and box. To address the problem, we propose Camouflaged SAM2 (CamSAM2), which enhances SAM2's ability to handle camouflaged scenes without modifying SAM2's parameters. Specifically, we introduce a decamouflaged token to provide the flexibility of feature adjustment for VCOS. To make full use of fine-grained and high-resolution features from the current frame and previous frames, we propose implicit object-aware fusion (IOF) and explicit object-aware fusion (EOF) modules, respectively. Object prototype generation (OPG) is introduced to abstract and memorize object prototypes with informative details using high-quality features from previous frames. Extensive experiments are conducted to validate the effectiveness of our approach. While CamSAM2 only adds negligible learnable parameters to SAM2, it substantially outperforms SAM2 on three VCOS datasets, especially achieving 12.2 mDice gains with click prompt on MoCA-Mask and 19.6 mDice gains with mask prompt on SUN-SEG-Hard, with Hiera-T as the backbone. The code will be available at https://github.com/zhoustan/CamSAM2.
♻ ☆ Unlocking the Hidden Potential of CLIP in Generalizable Deepfake Detection
This paper tackles the challenge of detecting partially manipulated facial deepfakes, which involve subtle alterations to specific facial features while retaining the overall context, posing a greater detection difficulty than fully synthetic faces. We leverage the Contrastive Language-Image Pre-training (CLIP) model, specifically its ViT-L/14 visual encoder, to develop a generalizable detection method that performs robustly across diverse datasets and unknown forgery techniques with minimal modifications to the original model. The proposed approach utilizes parameter-efficient fine-tuning (PEFT) techniques, such as LN-tuning, to adjust a small subset of the model's parameters, preserving CLIP's pre-trained knowledge and reducing overfitting. A tailored preprocessing pipeline optimizes the method for facial images, while regularization strategies, including L2 normalization and metric learning on a hyperspherical manifold, enhance generalization. Trained on the FaceForensics++ dataset and evaluated in a cross-dataset fashion on Celeb-DF-v2, DFDC, FFIW, and others, the proposed method achieves competitive detection accuracy comparable to or outperforming much more complex state-of-the-art techniques. This work highlights the efficacy of CLIP's visual encoder in facial deepfake detection and establishes a simple, powerful baseline for future research, advancing the field of generalizable deepfake detection. The code is available at: https://github.com/yermandy/deepfake-detection
♻ ☆ PG-SAM: Prior-Guided SAM with Medical for Multi-organ Segmentation
Segment Anything Model (SAM) demonstrates powerful zero-shot capabilities; however, its accuracy and robustness significantly decrease when applied to medical image segmentation. Existing methods address this issue through modality fusion, integrating textual and image information to provide more detailed priors. In this study, we argue that the granularity of text and the domain gap affect the accuracy of the priors. Furthermore, the discrepancy between high-level abstract semantics and pixel-level boundary details in images can introduce noise into the fusion process. To address this, we propose Prior-Guided SAM (PG-SAM), which employs a fine-grained modality prior aligner to leverage specialized medical knowledge for better modality alignment. The core of our method lies in efficiently addressing the domain gap with fine-grained text from a medical LLM. Meanwhile, it also enhances the priors' quality after modality alignment, ensuring more accurate segmentation. In addition, our decoder enhances the model's expressive capabilities through multi-level feature fusion and iterative mask optimizer operations, supporting unprompted learning. We also propose a unified pipeline that effectively supplies high-quality semantic information to SAM. Extensive experiments on the Synapse dataset demonstrate that the proposed PG-SAM achieves state-of-the-art performance. Our code is released at https://github.com/logan-0623/PG-SAM.
♻ ☆ One Framework to Rule Them All: Unifying RL-Based and RL-Free Methods in RLHF
In this article, we primarily examine a variety of RL-based and RL-free methods designed to address Reinforcement Learning from Human Feedback (RLHF) and Large Reasoning Models (LRMs). We begin with a concise overview of the typical steps involved in RLHF and LRMs. Next, we reinterpret several RL-based and RL-free algorithms through the perspective of neural structured bandit prediction, providing a clear conceptual framework that uncovers a deeper connection between these seemingly distinct approaches. Following this, we briefly review some core principles of reinforcement learning, drawing attention to an often-overlooked aspect in existing RLHF studies. This leads to a detailed derivation of the standard RLHF objective within a full RL context, demonstrating its equivalence to neural structured bandit prediction. Finally, by reinvestigating the principles behind Proximal Policy Optimization (PPO), we pinpoint areas needing adjustment, which culminates in the introduction of the Generalized Reinforce Optimization (GRO) framework, seamlessly integrating RL-based and RL-free methods in RLHF. We look forward to the community's efforts to empirically validate GRO and invite constructive feedback.
♻ ☆ COB-GS: Clear Object Boundaries in 3DGS Segmentation Based on Boundary-Adaptive Gaussian Splitting CVPR 2025
Accurate object segmentation is crucial for high-quality scene understanding in the 3D vision domain. However, 3D segmentation based on 3D Gaussian Splatting (3DGS) struggles with accurately delineating object boundaries, as Gaussian primitives often span across object edges due to their inherent volume and the lack of semantic guidance during training. In order to tackle these challenges, we introduce Clear Object Boundaries for 3DGS Segmentation (COB-GS), which aims to improve segmentation accuracy by clearly delineating blurry boundaries of interwoven Gaussian primitives within the scene. Unlike existing approaches that remove ambiguous Gaussians and sacrifice visual quality, COB-GS, as a 3DGS refinement method, jointly optimizes semantic and visual information, allowing the two different levels to cooperate with each other effectively. Specifically, for the semantic guidance, we introduce a boundary-adaptive Gaussian splitting technique that leverages semantic gradient statistics to identify and split ambiguous Gaussians, aligning them closely with object boundaries. For the visual optimization, we rectify the degraded suboptimal texture of the 3DGS scene, particularly along the refined boundary structures. Experimental results show that COB-GS substantially improves segmentation accuracy and robustness against inaccurate masks from pre-trained model, yielding clear boundaries while preserving high visual quality. Code is available at https://github.com/ZestfulJX/COB-GS.
comment: Accepted by CVPR 2025
♻ ☆ RoboSpatial: Teaching Spatial Understanding to 2D and 3D Vision-Language Models for Robotics CVPR 2025
Spatial understanding is a crucial capability that enables robots to perceive their surroundings, reason about their environment, and interact with it meaningfully. In modern robotics, these capabilities are increasingly provided by vision-language models. However, these models face significant challenges in spatial reasoning tasks, as their training data are based on general-purpose image datasets that often lack sophisticated spatial understanding. For example, datasets frequently do not capture reference frame comprehension, yet effective spatial reasoning requires understanding whether to reason from ego-, world-, or object-centric perspectives. To address this issue, we introduce RoboSpatial, a large-scale dataset for spatial understanding in robotics. It consists of real indoor and tabletop scenes, captured as 3D scans and egocentric images, and annotated with rich spatial information relevant to robotics. The dataset includes 1M images, 5k 3D scans, and 3M annotated spatial relationships, and the pairing of 2D egocentric images with 3D scans makes it both 2D- and 3D- ready. Our experiments show that models trained with RoboSpatial outperform baselines on downstream tasks such as spatial affordance prediction, spatial relationship prediction, and robot manipulation.
comment: CVPR 2025
♻ ☆ LangBridge: Interpreting Image as a Combination of Language Embeddings
Recent years have witnessed remarkable advances in Large Vision-Language Models (LVLMs), which have achieved human-level performance across various complex vision-language tasks. Following LLaVA's paradigm, mainstream LVLMs typically employ a shallow MLP for visual-language alignment through a two-stage training process: pretraining for cross-modal alignment followed by instruction tuning. While this approach has proven effective, the underlying mechanisms of how MLPs bridge the modality gap remain poorly understood. Although some research has explored how LLMs process transformed visual tokens, few studies have investigated the fundamental alignment mechanism. Furthermore, the MLP adapter requires retraining whenever switching LLM backbones. To address these limitations, we first investigate the working principles of MLP adapters and discover that they learn to project visual embeddings into subspaces spanned by corresponding text embeddings progressively. Based on this insight, we propose LangBridge, a novel adapter that explicitly maps visual tokens to linear combinations of LLM vocabulary embeddings. This innovative design enables pretraining-free adapter transfer across different LLMs while maintaining performance. Our experimental results demonstrate that a LangBridge adapter pre-trained on Qwen2-0.5B can be directly applied to larger models such as LLaMA3-8B or Qwen2.5-14B while maintaining competitive performance. Overall, LangBridge enables interpretable vision-language alignment by grounding visual representations in LLM vocab embedding, while its plug-and-play design ensures efficient reuse across multiple LLMs with nearly no performance degradation. See our project page at https://jiaqiliao77.github.io/LangBridge.github.io/
comment: The code and weights will be open-sourced. Project page: https://jiaqiliao77.github.io/LangBridge.github.io/
♻ ☆ Inference-Time Scaling for Flow Models via Stochastic Generation and Rollover Budget Forcing
We propose an inference-time scaling approach for pretrained flow models. Recently, inference-time scaling has gained significant attention in LLMs and diffusion models, improving sample quality or better aligning outputs with user preferences by leveraging additional computation. For diffusion models, particle sampling has allowed more efficient scaling due to the stochasticity at intermediate denoising steps. On the contrary, while flow models have gained popularity as an alternative to diffusion models--offering faster generation and high-quality outputs in state-of-the-art image and video generative models--efficient inference-time scaling methods used for diffusion models cannot be directly applied due to their deterministic generative process. To enable efficient inference-time scaling for flow models, we propose three key ideas: 1) SDE-based generation, enabling particle sampling in flow models, 2) Interpolant conversion, broadening the search space and enhancing sample diversity, and 3) Rollover Budget Forcing (RBF), an adaptive allocation of computational resources across timesteps to maximize budget utilization. Our experiments show that SDE-based generation, particularly variance-preserving (VP) interpolant-based generation, improves the performance of particle sampling methods for inference-time scaling in flow models. Additionally, we demonstrate that RBF with VP-SDE achieves the best performance, outperforming all previous inference-time scaling approaches.
comment: Project page: https://flow-inference-time-scaling.github.io/
♻ ☆ EfficientMT: Efficient Temporal Adaptation for Motion Transfer in Text-to-Video Diffusion Models
The progress on generative models has led to significant advances on text-to-video (T2V) generation, yet the motion controllability of generated videos remains limited. Existing motion transfer methods explored the motion representations of reference videos to guide generation. Nevertheless, these methods typically rely on sample-specific optimization strategy, resulting in high computational burdens. In this paper, we propose EfficientMT, a novel and efficient end-to-end framework for video motion transfer. By leveraging a small set of synthetic paired motion transfer samples, EfficientMT effectively adapts a pretrained T2V model into a general motion transfer framework that can accurately capture and reproduce diverse motion patterns. Specifically, we repurpose the backbone of the T2V model to extract temporal information from reference videos, and further propose a scaler module to distill motion-related information. Subsequently, we introduce a temporal integration mechanism that seamlessly incorporates reference motion features into the video generation process. After training on our self-collected synthetic paired samples, EfficientMT enables general video motion transfer without requiring test-time optimization. Extensive experiments demonstrate that our EfficientMT outperforms existing methods in efficiency while maintaining flexible motion controllability. Our code will be available https://github.com/PrototypeNx/EfficientMT.
♻ ☆ ST-VLM: Kinematic Instruction Tuning for Spatio-Temporal Reasoning in Vision-Language Models
Spatio-temporal reasoning is essential in understanding real-world environments in various fields, eg, autonomous driving and sports analytics. Recent advances have improved the spatial reasoning ability of Vision-Language Models (VLMs) by introducing large-scale data, but these models still struggle to analyze kinematic elements like traveled distance and speed of moving objects. To bridge this gap, we construct a spatio-temporal reasoning dataset and benchmark involving kinematic instruction tuning, referred to as STKit and STKit-Bench. They consist of real-world videos with 3D annotations, detailing object motion dynamics: traveled distance, speed, movement direction, inter-object distance comparisons, and relative movement direction. To further scale such data construction to videos without 3D labels, we propose an automatic pipeline to generate pseudo-labels using 4D reconstruction in real-world scale. With our kinematic instruction tuning data for spatio-temporal reasoning, we present ST-VLM, a VLM enhanced for spatio-temporal reasoning, which exhibits outstanding performance on STKit-Bench. Furthermore, we show that ST-VLM generalizes robustly across diverse domains and tasks, outperforming baselines on other spatio-temporal benchmarks (eg, ActivityNet, TVQA+). Finally, by integrating learned spatio-temporal reasoning with existing abilities, ST-VLM enables complex multi-step reasoning. Project page: https://ikodoh.github.io/ST-VLM.
♻ ☆ Explaining Deep Convolutional Neural Networks for Image Classification by Evolving Local Interpretable Model-agnostic Explanations
Deep convolutional neural networks have proven their effectiveness, and have been acknowledged as the most dominant method for image classification. However, a severe drawback of deep convolutional neural networks is poor explainability. Unfortunately, in many real-world applications, users need to understand the rationale behind the predictions of deep convolutional neural networks when determining whether they should trust the predictions or not. To resolve this issue, a novel genetic algorithm-based method is proposed for the first time to automatically evolve local explanations that can assist users to assess the rationality of the predictions. Furthermore, the proposed method is model-agnostic, i.e., it can be utilised to explain any deep convolutional neural network models. In the experiments, ResNet is used as an example model to be explained, and the ImageNet dataset is selected as the benchmark dataset. DenseNet and MobileNet are further explained to demonstrate the model-agnostic characteristic of the proposed method. The evolved local explanations on four images, randomly selected from ImageNet, are presented, which show that the evolved local explanations are straightforward to be recognised by humans. Moreover, the evolved explanations can explain the predictions of deep convolutional neural networks on all four images very well by successfully capturing meaningful interpretable features of the sample images. Further analysis based on the 30 runs of the experiments exhibits that the evolved local explanations can also improve the probabilities/confidences of the deep convolutional neural network models in making the predictions. The proposed method can obtain local explanations within one minute, which is more than ten times faster than LIME (the state-of-the-art method).
♻ ☆ Parameter-Efficient Fine-Tuning for Pre-Trained Vision Models: A Survey
Large-scale pre-trained vision models (PVMs) have shown great potential for adaptability across various downstream vision tasks. However, with state-of-the-art PVMs growing to billions or even trillions of parameters, the standard full fine-tuning paradigm is becoming unsustainable due to high computational and storage demands. In response, researchers are exploring parameter-efficient fine-tuning (PEFT), which seeks to exceed the performance of full fine-tuning with minimal parameter modifications. This survey provides a comprehensive overview and future directions for visual PEFT, offering a systematic review of the latest advancements. First, we provide a formal definition of PEFT and discuss model pre-training methods. We then categorize existing methods into three categories: addition-based, partial-based, and unified-based. Finally, we introduce the commonly used datasets and applications and suggest potential future research challenges. A comprehensive collection of resources is available at https://github.com/synbol/Awesome-Parameter-Efficient-Transfer-Learning.
comment: 9 pages, 3 figures, 2 tables
♻ ☆ PAINT: Paying Attention to INformed Tokens to Mitigate Hallucination in Large Vision-Language Model
Large Vision Language Models (LVLMs) have demonstrated remarkable capabilities in understanding and describing visual content, achieving state-of-the-art performance across various vision-language tasks. However, these models often generate descriptions containing objects or details that are absent in the input image, a phenomenon commonly known as hallucination. Our work investigates the key reasons behind this issue by analyzing the pattern of self-attention in transformer layers. We find that hallucinations often arise from the progressive weakening of attention weight to visual tokens in the deeper layers of the LLM. Some previous works naively boost the attention of all visual tokens to mitigate this issue, resulting in suboptimal hallucination reduction. To address this, we identify two critical sets of visual tokens that facilitate the transfer of visual information from the vision encoder to the LLM. Local tokens encode grounded information about objects present in an image, while summary tokens capture the overall aggregated representation of the image. Importantly, these two sets of tokens require different levels of weight enhancement. To this end, we propose \textbf{PAINT} (\textbf{P}aying \textbf{A}ttention to \textbf{IN}formed \textbf{T}okens), a plug-and-play framework that intervenes in the self-attention mechanism of the LLM, selectively boosting the attention weights of local and summary tokens with experimentally learned margins. Evaluation on the MSCOCO image captioning dataset demonstrate that our approach reduces hallucination rates by up to 62.3\% compared to baseline models while maintaining accuracy. Code is available at \href{https://github.com/hasanar1f/PAINT}{https://github.com/hasanar1f/PAINT}
comment: 6 pages, 4 tables, 3 figures
♻ ☆ PhysAnimator: Physics-Guided Generative Cartoon Animation CVPR 2025
Creating hand-drawn animation sequences is labor-intensive and demands professional expertise. We introduce PhysAnimator, a novel approach for generating physically plausible meanwhile anime-stylized animation from static anime illustrations. Our method seamlessly integrates physics-based simulations with data-driven generative models to produce dynamic and visually compelling animations. To capture the fluidity and exaggeration characteristic of anime, we perform image-space deformable body simulations on extracted mesh geometries. We enhance artistic control by introducing customizable energy strokes and incorporating rigging point support, enabling the creation of tailored animation effects such as wind interactions. Finally, we extract and warp sketches from the simulation sequence, generating a texture-agnostic representation, and employ a sketch-guided video diffusion model to synthesize high-quality animation frames. The resulting animations exhibit temporal consistency and visual plausibility, demonstrating the effectiveness of our method in creating dynamic anime-style animations. See our project page for more demos: https://xpandora.github.io/PhysAnimator/
comment: Accepted by CVPR 2025
♻ ☆ OTTER: A Vision-Language-Action Model with Text-Aware Visual Feature Extraction
Vision-Language-Action (VLA) models aim to predict robotic actions based on visual observations and language instructions. Existing approaches require fine-tuning pre-trained visionlanguage models (VLMs) as visual and language features are independently fed into downstream policies, degrading the pre-trained semantic alignments. We propose OTTER, a novel VLA architecture that leverages these existing alignments through explicit, text-aware visual feature extraction. Instead of processing all visual features, OTTER selectively extracts and passes only task-relevant visual features that are semantically aligned with the language instruction to the policy transformer. This allows OTTER to keep the pre-trained vision-language encoders frozen. Thereby, OTTER preserves and utilizes the rich semantic understanding learned from large-scale pre-training, enabling strong zero-shot generalization capabilities. In simulation and real-world experiments, OTTER significantly outperforms existing VLA models, demonstrating strong zeroshot generalization to novel objects and environments. Video, code, checkpoints, and dataset: https://ottervla.github.io/.
♻ ☆ R-LiViT: A LiDAR-Visual-Thermal Dataset Enabling Vulnerable Road User Focused Roadside Perception ICCV2025
In autonomous driving, the integration of roadside perception systems is essential for overcoming occlusion challenges and enhancing the safety of Vulnerable Road Users (VRUs). While LiDAR and visual (RGB) sensors are commonly used, thermal imaging remains underrepresented in datasets, despite its acknowledged advantages for VRU detection in extreme lighting conditions. In this paper, we present R-LiViT, the first dataset to combine LiDAR, RGB, and thermal imaging from a roadside perspective, with a strong focus on VRUs. R-LiViT captures three intersections during both day and night, ensuring a diverse dataset. It includes 10,000 LiDAR frames and 2,400 temporally and spatially aligned RGB and thermal images across over 150 traffic scenarios, with 6 and 8 annotated classes respectively, providing a comprehensive resource for tasks such as object detection and tracking. The dataset and the code for reproducing our evaluation results are made publicly available.
comment: 10 pages, 7 figures, submitted to ICCV2025
♻ ☆ DexHandDiff: Interaction-aware Diffusion Planning for Adaptive Dexterous Manipulation CVPR 2025
Dexterous manipulation with contact-rich interactions is crucial for advanced robotics. While recent diffusion-based planning approaches show promise for simple manipulation tasks, they often produce unrealistic ghost states (e.g., the object automatically moves without hand contact) or lack adaptability when handling complex sequential interactions. In this work, we introduce DexHandDiff, an interaction-aware diffusion planning framework for adaptive dexterous manipulation. DexHandDiff models joint state-action dynamics through a dual-phase diffusion process which consists of pre-interaction contact alignment and post-contact goal-directed control, enabling goal-adaptive generalizable dexterous manipulation. Additionally, we incorporate dynamics model-based dual guidance and leverage large language models for automated guidance function generation, enhancing generalizability for physical interactions and facilitating diverse goal adaptation through language cues. Experiments on physical interaction tasks such as door opening, pen and block re-orientation, object relocation, and hammer striking demonstrate DexHandDiff's effectiveness on goals outside training distributions, achieving over twice the average success rate (59.2% vs. 29.5%) compared to existing methods. Our framework achieves an average of 70.7% success rate on goal adaptive dexterous tasks, highlighting its robustness and flexibility in contact-rich manipulation.
comment: Accepted by CVPR 2025. Camera ready version. Previous DexDiffuser. Project page: https://dexdiffuser.github.io/
♻ ☆ Networking Systems for Video Anomaly Detection: A Tutorial and Survey
The increasing utilization of surveillance cameras in smart cities, coupled with the surge of online video applications, has heightened concerns regarding public security and privacy protection, which propelled automated Video Anomaly Detection (VAD) into a fundamental research task within the Artificial Intelligence (AI) community. With the advancements in deep learning and edge computing, VAD has made significant progress and advances synergized with emerging applications in smart cities and video internet, which has moved beyond the conventional research scope of algorithm engineering to deployable Networking Systems for VAD (NSVAD), a practical hotspot for intersection exploration in the AI, IoVT, and computing fields. In this article, we delineate the foundational assumptions, learning frameworks, and applicable scenarios of various deep learning-driven VAD routes, offering an exhaustive tutorial for novices in NSVAD. In addition, this article elucidates core concepts by reviewing recent advances and typical solutions and aggregating available research resources accessible at https://github.com/fdjingliu/NSVAD. Lastly, this article projects future development trends and discusses how the integration of AI and computing technologies can address existing research challenges and promote open opportunities, serving as an insightful guide for prospective researchers and engineers.
comment: Revised to ACM Computing Surveys, under review, for more information and supplementary material, please see https://github.com/fdjingliu/NSVAD
♻ ☆ Data Augmentation in Earth Observation: A Diffusion Model Approach
High-quality Earth Observation (EO) imagery is essential for accurate analysis and informed decision making across sectors. However, data scarcity caused by atmospheric conditions, seasonal variations, and limited geographical coverage hinders the effective application of Artificial Intelligence (AI) in EO. Traditional data augmentation techniques, which rely on basic parameterized image transformations, often fail to introduce sufficient diversity across key semantic axes. These axes include natural changes such as snow and floods, human impacts like urbanization and roads, and disasters such as wildfires and storms, which limits the accuracy of AI models in EO applications. To address this, we propose a four-stage data augmentation approach that integrates diffusion models to enhance semantic diversity. Our method employs meta-prompts for instruction generation, vision-language models for rich captioning, EO-specific diffusion model fine-tuning, and iterative data augmentation. Extensive experiments using four augmentation techniques demonstrate that our approach consistently outperforms established methods, generating semantically diverse EO images and improving AI model performance.
comment: 25 pages, 12 figures
♻ ☆ Harmony: A Joint Self-Supervised and Weakly-Supervised Framework for Learning General Purpose Visual Representations
Vision-language contrastive learning frameworks like CLIP enable learning representations from natural language supervision, and provide strong zero-shot classification capabilities. However, due to the nature of the supervisory signal in these paradigms, they lack the ability to learn localized features, leading to degraded performance on dense prediction tasks like segmentation and detection. On the other hand, self-supervised learning methods have shown the ability to learn granular representations, complementing the high-level features in vision-language training. In this work, we present Harmony, a framework that combines vision-language training with discriminative and generative self-supervision to learn visual features that can be generalized across different vision downstream tasks. Our framework is specifically designed to work on web-scraped data by not relying on negative examples and addressing the one-to-one correspondence issue using soft CLIP targets generated by an EMA model. We comprehensively evaluate Harmony across various vision downstream tasks and find that it significantly outperforms the baseline CLIP and the previously leading joint self and weakly-supervised methods, MaskCLIP and SLIP. Specifically, when comparing against these methods, Harmony shows superior performance in fine-tuning and zero-shot classification on ImageNet-1k, semantic segmentation on ADE20K, and both object detection and instance segmentation on MS-COCO, when pre-training a ViT-B on CC3M. We also show that Harmony outperforms other self-supervised learning methods like iBOT and MAE across all tasks evaluated. Our code is publicly at https://github.com/MohammedSB/Harmony}{https://github.com/MohammedSB/Harmony available.
comment: 22 pages, 4 figures
♻ ☆ Towards Scalable Foundation Model for Multi-modal and Hyperspectral Geospatial Data
Geospatial raster data, such as that collected by satellite-based imaging systems at different times and spectral bands, hold immense potential for enabling a wide range of high-impact applications. This potential stems from the rich information that is spatially and temporally contextualized across multiple channels and sensing modalities. Recent work has adapted existing self-supervised learning approaches for such geospatial data. However, they fall short of scalable model architectures, leading to inflexibility and computational inefficiencies when faced with an increasing number of channels and modalities. To address these limitations, we introduce Low-rank Efficient Spatial-Spectral Vision Transformer with three key innovations: i) the LESS Attention Block that approximates high-dimensional spatial-spectral attention through Kronecker's product of the low-dimensional spatial and spectral attention components; ii) the Continuous Positional-Channel Embedding Layer that preserves both the continuity and physical characteristics of each spatial-spectral patch; and iii) the Perception Field Mask that exploits local spatial dependencies by constraining attention to neighboring patches. To evaluate the proposed innovations, we construct GFM-Bench, which serves as a comprehensive benchmark for such geospatial raster data. We pretrain LESS ViT using a Hyperspectral Masked Autoencoder framework with integrated positional and channel masking strategies. Experimental results demonstrate that our proposed method achieves competitive performance against state-of-the-art multi-modal geospatial foundation models while outperforming them on cross-satellite generalization tasks with higher computational efficiency. The flexibility and extensibility of our framework make it a promising direction for future geospatial data analysis tasks that involve a wide range of modalities and channels.
♻ ☆ COSMOS: Cross-Modality Self-Distillation for Vision Language Pre-training CVPR 2025
Vision-Language Models (VLMs) trained with contrastive loss have achieved significant advancements in various vision and language tasks. However, the global nature of the contrastive loss makes VLMs focus predominantly on foreground objects, neglecting other crucial information in the image, which limits their effectiveness in downstream tasks. To address these challenges, we propose COSMOS: CrOSs-MOdality Self-distillation for vision-language pre-training that integrates a novel text-cropping strategy and cross-attention module into a self-supervised learning framework. We create global and local views of images and texts (i.e., multi-modal augmentations), which are essential for self-distillation in VLMs. We further introduce a cross-attention module, enabling COSMOS to learn comprehensive cross-modal representations optimized via a cross-modality self-distillation loss. COSMOS consistently outperforms previous strong baselines on various zero-shot downstream tasks, including retrieval, classification, and semantic segmentation. Additionally, it surpasses CLIP-based models trained on larger datasets in visual perception and contextual understanding tasks. Code is available at https://github.com/ExplainableML/cosmos.
comment: CVPR 2025
♻ ☆ The mathematics of adversarial attacks in AI -- Why deep learning is unstable despite the existence of stable neural networks
The unprecedented success of deep learning (DL) makes it unchallenged when it comes to classification problems. However, it is well established that the current DL methodology produces universally unstable neural networks (NNs). The instability problem has caused an enormous research effort -- with a vast literature on so-called adversarial attacks -- yet there has been no solution to the problem. Our paper addresses why there has been no solution to the problem, as we prove the following mathematical paradox: any training procedure based on training neural networks for classification problems with a fixed architecture will yield neural networks that are either inaccurate or unstable (if accurate) -- despite the provable existence of both accurate and stable neural networks for the same classification problems. The key is that the stable and accurate neural networks must have variable dimensions depending on the input, in particular, variable dimensions is a necessary condition for stability. Our result points towards the paradox that accurate and stable neural networks exist, however, modern algorithms do not compute them. This yields the question: if the existence of neural networks with desirable properties can be proven, can one also find algorithms that compute them? There are cases in mathematics where provable existence implies computability, but will this be the case for neural networks? The contrary is true, as we demonstrate how neural networks can provably exist as approximate minimisers to standard optimisation problems with standard cost functions, however, no randomised algorithm can compute them with probability better than 1/2.
comment: 31 pages, 1 figure. Revised to make minor changes to notation and references
♻ ☆ MC-LLaVA: Multi-Concept Personalized Vision-Language Model
Current vision-language models (VLMs) show exceptional abilities across diverse tasks, such as visual question answering. To enhance user experience, recent studies investigate VLM personalization to understand user-provided concepts. However, they mainly focus on single-concept personalization, neglecting the existence and interplay of multiple concepts, which limits real-world applicability. This paper proposes the first multi-concept personalization paradigm, MC-LLaVA. Specifically, MC-LLaVA employs a multi-concept instruction tuning strategy, effectively integrating multiple concepts in a single training step. To reduce the costs related to joint training, we propose a personalized textual prompt that uses visual token information to initialize concept tokens. Additionally, we introduce a personalized visual prompt during inference, aggregating location confidence maps for enhanced recognition and grounding capabilities. To advance multi-concept personalization research, we further contribute a high-quality instruction tuning dataset. We carefully collect images with multiple characters and objects from movies and manually generate question-answer samples for multi-concept scenarios, featuring superior diversity. Comprehensive qualitative and quantitative experiments demonstrate that MC-LLaVA can achieve impressive multi-concept personalized responses, paving the way for VLMs to become better user-specific assistants. The code and dataset will be publicly available at https://github.com/arctanxarc/MC-LLaVA.
♻ ☆ Intuitive Axial Augmentation Using Polar-Sine-Based Piecewise Distortion for Medical Slice-Wise Segmentation
Most data-driven models for medical image analysis rely on universal augmentations to improve accuracy. Experimental evidence has confirmed their effectiveness, but the unclear mechanism underlying them poses a barrier to the widespread acceptance and trust in such methods within the medical community. We revisit and acknowledge the unique characteristics of medical images apart from traditional digital images, and consequently, proposed a medical-specific augmentation algorithm that is more elastic and aligns well with radiology scan procedure. The method performs piecewise affine with sinusoidal distorted ray according to radius on polar coordinates, thus simulating uncertain postures of human lying flat on the scanning table. Our method could generate human visceral distribution without affecting the fundamental relative position on axial plane. Two non-adaptive algorithms, namely Meta-based Scan Table Removal and Similarity-Guided Parameter Search, are introduced to bolster robustness of our augmentation method. In contrast to other methodologies, our method is highlighted for its intuitive design and ease of understanding for medical professionals, thereby enhancing its applicability in clinical scenarios. Experiments show our method improves accuracy with two modality across multiple famous segmentation frameworks without requiring more data samples. Our preview code is available in: https://github.com/MGAMZ/PSBPD.
comment: Published at Smart Health
♻ ☆ 4DRGS: 4D Radiative Gaussian Splatting for Efficient 3D Vessel Reconstruction from Sparse-View Dynamic DSA Images
Reconstructing 3D vessel structures from sparse-view dynamic digital subtraction angiography (DSA) images enables accurate medical assessment while reducing radiation exposure. Existing methods often produce suboptimal results or require excessive computation time. In this work, we propose 4D radiative Gaussian splatting (4DRGS) to achieve high-quality reconstruction efficiently. In detail, we represent the vessels with 4D radiative Gaussian kernels. Each kernel has time-invariant geometry parameters, including position, rotation, and scale, to model static vessel structures. The time-dependent central attenuation of each kernel is predicted from a compact neural network to capture the temporal varying response of contrast agent flow. We splat these Gaussian kernels to synthesize DSA images via X-ray rasterization and optimize the model with real captured ones. The final 3D vessel volume is voxelized from the well-trained kernels. Moreover, we introduce accumulated attenuation pruning and bounded scaling activation to improve reconstruction quality. Extensive experiments on real-world patient data demonstrate that 4DRGS achieves impressive results in 5 minutes training, which is 32x faster than the state-of-the-art method. This underscores the potential of 4DRGS for real-world clinics.
comment: IPMI 2025 Oral; Zhentao Liu and Ruyi Zha made equal contributions
♻ ☆ DeSplat: Decomposed Gaussian Splatting for Distractor-Free Rendering
Gaussian splatting enables fast novel view synthesis in static 3D environments. However, reconstructing real-world environments remains challenging as distractors or occluders break the multi-view consistency assumption required for accurate 3D reconstruction. Most existing methods rely on external semantic information from pre-trained models, introducing additional computational overhead as pre-processing steps or during optimization. In this work, we propose a novel method, DeSplat, that directly separates distractors and static scene elements purely based on volume rendering of Gaussian primitives. We initialize Gaussians within each camera view for reconstructing the view-specific distractors to separately model the static 3D scene and distractors in the alpha compositing stages. DeSplat yields an explicit scene separation of static elements and distractors, achieving comparable results to prior distractor-free approaches without sacrificing rendering speed. We demonstrate DeSplat's effectiveness on three benchmark data sets for distractor-free novel view synthesis. See the project website at https://aaltoml.github.io/desplat/.
♻ ☆ Black-Box Forgery Attacks on Semantic Watermarks for Diffusion Models CVPR
Integrating watermarking into the generation process of latent diffusion models (LDMs) simplifies detection and attribution of generated content. Semantic watermarks, such as Tree-Rings and Gaussian Shading, represent a novel class of watermarking techniques that are easy to implement and highly robust against various perturbations. However, our work demonstrates a fundamental security vulnerability of semantic watermarks. We show that attackers can leverage unrelated models, even with different latent spaces and architectures (UNet vs DiT), to perform powerful and realistic forgery attacks. Specifically, we design two watermark forgery attacks. The first imprints a targeted watermark into real images by manipulating the latent representation of an arbitrary image in an unrelated LDM to get closer to the latent representation of a watermarked image. We also show that this technique can be used for watermark removal. The second attack generates new images with the target watermark by inverting a watermarked image and re-generating it with an arbitrary prompt. Both attacks just need a single reference image with the target watermark. Overall, our findings question the applicability of semantic watermarks by revealing that attackers can easily forge or remove these watermarks under realistic conditions.
comment: 28 pages, 22 figures, 8 tables, to be published in The IEEE/CVF Conference on Computer Vision and Pattern Recognition 2025 (CVPR)
♻ ☆ Unleashing Vecset Diffusion Model for Fast Shape Generation
3D shape generation has greatly flourished through the development of so-called "native" 3D diffusion, particularly through the Vecset Diffusion Model (VDM). While recent advancements have shown promising results in generating high-resolution 3D shapes, VDM still struggles with high-speed generation. Challenges exist because of difficulties not only in accelerating diffusion sampling but also VAE decoding in VDM, areas under-explored in previous works. To address these challenges, we present FlashVDM, a systematic framework for accelerating both VAE and DiT in VDM. For DiT, FlashVDM enables flexible diffusion sampling with as few as 5 inference steps and comparable quality, which is made possible by stabilizing consistency distillation with our newly introduced Progressive Flow Distillation. For VAE, we introduce a lightning vecset decoder equipped with Adaptive KV Selection, Hierarchical Volume Decoding, and Efficient Network Design. By exploiting the locality of the vecset and the sparsity of shape surface in the volume, our decoder drastically lowers FLOPs, minimizing the overall decoding overhead. We apply FlashVDM to Hunyuan3D-2 to obtain Hunyuan3D-2 Turbo. Through systematic evaluation, we show that our model significantly outperforms existing fast 3D generation methods, achieving comparable performance to the state-of-the-art while reducing inference time by over 45x for reconstruction and 32x for generation. Code and models are available at https://github.com/Tencent/FlashVDM.
comment: Technical report
♻ ☆ Comparison of marker-less 2D image-based methods for infant pose estimation
In this study we compare the performance of available generic- and infant-pose estimators for a video-based automated general movement assessment (GMA), and the choice of viewing angle for optimal recordings, i.e., conventional diagonal view used in GMA vs. top-down view. We used 4500 annotated video-frames from 75 recordings of infant spontaneous motor functions from 4 to 26 weeks. To determine which pose estimation method and camera angle yield the best pose estimation accuracy on infants in a GMA related setting, the distance to human annotations and the percentage of correct key-points (PCK) were computed and compared. The results show that the best performing generic model trained on adults, ViTPose, also performs best on infants. We see no improvement from using infant-pose estimators over the generic pose estimators on our infant dataset. However, when retraining a generic model on our data, there is a significant improvement in pose estimation accuracy. The pose estimation accuracy obtained from the top-down view is significantly better than that obtained from the diagonal view, especially for the detection of the hip key-points. The results also indicate limited generalization capabilities of infant-pose estimators to other infant datasets, which hints that one should be careful when choosing infant pose estimators and using them on infant datasets which they were not trained on. While the standard GMA method uses a diagonal view for assessment, pose estimation accuracy significantly improves using a top-down view. This suggests that a top-down view should be included in recording setups for automated GMA research.
♻ ☆ DashGaussian: Optimizing 3D Gaussian Splatting in 200 Seconds CVPR2025
3D Gaussian Splatting (3DGS) renders pixels by rasterizing Gaussian primitives, where the rendering resolution and the primitive number, concluded as the optimization complexity, dominate the time cost in primitive optimization. In this paper, we propose DashGaussian, a scheduling scheme over the optimization complexity of 3DGS that strips redundant complexity to accelerate 3DGS optimization. Specifically, we formulate 3DGS optimization as progressively fitting 3DGS to higher levels of frequency components in the training views, and propose a dynamic rendering resolution scheme that largely reduces the optimization complexity based on this formulation. Besides, we argue that a specific rendering resolution should cooperate with a proper primitive number for a better balance between computing redundancy and fitting quality, where we schedule the growth of the primitives to synchronize with the rendering resolution. Extensive experiments show that our method accelerates the optimization of various 3DGS backbones by 45.7% on average while preserving the rendering quality.
comment: Accepted by CVPR2025. Project page: https://dashgaussian.github.io
♻ ☆ Generating Multimodal Driving Scenes via Next-Scene Prediction CVPR 2025
Generative models in Autonomous Driving (AD) enable diverse scene creation, yet existing methods fall short by only capturing a limited range of modalities, restricting the capability of generating controllable scenes for comprehensive evaluation of AD systems. In this paper, we introduce a multimodal generation framework that incorporates four major data modalities, including a novel addition of map modality. With tokenized modalities, our scene sequence generation framework autoregressively predicts each scene while managing computational demands through a two-stage approach. The Temporal AutoRegressive (TAR) component captures inter-frame dynamics for each modality while the Ordered AutoRegressive (OAR) component aligns modalities within each scene by sequentially predicting tokens in a fixed order. To maintain coherence between map and ego-action modalities, we introduce the Action-aware Map Alignment (AMA) module, which applies a transformation based on the ego-action to maintain coherence between these modalities. Our framework effectively generates complex, realistic driving scenes over extended sequences, ensuring multimodal consistency and offering fine-grained control over scene elements. Project page: https://yanhaowu.github.io/UMGen/
comment: CVPR 2025
♻ ☆ Scale-Equivariant Imaging: Self-Supervised Learning for Image Super-Resolution and Deblurring
Self-supervised methods have recently proved to be nearly as effective as supervised ones in various imaging inverse problems, paving the way for learning-based approaches in scientific and medical imaging applications where ground truth data is hard or expensive to obtain. These methods critically rely on invariance to translations and/or rotations of the image distribution to learn from incomplete measurement data alone. However, existing approaches fail to obtain competitive performances in the problems of image super-resolution and deblurring, which play a key role in most imaging systems. In this work, we show that invariance to roto-translations is insufficient to learn from measurements that only contain low-frequency information. Instead, we propose scale-equivariant imaging, a new self-supervised approach that leverages the fact that many image distributions are approximately scale-invariant, enabling the recovery of high-frequency information lost in the measurement process. We demonstrate throughout a series of experiments on real datasets that the proposed method outperforms other self-supervised approaches, and obtains performances on par with fully supervised learning.
♻ ☆ CLIP in Medical Imaging: A Survey
Contrastive Language-Image Pre-training (CLIP), a simple yet effective pre-training paradigm, successfully introduces text supervision to vision models. It has shown promising results across various tasks due to its generalizability and interpretability. The use of CLIP has recently gained increasing interest in the medical imaging domain, serving as a pre-training paradigm for image-text alignment, or a critical component in diverse clinical tasks. With the aim of facilitating a deeper understanding of this promising direction, this survey offers an in-depth exploration of the CLIP within the domain of medical imaging, regarding both refined CLIP pre-training and CLIP-driven applications. In this paper, we (1) first start with a brief introduction to the fundamentals of CLIP methodology; (2) then investigate the adaptation of CLIP pre-training in the medical imaging domain, focusing on how to optimize CLIP given characteristics of medical images and reports; (3) further explore practical utilization of CLIP pre-trained models in various tasks, including classification, dense prediction, and cross-modal tasks; and (4) finally discuss existing limitations of CLIP in the context of medical imaging, and propose forward-looking directions to address the demands of medical imaging domain. Studies featuring technical and practical value are both investigated. We expect this survey will provide researchers with a holistic understanding of the CLIP paradigm and its potential implications. The project page of this survey can also be found on https://github.com/zhaozh10/Awesome-CLIP-in-Medical-Imaging.
comment: Project page available at https://github.com/zhaozh10/Awesome-CLIP-in-Medical-Imaging
♻ ☆ TechCoach: Towards Technical-Point-Aware Descriptive Action Coaching
To guide a learner in mastering action skills, it is crucial for a coach to 1) reason through the learner's action execution and technical points (TechPoints), and 2) provide detailed, comprehensible feedback on what is done well and what can be improved. However, existing score-based action assessment methods are still far from reaching this practical scenario. To bridge this gap, we investigate a new task termed Descriptive Action Coaching (DescCoach) which requires the model to provide detailed commentary on what is done well and what can be improved beyond a simple quality score for action execution. To this end, we first build a new dataset named EE4D-DescCoach. Through an automatic annotation pipeline, our dataset goes beyond the existing action assessment datasets by providing detailed TechPoint-level commentary. Furthermore, we propose TechCoach, a new framework that explicitly incorporates TechPoint-level reasoning into the DescCoach process. The central to our method lies in the Context-aware TechPoint Reasoner, which enables TechCoach to learn TechPoint-related quality representation by querying visual context under the supervision of TechPoint-level coaching commentary. By leveraging the visual context and the TechPoint-related quality representation, a unified TechPoint-aware Action Assessor is then employed to provide the overall coaching commentary together with the quality score. Combining all of these, we establish a new benchmark for DescCoach and evaluate the effectiveness of our method through extensive experiments. The data and code will be made publicly available.
comment: 21 pages, 16 figures
♻ ☆ Perception of Visual Content: Differences Between Humans and Foundation Models
Human-annotated content is often used to train machine learning (ML) models. However, recently, language and multi-modal foundational models have been used to replace and scale-up human annotator's efforts. This study compares human-generated and ML-generated annotations of images representing diverse socio-economic contexts. We aim to understand differences in perception and identify potential biases in content interpretation. Our dataset comprises images of people from various geographical regions and income levels, covering various daily activities and home environments. We compare human and ML-generated annotations semantically and evaluate their impact on predictive models. Our results show highest similarity between ML captions and human labels from a low-level perspective, i.e., types of words that appear and sentence structures, but all three annotations are alike in how similar or dissimilar they perceive images across different regions. Additionally, ML Captions resulted in best overall region classification performance, while ML Objects and ML Captions performed best overall for income regression. The varying performance of annotation sets highlights the notion that all annotations are important, and that human-generated annotations are yet to be replaceable.
comment: 12 pages, 5 figures, 5 tables; updated version for a Revise-and-Resubmit at ICWSM 2025. This version includes a larger and more diverse dataset, leading to updated results
♻ ☆ Cutting Voxel Projector a New Approach to Construct 3D Cone Beam CT Operator
We introduce a novel class of projectors for 3D cone beam tomographic reconstruction. Analytical formulas are derived to compute the relationship between the volume of a voxel projected onto a detector pixel and its contribution to the line integral of attenuation recorded by that pixel. Based on these formulas, we construct a near-exact projector and backprojector, particularly suited for algebraic reconstruction techniques and hierarchical reconstruction approaches with nonuniform voxel grids. Unlike traditional projectors, which assume a uniform grid with fixed voxel sizes, our method enables local refinement of voxels, allowing for adaptive grid resolution and improved reconstruction quality in regions of interest. We have implemented this cutting voxel projector along with a relaxed, speed-optimized version and compared them to two established projectors: a ray-tracing projector based on Siddon's algorithm and a TT footprint projector. Our results demonstrate that the cutting voxel projector achieves higher accuracy than the TT projector, especially for large cone beam angles. Furthermore, the relaxed version of the cutting voxel projector offers a significant speed advantage, while maintaining comparable accuracy. In contrast, Siddon's algorithm, tuned to achieve the same accuracy, is considerably slower than the cutting voxel projector. All algorithms are implemented in a GPU optimized open-source framework for algebraic reconstruction. GitHub repository of the project https://github.com/kulvait/KCT_cbct.
comment: 12 pages, 5 figures
♻ ☆ Bayesian Modeling of Zero-Shot Classifications for Urban Flood Detection
Street scene datasets, collected from Street View or dashboard cameras, offer a promising means of detecting urban objects and incidents like street flooding. However, a major challenge in using these datasets is their lack of reliable labels: there are myriad types of incidents, many types occur rarely, and ground-truth measures of where incidents occur are lacking. Here, we propose BayFlood, a two-stage approach which circumvents this difficulty. First, we perform zero-shot classification of where incidents occur using a pretrained vision-language model (VLM). Second, we fit a spatial Bayesian model on the VLM classifications. The zero-shot approach avoids the need to annotate large training sets, and the Bayesian model provides frequent desiderata in urban settings - principled measures of uncertainty, smoothing across locations, and incorporation of external data like stormwater accumulation zones. We comprehensively validate this two-stage approach, showing that VLMs provide strong zero-shot signal for floods across multiple cities and time periods, the Bayesian model improves out-of-sample prediction relative to baseline methods, and our inferred flood risk correlates with known external predictors of risk. Having validated our approach, we show it can be used to improve urban flood detection: our analysis reveals 113,738 people who are at high risk of flooding overlooked by current methods, identifies demographic biases in existing methods, and suggests locations for new flood sensors. More broadly, our results showcase how Bayesian modeling of zero-shot LM annotations represents a promising paradigm because it avoids the need to collect large labeled datasets and leverages the power of foundation models while providing the expressiveness and uncertainty quantification of Bayesian models.
comment: In review
♻ ☆ Fantastic Copyrighted Beasts and How (Not) to Generate Them
Recent studies show that image and video generation models can be prompted to reproduce copyrighted content from their training data, raising serious legal concerns about copyright infringement. Copyrighted characters (e.g., Mario, Batman) present a significant challenge: at least one lawsuit has already awarded damages based on the generation of such characters. Consequently, commercial services like DALL-E have started deploying interventions. However, little research has systematically examined these problems: (1) Can users easily prompt models to generate copyrighted characters, even if it is unintentional?; (2) How effective are the existing mitigation strategies? To address these questions, we introduce a novel evaluation framework with metrics that assess both the generated image's similarity to copyrighted characters and its consistency with user intent, grounded in a set of popular copyrighted characters from diverse studios and regions. We show that state-of-the-art image and video generation models can still generate characters even if characters' names are not explicitly mentioned, sometimes with only two generic keywords (e.g., prompting with "videogame, plumber" consistently generates Nintendo's Mario character). We also introduce semi-automatic techniques to identify such keywords or descriptions that trigger character generation. Using this framework, we evaluate mitigation strategies, including prompt rewriting and new approaches we propose. Our findings reveal that common methods, such as DALL-E's prompt rewriting, are insufficient alone and require supplementary strategies like negative prompting. Our work provides empirical grounding for discussions on copyright mitigation strategies and offers actionable insights for model deployers implementing these safeguards.
♻ ☆ Towards End-to-End Neuromorphic Voxel-based 3D Object Reconstruction Without Physical Priors ICME
Neuromorphic cameras, also known as event cameras, are asynchronous brightness-change sensors that can capture extremely fast motion without suffering from motion blur, making them particularly promising for 3D reconstruction in extreme environments. However, existing research on 3D reconstruction using monocular neuromorphic cameras is limited, and most of the methods rely on estimating physical priors and employ complex multi-step pipelines. In this work, we propose an end-to-end method for dense voxel 3D reconstruction using neuromorphic cameras that eliminates the need to estimate physical priors. Our method incorporates a novel event representation to enhance edge features, enabling the proposed feature-enhancement model to learn more effectively. Additionally, we introduced Optimal Binarization Threshold Selection Principle as a guideline for future related work, using the optimal reconstruction results achieved with threshold optimization as the benchmark. Our method achieves a 54.6% improvement in reconstruction accuracy compared to the baseline method.
comment: 6 pages, 15 figures, 5 tables, accepted by IEEE International Conference on Multimedia & Expo (ICME) 2025
♻ ☆ Towards Real-World Test-Time Adaptation: Tri-Net Self-Training with Balanced Normalization AAAI 2024
Test-Time Adaptation aims to adapt source domain model to testing data at inference stage with success demonstrated in adapting to unseen corruptions. However, these attempts may fail under more challenging real-world scenarios. Existing works mainly consider real-world test-time adaptation under non-i.i.d. data stream and continual domain shift. In this work, we first complement the existing real-world TTA protocol with a globally class imbalanced testing set. We demonstrate that combining all settings together poses new challenges to existing methods. We argue the failure of state-of-the-art methods is first caused by indiscriminately adapting normalization layers to imbalanced testing data. To remedy this shortcoming, we propose a balanced batchnorm layer to swap out the regular batchnorm at inference stage. The new batchnorm layer is capable of adapting without biasing towards majority classes. We are further inspired by the success of self-training (ST) in learning from unlabeled data and adapt ST for test-time adaptation. However, ST alone is prone to over adaption which is responsible for the poor performance under continual domain shift. Hence, we propose to improve self-training under continual domain shift by regularizing model updates with an anchored loss. The final TTA model, termed as TRIBE, is built upon a tri-net architecture with balanced batchnorm layers. We evaluate TRIBE on four datasets representing real-world TTA settings. TRIBE consistently achieves the state-of-the-art performance across multiple evaluation protocols. The code is available at https://github.com/Gorilla-Lab-SCUT/TRIBE.
comment: Accepted by AAAI 2024. 19 pages, 7 figures and 22 tables
♻ ☆ Aligning Visual Contrastive learning models via Preference Optimization
Contrastive learning models have demonstrated impressive abilities to capture semantic similarities by aligning representations in the embedding space. However, their performance can be limited by the quality of the training data and its inherent biases. While Preference Optimization (PO) methods such as Reinforcement Learning from Human Feedback (RLHF) and Direct Preference Optimization (DPO) have been applied to align generative models with human preferences, their use in contrastive learning has yet to be explored. This paper introduces a novel method for training contrastive learning models using different PO methods to break down complex concepts. Our method systematically aligns model behavior with desired preferences, enhancing performance on the targeted task. In particular, we focus on enhancing model robustness against typographic attacks and inductive biases, commonly seen in contrastive vision-language models like CLIP. Our experiments demonstrate that models trained using PO outperform standard contrastive learning techniques while retaining their ability to handle adversarial challenges and maintain accuracy on other downstream tasks. This makes our method well-suited for tasks requiring fairness, robustness, and alignment with specific preferences. We evaluate our method for tackling typographic attacks on images and explore its ability to disentangle gender concepts and mitigate gender bias, showcasing the versatility of our approach.
♻ ☆ MMGDreamer: Mixed-Modality Graph for Geometry-Controllable 3D Indoor Scene Generation AAAI 2025
Controllable 3D scene generation has extensive applications in virtual reality and interior design, where the generated scenes should exhibit high levels of realism and controllability in terms of geometry. Scene graphs provide a suitable data representation that facilitates these applications. However, current graph-based methods for scene generation are constrained to text-based inputs and exhibit insufficient adaptability to flexible user inputs, hindering the ability to precisely control object geometry. To address this issue, we propose MMGDreamer, a dual-branch diffusion model for scene generation that incorporates a novel Mixed-Modality Graph, visual enhancement module, and relation predictor. The mixed-modality graph allows object nodes to integrate textual and visual modalities, with optional relationships between nodes. It enhances adaptability to flexible user inputs and enables meticulous control over the geometry of objects in the generated scenes. The visual enhancement module enriches the visual fidelity of text-only nodes by constructing visual representations using text embeddings. Furthermore, our relation predictor leverages node representations to infer absent relationships between nodes, resulting in more coherent scene layouts. Extensive experimental results demonstrate that MMGDreamer exhibits superior control of object geometry, achieving state-of-the-art scene generation performance. Project page: https://yangzhifeio.github.io/project/MMGDreamer.
comment: Accepted by AAAI 2025 Main Track
♻ ☆ Point-Cache: Test-time Dynamic and Hierarchical Cache for Robust and Generalizable Point Cloud Analysis CVPR 2025
This paper proposes a general solution to enable point cloud recognition models to handle distribution shifts at test time. Unlike prior methods, which rely heavily on training data (often inaccessible during online inference) and are limited to recognizing a fixed set of point cloud classes predefined during training, we explore a more practical and challenging scenario: adapting the model solely based on online test data to recognize both previously seen classes and novel, unseen classes at test time. To this end, we develop \textbf{Point-Cache}, a hierarchical cache model that captures essential clues of online test samples, particularly focusing on the global structure of point clouds and their local-part details. Point-Cache, which serves as a rich 3D knowledge base, is dynamically managed to prioritize the inclusion of high-quality samples. Designed as a plug-and-play module, our method can be flexibly integrated into large multimodal 3D models to support open-vocabulary point cloud recognition. Notably, our solution operates with efficiency comparable to zero-shot inference, as it is entirely training-free. Point-Cache demonstrates substantial gains across 8 challenging benchmarks and 4 representative large 3D models, highlighting its effectiveness. Code is available at https://github.com/auniquesun/Point-Cache.
comment: Accepted by CVPR 2025; 24 pages, 14 figures, 18 tables
♻ ☆ MARVEL-40M+: Multi-Level Visual Elaboration for High-Fidelity Text-to-3D Content Creation
Generating high-fidelity 3D content from text prompts remains a significant challenge in computer vision due to the limited size, diversity, and annotation depth of the existing datasets. To address this, we introduce MARVEL-40M+, an extensive dataset with 40 million text annotations for over 8.9 million 3D assets aggregated from seven major 3D datasets. Our contribution is a novel multi-stage annotation pipeline that integrates open-source pretrained multi-view VLMs and LLMs to automatically produce multi-level descriptions, ranging from detailed (150-200 words) to concise semantic tags (10-20 words). This structure supports both fine-grained 3D reconstruction and rapid prototyping. Furthermore, we incorporate human metadata from source datasets into our annotation pipeline to add domain-specific information in our annotation and reduce VLM hallucinations. Additionally, we develop MARVEL-FX3D, a two-stage text-to-3D pipeline. We fine-tune Stable Diffusion with our annotations and use a pretrained image-to-3D network to generate 3D textured meshes within 15s. Extensive evaluations show that MARVEL-40M+ significantly outperforms existing datasets in annotation quality and linguistic diversity, achieving win rates of 72.41% by GPT-4 and 73.40% by human evaluators. Project page is available at https://sankalpsinha-cmos.github.io/MARVEL/.
♻ ☆ MuseTalk: Real-Time High-Fidelity Video Dubbing via Spatio-Temporal Sampling
Real-time video dubbing that preserves identity consistency while achieving accurate lip synchronization remains a critical challenge. Existing approaches face a trilemma: diffusion-based methods achieve high visual fidelity but suffer from prohibitive computational costs, while GAN-based solutions sacrifice lip-sync accuracy or dental details for real-time performance. We present MuseTalk, a novel two-stage training framework that resolves this trade-off through latent space optimization and spatio-temporal data sampling strategy. Our key innovations include: (1) During the Facial Abstract Pretraining stage, we propose Informative Frame Sampling to temporally align reference-source pose pairs, eliminating redundant feature interference while preserving identity cues. (2) In the Lip-Sync Adversarial Finetuning stage, we employ Dynamic Margin Sampling to spatially select the most suitable lip-movement-promoting regions, balancing audio-visual synchronization and dental clarity. (3) MuseTalk establishes an effective audio-visual feature fusion framework in the latent space, delivering 30 FPS output at 256*256 resolution on an NVIDIA V100 GPU. Extensive experiments demonstrate that MuseTalk outperforms state-of-the-art methods in visual fidelity while achieving comparable lip-sync accuracy. %The codes and models will be made publicly available upon acceptance. The code is made available at \href{https://github.com/TMElyralab/MuseTalk}{https://github.com/TMElyralab/MuseTalk}
comment: 15 pages, 4 figures
♻ ☆ PHT-CAD: Efficient CAD Parametric Primitive Analysis with Progressive Hierarchical Tuning
Computer-Aided Design (CAD) plays a pivotal role in industrial manufacturing, yet 2D Parametric Primitive Analysis (PPA) remains underexplored due to two key challenges: structural constraint reasoning and advanced semantic understanding. To tackle these challenges, we first propose an Efficient Hybrid Parametrization (EHP) for better representing 2D engineering drawings. EHP contains four types of atomic component i.e., point, line, circle, and arc). Additionally, we propose PHT-CAD, a novel 2D PPA framework that harnesses the modality alignment and reasoning capabilities of Vision-Language Models (VLMs) for precise engineering drawing analysis. In PHT-CAD, we introduce four dedicated regression heads to predict corresponding atomic components. To train PHT-CAD, a three-stage training paradigm Progressive Hierarchical Tuning (PHT) is proposed to progressively enhance PHT-CAD's capability to perceive individual primitives, infer structural constraints, and align annotation layers with their corresponding geometric representations. Considering that existing datasets lack complete annotation layers and real-world engineering drawings, we introduce ParaCAD, the first large-scale benchmark that explicitly integrates both the geometric and annotation layers. ParaCAD comprises over 10 million annotated drawings for training and 3,000 real-world industrial drawings with complex topological structures and physical constraints for test. Extensive experiments demonstrate the effectiveness of PHT-CAD and highlight the practical significance of ParaCAD in advancing 2D PPA research.
♻ ☆ DEIM: DETR with Improved Matching for Fast Convergence CVPR 2025
We introduce DEIM, an innovative and efficient training framework designed to accelerate convergence in real-time object detection with Transformer-based architectures (DETR). To mitigate the sparse supervision inherent in one-to-one (O2O) matching in DETR models, DEIM employs a Dense O2O matching strategy. This approach increases the number of positive samples per image by incorporating additional targets, using standard data augmentation techniques. While Dense O2O matching speeds up convergence, it also introduces numerous low-quality matches that could affect performance. To address this, we propose the Matchability-Aware Loss (MAL), a novel loss function that optimizes matches across various quality levels, enhancing the effectiveness of Dense O2O. Extensive experiments on the COCO dataset validate the efficacy of DEIM. When integrated with RT-DETR and D-FINE, it consistently boosts performance while reducing training time by 50%. Notably, paired with RT-DETRv2, DEIM achieves 53.2% AP in a single day of training on an NVIDIA 4090 GPU. Additionally, DEIM-trained real-time models outperform leading real-time object detectors, with DEIM-D-FINE-L and DEIM-D-FINE-X achieving 54.7% and 56.5% AP at 124 and 78 FPS on an NVIDIA T4 GPU, respectively, without the need for additional data. We believe DEIM sets a new baseline for advancements in real-time object detection. Our code and pre-trained models are available at https://github.com/ShihuaHuang95/DEIM.
comment: CVPR 2025
♻ ☆ Decoupling Fine Detail and Global Geometry for Compressed Depth Map Super-Resolution CVPR 2025
Recovering high-quality depth maps from compressed sources has gained significant attention due to the limitations of consumer-grade depth cameras and the bandwidth restrictions during data transmission. However, current methods still suffer from two challenges. First, bit-depth compression produces a uniform depth representation in regions with subtle variations, hindering the recovery of detailed information. Second, densely distributed random noise reduces the accuracy of estimating the global geometric structure of the scene. To address these challenges, we propose a novel framework, termed geometry-decoupled network (GDNet), for compressed depth map super-resolution that decouples the high-quality depth map reconstruction process by handling global and detailed geometric features separately. To be specific, we propose the fine geometry detail encoder (FGDE), which is designed to aggregate fine geometry details in high-resolution low-level image features while simultaneously enriching them with complementary information from low-resolution context-level image features. In addition, we develop the global geometry encoder (GGE) that aims at suppressing noise and extracting global geometric information effectively via constructing compact feature representation in a low-rank space. We conduct experiments on multiple benchmark datasets, demonstrating that our GDNet significantly outperforms current methods in terms of geometric consistency and detail recovery. In the ECCV 2024 AIM Compressed Depth Upsampling Challenge, our solution won the 1st place award. Our codes are available at: https://github.com/Ian0926/GDNet.
comment: Accepted by CVPR 2025 & The 1st place award for the ECCV 2024 AIM Compressed Depth Upsampling Challenge
♻ ☆ NLPrompt: Noise-Label Prompt Learning for Vision-Language Models
The emergence of vision-language foundation models, such as CLIP, has revolutionized image-text representation, enabling a broad range of applications via prompt learning. Despite its promise, real-world datasets often contain noisy labels that can degrade prompt learning performance. In this paper, we demonstrate that using mean absolute error (MAE) loss in prompt learning, named PromptMAE, significantly enhances robustness against noisy labels while maintaining high accuracy. Though MAE is straightforward and recognized for its robustness, it is rarely used in noisy-label learning due to its slow convergence and poor performance outside prompt learning scenarios. To elucidate the robustness of PromptMAE, we leverage feature learning theory to show that MAE can suppress the influence of noisy samples, thereby improving the signal-to-noise ratio and enhancing overall robustness. Additionally, we introduce PromptOT, a prompt-based optimal transport data purification method to enhance the robustness further. PromptOT employs text features in vision-language models as prototypes to construct an optimal transportation matrix. This matrix effectively partitions datasets into clean and noisy subsets, allowing for the application of cross-entropy loss to the clean subset and MAE loss to the noisy subset. Our Noise-Label Prompt Learning method, named NLPrompt, offers a simple and efficient approach that leverages the expressive representations and precise alignment capabilities of vision-language models for robust prompt learning. We validate NLPrompt through extensive experiments across various noise settings, demonstrating significant performance improvements.
♻ ☆ MozzaVID: Mozzarella Volumetric Image Dataset
Influenced by the complexity of volumetric imaging, there is a shortage of established datasets useful for benchmarking volumetric deep-learning models. As a consequence, new and existing models are not easily comparable, limiting the development of architectures optimized specifically for volumetric data. To counteract this trend, we introduce MozzaVID - a large, clean, and versatile volumetric classification dataset. Our dataset contains X-ray computed tomography (CT) images of mozzarella microstructure and enables the classification of 25 cheese types and 149 cheese samples. We provide data in three different resolutions, resulting in three dataset instances containing from 591 to 37,824 images. While being general-purpose, the dataset also facilitates investigating mozzarella structure properties. The structure of food directly affects its functional properties and thus its consumption experience. Understanding food structure helps tune the production and mimicking it enables sustainable alternatives to animal-derived food products. The complex and disordered nature of food structures brings a unique challenge, where a choice of appropriate imaging method, scale, and sample size is not trivial. With this dataset we aim to address these complexities, contributing to more robust structural analysis models. The dataset can be downloaded from: https://archive.compute.dtu.dk/files/public/projects/MozzaVID/.
♻ ☆ ONER: Online Experience Replay for Incremental Anomaly Detection
Incremental anomaly detection aims to sequentially identify defects in industrial product lines but suffers from catastrophic forgetting, primarily due to knowledge overwriting during parameter updates and feature conflicts between tasks. In this work, We propose ONER (ONline Experience Replay), an end-to-end framework that addresses these issues by synergistically integrating two types of experience: (1) decomposed prompts, which dynamically generate image-conditioned prompts from reusable modules to retain prior knowledge thus prevent knowledge overwriting, and (2) semantic prototypes, which enforce separability in latent feature spaces at pixel and image levels to mitigate cross-task feature conflicts. Extensive experiments demonstrate the superiority of ONER, achieving state-of-the-art performance with +4.4% Pixel AUROC and +28.3% Pixel AUPR improvements on the MVTec AD dataset over prior methods. Remarkably, ONER achieves this with only 0.019M parameters and 5 training epochs per task, confirming its efficiency and stability for real-world industrial deployment.
♻ ☆ DiTCtrl: Exploring Attention Control in Multi-Modal Diffusion Transformer for Tuning-Free Multi-Prompt Longer Video Generation CVPR 2025
Sora-like video generation models have achieved remarkable progress with a Multi-Modal Diffusion Transformer MM-DiT architecture. However, the current video generation models predominantly focus on single-prompt, struggling to generate coherent scenes with multiple sequential prompts that better reflect real-world dynamic scenarios. While some pioneering works have explored multi-prompt video generation, they face significant challenges including strict training data requirements, weak prompt following, and unnatural transitions. To address these problems, we propose DiTCtrl, a training-free multi-prompt video generation method under MM-DiT architectures for the first time. Our key idea is to take the multi-prompt video generation task as temporal video editing with smooth transitions. To achieve this goal, we first analyze MM-DiT's attention mechanism, finding that the 3D full attention behaves similarly to that of the cross/self-attention blocks in the UNet-like diffusion models, enabling mask-guided precise semantic control across different prompts with attention sharing for multi-prompt video generation. Based on our careful design, the video generated by DiTCtrl achieves smooth transitions and consistent object motion given multiple sequential prompts without additional training. Besides, we also present MPVBench, a new benchmark specially designed for multi-prompt video generation to evaluate the performance of multi-prompt generation. Extensive experiments demonstrate that our method achieves state-of-the-art performance without additional training.
comment: CVPR 2025; 21 pages, 23 figures, Project page: https://onevfall.github.io/project_page/ditctrl ; GitHub repository: https://github.com/TencentARC/DiTCtrl
♻ ☆ Oasis: One Image is All You Need for Multimodal Instruction Data Synthesis
The success of multi-modal large language models (MLLMs) has been largely attributed to the large-scale training data. However, the training data of many MLLMs is unavailable due to privacy concerns. The expensive and labor-intensive process of collecting multi-modal data further exacerbates the problem. Is it possible to synthesize multi-modal training data automatically without compromising diversity and quality? In this paper, we propose a new method, Oasis, to synthesize high-quality multi-modal data with only images. Oasis breaks through traditional methods by prompting only images to the MLLMs, thus extending the data diversity by a large margin. Our method features a delicate quality control method which ensures the data quality. We collected over 500k data and conducted incremental experiments on LLaVA-NeXT. Extensive experiments demonstrate that our method can significantly improve the performance of MLLMs. The image-based synthesis also allows us to focus on the specific-domain ability of MLLMs. Code and dataset are publicly available at https://github.com/Letian2003/MM_INF.
♻ ☆ Referring Video Object Segmentation via Language-aligned Track Selection
Referring video object segmentation (RVOS) requires tracking and segmenting an object throughout a video according to a given natural language expression, demanding both complex motion understanding and the alignment of visual representations with language descriptions. Given these challenges, the recently proposed Segment Anything Model 2 (SAM2) emerges as a potential candidate due to its ability to generate coherent segmentation mask tracks across video frames, and provide an inherent spatio-temporal objectness in its object token representations. In this paper, we introduce SOLA (Selection by Object Language Alignment), a novel framework that leverages SAM2 object tokens as compact video-level object representations, which are aligned with language features through a lightweight track selection module. To effectively facilitate this alignment, we propose an IoU-based pseudo-labeling strategy, which bridges the modality gap between SAM2 representations with language features. Extensive experiments show that SOLA achieves state-of-the-art performance on the MeViS dataset and demonstrate that SOLA offers an effective solution for RVOS. Our project page is available at: https://cvlab-kaist.github.io/SOLA.
comment: Project page is available at https://cvlab-kaist.github.io/SOLA
♻ ☆ Unleashing HyDRa: Hybrid Fusion, Depth Consistency and Radar for Unified 3D Perception ICRA 2025
Low-cost, vision-centric 3D perception systems for autonomous driving have made significant progress in recent years, narrowing the gap to expensive LiDAR-based methods. The primary challenge in becoming a fully reliable alternative lies in robust depth prediction capabilities, as camera-based systems struggle with long detection ranges and adverse lighting and weather conditions. In this work, we introduce HyDRa, a novel camera-radar fusion architecture for diverse 3D perception tasks. Building upon the principles of dense BEV (Bird's Eye View)-based architectures, HyDRa introduces a hybrid fusion approach to combine the strengths of complementary camera and radar features in two distinct representation spaces. Our Height Association Transformer module leverages radar features already in the perspective view to produce more robust and accurate depth predictions. In the BEV, we refine the initial sparse representation by a Radar-weighted Depth Consistency. HyDRa achieves a new state-of-the-art for camera-radar fusion of 64.2 NDS (+1.8) and 58.4 AMOTA (+1.5) on the public nuScenes dataset. Moreover, our new semantically rich and spatially accurate BEV features can be directly converted into a powerful occupancy representation, beating all previous camera-based methods on the Occ3D benchmark by an impressive 3.7 mIoU. Code and models are available at https://github.com/phi-wol/hydra.
comment: Accepted to ICRA 2025
♻ ☆ ARFlow: Human Action-Reaction Flow Matching with Physical Guidance
Human action-reaction synthesis, a fundamental challenge in modeling causal human interactions, plays a critical role in applications ranging from virtual reality to social robotics. While diffusion-based models have demonstrated promising performance, they exhibit two key limitations for interaction synthesis: reliance on complex noise-to-reaction generators with intricate conditional mechanisms, and frequent physical violations in generated motions. To address these issues, we propose Action-Reaction Flow Matching (ARFlow), a novel framework that establishes direct action-to-reaction mappings, eliminating the need for complex conditional mechanisms. Our approach introduces two key innovations: an x1-prediction method that directly outputs human motions instead of velocity fields, enabling explicit constraint enforcement; and a training-free, gradient-based physical guidance mechanism that effectively prevents body penetration artifacts during sampling. Extensive experiments on NTU120 and Chi3D datasets demonstrate that ARFlow not only outperforms existing methods in terms of Fr\'echet Inception Distance and motion diversity but also significantly reduces body collisions, as measured by our new Intersection Volume and Intersection Frequency metrics.
comment: Project Page: https://arflow2025.github.io/
♻ ☆ CogVideoX: Text-to-Video Diffusion Models with An Expert Transformer ICLR2025
We present CogVideoX, a large-scale text-to-video generation model based on diffusion transformer, which can generate 10-second continuous videos aligned with text prompt, with a frame rate of 16 fps and resolution of 768 * 1360 pixels. Previous video generation models often had limited movement and short durations, and is difficult to generate videos with coherent narratives based on text. We propose several designs to address these issues. First, we propose a 3D Variational Autoencoder (VAE) to compress videos along both spatial and temporal dimensions, to improve both compression rate and video fidelity. Second, to improve the text-video alignment, we propose an expert transformer with the expert adaptive LayerNorm to facilitate the deep fusion between the two modalities. Third, by employing a progressive training and multi-resolution frame pack technique, CogVideoX is adept at producing coherent, long-duration, different shape videos characterized by significant motions. In addition, we develop an effective text-video data processing pipeline that includes various data preprocessing strategies and a video captioning method, greatly contributing to the generation quality and semantic alignment. Results show that CogVideoX demonstrates state-of-the-art performance across both multiple machine metrics and human evaluations. The model weight of both 3D Causal VAE, Video caption model and CogVideoX are publicly available at https://github.com/THUDM/CogVideo.
comment: Accepted by ICLR2025
♻ ☆ TopoBDA: Towards Bezier Deformable Attention for Road Topology Understanding
Understanding road topology is crucial for autonomous driving. This paper introduces TopoBDA (Topology with Bezier Deformable Attention), a novel approach that enhances road topology comprehension by leveraging Bezier Deformable Attention (BDA). TopoBDA processes multi-camera 360-degree imagery to generate Bird's Eye View (BEV) features, which are refined through a transformer decoder employing BDA. BDA utilizes Bezier control points to drive the deformable attention mechanism, improving the detection and representation of elongated and thin polyline structures, such as lane centerlines. Additionally, TopoBDA integrates two auxiliary components: an instance mask formulation loss and a one-to-many set prediction loss strategy, to further refine centerline detection and enhance road topology understanding. Experimental evaluations on the OpenLane-V2 dataset demonstrate that TopoBDA outperforms existing methods, achieving state-of-the-art results in centerline detection and topology reasoning. TopoBDA also achieves the best results on the OpenLane-V1 dataset in 3D lane detection. Further experiments on integrating multi-modal data -- such as LiDAR, radar, and SDMap -- show that multimodal inputs can further enhance performance in road topology understanding.
♻ ☆ HumanDiT: Pose-Guided Diffusion Transformer for Long-form Human Motion Video Generation
Human motion video generation has advanced significantly, while existing methods still struggle with accurately rendering detailed body parts like hands and faces, especially in long sequences and intricate motions. Current approaches also rely on fixed resolution and struggle to maintain visual consistency. To address these limitations, we propose HumanDiT, a pose-guided Diffusion Transformer (DiT)-based framework trained on a large and wild dataset containing 14,000 hours of high-quality video to produce high-fidelity videos with fine-grained body rendering. Specifically, (i) HumanDiT, built on DiT, supports numerous video resolutions and variable sequence lengths, facilitating learning for long-sequence video generation; (ii) we introduce a prefix-latent reference strategy to maintain personalized characteristics across extended sequences. Furthermore, during inference, HumanDiT leverages Keypoint-DiT to generate subsequent pose sequences, facilitating video continuation from static images or existing videos. It also utilizes a Pose Adapter to enable pose transfer with given sequences. Extensive experiments demonstrate its superior performance in generating long-form, pose-accurate videos across diverse scenarios.
comment: https://agnjason.github.io/HumanDiT-page/
♻ ☆ Socratic Planner: Self-QA-Based Zero-Shot Planning for Embodied Instruction Following ICRA 2025
Embodied Instruction Following (EIF) is the task of executing natural language instructions by navigating and interacting with objects in interactive environments. A key challenge in EIF is compositional task planning, typically addressed through supervised learning or few-shot in-context learning with labeled data. To this end, we introduce the Socratic Planner, a self-QA-based zero-shot planning method that infers an appropriate plan without any further training. The Socratic Planner first facilitates self-questioning and answering by the Large Language Model (LLM), which in turn helps generate a sequence of subgoals. While executing the subgoals, an embodied agent may encounter unexpected situations, such as unforeseen obstacles. The Socratic Planner then adjusts plans based on dense visual feedback through a visually-grounded re-planning mechanism. Experiments demonstrate the effectiveness of the Socratic Planner, outperforming current state-of-the-art planning models on the ALFRED benchmark across all metrics, particularly excelling in long-horizon tasks that demand complex inference. We further demonstrate its real-world applicability through deployment on a physical robot for long-horizon tasks.
comment: 8 pages, 6 figures, published to ICRA 2025
♻ ☆ MMRL: Multi-Modal Representation Learning for Vision-Language Models CVPR 2025
Large-scale pre-trained Vision-Language Models (VLMs) have become essential for transfer learning across diverse tasks. However, adapting these models with limited few-shot data often leads to overfitting, diminishing their performance on new tasks. To tackle this issue, we propose a novel Multi-Modal Representation Learning (MMRL) framework that introduces a shared, learnable, and modality-agnostic representation space. MMRL projects the space tokens to text and image representation tokens, facilitating more effective multi-modal interactions. Unlike previous approaches that solely optimize class token features, MMRL integrates representation tokens at higher layers of the encoders--where dataset-specific features are more prominent--while preserving generalized knowledge in the lower layers. During training, both representation and class features are optimized, with trainable projection layer applied to the representation tokens, whereas the class token projection layer remains frozen to retain pre-trained knowledge. Furthermore, a regularization term is introduced to align the class features and text features with the zero-shot features from the frozen VLM, thereby safeguarding the model's generalization capacity. For inference, a decoupling strategy is employed, wherein both representation and class features are utilized for base classes, while only the class features, which retain more generalized knowledge, are used for new tasks. Extensive experiments across 15 datasets demonstrate that MMRL outperforms state-of-the-art methods, achieving a balanced trade-off between task-specific adaptation and generalization. Code is available at https://github.com/yunncheng/MMRL.
comment: Accepted by CVPR 2025
♻ ☆ TopV-Nav: Unlocking the Top-View Spatial Reasoning Potential of MLLM for Zero-shot Object Navigation
The Zero-Shot Object Navigation (ZSON) task requires embodied agents to find a previously unseen object by navigating in unfamiliar environments. Such a goal-oriented exploration heavily relies on the ability to perceive, understand, and reason based on the spatial information of the environment. However, current LLM-based approaches convert visual observations to language descriptions and reason in the linguistic space, leading to the loss of spatial information. In this paper, we introduce TopV-Nav, an MLLM-based method that directly reasons on the top-view map with sufficient spatial information. To fully unlock the MLLM's spatial reasoning potential in top-view perspective, we propose the Adaptive Visual Prompt Generation (AVPG) method to adaptively construct semantically-rich top-view map. It enables the agent to directly utilize spatial information contained in the top-view map to conduct thorough reasoning. Besides, we design a Dynamic Map Scaling (DMS) mechanism to dynamically zoom top-view map at preferred scales, enhancing local fine-grained reasoning. Additionally, we devise a Potential Target Driven (PTD) mechanism to predict and to utilize target locations, facilitating global and human-like exploration. Experiments on MP3D and HM3D datasets demonstrate the superiority of our TopV-Nav.
comment: 10 pages
♻ ☆ Fine-Grained Domain Generalization with Feature Structuralization
Fine-grained domain generalization (FGDG) is a more challenging task than traditional DG tasks due to its small inter-class variations and relatively large intra-class disparities. When domain distribution changes, the vulnerability of subtle features leads to a severe deterioration in model performance. Nevertheless, humans inherently demonstrate the capacity for generalizing to out-of-distribution data, leveraging structured multi-granularity knowledge that emerges from discerning the commonality and specificity within categories. Likewise, we propose a Feature Structuralized Domain Generalization (FSDG) model, wherein features experience structuralization into common, specific, and confounding segments, harmoniously aligned with their relevant semantic concepts, to elevate performance in FGDG. Specifically, feature structuralization (FS) is accomplished through joint optimization of five constraints: a decorrelation function applied to disentangled segments, three constraints ensuring common feature consistency and specific feature distinctiveness, and a prediction calibration term. By imposing these stipulations, FSDG is prompted to disentangle and align features based on multi-granularity knowledge, facilitating robust subtle distinctions among categories. Extensive experimentation on three benchmarks consistently validates the superiority of FSDG over state-of-the-art counterparts, with an average improvement of 6.2% in FGDG performance. Beyond that, the explainability analysis on explicit concept matching intensity between the shared concepts among categories and the model channels, along with experiments on various mainstream model architectures, substantiates the validity of FS.
♻ ☆ OverLoCK: An Overview-first-Look-Closely-next ConvNet with Context-Mixing Dynamic Kernels CVPR 2025
Top-down attention plays a crucial role in the human vision system, wherein the brain initially obtains a rough overview of a scene to discover salient cues (i.e., overview first), followed by a more careful finer-grained examination (i.e., look closely next). However, modern ConvNets remain confined to a pyramid structure that successively downsamples the feature map for receptive field expansion, neglecting this crucial biomimetic principle. We present OverLoCK, the first pure ConvNet backbone architecture that explicitly incorporates a top-down attention mechanism. Unlike pyramid backbone networks, our design features a branched architecture with three synergistic sub-networks: 1) a Base-Net that encodes low/mid-level features; 2) a lightweight Overview-Net that generates dynamic top-down attention through coarse global context modeling (i.e., overview first); and 3) a robust Focus-Net that performs finer-grained perception guided by top-down attention (i.e., look closely next). To fully unleash the power of top-down attention, we further propose a novel context-mixing dynamic convolution (ContMix) that effectively models long-range dependencies while preserving inherent local inductive biases even when the input resolution increases, addressing critical limitations in existing convolutions. Our OverLoCK exhibits a notable performance improvement over existing methods. For instance, OverLoCK-T achieves a Top-1 accuracy of 84.2%, significantly surpassing ConvNeXt-B while using only around one-third of the FLOPs/parameters. On object detection, our OverLoCK-S clearly surpasses MogaNet-B by 1% in AP^b. On semantic segmentation, our OverLoCK-T remarkably improves UniRepLKNet-T by 1.7% in mIoU. Code is publicly available at https://rb.gy/wit4jh.
comment: Accepted by CVPR 2025
♻ ☆ DAWN: Dynamic Frame Avatar with Non-autoregressive Diffusion Framework for Talking Head Video Generation
Talking head generation intends to produce vivid and realistic talking head videos from a single portrait and speech audio clip. Although significant progress has been made in diffusion-based talking head generation, almost all methods rely on autoregressive strategies, which suffer from limited context utilization beyond the current generation step, error accumulation, and slower generation speed. To address these challenges, we present DAWN (Dynamic frame Avatar With Non-autoregressive diffusion), a framework that enables all-at-once generation of dynamic-length video sequences. Specifically, it consists of two main components: (1) audio-driven holistic facial dynamics generation in the latent motion space, and (2) audio-driven head pose and blink generation. Extensive experiments demonstrate that our method generates authentic and vivid videos with precise lip motions, and natural pose/blink movements. Additionally, with a high generation speed, DAWN possesses strong extrapolation capabilities, ensuring the stable production of high-quality long videos. These results highlight the considerable promise and potential impact of DAWN in the field of talking head video generation. Furthermore, we hope that DAWN sparks further exploration of non-autoregressive approaches in diffusion models. Our code will be publicly available at https://github.com/Hanbo-Cheng/DAWN-pytorch.
♻ ☆ Stealthy Backdoor Attack in Self-Supervised Learning Vision Encoders for Large Vision Language Models
Self-supervised learning (SSL) vision encoders learn high-quality image representations and thus have become a vital part of developing vision modality of large vision language models (LVLMs). Due to the high cost of training such encoders, pre-trained encoders are widely shared and deployed into many LVLMs, which are security-critical or bear societal significance. Under this practical scenario, we reveal a new backdoor threat that significant visual hallucinations can be induced into these LVLMs by merely compromising vision encoders. Because of the sharing and reuse of these encoders, many downstream LVLMs may inherit backdoor behaviors from encoders, leading to widespread backdoors. In this work, we propose BadVision, the first method to exploit this vulnerability in SSL vision encoders for LVLMs with novel trigger optimization and backdoor learning techniques. We evaluate BadVision on two types of SSL encoders and LVLMs across eight benchmarks. We show that BadVision effectively drives the LVLMs to attacker-chosen hallucination with over 99% attack success rate, causing a 77.6% relative visual understanding error while maintaining the stealthiness. SoTA backdoor detection methods cannot detect our attack effectively.
♻ ☆ Hi-ALPS -- An Experimental Robustness Quantification of Six LiDAR-based Object Detection Systems for Autonomous Driving
Light Detection and Ranging (LiDAR) is an essential sensor technology for autonomous driving as it can capture high-resolution 3D data. As 3D object detection systems (OD) can interpret such point cloud data, they play a key role in the driving decisions of autonomous vehicles. Consequently, such 3D OD must be robust against all types of perturbations and must therefore be extensively tested. One approach is the use of adversarial examples, which are small, sometimes sophisticated perturbations in the input data that change, i.e., falsify, the prediction of the OD. These perturbations are carefully designed based on the weaknesses of the OD. The robustness of the OD cannot be quantified with adversarial examples in general, because if the OD is vulnerable to a given attack, it is unclear whether this is due to the robustness of the OD or whether the attack algorithm produces particularly strong adversarial examples. The contribution of this work is Hi-ALPS -- Hierarchical Adversarial-example-based LiDAR Perturbation Level System, where higher robustness of the OD is required to withstand the perturbations as the perturbation levels increase. In doing so, the Hi-ALPS levels successively implement a heuristic followed by established adversarial example approaches. In a series of comprehensive experiments using Hi-ALPS, we quantify the robustness of six state-of-the-art 3D OD under different types of perturbations. The results of the experiments show that none of the OD is robust against all Hi-ALPS levels; an important factor for the ranking is that human observers can still correctly recognize the perturbed objects, as the respective perturbations are small. To increase the robustness of the OD, we discuss the applicability of state-of-the-art countermeasures. In addition, we derive further suggestions for countermeasures based on our experimental results.
♻ ☆ VesselSAM: Leveraging SAM for Aortic Vessel Segmentation with LoRA and Atrous Attention
Medical image segmentation is crucial for clinical diagnosis and treatment planning, especially when dealing with complex anatomical structures such as vessels. However, accurately segmenting vessels remains challenging due to their small size, intricate edge structures, and susceptibility to artifacts and imaging noise. In this work, we propose VesselSAM, an enhanced version of the Segment Anything Model (SAM), specifically tailored for aortic vessel segmentation. VesselSAM incorporates AtrousLoRA, a novel module integrating Atrous Attention and Low-Rank Adaptation (LoRA), to enhance segmentation performance. Atrous Attention enables the model to capture multi-scale contextual information, preserving both fine-grained local details and broader global context. Additionally, LoRA facilitates efficient fine-tuning of the frozen SAM image encoder, reducing the number of trainable parameters and thereby enhancing computational efficiency. We evaluate VesselSAM using two challenging datasets: the Aortic Vessel Tree (AVT) dataset and the Type-B Aortic Dissection (TBAD) dataset. VesselSAM achieves state-of-the-art performance, attaining DSC scores of 93.50\%, 93.25\%, 93.02\%, and 93.26\% across multi-center datasets. Our results demonstrate that VesselSAM delivers high segmentation accuracy while significantly reducing computational overhead compared to existing large-scale models. This development paves the way for enhanced AI-based aortic vessel segmentation in clinical environments. The code and models will be released at https://github.com/Adnan-CAS/AtrousLora.
comment: Work in progress
♻ ☆ Benchmarking Large Vision-Language Models via Directed Scene Graph for Comprehensive Image Captioning CVPR2025
Generating detailed captions comprehending text-rich visual content in images has received growing attention for Large Vision-Language Models (LVLMs). However, few studies have developed benchmarks specifically tailored for detailed captions to measure their accuracy and comprehensiveness. In this paper, we introduce a detailed caption benchmark, termed as CompreCap, to evaluate the visual context from a directed scene graph view. Concretely, we first manually segment the image into semantically meaningful regions (i.e., semantic segmentation mask) according to common-object vocabulary, while also distinguishing attributes of objects within all those regions. Then directional relation labels of these objects are annotated to compose a directed scene graph that can well encode rich compositional information of the image. Based on our directed scene graph, we develop a pipeline to assess the generated detailed captions from LVLMs on multiple levels, including the object-level coverage, the accuracy of attribute descriptions, the score of key relationships, etc. Experimental results on the CompreCap dataset confirm that our evaluation method aligns closely with human evaluation scores across LVLMs.
comment: Accepted by CVPR2025. Code and Dataset: https://github.com/LuFan31/CompreCap
♻ ☆ Vision-based Multi-future Trajectory Prediction: A Survey
Vision-based trajectory prediction is an important task that supports safe and intelligent behaviours in autonomous systems. Many advanced approaches have been proposed over the years with improved spatial and temporal feature extraction. However, human behaviour is naturally diverse and uncertain. Given the past trajectory and surrounding environment information, an agent can have multiple plausible trajectories in the future. To tackle this problem, an essential task named multi-future trajectory prediction (MTP) has recently been studied. This task aims to generate a diverse, acceptable and explainable distribution of future predictions for each agent. In this paper, we present the first survey for MTP with our unique taxonomies and a comprehensive analysis of frameworks, datasets and evaluation metrics. We also compare models on existing MTP datasets and conduct experiments on the ForkingPath dataset. Finally, we discuss multiple future directions that can help researchers develop novel multi-future trajectory prediction systems and other diverse learning tasks similar to MTP.
comment: Accepted by TNNLS 2025
♻ ☆ GM-MoE: Low-Light Enhancement with Gated-Mechanism Mixture-of-Experts
Low-light enhancement has wide applications in autonomous driving, 3D reconstruction, remote sensing, surveillance, and so on, which can significantly improve information utilization. However, most existing methods lack generalization and are limited to specific tasks such as image recovery. To address these issues, we propose Gated-Mechanism Mixture-of-Experts (GM-MoE), the first framework to introduce a mixture-of-experts network for low-light image enhancement. GM-MoE comprises a dynamic gated weight conditioning network and three sub-expert networks, each specializing in a distinct enhancement task. Combining a self-designed gated mechanism that dynamically adjusts the weights of the sub-expert networks for different data domains. Additionally, we integrate local and global feature fusion within sub-expert networks to enhance image quality by capturing multi-scale features. Experimental results demonstrate that the GM-MoE achieves superior generalization with respect to 25 compared approaches, reaching state-of-the-art performance on PSNR on 5 benchmarks and SSIM on 4 benchmarks, respectively.
♻ ☆ EVT: Efficient View Transformation for Multi-Modal 3D Object Detection
Multi-modal sensor fusion in Bird's Eye View (BEV) representation has become the leading approach for 3D object detection. However, existing methods often rely on depth estimators or transformer encoders to transform image features into BEV space, which reduces robustness or introduces significant computational overhead. Moreover, the insufficient geometric guidance in view transformation results in ray-directional misalignments, limiting the effectiveness of BEV representations. To address these challenges, we propose Efficient View Transformation (EVT), a novel 3D object detection framework that constructs a well-structured BEV representation, improving both accuracy and efficiency. Our approach focuses on two key aspects. First, Adaptive Sampling and Adaptive Projection (ASAP), which utilizes LiDAR guidance to generate 3D sampling points and adaptive kernels, enables more effective transformation of image features into BEV space and a refined BEV representation. Second, an improved query-based detection framework, incorporating group-wise mixed query selection and geometry-aware cross-attention, effectively captures both the common properties and the geometric structure of objects in the transformer decoder. On the nuScenes test set, EVT achieves state-of-the-art performance of 75.3\% NDS with real-time inference speed.
♻ ☆ Human Motion Instruction Tuning CVPR 2025
This paper presents LLaMo (Large Language and Human Motion Assistant), a multimodal framework for human motion instruction tuning. In contrast to conventional instruction-tuning approaches that convert non-linguistic inputs, such as video or motion sequences, into language tokens, LLaMo retains motion in its native form for instruction tuning. This method preserves motion-specific details that are often diminished in tokenization, thereby improving the model's ability to interpret complex human behaviors. By processing both video and motion data alongside textual inputs, LLaMo enables a flexible, human-centric analysis. Experimental evaluations across high-complexity domains, including human behaviors and professional activities, indicate that LLaMo effectively captures domain-specific knowledge, enhancing comprehension and prediction in motion-intensive scenarios. We hope LLaMo offers a foundation for future multimodal AI systems with broad applications, from sports analytics to behavioral prediction. Our code and models are available on the project website: https://github.com/ILGLJ/LLaMo.
comment: Accepted by CVPR 2025
♻ ☆ MonoTAKD: Teaching Assistant Knowledge Distillation for Monocular 3D Object Detection CVPR 2025
Monocular 3D object detection (Mono3D) holds noteworthy promise for autonomous driving applications owing to the cost-effectiveness and rich visual context of monocular camera sensors. However, depth ambiguity poses a significant challenge, as it requires extracting precise 3D scene geometry from a single image, resulting in suboptimal performance when transferring knowledge from a LiDAR-based teacher model to a camera-based student model. To facilitate effective distillation, we introduce Monocular Teaching Assistant Knowledge Distillation (MonoTAKD), which proposes a camera-based teaching assistant (TA) model to transfer robust 3D visual knowledge to the student model, leveraging the smaller feature representation gap. Additionally, we define 3D spatial cues as residual features that capture the differences between the teacher and the TA models. We then leverage these cues to improve the student model's 3D perception capabilities. Experimental results show that our MonoTAKD achieves state-of-the-art performance on the KITTI3D dataset. Furthermore, we evaluate the performance on nuScenes and KITTI raw datasets to demonstrate the generalization of our model to multi-view 3D and unsupervised data settings. Our code is available at https://github.com/hoiliu-0801/MonoTAKD.
comment: Accepted by CVPR 2025. Our code is available at https://github.com/hoiliu-0801/MonoTAKD
♻ ☆ Towards Visual Discrimination and Reasoning of Real-World Physical Dynamics: Physics-Grounded Anomaly Detection CVPR25
Humans detect real-world object anomalies by perceiving, interacting, and reasoning based on object-conditioned physical knowledge. The long-term goal of Industrial Anomaly Detection (IAD) is to enable machines to autonomously replicate this skill. However, current IAD algorithms are largely developed and tested on static, semantically simple datasets, which diverge from real-world scenarios where physical understanding and reasoning are essential. To bridge this gap, we introduce the Physics Anomaly Detection (Phys-AD) dataset, the first large-scale, real-world, physics-grounded video dataset for industrial anomaly detection. Collected using a real robot arm and motor, Phys-AD provides a diverse set of dynamic, semantically rich scenarios. The dataset includes more than 6400 videos across 22 real-world object categories, interacting with robot arms and motors, and exhibits 47 types of anomalies. Anomaly detection in Phys-AD requires visual reasoning, combining both physical knowledge and video content to determine object abnormality. We benchmark state-of-the-art anomaly detection methods under three settings: unsupervised AD, weakly-supervised AD, and video-understanding AD, highlighting their limitations in handling physics-grounded anomalies. Additionally, we introduce the Physics Anomaly Explanation (PAEval) metric, designed to assess the ability of visual-language foundation models to not only detect anomalies but also provide accurate explanations for their underlying physical causes. Our project is available at https://guyao2023.github.io/Phys-AD/.
comment: Accepted by CVPR25
♻ ☆ UniHDSA: A Unified Relation Prediction Approach for Hierarchical Document Structure Analysis
Document structure analysis, aka document layout analysis, is crucial for understanding both the physical layout and logical structure of documents, serving information retrieval, document summarization, knowledge extraction, etc. Hierarchical Document Structure Analysis (HDSA) specifically aims to restore the hierarchical structure of documents created using authoring software with hierarchical schemas. Previous research has primarily followed two approaches: one focuses on tackling specific subtasks of HDSA in isolation, such as table detection or reading order prediction, while the other adopts a unified framework that uses multiple branches or modules, each designed to address a distinct task. In this work, we propose a unified relation prediction approach for HDSA, called UniHDSA, which treats various HDSA sub-tasks as relation prediction problems and consolidates relation prediction labels into a unified label space. This allows a single relation prediction module to handle multiple tasks simultaneously, whether at a page-level or document-level structure analysis. To validate the effectiveness of UniHDSA, we develop a multimodal end-to-end system based on Transformer architectures. Extensive experimental results demonstrate that our approach achieves state-of-the-art performance on a hierarchical document structure analysis benchmark, Comp-HRDoc, and competitive results on a large-scale document layout analysis dataset, DocLayNet, effectively illustrating the superiority of our method across all sub-tasks. The Comp-HRDoc benchmark and UniHDSA's configurations are publicly available at https://github.com/microsoft/CompHRDoc.
comment: Accepted by Pattern Recognition. arXiv admin note: text overlap with arXiv:2405.11757
♻ ☆ Three Cars Approaching within 100m! Enhancing Distant Geometry by Tri-Axis Voxel Scanning for Camera-based Semantic Scene Completion CVPR 2025
Camera-based Semantic Scene Completion (SSC) is gaining attentions in the 3D perception field. However, properties such as perspective and occlusion lead to the underestimation of the geometry in distant regions, posing a critical issue for safety-focused autonomous driving systems. To tackle this, we propose ScanSSC, a novel camera-based SSC model composed of a Scan Module and Scan Loss, both designed to enhance distant scenes by leveraging context from near-viewpoint scenes. The Scan Module uses axis-wise masked attention, where each axis employing a near-to-far cascade masking that enables distant voxels to capture relationships with preceding voxels. In addition, the Scan Loss computes the cross-entropy along each axis between cumulative logits and corresponding class distributions in a near-to-far direction, thereby propagating rich context-aware signals to distant voxels. Leveraging the synergy between these components, ScanSSC achieves state-of-the-art performance, with IoUs of 44.54 and 48.29, and mIoUs of 17.40 and 20.14 on the SemanticKITTI and SSCBench-KITTI-360 benchmarks.
comment: Accepted to CVPR 2025
♻ ☆ Uni$\textbf{F}^2$ace: Fine-grained Face Understanding and Generation with Unified Multimodal Models
Unified multimodal models (UMMs) have emerged as a powerful paradigm in foundational computer vision research, demonstrating significant potential in both image understanding and generation. However, existing research in the face domain primarily focuses on $\textbf{coarse}$ facial attribute understanding, with limited capacity to handle $\textbf{fine-grained}$ facial attributes and without addressing generation capabilities. To overcome these limitations, we propose Uni$\textbf{F}^2$ace, the first UMM tailored specifically for fine-grained face understanding and generation. In general, we train Uni$\textbf{F}^2$ace on a self-constructed, specialized dataset utilizing two mutually beneficial diffusion techniques and a two-level mixture-of-experts architecture. Specifically, we first build a large-scale facial dataset, Uni$\textbf{F}^2$ace-130K, which contains 130K image-text pairs with one million question-answering pairs that span a wide range of facial attributes. Second, we establish a theoretical connection between discrete diffusion score matching and masked generative models, optimizing both evidence lower bounds simultaneously, which significantly improves the model's ability to synthesize facial details. Finally, we introduce both token-level and sequence-level mixture-of-experts, enabling efficient fine-grained representation learning for both understanding and generation tasks. Extensive experiments on Uni$\textbf{F}^2$ace-130K demonstrate that Uni$\textbf{F}^2$ace outperforms existing UMMs and generative models, achieving superior performance across both understanding and generation tasks.
♻ ☆ Progress-Aware Video Frame Captioning CVPR 2025
While image captioning provides isolated descriptions for individual images, and video captioning offers one single narrative for an entire video clip, our work explores an important middle ground: progress-aware video captioning at the frame level. This novel task aims to generate temporally fine-grained captions that not only accurately describe each frame but also capture the subtle progression of actions throughout a video sequence. Despite the strong capabilities of existing leading vision language models, they often struggle to discern the nuances of frame-wise differences. To address this, we propose ProgressCaptioner, a captioning model designed to capture the fine-grained temporal dynamics within an action sequence. Alongside, we develop the FrameCap dataset to support training and the FrameCapEval benchmark to assess caption quality. The results demonstrate that ProgressCaptioner significantly surpasses leading captioning models, producing precise captions that accurately capture action progression and set a new standard for temporal precision in video captioning. Finally, we showcase practical applications of our approach, specifically in aiding keyframe selection and advancing video understanding, highlighting its broad utility.
comment: Accepted by CVPR 2025, Project website: https://vision.cs.utexas.edu/projects/ProgressCaptioner/
♻ ☆ HLV-1K: A Large-scale Hour-Long Video Benchmark for Time-Specific Long Video Understanding ICME 2025
Multimodal large language models have become a popular topic in deep visual understanding due to many promising real-world applications. However, hour-long video understanding, spanning over one hour and containing tens of thousands of visual frames, remains under-explored because of 1) challenging long-term video analyses, 2) inefficient large-model approaches, and 3) lack of large-scale benchmark datasets. Among them, in this paper, we focus on building a large-scale hour-long long video benchmark, HLV-1K, designed to evaluate long video understanding models. HLV-1K comprises 1009 hour-long videos with 14,847 high-quality question answering (QA) and multi-choice question asnwering (MCQA) pairs with time-aware query and diverse annotations, covering frame-level, within-event-level, cross-event-level, and long-term reasoning tasks. We evaluate our benchmark using existing state-of-the-art methods and demonstrate its value for testing deep long video understanding capabilities at different levels and for various tasks. This includes promoting future long video understanding tasks at a granular level, such as deep understanding of long live videos, meeting recordings, and movies.
comment: Accepted to ICME 2025
♻ ☆ Narrating the Video: Boosting Text-Video Retrieval via Comprehensive Utilization of Frame-Level Captions CVPR 2025
In recent text-video retrieval, the use of additional captions from vision-language models has shown promising effects on the performance. However, existing models using additional captions often have struggled to capture the rich semantics, including temporal changes, inherent in the video. In addition, incorrect information caused by generative models can lead to inaccurate retrieval. To address these issues, we propose a new framework, Narrating the Video (NarVid), which strategically leverages the comprehensive information available from frame-level captions, the narration. The proposed NarVid exploits narration in multiple ways: 1) feature enhancement through cross-modal interactions between narration and video, 2) query-aware adaptive filtering to suppress irrelevant or incorrect information, 3) dual-modal matching score by adding query-video similarity and query-narration similarity, and 4) hard-negative loss to learn discriminative features from multiple perspectives using the two similarities from different views. Experimental results demonstrate that NarVid achieves state-of-the-art performance on various benchmark datasets.
comment: Accepted at CVPR 2025
♻ ☆ Any2AnyTryon: Leveraging Adaptive Position Embeddings for Versatile Virtual Clothing Tasks
Image-based virtual try-on (VTON) aims to generate a virtual try-on result by transferring an input garment onto a target person's image. However, the scarcity of paired garment-model data makes it challenging for existing methods to achieve high generalization and quality in VTON. Also, it limits the ability to generate mask-free try-ons. To tackle the data scarcity problem, approaches such as Stable Garment and MMTryon use a synthetic data strategy, effectively increasing the amount of paired data on the model side. However, existing methods are typically limited to performing specific try-on tasks and lack user-friendliness. To enhance the generalization and controllability of VTON generation, we propose Any2AnyTryon, which can generate try-on results based on different textual instructions and model garment images to meet various needs, eliminating the reliance on masks, poses, or other conditions. Specifically, we first construct the virtual try-on dataset LAION-Garment, the largest known open-source garment try-on dataset. Then, we introduce adaptive position embedding, which enables the model to generate satisfactory outfitted model images or garment images based on input images of different sizes and categories, significantly enhancing the generalization and controllability of VTON generation. In our experiments, we demonstrate the effectiveness of our Any2AnyTryon and compare it with existing methods. The results show that Any2AnyTryon enables flexible, controllable, and high-quality image-based virtual try-on generation. https://logn-2024.github.io/Any2anyTryonProjectPage
comment: 13 pages,13 figures
♻ ☆ CATD: Unified Representation Learning for EEG-to-fMRI Cross-Modal Generation
Multi-modal neuroimaging analysis is crucial for a comprehensive understanding of brain function and pathology, as it allows for the integration of different imaging techniques, thus overcoming the limitations of individual modalities. However, the high costs and limited availability of certain modalities pose significant challenges. To address these issues, this paper proposes the Condition-Aligned Temporal Diffusion (CATD) framework for end-to-end cross-modal synthesis of neuroimaging, enabling the generation of functional magnetic resonance imaging (fMRI)-detected Blood Oxygen Level Dependent (BOLD) signals from more accessible Electroencephalography (EEG) signals. By constructing Conditionally Aligned Block (CAB), heterogeneous neuroimages are aligned into a latent space, achieving a unified representation that provides the foundation for cross-modal transformation in neuroimaging. The combination with the constructed Dynamic Time-Frequency Segmentation (DTFS) module also enables the use of EEG signals to improve the temporal resolution of BOLD signals, thus augmenting the capture of the dynamic details of the brain. Experimental validation demonstrates that the framework improves the accuracy of brain activity state prediction by 9.13% (reaching 69.8%), enhances the diagnostic accuracy of brain disorders by 4.10% (reaching 99.55%), effectively identifies abnormal brain regions, enhancing the temporal resolution of BOLD signals. The proposed framework establishes a new paradigm for cross-modal synthesis of neuroimaging by unifying heterogeneous neuroimaging data into a latent representation space, showing promise in medical applications such as improving Parkinson's disease prediction and identifying abnormal brain regions.
comment: 11 pages, 9 figures, Accepted by IEEE Transactions on Medical Imaging
♻ ☆ Joint Learning for Scattered Point Cloud Understanding with Hierarchical Self-Distillation
Numerous point-cloud understanding techniques focus on whole entities and have succeeded in obtaining satisfactory results and limited sparsity tolerance. However, these methods are generally sensitive to incomplete point clouds that are scanned with flaws or large gaps. In this paper, we propose an end-to-end architecture that compensates for and identifies partial point clouds on the fly. First, we propose a cascaded solution that integrates both the upstream masked autoencoder (MAE) and downstream understanding networks simultaneously, allowing the task-oriented downstream to identify the points generated by the completion-oriented upstream. These two streams complement each other, resulting in improved performance for both completion and downstream-dependent tasks. Second, to explicitly understand the predicted points' pattern, we introduce hierarchical self-distillation (HSD), which can be applied to any hierarchy-based point cloud methods. HSD ensures that the deepest classifier with a larger perceptual field of local kernels and longer code length provides additional regularization to intermediate ones rather than simply aggregating the multi-scale features, and therefore maximizing the mutual information (MI) between a teacher and students. The proposed HSD strategy is particularly well-suited for tasks involving scattered point clouds, wherein a singular prediction may yield imprecise outcomes due to the inherently irregular and sparse nature of the geometric shape being reconstructed. We show the advantage of the self-distillation process in the hyperspaces based on the information bottleneck principle. Our method achieves state-of-the-art on both classification and part segmentation tasks.
comment: Published version (early-view) without bios
♻ ☆ MamBEV: Enabling State Space Models to Learn Birds-Eye-View Representations
3D visual perception tasks, such as 3D detection from multi-camera images, are essential components of autonomous driving and assistance systems. However, designing computationally efficient methods remains a significant challenge. In this paper, we propose a Mamba-based framework called MamBEV, which learns unified Bird's Eye View (BEV) representations using linear spatio-temporal SSM-based attention. This approach supports multiple 3D perception tasks with significantly improved computational and memory efficiency. Furthermore, we introduce SSM based cross-attention, analogous to standard cross attention, where BEV query representations can interact with relevant image features. Extensive experiments demonstrate MamBEV's promising performance across diverse visual perception metrics, highlighting its advantages in input scaling efficiency compared to existing benchmark models.
♻ ☆ A Multimodal Vision Foundation Model for Clinical Dermatology
Diagnosing and treating skin diseases require advanced visual skills across domains and the ability to synthesize information from multiple imaging modalities. While current deep learning models excel at specific tasks like skin cancer diagnosis from dermoscopic images, they struggle to meet the complex, multimodal requirements of clinical practice. Here, we introduce PanDerm, a multimodal dermatology foundation model pretrained through self-supervised learning on over 2 million real-world skin disease images from 11 clinical institutions across 4 imaging modalities. We evaluated PanDerm on 28 diverse benchmarks, including skin cancer screening, risk stratification, differential diagnosis of common and rare skin conditions, lesion segmentation, longitudinal monitoring, and metastasis prediction and prognosis. PanDerm achieved state-of-the-art performance across all evaluated tasks, often outperforming existing models when using only 10% of labeled data. We conducted three reader studies to assess PanDerm's potential clinical utility. PanDerm outperformed clinicians by 10.2% in early-stage melanoma detection through longitudinal analysis, improved clinicians' skin cancer diagnostic accuracy by 11% on dermoscopy images, and enhanced non-dermatologist healthcare providers' differential diagnosis by 16.5% across 128 skin conditions on clinical photographs. These results demonstrate PanDerm's potential to improve patient care across diverse clinical scenarios and serve as a model for developing multimodal foundation models in other medical specialties, potentially accelerating the integration of AI support in healthcare.
comment: 74 pages; Preprint
♻ ☆ Segmenting Bi-Atrial Structures Using ResNext Based Framework
Atrial fibrillation (AF) is the most common cardiac arrhythmia, significantly contributing to mortality, particularly in older populations. While pulmonary vein isolation is a standard treatment, its effectiveness is limited in patients with persistent AF. Recent research highlights the importance of targeting additional atrial regions, particularly fibrotic areas identified via late gadolinium-enhanced MRI (LGE-MRI). However, existing manual segmentation methods are time-consuming and prone to variability. Deep learning techniques, particularly convolutional neural networks (CNNs), have shown promise in automating segmentation. However, most studies focus solely on the left atrium (LA) and rely on small datasets, limiting generalizability. In this paper, we propose a novel two-stage framework incorporating ResNeXt encoders and a cyclic learning rate to segment both the right atrium (RA) and LA walls and cavities in LGE-MRIs. Our method aims to improve the segmentation of challenging small structures, such as atrial walls while maintaining high performance in larger regions like the atrial cavities. The results demonstrate that our approach offers superior segmentation accuracy and robustness compared to traditional architectures, particularly for imbalanced class structures.
♻ ☆ Grayscale to Hyperspectral at Any Resolution Using a Phase-Only Lens
We consider the problem of reconstructing a HxWx31 hyperspectral image from a HxW grayscale snapshot measurement that is captured using only a single diffractive optic and a filterless panchromatic photosensor. This problem is severely ill-posed, but we present the first model that produces high-quality results. We make efficient use of limited data by training a conditional denoising diffusion model that operates on small patches in a shift-invariant manner. During inference, we synchronize per-patch hyperspectral predictions using guidance derived from the optical point spread function. Surprisingly, our experiments reveal that patch sizes as small as the PSFs support achieve excellent results, and they show that local optical cues are sufficient to capture full spectral information. Moreover, by drawing multiple samples, our model provides per-pixel uncertainty estimates that strongly correlate with reconstruction error. Our work lays the foundation for a new class of high-resolution snapshot hyperspectral imagers that are compact and light-efficient.
♻ ☆ CLEAR: Cue Learning using Evolution for Accurate Recognition Applied to Sustainability Data Extraction
Large Language Model (LLM) image recognition is a powerful tool for extracting data from images, but accuracy depends on providing sufficient cues in the prompt - requiring a domain expert for specialized tasks. We introduce Cue Learning using Evolution for Accurate Recognition (CLEAR), which uses a combination of LLMs and evolutionary computation to generate and optimize cues such that recognition of specialized features in images is improved. It achieves this by auto-generating a novel domain-specific representation and then using it to optimize suitable textual cues with a genetic algorithm. We apply CLEAR to the real-world task of identifying sustainability data from interior and exterior images of buildings. We investigate the effects of using a variable-length representation compared to fixed-length and show how LLM consistency can be improved by refactoring from categorical to real-valued estimates. We show that CLEAR enables higher accuracy compared to expert human recognition and human-authored prompts in every task with error rates improved by up to two orders of magnitude and an ablation study evincing solution concision.
comment: 9 pages plus 2 pages of supplemental material
♻ ☆ Neural Light Spheres for Implicit Image Stitching and View Synthesis
Challenging to capture, and challenging to display on a cellphone screen, the panorama paradoxically remains both a staple and underused feature of modern mobile camera applications. In this work we address both of these challenges with a spherical neural light field model for implicit panoramic image stitching and re-rendering; able to accommodate for depth parallax, view-dependent lighting, and local scene motion and color changes during capture. Fit during test-time to an arbitrary path panoramic video capture -- vertical, horizontal, random-walk -- these neural light spheres jointly estimate the camera path and a high-resolution scene reconstruction to produce novel wide field-of-view projections of the environment. Our single-layer model avoids expensive volumetric sampling, and decomposes the scene into compact view-dependent ray offset and color components, with a total model size of 80 MB per scene, and real-time (50 FPS) rendering at 1080p resolution. We demonstrate improved reconstruction quality over traditional image stitching and radiance field methods, with significantly higher tolerance to scene motion and non-ideal capture settings.
comment: Project site: https://light.princeton.edu/publication/neuls/
♻ ☆ M-LLM Based Video Frame Selection for Efficient Video Understanding
Recent advances in Multi-Modal Large Language Models (M-LLMs) show promising results in video reasoning. Popular Multi-Modal Large Language Model (M-LLM) frameworks usually apply naive uniform sampling to reduce the number of video frames that are fed into an M-LLM, particularly for long context videos. However, it could lose crucial context in certain periods of a video, so that the downstream M-LLM may not have sufficient visual information to answer a question. To attack this pain point, we propose a light-weight M-LLM -based frame selection method that adaptively select frames that are more relevant to users' queries. In order to train the proposed frame selector, we introduce two supervision signals (i) Spatial signal, where single frame importance score by prompting a M-LLM; (ii) Temporal signal, in which multiple frames selection by prompting Large Language Model (LLM) using the captions of all frame candidates. The selected frames are then digested by a frozen downstream video M-LLM for visual reasoning and question answering. Empirical results show that the proposed M-LLM video frame selector improves the performances various downstream video Large Language Model (video-LLM) across medium (ActivityNet, NExT-QA) and long (EgoSchema, LongVideoBench) context video question answering benchmarks.
♻ ☆ JOG3R: Towards 3D-Consistent Video Generators
Emergent capabilities of image generators have led to many impactful zero- or few-shot applications. Inspired by this success, we investigate whether video generators similarly exhibit 3D-awareness. Using structure-from-motion as a 3D-aware task, we test if intermediate features of a video generator - OpenSora in our case - can support camera pose estimation. Surprisingly, at first, we only find a weak correlation between the two tasks. Deeper investigation reveals that although the video generator produces plausible video frames, the frames themselves are not truly 3D-consistent. Instead, we propose to jointly train for the two tasks, using photometric generation and 3D aware errors. Specifically, we find that SoTA video generation and camera pose estimation (i.e.,DUSt3R [79]) networks share common structures, and propose an architecture that unifies the two. The proposed unified model, named \nameMethod, produces camera pose estimates with competitive quality while producing 3D-consistent videos. In summary, we propose the first unified video generator that is 3D-consistent, generates realistic video frames, and can potentially be repurposed for other 3D-aware tasks.
♻ ☆ SimBEV: A Synthetic Multi-Task Multi-Sensor Driving Data Generation Tool and Dataset
Bird's-eye view (BEV) perception has garnered significant attention in autonomous driving in recent years, in part because BEV representation facilitates multi-modal sensor fusion. BEV representation enables a variety of perception tasks including BEV segmentation, a concise view of the environment useful for planning a vehicle's trajectory. However, this representation is not fully supported by existing datasets, and creation of new datasets for this purpose can be a time-consuming endeavor. To address this challenge, we introduce SimBEV. SimBEV is a randomized synthetic data generation tool that is extensively configurable and scalable, supports a wide array of sensors, incorporates information from multiple sources to capture accurate BEV ground truth, and enables a variety of perception tasks including BEV segmentation and 3D object detection. SimBEV is used to create the SimBEV dataset, a large collection of annotated perception data from diverse driving scenarios. SimBEV and the SimBEV dataset are open and available to the public.
♻ ☆ Evaluating Vision-Language Models as Evaluators in Path Planning
Despite their promise to perform complex reasoning, large language models (LLMs) have been shown to have limited effectiveness in end-to-end planning. This has inspired an intriguing question: if these models cannot plan well, can they still contribute to the planning framework as a helpful plan evaluator? In this work, we generalize this question to consider LLMs augmented with visual understanding, i.e., Vision-Language Models (VLMs). We introduce PathEval, a novel benchmark evaluating VLMs as plan evaluators in complex path-planning scenarios. Succeeding in the benchmark requires a VLM to be able to abstract traits of optimal paths from the scenario description, demonstrate precise low-level perception on each path, and integrate this information to decide the better path. Our analysis of state-of-the-art VLMs reveals that these models face significant challenges on the benchmark. We observe that the VLMs can precisely abstract given scenarios to identify the desired traits and exhibit mixed performance in integrating the provided information. Yet, their vision component presents a critical bottleneck, with models struggling to perceive low-level details about a path. Our experimental results show that this issue cannot be trivially addressed via end-to-end fine-tuning; rather, task-specific discriminative adaptation of these vision encoders is needed for these VLMs to become effective path evaluators.
♻ ☆ SparseGS: Real-Time 360° Sparse View Synthesis using Gaussian Splatting 3DV 2025
3D Gaussian Splatting (3DGS) has recently enabled real-time rendering of unbounded 3D scenes for novel view synthesis. However, this technique requires dense training views to accurately reconstruct 3D geometry. A limited number of input views will significantly degrade reconstruction quality, resulting in artifacts such as "floaters" and "background collapse" at unseen viewpoints. In this work, we introduce SparseGS, an efficient training pipeline designed to address the limitations of 3DGS in scenarios with sparse training views. SparseGS incorporates depth priors, novel depth rendering techniques, and a pruning heuristic to mitigate floater artifacts, alongside an Unseen Viewpoint Regularization module to alleviate background collapses. Our extensive evaluations on the Mip-NeRF360, LLFF, and DTU datasets demonstrate that SparseGS achieves high-quality reconstruction in both unbounded and forward-facing scenarios, with as few as 12 and 3 input images, respectively, while maintaining fast training and real-time rendering capabilities.
comment: Version accepted to 3DV 2025. Project page: https://github.com/ForMyCat/SparseGS
♻ ☆ MCBLT: Multi-Camera Multi-Object 3D Tracking in Long Videos
Object perception from multi-view cameras is crucial for intelligent systems, particularly in indoor environments, e.g., warehouses, retail stores, and hospitals. Most traditional multi-target multi-camera (MTMC) detection and tracking methods rely on 2D object detection, single-view multi-object tracking (MOT), and cross-view re-identification (ReID) techniques, without properly handling important 3D information by multi-view image aggregation. In this paper, we propose a 3D object detection and tracking framework, named MCBLT, which first aggregates multi-view images with necessary camera calibration parameters to obtain 3D object detections in bird's-eye view (BEV). Then, we introduce hierarchical graph neural networks (GNNs) to track these 3D detections in BEV for MTMC tracking results. Unlike existing methods, MCBLT has impressive generalizability across different scenes and diverse camera settings, with exceptional capability for long-term association handling. As a result, our proposed MCBLT establishes a new state-of-the-art on the AICity'24 dataset with $81.22$ HOTA, and on the WildTrack dataset with $95.6$ IDF1.
♻ ☆ Evaluating Pre-trained Convolutional Neural Networks and Foundation Models as Feature Extractors for Content-based Medical Image Retrieval
Medical image retrieval refers to the task of finding similar images for given query images in a database, with applications such as diagnosis support. While traditional medical image retrieval relied on clinical metadata, content-based medical image retrieval (CBMIR) depends on image features, which can be extracted automatically or semi-automatically. Many approaches have been proposed for CBMIR, and among them, using pre-trained convolutional neural networks (CNNs) is a widely utilized approach. However, considering the recent advances in the development of foundation models for various computer vision tasks, their application for CBMIR can also be investigated. In this study, we used several pre-trained feature extractors from well-known pre-trained CNNs and pre-trained foundation models and investigated the CBMIR performance on eight types of two-dimensional (2D) and three-dimensional (3D) medical images. Furthermore, we investigated the effect of image size on the CBMIR performance. Our results show that, overall, for the 2D datasets, foundation models deliver superior performance by a large margin compared to CNNs, with the general-purpose self-supervised model for computational pathology (UNI) providing the best overall performance across all datasets and image sizes. For 3D datasets, CNNs and foundation models deliver more competitive performance, with contrastive learning from captions for histopathology model (CONCH) achieving the best overall performance. Moreover, our findings confirm that while using larger image sizes (especially for 2D datasets) yields slightly better performance, competitive CBMIR performance can still be achieved even with smaller image sizes. Our codes to reproduce the results are available at: https://github.com/masih4/MedImageRetrieval.
comment: 37 pages
♻ ☆ Boltzmann Attention Sampling for Image Analysis with Small Objects
Detecting and segmenting small objects, such as lung nodules and tumor lesions, remains a critical challenge in image analysis. These objects often occupy less than 0.1% of an image, making traditional transformer architectures inefficient and prone to performance degradation due to redundant attention computations on irrelevant regions. Existing sparse attention mechanisms rely on rigid hierarchical structures, which are poorly suited for detecting small, variable, and uncertain object locations. In this paper, we propose BoltzFormer, a novel transformer-based architecture designed to address these challenges through dynamic sparse attention. BoltzFormer identifies and focuses attention on relevant areas by modeling uncertainty using a Boltzmann distribution with an annealing schedule. Initially, a higher temperature allows broader area sampling in early layers, when object location uncertainty is greatest. As the temperature decreases in later layers, attention becomes more focused, enhancing efficiency and accuracy. BoltzFormer seamlessly integrates into existing transformer architectures via a modular Boltzmann attention sampling mechanism. Comprehensive evaluations on benchmark datasets demonstrate that BoltzFormer significantly improves segmentation performance for small objects while reducing attention computation by an order of magnitude compared to previous state-of-the-art methods.
WiLoR: End-to-end 3D Hand Localization and Reconstruction in-the-wild CVPR 2025
In recent years, 3D hand pose estimation methods have garnered significant attention due to their extensive applications in human-computer interaction, virtual reality, and robotics. In contrast, there has been a notable gap in hand detection pipelines, posing significant challenges in constructing effective real-world multi-hand reconstruction systems. In this work, we present a data-driven pipeline for efficient multi-hand reconstruction in the wild. The proposed pipeline is composed of two components: a real-time fully convolutional hand localization and a high-fidelity transformer-based 3D hand reconstruction model. To tackle the limitations of previous methods and build a robust and stable detection network, we introduce a large-scale dataset with over than 2M in-the-wild hand images with diverse lighting, illumination, and occlusion conditions. Our approach outperforms previous methods in both efficiency and accuracy on popular 2D and 3D benchmarks. Finally, we showcase the effectiveness of our pipeline to achieve smooth 3D hand tracking from monocular videos, without utilizing any temporal components. Code, models, and dataset are available https://rolpotamias.github.io/WiLoR.
comment: CVPR 2025, Project Page https://rolpotamias.github.io/WiLoR
♻ ☆ ILIAS: Instance-Level Image retrieval At Scale CVPR 2025
This work introduces ILIAS, a new test dataset for Instance-Level Image retrieval At Scale. It is designed to evaluate the ability of current and future foundation models and retrieval techniques to recognize particular objects. The key benefits over existing datasets include large scale, domain diversity, accurate ground truth, and a performance that is far from saturated. ILIAS includes query and positive images for 1,000 object instances, manually collected to capture challenging conditions and diverse domains. Large-scale retrieval is conducted against 100 million distractor images from YFCC100M. To avoid false negatives without extra annotation effort, we include only query objects confirmed to have emerged after 2014, i.e. the compilation date of YFCC100M. An extensive benchmarking is performed with the following observations: i) models fine-tuned on specific domains, such as landmarks or products, excel in that domain but fail on ILIAS ii) learning a linear adaptation layer using multi-domain class supervision results in performance improvements, especially for vision-language models iii) local descriptors in retrieval re-ranking are still a key ingredient, especially in the presence of severe background clutter iv) the text-to-image performance of the vision-language foundation models is surprisingly close to the corresponding image-to-image case. website: https://vrg.fel.cvut.cz/ilias/
comment: CVPR 2025
♻ ☆ Edited Media Understanding Frames: Reasoning About the Intent and Implications of Visual Misinformation
Multimodal disinformation, from 'deepfakes' to simple edits that deceive, is an important societal problem. Yet at the same time, the vast majority of media edits are harmless -- such as a filtered vacation photo. The difference between this example, and harmful edits that spread disinformation, is one of intent. Recognizing and describing this intent is a major challenge for today's AI systems. We present the task of Edited Media Understanding, requiring models to answer open-ended questions that capture the intent and implications of an image edit. We introduce a dataset for our task, EMU, with 48k question-answer pairs written in rich natural language. We evaluate a wide variety of vision-and-language models for our task, and introduce a new model PELICAN, which builds upon recent progress in pretrained multimodal representations. Our model obtains promising results on our dataset, with humans rating its answers as accurate 40.35% of the time. At the same time, there is still much work to be done -- humans prefer human-annotated captions 93.56% of the time -- and we provide analysis that highlights areas for further progress.
comment: ACL 2021
Machine Learning 176
☆ Understanding R1-Zero-Like Training: A Critical Perspective
DeepSeek-R1-Zero has shown that reinforcement learning (RL) at scale can directly enhance the reasoning capabilities of LLMs without supervised fine-tuning. In this work, we critically examine R1-Zero-like training by analyzing its two core components: base models and RL. We investigate a wide range of base models, including DeepSeek-V3-Base, to understand how pretraining characteristics influence RL performance. Our analysis reveals that DeepSeek-V3-Base already exhibit ''Aha moment'', while Qwen2.5 base models demonstrate strong reasoning capabilities even without prompt templates, suggesting potential pretraining biases. Additionally, we identify an optimization bias in Group Relative Policy Optimization (GRPO), which artificially increases response length (especially for incorrect outputs) during training. To address this, we introduce Dr. GRPO, an unbiased optimization method that improves token efficiency while maintaining reasoning performance. Leveraging these insights, we present a minimalist R1-Zero recipe that achieves 43.3% accuracy on AIME 2024 with a 7B base model, establishing a new state-of-the-art. Our code is available at https://github.com/sail-sg/understand-r1-zero.
☆ Zero-Shot Audio-Visual Editing via Cross-Modal Delta Denoising
In this paper, we introduce zero-shot audio-video editing, a novel task that requires transforming original audio-visual content to align with a specified textual prompt without additional model training. To evaluate this task, we curate a benchmark dataset, AvED-Bench, designed explicitly for zero-shot audio-video editing. AvED-Bench includes 110 videos, each with a 10-second duration, spanning 11 categories from VGGSound. It offers diverse prompts and scenarios that require precise alignment between auditory and visual elements, enabling robust evaluation. We identify limitations in existing zero-shot audio and video editing methods, particularly in synchronization and coherence between modalities, which often result in inconsistent outcomes. To address these challenges, we propose AvED, a zero-shot cross-modal delta denoising framework that leverages audio-video interactions to achieve synchronized and coherent edits. AvED demonstrates superior results on both AvED-Bench and the recent OAVE dataset to validate its generalization capabilities. Results are available at https://genjib.github.io/project_page/AVED/index.html
comment: Project page: https://genjib.github.io/project_page/AVED/index.html
☆ An Empirical Study of the Impact of Federated Learning on Machine Learning Model Accuracy
Federated Learning (FL) enables distributed ML model training on private user data at the global scale. Despite the potential of FL demonstrated in many domains, an in-depth view of its impact on model accuracy remains unclear. In this paper, we investigate, systematically, how this learning paradigm can affect the accuracy of state-of-the-art ML models for a variety of ML tasks. We present an empirical study that involves various data types: text, image, audio, and video, and FL configuration knobs: data distribution, FL scale, client sampling, and local and global computations. Our experiments are conducted in a unified FL framework to achieve high fidelity, with substantial human efforts and resource investments. Based on the results, we perform a quantitative analysis of the impact of FL, and highlight challenging scenarios where applying FL degrades the accuracy of the model drastically and identify cases where the impact is negligible. The detailed and extensive findings can benefit practical deployments and future development of FL.
☆ Reliable algorithm selection for machine learning-guided design
Algorithms for machine learning-guided design, or design algorithms, use machine learning-based predictions to propose novel objects with desired property values. Given a new design task -- for example, to design novel proteins with high binding affinity to a therapeutic target -- one must choose a design algorithm and specify any hyperparameters and predictive and/or generative models involved. How can these decisions be made such that the resulting designs are successful? This paper proposes a method for design algorithm selection, which aims to select design algorithms that will produce a distribution of design labels satisfying a user-specified success criterion -- for example, that at least ten percent of designs' labels exceed a threshold. It does so by combining designs' predicted property values with held-out labeled data to reliably forecast characteristics of the label distributions produced by different design algorithms, building upon techniques from prediction-powered inference. The method is guaranteed with high probability to return design algorithms that yield successful label distributions (or the null set if none exist), if the density ratios between the design and labeled data distributions are known. We demonstrate the method's effectiveness in simulated protein and RNA design tasks, in settings with either known or estimated density ratios.
comment: 25 pages, 7 figures
☆ ASGO: Adaptive Structured Gradient Optimization
Training deep neural networks (DNNs) is a structured optimization problem, because the parameters are naturally represented by matrices and tensors rather than simple vectors. Under this structural representation, it has been widely observed that gradients are low-rank and Hessians are approximately block-wise diagonal. These structured properties are crucial for designing efficient optimization algorithms but may not be utilized by current popular optimizers like Adam. In this paper, we present a novel optimization algorithm ASGO that capitalizes on these properties by employing a preconditioner that is adaptively updated using structured gradients. By fine-grained theoretical analysis, ASGO is proven to achieve superior convergence rates compared to existing structured gradient methods. Based on the convergence theory, we further demonstrate that ASGO can benefit from the low-rank and block-wise diagonal properties. We also discuss practical modifications of ASGO and empirically verify the effectiveness of the algorithm on language model tasks.
comment: 25 pages, 4 figures
☆ ADS-Edit: A Multimodal Knowledge Editing Dataset for Autonomous Driving Systems
Recent advancements in Large Multimodal Models (LMMs) have shown promise in Autonomous Driving Systems (ADS). However, their direct application to ADS is hindered by challenges such as misunderstanding of traffic knowledge, complex road conditions, and diverse states of vehicle. To address these challenges, we propose the use of Knowledge Editing, which enables targeted modifications to a model's behavior without the need for full retraining. Meanwhile, we introduce ADS-Edit, a multimodal knowledge editing dataset specifically designed for ADS, which includes various real-world scenarios, multiple data types, and comprehensive evaluation metrics. We conduct comprehensive experiments and derive several interesting conclusions. We hope that our work will contribute to the further advancement of knowledge editing applications in the field of autonomous driving. Code and data are available in https://github.com/zjunlp/EasyEdit.
comment: Work in progress
☆ Optimal Scaling Laws for Efficiency Gains in a Theoretical Transformer-Augmented Sectional MoE Framework
This paper introduces a theoretical framework for a Transformer-augmented, sectional Mixture-of-Experts (MoE) architecture that aims to enhance computational efficiency while preserving model scalability. Unlike conventional MoE models, which route entire token embeddings to selected experts, our approach portions the embedding dimension itself -- assigning segments of each token's representation to dedicated experts. To combat losses in token representation, we utilize a pre-expert transformer layer to recompute attention across tokens and reduce the sequence length dimensionality. We extend our theory by deriving optimal scaling laws that a non-linear relationship between the number of experts and factors such as model dimensionality, sequence length, and system overhead. These formulations yield closed-form and numerically-solvable expressions for identifying the optimal expert count under given architectural and hardware constraints. As a result, our framework not only provides theoretical bounds for computing efficiency with varying frameworks but also guides practical design choices for scaling large models effectively. While empirical validation is pending, we present a comprehensive experimental road map to evaluate the framework's efficiency, scalability, and practicality in future work.
☆ Quantum Neural Network Restatement of Markov Jump Process
Despite the many challenges in exploratory data analysis, artificial neural networks have motivated strong interests in scientists and researchers both in theoretical as well as practical applications. Among sources of such popularity of artificial neural networks the ability of modeling non-linear dynamical systems, generalization, and adaptation possibilities should be mentioned. Despite this, there is still significant debate about the role of various underlying stochastic processes in stabilizing a unique structure for data learning and prediction. One of such obstacles to the theoretical and numerical study of machine intelligent systems is the curse of dimensionality and the sampling from high-dimensional probability distributions. In general, this curse prevents efficient description of states, providing a significant complexity barrier for the system to be efficiently described and studied. In this strand of research, direct treatment and description of such abstract notions of learning theory in terms of quantum information be one of the most favorable candidates. Hence, the subject matter of these articles is devoted to problems of design, adaptation and the formulations of computationally hard problems in terms of quantum mechanical systems. In order to characterize the microscopic description of such dynamics in the language of inferential statistics, covariance matrix estimation of d-dimensional Gaussian densities and Bayesian interpretation of eigenvalue problem for dynamical systems is assessed.
☆ RecTable: Fast Modeling Tabular Data with Rectified Flow
Score-based or diffusion models generate high-quality tabular data, surpassing GAN-based and VAE-based models. However, these methods require substantial training time. In this paper, we introduce RecTable, which uses the rectified flow modeling, applied in such as text-to-image generation and text-to-video generation. RecTable features a simple architecture consisting of a few stacked gated linear unit blocks. Additionally, our training strategies are also simple, incorporating a mixed-type noise distribution and a logit-normal timestep distribution. Our experiments demonstrate that RecTable achieves competitive performance compared to the several state-of-the-art diffusion and score-based models while reducing the required training time. Our code is available at https://github.com/fmp453/rectable.
comment: 19 pages, 7 figures, 10 tables
☆ Benchmarking and optimizing organism wide single-cell RNA alignment methods ICLR 2025
Many methods have been proposed for removing batch effects and aligning single-cell RNA (scRNA) datasets. However, performance is typically evaluated based on multiple parameters and few datasets, creating challenges in assessing which method is best for aligning data at scale. Here, we introduce the K-Neighbors Intersection (KNI) score, a single score that both penalizes batch effects and measures accuracy at cross-dataset cell-type label prediction alongside carefully curated small (scMARK) and large (scREF) benchmarks comprising 11 and 46 human scRNA studies respectively, where we have standardized author labels. Using the KNI score, we evaluate and optimize approaches for cross-dataset single-cell RNA integration. We introduce Batch Adversarial single-cell Variational Inference (BA-scVI), as a new variant of scVI that uses adversarial training to penalize batch-effects in the encoder and decoder, and show this approach outperforms other methods. In the resulting aligned space, we find that the granularity of cell-type groupings is conserved, supporting the notion that whole-organism cell-type maps can be created by a single model without loss of information.
comment: Accepted to ICLR 2025 LMRL workshop (International Conference on Learning Representations, Learning Meaningful Representations of Life Workshop)
☆ Continual learning via probabilistic exchangeable sequence modelling
Continual learning (CL) refers to the ability to continuously learn and accumulate new knowledge while retaining useful information from past experiences. Although numerous CL methods have been proposed in recent years, it is not straightforward to deploy them directly to real-world decision-making problems due to their computational cost and lack of uncertainty quantification. To address these issues, we propose CL-BRUNO, a probabilistic, Neural Process-based CL model that performs scalable and tractable Bayesian update and prediction. Our proposed approach uses deep-generative models to create a unified probabilistic framework capable of handling different types of CL problems such as task- and class-incremental learning, allowing users to integrate information across different CL scenarios using a single model. Our approach is able to prevent catastrophic forgetting through distributional and functional regularisation without the need of retaining any previously seen samples, making it appealing to applications where data privacy or storage capacity is of concern. Experiments show that CL-BRUNO outperforms existing methods on both natural image and biomedical data sets, confirming its effectiveness in real-world applications.
☆ A weakly-supervised deep learning model for fast localisation and delineation of the skeleton, internal organs, and spinal canal on Whole-Body Diffusion-Weighted MRI (WB-DWI)
Background: Apparent Diffusion Coefficient (ADC) values and Total Diffusion Volume (TDV) from Whole-body diffusion-weighted MRI (WB-DWI) are recognized cancer imaging biomarkers. However, manual disease delineation for ADC and TDV measurements is unfeasible in clinical practice, demanding automation. As a first step, we propose an algorithm to generate fast and reproducible probability maps of the skeleton, adjacent internal organs (liver, spleen, urinary bladder, and kidneys), and spinal canal. Methods: We developed an automated deep-learning pipeline based on a 3D patch-based Residual U-Net architecture that localizes and delineates these anatomical structures on WB-DWI. The algorithm was trained using "soft-labels" (non-binary segmentations) derived from a computationally intensive atlas-based approach. For training and validation, we employed a multi-center WB-DWI dataset comprising 532 scans from patients with Advanced Prostate Cancer (APC) or Multiple Myeloma (MM), with testing on 45 patients. Results: Our weakly-supervised deep learning model achieved an average dice score/precision/recall of 0.66/0.6/0.73 for skeletal delineations, 0.8/0.79/0.81 for internal organs, and 0.85/0.79/0.94 for spinal canal, with surface distances consistently below 3 mm. Relative median ADC and log-transformed volume differences between automated and manual expert-defined full-body delineations were below 10% and 4%, respectively. The computational time for generating probability maps was 12x faster than the atlas-based registration algorithm (25 s vs. 5 min). An experienced radiologist rated the model's accuracy "good" or "excellent" on test datasets. Conclusion: Our model offers fast and reproducible probability maps for localizing and delineating body regions on WB-DWI, enabling ADC and TDV quantification, potentially supporting clinicians in disease staging and treatment response assessment.
☆ Learning Straight Flows by Learning Curved Interpolants ICLR 2025
Flow matching models typically use linear interpolants to define the forward/noise addition process. This, together with the independent coupling between noise and target distributions, yields a vector field which is often non-straight. Such curved fields lead to a slow inference/generation process. In this work, we propose to learn flexible (potentially curved) interpolants in order to learn straight vector fields to enable faster generation. We formulate this via a multi-level optimization problem and propose an efficient approximate procedure to solve it. Our framework provides an end-to-end and simulation-free optimization procedure, which can be leveraged to learn straight line generative trajectories.
comment: Delta workshop at ICLR 2025
☆ Demand Estimation with Text and Image Data
We propose a demand estimation method that leverages unstructured text and image data to infer substitution patterns. Using pre-trained deep learning models, we extract embeddings from product images and textual descriptions and incorporate them into a random coefficients logit model. This approach enables researchers to estimate demand even when they lack data on product attributes or when consumers value hard-to-quantify attributes, such as visual design or functional benefits. Using data from a choice experiment, we show that our approach outperforms standard attribute-based models in counterfactual predictions of consumers' second choices. We also apply it across 40 product categories on Amazon.com and consistently find that text and image data help identify close substitutes within each category.
☆ Semi-supervised Node Importance Estimation with Informative Distribution Modeling for Uncertainty Regularization
Node importance estimation, a classical problem in network analysis, underpins various web applications. Previous methods either exploit intrinsic topological characteristics, e.g., graph centrality, or leverage additional information, e.g., data heterogeneity, for node feature enhancement. However, these methods follow the supervised learning setting, overlooking the fact that ground-truth node-importance data are usually partially labeled in practice. In this work, we propose the first semi-supervised node importance estimation framework, i.e., EASING, to improve learning quality for unlabeled data in heterogeneous graphs. Different from previous approaches, EASING explicitly captures uncertainty to reflect the confidence of model predictions. To jointly estimate the importance values and uncertainties, EASING incorporates DJE, a deep encoder-decoder neural architecture. DJE introduces distribution modeling for graph nodes, where the distribution representations derive both importance and uncertainty estimates. Additionally, DJE facilitates effective pseudo-label generation for the unlabeled data to enrich the training samples. Based on labeled and pseudo-labeled data, EASING develops effective semi-supervised heteroscedastic learning with varying node uncertainty regularization. Extensive experiments on three real-world datasets highlight the superior performance of EASING compared to competing methods. Codes are available via https://github.com/yankai-chen/EASING.
☆ A Low-complexity Structured Neural Network Approach to Intelligently Realize Wideband Multi-beam Beamformers
True-time-delay (TTD) beamformers can produce wideband, squint-free beams in both analog and digital signal domains, unlike frequency-dependent FFT beams. Our previous work showed that TTD beamformers can be efficiently realized using the elements of delay Vandermonde matrix (DVM), answering the longstanding beam-squint problem. Thus, building on our work on classical algorithms based on DVM, we propose neural network (NN) architecture to realize wideband multi-beam beamformers using structure-imposed weight matrices and submatrices. The structure and sparsity of the weight matrices and submatrices are shown to reduce the space and computational complexities of the NN greatly. The proposed network architecture has O(pLM logM) complexity compared to a conventional fully connected L-layers network with O(M2L) complexity, where M is the number of nodes in each layer of the network, p is the number of submatrices per layer, and M >> p. We will show numerical simulations in the 24 GHz to 32 GHz range to demonstrate the numerical feasibility of realizing wideband multi-beam beamformers using the proposed neural architecture. We also show the complexity reduction of the proposed NN and compare that with fully connected NNs, to show the efficiency of the proposed architecture without sacrificing accuracy. The accuracy of the proposed NN architecture was shown using the mean squared error, which is based on an objective function of the weight matrices and beamformed signals of antenna arrays, while also normalizing nodes. The proposed NN architecture shows a low-complexity NN realizing wideband multi-beam beamformers in real-time for low-complexity intelligent systems.
comment: 10 pages, 3 figures
☆ Flip Learning: Weakly Supervised Erase to Segment Nodules in Breast Ultrasound
Accurate segmentation of nodules in both 2D breast ultrasound (BUS) and 3D automated breast ultrasound (ABUS) is crucial for clinical diagnosis and treatment planning. Therefore, developing an automated system for nodule segmentation can enhance user independence and expedite clinical analysis. Unlike fully-supervised learning, weakly-supervised segmentation (WSS) can streamline the laborious and intricate annotation process. However, current WSS methods face challenges in achieving precise nodule segmentation, as many of them depend on inaccurate activation maps or inefficient pseudo-mask generation algorithms. In this study, we introduce a novel multi-agent reinforcement learning-based WSS framework called Flip Learning, which relies solely on 2D/3D boxes for accurate segmentation. Specifically, multiple agents are employed to erase the target from the box to facilitate classification tag flipping, with the erased region serving as the predicted segmentation mask. The key contributions of this research are as follows: (1) Adoption of a superpixel/supervoxel-based approach to encode the standardized environment, capturing boundary priors and expediting the learning process. (2) Introduction of three meticulously designed rewards, comprising a classification score reward and two intensity distribution rewards, to steer the agents' erasing process precisely, thereby avoiding both under- and over-segmentation. (3) Implementation of a progressive curriculum learning strategy to enable agents to interact with the environment in a progressively challenging manner, thereby enhancing learning efficiency. Extensively validated on the large in-house BUS and ABUS datasets, our Flip Learning method outperforms state-of-the-art WSS methods and foundation models, and achieves comparable performance as fully-supervised learning algorithms.
comment: Accepted by Medical Image Analysis. 24 pages, 13 figures, 18 tabels
☆ Benchmarking Machine Learning Methods for Distributed Acoustic Sensing
Distributed acoustic sensing (DAS) technology represents an innovative fiber-optic-based sensing methodology that enables real-time acoustic signal monitoring through the detection of minute perturbations along optical fibers. This sensing approach offers compelling advantages, including extensive measurement ranges, exceptional spatial resolution, and an expansive dynamic measurement spectrum. The integration of machine learning (ML) paradigms presents transformative potential for DAS technology, encompassing critical domains such as data augmentation, sophisticated preprocessing techniques, and advanced acoustic event classification and recognition. By leveraging ML algorithms, DAS systems can transition from traditional data processing methodologies to more automated and intelligent analytical frameworks. The computational intelligence afforded by ML-enhanced DAS technologies facilitates unprecedented monitoring capabilities across diverse critical infrastructure sectors. Particularly noteworthy are the technology's applications in transportation infrastructure, energy management systems, and Natural disaster monitoring frameworks, where the precision of data acquisition and the reliability of intelligent decision-making mechanisms are paramount. This research critically examines the comparative performance characteristics of classical machine learning methodologies and state-of-the-art deep learning models in the context of DAS data recognition and interpretation, offering comprehensive insights into the evolving landscape of intelligent sensing technologies.
☆ Asset price movement prediction using empirical mode decomposition and Gaussian mixture models
We investigated the use of Empirical Mode Decomposition (EMD) combined with Gaussian Mixture Models (GMM), feature engineering and machine learning algorithms to optimize trading decisions. We used five, two, and one year samples of hourly candle data for GameStop, Tesla, and XRP (Ripple) markets respectively. Applying a 15 hour rolling window for each market, we collected several features based on a linear model and other classical features to predict the next hour's movement. Subsequently, a GMM filtering approach was used to identify clusters among these markets. For each cluster, we applied the EMD algorithm to extract high, medium, low and trend components from each feature collected. A simple thresholding algorithm was applied to classify market movements based on the percentage change in each market's close price. We then evaluated the performance of various machine learning models, including Random Forests (RF) and XGBoost, in classifying market movements. A naive random selection of trading decisions was used as a benchmark, which assumed equal probabilities for each outcome, and a temporal cross-validation approach was used to test models on 40%, 30%, and 20% of the dataset. Our results indicate that transforming selected features using EMD improves performance, particularly for ensemble learning algorithms like Random Forest and XGBoost, as measured by accumulated profit. Finally, GMM filtering expanded the range of learning algorithm and data source combinations that outperformed the top percentile of the random baseline.
comment: 21 pages
☆ Inductive Link Prediction on N-ary Relational Facts via Semantic Hypergraph Reasoning KDD
N-ary relational facts represent semantic correlations among more than two entities. While recent studies have developed link prediction (LP) methods to infer missing relations for knowledge graphs (KGs) containing n-ary relational facts, they are generally limited to transductive settings. Fully inductive settings, where predictions are made on previously unseen entities, remain a significant challenge. As existing methods are mainly entity embedding-based, they struggle to capture entity-independent logical rules. To fill in this gap, we propose an n-ary subgraph reasoning framework for fully inductive link prediction (ILP) on n-ary relational facts. This framework reasons over local subgraphs and has a strong inductive inference ability to capture n-ary patterns. Specifically, we introduce a novel graph structure, the n-ary semantic hypergraph, to facilitate subgraph extraction. Moreover, we develop a subgraph aggregating network, NS-HART, to effectively mine complex semantic correlations within subgraphs. Theoretically, we provide a thorough analysis from the score function optimization perspective to shed light on NS-HART's effectiveness for n-ary ILP tasks. Empirically, we conduct extensive experiments on a series of inductive benchmarks, including transfer reasoning (with and without entity features) and pairwise subgraph reasoning. The results highlight the superiority of the n-ary subgraph reasoning framework and the exceptional inductive ability of NS-HART. The source code of this paper has been made publicly available at https://github.com/yin-gz/Nary-Inductive-SubGraph.
comment: To be published in Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining V.1 (KDD'25)
☆ AutoRad-Lung: A Radiomic-Guided Prompting Autoregressive Vision-Language Model for Lung Nodule Malignancy Prediction
Lung cancer remains one of the leading causes of cancer-related mortality worldwide. A crucial challenge for early diagnosis is differentiating uncertain cases with similar visual characteristics and closely annotation scores. In clinical practice, radiologists rely on quantitative, hand-crafted Radiomic features extracted from Computed Tomography (CT) images, while recent research has primarily focused on deep learning solutions. More recently, Vision-Language Models (VLMs), particularly Contrastive Language-Image Pre-Training (CLIP)-based models, have gained attention for their ability to integrate textual knowledge into lung cancer diagnosis. While CLIP-Lung models have shown promising results, we identified the following potential limitations: (a) dependence on radiologists' annotated attributes, which are inherently subjective and error-prone, (b) use of textual information only during training, limiting direct applicability at inference, and (c) Convolutional-based vision encoder with randomly initialized weights, which disregards prior knowledge. To address these limitations, we introduce AutoRad-Lung, which couples an autoregressively pre-trained VLM, with prompts generated from hand-crafted Radiomics. AutoRad-Lung uses the vision encoder of the Large-Scale Autoregressive Image Model (AIMv2), pre-trained using a multi-modal autoregressive objective. Given that lung tumors are typically small, irregularly shaped, and visually similar to healthy tissue, AutoRad-Lung offers significant advantages over its CLIP-based counterparts by capturing pixel-level differences. Additionally, we introduce conditional context optimization, which dynamically generates context-specific prompts based on input Radiomics, improving cross-modal alignment.
☆ DR-PETS: Learning-Based Control With Planning in Adversarial Environments
Ensuring robustness against epistemic, possibly adversarial, perturbations is essential for reliable real-world decision-making. While the Probabilistic Ensembles with Trajectory Sampling (PETS) algorithm inherently handles uncertainty via ensemble-based probabilistic models, it lacks guarantees against structured adversarial or worst-case uncertainty distributions. To address this, we propose DR-PETS, a distributionally robust extension of PETS that certifies robustness against adversarial perturbations. We formalize uncertainty via a p-Wasserstein ambiguity set, enabling worst-case-aware planning through a min-max optimization framework. While PETS passively accounts for stochasticity, DR-PETS actively optimizes robustness via a tractable convex approximation integrated into PETS planning loop. Experiments on pendulum stabilization and cart-pole balancing show that DR-PETS certifies robustness against adversarial parameter perturbations, achieving consistent performance in worst-case scenarios where PETS deteriorates.
comment: 6 pages, 2 figures, submitted to LCSS
☆ Probabilistic Forecasting for Network Resource Analysis in Integrated Terrestrial and Non-Terrestrial Networks
Efficient resource management is critical for Non-Terrestrial Networks (NTNs) to provide consistent, high-quality service in remote and under-served regions. While traditional single-point prediction methods, such as Long-Short Term Memory (LSTM), have been used in terrestrial networks, they often fall short in NTNs due to the complexity of satellite dynamics, signal latency and coverage variability. Probabilistic forecasting, which quantifies the uncertainties of the predictions, is a robust alternative. In this paper, we evaluate the application of probabilistic forecasting techniques, in particular SFF, to NTN resource allocation scenarios. Our results show their effectiveness in predicting bandwidth and capacity requirements in different NTN segments of probabilistic forecasting compared to single-point prediction techniques such as LSTM. The results show the potential of black probabilistic forecasting models to provide accurate and reliable predictions and to quantify their uncertainty, making them indispensable for optimizing NTN resource allocation. At the end of the paper, we also present application scenarios and a standardization roadmap for the use of probabilistic forecasting in integrated Terrestrial Network (TN)-NTN environments.
☆ PVLens: Enhancing Pharmacovigilance Through Automated Label Extraction
Reliable drug safety reference databases are essential for pharmacovigilance, yet existing resources like SIDER are outdated and static. We introduce PVLens, an automated system that extracts labeled safety information from FDA Structured Product Labels (SPLs) and maps terms to MedDRA. PVLens integrates automation with expert oversight through a web-based review tool. In validation against 97 drug labels, PVLens achieved an F1 score of 0.882, with high recall (0.983) and moderate precision (0.799). By offering a scalable, more accurate and continuously updated alternative to SIDER, PVLens enhances real-time pharamcovigilance with improved accuracy and contemporaneous insights.
☆ Enhancing Multi-modal Models with Heterogeneous MoE Adapters for Fine-tuning
Multi-modal models excel in cross-modal tasks but are computationally expensive due to their billions of parameters. Parameter-efficient fine-tuning (PEFT) offers a solution by adding small trainable components while freezing pre-trained parameters. However, existing methods primarily focus on uni-modal processing, overlooking the critical modal fusion needed for multi-modal tasks. To fill this gap, we propose heterogeneous mixture of experts adapters that extend the traditional PEFT framework to support multi-modal expert combinations and improve information interaction. Additionally, our approach modifies the affine linear expert design to enable efficient modal fusion in a low-rank space, achieving competitive performance with only 5-8\% of the parameters fine-tuned. Experiments across eight downstream tasks, including visual-audio and text-visual, demonstrate the superior performance of the approach.
comment: 6 pages,3 figures
☆ $β$-GNN: A Robust Ensemble Approach Against Graph Structure Perturbation
Graph Neural Networks (GNNs) are playing an increasingly important role in the efficient operation and security of computing systems, with applications in workload scheduling, anomaly detection, and resource management. However, their vulnerability to network perturbations poses a significant challenge. We propose $\beta$-GNN, a model enhancing GNN robustness without sacrificing clean data performance. $\beta$-GNN uses a weighted ensemble, combining any GNN with a multi-layer perceptron. A learned dynamic weight, $\beta$, modulates the GNN's contribution. This $\beta$ not only weights GNN influence but also indicates data perturbation levels, enabling proactive mitigation. Experimental results on diverse datasets show $\beta$-GNN's superior adversarial accuracy and attack severity quantification. Crucially, $\beta$-GNN avoids perturbation assumptions, preserving clean data structure and performance.
comment: This is the author's version of the paper accepted at EuroMLSys 2025
☆ ProFed: a Benchmark for Proximity-based non-IID Federated Learning
In recent years, cro:flFederated learning (FL) has gained significant attention within the machine learning community. Although various FL algorithms have been proposed in the literature, their performance often degrades when data across clients is non-independently and identically distributed (non-IID). This skewness in data distribution often emerges from geographic patterns, with notable examples including regional linguistic variations in text data or localized traffic patterns in urban environments. Such scenarios result in IID data within specific regions but non-IID data across regions. However, existing FL algorithms are typically evaluated by randomly splitting non-IID data across devices, disregarding their spatial distribution. To address this gap, we introduce ProFed, a benchmark that simulates data splits with varying degrees of skewness across different regions. We incorporate several skewness methods from the literature and apply them to well-known datasets, including MNIST, FashionMNIST, CIFAR-10, and CIFAR-100. Our goal is to provide researchers with a standardized framework to evaluate FL algorithms more effectively and consistently against established baselines.
☆ State-Aware Perturbation Optimization for Robust Deep Reinforcement Learning
Recently, deep reinforcement learning (DRL) has emerged as a promising approach for robotic control. However, the deployment of DRL in real-world robots is hindered by its sensitivity to environmental perturbations. While existing whitebox adversarial attacks rely on local gradient information and apply uniform perturbations across all states to evaluate DRL robustness, they fail to account for temporal dynamics and state-specific vulnerabilities. To combat the above challenge, we first conduct a theoretical analysis of white-box attacks in DRL by establishing the adversarial victim-dynamics Markov decision process (AVD-MDP), to derive the necessary and sufficient conditions for a successful attack. Based on this, we propose a selective state-aware reinforcement adversarial attack method, named STAR, to optimize perturbation stealthiness and state visitation dispersion. STAR first employs a soft mask-based state-targeting mechanism to minimize redundant perturbations, enhancing stealthiness and attack effectiveness. Then, it incorporates an information-theoretic optimization objective to maximize mutual information between perturbations, environmental states, and victim actions, ensuring a dispersed state-visitation distribution that steers the victim agent into vulnerable states for maximum return reduction. Extensive experiments demonstrate that STAR outperforms state-of-the-art benchmarks.
comment: 15 pages, 11 figures
Diffusion Counterfactuals for Image Regressors
Counterfactual explanations have been successfully applied to create human interpretable explanations for various black-box models. They are handy for tasks in the image domain, where the quality of the explanations benefits from recent advances in generative models. Although counterfactual explanations have been widely applied to classification models, their application to regression tasks remains underexplored. We present two methods to create counterfactual explanations for image regression tasks using diffusion-based generative models to address challenges in sparsity and quality: 1) one based on a Denoising Diffusion Probabilistic Model that operates directly in pixel-space and 2) another based on a Diffusion Autoencoder operating in latent space. Both produce realistic, semantic, and smooth counterfactuals on CelebA-HQ and a synthetic data set, providing easily interpretable insights into the decision-making process of the regression model and reveal spurious correlations. We find that for regression counterfactuals, changes in features depend on the region of the predicted value. Large semantic changes are needed for significant changes in predicted values, making it harder to find sparse counterfactuals than with classifiers. Moreover, pixel space counterfactuals are more sparse while latent space counterfactuals are of higher quality and allow bigger semantic changes.
comment: 24 Pages, 5 Figures, Accepted at 3rd World Conference on eXplainable Artificial Intelligence (xAI-2025), Code and reproduction instructions available on GitHub, see https://github.com/DevinTDHa/Diffusion-Counterfactuals-for-Image-Regressors
☆ Feature Statistics with Uncertainty Help Adversarial Robustness
Despite the remarkable success of deep neural networks (DNNs), the security threat of adversarial attacks poses a significant challenge to the reliability of DNNs. By introducing randomness into different parts of DNNs, stochastic methods can enable the model to learn some uncertainty, thereby improving model robustness efficiently. In this paper, we theoretically discover a universal phenomenon that adversarial attacks will shift the distributions of feature statistics. Motivated by this theoretical finding, we propose a robustness enhancement module called Feature Statistics with Uncertainty (FSU). It resamples channel-wise feature means and standard deviations of examples from multivariate Gaussian distributions, which helps to reconstruct the attacked examples and calibrate the shifted distributions. The calibration recovers some domain characteristics of the data for classification, thereby mitigating the influence of perturbations and weakening the ability of attacks to deceive models. The proposed FSU module has universal applicability in training, attacking, predicting and fine-tuning, demonstrating impressive robustness enhancement ability at trivial additional time cost. For example, against powerful optimization-based CW attacks, by incorporating FSU into attacking and predicting phases, it endows many collapsed state-of-the-art models with 50%-80% robust accuracy on CIFAR10, CIFAR100 and SVHN.
☆ Optimizing Case-Based Reasoning System for Functional Test Script Generation with Large Language Models
In this work, we explore the potential of large language models (LLMs) for generating functional test scripts, which necessitates understanding the dynamically evolving code structure of the target software. To achieve this, we propose a case-based reasoning (CBR) system utilizing a 4R cycle (i.e., retrieve, reuse, revise, and retain), which maintains and leverages a case bank of test intent descriptions and corresponding test scripts to facilitate LLMs for test script generation. To improve user experience further, we introduce Re4, an optimization method for the CBR system, comprising reranking-based retrieval finetuning and reinforced reuse finetuning. Specifically, we first identify positive examples with high semantic and script similarity, providing reliable pseudo-labels for finetuning the retriever model without costly labeling. Then, we apply supervised finetuning, followed by a reinforcement learning finetuning stage, to align LLMs with our production scenarios, ensuring the faithful reuse of retrieved cases. Extensive experimental results on two product development units from Huawei Datacom demonstrate the superiority of the proposed CBR+Re4. Notably, we also show that the proposed Re4 method can help alleviate the repetitive generation issues with LLMs.
☆ TerraTorch: The Geospatial Foundation Models Toolkit
TerraTorch is a fine-tuning and benchmarking toolkit for Geospatial Foundation Models built on PyTorch Lightning and tailored for satellite, weather, and climate data. It integrates domain-specific data modules, pre-defined tasks, and a modular model factory that pairs any backbone with diverse decoder heads. These components allow researchers and practitioners to fine-tune supported models in a no-code fashion by simply editing a training configuration. By consolidating best practices for model development and incorporating the automated hyperparameter optimization extension Iterate, TerraTorch reduces the expertise and time required to fine-tune or benchmark models on new Earth Observation use cases. Furthermore, TerraTorch directly integrates with GEO-Bench, allowing for systematic and reproducible benchmarking of Geospatial Foundation Models. TerraTorch is open sourced under Apache 2.0, available at https://github.com/IBM/terratorch, and can be installed via pip install terratorch.
comment: IGARSS 2025
☆ A Theoretical Framework for Prompt Engineering: Approximating Smooth Functions with Transformer Prompts
Prompt engineering has emerged as a powerful technique for guiding large language models (LLMs) toward desired responses, significantly enhancing their performance across diverse tasks. Beyond their role as static predictors, LLMs increasingly function as intelligent agents, capable of reasoning, decision-making, and adapting dynamically to complex environments. However, the theoretical underpinnings of prompt engineering remain largely unexplored. In this paper, we introduce a formal framework demonstrating that transformer models, when provided with carefully designed prompts, can act as a configurable computational system by emulating a ``virtual'' neural network during inference. Specifically, input prompts effectively translate into the corresponding network configuration, enabling LLMs to adjust their internal computations dynamically. Building on this construction, we establish an approximation theory for $\beta$-times differentiable functions, proving that transformers can approximate such functions with arbitrary precision when guided by appropriately structured prompts. Moreover, our framework provides theoretical justification for several empirically successful prompt engineering techniques, including the use of longer, structured prompts, filtering irrelevant information, enhancing prompt token diversity, and leveraging multi-agent interactions. By framing LLMs as adaptable agents rather than static models, our findings underscore their potential for autonomous reasoning and problem-solving, paving the way for more robust and theoretically grounded advancements in prompt engineering and AI agent design.
comment: 55 pages, 2 figures
☆ Injecting Adrenaline into LLM Serving: Boosting Resource Utilization and Throughput via Attention Disaggregation
In large language model (LLM) serving systems, executing each request consists of two phases: the compute-intensive prefill phase and the memory-intensive decoding phase. To prevent performance interference between the two phases, current LLM serving systems typically adopt prefill-decoding disaggregation, where the two phases are split across separate machines. However, we observe this approach leads to significant resource underutilization. Specifically, prefill instances that are compute-intensive suffer from low memory utilization, while decoding instances that are memory-intensive experience low compute utilization. To address this problem, this paper proposes Adrenaline, an attention disaggregation and offloading mechanism designed to enhance resource utilization and performance in LLM serving systems. Adrenaline's key innovation lies in disaggregating part of the attention computation in the decoding phase and offloading them to prefill instances. The memory-bound nature of decoding-phase attention computation inherently enables an effective offloading strategy, yielding two complementary advantages: 1) improved memory capacity and bandwidth utilization in prefill instances, and 2) increased decoding batch sizes that enhance compute utilization in decoding instances, collectively boosting overall system performance. Adrenaline achieves these gains through three key techniques: low-latency decoding synchronization, resource-efficient prefill colocation, and load-aware offloading scheduling. Experimental results show that Adrenaline achieves 2.28x higher memory capacity and 2.07x better memory bandwidth utilization in prefill instances, up to 1.67x improvements in compute utilization for decoding instances, and 1.68x higher overall inference throughput compared to state-of-the-art systems.
comment: 14 pages, 18 figures
☆ Regression-Based Estimation of Causal Effects in the Presence of Selection Bias and Confounding
We consider the problem of estimating the expected causal effect $E[Y|do(X)]$ for a target variable $Y$ when treatment $X$ is set by intervention, focusing on continuous random variables. In settings without selection bias or confounding, $E[Y|do(X)] = E[Y|X]$, which can be estimated using standard regression methods. However, regression fails when systematic missingness induced by selection bias, or confounding distorts the data. Boeken et al. [2023] show that when training data is subject to selection, proxy variables unaffected by this process can, under certain constraints, be used to correct for selection bias to estimate $E[Y|X]$, and hence $E[Y|do(X)]$, reliably. When data is additionally affected by confounding, however, this equality is no longer valid. Building on these results, we consider a more general setting and propose a framework that incorporates both selection bias and confounding. Specifically, we derive theoretical conditions ensuring identifiability and recoverability of causal effects under access to external data and proxy variables. We further introduce a two-step regression estimator (TSR), capable of exploiting proxy variables to adjust for selection bias while accounting for confounding. We show that TSR coincides with prior work if confounding is absent, but achieves a lower variance. Extensive simulation studies validate TSR's correctness for scenarios which may include both selection bias and confounding with proxy variables.
comment: 13 pages plus appendix
☆ Fast, Modular, and Differentiable Framework for Machine Learning-Enhanced Molecular Simulations
We present an end-to-end differentiable molecular simulation framework (DIMOS) for molecular dynamics and Monte Carlo simulations. DIMOS easily integrates machine-learning-based interatomic potentials and implements classical force fields including particle-mesh Ewald electrostatics. Thanks to its modularity, both classical and machine-learning-based approaches can be easily combined into a hybrid description of the system (ML/MM). By supporting key molecular dynamics features such as efficient neighborlists and constraint algorithms for larger time steps, the framework bridges the gap between hand-optimized simulation engines and the flexibility of a PyTorch implementation. The superior performance and the high versatility is probed in different benchmarks and applications, with speed-up factors of up to $170\times$. The advantage of differentiability is demonstrated by an end-to-end optimization of the proposal distribution in a Markov Chain Monte Carlo simulation based on Hamiltonian Monte Carlo. Using these optimized simulation parameters a $3\times$ acceleration is observed in comparison to ad-hoc chosen simulation parameters. The code is available at https://github.com/nec-research/DIMOS.
☆ Harmonia: A Multi-Agent Reinforcement Learning Approach to Data Placement and Migration in Hybrid Storage Systems
Hybrid storage systems (HSS) combine multiple storage devices with diverse characteristics to achieve high performance and capacity at low cost. The performance of an HSS highly depends on the effectiveness of two key policies: (1) the data-placement policy, which determines the best-fit storage device for incoming data, and (2) the data-migration policy, which rearranges stored data across the devices to sustain high HSS performance. Prior works focus on improving only data placement or only data migration in HSS, which leads to sub-optimal HSS performance. Unfortunately, no prior work tries to optimize both policies together. Our goal is to design a holistic data-management technique for HSS that optimizes both data-placement and data-migration policies to fully exploit the potential of an HSS. We propose Harmonia, a multi-agent reinforcement learning (RL)-based data-management technique that employs two light-weight autonomous RL agents, a data-placement agent and a data-migration agent, which adapt their policies for the current workload and HSS configuration, and coordinate with each other to improve overall HSS performance. We evaluate Harmonia on a real HSS with up to four heterogeneous storage devices with diverse characteristics. Our evaluation using 17 data-intensive workloads on performance-optimized (cost-optimized) HSS with two storage devices shows that, on average, Harmonia (1) outperforms the best-performing prior approach by 49.5% (31.7%), (2) bridges the performance gap between the best-performing prior work and Oracle by 64.2% (64.3%). On an HSS with three (four) devices, Harmonia outperforms the best-performing prior work by 37.0% (42.0%). Harmonia's performance benefits come with low latency (240ns for inference) and storage overheads (206 KiB for both RL agents together). We plan to open-source Harmonia's implementation to aid future research on HSS.
☆ Riemannian Optimization on Relaxed Indicator Matrix Manifold
The indicator matrix plays an important role in machine learning, but optimizing it is an NP-hard problem. We propose a new relaxation of the indicator matrix and prove that this relaxation forms a manifold, which we call the Relaxed Indicator Matrix Manifold (RIM manifold). Based on Riemannian geometry, we develop a Riemannian toolbox for optimization on the RIM manifold. Specifically, we provide several methods of Retraction, including a fast Retraction method to obtain geodesics. We point out that the RIM manifold is a generalization of the double stochastic manifold, and it is much faster than existing methods on the double stochastic manifold, which has a complexity of \( \mathcal{O}(n^3) \), while RIM manifold optimization is \( \mathcal{O}(n) \) and often yields better results. We conducted extensive experiments, including image denoising, with millions of variables to support our conclusion, and applied the RIM manifold to Ratio Cut, achieving clustering results that outperform the state-of-the-art methods. Our Code in \href{https://github.com/Yuan-Jinghui/Riemannian-Optimization-on-Relaxed-Indicator-Matrix-Manifold}{https://github.com/Yuan-Jinghui/Riemannian-Optimization-on-Relaxed-Indicator-Matrix-Manifold}.
☆ VPO: Aligning Text-to-Video Generation Models with Prompt Optimization
Video generation models have achieved remarkable progress in text-to-video tasks. These models are typically trained on text-video pairs with highly detailed and carefully crafted descriptions, while real-world user inputs during inference are often concise, vague, or poorly structured. This gap makes prompt optimization crucial for generating high-quality videos. Current methods often rely on large language models (LLMs) to refine prompts through in-context learning, but suffer from several limitations: they may distort user intent, omit critical details, or introduce safety risks. Moreover, they optimize prompts without considering the impact on the final video quality, which can lead to suboptimal results. To address these issues, we introduce VPO, a principled framework that optimizes prompts based on three core principles: harmlessness, accuracy, and helpfulness. The generated prompts faithfully preserve user intents and, more importantly, enhance the safety and quality of generated videos. To achieve this, VPO employs a two-stage optimization approach. First, we construct and refine a supervised fine-tuning (SFT) dataset based on principles of safety and alignment. Second, we introduce both text-level and video-level feedback to further optimize the SFT model with preference learning. Our extensive experiments demonstrate that VPO significantly improves safety, alignment, and video quality compared to baseline methods. Moreover, VPO shows strong generalization across video generation models. Furthermore, we demonstrate that VPO could outperform and be combined with RLHF methods on video generation models, underscoring the effectiveness of VPO in aligning video generation models. Our code and data are publicly available at https://github.com/thu-coai/VPO.
☆ Adaptive Local Clustering over Attributed Graphs ICDE2025
Given a graph $G$ and a seed node $v_s$, the objective of local graph clustering (LGC) is to identify a subgraph $C_s \in G$ (a.k.a. local cluster) surrounding $v_s$ in time roughly linear with the size of $C_s$. This approach yields personalized clusters without needing to access the entire graph, which makes it highly suitable for numerous applications involving large graphs. However, most existing solutions merely rely on the topological connectivity between nodes in $G$, rendering them vulnerable to missing or noisy links that are commonly present in real-world graphs. To address this issue, this paper resorts to leveraging the complementary nature of graph topology and node attributes to enhance local clustering quality. To effectively exploit the attribute information, we first formulate the LGC as an estimation of the bidirectional diffusion distribution (BDD), which is specialized for capturing the multi-hop affinity between nodes in the presence of attributes. Furthermore, we propose LACA, an efficient and effective approach for LGC that achieves superb empirical performance on multiple real datasets while maintaining strong locality. The core components of LACA include (i) a fast and theoretically-grounded preprocessing technique for node attributes, (ii) an adaptive algorithm for diffusing any vectors over $G$ with rigorous theoretical guarantees and expedited convergence, and (iii) an effective three-step scheme for BDD approximation. Extensive experiments, comparing 17 competitors on 8 real datasets, show that LACA outperforms all competitors in terms of result quality measured against ground truth local clusters, while also being up to orders of magnitude faster. The code is available at https://github.com/HaoranZ99/alac.
comment: Accepted by ICDE2025. The code is available at https://github.com/HaoranZ99/alac
☆ Dissecting and Mitigating Diffusion Bias via Mechanistic Interpretability CVPR 2025
Diffusion models have demonstrated impressive capabilities in synthesizing diverse content. However, despite their high-quality outputs, these models often perpetuate social biases, including those related to gender and race. These biases can potentially contribute to harmful real-world consequences, reinforcing stereotypes and exacerbating inequalities in various social contexts. While existing research on diffusion bias mitigation has predominantly focused on guiding content generation, it often neglects the intrinsic mechanisms within diffusion models that causally drive biased outputs. In this paper, we investigate the internal processes of diffusion models, identifying specific decision-making mechanisms, termed bias features, embedded within the model architecture. By directly manipulating these features, our method precisely isolates and adjusts the elements responsible for bias generation, permitting granular control over the bias levels in the generated content. Through experiments on both unconditional and conditional diffusion models across various social bias attributes, we demonstrate our method's efficacy in managing generation distribution while preserving image quality. We also dissect the discovered model mechanism, revealing different intrinsic features controlling fine-grained aspects of generation, boosting further research on mechanistic interpretability of diffusion models.
comment: CVPR 2025; Project Page: https://foundation-model-research.github.io/difflens
☆ Data-driven Seasonal Climate Predictions via Variational Inference and Transformers
Most operational climate services providers base their seasonal predictions on initialised general circulation models (GCMs) or statistical techniques that fit past observations. GCMs require substantial computational resources, which limits their capacity. In contrast, statistical methods often lack robustness due to short historical records. Recent works propose machine learning methods trained on climate model output, leveraging larger sample sizes and simulated scenarios. Yet, many of these studies focus on prediction tasks that might be restricted in spatial extent or temporal coverage, opening a gap with existing operational predictions. Thus, the present study evaluates the effectiveness of a methodology that combines variational inference with transformer models to predict fields of seasonal anomalies. The predictions cover all four seasons and are initialised one month before the start of each season. The model was trained on climate model output from CMIP6 and tested using ERA5 reanalysis data. We analyse the method's performance in predicting interannual anomalies beyond the climate change-induced trend. We also test the proposed methodology in a regional context with a use case focused on Europe. While climate change trends dominate the skill of temperature predictions, the method presents additional skill over the climatological forecast in regions influenced by known teleconnections. We reach similar conclusions based on the validation of precipitation predictions. Despite underperforming SEAS5 in most tropics, our model offers added value in numerous extratropical inland regions. This work demonstrates the effectiveness of training generative models on climate model output for seasonal predictions, providing skilful predictions beyond the induced climate change trend at time scales and lead times relevant for user applications.
☆ Lipschitz Constant Meets Condition Number: Learning Robust and Compact Deep Neural Networks
Recent research has revealed that high compression of Deep Neural Networks (DNNs), e.g., massive pruning of the weight matrix of a DNN, leads to a severe drop in accuracy and susceptibility to adversarial attacks. Integration of network pruning into an adversarial training framework has been proposed to promote adversarial robustness. It has been observed that a highly pruned weight matrix tends to be ill-conditioned, i.e., increasing the condition number of the weight matrix. This phenomenon aggravates the vulnerability of a DNN to input noise. Although a highly pruned weight matrix is considered to be able to lower the upper bound of the local Lipschitz constant to tolerate large distortion, the ill-conditionedness of such a weight matrix results in a non-robust DNN model. To overcome this challenge, this work develops novel joint constraints to adjust the weight distribution of networks, namely, the Transformed Sparse Constraint joint with Condition Number Constraint (TSCNC), which copes with smoothing distribution and differentiable constraint functions to reduce condition number and thus avoid the ill-conditionedness of weight matrices. Furthermore, our theoretical analyses unveil the relevance between the condition number and the local Lipschitz constant of the weight matrix, namely, the sharply increasing condition number becomes the dominant factor that restricts the robustness of over-sparsified models. Extensive experiments are conducted on several public datasets, and the results show that the proposed constraints significantly improve the robustness of a DNN with high pruning rates.
comment: 13 pages, 6 figures
☆ The Crucial Role of Problem Formulation in Real-World Reinforcement Learning
Reinforcement Learning (RL) offers promising solutions for control tasks in industrial cyber-physical systems (ICPSs), yet its real-world adoption remains limited. This paper demonstrates how seemingly small but well-designed modifications to the RL problem formulation can substantially improve performance, stability, and sample efficiency. We identify and investigate key elements of RL problem formulation and show that these enhance both learning speed and final policy quality. Our experiments use a one-degree-of-freedom (1-DoF) helicopter testbed, the Quanser Aero~2, which features non-linear dynamics representative of many industrial settings. In simulation, the proposed problem design principles yield more reliable and efficient training, and we further validate these results by training the agent directly on physical hardware. The encouraging real-world outcomes highlight the potential of RL for ICPS, especially when careful attention is paid to the design principles of problem formulation. Overall, our study underscores the crucial role of thoughtful problem formulation in bridging the gap between RL research and the demands of real-world industrial systems.
comment: Accepted at ICPS 2025
☆ TempTest: Local Normalization Distortion and the Detection of Machine-generated Text
Existing methods for the zero-shot detection of machine-generated text are dominated by three statistical quantities: log-likelihood, log-rank, and entropy. As language models mimic the distribution of human text ever closer, this will limit our ability to build effective detection algorithms. To combat this, we introduce a method for detecting machine-generated text that is entirely agnostic of the generating language model. This is achieved by targeting a defect in the way that decoding strategies, such as temperature or top-k sampling, normalize conditional probability measures. This method can be rigorously theoretically justified, is easily explainable, and is conceptually distinct from existing methods for detecting machine-generated text. We evaluate our detector in the white and black box settings across various language models, datasets, and passage lengths. We also study the effect of paraphrasing attacks on our detector and the extent to which it is biased against non-native speakers. In each of these settings, the performance of our test is at least comparable to that of other state-of-the-art text detectors, and in some cases, we strongly outperform these baselines.
☆ Active Data Sampling and Generation for Bias Remediation
Adequate sampling space coverage is the keystone to effectively train trustworthy Machine Learning models. Unfortunately, real data do carry several inherent risks due to the many potential biases they exhibit when gathered without a proper random sampling over the reference population, and most of the times this is way too expensive or time consuming to be a viable option. Depending on how training data have been gathered, unmitigated biases can lead to harmful or discriminatory consequences that ultimately hinders large scale applicability of pre-trained models and undermine their truthfulness or fairness expectations. In this paper, a mixed active sampling and data generation strategy -- called samplation -- is proposed as a mean to compensate during fine-tuning of a pre-trained classifer the unfair classifications it produces, assuming that the training data come from a non-probabilistic sampling schema. Given a pre-trained classifier, first a fairness metric is evaluated on a test set, then new reservoirs of labeled data are generated and finally a number of reversely-biased artificial samples are generated for the fine-tuning of the model. Using as case study Deep Models for visual semantic role labeling, the proposed method has been able to fully cure a simulated gender bias starting from a 90/10 imbalance, with only a small percentage of new data and with a minor effect on accuracy.
☆ Learning Data-Driven Uncertainty Set Partitions for Robust and Adaptive Energy Forecasting with Missing Data
Short-term forecasting models typically assume the availability of input data (features) when they are deployed and in use. However, equipment failures, disruptions, cyberattacks, may lead to missing features when such models are used operationally, which could negatively affect forecast accuracy, and result in suboptimal operational decisions. In this paper, we use adaptive robust optimization and adversarial machine learning to develop forecasting models that seamlessly handle missing data operationally. We propose linear- and neural network-based forecasting models with parameters that adapt to available features, combining linear adaptation with a novel algorithm for learning data-driven uncertainty set partitions. The proposed adaptive models do not rely on identifying historical missing data patterns and are suitable for real-time operations under stringent time constraints. Extensive numerical experiments on short-term wind power forecasting considering horizons from 15 minutes to 4 hours ahead illustrate that our proposed adaptive models are on par with imputation when data are missing for very short periods (e.g., when only the latest measurement is missing) whereas they significantly outperform imputation when data are missing for longer periods. We further provide insights by showcasing how linear adaptation and data-driven partitions (even with a few subsets) approach the performance of the optimal, yet impractical, method of retraining for every possible realization of missing data.
comment: Submitted to IEEE-TSG
☆ Comparative analysis and evaluation of ageing forecasting methods for semiconductor devices in online health monitoring
Semiconductor devices, especially MOSFETs (Metal-oxide-semiconductor field-effect transistor), are crucial in power electronics, but their reliability is affected by aging processes influenced by cycling and temperature. The primary aging mechanism in discrete semiconductors and power modules is the bond wire lift-off, caused by crack growth due to thermal fatigue. The process is empirically characterized by exponential growth and an abrupt end of life, making long-term aging forecasts challenging. This research presents a comprehensive comparative assessment of different forecasting methods for MOSFET failure forecasting applications. Classical tracking, statistical forecasting and Neural Network (NN) based forecasting models are implemented along with novel Temporal Fusion Transformers (TFTs). A comprehensive comparison is performed assessing their MOSFET ageing forecasting ability for different forecasting horizons. For short-term predictions, all algorithms result in acceptable results, with the best results produced by classical NN forecasting models at the expense of higher computations. For long-term forecasting, only the TFT is able to produce valid outcomes owing to the ability to integrate covariates from the expected future conditions. Additionally, TFT attention points identify key ageing turning points, which indicate new failure modes or accelerated ageing phases.
comment: 28 pages, 12 figures, published
☆ Multi-dataset and Transfer Learning Using Gene Expression Knowledge Graphs
Gene expression datasets offer insights into gene regulation mechanisms, biochemical pathways, and cellular functions. Additionally, comparing gene expression profiles between disease and control patients can deepen the understanding of disease pathology. Therefore, machine learning has been used to process gene expression data, with patient diagnosis emerging as one of the most popular applications. Although gene expression data can provide valuable insights, challenges arise because the number of patients in expression datasets is usually limited, and the data from different datasets with different gene expressions cannot be easily combined. This work proposes a novel methodology to address these challenges by integrating multiple gene expression datasets and domain-specific knowledge using knowledge graphs, a unique tool for biomedical data integration. Then, vector representations are produced using knowledge graph embedding techniques, which are used as inputs for a graph neural network and a multi-layer perceptron. We evaluate the efficacy of our methodology in three settings: single-dataset learning, multi-dataset learning, and transfer learning. The experimental results show that combining gene expression datasets and domain-specific knowledge improves patient diagnosis in all three settings.
comment: Accepted at the Extended Semantic Web Conference 2025
☆ Including local feature interactions in deep non-negative matrix factorization networks improves performance
The brain uses positive signals as a means of signaling. Forward interactions in the early visual cortex are also positive, realized by excitatory synapses. Only local interactions also include inhibition. Non-negative matrix factorization (NMF) captures the biological constraint of positive long-range interactions and can be implemented with stochastic spikes. While NMF can serve as an abstract formalization of early neural processing in the visual system, the performance of deep convolutional networks with NMF modules does not match that of CNNs of similar size. However, when the local NMF modules are each followed by a module that mixes the NMF's positive activities, the performances on the benchmark data exceed that of vanilla deep convolutional networks of similar size. This setting can be considered a biologically more plausible emulation of the processing in cortical (hyper-)columns with the potential to improve the performance of deep networks.
☆ FastFT: Accelerating Reinforced Feature Transformation via Advanced Exploration Strategies ICDE 2025
Feature Transformation is crucial for classic machine learning that aims to generate feature combinations to enhance the performance of downstream tasks from a data-centric perspective. Current methodologies, such as manual expert-driven processes, iterative-feedback techniques, and exploration-generative tactics, have shown promise in automating such data engineering workflow by minimizing human involvement. However, three challenges remain in those frameworks: (1) It predominantly depends on downstream task performance metrics, as assessment is time-consuming, especially for large datasets. (2) The diversity of feature combinations will hardly be guaranteed after random exploration ends. (3) Rare significant transformations lead to sparse valuable feedback that hinders the learning processes or leads to less effective results. In response to these challenges, we introduce FastFT, an innovative framework that leverages a trio of advanced strategies.We first decouple the feature transformation evaluation from the outcomes of the generated datasets via the performance predictor. To address the issue of reward sparsity, we developed a method to evaluate the novelty of generated transformation sequences. Incorporating this novelty into the reward function accelerates the model's exploration of effective transformations, thereby improving the search productivity. Additionally, we combine novelty and performance to create a prioritized memory buffer, ensuring that essential experiences are effectively revisited during exploration. Our extensive experimental evaluations validate the performance, efficiency, and traceability of our proposed framework, showcasing its superiority in handling complex feature transformation tasks.
comment: 14 pages, Accepted by ICDE 2025
☆ CNN+Transformer Based Anomaly Traffic Detection in UAV Networks for Emergency Rescue
The unmanned aerial vehicle (UAV) network has gained significant attentions in recent years due to its various applications. However, the traffic security becomes the key threatening public safety issue in an emergency rescue system due to the increasing vulnerability of UAVs to cyber attacks in environments with high heterogeneities. Hence, in this paper, we propose a novel anomaly traffic detection architecture for UAV networks based on the software-defined networking (SDN) framework and blockchain technology. Specifically, SDN separates the control and data plane to enhance the network manageability and security. Meanwhile, the blockchain provides decentralized identity authentication and data security records. Beisdes, a complete security architecture requires an effective mechanism to detect the time-series based abnormal traffic. Thus, an integrated algorithm combining convolutional neural networks (CNNs) and Transformer (CNN+Transformer) for anomaly traffic detection is developed, which is called CTranATD. Finally, the simulation results show that the proposed CTranATD algorithm is effective and outperforms the individual CNN, Transformer, and LSTM algorithms for detecting anomaly traffic.
☆ SURGEON: Memory-Adaptive Fully Test-Time Adaptation via Dynamic Activation Sparsity CVPR 2025
Despite the growing integration of deep models into mobile terminals, the accuracy of these models declines significantly due to various deployment interferences. Test-time adaptation (TTA) has emerged to improve the performance of deep models by adapting them to unlabeled target data online. Yet, the significant memory cost, particularly in resource-constrained terminals, impedes the effective deployment of most backward-propagation-based TTA methods. To tackle memory constraints, we introduce SURGEON, a method that substantially reduces memory cost while preserving comparable accuracy improvements during fully test-time adaptation (FTTA) without relying on specific network architectures or modifications to the original training procedure. Specifically, we propose a novel dynamic activation sparsity strategy that directly prunes activations at layer-specific dynamic ratios during adaptation, allowing for flexible control of learning ability and memory cost in a data-sensitive manner. Among this, two metrics, Gradient Importance and Layer Activation Memory, are considered to determine the layer-wise pruning ratios, reflecting accuracy contribution and memory efficiency, respectively. Experimentally, our method surpasses the baselines by not only reducing memory usage but also achieving superior accuracy, delivering SOTA performance across diverse datasets, architectures, and tasks.
comment: Accepted to CVPR 2025
VideoGEM: Training-free Action Grounding in Videos
Vision-language foundation models have shown impressive capabilities across various zero-shot tasks, including training-free localization and grounding, primarily focusing on localizing objects in images. However, leveraging those capabilities to localize actions and events in videos is challenging, as actions have less physical outline and are usually described by higher-level concepts. In this work, we propose VideoGEM, the first training-free spatial action grounding method based on pretrained image- and video-language backbones. Namely, we adapt the self-self attention formulation of GEM to spatial activity grounding. We observe that high-level semantic concepts, such as actions, usually emerge in the higher layers of the image- and video-language models. We, therefore, propose a layer weighting in the self-attention path to prioritize higher layers. Additionally, we introduce a dynamic weighting method to automatically tune layer weights to capture each layer`s relevance to a specific prompt. Finally, we introduce a prompt decomposition, processing action, verb, and object prompts separately, resulting in a better spatial localization of actions. We evaluate the proposed approach on three image- and video-language backbones, CLIP, OpenCLIP, and ViCLIP, and on four video grounding datasets, V-HICO, DALY, YouCook-Interactions, and GroundingYouTube, showing that the proposed training-free approach is able to outperform current trained state-of-the-art approaches for spatial video grounding.
☆ Wasserstein Distributionally Robust Bayesian Optimization with Continuous Context
We address the challenge of sequential data-driven decision-making under context distributional uncertainty. This problem arises in numerous real-world scenarios where the learner optimizes black-box objective functions in the presence of uncontrollable contextual variables. We consider the setting where the context distribution is uncertain but known to lie within an ambiguity set defined as a ball in the Wasserstein distance. We propose a novel algorithm for Wasserstein Distributionally Robust Bayesian Optimization that can handle continuous context distributions while maintaining computational tractability. Our theoretical analysis combines recent results in self-normalized concentration in Hilbert spaces and finite-sample bounds for distributionally robust optimization to establish sublinear regret bounds that match state-of-the-art results. Through extensive comparisons with existing approaches on both synthetic and real-world problems, we demonstrate the simplicity, effectiveness, and practical applicability of our proposed method.
☆ Enabling Heterogeneous Adversarial Transferability via Feature Permutation Attacks PAKDD 2025
Adversarial attacks in black-box settings are highly practical, with transfer-based attacks being the most effective at generating adversarial examples (AEs) that transfer from surrogate models to unseen target models. However, their performance significantly degrades when transferring across heterogeneous architectures -- such as CNNs, MLPs, and Vision Transformers (ViTs) -- due to fundamental architectural differences. To address this, we propose Feature Permutation Attack (FPA), a zero-FLOP, parameter-free method that enhances adversarial transferability across diverse architectures. FPA introduces a novel feature permutation (FP) operation, which rearranges pixel values in selected feature maps to simulate long-range dependencies, effectively making CNNs behave more like ViTs and MLPs. This enhances feature diversity and improves transferability both across heterogeneous architectures and within homogeneous CNNs. Extensive evaluations on 14 state-of-the-art architectures show that FPA achieves maximum absolute gains in attack success rates of 7.68% on CNNs, 14.57% on ViTs, and 14.48% on MLPs, outperforming existing black-box attacks. Additionally, FPA is highly generalizable and can seamlessly integrate with other transfer-based attacks to further boost their performance. Our findings establish FPA as a robust, efficient, and computationally lightweight strategy for enhancing adversarial transferability across heterogeneous architectures.
comment: PAKDD 2025. Main Track
☆ CryoSAMU: Enhancing 3D Cryo-EM Density Maps of Protein Structures at Intermediate Resolution with Structure-Aware Multimodal U-Nets
Enhancing cryogenic electron microscopy (cryo-EM) 3D density maps at intermediate resolution (4-8 {\AA}) is crucial in protein structure determination. Recent advances in deep learning have led to the development of automated approaches for enhancing experimental cryo-EM density maps. Yet, these methods are not optimized for intermediate-resolution maps and rely on map density features alone. To address this, we propose CryoSAMU, a novel method designed to enhance 3D cryo-EM density maps of protein structures using structure-aware multimodal U-Nets and trained on curated intermediate-resolution density maps. We comprehensively evaluate CryoSAMU across various metrics and demonstrate its competitive performance compared to state-of-the-art methods. Notably, CryoSAMU achieves significantly faster processing speed, showing promise for future practical applications. Our code is available at https://github.com/chenwei-zhang/CryoSAMU.
comment: 18 pages, 6 main figures, 2 supplementary figures, 3 main tables, 4 supplementary tables
☆ Model-Based Offline Reinforcement Learning with Adversarial Data Augmentation
Model-based offline Reinforcement Learning (RL) constructs environment models from offline datasets to perform conservative policy optimization. Existing approaches focus on learning state transitions through ensemble models, rollouting conservative estimation to mitigate extrapolation errors. However, the static data makes it challenging to develop a robust policy, and offline agents cannot access the environment to gather new data. To address these challenges, we introduce Model-based Offline Reinforcement learning with AdversariaL data augmentation (MORAL). In MORAL, we replace the fixed horizon rollout by employing adversaria data augmentation to execute alternating sampling with ensemble models to enrich training data. Specifically, this adversarial process dynamically selects ensemble models against policy for biased sampling, mitigating the optimistic estimation of fixed models, thus robustly expanding the training data for policy optimization. Moreover, a differential factor is integrated into the adversarial process for regularization, ensuring error minimization in extrapolations. This data-augmented optimization adapts to diverse offline tasks without rollout horizon tuning, showing remarkable applicability. Extensive experiments on D4RL benchmark demonstrate that MORAL outperforms other model-based offline RL methods in terms of policy learning and sample efficiency.
☆ The cell as a token: high-dimensional geometry in language models and cell embeddings
Single-cell sequencing technology maps cells to a high-dimensional space encoding their internal activity. This process mirrors parallel developments in machine learning, where large language models ingest unstructured text by converting words into discrete tokens embedded within a high-dimensional vector space. This perspective explores how advances in understanding the structure of language embeddings can inform ongoing efforts to analyze and visualize single cell datasets. We discuss how the context of tokens influences the geometry of embedding space, and the role of low-dimensional manifolds in shaping this space's robustness and interpretability. We highlight new developments in language modeling, such as interpretability probes and in-context reasoning, that can inform future efforts to construct and consolidate cell atlases.
comment: 4 pages, 2 figures
☆ An $(ε,δ)$-accurate level set estimation with a stopping criterion
The level set estimation problem seeks to identify regions within a set of candidate points where an unknown and costly to evaluate function's value exceeds a specified threshold, providing an efficient alternative to exhaustive evaluations of function values. Traditional methods often use sequential optimization strategies to find $\epsilon$-accurate solutions, which permit a margin around the threshold contour but frequently lack effective stopping criteria, leading to excessive exploration and inefficiencies. This paper introduces an acquisition strategy for level set estimation that incorporates a stopping criterion, ensuring the algorithm halts when further exploration is unlikely to yield improvements, thereby reducing unnecessary function evaluations. We theoretically prove that our method satisfies $\epsilon$-accuracy with a confidence level of $1 - \delta$, addressing a key gap in existing approaches. Furthermore, we show that this also leads to guarantees on the lower bounds of performance metrics such as F-score. Numerical experiments demonstrate that the proposed acquisition function achieves comparable precision to existing methods while confirming that the stopping criterion effectively terminates the algorithm once adequate exploration is completed.
☆ Revisit Time Series Classification Benchmark: The Impact of Temporal Information for Classification PAKDD2025
Time series classification is usually regarded as a distinct task from tabular data classification due to the importance of temporal information. However, in this paper, by performing permutation tests that disrupt temporal information on the UCR time series classification archive, the most widely used benchmark for time series classification, we identify a significant proportion of datasets where temporal information has little to no impact on classification. Many of these datasets are tabular in nature or rely mainly on tabular features, leading to potentially biased evaluations of time series classifiers focused on temporal information. To address this, we propose UCR Augmented, a benchmark based on the UCR time series classification archive designed to evaluate classifiers' ability to extract and utilize temporal information. Testing classifiers from seven categories on this benchmark revealed notable shifts in performance rankings. Some previously overlooked approaches perform well, while others see their performance decline significantly when temporal information is crucial. UCR Augmented provides a more robust framework for assessing time series classifiers, ensuring fairer evaluations. Our code is available at https://github.com/YunruiZhang/Revisit-Time-Series-Classification-Benchmark.
comment: Accepted to PAKDD2025
☆ Incremental Object Keypoint Learning CVPR
Existing progress in object keypoint estimation primarily benefits from the conventional supervised learning paradigm based on numerous data labeled with pre-defined keypoints. However, these well-trained models can hardly detect the undefined new keypoints in test time, which largely hinders their feasibility for diverse downstream tasks. To handle this, various solutions are explored but still suffer from either limited generalizability or transferability. Therefore, in this paper, we explore a novel keypoint learning paradigm in that we only annotate new keypoints in the new data and incrementally train the model, without retaining any old data, called Incremental object Keypoint Learning (IKL). A two-stage learning scheme as a novel baseline tailored to IKL is developed. In the first Knowledge Association stage, given the data labeled with only new keypoints, an auxiliary KA-Net is trained to automatically associate the old keypoints to these new ones based on their spatial and intrinsic anatomical relations. In the second Mutual Promotion stage, based on a keypoint-oriented spatial distillation loss, we jointly leverage the auxiliary KA-Net and the old model for knowledge consolidation to mutually promote the estimation of all old and new keypoints. Owing to the investigation of the correlations between new and old keypoints, our proposed method can not just effectively mitigate the catastrophic forgetting of old keypoints, but may even further improve the estimation of the old ones and achieve a positive transfer beyond anti-forgetting. Such an observation has been solidly verified by extensive experiments on different keypoint datasets, where our method exhibits superiority in alleviating the forgetting issue and boosting performance while enjoying labeling efficiency even under the low-shot data regime.
comment: The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2025
☆ TraNCE: Transformative Non-linear Concept Explainer for CNNs
Convolutional neural networks (CNNs) have succeeded remarkably in various computer vision tasks. However, they are not intrinsically explainable. While the feature-level understanding of CNNs reveals where the models looked, concept-based explainability methods provide insights into what the models saw. However, their assumption of linear reconstructability of image activations fails to capture the intricate relationships within these activations. Their Fidelity-only approach to evaluating global explanations also presents a new concern. For the first time, we address these limitations with the novel Transformative Nonlinear Concept Explainer (TraNCE) for CNNs. Unlike linear reconstruction assumptions made by existing methods, TraNCE captures the intricate relationships within the activations. This study presents three original contributions to the CNN explainability literature: (i) An automatic concept discovery mechanism based on variational autoencoders (VAEs). This transformative concept discovery process enhances the identification of meaningful concepts from image activations. (ii) A visualization module that leverages the Bessel function to create a smooth transition between prototypical image pixels, revealing not only what the CNN saw but also what the CNN avoided, thereby mitigating the challenges of concept duplication as documented in previous works. (iii) A new metric, the Faith score, integrates both Coherence and Fidelity for a comprehensive evaluation of explainer faithfulness and consistency.
☆ TeleLoRA: Teleporting Model-Specific Alignment Across LLMs
Mitigating Trojans in Large Language Models (LLMs) is one of many tasks where alignment data is LLM specific, as different LLMs have different Trojan triggers and trigger behaviors to be removed. In this paper, we introduce TeleLoRA (Teleporting Low-Rank Adaptation), a novel framework that synergizes model-specific alignment data across multiple LLMs to enable zero-shot Trojan mitigation on unseen LLMs without alignment data. TeleLoRA learns a unified generator of LoRA adapter weights by leveraging local activation information across multiple LLMs. This generator is designed to be permutation symmetric to generalize across models with different architectures and sizes. We optimize the model design for memory efficiency, making it feasible to learn with large-scale LLMs with minimal computational resources. Experiments on LLM Trojan mitigation benchmarks demonstrate that TeleLoRA effectively reduces attack success rates while preserving the benign performance of the models.
☆ Solving 2-D Helmholtz equation in the rectangular, circular, and elliptical domains using neural networks
Physics-informed neural networks offered an alternate way to solve several differential equations that govern complicated physics. However, their success in predicting the acoustic field is limited by the vanishing-gradient problem that occurs when solving the Helmholtz equation. In this paper, a formulation is presented that addresses this difficulty. The problem of solving the two-dimensional Helmholtz equation with the prescribed boundary conditions is posed as an unconstrained optimization problem using trial solution method. According to this method, a trial neural network that satisfies the given boundary conditions prior to the training process is constructed using the technique of transfinite interpolation and the theory of R-functions. This ansatz is initially applied to the rectangular domain and later extended to the circular and elliptical domains. The acoustic field predicted from the proposed formulation is compared with that obtained from the two-dimensional finite element methods. Good agreement is observed in all three domains considered. Minor limitations associated with the proposed formulation and their remedies are also discussed.
comment: 59 pages
☆ Learning Adaptive Dexterous Grasping from Single Demonstrations
How can robots learn dexterous grasping skills efficiently and apply them adaptively based on user instructions? This work tackles two key challenges: efficient skill acquisition from limited human demonstrations and context-driven skill selection. We introduce AdaDexGrasp, a framework that learns a library of grasping skills from a single human demonstration per skill and selects the most suitable one using a vision-language model (VLM). To improve sample efficiency, we propose a trajectory following reward that guides reinforcement learning (RL) toward states close to a human demonstration while allowing flexibility in exploration. To learn beyond the single demonstration, we employ curriculum learning, progressively increasing object pose variations to enhance robustness. At deployment, a VLM retrieves the appropriate skill based on user instructions, bridging low-level learned skills with high-level intent. We evaluate AdaDexGrasp in both simulation and real-world settings, showing that our approach significantly improves RL efficiency and enables learning human-like grasp strategies across varied object configurations. Finally, we demonstrate zero-shot transfer of our learned policies to a real-world PSYONIC Ability Hand, with a 90% success rate across objects, significantly outperforming the baseline.
☆ Generalized Phase Pressure Control Enhanced Reinforcement Learning for Traffic Signal Control
Appropriate traffic state representation is crucial for learning traffic signal control policies. However, most of the current traffic state representations are heuristically designed, with insufficient theoretical support. In this paper, we (1) develop a flexible, efficient, and theoretically grounded method, namely generalized phase pressure (G2P) control, which takes only simple lane features into consideration to decide which phase to be actuated; 2) extend the pressure control theory to a general form for multi-homogeneous-lane road networks based on queueing theory; (3) design a new traffic state representation based on the generalized phase state features from G2P control; and 4) develop a reinforcement learning (RL)-based algorithm template named G2P-XLight, and two RL algorithms, G2P-MPLight and G2P-CoLight, by combining the generalized phase state representation with MPLight and CoLight, two well-performed RL methods for learning traffic signal control policies. Extensive experiments conducted on multiple real-world datasets demonstrate that G2P control outperforms the state-of-the-art (SOTA) heuristic method in the transportation field and other recent human-designed heuristic methods; and that the newly proposed G2P-XLight significantly outperforms SOTA learning-based approaches. Our code is available online.
☆ Open Deep Search: Democratizing Search with Open-source Reasoning Agents
We introduce Open Deep Search (ODS) to close the increasing gap between the proprietary search AI solutions, such as Perplexity's Sonar Reasoning Pro and OpenAI's GPT-4o Search Preview, and their open-source counterparts. The main innovation introduced in ODS is to augment the reasoning capabilities of the latest open-source LLMs with reasoning agents that can judiciously use web search tools to answer queries. Concretely, ODS consists of two components that work with a base LLM chosen by the user: Open Search Tool and Open Reasoning Agent. Open Reasoning Agent interprets the given task and completes it by orchestrating a sequence of actions that includes calling tools, one of which is the Open Search Tool. Open Search Tool is a novel web search tool that outperforms proprietary counterparts. Together with powerful open-source reasoning LLMs, such as DeepSeek-R1, ODS nearly matches and sometimes surpasses the existing state-of-the-art baselines on two benchmarks: SimpleQA and FRAMES. For example, on the FRAMES evaluation benchmark, ODS improves the best existing baseline of the recently released GPT-4o Search Preview by 9.7% in accuracy. ODS is a general framework for seamlessly augmenting any LLMs -- for example, DeepSeek-R1 that achieves 82.4% on SimpleQA and 30.1% on FRAMES -- with search and reasoning capabilities to achieve state-of-the-art performance: 88.3% on SimpleQA and 75.3% on FRAMES.
comment: 27 pages, 8 figures, 4 tables
Assessing SAM for Tree Crown Instance Segmentation from Drone Imagery ICLR 2025
The potential of tree planting as a natural climate solution is often undermined by inadequate monitoring of tree planting projects. Current monitoring methods involve measuring trees by hand for each species, requiring extensive cost, time, and labour. Advances in drone remote sensing and computer vision offer great potential for mapping and characterizing trees from aerial imagery, and large pre-trained vision models, such as the Segment Anything Model (SAM), may be a particularly compelling choice given limited labeled data. In this work, we compare SAM methods for the task of automatic tree crown instance segmentation in high resolution drone imagery of young tree plantations. We explore the potential of SAM for this task, and find that methods using SAM out-of-the-box do not outperform a custom Mask R-CNN, even with well-designed prompts, but that there is potential for methods which tune SAM further. We also show that predictions can be improved by adding Digital Surface Model (DSM) information as an input.
comment: ICLR 2025 ML4RS workshop
☆ Maya: Optimizing Deep Learning Training Workloads using Emulated Virtual Accelerators
Training large foundation models costs hundreds of millions of dollars, making deployment optimization critical. Current approaches require machine learning engineers to manually craft training recipes through error-prone trial-and-error on expensive compute clusters. To enable efficient exploration of training configurations, researchers have developed performance modeling systems. However, these systems force users to translate their workloads into custom specification languages, introducing a fundamental semantic gap between the actual workload and its representation. This gap creates an inherent tradeoff: systems must either support a narrow set of workloads to maintain usability, require complex specifications that limit practical adoption, or compromise prediction accuracy with simplified models. We present Maya, a performance modeling system that eliminates these tradeoffs through transparent device emulation. By operating at the narrow interface between training frameworks and accelerator devices, Maya can capture complete workload behavior without requiring code modifications or translations. Maya intercepts device API calls from unmodified training code to directly observe low-level operations, enabling accurate performance prediction while maintaining both ease of use and generality. Our evaluation shows Maya achieves less than 5% prediction error across diverse models and optimization strategies, identifying configurations that reduce training costs by up to 56% compared to existing approaches.
☆ Network Inversion for Generating Confidently Classified Counterfeits
In machine learning, especially with vision classifiers, generating inputs that are confidently classified by the model is essential for understanding its decision boundaries and behavior. However, creating such samples that are confidently classified yet distinct from the training data distribution is a challenge. Traditional methods often modify existing inputs, but they don't always ensure confident classification. In this work, we extend network inversion techniques to generate Confidently Classified Counterfeits-synthetic samples that are confidently classified by the model despite being significantly different from the training data. We achieve this by modifying the generator's conditioning mechanism from soft vector conditioning to one-hot vector conditioning and applying Kullback-Leibler divergence (KLD) between the one-hot vectors and the classifier's output distribution. This encourages the generator to produce samples that are both plausible and confidently classified. Generating Confidently Classified Counterfeits is crucial for ensuring the safety and reliability of machine learning systems, particularly in safety-critical applications where models must exhibit confidence only on data within the training distribution. By generating such counterfeits, we challenge the assumption that high-confidence predictions are always indicative of in-distribution data, providing deeper insights into the model's limitations and decision-making process.
☆ Offline Reinforcement Learning with Discrete Diffusion Skills
Skills have been introduced to offline reinforcement learning (RL) as temporal abstractions to tackle complex, long-horizon tasks, promoting consistent behavior and enabling meaningful exploration. While skills in offline RL are predominantly modeled within a continuous latent space, the potential of discrete skill spaces remains largely underexplored. In this paper, we propose a compact discrete skill space for offline RL tasks supported by state-of-the-art transformer-based encoder and diffusion-based decoder. Coupled with a high-level policy trained via offline RL techniques, our method establishes a hierarchical RL framework where the trained diffusion decoder plays a pivotal role. Empirical evaluations show that the proposed algorithm, Discrete Diffusion Skill (DDS), is a powerful offline RL method. DDS performs competitively on Locomotion and Kitchen tasks and excels on long-horizon tasks, achieving at least a 12 percent improvement on AntMaze-v2 benchmarks compared to existing offline RL approaches. Furthermore, DDS offers improved interpretability, training stability, and online exploration compared to previous skill-based methods.
☆ AIGC-assisted Federated Learning for Edge Intelligence: Architecture Design, Research Challenges and Future Directions
Federated learning (FL) can fully leverage large-scale terminal data while ensuring privacy and security, and is considered as a distributed alternative for the centralized machine learning. However, the issue of data heterogeneity poses limitations on FL's performance. To address this challenge, artificial intelligence-generated content (AIGC) which is an innovative data synthesis technique emerges as one potential solution. In this article, we first provide an overview of the system architecture, performance metrics, and challenges associated with AIGC-assistant FL system design. We then propose the Generative federated learning (GenFL) architecture and present its workflow, including the design of aggregation and weight policy. Finally, using the CIFAR10 and CIFAR100 datasets, we employ diffusion models to generate dataset and improve FL performance. Experiments conducted under various non-independent and identically distributed (non-IID) data distributions demonstrate the effectiveness of GenFL on overcoming the bottlenecks in FL caused by data heterogeneity. Open research directions in the research of AIGC-assisted FL are also discussed.
☆ Emotion Detection in Twitter Messages Using Combination of Long Short-Term Memory and Convolutional Deep Neural Networks
One of the most significant issues as attended a lot in recent years is that of recognizing the sentiments and emotions in social media texts. The analysis of sentiments and emotions is intended to recognize the conceptual information such as the opinions, feelings, attitudes and emotions of people towards the products, services, organizations, people, topics, events and features in the written text. These indicate the greatness of the problem space. In the real world, businesses and organizations are always looking for tools to gather ideas, emotions, and directions of people about their products, services, or events related to their own. This article uses the Twitter social network, one of the most popular social networks with about 420 million active users, to extract data. Using this social network, users can share their information and opinions about personal issues, policies, products, events, etc. It can be used with appropriate classification of emotional states due to the availability of its data. In this study, supervised learning and deep neural network algorithms are used to classify the emotional states of Twitter users. The use of deep learning methods to increase the learning capacity of the model is an advantage due to the large amount of available data. Tweets collected on various topics are classified into four classes using a combination of two Bidirectional Long Short Term Memory network and a Convolutional network. The results obtained from this study with an average accuracy of 93%, show good results extracted from the proposed framework and improved accuracy compared to previous work.
☆ RxRx3-core: Benchmarking drug-target interactions in High-Content Microscopy ICLR 2025
High Content Screening (HCS) microscopy datasets have transformed the ability to profile cellular responses to genetic and chemical perturbations, enabling cell-based inference of drug-target interactions (DTI). However, the adoption of representation learning methods for HCS data has been hindered by the lack of accessible datasets and robust benchmarks. To address this gap, we present RxRx3-core, a curated and compressed subset of the RxRx3 dataset, and an associated DTI benchmarking task. At just 18GB, RxRx3-core significantly reduces the size barrier associated with large-scale HCS datasets while preserving critical data necessary for benchmarking representation learning models against a zero-shot DTI prediction task. RxRx3-core includes 222,601 microscopy images spanning 736 CRISPR knockouts and 1,674 compounds at 8 concentrations. RxRx3-core is available on HuggingFace and Polaris, along with pre-trained embeddings and benchmarking code, ensuring accessibility for the research community. By providing a compact dataset and robust benchmarks, we aim to accelerate innovation in representation learning methods for HCS data and support the discovery of novel biological insights.
comment: Published at LMRL Workshop at ICLR 2025
☆ Addressing Challenges in Time Series Forecasting: A Comprehensive Comparison of Machine Learning Techniques
The explosion of Time Series (TS) data, driven by advancements in technology, necessitates sophisticated analytical methods. Modern management systems increasingly rely on analyzing this data, highlighting the importance of effcient processing techniques. State-of-the-art Machine Learning (ML) approaches for TS analysis and forecasting are becoming prevalent. This paper briefly describes and compiles suitable algorithms for TS regression task. We compare these algorithms against each other and the classic ARIMA method using diverse datasets: complete data, data with outliers, and data with missing values. The focus is on forecasting accuracy, particularly for long-term predictions. This research aids in selecting the most appropriate algorithm based on forecasting needs and data characteristics.
☆ Physics-Informed Neural Networks with Unknown Partial Differential Equations: an Application in Multivariate Time Series
A significant advancement in Neural Network (NN) research is the integration of domain-specific knowledge through custom loss functions. This approach addresses a crucial challenge: how can models utilize physics or mathematical principles to enhance predictions when dealing with sparse, noisy, or incomplete data? Physics-Informed Neural Networks (PINNs) put this idea into practice by incorporating physical equations, such as Partial Differential Equations (PDEs), as soft constraints. This guidance helps the networks find solutions that align with established laws. Recently, researchers have expanded this framework to include Bayesian NNs (BNNs), which allow for uncertainty quantification while still adhering to physical principles. But what happens when the governing equations of a system are not known? In this work, we introduce methods to automatically extract PDEs from historical data. We then integrate these learned equations into three different modeling approaches: PINNs, Bayesian-PINNs (B-PINNs), and Bayesian Linear Regression (BLR). To assess these frameworks, we evaluate them on a real-world Multivariate Time Series (MTS) dataset. We compare their effectiveness in forecasting future states under different scenarios: with and without PDE constraints and accuracy considerations. This research aims to bridge the gap between data-driven discovery and physics-guided learning, providing valuable insights for practical applications.
☆ Look Before Leap: Look-Ahead Planning with Uncertainty in Reinforcement Learning
Model-based reinforcement learning (MBRL) has demonstrated superior sample efficiency compared to model-free reinforcement learning (MFRL). However, the presence of inaccurate models can introduce biases during policy learning, resulting in misleading trajectories. The challenge lies in obtaining accurate models due to limited diverse training data, particularly in regions with limited visits (uncertain regions). Existing approaches passively quantify uncertainty after sample generation, failing to actively collect uncertain samples that could enhance state coverage and improve model accuracy. Moreover, MBRL often faces difficulties in making accurate multi-step predictions, thereby impacting overall performance. To address these limitations, we propose a novel framework for uncertainty-aware policy optimization with model-based exploratory planning. In the model-based planning phase, we introduce an uncertainty-aware k-step lookahead planning approach to guide action selection at each step. This process involves a trade-off analysis between model uncertainty and value function approximation error, effectively enhancing policy performance. In the policy optimization phase, we leverage an uncertainty-driven exploratory policy to actively collect diverse training samples, resulting in improved model accuracy and overall performance of the RL agent. Our approach offers flexibility and applicability to tasks with varying state/action spaces and reward structures. We validate its effectiveness through experiments on challenging robotic manipulation tasks and Atari games, surpassing state-of-the-art methods with fewer interactions, thereby leading to significant performance improvements.
☆ Unlocking the Value of Decentralized Data: A Federated Dual Learning Approach for Model Aggregation
Artificial Intelligence (AI) technologies have revolutionized numerous fields, yet their applications often rely on costly and time-consuming data collection processes. Federated Learning (FL) offers a promising alternative by enabling AI models to be trained on decentralized data where data is scattered across clients (distributed nodes). However, existing FL approaches struggle to match the performance of centralized training due to challenges such as heterogeneous data distribution and communication delays, limiting their potential for breakthroughs. We observe that many real-world use cases involve hybrid data regimes, in which a server (center node) has access to some data while a large amount of data is distributed across associated clients. To improve the utilization of decentralized data under this regime, address data heterogeneity issue, and facilitate asynchronous communication between the server and clients, we propose a dual learning approach that leverages centralized data at the server to guide the merging of model updates from clients. Our method accommodates scenarios where server data is out-of-domain relative to decentralized client data, making it applicable to a wide range of use cases. We provide theoretical analysis demonstrating the faster convergence of our method compared to existing methods. Furthermore, experimental results across various scenarios show that our approach significantly outperforms existing technologies, highlighting its potential to unlock the value of large amounts of decentralized data.
☆ Innovative LSGTime Model for Crime Spatiotemporal Prediction Based on MindSpore Framework
With the acceleration of urbanization, the spatiotemporal characteristics of criminal activities have become increasingly complex. Accurate prediction of crime distribution is crucial for optimizing the allocation of police resources and preventing crime. This paper proposes LGSTime, a crime spatiotemporal prediction model that integrates Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and the Multi-head Sparse Self-attention mechanism. LSTM and GRU capture long-term dependencies in crime time series, such as seasonality and periodicity, through their unique gating mechanisms. The Multi-head Sparse Self-attention mechanism, on the other hand, focuses on both temporal and spatial features of criminal events simultaneously through parallel processing and sparsification techniques, significantly improving computational efficiency and prediction accuracy. The integrated model leverages the strengths of each technique to better handle complex spatiotemporal data. Experimental findings demonstrate that the model attains optimal performance across four real - world crime datasets. In comparison to the CNN model, it exhibits performance enhancements of 2.8\%, 1.9\%, and 1.4\% in the Mean Squared Error (MSE), Mean Absolute Error (MAE), and Root Mean Squared Error (RMSE) metrics respectively. These results offer a valuable reference for tackling the challenges in crime prediction.
☆ On the Robustness of Kernel Ridge Regression Using the Cauchy Loss Function
Robust regression aims to develop methods for estimating an unknown regression function in the presence of outliers, heavy-tailed distributions, or contaminated data, which can severely impact performance. Most existing theoretical results in robust regression assume that the noise has a finite absolute mean, an assumption violated by certain distributions, such as Cauchy and some Pareto noise. In this paper, we introduce a generalized Cauchy noise framework that accommodates all noise distributions with finite moments of any order, even when the absolute mean is infinite. Within this framework, we study the \textit{kernel Cauchy ridge regressor} (\textit{KCRR}), which minimizes a regularized empirical Cauchy risk to achieve robustness. To derive the $L_2$-risk bound for KCRR, we establish a connection between the excess Cauchy risk and $L_2$-risk for sufficiently large scale parameters of the Cauchy loss, which reveals that these two risks are equivalent. Furthermore, under the assumption that the regression function satisfies H\"older smoothness, we derive excess Cauchy risk bounds for KCRR, showing improved performance as the scale parameter decreases. By considering the twofold effect of the scale parameter on the excess Cauchy risk and its equivalence with the $L_2$-risk, we establish the almost minimax-optimal convergence rate for KCRR in terms of $L_2$-risk, highlighting the robustness of the Cauchy loss in handling various types of noise. Finally, we validate the effectiveness of KCRR through experiments on both synthetic and real-world datasets under diverse noise corruption scenarios.
☆ Integrated utilization of equations and small dataset in the Koopman operator: applications to forward and inverse Problems
In recent years, there has been a growing interest in data-driven approaches in physics, such as extended dynamic mode decomposition (EDMD). The EDMD algorithm focuses on nonlinear time-evolution systems, and the constructed Koopman matrix yields the next-time prediction with only linear matrix-product operations. Note that data-driven approaches generally require a large dataset. However, assume that one has some prior knowledge, even if it may be ambiguous. Then, one could achieve sufficient learning from only a small dataset by taking advantage of the prior knowledge. This paper yields methods for incorporating ambiguous prior knowledge into the EDMD algorithm. The ambiguous prior knowledge in this paper corresponds to the underlying time-evolution equations with unknown parameters. First, we apply the proposed method to forward problems, i.e., prediction tasks. Second, we propose a scheme to apply the proposed method to inverse problems, i.e., parameter estimation tasks. We demonstrate the learning with only a small dataset using guiding examples, i.e., the Duffing and the van der Pol systems.
comment: 10 pages, 8 figures
☆ World Model Agents with Change-Based Intrinsic Motivation
Sparse reward environments pose a significant challenge for reinforcement learning due to the scarcity of feedback. Intrinsic motivation and transfer learning have emerged as promising strategies to address this issue. Change Based Exploration Transfer (CBET), a technique that combines these two approaches for model-free algorithms, has shown potential in addressing sparse feedback but its effectiveness with modern algorithms remains understudied. This paper provides an adaptation of CBET for world model algorithms like DreamerV3 and compares the performance of DreamerV3 and IMPALA agents, both with and without CBET, in the sparse reward environments of Crafter and Minigrid. Our tabula rasa results highlight the possibility of CBET improving DreamerV3's returns in Crafter but the algorithm attains a suboptimal policy in Minigrid with CBET further reducing returns. In the same vein, our transfer learning experiments show that pre-training DreamerV3 with intrinsic rewards does not immediately lead to a policy that maximizes extrinsic rewards in Minigrid. Overall, our results suggest that CBET provides a positive impact on DreamerV3 in more complex environments like Crafter but may be detrimental in environments like Minigrid. In the latter case, the behaviours promoted by CBET in DreamerV3 may not align with the task objectives of the environment, leading to reduced returns and suboptimal policies.
comment: Submitted to Northern Lights Deep Learning Conference 2025
☆ Improving Speech Recognition Accuracy Using Custom Language Models with the Vosk Toolkit
Although speech recognition algorithms have developed quickly in recent years, achieving high transcription accuracy across diverse audio formats and acoustic environments remains a major challenge. This work explores how incorporating custom language models with the open-source Vosk Toolkit can improve speech-to-text accuracy in varied settings. Unlike many conventional systems limited to specific audio types, this approach supports multiple audio formats such as WAV, MP3, FLAC, and OGG by using Python modules for preprocessing and format conversion. A Python-based transcription pipeline was developed to process input audio, perform speech recognition using Vosk's KaldiRecognizer, and export the output to a DOCX file. Results showed that custom models reduced word error rates, especially in domain-specific scenarios involving technical terminology, varied accents, or background noise. This work presents a cost-effective, offline solution for high-accuracy transcription and opens up future opportunities for automation and real-time applications.
comment: 10 pages, 7 figures, includes workflow diagram, accuracy and WER comparisons, spectrograms, and model evaluation
☆ Data Mixture Optimization: A Multi-fidelity Multi-scale Bayesian Framework
Careful curation of data sources can significantly improve the performance of LLM pre-training, but predominant approaches rely heavily on intuition or costly trial-and-error, making them difficult to generalize across different data domains and downstream tasks. Although scaling laws can provide a principled and general approach for data curation, standard deterministic extrapolation from small-scale experiments to larger scales requires strong assumptions on the reliability of such extrapolation, whose brittleness has been highlighted in prior works. In this paper, we introduce a $\textit{probabilistic extrapolation framework}$ for data mixture optimization that avoids rigid assumptions and explicitly models the uncertainty in performance across decision variables. We formulate data curation as a sequential decision-making problem$\unicode{x2013}$multi-fidelity, multi-scale Bayesian optimization$\unicode{x2013}$where $\{$data mixtures, model scale, training steps$\}$ are adaptively selected to balance training cost and potential information gain. Our framework naturally gives rise to algorithm prototypes that leverage noisy information from inexpensive experiments to systematically inform costly training decisions. To accelerate methodological progress, we build a simulator based on 472 language model pre-training runs with varying data compositions from the SlimPajama dataset. We observe that even simple kernels and acquisition functions can enable principled decisions across training models from 20M to 1B parameters and achieve $\textbf{2.6x}$ and $\textbf{3.3x}$ speedups compared to multi-fidelity BO and random search baselines. Taken together, our framework underscores potential efficiency gains achievable by developing principled and transferable data mixture optimization methods.
☆ Offline Action-Free Learning of Ex-BMDPs by Comparing Diverse Datasets
While sequential decision-making environments often involve high-dimensional observations, not all features of these observations are relevant for control. In particular, the observation space may capture factors of the environment which are not controllable by the agent, but which add complexity to the observation space. The need to ignore these "noise" features in order to operate in a tractably-small state space poses a challenge for efficient policy learning. Due to the abundance of video data available in many such environments, task-independent representation learning from action-free offline data offers an attractive solution. However, recent work has highlighted theoretical limitations in action-free learning under the Exogenous Block MDP (Ex-BMDP) model, where temporally-correlated noise features are present in the observations. To address these limitations, we identify a realistic setting where representation learning in Ex-BMDPs becomes tractable: when action-free video data from multiple agents with differing policies are available. Concretely, this paper introduces CRAFT (Comparison-based Representations from Action-Free Trajectories), a sample-efficient algorithm leveraging differences in controllable feature dynamics across agents to learn representations. We provide theoretical guarantees for CRAFT's performance and demonstrate its feasibility on a toy example, offering a foundation for practical methods in similar settings.
☆ Improving User Behavior Prediction: Leveraging Annotator Metadata in Supervised Machine Learning Models
Supervised machine-learning models often underperform in predicting user behaviors from conversational text, hindered by poor crowdsourced label quality and low NLP task accuracy. We introduce the Metadata-Sensitive Weighted-Encoding Ensemble Model (MSWEEM), which integrates annotator meta-features like fatigue and speeding. First, our results show MSWEEM outperforms standard ensembles by 14\% on held-out data and 12\% on an alternative dataset. Second, we find that incorporating signals of annotator behavior, such as speed and fatigue, significantly boosts model performance. Third, we find that annotators with higher qualifications, such as Master's, deliver more consistent and faster annotations. Given the increasing uncertainty over annotation quality, our experiments show that understanding annotator patterns is crucial for enhancing model accuracy in user behavior prediction.
comment: Accepted at CSCW 2025
☆ Deep Learning for Forensic Identification of Source
We used contrastive neural networks to learn useful similarity scores between the 144 cartridge casings in the NBIDE dataset, under the common-but-unknown source paradigm. The common-but-unknown source problem is a problem archetype in forensics where the question is whether two objects share a common source (e.g. were two cartridge casings fired from the same firearm). Similarity scores are often used to interpret evidence under this paradigm. We directly compared our results to a state-of-the-art algorithm, Congruent Matching Cells (CMC). When trained on the E3 dataset of 2967 cartridge casings, contrastive learning achieved an ROC AUC of 0.892. The CMC algorithm achieved 0.867. We also conducted an ablation study where we varied the neural network architecture; specifically, the network's width or depth. The ablation study showed that contrastive network performance results are somewhat robust to the network architecture. This work was in part motivated by the use of similarity scores attained via contrastive learning for standard evidence interpretation methods such as score-based likelihood ratios.
☆ Reinforcement Learning for Efficient Toxicity Detection in Competitive Online Video Games
Online platforms take proactive measures to detect and address undesirable behavior, aiming to focus these resource-intensive efforts where such behavior is most prevalent. This article considers the problem of efficient sampling for toxicity detection in competitive online video games. To make optimal monitoring decisions, video game service operators need estimates of the likelihood of toxic behavior. If no model is available for these predictions, one must be estimated in real time. To close this gap, we propose a contextual bandit algorithm that makes monitoring decisions based on a small set of variables that, according to domain expertise, are associated with toxic behavior. This algorithm balances exploration and exploitation to optimize long-term outcomes and is deliberately designed for easy deployment in production. Using data from the popular first-person action game Call of Duty: Modern Warfare III, we show that our algorithm consistently outperforms baseline algorithms that rely solely on players' past behavior. This finding has substantive implications for the nature of toxicity. It also illustrates how domain expertise can be harnessed to help video game service operators identify and mitigate toxicity, ultimately fostering a safer and more enjoyable gaming experience.
☆ Multi-Modal Framing Analysis of News
Automated frame analysis of political communication is a popular task in computational social science that is used to study how authors select aspects of a topic to frame its reception. So far, such studies have been narrow, in that they use a fixed set of pre-defined frames and focus only on the text, ignoring the visual contexts in which those texts appear. Especially for framing in the news, this leaves out valuable information about editorial choices, which include not just the written article but also accompanying photographs. To overcome such limitations, we present a method for conducting multi-modal, multi-label framing analysis at scale using large (vision-)language models. Grounding our work in framing theory, we extract latent meaning embedded in images used to convey a certain point and contrast that to the text by comparing the respective frames used. We also identify highly partisan framing of topics with issue-specific frame analysis found in prior qualitative work. We demonstrate a method for doing scalable integrative framing analysis of both text and image in news, providing a more complete picture for understanding media bias.
☆ TS-Inverse: A Gradient Inversion Attack Tailored for Federated Time Series Forecasting Models
Federated learning (FL) for time series forecasting (TSF) enables clients with privacy-sensitive time series (TS) data to collaboratively learn accurate forecasting models, for example, in energy load prediction. Unfortunately, privacy risks in FL persist, as servers can potentially reconstruct clients' training data through gradient inversion attacks (GIA). Although GIA is demonstrated for image classification tasks, little is known about time series regression tasks. In this paper, we first conduct an extensive empirical study on inverting TS data across 4 TSF models and 4 datasets, identifying the unique challenges of reconstructing both observations and targets of TS data. We then propose TS-Inverse, a novel GIA that improves the inversion of TS data by (i) learning a gradient inversion model that outputs quantile predictions, (ii) a unique loss function that incorporates periodicity and trend regularization, and (iii) regularization according to the quantile predictions. Our evaluations demonstrate a remarkable performance of TS-Inverse, achieving at least a 2x-10x improvement in terms of the sMAPE metric over existing GIA methods on TS data. Code repository: https://github.com/Capsar/ts-inverse
☆ Global and Local Structure Learning for Sparse Tensor Completion
How can we accurately complete tensors by learning relationships of dimensions along each mode? Tensor completion, a widely studied problem, is to predict missing entries in incomplete tensors. Tensor decomposition methods, fundamental tensor analysis tools, have been actively developed to solve tensor completion tasks. However, standard tensor decomposition models have not been designed to learn relationships of dimensions along each mode, which limits to accurate tensor completion. Also, previously developed tensor decomposition models have required prior knowledge between relations within dimensions to model the relations, expensive to obtain. This paper proposes TGL (Tensor Decomposition Learning Global and Local Structures) to accurately predict missing entries in tensors. TGL reconstructs a tensor with factor matrices which learn local structures with GNN without prior knowledges. Extensive experiments are conducted to evaluate TGL with baselines and datasets.
☆ Prototype Guided Backdoor Defense
Deep learning models are susceptible to {\em backdoor attacks} involving malicious attackers perturbing a small subset of training data with a {\em trigger} to causes misclassifications. Various triggers have been used, including semantic triggers that are easily realizable without requiring the attacker to manipulate the image. The emergence of generative AI has eased the generation of varied poisoned samples. Robustness across types of triggers is crucial to effective defense. We propose Prototype Guided Backdoor Defense (PGBD), a robust post-hoc defense that scales across different trigger types, including previously unsolved semantic triggers. PGBD exploits displacements in the geometric spaces of activations to penalize movements toward the trigger. This is done using a novel sanitization loss of a post-hoc fine-tuning step. The geometric approach scales easily to all types of attacks. PGBD achieves better performance across all settings. We also present the first defense against a new semantic attack on celebrity face images. Project page: \hyperlink{https://venkatadithya9.github.io/pgbd.github.io/}{this https URL}.
☆ D4R -- Exploring and Querying Relational Graphs Using Natural Language and Large Language Models -- the Case of Historical Documents
D4R is a digital platform designed to assist non-technical users, particularly historians, in exploring textual documents through advanced graphical tools for text analysis and knowledge extraction. By leveraging a large language model, D4R translates natural language questions into Cypher queries, enabling the retrieval of data from a Neo4J database. A user-friendly graphical interface allows for intuitive interaction, enabling users to navigate and analyse complex relational data extracted from unstructured textual documents. Originally designed to bridge the gap between AI technologies and historical research, D4R's capabilities extend to various other domains. A demonstration video and a live software demo are available.
comment: 8 pages, 7 figures
☆ TransDiffSBDD: Causality-Aware Multi-Modal Structure-Based Drug Design
Structure-based drug design (SBDD) is a critical task in drug discovery, requiring the generation of molecular information across two distinct modalities: discrete molecular graphs and continuous 3D coordinates. However, existing SBDD methods often overlook two key challenges: (1) the multi-modal nature of this task and (2) the causal relationship between these modalities, limiting their plausibility and performance. To address both challenges, we propose TransDiffSBDD, an integrated framework combining autoregressive transformers and diffusion models for SBDD. Specifically, the autoregressive transformer models discrete molecular information, while the diffusion model samples continuous distributions, effectively resolving the first challenge. To address the second challenge, we design a hybrid-modal sequence for protein-ligand complexes that explicitly respects the causality between modalities. Experiments on the CrossDocked2020 benchmark demonstrate that TransDiffSBDD outperforms existing baselines.
☆ Assessing Generative Models for Structured Data
Synthetic tabular data generation has emerged as a promising method to address limited data availability and privacy concerns. With the sharp increase in the performance of large language models in recent years, researchers have been interested in applying these models to the generation of tabular data. However, little is known about the quality of the generated tabular data from large language models. The predominant method for assessing the quality of synthetic tabular data is the train-synthetic-test-real approach, where the artificial examples are compared to the original by how well machine learning models, trained separately on the real and synthetic sets, perform in some downstream tasks. This method does not directly measure how closely the distribution of generated data approximates that of the original. This paper introduces rigorous methods for directly assessing synthetic tabular data against real data by looking at inter-column dependencies within the data. We find that large language models (GPT-2), both when queried via few-shot prompting and when fine-tuned, and GAN (CTGAN) models do not produce data with dependencies that mirror the original real data. Results from this study can inform future practice in synthetic data generation to improve data quality.
☆ Quantum advantage for learning shallow neural networks with natural data distributions
The application of quantum computers to machine learning tasks is an exciting potential direction to explore in search of quantum advantage. In the absence of large quantum computers to empirically evaluate performance, theoretical frameworks such as the quantum probably approximately correct (PAC) and quantum statistical query (QSQ) models have been proposed to study quantum algorithms for learning classical functions. Despite numerous works investigating quantum advantage in these models, we nevertheless only understand it at two extremes: either exponential quantum advantages for uniform input distributions or no advantage for potentially adversarial distributions. In this work, we study the gap between these two regimes by designing an efficient quantum algorithm for learning periodic neurons in the QSQ model over a broad range of non-uniform distributions, which includes Gaussian, generalized Gaussian, and logistic distributions. To our knowledge, our work is also the first result in quantum learning theory for classical functions that explicitly considers real-valued functions. Recent advances in classical learning theory prove that learning periodic neurons is hard for any classical gradient-based algorithm, giving us an exponential quantum advantage over such algorithms, which are the standard workhorses of machine learning. Moreover, in some parameter regimes, the problem remains hard for classical statistical query algorithms and even general classical algorithms learning under small amounts of noise.
comment: 8 pages, 1 figure + 80-page appendix
☆ Unified Multimodal Discrete Diffusion
Multimodal generative models that can understand and generate across multiple modalities are dominated by autoregressive (AR) approaches, which process tokens sequentially from left to right, or top to bottom. These models jointly handle images, text, video, and audio for various tasks such as image captioning, question answering, and image generation. In this work, we explore discrete diffusion models as a unified generative formulation in the joint text and image domain, building upon their recent success in text generation. Discrete diffusion models offer several advantages over AR models, including improved control over quality versus diversity of generated samples, the ability to perform joint multimodal inpainting (across both text and image domains), and greater controllability in generation through guidance. Leveraging these benefits, we present the first Unified Multimodal Discrete Diffusion (UniDisc) model which is capable of jointly understanding and generating text and images for a variety of downstream tasks. We compare UniDisc to multimodal AR models, performing a scaling analysis and demonstrating that UniDisc outperforms them in terms of both performance and inference-time compute, enhanced controllability, editability, inpainting, and flexible trade-off between inference time and generation quality. Code and additional visualizations are available at https://unidisc.github.io.
comment: Project Website: https://unidisc.github.io
☆ Robust Deep Reinforcement Learning in Robotics via Adaptive Gradient-Masked Adversarial Attacks
Deep reinforcement learning (DRL) has emerged as a promising approach for robotic control, but its realworld deployment remains challenging due to its vulnerability to environmental perturbations. Existing white-box adversarial attack methods, adapted from supervised learning, fail to effectively target DRL agents as they overlook temporal dynamics and indiscriminately perturb all state dimensions, limiting their impact on long-term rewards. To address these challenges, we propose the Adaptive Gradient-Masked Reinforcement (AGMR) Attack, a white-box attack method that combines DRL with a gradient-based soft masking mechanism to dynamically identify critical state dimensions and optimize adversarial policies. AGMR selectively allocates perturbations to the most impactful state features and incorporates a dynamic adjustment mechanism to balance exploration and exploitation during training. Extensive experiments demonstrate that AGMR outperforms state-of-the-art adversarial attack methods in degrading the performance of the victim agent and enhances the victim agent's robustness through adversarial defense mechanisms.
comment: 9 pages, 6 figures
☆ TAR: Teacher-Aligned Representations via Contrastive Learning for Quadrupedal Locomotion
Quadrupedal locomotion via Reinforcement Learning (RL) is commonly addressed using the teacher-student paradigm, where a privileged teacher guides a proprioceptive student policy. However, key challenges such as representation misalignment between the privileged teacher and the proprioceptive-only student, covariate shift due to behavioral cloning, and lack of deployable adaptation lead to poor generalization in real-world scenarios. We propose Teacher-Aligned Representations via Contrastive Learning (TAR), a framework that leverages privileged information with self-supervised contrastive learning to bridge this gap. By aligning representations to a privileged teacher in simulation via contrastive objectives, our student policy learns structured latent spaces and exhibits robust generalization to Out-of-Distribution (OOD) scenarios, surpassing the fully privileged "Teacher". Results showed accelerated training by 2x compared to state-of-the-art baselines to achieve peak performance. OOD scenarios showed better generalization by 40 percent on average compared to existing methods. Additionally, TAR transitions seamlessly into learning during deployment without requiring privileged states, setting a new benchmark in sample-efficient, adaptive locomotion and enabling continual fine-tuning in real-world scenarios. Open-source code and videos are available at https://ammousa.github.io/TARLoco/.
comment: This work has been submitted to the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2025 for review
☆ Workshop Scientific HPC in the pre-Exascale era (part of ITADATA 2024) Proceedings
The proceedings of Workshop Scientific HPC in the pre-Exascale era (SHPC), held in Pisa, Italy, September 18, 2024, are part of 3rd Italian Conference on Big Data and Data Science (ITADATA2024) proceedings (arXiv: 2503.14937). The main objective of SHPC workshop was to discuss how the current most critical questions in HPC emerge in astrophysics, cosmology, and other scientific contexts and experiments. In particular, SHPC workshop focused on: $\bullet$ Scientific (mainly in astrophysical and medical fields) applications toward (pre-)Exascale computing $\bullet$ Performance portability $\bullet$ Green computing $\bullet$ Machine learning $\bullet$ Big Data management $\bullet$ Programming on heterogeneous architectures $\bullet$ Programming on accelerators $\bullet$ I/O techniques
♻ ☆ Attention IoU: Examining Biases in CelebA using Attention Maps CVPR 2025
Computer vision models have been shown to exhibit and amplify biases across a wide array of datasets and tasks. Existing methods for quantifying bias in classification models primarily focus on dataset distribution and model performance on subgroups, overlooking the internal workings of a model. We introduce the Attention-IoU (Attention Intersection over Union) metric and related scores, which use attention maps to reveal biases within a model's internal representations and identify image features potentially causing the biases. First, we validate Attention-IoU on the synthetic Waterbirds dataset, showing that the metric accurately measures model bias. We then analyze the CelebA dataset, finding that Attention-IoU uncovers correlations beyond accuracy disparities. Through an investigation of individual attributes through the protected attribute of Male, we examine the distinct ways biases are represented in CelebA. Lastly, by subsampling the training set to change attribute correlations, we demonstrate that Attention-IoU reveals potential confounding variables not present in dataset labels.
comment: To appear in CVPR 2025. Code and data is available at https://github.com/aaronserianni/attention-iou . 15 pages, 14 figures, including appendix
♻ ☆ Towards Efficient Training of Graph Neural Networks: A Multiscale Approach
Graph Neural Networks (GNNs) have emerged as a powerful tool for learning and inferring from graph-structured data, and are widely used in a variety of applications, often considering large amounts of data and large graphs. However, training on such data requires large memory and extensive computations. In this paper, we introduce a novel framework for efficient multiscale training of GNNs, designed to integrate information across multiscale representations of a graph. Our approach leverages a hierarchical graph representation, taking advantage of coarse graph scales in the training process, where each coarse scale graph has fewer nodes and edges. Based on this approach, we propose a suite of GNN training methods: such as coarse-to-fine, sub-to-full, and multiscale gradient computation. We demonstrate the effectiveness of our methods on various datasets and learning tasks.
♻ ☆ One Framework to Rule Them All: Unifying RL-Based and RL-Free Methods in RLHF
In this article, we primarily examine a variety of RL-based and RL-free methods designed to address Reinforcement Learning from Human Feedback (RLHF) and Large Reasoning Models (LRMs). We begin with a concise overview of the typical steps involved in RLHF and LRMs. Next, we reinterpret several RL-based and RL-free algorithms through the perspective of neural structured bandit prediction, providing a clear conceptual framework that uncovers a deeper connection between these seemingly distinct approaches. Following this, we briefly review some core principles of reinforcement learning, drawing attention to an often-overlooked aspect in existing RLHF studies. This leads to a detailed derivation of the standard RLHF objective within a full RL context, demonstrating its equivalence to neural structured bandit prediction. Finally, by reinvestigating the principles behind Proximal Policy Optimization (PPO), we pinpoint areas needing adjustment, which culminates in the introduction of the Generalized Reinforce Optimization (GRO) framework, seamlessly integrating RL-based and RL-free methods in RLHF. We look forward to the community's efforts to empirically validate GRO and invite constructive feedback.
♻ ☆ Inference-Time Scaling for Flow Models via Stochastic Generation and Rollover Budget Forcing
We propose an inference-time scaling approach for pretrained flow models. Recently, inference-time scaling has gained significant attention in LLMs and diffusion models, improving sample quality or better aligning outputs with user preferences by leveraging additional computation. For diffusion models, particle sampling has allowed more efficient scaling due to the stochasticity at intermediate denoising steps. On the contrary, while flow models have gained popularity as an alternative to diffusion models--offering faster generation and high-quality outputs in state-of-the-art image and video generative models--efficient inference-time scaling methods used for diffusion models cannot be directly applied due to their deterministic generative process. To enable efficient inference-time scaling for flow models, we propose three key ideas: 1) SDE-based generation, enabling particle sampling in flow models, 2) Interpolant conversion, broadening the search space and enhancing sample diversity, and 3) Rollover Budget Forcing (RBF), an adaptive allocation of computational resources across timesteps to maximize budget utilization. Our experiments show that SDE-based generation, particularly variance-preserving (VP) interpolant-based generation, improves the performance of particle sampling methods for inference-time scaling in flow models. Additionally, we demonstrate that RBF with VP-SDE achieves the best performance, outperforming all previous inference-time scaling approaches.
comment: Project page: https://flow-inference-time-scaling.github.io/
♻ ☆ Explaining Deep Convolutional Neural Networks for Image Classification by Evolving Local Interpretable Model-agnostic Explanations
Deep convolutional neural networks have proven their effectiveness, and have been acknowledged as the most dominant method for image classification. However, a severe drawback of deep convolutional neural networks is poor explainability. Unfortunately, in many real-world applications, users need to understand the rationale behind the predictions of deep convolutional neural networks when determining whether they should trust the predictions or not. To resolve this issue, a novel genetic algorithm-based method is proposed for the first time to automatically evolve local explanations that can assist users to assess the rationality of the predictions. Furthermore, the proposed method is model-agnostic, i.e., it can be utilised to explain any deep convolutional neural network models. In the experiments, ResNet is used as an example model to be explained, and the ImageNet dataset is selected as the benchmark dataset. DenseNet and MobileNet are further explained to demonstrate the model-agnostic characteristic of the proposed method. The evolved local explanations on four images, randomly selected from ImageNet, are presented, which show that the evolved local explanations are straightforward to be recognised by humans. Moreover, the evolved explanations can explain the predictions of deep convolutional neural networks on all four images very well by successfully capturing meaningful interpretable features of the sample images. Further analysis based on the 30 runs of the experiments exhibits that the evolved local explanations can also improve the probabilities/confidences of the deep convolutional neural network models in making the predictions. The proposed method can obtain local explanations within one minute, which is more than ten times faster than LIME (the state-of-the-art method).
♻ ☆ Parameter-Efficient Fine-Tuning for Pre-Trained Vision Models: A Survey
Large-scale pre-trained vision models (PVMs) have shown great potential for adaptability across various downstream vision tasks. However, with state-of-the-art PVMs growing to billions or even trillions of parameters, the standard full fine-tuning paradigm is becoming unsustainable due to high computational and storage demands. In response, researchers are exploring parameter-efficient fine-tuning (PEFT), which seeks to exceed the performance of full fine-tuning with minimal parameter modifications. This survey provides a comprehensive overview and future directions for visual PEFT, offering a systematic review of the latest advancements. First, we provide a formal definition of PEFT and discuss model pre-training methods. We then categorize existing methods into three categories: addition-based, partial-based, and unified-based. Finally, we introduce the commonly used datasets and applications and suggest potential future research challenges. A comprehensive collection of resources is available at https://github.com/synbol/Awesome-Parameter-Efficient-Transfer-Learning.
comment: 9 pages, 3 figures, 2 tables
♻ ☆ Integrating Biological-Informed Recurrent Neural Networks for Glucose-Insulin Dynamics Modeling
Type 1 Diabetes (T1D) management is a complex task due to many variability factors. Artificial Pancreas (AP) systems have alleviated patient burden by automating insulin delivery through advanced control algorithms. However, the effectiveness of these systems depends on accurate modeling of glucose-insulin dynamics, which traditional mathematical models often fail to capture due to their inability to adapt to patient-specific variations. This study introduces a Biological-Informed Recurrent Neural Network (BIRNN) framework to address these limitations. The BIRNN leverages a Gated Recurrent Units (GRU) architecture augmented with physics-informed loss functions that embed physiological constraints, ensuring a balance between predictive accuracy and consistency with biological principles. The framework is validated using the commercial UVA/Padova simulator, outperforming traditional linear models in glucose prediction accuracy and reconstruction of unmeasured states, even under circadian variations in insulin sensitivity. The results demonstrate the potential of BIRNN for personalized glucose regulation and future adaptive control strategies in AP systems.
comment: Accepted for pubblication in the proceedings of the Engineering Diabetes Technologies (EDT 2025). 7 pages, 2 figures and 1 table
♻ ☆ Graph-Level Label-Only Membership Inference Attack against Graph Neural Networks
Graph neural networks (GNNs) are widely used for graph-structured data but are vulnerable to membership inference attacks (MIAs) in graph classification tasks, which determine if a graph was part of the training dataset, potentially causing data leakage. Existing MIAs rely on prediction probability vectors, but they become ineffective when only prediction labels are available. We propose a Graph-level Label-Only Membership Inference Attack (GLO-MIA), which is based on the intuition that the target model's predictions on training data are more stable than those on testing data. GLO-MIA generates a set of perturbed graphs for target graph by adding perturbations to its effective features and queries the target model with the perturbed graphs to get their prediction labels, which are then used to calculate robustness score of the target graph. Finally, by comparing the robustness score with a predefined threshold, the membership of the target graph can be inferred correctly with high probability. Our evaluation on three datasets and four GNN models shows that GLO-MIA achieves an attack accuracy of up to 0.825, outperforming baseline work by 8.5% and closely matching the performance of probability-based MIAs, even with only prediction labels.
♻ ☆ Control, Optimal Transport and Neural Differential Equations in Supervised Learning
From the perspective of control theory, neural differential equations (neural ODEs) have become an important tool for supervised learning. In the fundamental work of Ruiz-Balet and Zuazua (SIAM REVIEW 2023), the authors pose an open problem regarding the connection between control theory, optimal transport theory, and neural differential equations. More precisely, they inquire how one can quantify the closeness of the optimal flows in neural transport equations to the true dynamic optimal transport. In this work, we propose a construction of neural differential equations that converge to the true dynamic optimal transport in the limit, providing a significant step in solving the formerly mentioned open problem.
♻ ☆ A Pretraining-Finetuning Computational Framework for Material Homogenization
Homogenization is a fundamental tool for studying multiscale physical phenomena. Traditional numerical homogenization methods, heavily reliant on finite element analysis, demand significant computational resources, especially for complex geometries, materials, and high-resolution problems. To address these challenges, we propose PreFine-Homo, a novel numerical homogenization framework comprising two phases: pretraining and fine-tuning. In the pretraining phase, a Fourier Neural Operator (FNO) is trained on large datasets to learn the mapping from input geometries and material properties to displacement fields. In the fine-tuning phase, the pretrained predictions serve as initial solutions for iterative algorithms, drastically reducing the number of iterations needed for convergence. The pretraining phase of PreFine-Homo delivers homogenization results up to 1000 times faster than conventional methods, while the fine-tuning phase further enhances accuracy. Moreover, the fine-tuning phase grants PreFine-Homo unlimited generalization capabilities, enabling continuous learning and improvement as data availability increases. We validate PreFine-Homo by predicting the effective elastic tensor for 3D periodic materials, specifically Triply Periodic Minimal Surfaces (TPMS). The results demonstrate that PreFine-Homo achieves high precision, exceptional efficiency, robust learning capabilities, and strong extrapolation ability, establishing it as a powerful tool for multiscale homogenization tasks.
♻ ☆ Assessing Consistency and Reproducibility in the Outputs of Large Language Models: Evidence Across Diverse Finance and Accounting Tasks
This study provides the first comprehensive assessment of consistency and reproducibility in Large Language Model (LLM) outputs in finance and accounting research. We evaluate how consistently LLMs produce outputs given identical inputs through extensive experimentation with 50 independent runs across five common tasks: classification, sentiment analysis, summarization, text generation, and prediction. Using three OpenAI models (GPT-3.5-turbo, GPT-4o-mini, and GPT-4o), we generate over 3.4 million outputs from diverse financial source texts and data, covering MD&As, FOMC statements, finance news articles, earnings call transcripts, and financial statements. Our findings reveal substantial but task-dependent consistency, with binary classification and sentiment analysis achieving near-perfect reproducibility, while complex tasks show greater variability. More advanced models do not consistently demonstrate better consistency and reproducibility, with task-specific patterns emerging. LLMs significantly outperform expert human annotators in consistency and maintain high agreement even where human experts significantly disagree. We further find that simple aggregation strategies across 3-5 runs dramatically improve consistency. We also find that aggregation may come with an additional benefit of improved accuracy for sentiment analysis when using newer models. Simulation analysis reveals that despite measurable inconsistency in LLM outputs, downstream statistical inferences remain remarkably robust. These findings address concerns about what we term "G-hacking," the selective reporting of favorable outcomes from multiple Generative AI runs, by demonstrating that such risks are relatively low for finance and accounting tasks.
comment: 97 pages, 20 tables, 15 figures
♻ ☆ Graph-Instructed Neural Networks for Sparse Grid-Based Discontinuity Detectors
In this paper, we present a novel approach for detecting the discontinuity interfaces of a discontinuous function. This approach leverages Graph-Instructed Neural Networks (GINNs) and sparse grids to address discontinuity detection also in domains of dimension larger than 3. GINNs, trained to identify troubled points on sparse grids, exploit graph structures built on the grids to achieve efficient and accurate discontinuity detection performances. We also introduce a recursive algorithm for general sparse grid-based detectors, characterized by convergence properties and easy applicability. Numerical experiments on functions with dimensions n = 2 and n = 4 demonstrate the efficiency and robust generalization properties of GINNs in detecting discontinuity interfaces. Notably, the trained GINNs offer portability and versatility, allowing integration into various algorithms and sharing among users.
♻ ☆ Certified Robustness via Dynamic Margin Maximization and Improved Lipschitz Regularization NeurIPS 2023
To improve the robustness of deep classifiers against adversarial perturbations, many approaches have been proposed, such as designing new architectures with better robustness properties (e.g., Lipschitz-capped networks), or modifying the training process itself (e.g., min-max optimization, constrained learning, or regularization). These approaches, however, might not be effective at increasing the margin in the input (feature) space. As a result, there has been an increasing interest in developing training procedures that can directly manipulate the decision boundary in the input space. In this paper, we build upon recent developments in this category by developing a robust training algorithm whose objective is to increase the margin in the output (logit) space while regularizing the Lipschitz constant of the model along vulnerable directions. We show that these two objectives can directly promote larger margins in the input space. To this end, we develop a scalable method for calculating guaranteed differentiable upper bounds on the Lipschitz constant of neural networks accurately and efficiently. The relative accuracy of the bounds prevents excessive regularization and allows for more direct manipulation of the decision boundary. Furthermore, our Lipschitz bounding algorithm exploits the monotonicity and Lipschitz continuity of the activation layers, and the resulting bounds can be used to design new layers with controllable bounds on their Lipschitz constant. Experiments on the MNIST, CIFAR-10, and Tiny-ImageNet data sets verify that our proposed algorithm obtains competitively improved results compared to the state-of-the-art.
comment: 37th Conference on Neural Information Processing Systems (NeurIPS 2023)
♻ ☆ DexHandDiff: Interaction-aware Diffusion Planning for Adaptive Dexterous Manipulation CVPR 2025
Dexterous manipulation with contact-rich interactions is crucial for advanced robotics. While recent diffusion-based planning approaches show promise for simple manipulation tasks, they often produce unrealistic ghost states (e.g., the object automatically moves without hand contact) or lack adaptability when handling complex sequential interactions. In this work, we introduce DexHandDiff, an interaction-aware diffusion planning framework for adaptive dexterous manipulation. DexHandDiff models joint state-action dynamics through a dual-phase diffusion process which consists of pre-interaction contact alignment and post-contact goal-directed control, enabling goal-adaptive generalizable dexterous manipulation. Additionally, we incorporate dynamics model-based dual guidance and leverage large language models for automated guidance function generation, enhancing generalizability for physical interactions and facilitating diverse goal adaptation through language cues. Experiments on physical interaction tasks such as door opening, pen and block re-orientation, object relocation, and hammer striking demonstrate DexHandDiff's effectiveness on goals outside training distributions, achieving over twice the average success rate (59.2% vs. 29.5%) compared to existing methods. Our framework achieves an average of 70.7% success rate on goal adaptive dexterous tasks, highlighting its robustness and flexibility in contact-rich manipulation.
comment: Accepted by CVPR 2025. Camera ready version. Previous DexDiffuser. Project page: https://dexdiffuser.github.io/
♻ ☆ Text-to-Model: Text-Conditioned Neural Network Diffusion for Train-Once-for-All Personalization
Generative artificial intelligence (GenAI) has made significant progress in understanding world knowledge and generating content from human languages across various modalities, like text-to-text large language models, text-to-image stable diffusion, and text-to-video Sora. While in this paper, we investigate the capability of GenAI for text-to-model generation, to see whether GenAI can comprehend hyper-level knowledge embedded within AI itself parameters. Specifically, we study a practical scenario termed train-once-for-all personalization, aiming to generate personalized models for diverse end-users and tasks using text prompts. Inspired by the recent emergence of neural network diffusion, we present Tina, a text-conditioned neural network diffusion for train-once-for-all personalization. Tina leverages a diffusion transformer model conditioned on task descriptions embedded using a CLIP model. Despite the astronomical number of potential personalized tasks (e.g., $1.73\times10^{13}$), by our design, Tina demonstrates remarkable in-distribution and out-of-distribution generalization even trained on small datasets ($\sim 1000$). We further verify whether and how \Tina understands world knowledge by analyzing its capabilities under zero-shot/few-shot image prompts, different numbers of personalized classes, prompts of natural language descriptions, and predicting unseen entities.
comment: Preprint
♻ ☆ Sinkhorn Distributionally Robust Optimization
We study distributionally robust optimization with Sinkhorn distance -- a variant of Wasserstein distance based on entropic regularization. We derive a convex programming dual reformulation for general nominal distributions, transport costs, and loss functions. To solve the dual reformulation, we develop a stochastic mirror descent algorithm with biased subgradient estimators and derive its computational complexity guarantees. Finally, we provide numerical examples using synthetic and real data to demonstrate its superior performance.
comment: 55 pages, 15 figures
♻ ☆ Harmony: A Joint Self-Supervised and Weakly-Supervised Framework for Learning General Purpose Visual Representations
Vision-language contrastive learning frameworks like CLIP enable learning representations from natural language supervision, and provide strong zero-shot classification capabilities. However, due to the nature of the supervisory signal in these paradigms, they lack the ability to learn localized features, leading to degraded performance on dense prediction tasks like segmentation and detection. On the other hand, self-supervised learning methods have shown the ability to learn granular representations, complementing the high-level features in vision-language training. In this work, we present Harmony, a framework that combines vision-language training with discriminative and generative self-supervision to learn visual features that can be generalized across different vision downstream tasks. Our framework is specifically designed to work on web-scraped data by not relying on negative examples and addressing the one-to-one correspondence issue using soft CLIP targets generated by an EMA model. We comprehensively evaluate Harmony across various vision downstream tasks and find that it significantly outperforms the baseline CLIP and the previously leading joint self and weakly-supervised methods, MaskCLIP and SLIP. Specifically, when comparing against these methods, Harmony shows superior performance in fine-tuning and zero-shot classification on ImageNet-1k, semantic segmentation on ADE20K, and both object detection and instance segmentation on MS-COCO, when pre-training a ViT-B on CC3M. We also show that Harmony outperforms other self-supervised learning methods like iBOT and MAE across all tasks evaluated. Our code is publicly at https://github.com/MohammedSB/Harmony}{https://github.com/MohammedSB/Harmony available.
comment: 22 pages, 4 figures
♻ ☆ A General Framework for Interpretable Neural Learning based on Local Information-Theoretic Goal Functions
Despite the impressive performance of biological and artificial networks, an intuitive understanding of how their local learning dynamics contribute to network-level task solutions remains a challenge to this date. Efforts to bring learning to a more local scale indeed lead to valuable insights, however, a general constructive approach to describe local learning goals that is both interpretable and adaptable across diverse tasks is still missing. We have previously formulated a local information processing goal that is highly adaptable and interpretable for a model neuron with compartmental structure. Building on recent advances in Partial Information Decomposition (PID), we here derive a corresponding parametric local learning rule, which allows us to introduce 'infomorphic' neural networks. We demonstrate the versatility of these networks to perform tasks from supervised, unsupervised and memory learning. By leveraging the interpretable nature of the PID framework, infomorphic networks represent a valuable tool to advance our understanding of the intricate structure of local learning.
comment: 30 pages, 14 figures
♻ ☆ COSMOS: Cross-Modality Self-Distillation for Vision Language Pre-training CVPR 2025
Vision-Language Models (VLMs) trained with contrastive loss have achieved significant advancements in various vision and language tasks. However, the global nature of the contrastive loss makes VLMs focus predominantly on foreground objects, neglecting other crucial information in the image, which limits their effectiveness in downstream tasks. To address these challenges, we propose COSMOS: CrOSs-MOdality Self-distillation for vision-language pre-training that integrates a novel text-cropping strategy and cross-attention module into a self-supervised learning framework. We create global and local views of images and texts (i.e., multi-modal augmentations), which are essential for self-distillation in VLMs. We further introduce a cross-attention module, enabling COSMOS to learn comprehensive cross-modal representations optimized via a cross-modality self-distillation loss. COSMOS consistently outperforms previous strong baselines on various zero-shot downstream tasks, including retrieval, classification, and semantic segmentation. Additionally, it surpasses CLIP-based models trained on larger datasets in visual perception and contextual understanding tasks. Code is available at https://github.com/ExplainableML/cosmos.
comment: CVPR 2025
♻ ☆ The mathematics of adversarial attacks in AI -- Why deep learning is unstable despite the existence of stable neural networks
The unprecedented success of deep learning (DL) makes it unchallenged when it comes to classification problems. However, it is well established that the current DL methodology produces universally unstable neural networks (NNs). The instability problem has caused an enormous research effort -- with a vast literature on so-called adversarial attacks -- yet there has been no solution to the problem. Our paper addresses why there has been no solution to the problem, as we prove the following mathematical paradox: any training procedure based on training neural networks for classification problems with a fixed architecture will yield neural networks that are either inaccurate or unstable (if accurate) -- despite the provable existence of both accurate and stable neural networks for the same classification problems. The key is that the stable and accurate neural networks must have variable dimensions depending on the input, in particular, variable dimensions is a necessary condition for stability. Our result points towards the paradox that accurate and stable neural networks exist, however, modern algorithms do not compute them. This yields the question: if the existence of neural networks with desirable properties can be proven, can one also find algorithms that compute them? There are cases in mathematics where provable existence implies computability, but will this be the case for neural networks? The contrary is true, as we demonstrate how neural networks can provably exist as approximate minimisers to standard optimisation problems with standard cost functions, however, no randomised algorithm can compute them with probability better than 1/2.
comment: 31 pages, 1 figure. Revised to make minor changes to notation and references
♻ ☆ DeSplat: Decomposed Gaussian Splatting for Distractor-Free Rendering
Gaussian splatting enables fast novel view synthesis in static 3D environments. However, reconstructing real-world environments remains challenging as distractors or occluders break the multi-view consistency assumption required for accurate 3D reconstruction. Most existing methods rely on external semantic information from pre-trained models, introducing additional computational overhead as pre-processing steps or during optimization. In this work, we propose a novel method, DeSplat, that directly separates distractors and static scene elements purely based on volume rendering of Gaussian primitives. We initialize Gaussians within each camera view for reconstructing the view-specific distractors to separately model the static 3D scene and distractors in the alpha compositing stages. DeSplat yields an explicit scene separation of static elements and distractors, achieving comparable results to prior distractor-free approaches without sacrificing rendering speed. We demonstrate DeSplat's effectiveness on three benchmark data sets for distractor-free novel view synthesis. See the project website at https://aaltoml.github.io/desplat/.
♻ ☆ Fully Distributed Fog Load Balancing with Multi-Agent Reinforcement Learning
Real-time Internet of Things (IoT) applications require real-time support to handle the ever-growing demand for computing resources to process IoT workloads. Fog Computing provides high availability of such resources in a distributed manner. However, these resources must be efficiently managed to distribute unpredictable traffic demands among heterogeneous Fog resources. This paper proposes a fully distributed load-balancing solution with Multi-Agent Reinforcement Learning (MARL) that intelligently distributes IoT workloads to optimize the waiting time while providing fair resource utilization in the Fog network. These agents use transfer learning for life-long self-adaptation to dynamic changes in the environment. By leveraging distributed decision-making, MARL agents effectively minimize the waiting time compared to a single centralized agent solution and other baselines, enhancing end-to-end execution delay. Besides performance gain, a fully distributed solution allows for a global-scale implementation where agents can work independently in small collaboration regions, leveraging nearby local resources. Furthermore, we analyze the impact of a realistic frequency to observe the state of the environment, unlike the unrealistic common assumption in the literature of having observations readily available in real-time for every required action. The findings highlight the trade-off between realism and performance using an interval-based Gossip-based multi-casting protocol against assuming real-time observation availability for every generated workload.
comment: Submitted to IEEE TNSM with 14 pages, 11 figures, and 3 tables
♻ ☆ Contractive Dynamical Imitation Policies for Efficient Out-of-Sample Recovery
Imitation learning is a data-driven approach to learning policies from expert behavior, but it is prone to unreliable outcomes in out-of-sample (OOS) regions. While previous research relying on stable dynamical systems guarantees convergence to a desired state, it often overlooks transient behavior. We propose a framework for learning policies modeled by contractive dynamical systems, ensuring that all policy rollouts converge regardless of perturbations, and in turn, enable efficient OOS recovery. By leveraging recurrent equilibrium networks and coupling layers, the policy structure guarantees contractivity for any parameter choice, which facilitates unconstrained optimization. We also provide theoretical upper bounds for worst-case and expected loss to rigorously establish the reliability of our method in deployment. Empirically, we demonstrate substantial OOS performance improvements for simulated robotic manipulation and navigation tasks.
comment: International Conference on Learning Representations
♻ ☆ Personalized Federated Learning of Probabilistic Models: A PAC-Bayesian Approach
Federated Learning (FL) aims to infer a shared model from private and decentralized data stored by multiple clients. Personalized FL (PFL) enhances the model's fit for each client by adapting the global model to the clients. A significant level of personalization is required for highly heterogeneous clients but can be challenging to achieve, especially when clients' datasets are small. To address this issue, we introduce the PAC-PFL framework for PFL of probabilistic models. PAC-PFL infers a shared hyper-posterior and treats each client's posterior inference as the personalization step. Unlike previous PFL algorithms, PAC-PFL does not regularize all personalized models towards a single shared model, thereby greatly enhancing its personalization flexibility. By establishing and minimizing a PAC-Bayesian generalization bound on the average true loss of clients, PAC-PFL effectively mitigates overfitting even in data-poor scenarios. Additionally, PAC-PFL provides generalization bounds for new clients joining later. PAC-PFL achieves accurate and well-calibrated predictions, as supported by our experiments.
♻ ☆ Perception of Visual Content: Differences Between Humans and Foundation Models
Human-annotated content is often used to train machine learning (ML) models. However, recently, language and multi-modal foundational models have been used to replace and scale-up human annotator's efforts. This study compares human-generated and ML-generated annotations of images representing diverse socio-economic contexts. We aim to understand differences in perception and identify potential biases in content interpretation. Our dataset comprises images of people from various geographical regions and income levels, covering various daily activities and home environments. We compare human and ML-generated annotations semantically and evaluate their impact on predictive models. Our results show highest similarity between ML captions and human labels from a low-level perspective, i.e., types of words that appear and sentence structures, but all three annotations are alike in how similar or dissimilar they perceive images across different regions. Additionally, ML Captions resulted in best overall region classification performance, while ML Objects and ML Captions performed best overall for income regression. The varying performance of annotation sets highlights the notion that all annotations are important, and that human-generated annotations are yet to be replaceable.
comment: 12 pages, 5 figures, 5 tables; updated version for a Revise-and-Resubmit at ICWSM 2025. This version includes a larger and more diverse dataset, leading to updated results
♻ ☆ Flow Matching Beyond Kinematics: Generating Jets with Particle-ID and Trajectory Displacement Information
We introduce the first generative model trained on the JetClass dataset. Our model generates jets at the constituent level, and it is a permutation-equivariant continuous normalizing flow (CNF) trained with the flow matching technique. It is conditioned on the jet type, so that a single model can be used to generate the ten different jet types of JetClass. For the first time, we also introduce a generative model that goes beyond the kinematic features of jet constituents. The JetClass dataset includes more features, such as particle-ID and track impact parameter, and we demonstrate that our CNF can accurately model all of these additional features as well. Our generative model for JetClass expands on the versatility of existing jet generation techniques, enhancing their potential utility in high-energy physics research, and offering a more comprehensive understanding of the generated jets.
♻ ☆ Long-Sequence Recommendation Models Need Decoupled Embeddings ICLR 2025
Lifelong user behavior sequences are crucial for capturing user interests and predicting user responses in modern recommendation systems. A two-stage paradigm is typically adopted to handle these long sequences: a subset of relevant behaviors is first searched from the original long sequences via an attention mechanism in the first stage and then aggregated with the target item to construct a discriminative representation for prediction in the second stage. In this work, we identify and characterize, for the first time, a neglected deficiency in existing long-sequence recommendation models: a single set of embeddings struggles with learning both attention and representation, leading to interference between these two processes. Initial attempts to address this issue with some common methods (e.g., linear projections -- a technique borrowed from language processing) proved ineffective, shedding light on the unique challenges of recommendation models. To overcome this, we propose the Decoupled Attention and Representation Embeddings (DARE) model, where two distinct embedding tables are initialized and learned separately to fully decouple attention and representation. Extensive experiments and analysis demonstrate that DARE provides more accurate searches of correlated behaviors and outperforms baselines with AUC gains up to 0.9% on public datasets and notable improvements on Tencent's advertising platform. Furthermore, decoupling embedding spaces allows us to reduce the attention embedding dimension and accelerate the search procedure by 50% without significant performance impact, enabling more efficient, high-performance online serving. Code in PyTorch for experiments, including model analysis, is available at https://github.com/thuml/DARE.
comment: ICLR 2025. First three authors contributed equally. Code is available at https://github.com/thuml/DARE
♻ ☆ Development and Validation of a Deep-Learning Model for Differential Treatment Benefit Prediction for Adults with Major Depressive Disorder Deployed in the Artificial Intelligence in Depression Medication Enhancement (AIDME) Study
INTRODUCTION: The pharmacological treatment of Major Depressive Disorder (MDD) relies on a trial-and-error approach. We introduce an artificial intelligence (AI) model aiming to personalize treatment and improve outcomes, which was deployed in the Artificial Intelligence in Depression Medication Enhancement (AIDME) Study. OBJECTIVES: 1) Develop a model capable of predicting probabilities of remission across multiple pharmacological treatments for adults with at least moderate major depression. 2) Validate model predictions and examine them for amplification of harmful biases. METHODS: Data from previous clinical trials of antidepressant medications were standardized into a common framework and included 9,042 adults with moderate to severe major depression. Feature selection retained 25 clinical and demographic variables. Using Bayesian optimization, a deep learning model was trained on the training set, refined using the validation set, and tested once on the held-out test set. RESULTS: In the evaluation on the held-out test set, the model demonstrated achieved an AUC of 0.65. The model outperformed a null model on the test set (p = 0.01). The model demonstrated clinical utility, achieving an absolute improvement in population remission rate in hypothetical and actual improvement testing. While the model did identify one drug (escitalopram) as generally outperforming the other drugs (consistent with the input data), there was otherwise significant variation in drug rankings. On bias testing, the model did not amplify potentially harmful biases. CONCLUSIONS: We demonstrate the first model capable of predicting outcomes for 10 different treatment options for patients with MDD, intended to be used at or near the start of treatment to personalize treatment. The model was put into clinical practice during the AIDME randomized controlled trial whose results are reported separately.
♻ ☆ Bayesian Modeling of Zero-Shot Classifications for Urban Flood Detection
Street scene datasets, collected from Street View or dashboard cameras, offer a promising means of detecting urban objects and incidents like street flooding. However, a major challenge in using these datasets is their lack of reliable labels: there are myriad types of incidents, many types occur rarely, and ground-truth measures of where incidents occur are lacking. Here, we propose BayFlood, a two-stage approach which circumvents this difficulty. First, we perform zero-shot classification of where incidents occur using a pretrained vision-language model (VLM). Second, we fit a spatial Bayesian model on the VLM classifications. The zero-shot approach avoids the need to annotate large training sets, and the Bayesian model provides frequent desiderata in urban settings - principled measures of uncertainty, smoothing across locations, and incorporation of external data like stormwater accumulation zones. We comprehensively validate this two-stage approach, showing that VLMs provide strong zero-shot signal for floods across multiple cities and time periods, the Bayesian model improves out-of-sample prediction relative to baseline methods, and our inferred flood risk correlates with known external predictors of risk. Having validated our approach, we show it can be used to improve urban flood detection: our analysis reveals 113,738 people who are at high risk of flooding overlooked by current methods, identifies demographic biases in existing methods, and suggests locations for new flood sensors. More broadly, our results showcase how Bayesian modeling of zero-shot LM annotations represents a promising paradigm because it avoids the need to collect large labeled datasets and leverages the power of foundation models while providing the expressiveness and uncertainty quantification of Bayesian models.
comment: In review
♻ ☆ Fantastic Copyrighted Beasts and How (Not) to Generate Them
Recent studies show that image and video generation models can be prompted to reproduce copyrighted content from their training data, raising serious legal concerns about copyright infringement. Copyrighted characters (e.g., Mario, Batman) present a significant challenge: at least one lawsuit has already awarded damages based on the generation of such characters. Consequently, commercial services like DALL-E have started deploying interventions. However, little research has systematically examined these problems: (1) Can users easily prompt models to generate copyrighted characters, even if it is unintentional?; (2) How effective are the existing mitigation strategies? To address these questions, we introduce a novel evaluation framework with metrics that assess both the generated image's similarity to copyrighted characters and its consistency with user intent, grounded in a set of popular copyrighted characters from diverse studios and regions. We show that state-of-the-art image and video generation models can still generate characters even if characters' names are not explicitly mentioned, sometimes with only two generic keywords (e.g., prompting with "videogame, plumber" consistently generates Nintendo's Mario character). We also introduce semi-automatic techniques to identify such keywords or descriptions that trigger character generation. Using this framework, we evaluate mitigation strategies, including prompt rewriting and new approaches we propose. Our findings reveal that common methods, such as DALL-E's prompt rewriting, are insufficient alone and require supplementary strategies like negative prompting. Our work provides empirical grounding for discussions on copyright mitigation strategies and offers actionable insights for model deployers implementing these safeguards.
♻ ☆ Towards Real-World Test-Time Adaptation: Tri-Net Self-Training with Balanced Normalization AAAI 2024
Test-Time Adaptation aims to adapt source domain model to testing data at inference stage with success demonstrated in adapting to unseen corruptions. However, these attempts may fail under more challenging real-world scenarios. Existing works mainly consider real-world test-time adaptation under non-i.i.d. data stream and continual domain shift. In this work, we first complement the existing real-world TTA protocol with a globally class imbalanced testing set. We demonstrate that combining all settings together poses new challenges to existing methods. We argue the failure of state-of-the-art methods is first caused by indiscriminately adapting normalization layers to imbalanced testing data. To remedy this shortcoming, we propose a balanced batchnorm layer to swap out the regular batchnorm at inference stage. The new batchnorm layer is capable of adapting without biasing towards majority classes. We are further inspired by the success of self-training (ST) in learning from unlabeled data and adapt ST for test-time adaptation. However, ST alone is prone to over adaption which is responsible for the poor performance under continual domain shift. Hence, we propose to improve self-training under continual domain shift by regularizing model updates with an anchored loss. The final TTA model, termed as TRIBE, is built upon a tri-net architecture with balanced batchnorm layers. We evaluate TRIBE on four datasets representing real-world TTA settings. TRIBE consistently achieves the state-of-the-art performance across multiple evaluation protocols. The code is available at https://github.com/Gorilla-Lab-SCUT/TRIBE.
comment: Accepted by AAAI 2024. 19 pages, 7 figures and 22 tables
♻ ☆ Valid Conformal Prediction for Dynamic GNNs
Dynamic graphs provide a flexible data abstraction for modelling many sorts of real-world systems, such as transport, trade, and social networks. Graph neural networks (GNNs) are powerful tools allowing for different kinds of prediction and inference on these systems, but getting a handle on uncertainty, especially in dynamic settings, is a challenging problem. In this work we propose to use a dynamic graph representation known in the tensor literature as the unfolding, to achieve valid prediction sets via conformal prediction. This representation, a simple graph, can be input to any standard GNN and does not require any modification to existing GNN architectures or conformal prediction routines. One of our key contributions is a careful mathematical consideration of the different inference scenarios which can arise in a dynamic graph modelling context. For a range of practically relevant cases, we obtain valid prediction sets with almost no assumptions, even dispensing with exchangeability. In a more challenging scenario, which we call the semi-inductive regime, we achieve valid prediction under stronger assumptions, akin to stationarity. We provide real data examples demonstrating validity, showing improved accuracy over baselines, and sign-posting different failure modes which can occur when those assumptions are violated.
comment: 25 pages, 6 figures
♻ ☆ Aligning Visual Contrastive learning models via Preference Optimization
Contrastive learning models have demonstrated impressive abilities to capture semantic similarities by aligning representations in the embedding space. However, their performance can be limited by the quality of the training data and its inherent biases. While Preference Optimization (PO) methods such as Reinforcement Learning from Human Feedback (RLHF) and Direct Preference Optimization (DPO) have been applied to align generative models with human preferences, their use in contrastive learning has yet to be explored. This paper introduces a novel method for training contrastive learning models using different PO methods to break down complex concepts. Our method systematically aligns model behavior with desired preferences, enhancing performance on the targeted task. In particular, we focus on enhancing model robustness against typographic attacks and inductive biases, commonly seen in contrastive vision-language models like CLIP. Our experiments demonstrate that models trained using PO outperform standard contrastive learning techniques while retaining their ability to handle adversarial challenges and maintain accuracy on other downstream tasks. This makes our method well-suited for tasks requiring fairness, robustness, and alignment with specific preferences. We evaluate our method for tackling typographic attacks on images and explore its ability to disentangle gender concepts and mitigate gender bias, showcasing the versatility of our approach.
♻ ☆ MMGDreamer: Mixed-Modality Graph for Geometry-Controllable 3D Indoor Scene Generation AAAI 2025
Controllable 3D scene generation has extensive applications in virtual reality and interior design, where the generated scenes should exhibit high levels of realism and controllability in terms of geometry. Scene graphs provide a suitable data representation that facilitates these applications. However, current graph-based methods for scene generation are constrained to text-based inputs and exhibit insufficient adaptability to flexible user inputs, hindering the ability to precisely control object geometry. To address this issue, we propose MMGDreamer, a dual-branch diffusion model for scene generation that incorporates a novel Mixed-Modality Graph, visual enhancement module, and relation predictor. The mixed-modality graph allows object nodes to integrate textual and visual modalities, with optional relationships between nodes. It enhances adaptability to flexible user inputs and enables meticulous control over the geometry of objects in the generated scenes. The visual enhancement module enriches the visual fidelity of text-only nodes by constructing visual representations using text embeddings. Furthermore, our relation predictor leverages node representations to infer absent relationships between nodes, resulting in more coherent scene layouts. Extensive experimental results demonstrate that MMGDreamer exhibits superior control of object geometry, achieving state-of-the-art scene generation performance. Project page: https://yangzhifeio.github.io/project/MMGDreamer.
comment: Accepted by AAAI 2025 Main Track
♻ ☆ MARVEL-40M+: Multi-Level Visual Elaboration for High-Fidelity Text-to-3D Content Creation
Generating high-fidelity 3D content from text prompts remains a significant challenge in computer vision due to the limited size, diversity, and annotation depth of the existing datasets. To address this, we introduce MARVEL-40M+, an extensive dataset with 40 million text annotations for over 8.9 million 3D assets aggregated from seven major 3D datasets. Our contribution is a novel multi-stage annotation pipeline that integrates open-source pretrained multi-view VLMs and LLMs to automatically produce multi-level descriptions, ranging from detailed (150-200 words) to concise semantic tags (10-20 words). This structure supports both fine-grained 3D reconstruction and rapid prototyping. Furthermore, we incorporate human metadata from source datasets into our annotation pipeline to add domain-specific information in our annotation and reduce VLM hallucinations. Additionally, we develop MARVEL-FX3D, a two-stage text-to-3D pipeline. We fine-tune Stable Diffusion with our annotations and use a pretrained image-to-3D network to generate 3D textured meshes within 15s. Extensive evaluations show that MARVEL-40M+ significantly outperforms existing datasets in annotation quality and linguistic diversity, achieving win rates of 72.41% by GPT-4 and 73.40% by human evaluators. Project page is available at https://sankalpsinha-cmos.github.io/MARVEL/.
♻ ☆ TopoBench: A Framework for Benchmarking Topological Deep Learning
This work introduces TopoBench, an open-source library designed to standardize benchmarking and accelerate research in topological deep learning (TDL). TopoBench decomposes TDL into a sequence of independent modules for data generation, loading, transforming and processing, as well as model training, optimization and evaluation. This modular organization provides flexibility for modifications and facilitates the adaptation and optimization of various TDL pipelines. A key feature of TopoBench is its support for transformations and lifting across topological domains. Mapping the topology and features of a graph to higher-order topological domains, such as simplicial and cell complexes, enables richer data representations and more fine-grained analyses. The applicability of TopoBench is demonstrated by benchmarking several TDL architectures across diverse tasks and datasets.
♻ ☆ NLPrompt: Noise-Label Prompt Learning for Vision-Language Models
The emergence of vision-language foundation models, such as CLIP, has revolutionized image-text representation, enabling a broad range of applications via prompt learning. Despite its promise, real-world datasets often contain noisy labels that can degrade prompt learning performance. In this paper, we demonstrate that using mean absolute error (MAE) loss in prompt learning, named PromptMAE, significantly enhances robustness against noisy labels while maintaining high accuracy. Though MAE is straightforward and recognized for its robustness, it is rarely used in noisy-label learning due to its slow convergence and poor performance outside prompt learning scenarios. To elucidate the robustness of PromptMAE, we leverage feature learning theory to show that MAE can suppress the influence of noisy samples, thereby improving the signal-to-noise ratio and enhancing overall robustness. Additionally, we introduce PromptOT, a prompt-based optimal transport data purification method to enhance the robustness further. PromptOT employs text features in vision-language models as prototypes to construct an optimal transportation matrix. This matrix effectively partitions datasets into clean and noisy subsets, allowing for the application of cross-entropy loss to the clean subset and MAE loss to the noisy subset. Our Noise-Label Prompt Learning method, named NLPrompt, offers a simple and efficient approach that leverages the expressive representations and precise alignment capabilities of vision-language models for robust prompt learning. We validate NLPrompt through extensive experiments across various noise settings, demonstrating significant performance improvements.
♻ ☆ Contextual Similarity Distillation: Ensemble Uncertainties with a Single Model
Uncertainty quantification is a critical aspect of reinforcement learning and deep learning, with numerous applications ranging from efficient exploration and stable offline reinforcement learning to outlier detection in medical diagnostics. The scale of modern neural networks, however, complicates the use of many theoretically well-motivated approaches such as full Bayesian inference. Approximate methods like deep ensembles can provide reliable uncertainty estimates but still remain computationally expensive. In this work, we propose contextual similarity distillation, a novel approach that explicitly estimates the variance of an ensemble of deep neural networks with a single model, without ever learning or evaluating such an ensemble in the first place. Our method builds on the predictable learning dynamics of wide neural networks, governed by the neural tangent kernel, to derive an efficient approximation of the predictive variance of an infinite ensemble. Specifically, we reinterpret the computation of ensemble variance as a supervised regression problem with kernel similarities as regression targets. The resulting model can estimate predictive variance at inference time with a single forward pass, and can make use of unlabeled target-domain data or data augmentations to refine its uncertainty estimates. We empirically validate our method across a variety of out-of-distribution detection benchmarks and sparse-reward reinforcement learning environments. We find that our single-model method performs competitively and sometimes superior to ensemble-based baselines and serves as a reliable signal for efficient exploration. These results, we believe, position contextual similarity distillation as a principled and scalable alternative for uncertainty quantification in reinforcement learning and general deep learning.
♻ ☆ T-Graphormer: Using Transformers for Spatiotemporal Forecasting
Spatiotemporal data is ubiquitous, and forecasting it has important applications in many domains. However, its complex cross-component dependencies and non-linear temporal dynamics can be challenging for traditional techniques. Existing methods address this by learning the two dimensions separately. Here, we introduce Temporal Graphormer (T-Graphormer), a Transformer-based approach capable of modelling spatiotemporal correlations simultaneously. By adding temporal encodings in the Graphormer architecture, each node attends to all other tokens within the graph sequence, enabling the model to learn rich spacetime patterns with minimal predefined inductive biases. We show the effectiveness of T-Graphormer on real-world traffic prediction benchmark datasets. Compared to state-of-the-art methods, T-Graphormer reduces root mean squared error (RMSE) and mean absolute percentage error (MAPE) by up to 20% and 10%.
♻ ☆ MMRL: Multi-Modal Representation Learning for Vision-Language Models CVPR 2025
Large-scale pre-trained Vision-Language Models (VLMs) have become essential for transfer learning across diverse tasks. However, adapting these models with limited few-shot data often leads to overfitting, diminishing their performance on new tasks. To tackle this issue, we propose a novel Multi-Modal Representation Learning (MMRL) framework that introduces a shared, learnable, and modality-agnostic representation space. MMRL projects the space tokens to text and image representation tokens, facilitating more effective multi-modal interactions. Unlike previous approaches that solely optimize class token features, MMRL integrates representation tokens at higher layers of the encoders--where dataset-specific features are more prominent--while preserving generalized knowledge in the lower layers. During training, both representation and class features are optimized, with trainable projection layer applied to the representation tokens, whereas the class token projection layer remains frozen to retain pre-trained knowledge. Furthermore, a regularization term is introduced to align the class features and text features with the zero-shot features from the frozen VLM, thereby safeguarding the model's generalization capacity. For inference, a decoupling strategy is employed, wherein both representation and class features are utilized for base classes, while only the class features, which retain more generalized knowledge, are used for new tasks. Extensive experiments across 15 datasets demonstrate that MMRL outperforms state-of-the-art methods, achieving a balanced trade-off between task-specific adaptation and generalization. Code is available at https://github.com/yunncheng/MMRL.
comment: Accepted by CVPR 2025
♻ ☆ Making AI Less "Thirsty": Uncovering and Addressing the Secret Water Footprint of AI Models
The growing carbon footprint of artificial intelligence (AI) has been undergoing public scrutiny. Nonetheless, the equally important water (withdrawal and consumption) footprint of AI has largely remained under the radar. For example, training the GPT-3 language model in Microsoft's state-of-the-art U.S. data centers can directly evaporate 700,000 liters of clean freshwater, but such information has been kept a secret. More critically, the global AI demand is projected to account for 4.2-6.6 billion cubic meters of water withdrawal in 2027, which is more than the total annual water withdrawal of 4-6 Denmark or half of the United Kingdom. This is concerning, as freshwater scarcity has become one of the most pressing challenges. To respond to the global water challenges, AI can, and also must, take social responsibility and lead by example by addressing its own water footprint. In this paper, we provide a principled methodology to estimate the water footprint of AI, and also discuss the unique spatial-temporal diversities of AI's runtime water efficiency. Finally, we highlight the necessity of holistically addressing water footprint along with carbon footprint to enable truly sustainable AI.
comment: Accepted by Communications of the ACM. Source codes available at: https://github.com/Ren-Research/Making-AI-Less-Thirsty
♻ ☆ Preference Optimization with Multi-Sample Comparisons
Recent advancements in generative models, particularly large language models (LLMs) and diffusion models, have been driven by extensive pretraining on large datasets followed by post-training. However, current post-training methods such as reinforcement learning from human feedback (RLHF) and direct alignment from preference methods (DAP) primarily utilize single-sample comparisons. These approaches often fail to capture critical characteristics such as generative diversity and bias, which are more accurately assessed through multiple samples. To address these limitations, we introduce a novel approach that extends post-training to include multi-sample comparisons. To achieve this, we propose Multi-sample Direct Preference Optimization (mDPO) and Multi-sample Identity Preference Optimization (mIPO). These methods improve traditional DAP methods by focusing on group-wise characteristics. Empirically, we demonstrate that multi-sample comparison is more effective in optimizing collective characteristics~(e.g., diversity and bias) for generative models than single-sample comparison. Additionally, our findings suggest that multi-sample comparisons provide a more robust optimization framework, particularly for dataset with label noise.
comment: Code is available at https://github.com/alecwangcq/multi-sample-alignment
♻ ☆ Hi-ALPS -- An Experimental Robustness Quantification of Six LiDAR-based Object Detection Systems for Autonomous Driving
Light Detection and Ranging (LiDAR) is an essential sensor technology for autonomous driving as it can capture high-resolution 3D data. As 3D object detection systems (OD) can interpret such point cloud data, they play a key role in the driving decisions of autonomous vehicles. Consequently, such 3D OD must be robust against all types of perturbations and must therefore be extensively tested. One approach is the use of adversarial examples, which are small, sometimes sophisticated perturbations in the input data that change, i.e., falsify, the prediction of the OD. These perturbations are carefully designed based on the weaknesses of the OD. The robustness of the OD cannot be quantified with adversarial examples in general, because if the OD is vulnerable to a given attack, it is unclear whether this is due to the robustness of the OD or whether the attack algorithm produces particularly strong adversarial examples. The contribution of this work is Hi-ALPS -- Hierarchical Adversarial-example-based LiDAR Perturbation Level System, where higher robustness of the OD is required to withstand the perturbations as the perturbation levels increase. In doing so, the Hi-ALPS levels successively implement a heuristic followed by established adversarial example approaches. In a series of comprehensive experiments using Hi-ALPS, we quantify the robustness of six state-of-the-art 3D OD under different types of perturbations. The results of the experiments show that none of the OD is robust against all Hi-ALPS levels; an important factor for the ranking is that human observers can still correctly recognize the perturbed objects, as the respective perturbations are small. To increase the robustness of the OD, we discuss the applicability of state-of-the-art countermeasures. In addition, we derive further suggestions for countermeasures based on our experimental results.
♻ ☆ Learning Partial Graph Matching via Optimal Partial Transport
Partial graph matching extends traditional graph matching by allowing some nodes to remain unmatched, enabling applications in more complex scenarios. However, this flexibility introduces additional complexity, as both the subset of nodes to match and the optimal mapping must be determined. While recent studies have explored deep learning techniques for partial graph matching, a significant limitation remains: the absence of an optimization objective that fully captures the problem's intrinsic nature while enabling efficient solutions. In this paper, we propose a novel optimization framework for partial graph matching, inspired by optimal partial transport. Our approach formulates an objective that enables partial assignments while incorporating matching biases, using weighted total variation as the divergence function to guarantee optimal partial assignments. Our method can achieve efficient, exact solutions within cubic worst case time complexity. Our contributions are threefold: (i) we introduce a novel optimization objective that balances matched and unmatched nodes; (ii) we establish a connection between partial graph matching and linear sum assignment problem, enabling efficient solutions; (iii) we propose a deep graph matching architecture with a novel partial matching loss, providing an end-to-end solution. The empirical evaluations on standard graph matching benchmarks demonstrate the efficacy of the proposed approach.
♻ ☆ Vision-based Multi-future Trajectory Prediction: A Survey
Vision-based trajectory prediction is an important task that supports safe and intelligent behaviours in autonomous systems. Many advanced approaches have been proposed over the years with improved spatial and temporal feature extraction. However, human behaviour is naturally diverse and uncertain. Given the past trajectory and surrounding environment information, an agent can have multiple plausible trajectories in the future. To tackle this problem, an essential task named multi-future trajectory prediction (MTP) has recently been studied. This task aims to generate a diverse, acceptable and explainable distribution of future predictions for each agent. In this paper, we present the first survey for MTP with our unique taxonomies and a comprehensive analysis of frameworks, datasets and evaluation metrics. We also compare models on existing MTP datasets and conduct experiments on the ForkingPath dataset. Finally, we discuss multiple future directions that can help researchers develop novel multi-future trajectory prediction systems and other diverse learning tasks similar to MTP.
comment: Accepted by TNNLS 2025
♻ ☆ Bonsai: Gradient-free Graph Condensation for Node Classification
Graph condensation has emerged as a promising avenue to enable scalable training of GNNs by compressing the training dataset while preserving essential graph characteristics. Our study uncovers significant shortcomings in current graph condensation techniques. First, the majority of the algorithms paradoxically require training on the full dataset to perform condensation. Second, due to their gradient-emulating approach, these methods require fresh condensation for any change in hyperparameters or GNN architecture, limiting their flexibility and reusability. Finally, they fail to achieve substantial size reduction due to synthesizing fully-connected, edge-weighted graphs. To address these challenges, we present Bonsai, a novel graph condensation method empowered by the observation that \textit{computation trees} form the fundamental processing units of message-passing GNNs. Bonsai condenses datasets by encoding a careful selection of \textit{exemplar} trees that maximize the representation of all computation trees in the training set. This unique approach imparts Bonsai as the first linear-time, model-agnostic graph condensation algorithm for node classification that outperforms existing baselines across $7$ real-world datasets on accuracy, while being $22$ times faster on average. Bonsai is grounded in rigorous mathematical guarantees on the adopted approximation strategies making it robust to GNN architectures, datasets, and parameters.
♻ ☆ Emergence of the Primacy Effect in Structured State-Space Models
Human and animal memory for sequentially presented items is well-documented to be more accurate for those at the beginning and end of the sequence, phenomena known as the primacy and recency effects, respectively. By contrast, artificial neural network (ANN) models are typically designed with a memory that decays monotonically over time. Accordingly, ANNs are expected to show the recency effect but not the primacy effect. Contrary to this theoretical expectation, however, the present study reveals a counterintuitive finding: a recently developed ANN architecture, called structured state-space models, exhibits the primacy effect when trained and evaluated on a synthetic task that mirrors psychological memory experiments. Given that this model was originally designed for recovering neuronal activity patterns observed in biological brains, this result provides a novel perspective on the psychological primacy effect while also posing a non-trivial puzzle for the current theories in machine learning.
♻ ☆ TransPlace: Transferable Circuit Global Placement via Graph Neural Network KDD 2025
Global placement, a critical step in designing the physical layout of computer chips, is essential to optimize chip performance. Prior global placement methods optimize each circuit design individually from scratch. Their neglect of transferable knowledge limits solution efficiency and chip performance as circuit complexity drastically increases. This study presents TransPlace, a global placement framework that learns to place millions of mixed-size cells in continuous space. TransPlace introduces i) Netlist Graph to efficiently model netlist topology, ii) Cell-flow and relative position encoding to learn SE(2)-invariant representation, iii) a tailored graph neural network architecture for informed parameterization of placement knowledge, and iv) a two-stage strategy for coarse-to-fine placement. Compared to state-of-the-art placement methods, TransPlace-trained on a few high-quality placements-can place unseen circuits with 1.2x speedup while reducing congestion by 30%, timing by 9%, and wirelength by 5%.
comment: Accepted at KDD 2025
♻ ☆ Persistence of Backdoor-based Watermarks for Neural Networks: A Comprehensive Evaluation
Deep Neural Networks (DNNs) have gained considerable traction in recent years due to the unparalleled results they gathered. However, the cost behind training such sophisticated models is resource intensive, resulting in many to consider DNNs to be intellectual property (IP) to model owners. In this era of cloud computing, high-performance DNNs are often deployed all over the internet so that people can access them publicly. As such, DNN watermarking schemes, especially backdoor-based watermarks, have been actively developed in recent years to preserve proprietary rights. Nonetheless, there lies much uncertainty on the robustness of existing backdoor watermark schemes, towards both adversarial attacks and unintended means such as fine-tuning neural network models. One reason for this is that no complete guarantee of robustness can be assured in the context of backdoor-based watermark. In this paper, we extensively evaluate the persistence of recent backdoor-based watermarks within neural networks in the scenario of fine-tuning, we propose/develop a novel data-driven idea to restore watermark after fine-tuning without exposing the trigger set. Our empirical results show that by solely introducing training data after fine-tuning, the watermark can be restored if model parameters do not shift dramatically during fine-tuning. Depending on the types of trigger samples used, trigger accuracy can be reinstated to up to 100%. Our study further explores how the restoration process works using loss landscape visualization, as well as the idea of introducing training data in fine-tuning stage to alleviate watermark vanishing.
comment: Preprint. Under Review
♻ ☆ Inference-Time Policy Steering through Human Interactions ICRA 2025
Generative policies trained with human demonstrations can autonomously accomplish multimodal, long-horizon tasks. However, during inference, humans are often removed from the policy execution loop, limiting the ability to guide a pre-trained policy towards a specific sub-goal or trajectory shape among multiple predictions. Naive human intervention may inadvertently exacerbate distribution shift, leading to constraint violations or execution failures. To better align policy output with human intent without inducing out-of-distribution errors, we propose an Inference-Time Policy Steering (ITPS) framework that leverages human interactions to bias the generative sampling process, rather than fine-tuning the policy on interaction data. We evaluate ITPS across three simulated and real-world benchmarks, testing three forms of human interaction and associated alignment distance metrics. Among six sampling strategies, our proposed stochastic sampling with diffusion policy achieves the best trade-off between alignment and distribution shift. Videos are available at https://yanweiw.github.io/itps/.
comment: ICRA 2025
♻ ☆ Review and Prospect of Algebraic Research in Equivalent Framework between Statistical Mechanics and Machine Learning Theory
Mathematical equivalence between statistical mechanics and machine learning theory has been known since the 20th century, and research based on this equivalence has provided novel methodologies in both theoretical physics and statistical learning theory. It is well known that algebraic approaches in statistical mechanics such as operator algebra enable us to analyze phase transition phenomena mathematically. In this paper, we review and prospect algebraic research in machine learning theory for theoretical physicists who are interested in artificial intelligence. If a learning machine has a hierarchical structure or latent variables, then the random Hamiltonian cannot be expressed by any quadratic perturbation because it has singularities. To study an equilibrium state defined by such a singular random Hamiltonian, algebraic approaches are necessary to derive the asymptotic form of the free energy and the generalization error. We also introduce the most recent advance: the theoretical foundation for the alignment of artificial intelligence is now being constructed based on algebraic learning theory. This paper is devoted to the memory of Professor Huzihiro Araki who is a pioneering founder of algebraic research in both statistical mechanics and quantum field theory.
♻ ☆ Uni$\textbf{F}^2$ace: Fine-grained Face Understanding and Generation with Unified Multimodal Models
Unified multimodal models (UMMs) have emerged as a powerful paradigm in foundational computer vision research, demonstrating significant potential in both image understanding and generation. However, existing research in the face domain primarily focuses on $\textbf{coarse}$ facial attribute understanding, with limited capacity to handle $\textbf{fine-grained}$ facial attributes and without addressing generation capabilities. To overcome these limitations, we propose Uni$\textbf{F}^2$ace, the first UMM tailored specifically for fine-grained face understanding and generation. In general, we train Uni$\textbf{F}^2$ace on a self-constructed, specialized dataset utilizing two mutually beneficial diffusion techniques and a two-level mixture-of-experts architecture. Specifically, we first build a large-scale facial dataset, Uni$\textbf{F}^2$ace-130K, which contains 130K image-text pairs with one million question-answering pairs that span a wide range of facial attributes. Second, we establish a theoretical connection between discrete diffusion score matching and masked generative models, optimizing both evidence lower bounds simultaneously, which significantly improves the model's ability to synthesize facial details. Finally, we introduce both token-level and sequence-level mixture-of-experts, enabling efficient fine-grained representation learning for both understanding and generation tasks. Extensive experiments on Uni$\textbf{F}^2$ace-130K demonstrate that Uni$\textbf{F}^2$ace outperforms existing UMMs and generative models, achieving superior performance across both understanding and generation tasks.
♻ ☆ Medha: Efficiently Serving Multi-Million Context Length LLM Inference Requests Without Approximations
As large language models (LLMs) handle increasingly longer contexts, serving inference requests for context lengths in the range of millions of tokens presents unique challenges. While existing techniques are effective for training, they fail to address the unique challenges of inference, such as varying prefill and decode phases and their associated latency constraints -- like Time to First Token (TTFT) and Time per Output Token (TPOT). Furthermore, no long-context inference solutions address head-of-line blocking today. We present Medha, a system for efficient long-context LLM inference that introduces three key innovations: adaptive chunking with slack-aware scheduling to prevent head-ofline blocking, Sequence Pipeline Parallelism (SPP) to reduce TTFT, and KV Cache Parallelism (KVP) to minimize TPOT. By combining these into a novel 3D parallelism serving engine, Medha achieves unprecedented scale -- supporting contexts up to 10M tokens with production-grade latency. Our evaluation shows Medha reduces median latency by up to 30x compared to state-of-the-art systems when serving a mix of short and long requests, while improving throughput by upwards of 5x. This enables, for the first time, efficient long-context LLM inference at scale without compromising on shorter request latencies or system efficiency.
♻ ☆ MamBEV: Enabling State Space Models to Learn Birds-Eye-View Representations
3D visual perception tasks, such as 3D detection from multi-camera images, are essential components of autonomous driving and assistance systems. However, designing computationally efficient methods remains a significant challenge. In this paper, we propose a Mamba-based framework called MamBEV, which learns unified Bird's Eye View (BEV) representations using linear spatio-temporal SSM-based attention. This approach supports multiple 3D perception tasks with significantly improved computational and memory efficiency. Furthermore, we introduce SSM based cross-attention, analogous to standard cross attention, where BEV query representations can interact with relevant image features. Extensive experiments demonstrate MamBEV's promising performance across diverse visual perception metrics, highlighting its advantages in input scaling efficiency compared to existing benchmark models.
♻ ☆ Clustered Switchback Designs for Experimentation Under Spatio-temporal Interference
We consider experimentation in the presence of non-stationarity, inter-unit (spatial) interference, and carry-over effects (temporal interference), where we wish to estimate the global average treatment effect (GATE), the difference between average outcomes having exposed all units at all times to treatment or to control. We suppose spatial interference is described by a graph, where a unit's outcome depends on its neighborhood's treatments, and that temporal interference is described by an MDP, where the transition kernel under either treatment (action) satisfies a rapid mixing condition. We propose a clustered switchback design, where units are grouped into clusters and time steps are grouped into blocks, and each whole cluster-block combination is assigned a single random treatment. Under this design, we show that for graphs that admit good clustering, a truncated Horvitz-Thompson estimator achieves a $\tilde O(1/NT)$ mean squared error (MSE), matching the lower bound up to logarithmic terms for sparse graphs. Our results simultaneously generalize the results from \citet{hu2022switchback,ugander2013graph} and \citet{leung2022rate}. Simulation studies validate the favorable performance of our approach.
♻ ☆ Precise Asymptotic Generalization for Multiclass Classification with Overparameterized Linear Models NeurIPS 2023
We study the asymptotic generalization of an overparameterized linear model for multiclass classification under the Gaussian covariates bi-level model introduced in Subramanian et al.~'22, where the number of data points, features, and classes all grow together. We fully resolve the conjecture posed in Subramanian et al.~'22, matching the predicted regimes for generalization. Furthermore, our new lower bounds are akin to an information-theoretic strong converse: they establish that the misclassification rate goes to 0 or 1 asymptotically. One surprising consequence of our tight results is that the min-norm interpolating classifier can be asymptotically suboptimal relative to noninterpolating classifiers in the regime where the min-norm interpolating regressor is known to be optimal. The key to our tight analysis is a new variant of the Hanson-Wright inequality which is broadly useful for multiclass problems with sparse labels. As an application, we show that the same type of analysis can be used to analyze the related multilabel classification problem under the same bi-level ensemble.
comment: NeurIPS 2023, 56 pages v3: fixed typos in sparse Hanson-Wright theorem statement
♻ ☆ GD-VAEs: Geometric Dynamic Variational Autoencoders for Learning Nonlinear Dynamics and Dimension Reductions
We develop data-driven methods incorporating geometric and topological information to learn parsimonious representations of nonlinear dynamics from observations. The approaches learn nonlinear state-space models of the dynamics for general manifold latent spaces using training strategies related to Variational Autoencoders (VAEs). Our methods are referred to as Geometric Dynamic (GD) Variational Autoencoders (GD-VAEs). We learn encoders and decoders for the system states and evolution based on deep neural network architectures that include general Multilayer Perceptrons (MLPs), Convolutional Neural Networks (CNNs), and other architectures. Motivated by problems arising in parameterized PDEs and physics, we investigate the performance of our methods on tasks for learning reduced dimensional representations of the nonlinear Burgers Equations, Constrained Mechanical Systems, and spatial fields of Reaction-Diffusion Systems. GD-VAEs provide methods that can be used to obtain representations in manifold latent spaces for diverse learning tasks involving dynamics.
comment: 15 figures, related to non-archival proceedings communication
♻ ☆ Do We Need to Verify Step by Step? Rethinking Process Supervision from a Theoretical Perspective
As large language models have evolved, it has become crucial to distinguish between process supervision and outcome supervision -- two key reinforcement learning approaches to complex reasoning tasks. While process supervision offers intuitive advantages for long-term credit assignment, the precise relationship between these paradigms has remained an open question. Conventional wisdom suggests that outcome supervision is fundamentally more challenging due to the trajectory-level coverage problem, leading to significant investment in collecting fine-grained process supervision data. In this paper, we take steps towards resolving this debate. Our main theorem shows that, under standard data coverage assumptions, reinforcement learning through outcome supervision is no more statistically difficult than through process supervision, up to polynomial factors in horizon. At the core of this result lies the novel Change of Trajectory Measure Lemma -- a technical tool that bridges return-based trajectory measure and step-level distribution shift. Furthermore, for settings with access to a verifier or a rollout capability, we prove that any policy's advantage function can serve as an optimal process reward model, providing a direct connection between outcome and process supervision. These findings suggest that the empirically observed performance gap -- if any -- between outcome and process supervision likely stems from algorithmic limitations rather than inherent statistical difficulties, potentially transforming how we approach data collection and algorithm design for reinforcement learning.
♻ ☆ iGAiVA: Integrated Generative AI and Visual Analytics in a Machine Learning Workflow for Text Classification
In developing machine learning (ML) models for text classification, one common challenge is that the collected data is often not ideally distributed, especially when new classes are introduced in response to changes of data and tasks. In this paper, we present a solution for using visual analytics (VA) to guide the generation of synthetic data using large language models. As VA enables model developers to identify data-related deficiency, data synthesis can be targeted to address such deficiency. We discuss different types of data deficiency, describe different VA techniques for supporting their identification, and demonstrate the effectiveness of targeted data synthesis in improving model accuracy. In addition, we present a software tool, iGAiVA, which maps four groups of ML tasks into four VA views, integrating generative AI and VA into an ML workflow for developing and improving text classification models.
♻ ☆ Learning state and proposal dynamics in state-space models using differentiable particle filters and neural networks
State-space models are a popular statistical framework for analysing sequential data. Within this framework, particle filters are often used to perform inference on non-linear state-space models. We introduce a new method, StateMixNN, that uses a pair of neural networks to learn the proposal distribution and transition distribution of a particle filter. Both distributions are approximated using multivariate Gaussian mixtures. The component means and covariances of these mixtures are learnt as outputs of learned functions. Our method is trained targeting the log-likelihood, thereby requiring only the observation series, and combines the interpretability of state-space models with the flexibility and approximation power of artificial neural networks. The proposed method significantly improves recovery of the hidden state in comparison with the state-of-the-art, showing greater improvement in highly non-linear scenarios.
comment: update to accepted version
♻ ☆ No Black Box Anymore: Demystifying Clinical Predictive Modeling with Temporal-Feature Cross Attention Mechanism
Despite the outstanding performance of deep learning models in clinical prediction tasks, explainability remains a significant challenge. Inspired by transformer architectures, we introduce the Temporal-Feature Cross Attention Mechanism (TFCAM), a novel deep learning framework designed to capture dynamic interactions among clinical features across time, enhancing both predictive accuracy and interpretability. In an experiment with 1,422 patients with Chronic Kidney Disease, predicting progression to End-Stage Renal Disease, TFCAM outperformed LSTM and RETAIN baselines, achieving an AUROC of 0.95 and an F1-score of 0.69. Beyond performance gains, TFCAM provides multi-level explainability by identifying critical temporal periods, ranking feature importance, and quantifying how features influence each other across time before affecting predictions. Our approach addresses the "black box" limitations of deep learning in healthcare, offering clinicians transparent insights into disease progression mechanisms while maintaining state-of-the-art predictive performance.
comment: 10 pages, 3 figures, submitted to AMIA 2025
♻ ☆ Follow-the-Regularized-Leader with Adversarial Constraints
Constrained Online Convex Optimization (COCO) can be seen as a generalization of the standard Online Convex Optimization (OCO) framework. At each round, a cost function and constraint function are revealed after a learner chooses an action. The goal is to minimize both the regret and cumulative constraint violation (CCV) against an adaptive adversary. We show for the first time that is possible to obtain the optimal $O(\sqrt{T})$ bound on both regret and CCV, improving the best known bounds of $O \left( \sqrt{T} \right)$ and $\~{O} \left( \sqrt{T} \right)$ for the regret and CCV, respectively.
♻ ☆ Long-context Protein Language Modeling Using Bidirectional Mamba with Shared Projection Layers
Self-supervised training of language models (LMs) has seen great success for protein sequences in learning meaningful representations and for generative drug design. Most protein LMs are based on the Transformer architecture trained on individual proteins with short context lengths. Such protein LMs cannot extrapolate to longer proteins and protein complexes well. They also fail to account for the underlying biological mechanisms carried out by biomolecular interactions and dynamics i.e., proteins often interact with other proteins, molecules, and pathways in complex biological systems. In this work, we propose LC-PLM based on an alternative protein LM architecture, BiMamba-S, built upon selective structured state-space models, to learn high-quality universal protein representations at the amino acid token level using masked language modeling. We also introduce its graph-contextual variant, LC-PLM-G, which contextualizes protein-protein interaction (PPI) graphs for a second stage of training. LC-PLM demonstrates favorable neural scaling laws, better length extrapolation capability, and a 7% to 34% improvement on protein downstream tasks than Transformer-based ESM-2. LC-PLM-G further trained within the context of PPI graphs shows promising results on protein structure and function prediction tasks. Our study demonstrates the benefit of increasing the context size with computationally efficient LM architecture (e.g. structured state space models) in learning universal protein representations and incorporating molecular interaction context contained in biological graphs.
comment: model weights open-sourced at https://github.com/amazon-science/LC-PLM
♻ ☆ Lightweight Online Adaption for Time Series Foundation Model Forecasts
Foundation models (FMs) have emerged as a promising approach for time series forecasting. While effective, FMs typically remain fixed during deployment due to the high computational costs of learning them online. Consequently, deployed FMs fail to adapt their forecasts to current data characteristics, despite the availability of online feedback from newly arriving data. This raises the question of whether FM performance can be enhanced by the efficient usage of this feedback. We propose AdapTS to answer this question. AdapTS is a lightweight mechanism for the online adaption of FM forecasts in response to online feedback. AdapTS consists of two parts: a) the AdapTS-Forecaster which is used to learn the current data distribution; and b) the AdapTS-Weighter which is used to combine the forecasts of the FM and the AdapTS-Forecaster. We evaluate the performance of AdapTS in conjunction with several recent FMs across a suite of standard time series datasets. In all of our experiments we find that using AdapTS improves performance. This work demonstrates how efficient usage of online feedback can be used to improve FM forecasts.
comment: 8 pages, Preprint
♻ ☆ Multi-Agent Inverse Reinforcement Learning in Real World Unstructured Pedestrian Crowds
Social robot navigation in crowded public spaces such as university campuses, restaurants, grocery stores, and hospitals, is an increasingly important area of research. One of the core strategies for achieving this goal is to understand humans' intent--underlying psychological factors that govern their motion--by learning their reward functions, typically via inverse reinforcement learning (IRL). Despite significant progress in IRL, learning reward functions of multiple agents simultaneously in dense unstructured pedestrian crowds has remained intractable due to the nature of the tightly coupled social interactions that occur in these scenarios \textit{e.g.} passing, intersections, swerving, weaving, etc. In this paper, we present a new multi-agent maximum entropy inverse reinforcement learning algorithm for real world unstructured pedestrian crowds. Key to our approach is a simple, but effective, mathematical trick which we name the so-called tractability-rationality trade-off trick that achieves tractability at the cost of a slight reduction in accuracy. We compare our approach to the classical single-agent MaxEnt IRL as well as state-of-the-art trajectory prediction methods on several datasets including the ETH, UCY, SCAND, JRDB, and a new dataset, called Speedway, collected at a busy intersection on a University campus focusing on dense, complex agent interactions. Our key findings show that, on the dense Speedway dataset, our approach ranks 1st among top 7 baselines with >2X improvement over single-agent IRL, and is competitive with state-of-the-art large transformer-based encoder-decoder models on sparser datasets such as ETH/UCY (ranks 3rd among top 7 baselines).
♻ ☆ Policy Learning with a Language Bottleneck
Modern AI systems such as self-driving cars and game-playing agents achieve superhuman performance, but often lack human-like generalization, interpretability, and inter-operability with human users. Inspired by the rich interactions between language and decision-making in humans, we introduce Policy Learning with a Language Bottleneck (PLLB), a framework enabling AI agents to generate linguistic rules that capture the high-level strategies underlying rewarding behaviors. PLLB alternates between a *rule generation* step guided by language models, and an *update* step where agents learn new policies guided by rules, even when a rule is insufficient to describe an entire complex policy. Across five diverse tasks, including a two-player signaling game, maze navigation, image reconstruction, and robot grasp planning, we show that PLLB agents are not only able to learn more interpretable and generalizable behaviors, but can also share the learned rules with human users, enabling more effective human-AI coordination. We provide source code for our experiments at https://github.com/meghabyte/bottleneck .
comment: 21 pages, 15 figures, updated with robot manipulation task
♻ ☆ SimBEV: A Synthetic Multi-Task Multi-Sensor Driving Data Generation Tool and Dataset
Bird's-eye view (BEV) perception has garnered significant attention in autonomous driving in recent years, in part because BEV representation facilitates multi-modal sensor fusion. BEV representation enables a variety of perception tasks including BEV segmentation, a concise view of the environment useful for planning a vehicle's trajectory. However, this representation is not fully supported by existing datasets, and creation of new datasets for this purpose can be a time-consuming endeavor. To address this challenge, we introduce SimBEV. SimBEV is a randomized synthetic data generation tool that is extensively configurable and scalable, supports a wide array of sensors, incorporates information from multiple sources to capture accurate BEV ground truth, and enables a variety of perception tasks including BEV segmentation and 3D object detection. SimBEV is used to create the SimBEV dataset, a large collection of annotated perception data from diverse driving scenarios. SimBEV and the SimBEV dataset are open and available to the public.
♻ ☆ SparseGS: Real-Time 360° Sparse View Synthesis using Gaussian Splatting 3DV 2025
3D Gaussian Splatting (3DGS) has recently enabled real-time rendering of unbounded 3D scenes for novel view synthesis. However, this technique requires dense training views to accurately reconstruct 3D geometry. A limited number of input views will significantly degrade reconstruction quality, resulting in artifacts such as "floaters" and "background collapse" at unseen viewpoints. In this work, we introduce SparseGS, an efficient training pipeline designed to address the limitations of 3DGS in scenarios with sparse training views. SparseGS incorporates depth priors, novel depth rendering techniques, and a pruning heuristic to mitigate floater artifacts, alongside an Unseen Viewpoint Regularization module to alleviate background collapses. Our extensive evaluations on the Mip-NeRF360, LLFF, and DTU datasets demonstrate that SparseGS achieves high-quality reconstruction in both unbounded and forward-facing scenarios, with as few as 12 and 3 input images, respectively, while maintaining fast training and real-time rendering capabilities.
comment: Version accepted to 3DV 2025. Project page: https://github.com/ForMyCat/SparseGS
♻ ☆ Theory on Score-Mismatched Diffusion Models and Zero-Shot Conditional Samplers
The denoising diffusion model has recently emerged as a powerful generative technique, capable of transforming noise into meaningful data. While theoretical convergence guarantees for diffusion models are well established when the target distribution aligns with the training distribution, practical scenarios often present mismatches. One common case is in the zero-shot conditional diffusion sampling, where the target conditional distribution is different from the (unconditional) training distribution. These score-mismatched diffusion models remain largely unexplored from a theoretical perspective. In this paper, we present the first performance guarantee with explicit dimensional dependencies for general score-mismatched diffusion samplers, focusing on target distributions with finite second moments. We show that score mismatches result in an asymptotic distributional bias between the target and sampling distributions, proportional to the accumulated mismatch between the target and training distributions. This result can be directly applied to zero-shot conditional samplers for any conditional model, irrespective of measurement noise. Interestingly, the derived convergence upper bound offers useful guidance for designing a novel bias-optimal zero-shot sampler in linear conditional models that minimizes the asymptotic bias. For such bias-optimal samplers, we further establish convergence guarantees with explicit dependencies on dimension and conditioning, applied to several interesting target distributions, including those with bounded support and Gaussian mixtures. Our findings are supported by numerical studies.
♻ ☆ Efficient Training of Neural Stochastic Differential Equations by Matching Finite Dimensional Distributions
Neural Stochastic Differential Equations (Neural SDEs) have emerged as powerful mesh-free generative models for continuous stochastic processes, with critical applications in fields such as finance, physics, and biology. Previous state-of-the-art methods have relied on adversarial training, such as GANs, or on minimizing distance measures between processes using signature kernels. However, GANs suffer from issues like instability, mode collapse, and the need for specialized training techniques, while signature kernel-based methods require solving linear PDEs and backpropagating gradients through the solver, whose computational complexity scales quadratically with the discretization steps. In this paper, we identify a novel class of strictly proper scoring rules for comparing continuous Markov processes. This theoretical finding naturally leads to a novel approach called Finite Dimensional Matching (FDM) for training Neural SDEs. Our method leverages the Markov property of SDEs to provide a computationally efficient training objective. This scoring rule allows us to bypass the computational overhead associated with signature kernels and reduces the training complexity from $O(D^2)$ to $O(D)$ per epoch, where $D$ represents the number of discretization steps of the process. We demonstrate that FDM achieves superior performance, consistently outperforming existing methods in terms of both computational efficiency and generative quality.
♻ ☆ Broadening Target Distributions for Accelerated Diffusion Models via a Novel Analysis Approach
Accelerated diffusion models hold the potential to significantly enhance the efficiency of standard diffusion processes. Theoretically, these models have been shown to achieve faster convergence rates than the standard $\mathcal O(1/\epsilon^2)$ rate of vanilla diffusion models, where $\epsilon$ denotes the target accuracy. However, current theoretical studies have established the acceleration advantage only for restrictive target distribution classes, such as those with smoothness conditions imposed along the entire sampling path or with bounded support. In this work, we significantly broaden the target distribution classes with a new accelerated stochastic DDPM sampler. In particular, we show that it achieves accelerated performance for three broad distribution classes not considered before. Our first class relies on the smoothness condition posed only to the target density $q_0$, which is far more relaxed than the existing smoothness conditions posed to all $q_t$ along the entire sampling path. Our second class requires only a finite second moment condition, allowing for a much wider class of target distributions than the existing finite-support condition. Our third class is Gaussian mixture, for which our result establishes the first acceleration guarantee. Moreover, among accelerated DDPM type samplers, our results specialized for bounded-support distributions show an improved dependency on the data dimension $d$. Our analysis introduces a novel technique for establishing performance guarantees via constructing a tilting factor representation of the convergence error and utilizing Tweedie's formula to handle Taylor expansion terms. This new analytical framework may be of independent interest.
♻ ☆ Physics-based Deep Learning
This document is a hands-on, comprehensive guide to deep learning in the realm of physical simulations. Rather than just theory, we emphasize practical application: every concept is paired with interactive Jupyter notebooks to get you up and running quickly. Beyond traditional supervised learning, we dive into physical loss-constraints, differentiable simulations, diffusion-based approaches for probabilistic generative AI, as well as reinforcement learning and advanced neural network architectures. These foundations are paving the way for the next generation of scientific foundation models. We are living in an era of rapid transformation. These methods have the potential to redefine what's possible in computational science.
comment: PBDL v0.3, online version: https://www.physicsbaseddeeplearning.org/
♻ ☆ The CTU Prague Relational Learning Repository
The aim of the Prague Relational Learning Repository is to support machine learning research with multi-relational data. The repository currently contains 148 SQL databases hosted on a public MySQL server located at https://relational.fel.cvut.cz. The server is provided by the Czech Technical University (CTU). A searchable meta-database provides metadata (e.g., the number of tables in the database, the number of rows and columns in the tables, the number of self-relationships).
comment: 9 pages
♻ ☆ Mixture of Robust Experts (MoRE):A Robust Denoising Method towards multiple perturbations ICLR 2021
To tackle the susceptibility of deep neural networks to adversarial examples, the adversarial training has been proposed which provides a notion of security through an inner maximization problem presenting the first-order adversaries embedded within the outer minimization of the training loss. To generalize the adversarial robustness over different perturbation types, the adversarial training method has been augmented with the improved inner maximization presenting a union of multiple perturbations e.g., various $\ell_p$ norm-bounded perturbations. However, the improved inner maximization only enjoys limited flexibility in terms of the allowable perturbation types. In this work, through a gating mechanism, we assemble a set of expert networks, each one either adversarially trained to deal with a particular perturbation type or normally trained for boosting accuracy on clean data. The gating module assigns weights dynamically to each expert to achieve superior accuracy under various data types e.g., adversarial examples, adverse weather perturbations, and clean input. In order to deal with the obfuscated gradients issue, the training of the gating module is conducted together with fine-tuning of the last fully connected layers of expert networks through adversarial training approach. Using extensive experiments, we show that our Mixture of Robust Experts (MoRE) approach enables a flexible integration of a broad range of robust experts with superior performance.
comment: This paper is accepted by ICLR 2021 Robust and reliable machine learning in the real world Workshop
♻ ☆ A Geometric Modeling of Occam's Razor in Deep Learning
Why do deep neural networks (DNNs) benefit from very high dimensional parameter spaces? Their huge parameter complexities vs stunning performances in practice is all the more intriguing and not explainable using the standard theory of model selection for regular models. In this work, we propose a geometrically flavored information-theoretic approach to study this phenomenon. With the belief that simplicity is linked to better generalization, as grounded in the theory of minimum description length, the objective of our analysis is to examine and bound the complexity of DNNs. We introduce the locally varying dimensionality of the parameter space of neural network models by considering the number of significant dimensions of the Fisher information matrix, and model the parameter space as a manifold using the framework of singular semi-Riemannian geometry. We derive model complexity measures which yield short description lengths for deep neural network models based on their singularity analysis thus explaining the good performance of DNNs despite their large number of parameters.
comment: This work first appeared under the former title "Lightlike Neuromanifolds, Occam's Razor and Deep Learning"
Computer Vision and Pattern Recognition 317
☆ EventFly: Event Camera Perception from Ground to the Sky CVPR 2025
Cross-platform adaptation in event-based dense perception is crucial for deploying event cameras across diverse settings, such as vehicles, drones, and quadrupeds, each with unique motion dynamics, viewpoints, and class distributions. In this work, we introduce EventFly, a framework for robust cross-platform adaptation in event camera perception. Our approach comprises three key components: i) Event Activation Prior (EAP), which identifies high-activation regions in the target domain to minimize prediction entropy, fostering confident, domain-adaptive predictions; ii) EventBlend, a data-mixing strategy that integrates source and target event voxel grids based on EAP-driven similarity and density maps, enhancing feature alignment; and iii) EventMatch, a dual-discriminator technique that aligns features from source, target, and blended domains for better domain-invariant learning. To holistically assess cross-platform adaptation abilities, we introduce EXPo, a large-scale benchmark with diverse samples across vehicle, drone, and quadruped platforms. Extensive experiments validate our effectiveness, demonstrating substantial gains over popular adaptation methods. We hope this work can pave the way for more adaptive, high-performing event perception across diverse and complex environments.
comment: CVPR 2025; 30 pages, 8 figures, 16 tables; Project Page at https://event-fly.github.io/
☆ PartRM: Modeling Part-Level Dynamics with Large Cross-State Reconstruction Model CVPR 2025
As interest grows in world models that predict future states from current observations and actions, accurately modeling part-level dynamics has become increasingly relevant for various applications. Existing approaches, such as Puppet-Master, rely on fine-tuning large-scale pre-trained video diffusion models, which are impractical for real-world use due to the limitations of 2D video representation and slow processing times. To overcome these challenges, we present PartRM, a novel 4D reconstruction framework that simultaneously models appearance, geometry, and part-level motion from multi-view images of a static object. PartRM builds upon large 3D Gaussian reconstruction models, leveraging their extensive knowledge of appearance and geometry in static objects. To address data scarcity in 4D, we introduce the PartDrag-4D dataset, providing multi-view observations of part-level dynamics across over 20,000 states. We enhance the model's understanding of interaction conditions with a multi-scale drag embedding module that captures dynamics at varying granularities. To prevent catastrophic forgetting during fine-tuning, we implement a two-stage training process that focuses sequentially on motion and appearance learning. Experimental results show that PartRM establishes a new state-of-the-art in part-level motion learning and can be applied in manipulation tasks in robotics. Our code, data, and models are publicly available to facilitate future research.
comment: Accepted to CVPR 2025. Project Page: https://partrm.c7w.tech/
☆ Learning 3D Object Spatial Relationships from Pre-trained 2D Diffusion Models
We present a method for learning 3D spatial relationships between object pairs, referred to as object-object spatial relationships (OOR), by leveraging synthetically generated 3D samples from pre-trained 2D diffusion models. We hypothesize that images synthesized by 2D diffusion models inherently capture plausible and realistic OOR cues, enabling efficient ways to collect a 3D dataset to learn OOR for various unbounded object categories. Our approach begins by synthesizing diverse images that capture plausible OOR cues, which we then uplift into 3D samples. Leveraging our diverse collection of plausible 3D samples for the object pairs, we train a score-based OOR diffusion model to learn the distribution of their relative spatial relationships. Additionally, we extend our pairwise OOR to multi-object OOR by enforcing consistency across pairwise relations and preventing object collisions. Extensive experiments demonstrate the robustness of our method across various object-object spatial relationships, along with its applicability to real-world 3D scene arrangement tasks using the OOR diffusion model.
comment: Project Page: https://tlb-miss.github.io/oor/
☆ SuperFlow++: Enhanced Spatiotemporal Consistency for Cross-Modal Data Pretraining
LiDAR representation learning has emerged as a promising approach to reducing reliance on costly and labor-intensive human annotations. While existing methods primarily focus on spatial alignment between LiDAR and camera sensors, they often overlook the temporal dynamics critical for capturing motion and scene continuity in driving scenarios. To address this limitation, we propose SuperFlow++, a novel framework that integrates spatiotemporal cues in both pretraining and downstream tasks using consecutive LiDAR-camera pairs. SuperFlow++ introduces four key components: (1) a view consistency alignment module to unify semantic information across camera views, (2) a dense-to-sparse consistency regularization mechanism to enhance feature robustness across varying point cloud densities, (3) a flow-based contrastive learning approach that models temporal relationships for improved scene understanding, and (4) a temporal voting strategy that propagates semantic information across LiDAR scans to improve prediction consistency. Extensive evaluations on 11 heterogeneous LiDAR datasets demonstrate that SuperFlow++ outperforms state-of-the-art methods across diverse tasks and driving conditions. Furthermore, by scaling both 2D and 3D backbones during pretraining, we uncover emergent properties that provide deeper insights into developing scalable 3D foundation models. With strong generalizability and computational efficiency, SuperFlow++ establishes a new benchmark for data-efficient LiDAR-based perception in autonomous driving. The code is publicly available at https://github.com/Xiangxu-0103/SuperFlow
comment: Preprint; 15 pages, 6 figures, 10 tables; Code at https://github.com/Xiangxu-0103/SuperFlow
☆ CoLLM: A Large Language Model for Composed Image Retrieval CVPR 2025
Composed Image Retrieval (CIR) is a complex task that aims to retrieve images based on a multimodal query. Typical training data consists of triplets containing a reference image, a textual description of desired modifications, and the target image, which are expensive and time-consuming to acquire. The scarcity of CIR datasets has led to zero-shot approaches utilizing synthetic triplets or leveraging vision-language models (VLMs) with ubiquitous web-crawled image-caption pairs. However, these methods have significant limitations: synthetic triplets suffer from limited scale, lack of diversity, and unnatural modification text, while image-caption pairs hinder joint embedding learning of the multimodal query due to the absence of triplet data. Moreover, existing approaches struggle with complex and nuanced modification texts that demand sophisticated fusion and understanding of vision and language modalities. We present CoLLM, a one-stop framework that effectively addresses these limitations. Our approach generates triplets on-the-fly from image-caption pairs, enabling supervised training without manual annotation. We leverage Large Language Models (LLMs) to generate joint embeddings of reference images and modification texts, facilitating deeper multimodal fusion. Additionally, we introduce Multi-Text CIR (MTCIR), a large-scale dataset comprising 3.4M samples, and refine existing CIR benchmarks (CIRR and Fashion-IQ) to enhance evaluation reliability. Experimental results demonstrate that CoLLM achieves state-of-the-art performance across multiple CIR benchmarks and settings. MTCIR yields competitive results, with up to 15% performance improvement. Our refined benchmarks provide more reliable evaluation metrics for CIR models, contributing to the advancement of this important field.
comment: CVPR 2025. Project page: https://collm-cvpr25.github.io/
☆ FullDiT: Multi-Task Video Generative Foundation Model with Full Attention
Current video generative foundation models primarily focus on text-to-video tasks, providing limited control for fine-grained video content creation. Although adapter-based approaches (e.g., ControlNet) enable additional controls with minimal fine-tuning, they encounter challenges when integrating multiple conditions, including: branch conflicts between independently trained adapters, parameter redundancy leading to increased computational cost, and suboptimal performance compared to full fine-tuning. To address these challenges, we introduce FullDiT, a unified foundation model for video generation that seamlessly integrates multiple conditions via unified full-attention mechanisms. By fusing multi-task conditions into a unified sequence representation and leveraging the long-context learning ability of full self-attention to capture condition dynamics, FullDiT reduces parameter overhead, avoids conditions conflict, and shows scalability and emergent ability. We further introduce FullBench for multi-task video generation evaluation. Experiments demonstrate that FullDiT achieves state-of-the-art results, highlighting the efficacy of full-attention in complex multi-task video generation.
comment: Project Page: https://fulldit.github.io/
☆ AvatarArtist: Open-Domain 4D Avatarization CVPR 2025
This work focuses on open-domain 4D avatarization, with the purpose of creating a 4D avatar from a portrait image in an arbitrary style. We select parametric triplanes as the intermediate 4D representation and propose a practical training paradigm that takes advantage of both generative adversarial networks (GANs) and diffusion models. Our design stems from the observation that 4D GANs excel at bridging images and triplanes without supervision yet usually face challenges in handling diverse data distributions. A robust 2D diffusion prior emerges as the solution, assisting the GAN in transferring its expertise across various domains. The synergy between these experts permits the construction of a multi-domain image-triplane dataset, which drives the development of a general 4D avatar creator. Extensive experiments suggest that our model, AvatarArtist, is capable of producing high-quality 4D avatars with strong robustness to various source image domains. The code, the data, and the models will be made publicly available to facilitate future studies..
comment: Accepted to CVPR 2025
☆ Tracktention: Leveraging Point Tracking to Attend Videos Faster and Better CVPR 2025
Temporal consistency is critical in video prediction to ensure that outputs are coherent and free of artifacts. Traditional methods, such as temporal attention and 3D convolution, may struggle with significant object motion and may not capture long-range temporal dependencies in dynamic scenes. To address this gap, we propose the Tracktention Layer, a novel architectural component that explicitly integrates motion information using point tracks, i.e., sequences of corresponding points across frames. By incorporating these motion cues, the Tracktention Layer enhances temporal alignment and effectively handles complex object motions, maintaining consistent feature representations over time. Our approach is computationally efficient and can be seamlessly integrated into existing models, such as Vision Transformers, with minimal modification. It can be used to upgrade image-only models to state-of-the-art video ones, sometimes outperforming models natively designed for video prediction. We demonstrate this on video depth prediction and video colorization, where models augmented with the Tracktention Layer exhibit significantly improved temporal consistency compared to baselines.
comment: CVPR 2025. Project website: zlai0.github.io/TrackTention
☆ Scaling Vision Pre-Training to 4K Resolution CVPR 2025
High-resolution perception of visual details is crucial for daily tasks. Current vision pre-training, however, is still limited to low resolutions (e.g., 378 x 378 pixels) due to the quadratic cost of processing larger images. We introduce PS3 that scales CLIP-style vision pre-training to 4K resolution with a near-constant cost. Instead of contrastive learning on global image representation, PS3 is pre-trained by selectively processing local regions and contrasting them with local detailed captions, enabling high-resolution representation learning with greatly reduced computational overhead. The pre-trained PS3 is able to both encode the global image at low resolution and selectively process local high-resolution regions based on their saliency or relevance to a text prompt. When applying PS3 to multi-modal LLM (MLLM), the resulting model, named VILA-HD, significantly improves high-resolution visual perception compared to baselines without high-resolution vision pre-training such as AnyRes and S^2 while using up to 4.3x fewer tokens. PS3 also unlocks appealing scaling properties of VILA-HD, including scaling up resolution for free and scaling up test-time compute for better performance. Compared to state of the arts, VILA-HD outperforms previous MLLMs such as NVILA and Qwen2-VL across multiple benchmarks and achieves better efficiency than latest token pruning approaches. Finally, we find current benchmarks do not require 4K-resolution perception, which motivates us to propose 4KPro, a new benchmark of image QA at 4K resolution, on which VILA-HD outperforms all previous MLLMs, including a 14.5% improvement over GPT-4o, and a 3.2% improvement and 2.96x speedup over Qwen2-VL.
comment: CVPR 2025. Project Page: https://nvlabs.github.io/PS3
☆ ICE: Intrinsic Concept Extraction from a Single Image via Diffusion Models CVPR 2025
The inherent ambiguity in defining visual concepts poses significant challenges for modern generative models, such as the diffusion-based Text-to-Image (T2I) models, in accurately learning concepts from a single image. Existing methods lack a systematic way to reliably extract the interpretable underlying intrinsic concepts. To address this challenge, we present ICE, short for Intrinsic Concept Extraction, a novel framework that exclusively utilizes a T2I model to automatically and systematically extract intrinsic concepts from a single image. ICE consists of two pivotal stages. In the first stage, ICE devises an automatic concept localization module to pinpoint relevant text-based concepts and their corresponding masks within the image. This critical stage streamlines concept initialization and provides precise guidance for subsequent analysis. The second stage delves deeper into each identified mask, decomposing the object-level concepts into intrinsic concepts and general concepts. This decomposition allows for a more granular and interpretable breakdown of visual elements. Our framework demonstrates superior performance on intrinsic concept extraction from a single image in an unsupervised manner. Project page: https://visual-ai.github.io/ice
comment: CVPR 2025, Project page: https://visual-ai.github.io/ice
☆ TokenHSI: Unified Synthesis of Physical Human-Scene Interactions through Task Tokenization CVPR 2025
Synthesizing diverse and physically plausible Human-Scene Interactions (HSI) is pivotal for both computer animation and embodied AI. Despite encouraging progress, current methods mainly focus on developing separate controllers, each specialized for a specific interaction task. This significantly hinders the ability to tackle a wide variety of challenging HSI tasks that require the integration of multiple skills, e.g., sitting down while carrying an object. To address this issue, we present TokenHSI, a single, unified transformer-based policy capable of multi-skill unification and flexible adaptation. The key insight is to model the humanoid proprioception as a separate shared token and combine it with distinct task tokens via a masking mechanism. Such a unified policy enables effective knowledge sharing across skills, thereby facilitating the multi-task training. Moreover, our policy architecture supports variable length inputs, enabling flexible adaptation of learned skills to new scenarios. By training additional task tokenizers, we can not only modify the geometries of interaction targets but also coordinate multiple skills to address complex tasks. The experiments demonstrate that our approach can significantly improve versatility, adaptability, and extensibility in various HSI tasks. Website: https://liangpan99.github.io/TokenHSI/
comment: CVPR 2025
☆ CAFe: Unifying Representation and Generation with Contrastive-Autoregressive Finetuning
The rapid advancement of large vision-language models (LVLMs) has driven significant progress in multimodal tasks, enabling models to interpret, reason, and generate outputs across both visual and textual domains. While excelling in generative tasks, existing LVLMs often face limitations in tasks requiring high-fidelity representation learning, such as generating image or text embeddings for retrieval. Recent work has proposed finetuning LVLMs for representational learning, but the fine-tuned model often loses its generative capabilities due to the representational learning training paradigm. To address this trade-off, we introduce CAFe, a contrastive-autoregressive fine-tuning framework that enhances LVLMs for both representation and generative tasks. By integrating a contrastive objective with autoregressive language modeling, our approach unifies these traditionally separate tasks, achieving state-of-the-art results in both multimodal retrieval and multimodal generative benchmarks, including object hallucination (OH) mitigation. CAFe establishes a novel framework that synergizes embedding and generative functionalities in a single model, setting a foundation for future multimodal models that excel in both retrieval precision and coherent output generation.
☆ Scaling Down Text Encoders of Text-to-Image Diffusion Models CVPR 2025
Text encoders in diffusion models have rapidly evolved, transitioning from CLIP to T5-XXL. Although this evolution has significantly enhanced the models' ability to understand complex prompts and generate text, it also leads to a substantial increase in the number of parameters. Despite T5 series encoders being trained on the C4 natural language corpus, which includes a significant amount of non-visual data, diffusion models with T5 encoder do not respond to those non-visual prompts, indicating redundancy in representational power. Therefore, it raises an important question: "Do we really need such a large text encoder?" In pursuit of an answer, we employ vision-based knowledge distillation to train a series of T5 encoder models. To fully inherit its capabilities, we constructed our dataset based on three criteria: image quality, semantic understanding, and text-rendering. Our results demonstrate the scaling down pattern that the distilled T5-base model can generate images of comparable quality to those produced by T5-XXL, while being 50 times smaller in size. This reduction in model size significantly lowers the GPU requirements for running state-of-the-art models such as FLUX and SD3, making high-quality text-to-image generation more accessible.
comment: accepted by CVPR 2025
☆ Visuo-Tactile Object Pose Estimation for a Multi-Finger Robot Hand with Low-Resolution In-Hand Tactile Sensing ICRA
Accurate 3D pose estimation of grasped objects is an important prerequisite for robots to perform assembly or in-hand manipulation tasks, but object occlusion by the robot's own hand greatly increases the difficulty of this perceptual task. Here, we propose that combining visual information and proprioception with binary, low-resolution tactile contact measurements from across the interior surface of an articulated robotic hand can mitigate this issue. The visuo-tactile object-pose-estimation problem is formulated probabilistically in a factor graph. The pose of the object is optimized to align with the three kinds of measurements using a robust cost function to reduce the influence of visual or tactile outlier readings. The advantages of the proposed approach are first demonstrated in simulation: a custom 15-DoF robot hand with one binary tactile sensor per link grasps 17 YCB objects while observed by an RGB-D camera. This low-resolution in-hand tactile sensing significantly improves object-pose estimates under high occlusion and also high visual noise. We also show these benefits through grasping tests with a preliminary real version of our tactile hand, obtaining reasonable visuo-tactile estimates of object pose at approximately 13.3 Hz on average.
comment: Accepted for publication at the IEEE International Conference on Robotics and Automation (ICRA), 2025
☆ Mask$^2$DiT: Dual Mask-based Diffusion Transformer for Multi-Scene Long Video Generation CVPR 2025
Sora has unveiled the immense potential of the Diffusion Transformer (DiT) architecture in single-scene video generation. However, the more challenging task of multi-scene video generation, which offers broader applications, remains relatively underexplored. To bridge this gap, we propose Mask$^2$DiT, a novel approach that establishes fine-grained, one-to-one alignment between video segments and their corresponding text annotations. Specifically, we introduce a symmetric binary mask at each attention layer within the DiT architecture, ensuring that each text annotation applies exclusively to its respective video segment while preserving temporal coherence across visual tokens. This attention mechanism enables precise segment-level textual-to-visual alignment, allowing the DiT architecture to effectively handle video generation tasks with a fixed number of scenes. To further equip the DiT architecture with the ability to generate additional scenes based on existing ones, we incorporate a segment-level conditional mask, which conditions each newly generated segment on the preceding video segments, thereby enabling auto-regressive scene extension. Both qualitative and quantitative experiments confirm that Mask$^2$DiT excels in maintaining visual consistency across segments while ensuring semantic alignment between each segment and its corresponding text description. Our project page is https://tianhao-qi.github.io/Mask2DiTProject.
comment: Accepted by CVPR 2025
☆ GENIUS: A Generative Framework for Universal Multimodal Search CVPR 2025
Generative retrieval is an emerging approach in information retrieval that generates identifiers (IDs) of target data based on a query, providing an efficient alternative to traditional embedding-based retrieval methods. However, existing models are task-specific and fall short of embedding-based retrieval in performance. This paper proposes GENIUS, a universal generative retrieval framework supporting diverse tasks across multiple modalities and domains. At its core, GENIUS introduces modality-decoupled semantic quantization, transforming multimodal data into discrete IDs encoding both modality and semantics. Moreover, to enhance generalization, we propose a query augmentation that interpolates between a query and its target, allowing GENIUS to adapt to varied query forms. Evaluated on the M-BEIR benchmark, it surpasses prior generative methods by a clear margin. Unlike embedding-based retrieval, GENIUS consistently maintains high retrieval speed across database size, with competitive performance across multiple benchmarks. With additional re-ranking, GENIUS often achieves results close to those of embedding-based methods while preserving efficiency.
comment: Accepted to CVPR 2025
☆ Unpaired Translation of Chest X-ray Images for Lung Opacity Diagnosis via Adaptive Activation Masks and Cross-Domain Alignment
Chest X-ray radiographs (CXRs) play a pivotal role in diagnosing and monitoring cardiopulmonary diseases. However, lung opac- ities in CXRs frequently obscure anatomical structures, impeding clear identification of lung borders and complicating the localization of pathology. This challenge significantly hampers segmentation accuracy and precise lesion identification, which are crucial for diagnosis. To tackle these issues, our study proposes an unpaired CXR translation framework that converts CXRs with lung opacities into counterparts without lung opacities while preserving semantic features. Central to our approach is the use of adaptive activation masks to selectively modify opacity regions in lung CXRs. Cross-domain alignment ensures translated CXRs without opacity issues align with feature maps and prediction labels from a pre-trained CXR lesion classifier, facilitating the interpretability of the translation process. We validate our method using RSNA, MIMIC-CXR-JPG and JSRT datasets, demonstrating superior translation quality through lower Frechet Inception Distance (FID) and Kernel Inception Distance (KID) scores compared to existing meth- ods (FID: 67.18 vs. 210.4, KID: 0.01604 vs. 0.225). Evaluation on RSNA opacity, MIMIC acute respiratory distress syndrome (ARDS) patient CXRs and JSRT CXRs show our method enhances segmentation accuracy of lung borders and improves lesion classification, further underscoring its potential in clinical settings (RSNA: mIoU: 76.58% vs. 62.58%, Sensitivity: 85.58% vs. 77.03%; MIMIC ARDS: mIoU: 86.20% vs. 72.07%, Sensitivity: 92.68% vs. 86.85%; JSRT: mIoU: 91.08% vs. 85.6%, Sensitivity: 97.62% vs. 95.04%). Our approach advances CXR imaging analysis, especially in investigating segmentation impacts through image translation techniques.
☆ FALCONEye: Finding Answers and Localizing Content in ONE-hour-long videos with multi-modal LLMs
Information retrieval in hour-long videos presents a significant challenge, even for state-of-the-art Vision-Language Models (VLMs), particularly when the desired information is localized within a small subset of frames. Long video data presents challenges for VLMs due to context window limitations and the difficulty of pinpointing frames containing the answer. Our novel video agent, FALCONEye, combines a VLM and a Large Language Model (LLM) to search relevant information along the video, and locate the frames with the answer. FALCONEye novelty relies on 1) the proposed meta-architecture, which is better suited to tackle hour-long videos compared to short video approaches in the state-of-the-art; 2) a new efficient exploration algorithm to locate the information using short clips, captions and answer confidence; and 3) our state-of-the-art VLMs calibration analysis for the answer confidence. Our agent is built over a small-size VLM and a medium-size LLM being accessible to run on standard computational resources. We also release FALCON-Bench, a benchmark to evaluate long (average > 1 hour) Video Answer Search challenges, highlighting the need for open-ended question evaluation. Our experiments show FALCONEye's superior performance than the state-of-the-art in FALCON-Bench, and similar or better performance in related benchmarks.
☆ Towards Online Multi-Modal Social Interaction Understanding
Multimodal social interaction understanding (MMSI) is critical in human-robot interaction systems. In real-world scenarios, AI agents are required to provide real-time feedback. However, existing models often depend on both past and future contexts, which hinders them from applying to real-world problems. To bridge this gap, we propose an online MMSI setting, where the model must resolve MMSI tasks using only historical information, such as recorded dialogues and video streams. To address the challenges of missing the useful future context, we develop a novel framework, named Online-MMSI-VLM, that leverages two complementary strategies: multi-party conversation forecasting and social-aware visual prompting with multi-modal large language models. First, to enrich linguistic context, the multi-party conversation forecasting simulates potential future utterances in a coarse-to-fine manner, anticipating upcoming speaker turns and then generating fine-grained conversational details. Second, to effectively incorporate visual social cues like gaze and gesture, social-aware visual prompting highlights the social dynamics in video with bounding boxes and body keypoints for each person and frame. Extensive experiments on three tasks and two datasets demonstrate that our method achieves state-of-the-art performance and significantly outperforms baseline models, indicating its effectiveness on Online-MMSI. The code and pre-trained models will be publicly released at: https://github.com/Sampson-Lee/OnlineMMSI.
Attention IoU: Examining Biases in CelebA using Attention Maps CVPR 2025
Computer vision models have been shown to exhibit and amplify biases across a wide array of datasets and tasks. Existing methods for quantifying bias in classification models primarily focus on dataset distribution and model performance on subgroups, overlooking the internal workings of a model. We introduce the Attention-IoU (Attention Intersection over Union) metric and related scores, which use attention maps to reveal biases within a model's internal representations and identify image features potentially causing the biases. First, we validate Attention-IoU on the synthetic Waterbirds dataset, showing that the metric accurately measures model bias. We then analyze the CelebA dataset, finding that Attention-IoU uncovers correlations beyond accuracy disparities. Through an investigation of individual attributes through the protected attribute of Male, we examine the distinct ways biases are represented in CelebA. Lastly, by subsampling the training set to change attribute correlations, we demonstrate that Attention-IoU reveals potential confounding variables not present in dataset labels.
comment: To appear in CVPR 2025. Code and data is available at https://github.com/aaronserianni/attention-iou . 15 pages, 14 figures, including appendix
☆ FireEdit: Fine-grained Instruction-based Image Editing via Region-aware Vision Language Model CVPR 2025
Currently, instruction-based image editing methods have made significant progress by leveraging the powerful cross-modal understanding capabilities of vision language models (VLMs). However, they still face challenges in three key areas: 1) complex scenarios; 2) semantic consistency; and 3) fine-grained editing. To address these issues, we propose FireEdit, an innovative Fine-grained Instruction-based image editing framework that exploits a REgion-aware VLM. FireEdit is designed to accurately comprehend user instructions and ensure effective control over the editing process. Specifically, we enhance the fine-grained visual perception capabilities of the VLM by introducing additional region tokens. Relying solely on the output of the LLM to guide the diffusion model may lead to suboptimal editing results. Therefore, we propose a Time-Aware Target Injection module and a Hybrid Visual Cross Attention module. The former dynamically adjusts the guidance strength at various denoising stages by integrating timestep embeddings with the text embeddings. The latter enhances visual details for image editing, thereby preserving semantic consistency between the edited result and the source image. By combining the VLM enhanced with fine-grained region tokens and the time-dependent diffusion model, FireEdit demonstrates significant advantages in comprehending editing instructions and maintaining high semantic consistency. Extensive experiments indicate that our approach surpasses the state-of-the-art instruction-based image editing methods. Our project is available at https://zjgans.github.io/fireedit.github.io.
comment: Accepted to CVPR 2025
☆ AudCast: Audio-Driven Human Video Generation by Cascaded Diffusion Transformers CVPR
Despite the recent progress of audio-driven video generation, existing methods mostly focus on driving facial movements, leading to non-coherent head and body dynamics. Moving forward, it is desirable yet challenging to generate holistic human videos with both accurate lip-sync and delicate co-speech gestures w.r.t. given audio. In this work, we propose AudCast, a generalized audio-driven human video generation framework adopting a cascade Diffusion-Transformers (DiTs) paradigm, which synthesizes holistic human videos based on a reference image and a given audio. 1) Firstly, an audio-conditioned Holistic Human DiT architecture is proposed to directly drive the movements of any human body with vivid gesture dynamics. 2) Then to enhance hand and face details that are well-knownly difficult to handle, a Regional Refinement DiT leverages regional 3D fitting as the bridge to reform the signals, producing the final results. Extensive experiments demonstrate that our framework generates high-fidelity audio-driven holistic human videos with temporal coherence and fine facial and hand details. Resources can be found at https://guanjz20.github.io/projects/AudCast.
comment: Accepted to IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2025. Project page: https://guanjz20.github.io/projects/AudCast
☆ GyralNet Subnetwork Partitioning via Differentiable Spectral Modularity Optimization
Understanding the structural and functional organization of the human brain requires a detailed examination of cortical folding patterns, among which the three-hinge gyrus (3HG) has been identified as a key structural landmark. GyralNet, a network representation of cortical folding, models 3HGs as nodes and gyral crests as edges, highlighting their role as critical hubs in cortico-cortical connectivity. However, existing methods for analyzing 3HGs face significant challenges, including the sub-voxel scale of 3HGs at typical neuroimaging resolutions, the computational complexity of establishing cross-subject correspondences, and the oversimplification of treating 3HGs as independent nodes without considering their community-level relationships. To address these limitations, we propose a fully differentiable subnetwork partitioning framework that employs a spectral modularity maximization optimization strategy to modularize the organization of 3HGs within GyralNet. By incorporating topological structural similarity and DTI-derived connectivity patterns as attribute features, our approach provides a biologically meaningful representation of cortical organization. Extensive experiments on the Human Connectome Project (HCP) dataset demonstrate that our method effectively partitions GyralNet at the individual level while preserving the community-level consistency of 3HGs across subjects, offering a robust foundation for understanding brain connectivity.
comment: 10 pages, 3 figures
☆ Domain-incremental White Blood Cell Classification with Privacy-aware Continual Learning
White blood cell (WBC) classification plays a vital role in hematology for diagnosing various medical conditions. However, it faces significant challenges due to domain shifts caused by variations in sample sources (e.g., blood or bone marrow) and differing imaging conditions across hospitals. Traditional deep learning models often suffer from catastrophic forgetting in such dynamic environments, while foundation models, though generally robust, experience performance degradation when the distribution of inference data differs from that of the training data. To address these challenges, we propose a generative replay-based Continual Learning (CL) strategy designed to prevent forgetting in foundation models for WBC classification. Our method employs lightweight generators to mimic past data with a synthetic latent representation to enable privacy-preserving replay. To showcase the effectiveness, we carry out extensive experiments with a total of four datasets with different task ordering and four backbone models including ResNet50, RetCCL, CTransPath, and UNI. Experimental results demonstrate that conventional fine-tuning methods degrade performance on previously learned tasks and struggle with domain shifts. In contrast, our continual learning strategy effectively mitigates catastrophic forgetting, preserving model performance across varying domains. This work presents a practical solution for maintaining reliable WBC classification in real-world clinical settings, where data distributions frequently evolve.
☆ LENVIZ: A High-Resolution Low-Exposure Night Vision Benchmark Dataset
Low-light image enhancement is crucial for a myriad of applications, from night vision and surveillance, to autonomous driving. However, due to the inherent limitations that come in hand with capturing images in low-illumination environments, the task of enhancing such scenes still presents a formidable challenge. To advance research in this field, we introduce our Low Exposure Night Vision (LENVIZ) Dataset, a comprehensive multi-exposure benchmark dataset for low-light image enhancement comprising of over 230K frames showcasing 24K real-world indoor and outdoor, with-and without human, scenes. Captured using 3 different camera sensors, LENVIZ offers a wide range of lighting conditions, noise levels, and scene complexities, making it the largest publicly available up-to 4K resolution benchmark in the field. LENVIZ includes high quality human-generated ground truth, for which each multi-exposure low-light scene has been meticulously curated and edited by expert photographers to ensure optimal image quality. Furthermore, we also conduct a comprehensive analysis of current state-of-the-art low-light image enhancement techniques on our dataset and highlight potential areas of improvement.
comment: Dataset will be released upon publication
☆ SeLIP: Similarity Enhanced Contrastive Language Image Pretraining for Multi-modal Head MRI
Despite that deep learning (DL) methods have presented tremendous potential in many medical image analysis tasks, the practical applications of medical DL models are limited due to the lack of enough data samples with manual annotations. By noting that the clinical radiology examinations are associated with radiology reports that describe the images, we propose to develop a foundation model for multi-model head MRI by using contrastive learning on the images and the corresponding radiology findings. In particular, a contrastive learning framework is proposed, where a mixed syntax and semantic similarity matching metric is integrated to reduce the thirst of extreme large dataset in conventional contrastive learning framework. Our proposed similarity enhanced contrastive language image pretraining (SeLIP) is able to effectively extract more useful features. Experiments revealed that our proposed SeLIP performs well in many downstream tasks including image-text retrieval task, classification task, and image segmentation, which highlights the importance of considering the similarities among texts describing different images in developing medical image foundation models.
☆ Unpaired Object-Level SAR-to-Optical Image Translation for Aircraft with Keypoints-Guided Diffusion Models
Synthetic Aperture Radar (SAR) imagery provides all-weather, all-day, and high-resolution imaging capabilities but its unique imaging mechanism makes interpretation heavily reliant on expert knowledge, limiting interpretability, especially in complex target tasks. Translating SAR images into optical images is a promising solution to enhance interpretation and support downstream tasks. Most existing research focuses on scene-level translation, with limited work on object-level translation due to the scarcity of paired data and the challenge of accurately preserving contour and texture details. To address these issues, this study proposes a keypoint-guided diffusion model (KeypointDiff) for SAR-to-optical image translation of unpaired aircraft targets. This framework introduces supervision on target class and azimuth angle via keypoints, along with a training strategy for unpaired data. Based on the classifier-free guidance diffusion architecture, a class-angle guidance module (CAGM) is designed to integrate class and angle information into the diffusion generation process. Furthermore, adversarial loss and consistency loss are employed to improve image fidelity and detail quality, tailored for aircraft targets. During sampling, aided by a pre-trained keypoint detector, the model eliminates the requirement for manually labeled class and azimuth information, enabling automated SAR-to-optical translation. Experimental results demonstrate that the proposed method outperforms existing approaches across multiple metrics, providing an efficient and effective solution for object-level SAR-to-optical translation and downstream tasks. Moreover, the method exhibits strong zero-shot generalization to untrained aircraft types with the assistance of the keypoint detector.
☆ PAVE: Patching and Adapting Video Large Language Models CVPR2025
Pre-trained video large language models (Video LLMs) exhibit remarkable reasoning capabilities, yet adapting these models to new tasks involving additional modalities or data types (e.g., audio or 3D information) remains challenging. In this paper, we present PAVE, a flexible framework for adapting pre-trained Video LLMs to downstream tasks with side-channel signals, such as audio, 3D cues, or multi-view videos. PAVE introduces lightweight adapters, referred to as "patches," which add a small number of parameters and operations to a base model without modifying its architecture or pre-trained weights. In doing so, PAVE can effectively adapt the pre-trained base model to support diverse downstream tasks, including audio-visual question answering, 3D reasoning, multi-view video recognition, and high frame rate video understanding. Across these tasks, PAVE significantly enhances the performance of the base model, surpassing state-of-the-art task-specific models while incurring a minor cost of ~0.1% additional FLOPs and parameters. Further, PAVE supports multi-task learning and generalizes well across different Video LLMs. Our code is available at https://github.com/dragonlzm/PAVE.
comment: CVPR2025 Camera Ready
☆ In the Blink of an Eye: Instant Game Map Editing using a Generative-AI Smart Brush
With video games steadily increasing in complexity, automated generation of game content has found widespread interest. However, the task of 3D gaming map art creation remains underexplored to date due to its unique complexity and domain-specific challenges. While recent works have addressed related topics such as retro-style level generation and procedural terrain creation, these works primarily focus on simpler data distributions. To the best of our knowledge, we are the first to demonstrate the application of modern AI techniques for high-resolution texture manipulation in complex, highly detailed AAA 3D game environments. We introduce a novel Smart Brush for map editing, designed to assist artists in seamlessly modifying selected areas of a game map with minimal effort. By leveraging generative adversarial networks and diffusion models we propose two variants of the brush that enable efficient and context-aware generation. Our hybrid workflow aims to enhance both artistic flexibility and production efficiency, enabling the refinement of environments without manually reworking every detail, thus helping to bridge the gap between automation and creative control in game development. A comparative evaluation of our two methods with adapted versions of several state-of-the art models shows that our GAN-based brush produces the sharpest and most detailed outputs while preserving image context while the evaluated state-of-the-art models tend towards blurrier results and exhibit difficulties in maintaining contextual consistency.
☆ SITA: Structurally Imperceptible and Transferable Adversarial Attacks for Stylized Image Generation
Image generation technology has brought significant advancements across various fields but has also raised concerns about data misuse and potential rights infringements, particularly with respect to creating visual artworks. Current methods aimed at safeguarding artworks often employ adversarial attacks. However, these methods face challenges such as poor transferability, high computational costs, and the introduction of noticeable noise, which compromises the aesthetic quality of the original artwork. To address these limitations, we propose a Structurally Imperceptible and Transferable Adversarial (SITA) attacks. SITA leverages a CLIP-based destylization loss, which decouples and disrupts the robust style representation of the image. This disruption hinders style extraction during stylized image generation, thereby impairing the overall stylization process. Importantly, SITA eliminates the need for a surrogate diffusion model, leading to significantly reduced computational overhead. The method's robust style feature disruption ensures high transferability across diverse models. Moreover, SITA introduces perturbations by embedding noise within the imperceptible structural details of the image. This approach effectively protects against style extraction without compromising the visual quality of the artwork. Extensive experiments demonstrate that SITA offers superior protection for artworks against unauthorized use in stylized generation. It significantly outperforms existing methods in terms of transferability, computational efficiency, and noise imperceptibility. Code is available at https://github.com/A-raniy-day/SITA.
☆ Fine-Grained Erasure in Text-to-Image Diffusion-based Foundation Models CVPR 2025
Existing unlearning algorithms in text-to-image generative models often fail to preserve the knowledge of semantically related concepts when removing specific target concepts: a challenge known as adjacency. To address this, we propose FADE (Fine grained Attenuation for Diffusion Erasure), introducing adjacency aware unlearning in diffusion models. FADE comprises two components: (1) the Concept Neighborhood, which identifies an adjacency set of related concepts, and (2) Mesh Modules, employing a structured combination of Expungement, Adjacency, and Guidance loss components. These enable precise erasure of target concepts while preserving fidelity across related and unrelated concepts. Evaluated on datasets like Stanford Dogs, Oxford Flowers, CUB, I2P, Imagenette, and ImageNet1k, FADE effectively removes target concepts with minimal impact on correlated concepts, achieving atleast a 12% improvement in retention performance over state-of-the-art methods.
comment: Published in CVPR 2025
☆ LPOSS: Label Propagation Over Patches and Pixels for Open-vocabulary Semantic Segmentation
We propose a training-free method for open-vocabulary semantic segmentation using Vision-and-Language Models (VLMs). Our approach enhances the initial per-patch predictions of VLMs through label propagation, which jointly optimizes predictions by incorporating patch-to-patch relationships. Since VLMs are primarily optimized for cross-modal alignment and not for intra-modal similarity, we use a Vision Model (VM) that is observed to better capture these relationships. We address resolution limitations inherent to patch-based encoders by applying label propagation at the pixel level as a refinement step, significantly improving segmentation accuracy near class boundaries. Our method, called LPOSS+, performs inference over the entire image, avoiding window-based processing and thereby capturing contextual interactions across the full image. LPOSS+ achieves state-of-the-art performance among training-free methods, across a diverse set of datasets. Code: https://github.com/vladan-stojnic/LPOSS
☆ Resilient Sensor Fusion under Adverse Sensor Failures via Multi-Modal Expert Fusion CVPR 2025
Modern autonomous driving perception systems utilize complementary multi-modal sensors, such as LiDAR and cameras. Although sensor fusion architectures enhance performance in challenging environments, they still suffer significant performance drops under severe sensor failures, such as LiDAR beam reduction, LiDAR drop, limited field of view, camera drop, and occlusion. This limitation stems from inter-modality dependencies in current sensor fusion frameworks. In this study, we introduce an efficient and robust LiDAR-camera 3D object detector, referred to as MoME, which can achieve robust performance through a mixture of experts approach. Our MoME fully decouples modality dependencies using three parallel expert decoders, which use camera features, LiDAR features, or a combination of both to decode object queries, respectively. We propose Multi-Expert Decoding (MED) framework, where each query is decoded selectively using one of three expert decoders. MoME utilizes an Adaptive Query Router (AQR) to select the most appropriate expert decoder for each query based on the quality of camera and LiDAR features. This ensures that each query is processed by the best-suited expert, resulting in robust performance across diverse sensor failure scenarios. We evaluated the performance of MoME on the nuScenes-R benchmark. Our MoME achieved state-of-the-art performance in extreme weather and sensor failure conditions, significantly outperforming the existing models across various sensor failure scenarios.
comment: Accepted to CVPR 2025
☆ BiPrompt-SAM: Enhancing Image Segmentation via Explicit Selection between Point and Text Prompts
Segmentation is a fundamental task in computer vision, with prompt-driven methods gaining prominence due to their flexibility. The recent Segment Anything Model (SAM) has demonstrated powerful point-prompt segmentation capabilities, while text-based segmentation models offer rich semantic understanding. However, existing approaches rarely explore how to effectively combine these complementary modalities for optimal segmentation performance. This paper presents BiPrompt-SAM, a novel dual-modal prompt segmentation framework that fuses the advantages of point and text prompts through an explicit selection mechanism. Specifically, we leverage SAM's inherent ability to generate multiple mask candidates, combined with a semantic guidance mask from text prompts, and explicitly select the most suitable candidate based on similarity metrics. This approach can be viewed as a simplified Mixture of Experts (MoE) system, where the point and text modules act as distinct "experts," and the similarity scoring serves as a rudimentary "gating network." We conducted extensive evaluations on both the Endovis17 medical dataset and RefCOCO series natural image datasets. On Endovis17, BiPrompt-SAM achieved 89.55\% mDice and 81.46\% mIoU, comparable to state-of-the-art specialized medical segmentation models. On the RefCOCO series datasets, our method attained 87.1\%, 86.5\%, and 85.8\% IoU, significantly outperforming existing approaches. Experiments demonstrate that our explicit dual-selection method effectively combines the spatial precision of point prompts with the semantic richness of text prompts, particularly excelling in scenarios involving semantically complex objects, multiple similar objects, and partial occlusions. BiPrompt-SAM not only provides a simple yet effective implementation but also offers a new perspective on multi-modal prompt fusion.
☆ OpenLex3D: A New Evaluation Benchmark for Open-Vocabulary 3D Scene Representations
3D scene understanding has been transformed by open-vocabulary language models that enable interaction via natural language. However, the evaluation of these representations is limited to closed-set semantics that do not capture the richness of language. This work presents OpenLex3D, a dedicated benchmark to evaluate 3D open-vocabulary scene representations. OpenLex3D provides entirely new label annotations for 23 scenes from Replica, ScanNet++, and HM3D, which capture real-world linguistic variability by introducing synonymical object categories and additional nuanced descriptions. By introducing an open-set 3D semantic segmentation task and an object retrieval task, we provide insights on feature precision, segmentation, and downstream capabilities. We evaluate various existing 3D open-vocabulary methods on OpenLex3D, showcasing failure cases, and avenues for improvement. The benchmark is publicly available at: https://openlex3d.github.io/.
☆ Dita: Scaling Diffusion Transformer for Generalist Vision-Language-Action Policy
While recent vision-language-action models trained on diverse robot datasets exhibit promising generalization capabilities with limited in-domain data, their reliance on compact action heads to predict discretized or continuous actions constrains adaptability to heterogeneous action spaces. We present Dita, a scalable framework that leverages Transformer architectures to directly denoise continuous action sequences through a unified multimodal diffusion process. Departing from prior methods that condition denoising on fused embeddings via shallow networks, Dita employs in-context conditioning -- enabling fine-grained alignment between denoised actions and raw visual tokens from historical observations. This design explicitly models action deltas and environmental nuances. By scaling the diffusion action denoiser alongside the Transformer's scalability, Dita effectively integrates cross-embodiment datasets across diverse camera perspectives, observation scenes, tasks, and action spaces. Such synergy enhances robustness against various variances and facilitates the successful execution of long-horizon tasks. Evaluations across extensive benchmarks demonstrate state-of-the-art or comparative performance in simulation. Notably, Dita achieves robust real-world adaptation to environmental variances and complex long-horizon tasks through 10-shot finetuning, using only third-person camera inputs. The architecture establishes a versatile, lightweight and open-source baseline for generalist robot policy learning. Project Page: https://robodita.github.io.
comment: Preprint; https://robodita.github.io;
☆ ORION: A Holistic End-to-End Autonomous Driving Framework by Vision-Language Instructed Action Generation
End-to-end (E2E) autonomous driving methods still struggle to make correct decisions in interactive closed-loop evaluation due to limited causal reasoning capability. Current methods attempt to leverage the powerful understanding and reasoning abilities of Vision-Language Models (VLMs) to resolve this dilemma. However, the problem is still open that few VLMs for E2E methods perform well in the closed-loop evaluation due to the gap between the semantic reasoning space and the purely numerical trajectory output in the action space. To tackle this issue, we propose ORION, a holistic E2E autonomous driving framework by vision-language instructed action generation. ORION uniquely combines a QT-Former to aggregate long-term history context, a Large Language Model (LLM) for driving scenario reasoning, and a generative planner for precision trajectory prediction. ORION further aligns the reasoning space and the action space to implement a unified E2E optimization for both visual question-answering (VQA) and planning tasks. Our method achieves an impressive closed-loop performance of 77.74 Driving Score (DS) and 54.62% Success Rate (SR) on the challenge Bench2Drive datasets, which outperforms state-of-the-art (SOTA) methods by a large margin of 14.28 DS and 19.61% SR.
☆ A Survey on Event-driven 3D Reconstruction: Development under Different Categories
Event cameras have gained increasing attention for 3D reconstruction due to their high temporal resolution, low latency, and high dynamic range. They capture per-pixel brightness changes asynchronously, allowing accurate reconstruction under fast motion and challenging lighting conditions. In this survey, we provide a comprehensive review of event-driven 3D reconstruction methods, including stereo, monocular, and multimodal systems. We further categorize recent developments based on geometric, learning-based, and hybrid approaches. Emerging trends, such as neural radiance fields and 3D Gaussian splatting with event data, are also covered. The related works are structured chronologically to illustrate the innovations and progression within the field. To support future research, we also highlight key research gaps and future research directions in dataset, experiment, evaluation, event representation, etc.
comment: 6 pages, 1 figure, 6 tables
☆ Surg-3M: A Dataset and Foundation Model for Perception in Surgical Settings
Advancements in computer-assisted surgical procedures heavily rely on accurate visual data interpretation from camera systems used during surgeries. Traditional open-access datasets focusing on surgical procedures are often limited by their small size, typically consisting of fewer than 100 videos with less than 100K images. To address these constraints, a new dataset called Surg-3M has been compiled using a novel aggregation pipeline that collects high-resolution videos from online sources. Featuring an extensive collection of over 4K surgical videos and more than 3 million high-quality images from multiple procedure types, Surg-3M offers a comprehensive resource surpassing existing alternatives in size and scope, including two novel tasks. To demonstrate the effectiveness of this dataset, we present SurgFM, a self-supervised foundation model pretrained on Surg-3M that achieves impressive results in downstream tasks such as surgical phase recognition, action recognition, and tool presence detection. Combining key components from ConvNeXt, DINO, and an innovative augmented distillation method, SurgFM exhibits exceptional performance compared to specialist architectures across various benchmarks. Our experimental results show that SurgFM outperforms state-of-the-art models in multiple downstream tasks, including significant gains in surgical phase recognition (+8.9pp, +4.7pp, and +3.9pp of Jaccard in AutoLaparo, M2CAI16, and Cholec80), action recognition (+3.1pp of mAP in CholecT50) and tool presence detection (+4.6pp of mAP in Cholec80). Moreover, even when using only half of the data, SurgFM outperforms state-of-the-art models in AutoLaparo and achieves state-of-the-art performance in Cholec80. Both Surg-3M and SurgFM have significant potential to accelerate progress towards developing autonomous robotic surgery systems.
comment: 15 pages
☆ FUSE: Label-Free Image-Event Joint Monocular Depth Estimation via Frequency-Decoupled Alignment and Degradation-Robust Fusion
Image-event joint depth estimation methods leverage complementary modalities for robust perception, yet face challenges in generalizability stemming from two factors: 1) limited annotated image-event-depth datasets causing insufficient cross-modal supervision, and 2) inherent frequency mismatches between static images and dynamic event streams with distinct spatiotemporal patterns, leading to ineffective feature fusion. To address this dual challenge, we propose Frequency-decoupled Unified Self-supervised Encoder (FUSE) with two synergistic components: The Parameter-efficient Self-supervised Transfer (PST) establishes cross-modal knowledge transfer through latent space alignment with image foundation models, effectively mitigating data scarcity by enabling joint encoding without depth ground truth.Complementing this, we propose the Frequency-Decoupled Fusion module (FreDFuse) to explicitly decouple high-frequency edge features from low-frequency structural components, resolving modality-specific frequency mismatches through physics-aware fusion. This combined approach enables FUSE to construct a universal image-event encoder that only requires lightweight decoder adaptation for target datasets. Extensive experiments demonstrate state-of-the-art performance with 14% and 24.9% improvements in Abs.Rel on MVSEC and DENSE datasets. The framework exhibits remarkable zero-shot adaptability to challenging scenarios including extreme lighting and motion blur, significantly advancing real-world deployment capabilities. The source code for our method is publicly available at: https://github.com/sunpihai-up/FUSE
comment: 8 pages, 6 figures
☆ GRN+: A Simplified Generative Reinforcement Network for Tissue Layer Analysis in 3D Ultrasound Images for Chronic Low-back Pain
3D ultrasound delivers high-resolution, real-time images of soft tissues, which is essential for pain research. However, manually distinguishing various tissues for quantitative analysis is labor-intensive. To streamline this process, we developed and validated GRN+, a novel multi-model framework that automates layer segmentation with minimal annotated data. GRN+ combines a ResNet-based generator and a U-Net segmentation model. Through a method called Segmentation-guided Enhancement (SGE), the generator produces new images and matching masks under the guidance of the segmentation model, with its weights adjusted according to the segmentation loss gradient. To prevent gradient explosion and secure stable training, a two-stage backpropagation strategy was implemented: the first stage propagates the segmentation loss through both the generator and segmentation model, while the second stage concentrates on optimizing the segmentation model alone, thereby refining mask prediction using the generated images. Tested on 69 fully annotated 3D ultrasound scans from 29 subjects with six manually labeled tissue layers, GRN+ outperformed all other semi-supervised methods in terms of the Dice coefficient using only 5% labeled data, despite not using unlabeled data for unsupervised training. Additionally, when applied to fully annotated datasets, GRN+ with SGE achieved a 2.16% higher Dice coefficient while incurring lower computational costs compared to other models. Overall, GRN+ provides accurate tissue segmentation while reducing both computational expenses and the dependency on extensive annotations, making it an effective tool for 3D ultrasound analysis in cLBP patients.
☆ InterSliceBoost: Identifying Tissue Layers in Three-dimensional Ultrasound Images for Chronic Lower Back Pain (cLBP) Assessment
Available studies on chronic lower back pain (cLBP) typically focus on one or a few specific tissues rather than conducting a comprehensive layer-by-layer analysis. Since three-dimensional (3-D) images often contain hundreds of slices, manual annotation of these anatomical structures is both time-consuming and error-prone. We aim to develop and validate a novel approach called InterSliceBoost to enable the training of a segmentation model on a partially annotated dataset without compromising segmentation performance. The architecture of InterSliceBoost includes two components: an inter-slice generator and a segmentation model. The generator utilizes residual block-based encoders to extract features from adjacent image-mask pairs (IMPs). Differential features are calculated and input into a decoder to generate inter-slice IMPs. The segmentation model is trained on partially annotated datasets (e.g., skipping 1, 2, 3, or 7 images) and the generated inter-slice IMPs. To validate the performance of InterSliceBoost, we utilized a dataset of 76 B-mode ultrasound scans acquired on 29 subjects enrolled in an ongoing cLBP study. InterSliceBoost, trained on only 33% of the image slices, achieved a mean Dice coefficient of 80.84% across all six layers on the independent test set, with Dice coefficients of 73.48%, 61.11%, 81.87%, 95.74%, 83.52% and 88.74% for segmenting dermis, superficial fat, superficial fascial membrane, deep fat, deep fascial membrane, and muscle. This performance is significantly higher than the conventional model trained on fully annotated images (p<0.05). InterSliceBoost can effectively segment the six tissue layers depicted on 3-D B-model ultrasound images in settings with partial annotations.
☆ PCM : Picard Consistency Model for Fast Parallel Sampling of Diffusion Models CVPR 2025
Recently, diffusion models have achieved significant advances in vision, text, and robotics. However, they still face slow generation speeds due to sequential denoising processes. To address this, a parallel sampling method based on Picard iteration was introduced, effectively reducing sequential steps while ensuring exact convergence to the original output. Nonetheless, Picard iteration does not guarantee faster convergence, which can still result in slow generation in practice. In this work, we propose a new parallelization scheme, the Picard Consistency Model (PCM), which significantly reduces the number of generation steps in Picard iteration. Inspired by the consistency model, PCM is directly trained to predict the fixed-point solution, or the final output, at any stage of the convergence trajectory. Additionally, we introduce a new concept called model switching, which addresses PCM's limitations and ensures exact convergence. Extensive experiments demonstrate that PCM achieves up to a 2.71x speedup over sequential sampling and a 1.77x speedup over Picard iteration across various tasks, including image generation and robotic control.
comment: Accepted to the CVPR 2025
☆ CamSAM2: Segment Anything Accurately in Camouflaged Videos
Video camouflaged object segmentation (VCOS), aiming at segmenting camouflaged objects that seamlessly blend into their environment, is a fundamental vision task with various real-world applications. With the release of SAM2, video segmentation has witnessed significant progress. However, SAM2's capability of segmenting camouflaged videos is suboptimal, especially when given simple prompts such as point and box. To address the problem, we propose Camouflaged SAM2 (CamSAM2), which enhances SAM2's ability to handle camouflaged scenes without modifying SAM2's parameters. Specifically, we introduce a decamouflaged token to provide the flexibility of feature adjustment for VCOS. To make full use of fine-grained and high-resolution features from the current frame and previous frames, we propose implicit object-aware fusion (IOF) and explicit object-aware fusion (EOF) modules, respectively. Object prototype generation (OPG) is introduced to abstract and memorize object prototypes with informative details using high-quality features from previous frames. Extensive experiments are conducted to validate the effectiveness of our approach. While CamSAM2 only adds negligible learnable parameters to SAM2, it substantially outperforms SAM2 on three VCOS datasets, especially achieving 12.2 mDice gains with click prompt on MoCA-Mask and 19.6 mDice gains with mask prompt on SUN-SEG-Hard, with Hiera-T as the backbone. The code will be available at \href{https://github.com/zhoustan/CamSAM2}{github.com/zhoustan/CamSAM2}.
☆ EventMamba: Enhancing Spatio-Temporal Locality with State Space Models for Event-Based Video Reconstruction
Leveraging its robust linear global modeling capability, Mamba has notably excelled in computer vision. Despite its success, existing Mamba-based vision models have overlooked the nuances of event-driven tasks, especially in video reconstruction. Event-based video reconstruction (EBVR) demands spatial translation invariance and close attention to local event relationships in the spatio-temporal domain. Unfortunately, conventional Mamba algorithms apply static window partitions and standard reshape scanning methods, leading to significant losses in local connectivity. To overcome these limitations, we introduce EventMamba--a specialized model designed for EBVR tasks. EventMamba innovates by incorporating random window offset (RWO) in the spatial domain, moving away from the restrictive fixed partitioning. Additionally, it features a new consistent traversal serialization approach in the spatio-temporal domain, which maintains the proximity of adjacent events both spatially and temporally. These enhancements enable EventMamba to retain Mamba's robust modeling capabilities while significantly preserving the spatio-temporal locality of event data. Comprehensive testing on multiple datasets shows that EventMamba markedly enhances video reconstruction, drastically improving computation speed while delivering superior visual quality compared to Transformer-based methods.
☆ On What Depends the Robustness of Multi-source Models to Missing Data in Earth Observation?
In recent years, the development of robust multi-source models has emerged in the Earth Observation (EO) field. These are models that leverage data from diverse sources to improve predictive accuracy when there is missing data. Despite these advancements, the factors influencing the varying effectiveness of such models remain poorly understood. In this study, we evaluate the predictive performance of six state-of-the-art multi-source models in predicting scenarios where either a single data source is missing or only a single source is available. Our analysis reveals that the efficacy of these models is intricately tied to the nature of the task, the complementarity among data sources, and the model design. Surprisingly, we observe instances where the removal of certain data sources leads to improved predictive performance, challenging the assumption that incorporating all available data is always beneficial. These findings prompt critical reflections on model complexity and the necessity of all collected data sources, potentially shaping the way for more streamlined approaches in EO applications.
comment: Accepted at IEEE International Geoscience and Remote Sensing Symposium 2025
☆ Semi-SD: Semi-Supervised Metric Depth Estimation via Surrounding Cameras for Autonomous Driving
In this paper, we introduce Semi-SD, a novel metric depth estimation framework tailored for surrounding cameras equipment in autonomous driving. In this work, the input data consists of adjacent surrounding frames and camera parameters. We propose a unified spatial-temporal-semantic fusion module to construct the visual fused features. Cross-attention components for surrounding cameras and adjacent frames are utilized to focus on metric scale information refinement and temporal feature matching. Building on this, we propose a pose estimation framework using surrounding cameras, their corresponding estimated depths, and extrinsic parameters, which effectively address the scale ambiguity in multi-camera setups. Moreover, semantic world model and monocular depth estimation world model are integrated to supervised the depth estimation, which improve the quality of depth estimation. We evaluate our algorithm on DDAD and nuScenes datasets, and the results demonstrate that our method achieves state-of-the-art performance in terms of surrounding camera based depth estimation quality. The source code will be available on https://github.com/xieyuser/Semi-SD.
☆ Mind the Gap: Benchmarking Spatial Reasoning in Vision-Language Models
Vision-Language Models (VLMs) have recently emerged as powerful tools, excelling in tasks that integrate visual and textual comprehension, such as image captioning, visual question answering, and image-text retrieval. However, existing benchmarks for VLMs include spatial components, which often fail to isolate spatial reasoning from related tasks such as object detection or semantic comprehension. In this paper, we address these deficiencies with a multi-faceted approach towards understanding spatial reasoning. Informed by the diverse and multi-dimensional nature of human spatial reasoning abilities, we present a detailed analysis that first delineates the core elements of spatial reasoning: spatial relations, orientation and navigation, mental rotation, and spatial visualization, and then assesses the performance of these models in both synthetic and real-world images, bridging controlled and naturalistic contexts. We analyze 13 state-of-the-art Vision-Language Models, uncovering pivotal insights into their spatial reasoning performance. Our results reveal profound shortcomings in current VLMs, with average accuracy across the 13 models approximating random chance, highlighting spatial reasoning as a persistent obstacle. This work not only exposes the pressing need to advance spatial reasoning within VLMs but also establishes a solid platform for future exploration. Code available on GitHub (https://github.com/stogiannidis/srbench) and dataset available on HuggingFace (https://huggingface.co/datasets/stogiannidis/srbench).
comment: 8 main pages, 4 pages Appendix, 5 figures
☆ Bootstrap Your Own Views: Masked Ego-Exo Modeling for Fine-grained View-invariant Video Representations CVPR 2025
View-invariant representation learning from egocentric (first-person, ego) and exocentric (third-person, exo) videos is a promising approach toward generalizing video understanding systems across multiple viewpoints. However, this area has been underexplored due to the substantial differences in perspective, motion patterns, and context between ego and exo views. In this paper, we propose a novel masked ego-exo modeling that promotes both causal temporal dynamics and cross-view alignment, called Bootstrap Your Own Views (BYOV), for fine-grained view-invariant video representation learning from unpaired ego-exo videos. We highlight the importance of capturing the compositional nature of human actions as a basis for robust cross-view understanding. Specifically, self-view masking and cross-view masking predictions are designed to learn view-invariant and powerful representations concurrently. Experimental results demonstrate that our BYOV significantly surpasses existing approaches with notable gains across all metrics in four downstream ego-exo video tasks. The code is available at https://github.com/park-jungin/byov.
comment: CVPR 2025 Camera-ready
☆ High-Quality Spatial Reconstruction and Orthoimage Generation Using Efficient 2D Gaussian Splatting
Highly accurate geometric precision and dense image features characterize True Digital Orthophoto Maps (TDOMs), which are in great demand for applications such as urban planning, infrastructure management, and environmental monitoring. Traditional TDOM generation methods need sophisticated processes, such as Digital Surface Models (DSM) and occlusion detection, which are computationally expensive and prone to errors. This work presents an alternative technique rooted in 2D Gaussian Splatting (2DGS), free of explicit DSM and occlusion detection. With depth map generation, spatial information for every pixel within the TDOM is retrieved and can reconstruct the scene with high precision. Divide-and-conquer strategy achieves excellent GS training and rendering with high-resolution TDOMs at a lower resource cost, which preserves higher quality of rendering on complex terrain and thin structure without a decrease in efficiency. Experimental results demonstrate the efficiency of large-scale scene reconstruction and high-precision terrain modeling. This approach provides accurate spatial data, which assists users in better planning and decision-making based on maps.
☆ Optimization of MedSAM model based on bounding box adaptive perturbation algorithm
The MedSAM model, built upon the SAM framework, enhances medical image segmentation through generalizable training but still exhibits notable limitations. First, constraints in the perturbation window settings during training can cause MedSAM to incorrectly segment small tissues or organs together with adjacent structures, leading to segmentation errors. Second, when dealing with medical image targets characterized by irregular shapes and complex structures, segmentation often relies on narrowing the bounding box to refine segmentation intent. However, MedSAM's performance under reduced bounding box prompts remains suboptimal. To address these challenges, this study proposes a bounding box adaptive perturbation algorithm to optimize the training process. The proposed approach aims to reduce segmentation errors for small targets and enhance the model's accuracy when processing reduced bounding box prompts, ultimately improving the robustness and reliability of the MedSAM model for complex medical imaging tasks.
comment: 6 pages, 6 figures, 3 Tables
☆ Unlocking the Hidden Potential of CLIP in Generalizable Deepfake Detection
This paper tackles the challenge of detecting partially manipulated facial deepfakes, which involve subtle alterations to specific facial features while retaining the overall context, posing a greater detection difficulty than fully synthetic faces. We leverage the Contrastive Language-Image Pre-training (CLIP) model, specifically its ViT-L/14 visual encoder, to develop a generalizable detection method that performs robustly across diverse datasets and unknown forgery techniques with minimal modifications to the original model. The proposed approach utilizes parameter-efficient fine-tuning (PEFT) techniques, such as LN-tuning, to adjust a small subset of the model's parameters, preserving CLIP's pre-trained knowledge and reducing overfitting. A tailored preprocessing pipeline optimizes the method for facial images, while regularization strategies, including L2 normalization and metric learning on a hyperspherical manifold, enhance generalization. Trained on the FaceForensics++ dataset and evaluated in a cross-dataset fashion on Celeb-DF-v2, DFDC, FFIW, and others, the proposed method achieves competitive detection accuracy comparable to or outperforming much more complex state-of-the-art techniques. This work highlights the efficacy of CLIP's visual encoder in facial deepfake detection and establishes a simple, powerful baseline for future research, advancing the field of generalizable deepfake detection. The code is available at: https://github.com/yermandy/deepfake-detection
☆ MultimodalStudio: A Heterogeneous Sensor Dataset and Framework for Neural Rendering across Multiple Imaging Modalities CVPR 2025
Neural Radiance Fields (NeRF) have shown impressive performances in the rendering of 3D scenes from arbitrary viewpoints. While RGB images are widely preferred for training volume rendering models, the interest in other radiance modalities is also growing. However, the capability of the underlying implicit neural models to learn and transfer information across heterogeneous imaging modalities has seldom been explored, mostly due to the limited training data availability. For this purpose, we present MultimodalStudio (MMS): it encompasses MMS-DATA and MMS-FW. MMS-DATA is a multimodal multi-view dataset containing 32 scenes acquired with 5 different imaging modalities: RGB, monochrome, near-infrared, polarization and multispectral. MMS-FW is a novel modular multimodal NeRF framework designed to handle multimodal raw data and able to support an arbitrary number of multi-channel devices. Through extensive experiments, we demonstrate that MMS-FW trained on MMS-DATA can transfer information between different imaging modalities and produce higher quality renderings than using single modalities alone. We publicly release the dataset and the framework, to promote the research on multimodal volume rendering and beyond.
comment: Accepted at CVPR 2025
☆ fine-CLIP: Enhancing Zero-Shot Fine-Grained Surgical Action Recognition with Vision-Language Models
While vision-language models like CLIP have advanced zero-shot surgical phase recognition, they struggle with fine-grained surgical activities, especially action triplets. This limitation arises because current CLIP formulations rely on global image features, which overlook the fine-grained semantics and contextual details crucial for complex tasks like zero-shot triplet recognition. Furthermore, these models do not explore the hierarchical structure inherent in triplets, reducing their ability to generalize to novel triplets. To address these challenges, we propose fine-CLIP, which learns object-centric features and lever- ages the hierarchy in triplet formulation. Our approach integrates three components: hierarchical prompt modeling to capture shared semantics, LoRA-based vision backbone adaptation for enhanced feature extraction, and a graph-based condensation strategy that groups similar patch features into meaningful object clusters. Since triplet classification is a challenging task, we introduce an alternative yet meaningful base-to-novel generalization benchmark with two settings on the CholecT50 dataset: Unseen-Target, assessing adaptability to triplets with novel anatomical structures, and Unseen-Instrument-Verb, where models need to generalize to novel instrument-verb interactions. fine-CLIP shows significant improvements in F1 and mAP, enhancing zero-shot recognition of novel surgical triplets.
comment: 6 pages, 3 tables, 3 figures
☆ CoSimGen: Controllable Diffusion Model for Simultaneous Image and Mask Generation
The acquisition of annotated datasets with paired images and segmentation masks is a critical challenge in domains such as medical imaging, remote sensing, and computer vision. Manual annotation demands significant resources, faces ethical constraints, and depends heavily on domain expertise. Existing generative models often target single-modality outputs, either images or segmentation masks, failing to address the need for high-quality, simultaneous image-mask generation. Additionally, these models frequently lack adaptable conditioning mechanisms, restricting control over the generated outputs and limiting their applicability for dataset augmentation and rare scenario simulation. We propose CoSimGen, a diffusion-based framework for controllable simultaneous image and mask generation. Conditioning is intuitively achieved through (1) text prompts grounded in class semantics, (2) spatial embedding of context prompts to provide spatial coherence, and (3) spectral embedding of timestep information to model noise levels during diffusion. To enhance controllability and training efficiency, the framework incorporates contrastive triplet loss between text and class embeddings, alongside diffusion and adversarial losses. Initial low-resolution outputs 128 x 128 are super-resolved to 512 x 512, producing high-fidelity images and masks with strict adherence to conditions. We evaluate CoSimGen on metrics such as FID, KID, LPIPS, Class FID, Positive predicted value for image fidelity and semantic alignment of generated samples over 4 diverse datasets. CoSimGen achieves state-of-the-art performance across all datasets, achieving the lowest KID of 0.11 and LPIPS of 0.53 across datasets.
comment: 15 pages, 14 figure, 2 tables, project page at https://camma-public.github.io/endogen/cosimgen
☆ BiblioPage: A Dataset of Scanned Title Pages for Bibliographic Metadata Extraction ICDAR2025
Manual digitization of bibliographic metadata is time consuming and labor intensive, especially for historical and real-world archives with highly variable formatting across documents. Despite advances in machine learning, the absence of dedicated datasets for metadata extraction hinders automation. To address this gap, we introduce BiblioPage, a dataset of scanned title pages annotated with structured bibliographic metadata. The dataset consists of approximately 2,000 monograph title pages collected from 14 Czech libraries, spanning a wide range of publication periods, typographic styles, and layout structures. Each title page is annotated with 16 bibliographic attributes, including title, contributors, and publication metadata, along with precise positional information in the form of bounding boxes. To extract structured information from this dataset, we valuated object detection models such as YOLO and DETR combined with transformer-based OCR, achieving a maximum mAP of 52 and an F1 score of 59. Additionally, we assess the performance of various visual large language models, including LlamA 3.2-Vision and GPT-4o, with the best model reaching an F1 score of 67. BiblioPage serves as a real-world benchmark for bibliographic metadata extraction, contributing to document understanding, document question answering, and document information extraction. Dataset and evaluation scripts are availible at: https://github.com/DCGM/biblio-dataset
comment: Submitted to ICDAR2025 conference
☆ RGB-Th-Bench: A Dense benchmark for Visual-Thermal Understanding of Vision Language Models
We introduce RGB-Th-Bench, the first benchmark designed to evaluate the ability of Vision-Language Models (VLMs) to comprehend RGB-Thermal image pairs. While VLMs have demonstrated remarkable progress in visual reasoning and multimodal understanding, their evaluation has been predominantly limited to RGB-based benchmarks, leaving a critical gap in assessing their capabilities in infrared vision tasks. Existing visible-infrared datasets are either task-specific or lack high-quality annotations necessary for rigorous model evaluation. To address these limitations, RGB-Th-Bench provides a comprehensive evaluation framework covering 14 distinct skill dimensions, with a total of 1,600+ expert-annotated Yes/No questions. The benchmark employs two accuracy metrics: a standard question-level accuracy and a stricter skill-level accuracy, which evaluates model robustness across multiple questions within each skill dimension. This design ensures a thorough assessment of model performance, including resilience to adversarial and hallucinated responses. We conduct extensive evaluations on 19 state-of-the-art VLMs, revealing significant performance gaps in RGB-Thermal understanding. Our results show that even the strongest models struggle with thermal image comprehension, with performance heavily constrained by their RGB-based capabilities. Additionally, the lack of large-scale application-specific and expert-annotated thermal-caption-pair datasets in pre-training is an important reason of the observed performance gap. RGB-Th-Bench highlights the urgent need for further advancements in multimodal learning to bridge the gap between visible and thermal image understanding. The dataset is available through this link, and the evaluation code will also be made publicly available.
☆ OpenSDI: Spotting Diffusion-Generated Images in the Open World
This paper identifies OpenSDI, a challenge for spotting diffusion-generated images in open-world settings. In response to this challenge, we define a new benchmark, the OpenSDI dataset (OpenSDID), which stands out from existing datasets due to its diverse use of large vision-language models that simulate open-world diffusion-based manipulations. Another outstanding feature of OpenSDID is its inclusion of both detection and localization tasks for images manipulated globally and locally by diffusion models. To address the OpenSDI challenge, we propose a Synergizing Pretrained Models (SPM) scheme to build up a mixture of foundation models. This approach exploits a collaboration mechanism with multiple pretrained foundation models to enhance generalization in the OpenSDI context, moving beyond traditional training by synergizing multiple pretrained models through prompting and attending strategies. Building on this scheme, we introduce MaskCLIP, an SPM-based model that aligns Contrastive Language-Image Pre-Training (CLIP) with Masked Autoencoder (MAE). Extensive evaluations on OpenSDID show that MaskCLIP significantly outperforms current state-of-the-art methods for the OpenSDI challenge, achieving remarkable relative improvements of 14.23% in IoU (14.11% in F1) and 2.05% in accuracy (2.38% in F1) compared to the second-best model in localization and detection tasks, respectively. Our dataset and code are available at https://github.com/iamwangyabin/OpenSDI.
☆ Show or Tell? Effectively prompting Vision-Language Models for semantic segmentation
Large Vision-Language Models (VLMs) are increasingly being regarded as foundation models that can be instructed to solve diverse tasks by prompting, without task-specific training. We examine the seemingly obvious question: how to effectively prompt VLMs for semantic segmentation. To that end, we systematically evaluate the segmentation performance of several recent models guided by either text or visual prompts on the out-of-distribution MESS dataset collection. We introduce a scalable prompting scheme, few-shot prompted semantic segmentation, inspired by open-vocabulary segmentation and few-shot learning. It turns out that VLMs lag far behind specialist models trained for a specific segmentation task, by about 30% on average on the Intersection-over-Union metric. Moreover, we find that text prompts and visual prompts are complementary: each one of the two modes fails on many examples that the other one can solve. Our analysis suggests that being able to anticipate the most effective prompt modality can lead to a 11% improvement in performance. Motivated by our findings, we propose PromptMatcher, a remarkably simple training-free baseline that combines both text and visual prompts, achieving state-of-the-art results outperforming the best text-prompted VLM by 2.5%, and the top visual-prompted VLM by 3.5% on few-shot prompted semantic segmentation.
☆ Burst Image Super-Resolution with Mamba
Burst image super-resolution (BISR) aims to enhance the resolution of a keyframe by leveraging information from multiple low-resolution images captured in quick succession. In the deep learning era, BISR methods have evolved from fully convolutional networks to transformer-based architectures, which, despite their effectiveness, suffer from the quadratic complexity of self-attention. We see Mamba as the next natural step in the evolution of this field, offering a comparable global receptive field and selective information routing with only linear time complexity. In this work, we introduce BurstMamba, a Mamba-based architecture for BISR. Our approach decouples the task into two specialized branches: a spatial module for keyframe super-resolution and a temporal module for subpixel prior extraction, striking a balance between computational efficiency and burst information integration. To further enhance burst processing with Mamba, we propose two novel strategies: (i) optical flow-based serialization, which aligns burst sequences only during state updates to preserve subpixel details, and (ii) a wavelet-based reparameterization of the state-space update rules, prioritizing high-frequency features for improved burst-to-keyframe information passing. Our framework achieves SOTA performance on public benchmarks of SyntheticSR, RealBSR-RGB, and RealBSR-RAW.
☆ DynOPETs: A Versatile Benchmark for Dynamic Object Pose Estimation and Tracking in Moving Camera Scenarios
In the realm of object pose estimation, scenarios involving both dynamic objects and moving cameras are prevalent. However, the scarcity of corresponding real-world datasets significantly hinders the development and evaluation of robust pose estimation models. This is largely attributed to the inherent challenges in accurately annotating object poses in dynamic scenes captured by moving cameras. To bridge this gap, this paper presents a novel dataset DynOPETs and a dedicated data acquisition and annotation pipeline tailored for object pose estimation and tracking in such unconstrained environments. Our efficient annotation method innovatively integrates pose estimation and pose tracking techniques to generate pseudo-labels, which are subsequently refined through pose graph optimization. The resulting dataset offers accurate pose annotations for dynamic objects observed from moving cameras. To validate the effectiveness and value of our dataset, we perform comprehensive evaluations using 18 state-of-the-art methods, demonstrating its potential to accelerate research in this challenging domain. The dataset will be made publicly available to facilitate further exploration and advancement in the field.
☆ Exploring Hallucination of Large Multimodal Models in Video Understanding: Benchmark, Analysis and Mitigation
The hallucination of large multimodal models (LMMs), providing responses that appear correct but are actually incorrect, limits their reliability and applicability. This paper aims to study the hallucination problem of LMMs in video modality, which is dynamic and more challenging compared to static modalities like images and text. From this motivation, we first present a comprehensive benchmark termed HAVEN for evaluating hallucinations of LMMs in video understanding tasks. It is built upon three dimensions, i.e., hallucination causes, hallucination aspects, and question formats, resulting in 6K questions. Then, we quantitatively study 7 influential factors on hallucinations, e.g., duration time of videos, model sizes, and model reasoning, via experiments of 16 LMMs on the presented benchmark. In addition, inspired by recent thinking models like OpenAI o1, we propose a video-thinking model to mitigate the hallucinations of LMMs via supervised reasoning fine-tuning (SRFT) and direct preference optimization (TDPO)-- where SRFT enhances reasoning capabilities while TDPO reduces hallucinations in the thinking process. Extensive experiments and analyses demonstrate the effectiveness. Remarkably, it improves the baseline by 7.65% in accuracy on hallucination evaluation and reduces the bias score by 4.5%. The code and data are public at https://github.com/Hongcheng-Gao/HAVEN.
☆ Single Shot AI-assisted quantification of KI-67 proliferation index in breast cancer
Reliable quantification of Ki-67, a key proliferation marker in breast cancer, is essential for molecular subtyping and informed treatment planning. Conventional approaches, including visual estimation and manual counting, suffer from interobserver variability and limited reproducibility. This study introduces an AI-assisted method using the YOLOv8 object detection framework for automated Ki-67 scoring. High-resolution digital images (40x magnification) of immunohistochemically stained tumor sections were captured from Ki-67 hotspot regions and manually annotated by a domain expert to distinguish Ki-67-positive and negative tumor cells. The dataset was augmented and divided into training (80%), validation (10%), and testing (10%) subsets. Among the YOLOv8 variants tested, the Medium model achieved the highest performance, with a mean Average Precision at 50% Intersection over Union (mAP50) exceeding 85% for Ki-67-positive cells. The proposed approach offers an efficient, scalable, and objective alternative to conventional scoring methods, supporting greater consistency in Ki-67 evaluation. Future directions include developing user-friendly clinical interfaces and expanding to multi-institutional datasets to enhance generalizability and facilitate broader adoption in diagnostic practice.
☆ GIViC: Generative Implicit Video Compression
While video compression based on implicit neural representations (INRs) has recently demonstrated great potential, existing INR-based video codecs still cannot achieve state-of-the-art (SOTA) performance compared to their conventional or autoencoder-based counterparts given the same coding configuration. In this context, we propose a Generative Implicit Video Compression framework, GIViC, aiming at advancing the performance limits of this type of coding methods. GIViC is inspired by the characteristics that INRs share with large language and diffusion models in exploiting long-term dependencies. Through the newly designed implicit diffusion process, GIViC performs diffusive sampling across coarse-to-fine spatiotemporal decompositions, gradually progressing from coarser-grained full-sequence diffusion to finer-grained per-token diffusion. A novel Hierarchical Gated Linear Attention-based transformer (HGLA), is also integrated into the framework, which dual-factorizes global dependency modeling along scale and sequential axes. The proposed GIViC model has been benchmarked against SOTA conventional and neural codecs using a Random Access (RA) configuration (YUV 4:2:0, GOPSize=32), and yields BD-rate savings of 15.94%, 22.46% and 8.52% over VVC VTM, DCVC-FM and NVRC, respectively. As far as we are aware, GIViC is the first INR-based video codec that outperforms VTM based on the RA coding configuration. The source code will be made available.
☆ SACB-Net: Spatial-awareness Convolutions for Medical Image Registration CVPR 2025
Deep learning-based image registration methods have shown state-of-the-art performance and rapid inference speeds. Despite these advances, many existing approaches fall short in capturing spatially varying information in non-local regions of feature maps due to the reliance on spatially-shared convolution kernels. This limitation leads to suboptimal estimation of deformation fields. In this paper, we propose a 3D Spatial-Awareness Convolution Block (SACB) to enhance the spatial information within feature representations. Our SACB estimates the spatial clusters within feature maps by leveraging feature similarity and subsequently parameterizes the adaptive convolution kernels across diverse regions. This adaptive mechanism generates the convolution kernels (weights and biases) tailored to spatial variations, thereby enabling the network to effectively capture spatially varying information. Building on SACB, we introduce a pyramid flow estimator (named SACB-Net) that integrates SACBs to facilitate multi-scale flow composition, particularly addressing large deformations. Experimental results on the brain IXI and LPBA datasets as well as Abdomen CT datasets demonstrate the effectiveness of SACB and the superiority of SACB-Net over the state-of-the-art learning-based registration methods. The code is available at https://github.com/x-xc/SACB_Net .
comment: CVPR 2025
Prompt-Guided Dual-Path UNet with Mamba for Medical Image Segmentation
Convolutional neural networks (CNNs) and transformers are widely employed in constructing UNet architectures for medical image segmentation tasks. However, CNNs struggle to model long-range dependencies, while transformers suffer from quadratic computational complexity. Recently, Mamba, a type of State Space Models, has gained attention for its exceptional ability to model long-range interactions while maintaining linear computational complexity. Despite the emergence of several Mamba-based methods, they still present the following limitations: first, their network designs generally lack perceptual capabilities for the original input data; second, they primarily focus on capturing global information, while often neglecting local details. To address these challenges, we propose a prompt-guided CNN-Mamba dual-path UNet, termed PGM-UNet, for medical image segmentation. Specifically, we introduce a prompt-guided residual Mamba module that adaptively extracts dynamic visual prompts from the original input data, effectively guiding Mamba in capturing global information. Additionally, we design a local-global information fusion network, comprising a local information extraction module, a prompt-guided residual Mamba module, and a multi-focus attention fusion module, which effectively integrates local and global information. Furthermore, inspired by Kolmogorov-Arnold Networks (KANs), we develop a multi-scale information extraction module to capture richer contextual information without altering the resolution. We conduct extensive experiments on the ISIC-2017, ISIC-2018, DIAS, and DRIVE. The results demonstrate that the proposed method significantly outperforms state-of-the-art approaches in multiple medical image segmentation tasks.
Video Anomaly Detection with Contours - A Study
In Pose-based Video Anomaly Detection prior art is rooted on the assumption that abnormal events can be mostly regarded as a result of uncommon human behavior. Opposed to utilizing skeleton representations of humans, however, we investigate the potential of learning recurrent motion patterns of normal human behavior using 2D contours. Keeping all advantages of pose-based methods, such as increased object anonymization, the shift from human skeletons to contours is hypothesized to leave the opportunity to cover more object categories open for future research. We propose formulating the problem as a regression and a classification task, and additionally explore two distinct data representation techniques for contours. To further reduce the computational complexity of Pose-based Video Anomaly Detection solutions, all methods in this study are based on shallow Neural Networks from the field of Deep Learning, and evaluated on the three most prominent benchmark datasets within Video Anomaly Detection and their human-related counterparts, totaling six datasets. Our results indicate that this novel perspective on Pose-based Video Anomaly Detection marks a promising direction for future research.
☆ SINR: Sparsity Driven Compressed Implicit Neural Representations
Implicit Neural Representations (INRs) are increasingly recognized as a versatile data modality for representing discretized signals, offering benefits such as infinite query resolution and reduced storage requirements. Existing signal compression approaches for INRs typically employ one of two strategies: 1. direct quantization with entropy coding of the trained INR; 2. deriving a latent code on top of the INR through a learnable transformation. Thus, their performance is heavily dependent on the quantization and entropy coding schemes employed. In this paper, we introduce SINR, an innovative compression algorithm that leverages the patterns in the vector spaces formed by weights of INRs. We compress these vector spaces using a high-dimensional sparse code within a dictionary. Further analysis reveals that the atoms of the dictionary used to generate the sparse code do not need to be learned or transmitted to successfully recover the INR weights. We demonstrate that the proposed approach can be integrated with any existing INR-based signal compression technique. Our results indicate that SINR achieves substantial reductions in storage requirements for INRs across various configurations, outperforming conventional INR-based compression baselines. Furthermore, SINR maintains high-quality decoding across diverse data modalities, including images, occupancy fields, and Neural Radiance Fields.
☆ Improved tissue sodium concentration quantification in breast cancer by reducing partial volume effects: a preliminary study
Introduction: In sodium (23Na) MRI, partial volume effects (PVE) are one of the most common causes of errors in the quantification of tissue sodium concentration (TSC) in vivo. Advanced image reconstruction algorithms, such as compressed sensing (CS), have been shown to potentially reduce PVE. Therefore, we investigated the feasibility of CS-based methods for image quality and TSC quantification accuracy improvement in patients with breast cancer (BC). Subjects and Methods: Three healthy participants and 12 female participants with BC were examined on a 7T MRI scanner in this study. We reconstructed 23Na-MRI images using the weighted total variation (wTV) and directional total variation (dTV), anatomically guided total variation (AG-TV), and adaptive combine (ADC) reconstruction and performed image quality assessment. We evaluated agreement in tumor volumes delineated on sodium data using the Dice score and performed TSC quantification for different image reconstruction approaches. Results: All methods provided sodium images of the breast with good quality. The mean Dice scores for wTV, dTV, and AG-TV were 65%, 72%, and 75%, respectively. In the breast tumors, average TSC values were 83.0, 72.0, 80.0, and 84.0 mmol/L, respectively. There was a significant difference between dTV and wTV (p<0.001), as well as between dTV and AG-TV (p<0.001) and dTV and ADC algorithm (p<0.001). Conclusion: The results of this study showed that there are differences in tumor appearance and TSC estimations that might be depending on the type of image reconstruction and parameters used, most likely due to differences in their robustness in reducing PVE.
☆ Dance Like a Chicken: Low-Rank Stylization for Human Motion Diffusion
Text-to-motion generative models span a wide range of 3D human actions but struggle with nuanced stylistic attributes such as a "Chicken" style. Due to the scarcity of style-specific data, existing approaches pull the generative prior towards a reference style, which often results in out-of-distribution low quality generations. In this work, we introduce LoRA-MDM, a lightweight framework for motion stylization that generalizes to complex actions while maintaining editability. Our key insight is that adapting the generative prior to include the style, while preserving its overall distribution, is more effective than modifying each individual motion during generation. Building on this idea, LoRA-MDM learns to adapt the prior to include the reference style using only a few samples. The style can then be used in the context of different textual prompts for generation. The low-rank adaptation shifts the motion manifold in a semantically meaningful way, enabling realistic style infusion even for actions not present in the reference samples. Moreover, preserving the distribution structure enables advanced operations such as style blending and motion editing. We compare LoRA-MDM to state-of-the-art stylized motion generation methods and demonstrate a favorable balance between text fidelity and style consistency.
comment: Project page at https://haimsaw.github.io/LoRA-MDM/
☆ Practical Fine-Tuning of Autoregressive Models on Limited Handwritten Texts ICDAR2025
A common use case for OCR applications involves users uploading documents and progressively correcting automatic recognition to obtain the final transcript. This correction phase presents an opportunity for progressive adaptation of the OCR model, making it crucial to adapt early, while ensuring stability and reliability. We demonstrate that state-of-the-art transformer-based models can effectively support this adaptation, gradually reducing the annotator's workload. Our results show that fine-tuning can reliably start with just 16 lines, yielding a 10% relative improvement in CER, and scale up to 40% with 256 lines. We further investigate the impact of model components, clarifying the roles of the encoder and decoder in the fine-tuning process. To guide adaptation, we propose reliable stopping criteria, considering both direct approaches and global trend analysis. Additionally, we show that OCR models can be leveraged to cut annotation costs by half through confidence-based selection of informative lines, achieving the same performance with fewer annotations.
comment: Submitted to ICDAR2025 conference
☆ Tiling artifacts and trade-offs of feature normalization in the segmentation of large biological images
Segmentation of very large images is a common problem in microscopy, medical imaging or remote sensing. The problem is usually addressed by sliding window inference, which can theoretically lead to seamlessly stitched predictions. However, in practice many of the popular pipelines still suffer from tiling artifacts. We investigate the root cause of these issues and show that they stem from the normalization layers within the neural networks. We propose indicators to detect normalization issues and further explore the trade-offs between artifact-free and high-quality predictions, using three diverse microscopy datasets as examples. Finally, we propose to use BatchRenorm as the most suitable normalization strategy, which effectively removes tiling artifacts and enhances transfer performance, thereby improving the reusability of trained networks for new datasets.
☆ Scene-agnostic Pose Regression for Visual Localization CVPR 2025
Absolute Pose Regression (APR) predicts 6D camera poses but lacks the adaptability to unknown environments without retraining, while Relative Pose Regression (RPR) generalizes better yet requires a large image retrieval database. Visual Odometry (VO) generalizes well in unseen environments but suffers from accumulated error in open trajectories. To address this dilemma, we introduce a new task, Scene-agnostic Pose Regression (SPR), which can achieve accurate pose regression in a flexible way while eliminating the need for retraining or databases. To benchmark SPR, we created a large-scale dataset, 360SPR, with over 200K photorealistic panoramas, 3.6M pinhole images and camera poses in 270 scenes at three different sensor heights. Furthermore, a SPR-Mamba model is initially proposed to address SPR in a dual-branch manner. Extensive experiments and studies demonstrate the effectiveness of our SPR paradigm, dataset, and model. In the unknown scenes of both 360SPR and 360Loc datasets, our method consistently outperforms APR, RPR and VO. The dataset and code are available at https://junweizheng93.github.io/publications/SPR/SPR.html.
comment: Accepted by CVPR 2025. Project page: https://junweizheng93.github.io/publications/SPR/SPR.html
☆ One Framework to Rule Them All: Unifying RL-Based and RL-Free Methods in RLHF
In this article, we primarily examine a variety of RL-based and RL-free methods designed to address Reinforcement Learning from Human Feedback (RLHF) and Large Reasoning Models (LRMs). We begin with a concise overview of the typical steps involved in RLHF and LRMs. Next, we reinterpret several RL-based and RL-free algorithms through the perspective of neural structured bandit prediction, providing a clear conceptual framework that uncovers a deeper connection between these seemingly distinct approaches. Following this, we briefly review some core principles of reinforcement learning, drawing attention to an often-overlooked aspect in existing RLHF studies. This leads to a detailed derivation of the standard RLHF objective within a full RL context, demonstrating its equivalence to neural structured bandit prediction. Finally, by reinvestigating the principles behind Proximal Policy Optimization (PPO), we pinpoint areas needing adjustment, which culminates in the introduction of the Generalized Reinforce Optimization (GRO) framework, seamlessly integrating RL-based and RL-free methods in RLHF. We look forward to the community's efforts to empirically validate GRO and invite constructive feedback.
☆ RoboFlamingo-Plus: Fusion of Depth and RGB Perception with Vision-Language Models for Enhanced Robotic Manipulation
As robotic technologies advancing towards more complex multimodal interactions and manipulation tasks, the integration of advanced Vision-Language Models (VLMs) has become a key driver in the field. Despite progress with current methods, challenges persist in fusing depth and RGB information within 3D environments and executing tasks guided by linguistic instructions. In response to these challenges, we have enhanced the existing RoboFlamingo framework by introducing RoboFlamingo-Plus, which incorporates depth data into VLMs to significantly improve robotic manipulation performance. Our research achieves a nuanced fusion of RGB and depth information by integrating a pre-trained Vision Transformer (ViT) with a resampling technique, closely aligning this combined data with linguistic cues for superior multimodal understanding. The novelty of RoboFlamingo-Plus lies in its adaptation of inputs for depth data processing, leveraging a pre-trained resampler for depth feature extraction, and employing cross-attention mechanisms for optimal feature integration. These improvements allow RoboFlamingo-Plus to not only deeply understand 3D environments but also easily perform complex, language-guided tasks in challenging settings. Experimental results show that RoboFlamingo-Plus boosts robotic manipulation by 10-20% over current methods, marking a significant advancement. Codes and model weights are public at RoboFlamingo-Plus.
☆ Improved Alignment of Modalities in Large Vision Language Models
Recent advancements in vision-language models have achieved remarkable results in making language models understand vision inputs. However, a unified approach to align these models across diverse tasks such as image captioning and visual question answering remains a challenge. Existing methods either require very big language models or very big datasets which is not efficient in utilizing existing models. This paper addresses this gap and devises a training strategy of auto-regressive vision-language models, to unify vision-language tasks like image-captioning and visual question answering. We propose four training stages for aligning the vision model with the language model, in other words, the language model is given an ability to process visual inputs. We also devise different attention masks for training transformer-based language models that improve the quality of visual features. Further, we introduce some findings, 1) the attention mask should not be applied on visual inputs, 2) the Language model converges faster on AI- generated data, 3) More work should be done in the alignment stage during the pre-training of the model, 4) the model can easily adapt to any downstream tasks like visual question answering on healthcare datasets like PathVQA. After training the model for one epoch for all the stages, it outperforms large models like VILA-13 billion models on common benchmarks like CIDEr scores on COCO and Flickr30k datasets and achieves very close scores to GIT-2 on the same dataset despite being a much smaller model trained on a much smaller dataset. All of the training is done using best practices available like multi- GPU parallel training, lower-precision training with 16-bit float numbers, faster attention (SDPA), and gradient accumulation, and completed the training within 12 hours.
☆ Single-Step Latent Consistency Model for Remote Sensing Image Super-Resolution
Recent advancements in diffusion models (DMs) have greatly advanced remote sensing image super-resolution (RSISR). However, their iterative sampling processes often result in slow inference speeds, limiting their application in real-time tasks. To address this challenge, we propose the latent consistency model for super-resolution (LCMSR), a novel single-step diffusion approach designed to enhance both efficiency and visual quality in RSISR tasks. Our proposal is structured into two distinct stages. In the first stage, we pretrain a residual autoencoder to encode the differential information between high-resolution (HR) and low-resolution (LR) images, transitioning the diffusion process into a latent space to reduce computational costs. The second stage focuses on consistency diffusion learning, which aims to learn the distribution of residual encodings in the latent space, conditioned on LR images. The consistency constraint enforces that predictions at any two timesteps along the reverse diffusion trajectory remain consistent, enabling direct mapping from noise to data. As a result, the proposed LCMSR reduces the iterative steps of traditional diffusion models from 50-1000 or more to just a single step, significantly improving efficiency. Experimental results demonstrate that LCMSR effectively balances efficiency and performance, achieving inference times comparable to non-diffusion models while maintaining high-quality output.
☆ Adaptive Weighted Parameter Fusion with CLIP for Class-Incremental Learning ICME2025
Class-incremental Learning (CIL) enables the model to incrementally absorb knowledge from new classes and build a generic classifier across all previously encountered classes. When the model optimizes with new classes, the knowledge of previous classes is inevitably erased, leading to catastrophic forgetting. Addressing this challenge requires making a trade-off between retaining old knowledge and accommodating new information. However, this balancing process often requires sacrificing some information, which can lead to a partial loss in the model's ability to discriminate between classes. To tackle this issue, we design the adaptive weighted parameter fusion with Contrastive Language-Image Pre-training (CLIP), which not only takes into account the variability of the data distribution of different tasks, but also retains all the effective information of the parameter matrix to the greatest extent. In addition, we introduce a balance factor that can balance the data distribution alignment and distinguishability of adjacent tasks. Experimental results on several traditional benchmarks validate the superiority of the proposed method.
comment: Accepted by ICME2025
☆ Pose-Based Fall Detection System: Efficient Monitoring on Standard CPUs
Falls among elderly residents in assisted living homes pose significant health risks, often leading to injuries and a decreased quality of life. Current fall detection solutions typically rely on sensor-based systems that require dedicated hardware, or on video-based models that demand high computational resources and GPUs for real-time processing. In contrast, this paper presents a robust fall detection system that does not require any additional sensors or high-powered hardware. The system uses pose estimation techniques, combined with threshold-based analysis and a voting mechanism, to effectively distinguish between fall and non-fall activities. For pose detection, we leverage MediaPipe, a lightweight and efficient framework that enables real-time processing on standard CPUs with minimal computational overhead. By analyzing motion, body position, and key pose points, the system processes pose features with a 20-frame buffer, minimizing false positives and maintaining high accuracy even in real-world settings. This unobtrusive, resource-efficient approach provides a practical solution for enhancing resident safety in old age homes, without the need for expensive sensors or high-end computational resources.
comment: 4 Pages, 2 figures, 2 code block, 1 flow chart
☆ TFIC: End-to-End Text-Focused Image Compression for Coding for Machines
Traditional image compression methods aim to faithfully reconstruct images for human perception. In contrast, Coding for Machines focuses on compressing images to preserve information relevant to a specific machine task. In this paper, we present an image compression system designed to retain text-specific features for subsequent Optical Character Recognition (OCR). Our encoding process requires half the time needed by the OCR module, making it especially suitable for devices with limited computational capacity. In scenarios where on-device OCR is computationally prohibitive, images are compressed and later processed to recover the text content. Experimental results demonstrate that our method achieves significant improvements in text extraction accuracy at low bitrates, even improving over the accuracy of OCR performed on uncompressed images, thus acting as a local pre-processing step.
☆ Exploring Disentangled and Controllable Human Image Synthesis: From End-to-End to Stage-by-Stage
Achieving fine-grained controllability in human image synthesis is a long-standing challenge in computer vision. Existing methods primarily focus on either facial synthesis or near-frontal body generation, with limited ability to simultaneously control key factors such as viewpoint, pose, clothing, and identity in a disentangled manner. In this paper, we introduce a new disentangled and controllable human synthesis task, which explicitly separates and manipulates these four factors within a unified framework. We first develop an end-to-end generative model trained on MVHumanNet for factor disentanglement. However, the domain gap between MVHumanNet and in-the-wild data produce unsatisfacotry results, motivating the exploration of virtual try-on (VTON) dataset as a potential solution. Through experiments, we observe that simply incorporating the VTON dataset as additional data to train the end-to-end model degrades performance, primarily due to the inconsistency in data forms between the two datasets, which disrupts the disentanglement process. To better leverage both datasets, we propose a stage-by-stage framework that decomposes human image generation into three sequential steps: clothed A-pose generation, back-view synthesis, and pose and view control. This structured pipeline enables better dataset utilization at different stages, significantly improving controllability and generalization, especially for in-the-wild scenarios. Extensive experiments demonstrate that our stage-by-stage approach outperforms end-to-end models in both visual fidelity and disentanglement quality, offering a scalable solution for real-world tasks. Additional demos are available on the project page: https://taited.github.io/discohuman-project/.
☆ GenHancer: Imperfect Generative Models are Secretly Strong Vision-Centric Enhancers
The synergy between generative and discriminative models receives growing attention. While discriminative Contrastive Language-Image Pre-Training (CLIP) excels in high-level semantics, it struggles with perceiving fine-grained visual details. Generally, to enhance representations, generative models take CLIP's visual features as conditions for reconstruction. However, the underlying principle remains underexplored. In this work, we empirically found that visually perfect generations are not always optimal for representation enhancement. The essence lies in effectively extracting fine-grained knowledge from generative models while mitigating irrelevant information. To explore critical factors, we delve into three aspects: (1) Conditioning mechanisms: We found that even a small number of local tokens can drastically reduce the difficulty of reconstruction, leading to collapsed training. We thus conclude that utilizing only global visual tokens as conditions is the most effective strategy. (2) Denoising configurations: We observed that end-to-end training introduces extraneous information. To address this, we propose a two-stage training strategy to prioritize learning useful visual knowledge. Additionally, we demonstrate that lightweight denoisers can yield remarkable improvements. (3) Generation paradigms: We explore both continuous and discrete denoisers with desirable outcomes, validating the versatility of our method. Through our in-depth explorations, we have finally arrived at an effective method, namely GenHancer, which consistently outperforms prior arts on the MMVP-VLM benchmark, e.g., 6.0% on OpenAICLIP. The enhanced CLIP can be further plugged into multimodal large language models for better vision-centric performance. All the models and codes are made publicly available.
comment: Project released at: https://mashijie1028.github.io/GenHancer/
☆ TeLL Me what you cant see
During criminal investigations, images of persons of interest directly influence the success of identification procedures. However, law enforcement agencies often face challenges related to the scarcity of high-quality images or their obsolescence, which can affect the accuracy and success of people searching processes. This paper introduces a novel forensic mugshot augmentation framework aimed at addressing these limitations. Our approach enhances the identification probability of individuals by generating additional, high-quality images through customizable data augmentation techniques, while maintaining the biometric integrity and consistency of the original data. Several experimental results show that our method significantly improves identification accuracy and robustness across various forensic scenarios, demonstrating its effectiveness as a trustworthy tool law enforcement applications. Index Terms: Digital Forensics, Person re-identification, Feature extraction, Data augmentation, Visual-Language models.
comment: 16 pages, 58 images
☆ A-MESS: Anchor based Multimodal Embedding with Semantic Synchronization for Multimodal Intent Recognition ICME2025
In the domain of multimodal intent recognition (MIR), the objective is to recognize human intent by integrating a variety of modalities, such as language text, body gestures, and tones. However, existing approaches face difficulties adequately capturing the intrinsic connections between the modalities and overlooking the corresponding semantic representations of intent. To address these limitations, we present the Anchor-based Mul- timodal Embedding with Semantic Synchronization (A-MESS) framework. We first design an Anchor-based Multimodal Embed- ding (A-ME) module that employs an anchor-based embedding fusion mechanism to integrate multimodal inputs. Furthermore, we develop a Semantic Synchronization (SS) strategy with the Triplet Contrastive Learning pipeline, which optimizes the pro- cess by synchronizing multimodal representation with label de- scriptions produced by the large language model. Comprehensive experiments indicate that our A-MESS achieves state-of-the-art and provides substantial insight into multimodal representation and downstream tasks.
comment: Accept by ICME2025
☆ Noisier2Inverse: Self-Supervised Learning for Image Reconstruction with Correlated Noise
We propose Noisier2Inverse, a correction-free self-supervised deep learning approach for general inverse prob- lems. The proposed method learns a reconstruction function without the need for ground truth samples and is ap- plicable in cases where measurement noise is statistically correlated. This includes computed tomography, where detector imperfections or photon scattering create correlated noise patterns, as well as microscopy and seismic imaging, where physical interactions during measurement introduce dependencies in the noise structure. Similar to Noisier2Noise, a key step in our approach is the generation of noisier data from which the reconstruction net- work learns. However, unlike Noisier2Noise, the proposed loss function operates in measurement space and is trained to recover an extrapolated image instead of the original noisy one. This eliminates the need for an extrap- olation step during inference, which would otherwise suffer from ill-posedness. We numerically demonstrate that our method clearly outperforms previous self-supervised approaches that account for correlated noise.
☆ AccVideo: Accelerating Video Diffusion Model with Synthetic Dataset
Diffusion models have achieved remarkable progress in the field of video generation. However, their iterative denoising nature requires a large number of inference steps to generate a video, which is slow and computationally expensive. In this paper, we begin with a detailed analysis of the challenges present in existing diffusion distillation methods and propose a novel efficient method, namely AccVideo, to reduce the inference steps for accelerating video diffusion models with synthetic dataset. We leverage the pretrained video diffusion model to generate multiple valid denoising trajectories as our synthetic dataset, which eliminates the use of useless data points during distillation. Based on the synthetic dataset, we design a trajectory-based few-step guidance that utilizes key data points from the denoising trajectories to learn the noise-to-video mapping, enabling video generation in fewer steps. Furthermore, since the synthetic dataset captures the data distribution at each diffusion timestep, we introduce an adversarial training strategy to align the output distribution of the student model with that of our synthetic dataset, thereby enhancing the video quality. Extensive experiments demonstrate that our model achieves 8.5x improvements in generation speed compared to the teacher model while maintaining comparable performance. Compared to previous accelerating methods, our approach is capable of generating videos with higher quality and resolution, i.e., 5-seconds, 720x1280, 24fps.
comment: Project Page: https://aejion.github.io/accvideo/
GaussianUDF: Inferring Unsigned Distance Functions through 3D Gaussian Splatting
Reconstructing open surfaces from multi-view images is vital in digitalizing complex objects in daily life. A widely used strategy is to learn unsigned distance functions (UDFs) by checking if their appearance conforms to the image observations through neural rendering. However, it is still hard to learn continuous and implicit UDF representations through 3D Gaussians splatting (3DGS) due to the discrete and explicit scene representation, i.e., 3D Gaussians. To resolve this issue, we propose a novel approach to bridge the gap between 3D Gaussians and UDFs. Our key idea is to overfit thin and flat 2D Gaussian planes on surfaces, and then, leverage the self-supervision and gradient-based inference to supervise unsigned distances in both near and far area to surfaces. To this end, we introduce novel constraints and strategies to constrain the learning of 2D Gaussians to pursue more stable optimization and more reliable self-supervision, addressing the challenges brought by complicated gradient field on or near the zero level set of UDFs. We report numerical and visual comparisons with the state-of-the-art on widely used benchmarks and real data to show our advantages in terms of accuracy, efficiency, completeness, and sharpness of reconstructed open surfaces with boundaries. Project page: https://lisj575.github.io/GaussianUDF/
☆ G-DexGrasp: Generalizable Dexterous Grasping Synthesis Via Part-Aware Prior Retrieval and Prior-Assisted Generation
Recent advances in dexterous grasping synthesis have demonstrated significant progress in producing reasonable and plausible grasps for many task purposes. But it remains challenging to generalize to unseen object categories and diverse task instructions. In this paper, we propose G-DexGrasp, a retrieval-augmented generation approach that can produce high-quality dexterous hand configurations for unseen object categories and language-based task instructions. The key is to retrieve generalizable grasping priors, including the fine-grained contact part and the affordance-related distribution of relevant grasping instances, for the following synthesis pipeline. Specifically, the fine-grained contact part and affordance act as generalizable guidance to infer reasonable grasping configurations for unseen objects with a generative model, while the relevant grasping distribution plays as regularization to guarantee the plausibility of synthesized grasps during the subsequent refinement optimization. Our comparison experiments validate the effectiveness of our key designs for generalization and demonstrate the remarkable performance against the existing approaches. Project page: https://g-dexgrasp.github.io/
comment: 11 pages, 5 figures
☆ SparseGS-W: Sparse-View 3D Gaussian Splatting in the Wild with Generative Priors
Synthesizing novel views of large-scale scenes from unconstrained in-the-wild images is an important but challenging task in computer vision. Existing methods, which optimize per-image appearance and transient occlusion through implicit neural networks from dense training views (approximately 1000 images), struggle to perform effectively under sparse input conditions, resulting in noticeable artifacts. To this end, we propose SparseGS-W, a novel framework based on 3D Gaussian Splatting that enables the reconstruction of complex outdoor scenes and handles occlusions and appearance changes with as few as five training images. We leverage geometric priors and constrained diffusion priors to compensate for the lack of multi-view information from extremely sparse input. Specifically, we propose a plug-and-play Constrained Novel-View Enhancement module to iteratively improve the quality of rendered novel views during the Gaussian optimization process. Furthermore, we propose an Occlusion Handling module, which flexibly removes occlusions utilizing the inherent high-quality inpainting capability of constrained diffusion priors. Both modules are capable of extracting appearance features from any user-provided reference image, enabling flexible modeling of illumination-consistent scenes. Extensive experiments on the PhotoTourism and Tanks and Temples datasets demonstrate that SparseGS-W achieves state-of-the-art performance not only in full-reference metrics, but also in commonly used non-reference metrics such as FID, ClipIQA, and MUSIQ.
☆ Towards Robust Time-of-Flight Depth Denoising with Confidence-Aware Diffusion Model
Time-of-Flight (ToF) sensors efficiently capture scene depth, but the nonlinear depth construction procedure often results in extremely large noise variance or even invalid areas. Recent methods based on deep neural networks (DNNs) achieve enhanced ToF denoising accuracy but tend to struggle when presented with severe noise corruption due to limited prior knowledge of ToF data distribution. In this paper, we propose DepthCAD, a novel ToF denoising approach that ensures global structural smoothness by leveraging the rich prior knowledge in Stable Diffusion and maintains local metric accuracy by steering the diffusion process with confidence guidance. To adopt the pretrained image diffusion model to ToF depth denoising, we apply the diffusion on raw ToF correlation measurements with dynamic range normalization before converting to depth maps. Experimental results validate the state-of-the-art performance of the proposed scheme, and the evaluation on real data further verifies its robustness against real-world ToF noise.
☆ COB-GS: Clear Object Boundaries in 3DGS Segmentation Based on Boundary-Adaptive Gaussian Splitting
Accurate object segmentation is crucial for high-quality scene understanding in the 3D vision domain. However, 3D segmentation based on 3D Gaussian Splatting (3DGS) struggles with accurately delineating object boundaries, as Gaussian primitives often span across object edges due to their inherent volume and the lack of semantic guidance during training. In order to tackle these challenges, we introduce Clear Object Boundaries for 3DGS Segmentation (COB-GS), which aims to improve segmentation accuracy by clearly delineating blurry boundaries of interwoven Gaussian primitives within the scene. Unlike existing approaches that remove ambiguous Gaussians and sacrifice visual quality, COB-GS, as a 3DGS refinement method, jointly optimizes semantic and visual information, allowing the two different levels to cooperate with each other effectively. Specifically, for the semantic guidance, we introduce a boundary-adaptive Gaussian splitting technique that leverages semantic gradient statistics to identify and split ambiguous Gaussians, aligning them closely with object boundaries. For the visual optimization, we rectify the degraded suboptimal texture of the 3DGS scene, particularly along the refined boundary structures. Experimental results show that COB-GS substantially improves segmentation accuracy and robustness against inaccurate masks from pre-trained model, yielding clear boundaries while preserving high visual quality. Code is available at https://github.com/ZestfulJX/COB-GS.
☆ Quantifying the Ease of Reproducing Training Data in Unconditional Diffusion Models
Diffusion models, which have been advancing rapidly in recent years, may generate samples that closely resemble the training data. This phenomenon, known as memorization, may lead to copyright issues. In this study, we propose a method to quantify the ease of reproducing training data in unconditional diffusion models. The average of a sample population following the Langevin equation in the reverse diffusion process moves according to a first-order ordinary differential equation (ODE). This ODE establishes a 1-to-1 correspondence between images and their noisy counterparts in the latent space. Since the ODE is reversible and the initial noisy images are sampled randomly, the volume of an image's projected area represents the probability of generating those images. We examined the ODE, which projects images to latent space, and succeeded in quantifying the ease of reproducing training data by measuring the volume growth rate in this process. Given the relatively low computational complexity of this method, it allows us to enhance the quality of training data by detecting and modifying the easily memorized training samples.
☆ ASP-VMUNet: Atrous Shifted Parallel Vision Mamba U-Net for Skin Lesion Segmentation
Skin lesion segmentation is a critical challenge in computer vision, and it is essential to separate pathological features from healthy skin for diagnostics accurately. Traditional Convolutional Neural Networks (CNNs) are limited by narrow receptive fields, and Transformers face significant computational burdens. This paper presents a novel skin lesion segmentation framework, the Atrous Shifted Parallel Vision Mamba UNet (ASP-VMUNet), which integrates the efficient and scalable Mamba architecture to overcome limitations in traditional CNNs and computationally demanding Transformers. The framework introduces an atrous scan technique that minimizes background interference and expands the receptive field, enhancing Mamba's scanning capabilities. Additionally, the inclusion of a Parallel Vision Mamba (PVM) layer and a shift round operation optimizes feature segmentation and fosters rich inter-segment information exchange. A supplementary CNN branch with a Selective-Kernel (SK) Block further refines the segmentation by blending local and global contextual information. Tested on four benchmark datasets (ISIC16/17/18 and PH2), ASP-VMUNet demonstrates superior performance in skin lesion segmentation, validated by comprehensive ablation studies. This approach not only advances medical image segmentation but also highlights the benefits of hybrid architectures in medical imaging technology. Our code is available at https://github.com/BaoBao0926/ASP-VMUNet/tree/main.
☆ EmoHead: Emotional Talking Head via Manipulating Semantic Expression Parameters
Generating emotion-specific talking head videos from audio input is an important and complex challenge for human-machine interaction. However, emotion is highly abstract concept with ambiguous boundaries, and it necessitates disentangled expression parameters to generate emotionally expressive talking head videos. In this work, we present EmoHead to synthesize talking head videos via semantic expression parameters. To predict expression parameter for arbitrary audio input, we apply an audio-expression module that can be specified by an emotion tag. This module aims to enhance correlation from audio input across various emotions. Furthermore, we leverage pre-trained hyperplane to refine facial movements by probing along the vertical direction. Finally, the refined expression parameters regularize neural radiance fields and facilitate the emotion-consistent generation of talking head videos. Experimental results demonstrate that semantic expression parameters lead to better reconstruction quality and controllability.
☆ A Prototype-Guided Coarse Annotations Refining Approach for Whole Slide Images
The fine-grained annotations in whole slide images (WSIs) show the boundaries of various pathological regions. However, generating such detailed annotation is often costly, whereas the coarse annotations are relatively simpler to produce. Existing methods for refining coarse annotations often rely on extensive training samples or clean datasets, and fail to capture both intra-slide and inter-slide latent sematic patterns, limiting their precision. In this paper, we propose a prototype-guided approach. Specifically, we introduce a local-to-global approach to construct non-redundant representative prototypes by jointly modeling intra-slide local semantics and inter-slide contextual relationships. Then a prototype-guided pseudo-labeling module is proposed for refining coarse annotations. Finally, we employ dynamic data sampling and re-finetuning strategy to train a patch classifier. Extensive experiments on three publicly available WSI datasets, covering lymph, liver, and colorectal cancers, demonstrate that our method significantly outperforms existing state-of-the-art (SOTA) methods. The code will be available.
comment: 10 pages
☆ M$^2$CD: A Unified MultiModal Framework for Optical-SAR Change Detection with Mixture of Experts and Self-Distillation
Most existing change detection (CD) methods focus on optical images captured at different times, and deep learning (DL) has achieved remarkable success in this domain. However, in extreme scenarios such as disaster response, synthetic aperture radar (SAR), with its active imaging capability, is more suitable for providing post-event data. This introduces new challenges for CD methods, as existing weight-sharing Siamese networks struggle to effectively learn the cross-modal data distribution between optical and SAR images. To address this challenge, we propose a unified MultiModal CD framework, M$^2$CD. We integrate Mixture of Experts (MoE) modules into the backbone to explicitly handle diverse modalities, thereby enhancing the model's ability to learn multimodal data distributions. Additionally, we innovatively propose an Optical-to-SAR guided path (O2SP) and implement self-distillation during training to reduce the feature space discrepancy between different modalities, further alleviating the model's learning burden. We design multiple variants of M$^2$CD based on both CNN and Transformer backbones. Extensive experiments validate the effectiveness of the proposed framework, with the MiT-b1 version of M$^2$CD outperforming all state-of-the-art (SOTA) methods in optical-SAR CD tasks.
comment: 5 pages, 2 figures
☆ Multi-modal 3D Pose and Shape Estimation with Computed Tomography
In perioperative care, precise in-bed 3D patient pose and shape estimation (PSE) can be vital in optimizing patient positioning in preoperative planning, enabling accurate overlay of medical images for augmented reality-based surgical navigation, and mitigating risks of prolonged immobility during recovery. Conventional PSE methods relying on modalities such as RGB-D, infrared, or pressure maps often struggle with occlusions caused by bedding and complex patient positioning, leading to inaccurate estimation that can affect clinical outcomes. To address these challenges, we present the first multi-modal in-bed patient 3D PSE network that fuses detailed geometric features extracted from routinely acquired computed tomography (CT) scans with depth maps (mPSE-CT). mPSE-CT incorporates a shape estimation module that utilizes probabilistic correspondence alignment, a pose estimation module with a refined neural network, and a final parameters mixing module. This multi-modal network robustly reconstructs occluded body regions and enhances the accuracy of the estimated 3D human mesh model. We validated mPSE-CT using proprietary whole-body rigid phantom and volunteer datasets in clinical scenarios. mPSE-CT outperformed the best-performing prior method by 23% and 49.16% in pose and shape estimation respectively, demonstrating its potential for improving clinical outcomes in challenging perioperative environments.
☆ LangBridge: Interpreting Image as a Combination of Language Embeddings
Recent years have witnessed remarkable advances in Large Vision-Language Models (LVLMs), which have achieved human-level performance across various complex vision-language tasks. Following LLaVA's paradigm, mainstream LVLMs typically employ a shallow MLP for visual-language alignment through a two-stage training process: pretraining for cross-modal alignment followed by instruction tuning. While this approach has proven effective, the underlying mechanisms of how MLPs bridge the modality gap remain poorly understood. Although some research has explored how LLMs process transformed visual tokens, few studies have investigated the fundamental alignment mechanism. Furthermore, the MLP adapter requires retraining whenever switching LLM backbones. To address these limitations, we first investigate the working principles of MLP adapters and discover that they learn to project visual embeddings into subspaces spanned by corresponding text embeddings progressively. Based on this insight, we propose LangBridge, a novel adapter that explicitly maps visual tokens to linear combinations of LLM vocabulary embeddings. This innovative design enables pretraining-free adapter transfer across different LLMs while maintaining performance. Our experimental results demonstrate that a LangBridge adapter pre-trained on Qwen2-0.5B can be directly applied to larger models such as LLaMA3-8B or Qwen2.5-14B while maintaining competitive performance. Overall, LangBridge enables interpretable vision-language alignment by grounding visual representations in LLM vocab embedding, while its plug-and-play design ensures efficient reuse across multiple LLMs with nearly no performance degradation. See our project page at https://LangBridge.github.io/
comment: The code and weights will be open-sourced. Project page: https://LangBridge.github.io/
☆ TraF-Align: Trajectory-aware Feature Alignment for Asynchronous Multi-agent Perception CVPR 2025
Cooperative perception presents significant potential for enhancing the sensing capabilities of individual vehicles, however, inter-agent latency remains a critical challenge. Latencies cause misalignments in both spatial and semantic features, complicating the fusion of real-time observations from the ego vehicle with delayed data from others. To address these issues, we propose TraF-Align, a novel framework that learns the flow path of features by predicting the feature-level trajectory of objects from past observations up to the ego vehicle's current time. By generating temporally ordered sampling points along these paths, TraF-Align directs attention from the current-time query to relevant historical features along each trajectory, supporting the reconstruction of current-time features and promoting semantic interaction across multiple frames. This approach corrects spatial misalignment and ensures semantic consistency across agents, effectively compensating for motion and achieving coherent feature fusion. Experiments on two real-world datasets, V2V4Real and DAIR-V2X-Seq, show that TraF-Align sets a new benchmark for asynchronous cooperative perception.
comment: Accepted to CVPR 2025
☆ Exploring Textual Semantics Diversity for Image Transmission in Semantic Communication Systems using Visual Language Model
In recent years, the rapid development of machine learning has brought reforms and challenges to traditional communication systems. Semantic communication has appeared as an effective strategy to effectively extract relevant semantic signals semantic segmentation labels and image features for image transmission. However, the insufficient number of extracted semantic features of images will potentially result in a low reconstruction accuracy, which hinders the practical applications and still remains challenging for solving. In order to fill this gap, this letter proposes a multi-text transmission semantic communication (Multi-SC) system, which uses the visual language model (VLM) to assist in the transmission of image semantic signals. Unlike previous image transmission semantic communication systems, the proposed system divides the image into multiple blocks and extracts multiple text information from the image using a modified large language and visual assistant (LLaVA), and combines semantic segmentation tags with semantic text for image recovery. Simulation results show that the proposed text semantics diversity scheme can significantly improve the reconstruction accuracy compared with related works.
☆ Inference-Time Scaling for Flow Models via Stochastic Generation and Rollover Budget Forcing
We propose an inference-time scaling approach for pretrained flow models. Recently, inference-time scaling has gained significant attention in LLMs and diffusion models, improving sample quality or better aligning outputs with user preferences by leveraging additional computation. For diffusion models, particle sampling has allowed more efficient scaling due to the stochasticity at intermediate denoising steps. On the contrary, while flow models have gained popularity as an alternative to diffusion models--offering faster generation and high-quality outputs in state-of-the-art image and video generative models--efficient inference-time scaling methods used for diffusion models cannot be directly applied due to their deterministic generative process. To enable efficient inference-time scaling for flow models, we propose three key ideas: 1) SDE-based generation, enabling particle sampling in flow models, 2) Interpolant conversion, broadening the search space and enhancing sample diversity, and 3) Rollover Budget Forcing (RBF), an adaptive allocation of computational resources across timesteps to maximize budget utilization. Our experiments show that SDE-based generation, particularly variance-preserving (VP) interpolant-based generation, improves the performance of particle sampling methods for inference-time scaling in flow models. Additionally, we demonstrate that RBF with VP-SDE achieves the best performance, outperforming all previous inference-time scaling approaches.
comment: Project page: https://flow-inference-time-scaling.github.io/
☆ MVPortrait: Text-Guided Motion and Emotion Control for Multi-view Vivid Portrait Animation CVPR 2025
Recent portrait animation methods have made significant strides in generating realistic lip synchronization. However, they often lack explicit control over head movements and facial expressions, and cannot produce videos from multiple viewpoints, resulting in less controllable and expressive animations. Moreover, text-guided portrait animation remains underexplored, despite its user-friendly nature. We present a novel two-stage text-guided framework, MVPortrait (Multi-view Vivid Portrait), to generate expressive multi-view portrait animations that faithfully capture the described motion and emotion. MVPortrait is the first to introduce FLAME as an intermediate representation, effectively embedding facial movements, expressions, and view transformations within its parameter space. In the first stage, we separately train the FLAME motion and emotion diffusion models based on text input. In the second stage, we train a multi-view video generation model conditioned on a reference portrait image and multi-view FLAME rendering sequences from the first stage. Experimental results exhibit that MVPortrait outperforms existing methods in terms of motion and emotion control, as well as view consistency. Furthermore, by leveraging FLAME as a bridge, MVPortrait becomes the first controllable portrait animation framework that is compatible with text, speech, and video as driving signals.
comment: CVPR 2025
☆ Interpretable Generative Models through Post-hoc Concept Bottlenecks CVPR 2025
Concept bottleneck models (CBM) aim to produce inherently interpretable models that rely on human-understandable concepts for their predictions. However, existing approaches to design interpretable generative models based on CBMs are not yet efficient and scalable, as they require expensive generative model training from scratch as well as real images with labor-intensive concept supervision. To address these challenges, we present two novel and low-cost methods to build interpretable generative models through post-hoc techniques and we name our approaches: concept-bottleneck autoencoder (CB-AE) and concept controller (CC). Our proposed approaches enable efficient and scalable training without the need of real data and require only minimal to no concept supervision. Additionally, our methods generalize across modern generative model families including generative adversarial networks and diffusion models. We demonstrate the superior interpretability and steerability of our methods on numerous standard datasets like CelebA, CelebA-HQ, and CUB with large improvements (average ~25%) over the prior work, while being 4-15x faster to train. Finally, a large-scale user study is performed to validate the interpretability and steerability of our methods.
comment: CVPR 2025. Project Page: https://lilywenglab.github.io/posthoc-generative-cbm/
☆ DeClotH: Decomposable 3D Cloth and Human Body Reconstruction from a Single Image CVPR 2025
Most existing methods of 3D clothed human reconstruction from a single image treat the clothed human as a single object without distinguishing between cloth and human body. In this regard, we present DeClotH, which separately reconstructs 3D cloth and human body from a single image. This task remains largely unexplored due to the extreme occlusion between cloth and the human body, making it challenging to infer accurate geometries and textures. Moreover, while recent 3D human reconstruction methods have achieved impressive results using text-to-image diffusion models, directly applying such an approach to this problem often leads to incorrect guidance, particularly in reconstructing 3D cloth. To address these challenges, we propose two core designs in our framework. First, to alleviate the occlusion issue, we leverage 3D template models of cloth and human body as regularizations, which provide strong geometric priors to prevent erroneous reconstruction by the occlusion. Second, we introduce a cloth diffusion model specifically designed to provide contextual information about cloth appearance, thereby enhancing the reconstruction of 3D cloth. Qualitative and quantitative experiments demonstrate that our proposed approach is highly effective in reconstructing both 3D cloth and the human body. More qualitative results are provided at https://hygenie1228.github.io/DeClotH/.
comment: Published at CVPR 2025, 17 pages including the supplementary material
EfficientMT: Efficient Temporal Adaptation for Motion Transfer in Text-to-Video Diffusion Models
The progress on generative models has led to significant advances on text-to-video (T2V) generation, yet the motion controllability of generated videos remains limited. Existing motion transfer methods explored the motion representations of reference videos to guide generation. Nevertheless, these methods typically rely on sample-specific optimization strategy, resulting in high computational burdens. In this paper, we propose \textbf{EfficientMT}, a novel and efficient end-to-end framework for video motion transfer. By leveraging a small set of synthetic paired motion transfer samples, EfficientMT effectively adapts a pretrained T2V model into a general motion transfer framework that can accurately capture and reproduce diverse motion patterns. Specifically, we repurpose the backbone of the T2V model to extract temporal information from reference videos, and further propose a scaler module to distill motion-related information. Subsequently, we introduce a temporal integration mechanism that seamlessly incorporates reference motion features into the video generation process. After training on our self-collected synthetic paired samples, EfficientMT enables general video motion transfer without requiring test-time optimization. Extensive experiments demonstrate that our EfficientMT outperforms existing methods in efficiency while maintaining flexible motion controllability. Our code will be available https://github.com/PrototypeNx/EfficientMT.
☆ VGAT: A Cancer Survival Analysis Framework Transitioning from Generative Visual Question Answering to Genomic Reconstruction
Multimodal learning combining pathology images and genomic sequences enhances cancer survival analysis but faces clinical implementation barriers due to limited access to genomic sequencing in under-resourced regions. To enable survival prediction using only whole-slide images (WSI), we propose the Visual-Genomic Answering-Guided Transformer (VGAT), a framework integrating Visual Question Answering (VQA) techniques for genomic modality reconstruction. By adapting VQA's text feature extraction approach, we derive stable genomic representations that circumvent dimensionality challenges in raw genomic data. Simultaneously, a cluster-based visual prompt module selectively enhances discriminative WSI patches, addressing noise from unfiltered image regions. Evaluated across five TCGA datasets, VGAT outperforms existing WSI-only methods, demonstrating the viability of genomic-informed inference without sequencing. This approach bridges multimodal research and clinical feasibility in resource-constrained settings. The code link is https://github.com/CZZZZZZZZZZZZZZZZZ/VGAT.
☆ ImageSet2Text: Describing Sets of Images through Text
We introduce ImageSet2Text, a novel approach that leverages vision-language foundation models to automatically create natural language descriptions of image sets. Inspired by concept bottleneck models (CBMs) and based on visual-question answering (VQA) chains, ImageSet2Text iteratively extracts key concepts from image subsets, encodes them into a structured graph, and refines insights using an external knowledge graph and CLIP-based validation. This iterative process enhances interpretability and enables accurate and detailed set-level summarization. Through extensive experiments, we evaluate ImageSet2Text's descriptions on accuracy, completeness, readability and overall quality, benchmarking it against existing vision-language models and introducing new datasets for large-scale group image captioning.
☆ Show and Segment: Universal Medical Image Segmentation via In-Context Learning CVPR 2025
Medical image segmentation remains challenging due to the vast diversity of anatomical structures, imaging modalities, and segmentation tasks. While deep learning has made significant advances, current approaches struggle to generalize as they require task-specific training or fine-tuning on unseen classes. We present Iris, a novel In-context Reference Image guided Segmentation framework that enables flexible adaptation to novel tasks through the use of reference examples without fine-tuning. At its core, Iris features a lightweight context task encoding module that distills task-specific information from reference context image-label pairs. This rich context embedding information is used to guide the segmentation of target objects. By decoupling task encoding from inference, Iris supports diverse strategies from one-shot inference and context example ensemble to object-level context example retrieval and in-context tuning. Through comprehensive evaluation across twelve datasets, we demonstrate that Iris performs strongly compared to task-specific models on in-distribution tasks. On seven held-out datasets, Iris shows superior generalization to out-of-distribution data and unseen classes. Further, Iris's task encoding module can automatically discover anatomical relationships across datasets and modalities, offering insights into medical objects without explicit anatomical supervision.
comment: CVPR 2025
☆ From Sparse to Dense: Camera Relocalization with Scene-Specific Detector from Feature Gaussian Splatting CVPR 2025
This paper presents a novel camera relocalization method, STDLoc, which leverages Feature Gaussian as scene representation. STDLoc is a full relocalization pipeline that can achieve accurate relocalization without relying on any pose prior. Unlike previous coarse-to-fine localization methods that require image retrieval first and then feature matching, we propose a novel sparse-to-dense localization paradigm. Based on this scene representation, we introduce a novel matching-oriented Gaussian sampling strategy and a scene-specific detector to achieve efficient and robust initial pose estimation. Furthermore, based on the initial localization results, we align the query feature map to the Gaussian feature field by dense feature matching to enable accurate localization. The experiments on indoor and outdoor datasets show that STDLoc outperforms current state-of-the-art localization methods in terms of localization accuracy and recall.
comment: 15 pages, 12 figures, CVPR 2025
☆ Correcting Deviations from Normality: A Reformulated Diffusion Model for Multi-Class Unsupervised Anomaly Detection
Recent advances in diffusion models have spurred research into their application for Reconstruction-based unsupervised anomaly detection. However, these methods may struggle with maintaining structural integrity and recovering the anomaly-free content of abnormal regions, especially in multi-class scenarios. Furthermore, diffusion models are inherently designed to generate images from pure noise and struggle to selectively alter anomalous regions of an image while preserving normal ones. This leads to potential degradation of normal regions during reconstruction, hampering the effectiveness of anomaly detection. This paper introduces a reformulation of the standard diffusion model geared toward selective region alteration, allowing the accurate identification of anomalies. By modeling anomalies as noise in the latent space, our proposed \textbf{Deviation correction diffusion} (\Ours) model preserves the normal regions and encourages transformations exclusively on anomalous areas. This selective approach enhances the reconstruction quality, facilitating effective unsupervised detection and localization of anomaly regions. Comprehensive evaluations demonstrate the superiority of our method in accurately identifying and localizing anomalies in complex images, with pixel-level AUPRC improvements of 11-14\% over state-of-the-art models on well known anomaly detection datasets. The code is available at https://github.com/farzad-bz/DeCo-Diff
☆ Can Vision-Language Models Answer Face to Face Questions in the Real-World?
AI models have made significant strides in recent years in their ability to describe and answer questions about real-world images. They have also made progress in the ability to converse with users in real-time using audio input. This raises the question: have we reached the point where AI models, connected to a camera and microphone, can converse with users in real-time about scenes and events that are unfolding live in front of the camera? This has been a long-standing goal in AI and is a prerequisite for real-world AI assistants and humanoid robots to interact with humans in everyday situations. In this work, we introduce a new dataset and benchmark, the Qualcomm Interactive Video Dataset (IVD), which allows us to assess the extent to which existing models can support these abilities, and to what degree these capabilities can be instilled through fine-tuning. The dataset is based on a simple question-answering setup, where users ask questions that the system has to answer, in real-time, based on the camera and audio input. We show that existing models fall far behind human performance on this task, and we identify the main sources for the performance gap. However, we also show that for many of the required perceptual skills, fine-tuning on this form of data can significantly reduce this gap.
☆ ST-VLM: Kinematic Instruction Tuning for Spatio-Temporal Reasoning in Vision-Language Models
Spatio-temporal reasoning is essential in understanding real-world environments in various fields, eg, autonomous driving and sports analytics. Recent advances have improved the spatial reasoning ability of Vision-Language Models (VLMs) by introducing large-scale data, but these models still struggle to analyze kinematic elements like traveled distance and speed of moving objects. To bridge this gap, we construct a spatio-temporal reasoning dataset and benchmark involving kinematic instruction tuning, referred to as STKit and STKit-Bench. They consist of real-world videos with 3D annotations, detailing object motion dynamics: traveled distance, speed, movement direction, inter-object distance comparisons, and relative movement direction. To further scale such data construction to videos without 3D labels, we propose an automatic pipeline to generate pseudo-labels using 4D reconstruction in real-world scale. With our kinematic instruction tuning data for spatio-temporal reasoning, we present ST-VLM, a VLM enhanced for spatio-temporal reasoning, which exhibits outstanding performance on STKit-Bench. Furthermore, we show that ST-VLM generalizes robustly across diverse domains and tasks, outperforming baselines on other spatio-temporal benchmarks (eg, ActivityNet, TVQA+). Finally, by integrating learned spatio-temporal reasoning with existing abilities, ST-VLM enables complex multi-step reasoning. Project page: https://ikodoh.github.io/ST-VLM.
☆ Multi-Object Sketch Animation by Scene Decomposition and Motion Planning
Sketch animation, which brings static sketches to life by generating dynamic video sequences, has found widespread applications in GIF design, cartoon production, and daily entertainment. While current sketch animation methods perform well in single-object sketch animation, they struggle in multi-object scenarios. By analyzing their failures, we summarize two challenges of transitioning from single-object to multi-object sketch animation: object-aware motion modeling and complex motion optimization. For multi-object sketch animation, we propose MoSketch based on iterative optimization through Score Distillation Sampling (SDS), without any other data for training. We propose four modules: LLM-based scene decomposition, LLM-based motion planning, motion refinement network and compositional SDS, to tackle the two challenges in a divide-and-conquer strategy. Extensive qualitative and quantitative experiments demonstrate the superiority of our method over existing sketch animation approaches. MoSketch takes a pioneering step towards multi-object sketch animation, opening new avenues for future research and applications. The code will be released.
comment: 16 pages, 17 figures
☆ Stop Walking in Circles! Bailing Out Early in Projected Gradient Descent CVPR
Projected Gradient Descent (PGD) under the $L_\infty$ ball has become one of the defacto methods used in adversarial robustness evaluation for computer vision (CV) due to its reliability and efficacy, making a strong and easy-to-implement iterative baseline. However, PGD is computationally demanding to apply, especially when using thousands of iterations is the current best-practice recommendation to generate an adversarial example for a single image. In this work, we introduce a simple novel method for early termination of PGD based on cycle detection by exploiting the geometry of how PGD is implemented in practice and show that it can produce large speedup factors while providing the \emph{exact} same estimate of model robustness as standard PGD. This method substantially speeds up PGD without sacrificing any attack strength, enabling evaluations of robustness that were previously computationally intractable.
comment: To appear in the 2025 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
☆ BADGR: Bundle Adjustment Diffusion Conditioned by GRadients for Wide-Baseline Floor Plan Reconstruction
Reconstructing precise camera poses and floor plan layouts from wide-baseline RGB panoramas is a difficult and unsolved problem. We introduce BADGR, a novel diffusion model that jointly performs reconstruction and bundle adjustment (BA) to refine poses and layouts from a coarse state, using 1D floor boundary predictions from dozens of images of varying input densities. Unlike a guided diffusion model, BADGR is conditioned on dense per-entity outputs from a single-step Levenberg Marquardt (LM) optimizer and is trained to predict camera and wall positions while minimizing reprojection errors for view-consistency. The objective of layout generation from denoising diffusion process complements BA optimization by providing additional learned layout-structural constraints on top of the co-visible features across images. These constraints help BADGR to make plausible guesses on spatial relations which help constrain pose graph, such as wall adjacency, collinearity, and learn to mitigate errors from dense boundary observations with global contexts. BADGR trains exclusively on 2D floor plans, simplifying data acquisition, enabling robust augmentation, and supporting variety of input densities. Our experiments and analysis validate our method, which significantly outperforms the state-of-the-art pose and floor plan layout reconstruction with different input densities.
☆ Divide-and-Conquer: Dual-Hierarchical Optimization for Semantic 4D Gaussian Spatting ICME 2025
Semantic 4D Gaussians can be used for reconstructing and understanding dynamic scenes, with temporal variations than static scenes. Directly applying static methods to understand dynamic scenes will fail to capture the temporal features. Few works focus on dynamic scene understanding based on Gaussian Splatting, since once the same update strategy is employed for both dynamic and static parts, regardless of the distinction and interaction between Gaussians, significant artifacts and noise appear. We propose Dual-Hierarchical Optimization (DHO), which consists of Hierarchical Gaussian Flow and Hierarchical Gaussian Guidance in a divide-and-conquer manner. The former implements effective division of static and dynamic rendering and features. The latter helps to mitigate the issue of dynamic foreground rendering distortion in textured complex scenes. Extensive experiments show that our method consistently outperforms the baselines on both synthetic and real-world datasets, and supports various downstream tasks. Project Page: https://sweety-yan.github.io/DHO.
comment: ICME 2025
☆ ChA-MAEViT: Unifying Channel-Aware Masked Autoencoders and Multi-Channel Vision Transformers for Improved Cross-Channel Learning
Prior work using Masked Autoencoders (MAEs) typically relies on random patch masking based on the assumption that images have significant redundancies across different channels, allowing for the reconstruction of masked content using cross-channel correlations. However, this assumption does not hold in Multi-Channel Imaging (MCI), where channels may provide complementary information with minimal feature overlap. Thus, these MAEs primarily learn local structures within individual channels from patch reconstruction, failing to fully leverage cross-channel interactions and limiting their MCI effectiveness. In this paper, we present ChA-MAEViT, an MAE-based method that enhances feature learning across MCI channels via four key strategies: (1) dynamic channel-patch masking, which compels the model to reconstruct missing channels in addition to masked patches, thereby enhancing cross-channel dependencies and improving robustness to varying channel configurations; (2) memory tokens, which serve as long-term memory aids to promote information sharing across channels, addressing the challenges of reconstructing structurally diverse channels; (3) hybrid token fusion module, which merges fine-grained patch tokens with a global class token to capture richer representations; and (4) Channel-Aware Decoder, a lightweight decoder utilizes channel tokens to effectively reconstruct image patches. Experiments on satellite and microscopy datasets, CHAMMI, JUMP-CP, and So2Sat, show that ChA-MAEViT significantly outperforms state-of-the-art MCI-ViTs by 3.0-21.5%, highlighting the importance of cross-channel interactions in MCI.
☆ MATT-GS: Masked Attention-based 3DGS for Robot Perception and Object Detection
This paper presents a novel masked attention-based 3D Gaussian Splatting (3DGS) approach to enhance robotic perception and object detection in industrial and smart factory environments. U2-Net is employed for background removal to isolate target objects from raw images, thereby minimizing clutter and ensuring that the model processes only relevant data. Additionally, a Sobel filter-based attention mechanism is integrated into the 3DGS framework to enhance fine details - capturing critical features such as screws, wires, and intricate textures essential for high-precision tasks. We validate our approach using quantitative metrics, including L1 loss, SSIM, PSNR, comparing the performance of the background-removed and attention-incorporated 3DGS model against the ground truth images and the original 3DGS training baseline. The results demonstrate significant improves in visual fidelity and detail preservation, highlighting the effectiveness of our method in enhancing robotic vision for object recognition and manipulation in complex industrial settings.
comment: This work has been submitted to the 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) for possible publication
☆ Wavelet-based Global-Local Interaction Network with Cross-Attention for Multi-View Diabetic Retinopathy Detection ICME
Multi-view diabetic retinopathy (DR) detection has recently emerged as a promising method to address the issue of incomplete lesions faced by single-view DR. However, it is still challenging due to the variable sizes and scattered locations of lesions. Furthermore, existing multi-view DR methods typically merge multiple views without considering the correlations and redundancies of lesion information across them. Therefore, we propose a novel method to overcome the challenges of difficult lesion information learning and inadequate multi-view fusion. Specifically, we introduce a two-branch network to obtain both local lesion features and their global dependencies. The high-frequency component of the wavelet transform is used to exploit lesion edge information, which is then enhanced by global semantic to facilitate difficult lesion learning. Additionally, we present a cross-view fusion module to improve multi-view fusion and reduce redundancy. Experimental results on large public datasets demonstrate the effectiveness of our method. The code is open sourced on https://github.com/HuYongting/WGLIN.
comment: Accepted by IEEE International Conference on Multimedia & Expo (ICME) 2025
☆ Long-Context Autoregressive Video Modeling with Next-Frame Prediction
Long-context autoregressive modeling has significantly advanced language generation, but video generation still struggles to fully utilize extended temporal contexts. To investigate long-context video modeling, we introduce Frame AutoRegressive (FAR), a strong baseline for video autoregressive modeling. Just as language models learn causal dependencies between tokens (i.e., Token AR), FAR models temporal causal dependencies between continuous frames, achieving better convergence than Token AR and video diffusion transformers. Building on FAR, we observe that long-context vision modeling faces challenges due to visual redundancy. Existing RoPE lacks effective temporal decay for remote context and fails to extrapolate well to long video sequences. Additionally, training on long videos is computationally expensive, as vision tokens grow much faster than language tokens. To tackle these issues, we propose balancing locality and long-range dependency. We introduce FlexRoPE, an test-time technique that adds flexible temporal decay to RoPE, enabling extrapolation to 16x longer vision contexts. Furthermore, we propose long short-term context modeling, where a high-resolution short-term context window ensures fine-grained temporal consistency, while an unlimited long-term context window encodes long-range information using fewer tokens. With this approach, we can train on long video sequences with a manageable token context length. We demonstrate that FAR achieves state-of-the-art performance in both short- and long-video generation, providing a simple yet effective baseline for video autoregressive modeling.
comment: Project page at https://farlongctx.github.io/
☆ ImageGen-CoT: Enhancing Text-to-Image In-context Learning with Chain-of-Thought Reasoning
In this work, we study the problem of Text-to-Image In-Context Learning (T2I-ICL). While Unified Multimodal LLMs (MLLMs) have advanced rapidly in recent years, they struggle with contextual reasoning in T2I-ICL scenarios. To address this limitation, we propose a novel framework that incorporates a thought process called ImageGen-CoT prior to image generation. To avoid generating unstructured ineffective reasoning steps, we develop an automatic pipeline to curate a high-quality ImageGen-CoT dataset. We then fine-tune MLLMs using this dataset to enhance their contextual reasoning capabilities. To further enhance performance, we explore test-time scale-up strategies and propose a novel hybrid scaling approach. This approach first generates multiple ImageGen-CoT chains and then produces multiple images for each chain via sampling. Extensive experiments demonstrate the effectiveness of our proposed method. Notably, fine-tuning with the ImageGen-CoT dataset leads to a substantial 80\% performance gain for SEED-X on T2I-ICL tasks. See our project page at https://ImageGen-CoT.github.io/. Code and model weights will be open-sourced.
comment: Project Page: https://ImageGen-CoT.github.io/
☆ LRSCLIP: A Vision-Language Foundation Model for Aligning Remote Sensing Image with Longer Text
This study addresses the technical bottlenecks in handling long text and the "hallucination" issue caused by insufficient short text information in remote sensing vision-language foundation models (VLFM). We propose a novel vision-language foundation model, LRSCLIP, and a multimodal dataset, LRS2M. The main contributions are as follows: (1) By integrating multi-source remote sensing data and adopting a large language model labeling strategy, we construct the LRS2M dataset, which contains 2 million image-text pairs, providing both short and long texts for the first time, thus solving the problem of semantic granularity limitations in existing datasets; (2) The design of the LRSCLIP architecture based on Long-CLIP's KPS module, which extends CLIP's text processing capacity and achieves fine-grained cross-modal feature alignment through a dual-text loss weighting mechanism. Experimental results show that LRSCLIP improves retrieval accuracy by 10\%-20\% over the Long-CLIP baseline in the zero-shot long-text cross-modal retrieval task. For the zero-shot short-text cross-modal retrieval task, LRSCLIP achieves improvements over the current best model, GeoRSCLIP, with increases of 0.17\%, 0.67\%, and 0.92\% in Text to Image R@1, Image to Text R@1, and mR on RSITMD, respectively, and 0.04\%, 2.93\%, and 1.28\% on RSICD. In the zero-shot image classification task (average accuracy=75.75\%) and semantic localization task (Rmi=0.7653), LRSCLIP achieves state-of-the-art performance. These results validate the dual advantages of fine-grained semantic understanding and global feature matching in LRSCLIP. This work provides a new benchmark model and data support for remote sensing multimodal learning. The related code has been open source and is available at https://github.com/MitsuiChen14/LRSCLIP.
comment: 17 pages, 12 figures
☆ A Comprehensive Analysis of Mamba for 3D Volumetric Medical Image Segmentation
Mamba, with its selective State Space Models (SSMs), offers a more computationally efficient solution than Transformers for long-range dependency modeling. However, there is still a debate about its effectiveness in high-resolution 3D medical image segmentation. In this study, we present a comprehensive investigation into Mamba's capabilities in 3D medical image segmentation by tackling three pivotal questions: Can Mamba replace Transformers? Can it elevate multi-scale representation learning? Is complex scanning necessary to unlock its full potential? We evaluate Mamba's performance across three large public benchmarks-AMOS, TotalSegmentator, and BraTS. Our findings reveal that UlikeMamba, a U-shape Mamba-based network, consistently surpasses UlikeTrans, a U-shape Transformer-based network, particularly when enhanced with custom-designed 3D depthwise convolutions, boosting accuracy and computational efficiency. Further, our proposed multi-scale Mamba block demonstrates superior performance in capturing both fine-grained details and global context, especially in complex segmentation tasks, surpassing Transformer-based counterparts. We also critically assess complex scanning strategies, finding that simpler methods often suffice, while our Tri-scan approach delivers notable advantages in the most challenging scenarios. By integrating these advancements, we introduce a new network for 3D medical image segmentation, positioning Mamba as a transformative force that outperforms leading models such as nnUNet, CoTr, and U-Mamba, offering competitive accuracy with superior computational efficiency. This study provides key insights into Mamba's unique advantages, paving the way for more efficient and accurate approaches to 3D medical imaging.
☆ Analyzing the Synthetic-to-Real Domain Gap in 3D Hand Pose Estimation CVPR2025
Recent synthetic 3D human datasets for the face, body, and hands have pushed the limits on photorealism. Face recognition and body pose estimation have achieved state-of-the-art performance using synthetic training data alone, but for the hand, there is still a large synthetic-to-real gap. This paper presents the first systematic study of the synthetic-to-real gap of 3D hand pose estimation. We analyze the gap and identify key components such as the forearm, image frequency statistics, hand pose, and object occlusions. To facilitate our analysis, we propose a data synthesis pipeline to synthesize high-quality data. We demonstrate that synthetic hand data can achieve the same level of accuracy as real data when integrating our identified components, paving the path to use synthetic data alone for hand pose estimation. Code and data are available at: https://github.com/delaprada/HandSynthesis.git.
comment: Accepted to CVPR2025
☆ BIMII-Net: Brain-Inspired Multi-Iterative Interactive Network for RGB-T Road Scene Semantic Segmentation
RGB-T road scene semantic segmentation enhances visual scene understanding in complex environments characterized by inadequate illumination or occlusion by fusing information from RGB and thermal images. Nevertheless, existing RGB-T semantic segmentation models typically depend on simple addition or concatenation strategies or ignore the differences between information at different levels. To address these issues, we proposed a novel RGB-T road scene semantic segmentation network called Brain-Inspired Multi-Iteration Interaction Network (BIMII-Net). First, to meet the requirements of accurate texture and local information extraction in road scenarios like autonomous driving, we proposed a deep continuous-coupled neural network (DCCNN) architecture based on a brain-inspired model. Second, to enhance the interaction and expression capabilities among multi-modal information, we designed a cross explicit attention-enhanced fusion module (CEAEF-Module) in the feature fusion stage of BIMII-Net to effectively integrate features at different levels. Finally, we constructed a complementary interactive multi-layer decoder structure, incorporating the shallow-level feature iteration module (SFI-Module), the deep-level feature iteration module (DFI-Module), and the multi-feature enhancement module (MFE-Module) to collaboratively extract texture details and global skeleton information, with multi-module joint supervision further optimizing the segmentation results. Experimental results demonstrate that BIMII-Net achieves state-of-the-art (SOTA) performance in the brain-inspired computing domain and outperforms most existing RGB-T semantic segmentation methods. It also exhibits strong generalization capabilities on multiple RGB-T datasets, proving the effectiveness of brain-inspired computer models in multi-modal image segmentation tasks.
☆ Fine-grained Textual Inversion Network for Zero-Shot Composed Image Retrieval
Composed Image Retrieval (CIR) allows users to search target images with a multimodal query, comprising a reference image and a modification text that describes the user's modification demand over the reference image. Nevertheless, due to the expensive labor cost of training data annotation, recent researchers have shifted to the challenging task of zero-shot CIR (ZS-CIR), which targets fulfilling CIR without annotated triplets. The pioneer ZS-CIR studies focus on converting the CIR task into a standard text-to-image retrieval task by pre-training a textual inversion network that can map a given image into a single pseudo-word token. Despite their significant progress, their coarse-grained textual inversion may be insufficient to capture the full content of the image accurately. To overcome this issue, in this work, we propose a novel Fine-grained Textual Inversion Network for ZS-CIR, named FTI4CIR. In particular, FTI4CIR comprises two main components: fine-grained pseudo-word token mapping and tri-wise caption-based semantic regularization. The former maps the image into a subject-oriented pseudo-word token and several attribute-oriented pseudo-word tokens to comprehensively express the image in the textual form, while the latter works on jointly aligning the fine-grained pseudo-word tokens to the real-word token embedding space based on a BLIP-generated image caption template. Extensive experiments conducted on three benchmark datasets demonstrate the superiority of our proposed method.
☆ Exploring Semantic Feature Discrimination for Perceptual Image Super-Resolution and Opinion-Unaware No-Reference Image Quality Assessment CVPR2025
Generative Adversarial Networks (GANs) have been widely applied to image super-resolution (SR) to enhance the perceptual quality. However, most existing GAN-based SR methods typically perform coarse-grained discrimination directly on images and ignore the semantic information of images, making it challenging for the super resolution networks (SRN) to learn fine-grained and semantic-related texture details. To alleviate this issue, we propose a semantic feature discrimination method, SFD, for perceptual SR. Specifically, we first design a feature discriminator (Feat-D), to discriminate the pixel-wise middle semantic features from CLIP, aligning the feature distributions of SR images with that of high-quality images. Additionally, we propose a text-guided discrimination method (TG-D) by introducing learnable prompt pairs (LPP) in an adversarial manner to perform discrimination on the more abstract output feature of CLIP, further enhancing the discriminative ability of our method. With both Feat-D and TG-D, our SFD can effectively distinguish between the semantic feature distributions of low-quality and high-quality images, encouraging SRN to generate more realistic and semantic-relevant textures. Furthermore, based on the trained Feat-D and LPP, we propose a novel opinion-unaware no-reference image quality assessment (OU NR-IQA) method, SFD-IQA, greatly improving OU NR-IQA performance without any additional targeted training. Extensive experiments on classical SISR, real-world SISR, and OU NR-IQA tasks demonstrate the effectiveness of our proposed methods.
comment: Accepted to CVPR2025
☆ Adaptive Wavelet Filters as Practical Texture Feature Amplifiers for Parkinson's Disease Screening in OCT
Parkinson's disease (PD) is a prevalent neurodegenerative disorder globally. The eye's retina is an extension of the brain and has great potential in PD screening. Recent studies have suggested that texture features extracted from retinal layers can be adopted as biomarkers for PD diagnosis under optical coherence tomography (OCT) images. Frequency domain learning techniques can enhance the feature representations of deep neural networks (DNNs) by decomposing frequency components involving rich texture features. Additionally, previous works have not exploited texture features for automated PD screening in OCT. Motivated by the above analysis, we propose a novel Adaptive Wavelet Filter (AWF) that serves as the Practical Texture Feature Amplifier to fully leverage the merits of texture features to boost the PD screening performance of DNNs with the aid of frequency domain learning. Specifically, AWF first enhances texture feature representation diversities via channel mixer, then emphasizes informative texture feature representations with the well-designed adaptive wavelet filtering token mixer. By combining the AWFs with the DNN stem, AWFNet is constructed for automated PD screening. Additionally, we introduce a novel Balanced Confidence (BC) Loss by mining the potential of sample-wise predicted probabilities of all classes and class frequency prior, to further boost the PD screening performance and trustworthiness of AWFNet. The extensive experiments manifest the superiority of our AWFNet and BC over state-of-the-art methods in terms of PD screening performance and trustworthiness.
☆ ISPDiffuser: Learning RAW-to-sRGB Mappings with Texture-Aware Diffusion Models and Histogram-Guided Color Consistency AAAI 2025
RAW-to-sRGB mapping, or the simulation of the traditional camera image signal processor (ISP), aims to generate DSLR-quality sRGB images from raw data captured by smartphone sensors. Despite achieving comparable results to sophisticated handcrafted camera ISP solutions, existing learning-based methods still struggle with detail disparity and color distortion. In this paper, we present ISPDiffuser, a diffusion-based decoupled framework that separates the RAW-to-sRGB mapping into detail reconstruction in grayscale space and color consistency mapping from grayscale to sRGB. Specifically, we propose a texture-aware diffusion model that leverages the generative ability of diffusion models to focus on local detail recovery, in which a texture enrichment loss is further proposed to prompt the diffusion model to generate more intricate texture details. Subsequently, we introduce a histogram-guided color consistency module that utilizes color histogram as guidance to learn precise color information for grayscale to sRGB color consistency mapping, with a color consistency loss designed to constrain the learned color information. Extensive experimental results show that the proposed ISPDiffuser outperforms state-of-the-art competitors both quantitatively and visually. The code is available at https://github.com/RenYangSCU/ISPDiffuser.
comment: Accepted by AAAI 2025
☆ Multiscale Feature Importance-based Bit Allocation for End-to-End Feature Coding for Machines
Feature Coding for Machines (FCM) aims to compress intermediate features effectively for remote intelligent analytics, which is crucial for future intelligent visual applications. In this paper, we propose a Multiscale Feature Importance-based Bit Allocation (MFIBA) for end-to-end FCM. First, we find that the importance of features for machine vision tasks varies with the scales, object size, and image instances. Based on this finding, we propose a Multiscale Feature Importance Prediction (MFIP) module to predict the importance weight for each scale of features. Secondly, we propose a task loss-rate model to establish the relationship between the task accuracy losses of using compressed features and the bitrate of encoding these features. Finally, we develop a MFIBA for end-to-end FCM, which is able to assign coding bits of multiscale features more reasonably based on their importance. Experimental results demonstrate that when combined with a retained Efficient Learned Image Compression (ELIC), the proposed MFIBA achieves an average of 38.202% bitrate savings in object detection compared to the anchor ELIC. Moreover, the proposed MFIBA achieves an average of 17.212% and 36.492% feature bitrate savings for instance segmentation and keypoint detection, respectively. When the proposed MFIBA is applied to the LIC-TCM, it achieves an average of 18.103%, 19.866% and 19.597% bit rate savings on three machine vision tasks, respectively, which validates the proposed MFIBA has good generalizability and adaptability to different machine vision tasks and FCM base codecs.
☆ Context-Aware Semantic Segmentation: Enhancing Pixel-Level Understanding with Large Language Models for Advanced Vision Applications
Semantic segmentation has made significant strides in pixel-level image understanding, yet it remains limited in capturing contextual and semantic relationships between objects. Current models, such as CNN and Transformer-based architectures, excel at identifying pixel-level features but fail to distinguish semantically similar objects (e.g., "doctor" vs. "nurse" in a hospital scene) or understand complex contextual scenarios (e.g., differentiating a running child from a regular pedestrian in autonomous driving). To address these limitations, we proposed a novel Context-Aware Semantic Segmentation framework that integrates Large Language Models (LLMs) with state-of-the-art vision backbones. Our hybrid model leverages the Swin Transformer for robust visual feature extraction and GPT-4 for enriching semantic understanding through text embeddings. A Cross-Attention Mechanism is introduced to align vision and language features, enabling the model to reason about context more effectively. Additionally, Graph Neural Networks (GNNs) are employed to model object relationships within the scene, capturing dependencies that are overlooked by traditional models. Experimental results on benchmark datasets (e.g., COCO, Cityscapes) demonstrate that our approach outperforms the existing methods in both pixel-level accuracy (mIoU) and contextual understanding (mAP). This work bridges the gap between vision and language, paving the path for more intelligent and context-aware vision systems in applications including autonomous driving, medical imaging, and robotics.
☆ MARS: Memory-Enhanced Agents with Reflective Self-improvement
Large language models (LLMs) have made significant advances in the field of natural language processing, but they still face challenges such as continuous decision-making, lack of long-term memory, and limited context windows in dynamic environments. To address these issues, this paper proposes an innovative framework Memory-Enhanced Agents with Reflective Self-improvement. The MARS framework comprises three agents: the User, the Assistant, and the Checker. By integrating iterative feedback, reflective mechanisms, and a memory optimization mechanism based on the Ebbinghaus forgetting curve, it significantly enhances the agents capabilities in handling multi-tasking and long-span information.
☆ DWIM: Towards Tool-aware Visual Reasoning via Discrepancy-aware Workflow Generation & Instruct-Masking Tuning
Visual reasoning (VR), which is crucial in many fields for enabling human-like visual understanding, remains highly challenging. Recently, compositional visual reasoning approaches, which leverage the reasoning abilities of large language models (LLMs) with integrated tools to solve problems, have shown promise as more effective strategies than end-to-end VR methods. However, these approaches face limitations, as frozen LLMs lack tool awareness in VR, leading to performance bottlenecks. While leveraging LLMs for reasoning is widely used in other domains, they are not directly applicable to VR due to limited training data, imperfect tools that introduce errors and reduce data collection efficiency in VR, and challenging in fine-tuning on noisy workflows. To address these challenges, we propose DWIM: i) Discrepancy-aware training Workflow generation, which assesses tool usage and extracts more viable workflows for training; and ii) Instruct-Masking fine-tuning, which guides the model to only clone effective actions, enabling the generation of more practical solutions. Our experiments demonstrate that DWIM achieves state-of-the-art performance across various VR tasks, exhibiting strong generalization on multiple widely-used datasets.
☆ Learning Hazing to Dehazing: Towards Realistic Haze Generation for Real-World Image Dehazing CVPR 2025
Existing real-world image dehazing methods primarily attempt to fine-tune pre-trained models or adapt their inference procedures, thus heavily relying on the pre-trained models and associated training data. Moreover, restoring heavily distorted information under dense haze requires generative diffusion models, whose potential in dehazing remains underutilized partly due to their lengthy sampling processes. To address these limitations, we introduce a novel hazing-dehazing pipeline consisting of a Realistic Hazy Image Generation framework (HazeGen) and a Diffusion-based Dehazing framework (DiffDehaze). Specifically, HazeGen harnesses robust generative diffusion priors of real-world hazy images embedded in a pre-trained text-to-image diffusion model. By employing specialized hybrid training and blended sampling strategies, HazeGen produces realistic and diverse hazy images as high-quality training data for DiffDehaze. To alleviate the inefficiency and fidelity concerns associated with diffusion-based methods, DiffDehaze adopts an Accelerated Fidelity-Preserving Sampling process (AccSamp). The core of AccSamp is the Tiled Statistical Alignment Operation (AlignOp), which can provide a clean and faithful dehazing estimate within a small fraction of sampling steps to reduce complexity and enable effective fidelity guidance. Extensive experiments demonstrate the superior dehazing performance and visual quality of our approach over existing methods. The code is available at https://github.com/ruiyi-w/Learning-Hazing-to-Dehazing.
comment: Accepted by CVPR 2025
☆ Adaptive Multi-Order Graph Regularized NMF with Dual Sparsity for Hyperspectral Unmixing
Hyperspectral unmixing (HU) is a critical yet challenging task in remote sensing. However, existing nonnegative matrix factorization (NMF) methods with graph learning mostly focus on first-order or second-order nearest neighbor relationships and usually require manual parameter tuning, which fails to characterize intrinsic data structures. To address the above issues, we propose a novel adaptive multi-order graph regularized NMF method (MOGNMF) with three key features. First, multi-order graph regularization is introduced into the NMF framework to exploit global and local information comprehensively. Second, these parameters associated with the multi-order graph are learned adaptively through a data-driven approach. Third, dual sparsity is embedded to obtain better robustness, i.e., $\ell_{1/2}$-norm on the abundance matrix and $\ell_{2,1}$-norm on the noise matrix. To solve the proposed model, we develop an alternating minimization algorithm whose subproblems have explicit solutions, thus ensuring effectiveness. Experiments on simulated and real hyperspectral data indicate that the proposed method delivers better unmixing results.
☆ $L^2$FMamba: Lightweight Light Field Image Super-Resolution with State Space Model
Transformers bring significantly improved performance to the light field image super-resolution task due to their long-range dependency modeling capability. However, the inherently high computational complexity of their core self-attention mechanism has increasingly hindered their advancement in this task. To address this issue, we first introduce the LF-VSSM block, a novel module inspired by progressive feature extraction, to efficiently capture critical long-range spatial-angular dependencies in light field images. LF-VSSM successively extracts spatial features within sub-aperture images, spatial-angular features between sub-aperture images, and spatial-angular features between light field image pixels. On this basis, we propose a lightweight network, $L^2$FMamba (Lightweight Light Field Mamba), which integrates the LF-VSSM block to leverage light field features for super-resolution tasks while overcoming the computational challenges of Transformer-based approaches. Extensive experiments on multiple light field datasets demonstrate that our method reduces the number of parameters and complexity while achieving superior super-resolution performance with faster inference speed.
comment: This work has been submitted to the IEEE for possible publication
☆ Limited-angle x-ray nano-tomography with machine-learning enabled iterative reconstruction engine
A long-standing challenge in tomography is the 'missing wedge' problem, which arises when the acquisition of projection images within a certain angular range is restricted due to geometrical constraints. This incomplete dataset results in significant artifacts and poor resolution in the reconstructed image. To tackle this challenge, we propose an approach dubbed Perception Fused Iterative Tomography Reconstruction Engine, which integrates a convolutional neural network (CNN) with perceptional knowledge as a smart regularizer into an iterative solving engine. We employ the Alternating Direction Method of Multipliers to optimize the solution in both physics and image domains, thereby achieving a physically coherent and visually enhanced result. We demonstrate the effectiveness of the proposed approach using various experimental datasets obtained with different x-ray microscopy techniques. All show significantly improved reconstruction even with a missing wedge of over 100 degrees - a scenario where conventional methods fail. Notably, it also improves the reconstruction in case of sparse projections, despite the network not being specifically trained for that. This demonstrates the robustness and generality of our method of addressing commonly occurring challenges in 3D x-ray imaging applications for real-world problems.
☆ Beyond Object Categories: Multi-Attribute Reference Understanding for Visual Grounding
Referring expression comprehension (REC) aims at achieving object localization based on natural language descriptions. However, existing REC approaches are constrained by object category descriptions and single-attribute intention descriptions, hindering their application in real-world scenarios. In natural human-robot interactions, users often express their desires through individual states and intentions, accompanied by guiding gestures, rather than detailed object descriptions. To address this challenge, we propose Multi-ref EC, a novel task framework that integrates state descriptions, derived intentions, and embodied gestures to locate target objects. We introduce the State-Intention-Gesture Attributes Reference (SIGAR) dataset, which combines state and intention expressions with embodied references. Through extensive experiments with various baseline models on SIGAR, we demonstrate that properly ordered multi-attribute references contribute to improved localization performance, revealing that single-attribute reference is insufficient for natural human-robot interaction scenarios. Our findings underscore the importance of multi-attribute reference expressions in advancing visual-language understanding.
☆ HoGS: Unified Near and Far Object Reconstruction via Homogeneous Gaussian Splatting CVPR'25
Novel view synthesis has demonstrated impressive progress recently, with 3D Gaussian splatting (3DGS) offering efficient training time and photorealistic real-time rendering. However, reliance on Cartesian coordinates limits 3DGS's performance on distant objects, which is important for reconstructing unbounded outdoor environments. We found that, despite its ultimate simplicity, using homogeneous coordinates, a concept on the projective geometry, for the 3DGS pipeline remarkably improves the rendering accuracies of distant objects. We therefore propose Homogeneous Gaussian Splatting (HoGS) incorporating homogeneous coordinates into the 3DGS framework, providing a unified representation for enhancing near and distant objects. HoGS effectively manages both expansive spatial positions and scales particularly in outdoor unbounded environments by adopting projective geometry principles. Experiments show that HoGS significantly enhances accuracy in reconstructing distant objects while maintaining high-quality rendering of nearby objects, along with fast training speed and real-time rendering capability. Our implementations are available on our project page https://kh129.github.io/hogs/.
comment: Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR'25)
☆ Face Spoofing Detection using Deep Learning
Digital image spoofing has emerged as a significant security threat in biometric authentication systems, particularly those relying on facial recognition. This study evaluates the performance of three vision based models, MobileNetV2, ResNET50, and Vision Transformer, ViT, for spoof detection in image classification, utilizing a dataset of 150,986 images divided into training , 140,002, testing, 10,984, and validation ,39,574, sets. Spoof detection is critical for enhancing the security of image recognition systems, and this research compares the models effectiveness through accuracy, precision, recall, and F1 score metrics. Results reveal that MobileNetV2 outperforms other architectures on the test dataset, achieving an accuracy of 91.59%, precision of 91.72%, recall of 91.59%, and F1 score of 91.58%, compared to ViT 86.54%, 88.28%, 86.54%, and 86.39%, respectively. On the validation dataset, MobileNetV2, and ViT excel, with MobileNetV2 slightly ahead at 97.17% accuracy versus ViT 96.36%. MobileNetV2 demonstrates faster convergence during training and superior generalization to unseen data, despite both models showing signs of overfitting. These findings highlight MobileNetV2 balanced performance and robustness, making it the preferred choice for spoof detection applications where reliability on new data is essential. The study underscores the importance of model selection in security sensitive contexts and suggests MobileNetV2 as a practical solution for real world deployment.
comment: 26 pages, 9 figures,3 tables
☆ Correcting Deviations from Normality: A Reformulated Diffusion Model for Multi-Class Unsupervised Anomaly Detection
Recent advances in diffusion models have spurred research into their application for Reconstruction-based unsupervised anomaly detection. However, these methods may struggle with maintaining structural integrity and recovering the anomaly-free content of abnormal regions, especially in multi-class scenarios. Furthermore, diffusion models are inherently designed to generate images from pure noise and struggle to selectively alter anomalous regions of an image while preserving normal ones. This leads to potential degradation of normal regions during reconstruction, hampering the effectiveness of anomaly detection. This paper introduces a reformulation of the standard diffusion model geared toward selective region alteration, allowing the accurate identification of anomalies. By modeling anomalies as noise in the latent space, our proposed Deviation correction diffusion (DeCo-Diff) model preserves the normal regions and encourages transformations exclusively on anomalous areas. This selective approach enhances the reconstruction quality, facilitating effective unsupervised detection and localization of anomaly regions. Comprehensive evaluations demonstrate the superiority of our method in accurately identifying and localizing anomalies in complex images, with pixel-level AUPRC improvements of 11-14% over state-of-the-art models on well known anomaly detection datasets. The code is available at https://github.com/farzad-bz/DeCo-Diff
☆ Zero-Shot Human-Object Interaction Synthesis with Multimodal Priors
Human-object interaction (HOI) synthesis is important for various applications, ranging from virtual reality to robotics. However, acquiring 3D HOI data is challenging due to its complexity and high cost, limiting existing methods to the narrow diversity of object types and interaction patterns in training datasets. This paper proposes a novel zero-shot HOI synthesis framework without relying on end-to-end training on currently limited 3D HOI datasets. The core idea of our method lies in leveraging extensive HOI knowledge from pre-trained Multimodal Models. Given a text description, our system first obtains temporally consistent 2D HOI image sequences using image or video generation models, which are then uplifted to 3D HOI milestones of human and object poses. We employ pre-trained human pose estimation models to extract human poses and introduce a generalizable category-level 6-DoF estimation method to obtain the object poses from 2D HOI images. Our estimation method is adaptive to various object templates obtained from text-to-3D models or online retrieval. A physics-based tracking of the 3D HOI kinematic milestone is further applied to refine both body motions and object poses, yielding more physically plausible HOI generation results. The experimental results demonstrate that our method is capable of generating open-vocabulary HOIs with physical realism and semantic diversity.
☆ Peepers & Pixels: Human Recognition Accuracy on Low Resolution Faces
Automated one-to-many (1:N) face recognition is a powerful investigative tool commonly used by law enforcement agencies. In this context, potential matches resulting from automated 1:N recognition are reviewed by human examiners prior to possible use as investigative leads. While automated 1:N recognition can achieve near-perfect accuracy under ideal imaging conditions, operational scenarios may necessitate the use of surveillance imagery, which is often degraded in various quality dimensions. One important quality dimension is image resolution, typically quantified by the number of pixels on the face. The common metric for this is inter-pupillary distance (IPD), which measures the number of pixels between the pupils. Low IPD is known to degrade the accuracy of automated face recognition. However, the threshold IPD for reliability in human face recognition remains undefined. This study aims to explore the boundaries of human recognition accuracy by systematically testing accuracy across a range of IPD values. We find that at low IPDs (10px, 5px), human accuracy is at or below chance levels (50.7%, 35.9%), even as confidence in decision-making remains relatively high (77%, 70.7%). Our findings indicate that, for low IPD images, human recognition ability could be a limiting factor to overall system accuracy.
comment: 10 pages, 3 figures
☆ EBS-EKF: Accurate and High Frequency Event-based Star Tracking CVPR
Event-based sensors (EBS) are a promising new technology for star tracking due to their low latency and power efficiency, but prior work has thus far been evaluated exclusively in simulation with simplified signal models. We propose a novel algorithm for event-based star tracking, grounded in an analysis of the EBS circuit and an extended Kalman filter (EKF). We quantitatively evaluate our method using real night sky data, comparing its results with those from a space-ready active-pixel sensor (APS) star tracker. We demonstrate that our method is an order-of-magnitude more accurate than existing methods due to improved signal modeling and state estimation, while providing more frequent updates and greater motion tolerance than conventional APS trackers. We provide all code and the first dataset of events synchronized with APS solutions.
comment: Accepted into the proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR) for 2025. Link to code and dataset is https://gitlab.kitware.com/nest-public/kw_ebs_star_tracking#
☆ Can Multi-modal (reasoning) LLMs work as deepfake detectors?
Deepfake detection remains a critical challenge in the era of advanced generative models, particularly as synthetic media becomes more sophisticated. In this study, we explore the potential of state of the art multi-modal (reasoning) large language models (LLMs) for deepfake image detection such as (OpenAI O1/4o, Gemini thinking Flash 2, Deepseek Janus, Grok 3, llama 3.2, Qwen 2/2.5 VL, Mistral Pixtral, Claude 3.5/3.7 sonnet) . We benchmark 12 latest multi-modal LLMs against traditional deepfake detection methods across multiple datasets, including recently published real-world deepfake imagery. To enhance performance, we employ prompt tuning and conduct an in-depth analysis of the models' reasoning pathways to identify key contributing factors in their decision-making process. Our findings indicate that best multi-modal LLMs achieve competitive performance with promising generalization ability with zero shot, even surpass traditional deepfake detection pipelines in out-of-distribution datasets while the rest of the LLM families performs extremely disappointing with some worse than random guess. Furthermore, we found newer model version and reasoning capabilities does not contribute to performance in such niche tasks of deepfake detection while model size do help in some cases. This study highlights the potential of integrating multi-modal reasoning in future deepfake detection frameworks and provides insights into model interpretability for robustness in real-world scenarios.
☆ iNatAg: Multi-Class Classification Models Enabled by a Large-Scale Benchmark Dataset with 4.7M Images of 2,959 Crop and Weed Species
Accurate identification of crop and weed species is critical for precision agriculture and sustainable farming. However, it remains a challenging task due to a variety of factors -- a high degree of visual similarity among species, environmental variability, and a continued lack of large, agriculture-specific image data. We introduce iNatAg, a large-scale image dataset which contains over 4.7 million images of 2,959 distinct crop and weed species, with precise annotations along the taxonomic hierarchy from binary crop/weed labels to specific species labels. Curated from the broader iNaturalist database, iNatAg contains data from every continent and accurately reflects the variability of natural image captures and environments. Enabled by this data, we train benchmark models built upon the Swin Transformer architecture and evaluate the impact of various modifications such as the incorporation of geospatial data and LoRA finetuning. Our best models achieve state-of-the-art performance across all taxonomic classification tasks, achieving 92.38\% on crop and weed classification. Furthermore, the scale of our dataset enables us to explore incorrect misclassifications and unlock new analytic possiblities for plant species. By combining large-scale species coverage, multi-task labels, and geographic diversity, iNatAg provides a new foundation for building robust, geolocation-aware agricultural classification systems. We release the iNatAg dataset publicly through AgML (https://github.com/Project-AgML/AgML), enabling direct access and integration into agricultural machine learning workflows.
☆ Learning Scene-Level Signed Directional Distance Function with Ellipsoidal Priors and Neural Residuals
Dense geometric environment representations are critical for autonomous mobile robot navigation and exploration. Recent work shows that implicit continuous representations of occupancy, signed distance, or radiance learned using neural networks offer advantages in reconstruction fidelity, efficiency, and differentiability over explicit discrete representations based on meshes, point clouds, and voxels. In this work, we explore a directional formulation of signed distance, called signed directional distance function (SDDF). Unlike signed distance function (SDF) and similar to neural radiance fields (NeRF), SDDF has a position and viewing direction as input. Like SDF and unlike NeRF, SDDF directly provides distance to the observed surface along the direction, rather than integrating along the view ray, allowing efficient view synthesis. To learn and predict scene-level SDDF efficiently, we develop a differentiable hybrid representation that combines explicit ellipsoid priors and implicit neural residuals. This approach allows the model to effectively handle large distance discontinuities around obstacle boundaries while preserving the ability for dense high-fidelity prediction. We show that SDDF is competitive with the state-of-the-art neural implicit scene models in terms of reconstruction accuracy and rendering efficiency, while allowing differentiable view prediction for robot trajectory optimization.
☆ Med3DVLM: An Efficient Vision-Language Model for 3D Medical Image Analysis
Vision-language models (VLMs) have shown promise in 2D medical image analysis, but extending them to 3D remains challenging due to the high computational demands of volumetric data and the difficulty of aligning 3D spatial features with clinical text. We present Med3DVLM, a 3D VLM designed to address these challenges through three key innovations: (1) DCFormer, an efficient encoder that uses decomposed 3D convolutions to capture fine-grained spatial features at scale; (2) SigLIP, a contrastive learning strategy with pairwise sigmoid loss that improves image-text alignment without relying on large negative batches; and (3) a dual-stream MLP-Mixer projector that fuses low- and high-level image features with text embeddings for richer multi-modal representations. We evaluate our model on the M3D dataset, which includes radiology reports and VQA data for 120,084 3D medical images. Results show that Med3DVLM achieves superior performance across multiple benchmarks. For image-text retrieval, it reaches 61.00% R@1 on 2,000 samples, significantly outperforming the current state-of-the-art M3D model (19.10%). For report generation, it achieves a METEOR score of 36.42% (vs. 14.38%). In open-ended visual question answering (VQA), it scores 36.76% METEOR (vs. 33.58%), and in closed-ended VQA, it achieves 79.95% accuracy (vs. 75.78%). These results highlight Med3DVLM's ability to bridge the gap between 3D imaging and language, enabling scalable, multi-task reasoning across clinical applications. Our code is publicly available at https://github.com/mirthAI/Med3DVLM.
☆ Hyperdimensional Uncertainty Quantification for Multimodal Uncertainty Fusion in Autonomous Vehicles Perception CVPR 2025
Uncertainty Quantification (UQ) is crucial for ensuring the reliability of machine learning models deployed in real-world autonomous systems. However, existing approaches typically quantify task-level output prediction uncertainty without considering epistemic uncertainty at the multimodal feature fusion level, leading to sub-optimal outcomes. Additionally, popular uncertainty quantification methods, e.g., Bayesian approximations, remain challenging to deploy in practice due to high computational costs in training and inference. In this paper, we propose HyperDUM, a novel deterministic uncertainty method (DUM) that efficiently quantifies feature-level epistemic uncertainty by leveraging hyperdimensional computing. Our method captures the channel and spatial uncertainties through channel and patch -wise projection and bundling techniques respectively. Multimodal sensor features are then adaptively weighted to mitigate uncertainty propagation and improve feature fusion. Our evaluations show that HyperDUM on average outperforms the state-of-the-art (SOTA) algorithms by up to 2.01%/1.27% in 3D Object Detection and up to 1.29% improvement over baselines in semantic segmentation tasks under various types of uncertainties. Notably, HyperDUM requires 2.36x less Floating Point Operations and up to 38.30x less parameters than SOTA methods, providing an efficient solution for real-world autonomous systems.
comment: Accepted at CVPR 2025
☆ The Coralscapes Dataset: Semantic Scene Understanding in Coral Reefs
Coral reefs are declining worldwide due to climate change and local stressors. To inform effective conservation or restoration, monitoring at the highest possible spatial and temporal resolution is necessary. Conventional coral reef surveying methods are limited in scalability due to their reliance on expert labor time, motivating the use of computer vision tools to automate the identification and abundance estimation of live corals from images. However, the design and evaluation of such tools has been impeded by the lack of large high quality datasets. We release the Coralscapes dataset, the first general-purpose dense semantic segmentation dataset for coral reefs, covering 2075 images, 39 benthic classes, and 174k segmentation masks annotated by experts. Coralscapes has a similar scope and the same structure as the widely used Cityscapes dataset for urban scene segmentation, allowing benchmarking of semantic segmentation models in a new challenging domain which requires expert knowledge to annotate. We benchmark a wide range of semantic segmentation models, and find that transfer learning from Coralscapes to existing smaller datasets consistently leads to state-of-the-art performance. Coralscapes will catalyze research on efficient, scalable, and standardized coral reef surveying methods based on computer vision, and holds the potential to streamline the development of underwater ecological robotics.
☆ SLIP: Spoof-Aware One-Class Face Anti-Spoofing with Language Image Pretraining AAAI 2025
Face anti-spoofing (FAS) plays a pivotal role in ensuring the security and reliability of face recognition systems. With advancements in vision-language pretrained (VLP) models, recent two-class FAS techniques have leveraged the advantages of using VLP guidance, while this potential remains unexplored in one-class FAS methods. The one-class FAS focuses on learning intrinsic liveness features solely from live training images to differentiate between live and spoof faces. However, the lack of spoof training data can lead one-class FAS models to inadvertently incorporate domain information irrelevant to the live/spoof distinction (e.g., facial content), causing performance degradation when tested with a new application domain. To address this issue, we propose a novel framework called Spoof-aware one-class face anti-spoofing with Language Image Pretraining (SLIP). Given that live faces should ideally not be obscured by any spoof-attack-related objects (e.g., paper, or masks) and are assumed to yield zero spoof cue maps, we first propose an effective language-guided spoof cue map estimation to enhance one-class FAS models by simulating whether the underlying faces are covered by attack-related objects and generating corresponding nonzero spoof cue maps. Next, we introduce a novel prompt-driven liveness feature disentanglement to alleviate live/spoof-irrelative domain variations by disentangling live/spoof-relevant and domain-dependent information. Finally, we design an effective augmentation strategy by fusing latent features from live images and spoof prompts to generate spoof-like image features and thus diversify latent spoof features to facilitate the learning of one-class FAS. Our extensive experiments and ablation studies support that SLIP consistently outperforms previous one-class FAS methods.
comment: Accepted by AAAI 2025
☆ Thin-Shell-SfT: Fine-Grained Monocular Non-rigid 3D Surface Tracking with Neural Deformation Fields CVPR 2025
3D reconstruction of highly deformable surfaces (e.g. cloths) from monocular RGB videos is a challenging problem, and no solution provides a consistent and accurate recovery of fine-grained surface details. To account for the ill-posed nature of the setting, existing methods use deformation models with statistical, neural, or physical priors. They also predominantly rely on nonadaptive discrete surface representations (e.g. polygonal meshes), perform frame-by-frame optimisation leading to error propagation, and suffer from poor gradients of the mesh-based differentiable renderers. Consequently, fine surface details such as cloth wrinkles are often not recovered with the desired accuracy. In response to these limitations, we propose ThinShell-SfT, a new method for non-rigid 3D tracking that represents a surface as an implicit and continuous spatiotemporal neural field. We incorporate continuous thin shell physics prior based on the Kirchhoff-Love model for spatial regularisation, which starkly contrasts the discretised alternatives of earlier works. Lastly, we leverage 3D Gaussian splatting to differentiably render the surface into image space and optimise the deformations based on analysis-bysynthesis principles. Our Thin-Shell-SfT outperforms prior works qualitatively and quantitatively thanks to our continuous surface formulation in conjunction with a specially tailored simulation prior and surface-induced 3D Gaussians. See our project page at https://4dqv.mpiinf.mpg.de/ThinShellSfT.
comment: 15 pages, 12 figures and 3 tables; project page: https://4dqv.mpiinf.mpg.de/ThinShellSfT; CVPR 2025
☆ Self-Supervised Learning of Motion Concepts by Optimizing Counterfactuals
Estimating motion in videos is an essential computer vision problem with many downstream applications, including controllable video generation and robotics. Current solutions are primarily trained using synthetic data or require tuning of situation-specific heuristics, which inherently limits these models' capabilities in real-world contexts. Despite recent developments in large-scale self-supervised learning from videos, leveraging such representations for motion estimation remains relatively underexplored. In this work, we develop Opt-CWM, a self-supervised technique for flow and occlusion estimation from a pre-trained next-frame prediction model. Opt-CWM works by learning to optimize counterfactual probes that extract motion information from a base video model, avoiding the need for fixed heuristics while training on unrestricted video inputs. We achieve state-of-the-art performance for motion estimation on real-world videos while requiring no labeled data.
comment: Project webpage: https://neuroailab.github.io/opt_cwm_page/
☆ ACVUBench: Audio-Centric Video Understanding Benchmark
Audio often serves as an auxiliary modality in video understanding tasks of audio-visual large language models (LLMs), merely assisting in the comprehension of visual information. However, a thorough understanding of videos significantly depends on auditory information, as audio offers critical context, emotional cues, and semantic meaning that visual data alone often lacks. This paper proposes an audio-centric video understanding benchmark (ACVUBench) to evaluate the video comprehension capabilities of multimodal LLMs with a particular focus on auditory information. Specifically, ACVUBench incorporates 2,662 videos spanning 18 different domains with rich auditory information, together with over 13k high-quality human annotated or validated question-answer pairs. Moreover, ACVUBench introduces a suite of carefully designed audio-centric tasks, holistically testing the understanding of both audio content and audio-visual interactions in videos. A thorough evaluation across a diverse range of open-source and proprietary multimodal LLMs is performed, followed by the analyses of deficiencies in audio-visual LLMs. Demos are available at https://github.com/lark-png/ACVUBench.
☆ Test-Time Reasoning Through Visual Human Preferences with VLMs and Soft Rewards
Can Visual Language Models (VLMs) effectively capture human visual preferences? This work addresses this question by training VLMs to think about preferences at test time, employing reinforcement learning methods inspired by DeepSeek R1 and OpenAI O1. Using datasets such as ImageReward and Human Preference Score v2 (HPSv2), our models achieve accuracies of 64.9% on the ImageReward test set (trained on ImageReward official split) and 65.4% on HPSv2 (trained on approximately 25% of its data). These results match traditional encoder-based models while providing transparent reasoning and enhanced generalization. This approach allows to use not only rich VLM world knowledge, but also its potential to think, yielding interpretable outcomes that help decision-making processes. By demonstrating that human visual preferences reasonable by current VLMs, we introduce efficient soft-reward strategies for image ranking, outperforming simplistic selection or scoring methods. This reasoning capability enables VLMs to rank arbitrary images-regardless of aspect ratio or complexity-thereby potentially amplifying the effectiveness of visual Preference Optimization. By reducing the need for extensive markup while improving reward generalization and explainability, our findings can be a strong mile-stone that will enhance text-to-vision models even further.
☆ Vanishing Depth: A Depth Adapter with Positional Depth Encoding for Generalized Image Encoders
Generalized metric depth understanding is critical for precise vision-guided robotics, which current state-of-the-art (SOTA) vision-encoders do not support. To address this, we propose Vanishing Depth, a self-supervised training approach that extends pretrained RGB encoders to incorporate and align metric depth into their feature embeddings. Based on our novel positional depth encoding, we enable stable depth density and depth distribution invariant feature extraction. We achieve performance improvements and SOTA results across a spectrum of relevant RGBD downstream tasks - without the necessity of finetuning the encoder. Most notably, we achieve 56.05 mIoU on SUN-RGBD segmentation, 88.3 RMSE on Void's depth completion, and 83.8 Top 1 accuracy on NYUv2 scene classification. In 6D-object pose estimation, we outperform our predecessors of DinoV2, EVA-02, and Omnivore and achieve SOTA results for non-finetuned encoders in several related RGBD downstream tasks.
comment: Preprint
☆ MindfulLIME: A Stable Solution for Explanations of Machine Learning Models with Enhanced Localization Precision -- A Medical Image Case Study
Ensuring transparency in machine learning decisions is critically important, especially in sensitive sectors such as healthcare, finance, and justice. Despite this, some popular explainable algorithms, such as Local Interpretable Model-agnostic Explanations (LIME), often produce unstable explanations due to the random generation of perturbed samples. Random perturbation introduces small changes or noise to modified instances of the original data, leading to inconsistent explanations. Even slight variations in the generated samples significantly affect the explanations provided by such models, undermining trust and hindering the adoption of interpretable models. To address this challenge, we propose MindfulLIME, a novel algorithm that intelligently generates purposive samples using a graph-based pruning algorithm and uncertainty sampling. MindfulLIME substantially improves the consistency of visual explanations compared to random sampling approaches. Our experimental evaluation, conducted on a widely recognized chest X-ray dataset, confirms MindfulLIME's stability with a 100% success rate in delivering reliable explanations under identical conditions. Additionally, MindfulLIME improves the localization precision of visual explanations by reducing the distance between the generated explanations and the actual local annotations compared to LIME. We also performed comprehensive experiments considering various segmentation algorithms and sample numbers, focusing on stability, quality, and efficiency. The results demonstrate the outstanding performance of MindfulLIME across different segmentation settings, generating fewer high-quality samples within a reasonable processing time. By addressing the stability limitations of LIME in image data, MindfulLIME enhances the trustworthiness and interpretability of machine learning models in specific medical imaging applications, a critical domain.
♻ ☆ Aether: Geometric-Aware Unified World Modeling
The integration of geometric reconstruction and generative modeling remains a critical challenge in developing AI systems capable of human-like spatial reasoning. This paper proposes Aether, a unified framework that enables geometry-aware reasoning in world models by jointly optimizing three core capabilities: (1) 4D dynamic reconstruction, (2) action-conditioned video prediction, and (3) goal-conditioned visual planning. Through task-interleaved feature learning, Aether achieves synergistic knowledge sharing across reconstruction, prediction, and planning objectives. Building upon video generation models, our framework demonstrates unprecedented synthetic-to-real generalization despite never observing real-world data during training. Furthermore, our approach achieves zero-shot generalization in both action following and reconstruction tasks, thanks to its intrinsic geometric modeling. Remarkably, even without real-world data, its reconstruction performance is comparable with or even better than that of domain-specific models. Additionally, Aether employs camera trajectories as geometry-informed action spaces, enabling effective action-conditioned prediction and visual planning. We hope our work inspires the community to explore new frontiers in physically-reasonable world modeling and its applications.
comment: Project Page: https://aether-world.github.io/
♻ ☆ HunyuanPortrait: Implicit Condition Control for Enhanced Portrait Animation CVPR 2025
We introduce HunyuanPortrait, a diffusion-based condition control method that employs implicit representations for highly controllable and lifelike portrait animation. Given a single portrait image as an appearance reference and video clips as driving templates, HunyuanPortrait can animate the character in the reference image by the facial expression and head pose of the driving videos. In our framework, we utilize pre-trained encoders to achieve the decoupling of portrait motion information and identity in videos. To do so, implicit representation is adopted to encode motion information and is employed as control signals in the animation phase. By leveraging the power of stable video diffusion as the main building block, we carefully design adapter layers to inject control signals into the denoising unet through attention mechanisms. These bring spatial richness of details and temporal consistency. HunyuanPortrait also exhibits strong generalization performance, which can effectively disentangle appearance and motion under different image styles. Our framework outperforms existing methods, demonstrating superior temporal consistency and controllability. Our project is available at https://kkakkkka.github.io/HunyuanPortrait.
comment: Accepted to CVPR 2025
♻ ☆ MC-LLaVA: Multi-Concept Personalized Vision-Language Model
Current vision-language models (VLMs) show exceptional abilities across diverse tasks, such as visual question answering. To enhance user experience, recent studies investigate VLM personalization to understand user-provided concepts. However, they mainly focus on single-concept personalization, neglecting the existence and interplay of multiple concepts, which limits real-world applicability. This paper proposes the first multi-concept personalization paradigm, MC-LLaVA. Specifically, MC-LLaVA employs a multi-concept instruction tuning strategy, effectively integrating multiple concepts in a single training step. To reduce the costs related to joint training, we propose a personalized textual prompt that uses visual token information to initialize concept tokens. Additionally, we introduce a personalized visual prompt during inference, aggregating location confidence maps for enhanced recognition and grounding capabilities. To advance multi-concept personalization research, we further contribute a high-quality instruction tuning dataset. We carefully collect images with multiple characters and objects from movies and manually generate question-answer samples for multi-concept scenarios, featuring superior diversity. Comprehensive qualitative and quantitative experiments demonstrate that MC-LLaVA can achieve impressive multi-concept personalized responses, paving the way for VLMs to become better user-specific assistants. The code and dataset will be publicly available at https://github.com/arctanxarc/MC-LLaVA}.
comment: I sincerely apologize for any inconvenience caused. We actually uploaded this paper to arXiv in November 2024, as arXiv:2411.11706. During this update, we did not consider the replacement operation of arXiv, which led to duplicate submissions. We have made modifications at the original address arXiv:2411.11706
♻ ☆ Learning to segment anatomy and lesions from disparately labeled sources in brain MRI
Segmenting healthy tissue structures alongside lesions in brain Magnetic Resonance Images (MRI) remains a challenge for today's algorithms due to lesion-caused disruption of the anatomy and lack of jointly labeled training datasets, where both healthy tissues and lesions are labeled on the same images. In this paper, we propose a method that is robust to lesion-caused disruptions and can be trained from disparately labeled training sets, i.e., without requiring jointly labeled samples, to automatically segment both. In contrast to prior work, we decouple healthy tissue and lesion segmentation in two paths to leverage multi-sequence acquisitions and merge information with an attention mechanism. During inference, an image-specific adaptation reduces adverse influences of lesion regions on healthy tissue predictions. During training, the adaptation is taken into account through meta-learning and co-training is used to learn from disparately labeled training images. Our model shows an improved performance on several anatomical structures and lesions on a publicly available brain glioblastoma dataset compared to the state-of-the-art segmentation methods.
♻ ☆ Lightweight Embedded FPGA Deployment of Learned Image Compression with Knowledge Distillation and Hybrid Quantization
Learnable Image Compression (LIC) has shown the potential to outperform standardized video codecs in RD efficiency, prompting the research for hardware-friendly implementations. Most existing LIC hardware implementations prioritize latency to RD-efficiency and through an extensive exploration of the hardware design space. We present a novel design paradigm where the burden of tuning the design for a specific hardware platform is shifted towards model dimensioning and without compromising on RD-efficiency. First, we design a framework for distilling a leaner student LIC model from a reference teacher: by tuning a single model hyperparameters, we can meet the constraints of different hardware platforms without a complex hardware design exploration. Second, we propose a hardware-friendly implementation of the Generalized Divisive Normalization - GDN activation that preserves RD efficiency even post parameter quantization. Third, we design a pipelined FPGA configuration which takes full advantage of available FPGA resources by leveraging parallel processing and optimizing resource allocation. Our experiments with a state of the art LIC model show that we outperform all existing FPGA implementations while performing very close to the original model.
comment: 1. Submitted to IEEE Transactions on Circuits and Systems for Video Technology in March 2025. 2. Corrected numerous mistakes from previous versions in results, citations and metrics numbers in figures
♻ ☆ Frequency Dynamic Convolution for Dense Image Prediction CVPR 2025
While Dynamic Convolution (DY-Conv) has shown promising performance by enabling adaptive weight selection through multiple parallel weights combined with an attention mechanism, the frequency response of these weights tends to exhibit high similarity, resulting in high parameter costs but limited adaptability. In this work, we introduce Frequency Dynamic Convolution (FDConv), a novel approach that mitigates these limitations by learning a fixed parameter budget in the Fourier domain. FDConv divides this budget into frequency-based groups with disjoint Fourier indices, enabling the construction of frequency-diverse weights without increasing the parameter cost. To further enhance adaptability, we propose Kernel Spatial Modulation (KSM) and Frequency Band Modulation (FBM). KSM dynamically adjusts the frequency response of each filter at the spatial level, while FBM decomposes weights into distinct frequency bands in the frequency domain and modulates them dynamically based on local content. Extensive experiments on object detection, segmentation, and classification validate the effectiveness of FDConv. We demonstrate that when applied to ResNet-50, FDConv achieves superior performance with a modest increase of +3.6M parameters, outperforming previous methods that require substantial increases in parameter budgets (e.g., CondConv +90M, KW +76.5M). Moreover, FDConv seamlessly integrates into a variety of architectures, including ConvNeXt, Swin-Transformer, offering a flexible and efficient solution for modern vision tasks. The code is made publicly available at https://github.com/Linwei-Chen/FDConv.
comment: Accepted by CVPR 2025
♻ ☆ Re-HOLD: Video Hand Object Interaction Reenactment via adaptive Layout-instructed Diffusion Model CVPR 2025
Current digital human studies focusing on lip-syncing and body movement are no longer sufficient to meet the growing industrial demand, while human video generation techniques that support interacting with real-world environments (e.g., objects) have not been well investigated. Despite human hand synthesis already being an intricate problem, generating objects in contact with hands and their interactions presents an even more challenging task, especially when the objects exhibit obvious variations in size and shape. To tackle these issues, we present a novel video Reenactment framework focusing on Human-Object Interaction (HOI) via an adaptive Layout-instructed Diffusion model (Re-HOLD). Our key insight is to employ specialized layout representation for hands and objects, respectively. Such representations enable effective disentanglement of hand modeling and object adaptation to diverse motion sequences. To further improve the generation quality of HOI, we design an interactive textural enhancement module for both hands and objects by introducing two independent memory banks. We also propose a layout adjustment strategy for the cross-object reenactment scenario to adaptively adjust unreasonable layouts caused by diverse object sizes during inference. Comprehensive qualitative and quantitative evaluations demonstrate that our proposed framework significantly outperforms existing methods. Project page: https://fyycs.github.io/Re-HOLD.
comment: Accepted to CVPR 2025
♻ ☆ IncEventGS: Pose-Free Gaussian Splatting from a Single Event Camera
Implicit neural representation and explicit 3D Gaussian Splatting (3D-GS) for novel view synthesis have achieved remarkable progress with frame-based camera (e.g. RGB and RGB-D cameras) recently. Compared to frame-based camera, a novel type of bio-inspired visual sensor, i.e. event camera, has demonstrated advantages in high temporal resolution, high dynamic range, low power consumption and low latency. Due to its unique asynchronous and irregular data capturing process, limited work has been proposed to apply neural representation or 3D Gaussian splatting for an event camera. In this work, we present IncEventGS, an incremental 3D Gaussian Splatting reconstruction algorithm with a single event camera. To recover the 3D scene representation incrementally, we exploit the tracking and mapping paradigm of conventional SLAM pipelines for IncEventGS. Given the incoming event stream, the tracker firstly estimates an initial camera motion based on prior reconstructed 3D-GS scene representation. The mapper then jointly refines both the 3D scene representation and camera motion based on the previously estimated motion trajectory from the tracker. The experimental results demonstrate that IncEventGS delivers superior performance compared to prior NeRF-based methods and other related baselines, even we do not have the ground-truth camera poses. Furthermore, our method can also deliver better performance compared to state-of-the-art event visual odometry methods in terms of camera motion estimation. Code is publicly available at: https://github.com/wu-cvgl/IncEventGS.
comment: Code Page: https://github.com/wu-cvgl/IncEventGS
♻ ☆ Any6D: Model-free 6D Pose Estimation of Novel Objects CVPR 2025
We introduce Any6D, a model-free framework for 6D object pose estimation that requires only a single RGB-D anchor image to estimate both the 6D pose and size of unknown objects in novel scenes. Unlike existing methods that rely on textured 3D models or multiple viewpoints, Any6D leverages a joint object alignment process to enhance 2D-3D alignment and metric scale estimation for improved pose accuracy. Our approach integrates a render-and-compare strategy to generate and refine pose hypotheses, enabling robust performance in scenarios with occlusions, non-overlapping views, diverse lighting conditions, and large cross-environment variations. We evaluate our method on five challenging datasets: REAL275, Toyota-Light, HO3D, YCBINEOAT, and LM-O, demonstrating its effectiveness in significantly outperforming state-of-the-art methods for novel object pose estimation. Project page: https://taeyeop.com/any6d
comment: CVPR 2025, Project Page: https://taeyeop.com/any6d
♻ ☆ Feature Calibration enhanced Parameter Synthesis for CLIP-based Class-incremental Learning
Class-incremental Learning (CIL) enables models to continuously learn new class knowledge while memorizing previous classes, facilitating their adaptation and evolution in dynamic environments. Traditional CIL methods are mainly based on visual features, which limits their ability to handle complex scenarios. In contrast, Vision-Language Models (VLMs) show promising potential to promote CIL by integrating pretrained knowledge with textual features. However, previous methods make it difficult to overcome catastrophic forgetting while preserving the generalization capabilities of VLMs. To tackle these challenges, we propose Feature Calibration enhanced Parameter Synthesis (FCPS) in this paper. Specifically, our FCPS employs a specific parameter adjustment mechanism to iteratively refine the proportion of original visual features participating in the final class determination, ensuring the model's foundational generalization capabilities. Meanwhile, parameter integration across different tasks achieves a balance between learning new class knowledge and retaining old knowledge. Experimental results on popular benchmarks (e.g., CIFAR100 and ImageNet100) validate the superiority of the proposed method.
♻ ☆ Superpixel Tokenization for Vision Transformers: Preserving Semantic Integrity in Visual Tokens
Transformers, a groundbreaking architecture proposed for Natural Language Processing (NLP), have also achieved remarkable success in Computer Vision. A cornerstone of their success lies in the attention mechanism, which models relationships among tokens. While the tokenization process in NLP inherently ensures that a single token does not contain multiple semantics, the tokenization of Vision Transformer (ViT) utilizes tokens from uniformly partitioned square image patches, which may result in an arbitrary mixing of visual concepts in a token. In this work, we propose to substitute the grid-based tokenization in ViT with superpixel tokenization, which employs superpixels to generate a token that encapsulates a sole visual concept. Unfortunately, the diverse shapes, sizes, and locations of superpixels make integrating superpixels into ViT tokenization rather challenging. Our tokenization pipeline, comprised of pre-aggregate extraction and superpixel-aware aggregation, overcomes the challenges that arise in superpixel tokenization. Extensive experiments demonstrate that our approach, which exhibits strong compatibility with existing frameworks, enhances the accuracy and robustness of ViT on various downstream tasks.
comment: Project page: https://github.com/jangsoohyuk/SuiT
♻ ☆ CompMarkGS: Robust Watermarking for Compressed 3D Gaussian Splatting
3D Gaussian Splatting (3DGS) enables rapid differentiable rendering for 3D reconstruction and novel view synthesis, leading to its widespread commercial use. Consequently, copyright protection via watermarking has become critical. However, because 3DGS relies on millions of Gaussians, which require gigabytes of storage, efficient transfer and storage require compression. Existing 3DGS watermarking methods are vulnerable to quantization-based compression, often resulting in the loss of the embedded watermark. To address this challenge, we propose a novel watermarking method that ensures watermark robustness after model compression while maintaining high rendering quality. In detail, we incorporate a quantization distortion layer that simulates compression during training, preserving the watermark under quantization-based compression. Also, we propose a learnable watermark embedding feature that embeds the watermark into the anchor feature, ensuring structural consistency and seamless integration into the 3D scene. Furthermore, we present a frequency-aware anchor growing mechanism to enhance image quality in high-frequency regions by effectively identifying Guassians within these regions. Experimental results confirm that our method preserves the watermark and maintains superior image quality under high compression, validating it as a promising approach for a secure 3DGS model.
comment: 23 pages, 17 figures
♻ ☆ AMD-Hummingbird: Towards an Efficient Text-to-Video Model
Text-to-Video (T2V) generation has attracted significant attention for its ability to synthesize realistic videos from textual descriptions. However, existing models struggle to balance computational efficiency and high visual quality, particularly on resource-limited devices, e.g.,iGPUs and mobile phones. Most prior work prioritizes visual fidelity while overlooking the need for smaller, more efficient models suitable for real-world deployment. To address this challenge, we propose a lightweight T2V framework, termed Hummingbird, which prunes existing models and enhances visual quality through visual feedback learning. Our approach reduces the size of the U-Net from 1.4 billion to 0.7 billion parameters, significantly improving efficiency while preserving high-quality video generation. Additionally, we introduce a novel data processing pipeline that leverages Large Language Models (LLMs) and Video Quality Assessment (VQA) models to enhance the quality of both text prompts and video data. To support user-driven training and style customization, we publicly release the full training code, including data processing and model training. Extensive experiments show that our method achieves a 31X speedup compared to state-of-the-art models such as VideoCrafter2, while also attaining the highest overall score on VBench. Moreover, our method supports the generation of videos with up to 26 frames, addressing the limitations of existing U-Net-based methods in long video generation. Notably, the entire training process requires only four GPUs, yet delivers performance competitive with existing leading methods. Hummingbird presents a practical and efficient solution for T2V generation, combining high performance, scalability, and flexibility for real-world applications.
comment: Homepage: https://www.amd.com/en/developer/resources/technical-articles/amd-hummingbird-0-9b-text-to-video-diffusion-model-with-4-step-inferencing.html| GitHub: https://github.com/AMD-AIG-AIMA/AMD-Hummingbird-T2V
♻ ☆ AIM2PC: Aerial Image to 3D Building Point Cloud Reconstruction
Three-dimensional urban reconstruction of buildings from single-view images has attracted significant attention over the past two decades. However, recent methods primarily focus on rooftops from aerial images, often overlooking essential geometrical details. Additionally, there is a notable lack of datasets containing complete 3D point clouds for entire buildings, along with challenges in obtaining reliable camera pose information for aerial images. This paper addresses these challenges by presenting a novel methodology, AIM2PC , which utilizes our generated dataset that includes complete 3D point clouds and determined camera poses. Our approach takes features from a single aerial image as input and concatenates them with essential additional conditions, such as binary masks and Sobel edge maps, to enable more edge-aware reconstruction. By incorporating a point cloud diffusion model based on Centered denoising Diffusion Probabilistic Models (CDPM), we project these concatenated features onto the partially denoised point cloud using our camera poses at each diffusion step. The proposed method is able to reconstruct the complete 3D building point cloud, including wall information and demonstrates superior performance compared to existing baseline techniques. To allow further comparisons with our methodology the dataset has been made available at https://github.com/Soulaimene/AIM2PCDataset
comment: Accepted to ISPRS Geospatial Week 2025
♻ ☆ LookCloser: Frequency-aware Radiance Field for Tiny-Detail Scene CVPR 2025
Humans perceive and comprehend their surroundings through information spanning multiple frequencies. In immersive scenes, people naturally scan their environment to grasp its overall structure while examining fine details of objects that capture their attention. However, current NeRF frameworks primarily focus on modeling either high-frequency local views or the broad structure of scenes with low-frequency information, which is limited to balancing both. We introduce FA-NeRF, a novel frequency-aware framework for view synthesis that simultaneously captures the overall scene structure and high-definition details within a single NeRF model. To achieve this, we propose a 3D frequency quantification method that analyzes the scene's frequency distribution, enabling frequency-aware rendering. Our framework incorporates a frequency grid for fast convergence and querying, a frequency-aware feature re-weighting strategy to balance features across different frequency contents. Extensive experiments show that our method significantly outperforms existing approaches in modeling entire scenes while preserving fine details. Project page: https://coscatter.github.io/LookCloser/
comment: CVPR 2025. Project page: https://coscatter.github.io/LookCloser
♻ ☆ Global-Local Tree Search in VLMs for 3D Indoor Scene Generation CVPR 2025
Large Vision-Language Models (VLMs), such as GPT-4, have achieved remarkable success across various fields. However, there are few studies on 3D indoor scene generation with VLMs. This paper considers this task as a planning problem subject to spatial and layout common sense constraints. To solve the problem with a VLM, we propose a new global-local tree search algorithm. Globally, the method places each object sequentially and explores multiple placements during each placement process, where the problem space is represented as a tree. To reduce the depth of the tree, we decompose the scene structure hierarchically, i.e. room level, region level, floor object level, and supported object level. The algorithm independently generates the floor objects in different regions and supported objects placed on different floor objects. Locally, we also decompose the sub-task, the placement of each object, into multiple steps. The algorithm searches the tree of problem space. To leverage the VLM model to produce positions of objects, we discretize the top-down view space as a dense grid and fill each cell with diverse emojis to make to cells distinct. We prompt the VLM with the emoji grid and the VLM produces a reasonable location for the object by describing the position with the name of emojis. The quantitative and qualitative experimental results illustrate our approach generates more plausible 3D scenes than state-of-the-art approaches. Our source code is available at https://github.com/dw-dengwei/TreeSearchGen .
comment: Accepted by CVPR 2025
♻ ☆ StableGS: A Floater-Free Framework for 3D Gaussian Splatting
Recent years have witnessed remarkable success of 3D Gaussian Splatting (3DGS) in novel view synthesis, surpassing prior differentiable rendering methods in both quality and efficiency. However, its training process suffers from coupled opacity-color optimization that frequently converges to local minima, producing floater artifacts that degrade visual fidelity. We present StableGS, a framework that eliminates floaters through cross-view depth consistency constraints while introducing a dual-opacity GS model to decouple geometry and material properties of translucent objects. To further enhance reconstruction quality in weakly-textured regions, we integrate DUSt3R depth estimation, significantly improving geometric stability. Our method fundamentally addresses 3DGS training instabilities, outperforming existing state-of-the-art methods across open-source datasets.
♻ ☆ Latent Space Super-Resolution for Higher-Resolution Image Generation with Diffusion Models CVPR 2025
In this paper, we propose LSRNA, a novel framework for higher-resolution (exceeding 1K) image generation using diffusion models by leveraging super-resolution directly in the latent space. Existing diffusion models struggle with scaling beyond their training resolutions, often leading to structural distortions or content repetition. Reference-based methods address the issues by upsampling a low-resolution reference to guide higher-resolution generation. However, they face significant challenges: upsampling in latent space often causes manifold deviation, which degrades output quality. On the other hand, upsampling in RGB space tends to produce overly smoothed outputs. To overcome these limitations, LSRNA combines Latent space Super-Resolution (LSR) for manifold alignment and Region-wise Noise Addition (RNA) to enhance high-frequency details. Our extensive experiments demonstrate that integrating LSRNA outperforms state-of-the-art reference-based methods across various resolutions and metrics, while showing the critical role of latent space upsampling in preserving detail and sharpness. The code is available at https://github.com/3587jjh/LSRNA.
comment: Accepted by CVPR 2025
♻ ☆ CQ-DINO: Mitigating Gradient Dilution via Category Queries for Vast Vocabulary Object Detection
With the exponential growth of data, traditional object detection methods are increasingly struggling to handle vast vocabulary object detection tasks effectively. We analyze two key limitations of classification-based detectors: positive gradient dilution, where rare positive categories receive insufficient learning signals, and hard negative gradient dilution, where discriminative gradients are overwhelmed by numerous easy negatives. To address these challenges, we propose CQ-DINO, a category query-based object detection framework that reformulates classification as a contrastive task between object queries and learnable category queries. Our method introduces image-guided query selection, which reduces the negative space by adaptively retrieving top-K relevant categories per image via cross-attention, thereby rebalancing gradient distributions and facilitating implicit hard example mining. Furthermore, CQ-DINO flexibly integrates explicit hierarchical category relationships in structured datasets (e.g., V3Det) or learns implicit category correlations via self-attention in generic datasets (e.g., COCO). Experiments demonstrate that CQ-DINO achieves superior performance on the challenging V3Det benchmark (surpassing previous methods by 2.1% AP) while maintaining competitiveness in COCO. Our work provides a scalable solution for real-world detection systems requiring wide category coverage. The dataset and code will be publicly at https://github.com/RedAIGC/CQ-DINO.
♻ ☆ Using deep neural networks to detect non-analytically defined expert event labels in canoe sprint force sensor signals
Assessing an athlete's performance in canoe sprint is often established by measuring a variety of kinematic parameters during training sessions. Many of these parameters are related to single or multiple paddle stroke cycles. Determining on- and offset of these cycles in force sensor signals is usually not straightforward and requires human interaction. This paper explores convolutional neural networks (CNNs) and recurrent neural networks (RNNs) in terms of their ability to automatically predict these events. In addition, our work proposes an extension to the recently published SoftED metric for event detection in order to properly assess the model performance on time windows. In our results, an RNN based on bidirectional gated recurrent units (BGRUs) turned out to be the most suitable model for paddle stroke detection.
♻ ☆ VTD-CLIP: Video-to-Text Discretization via Prompting CLIP
Vision-language models bridge visual and linguistic understanding and have proven to be powerful for video recognition tasks. Existing approaches primarily rely on parameter-efficient fine-tuning of image-text pre-trained models, yet they often suffer from limited interpretability and poor generalization due to inadequate temporal modeling. To address these, we propose a simple yet effective video-to-text discretization framework. Our method repurposes the frozen text encoder to construct a visual codebook from video class labels due to the many-to-one contrastive alignment between visual and textual embeddings in multimodal pretraining. This codebook effectively transforms temporal visual data into textual tokens via feature lookups and offers interpretable video representations through explicit video modeling. Then, to enhance robustness against irrelevant or noisy frames, we introduce a confidence-aware fusion module that dynamically weights keyframes by assessing their semantic relevance via the codebook. Furthermore, our method incorporates learnable text prompts to conduct adaptive codebook updates. Extensive experiments on HMDB-51, UCF-101, SSv2, and Kinetics-400 have validated the superiority of our approach, achieving more competitive improvements over state-of-the-art methods. The code will be publicly available at https://github.com/isxinxin/VTD-CLIP.
♻ ☆ Instruct-CLIP: Improving Instruction-Guided Image Editing with Automated Data Refinement Using Contrastive Learning
Although natural language instructions offer an intuitive way to guide automated image editing, deep-learning models often struggle to achieve high-quality results, largely due to the difficulty of creating large, high-quality training datasets. To do this, previous approaches have typically relied on text-to-image (T2I) generative models to produce pairs of original and edited images that simulate the input/output of an instruction-guided image-editing model. However, these image pairs often fail to align with the specified edit instructions due to the limitations of T2I models, which negatively impacts models trained on such datasets. To address this, we present Instruct-CLIP (I-CLIP), a selfsupervised method that learns the semantic changes between original and edited images to refine and better align the instructions in existing datasets. Furthermore, we adapt Instruct-CLIP to handle noisy latent images and diffusion timesteps so that it can be used to train latent diffusion models (LDMs) and efficiently enforce alignment between the edit instruction and the image changes in latent space at any step of the diffusion pipeline. We use Instruct-CLIP to correct the InstructPix2Pix dataset and get over 120K refined samples we then use to fine-tune their model, guided by our novel I-CLIP-based loss function. The resulting model can produce edits that are more aligned with the given instructions. Our code and dataset are available at https://github.com/SherryXTChen/Instruct-CLIP.git.
comment: Computer Vision and Pattern Recognition 2025
♻ ☆ Lessons and Insights from a Unifying Study of Parameter-Efficient Fine-Tuning (PEFT) in Visual Recognition CVPR 2025
Parameter-efficient fine-tuning (PEFT) has attracted significant attention due to the growth of pre-trained model sizes and the need to fine-tune (FT) them for superior downstream performance. Despite a surge in new PEFT methods, a systematic study to understand their performance and suitable application scenarios is lacking, leaving questions like "when to apply PEFT" and "which method to use" largely unanswered, especially in visual recognition. In this paper, we conduct a unifying empirical study of representative PEFT methods with Vision Transformers. We systematically tune their hyperparameters to fairly compare their accuracy on downstream tasks. Our study offers a practical user guide and unveils several new insights. First, if tuned carefully, different PEFT methods achieve similar accuracy in the low-shot benchmark VTAB-1K. This includes simple approaches like FT the bias terms that were reported inferior. Second, despite similar accuracy, we find that PEFT methods make different mistakes and high-confidence predictions, likely due to their different inductive biases. Such an inconsistency (or complementarity) opens up the opportunity for ensemble methods, and we make preliminary attempts at this. Third, going beyond the commonly used low-shot tasks, we find that PEFT is also useful in many-shot regimes, achieving comparable or better accuracy than full FT while using significantly fewer parameters. Lastly, we investigate PEFT's ability to preserve a pre-trained model's robustness to distribution shifts (e.g., CLIP). Perhaps not surprisingly, PEFT approaches outperform full FT alone. However, with weight-space ensembles, full FT can better balance target distribution and distribution shift performance, suggesting a future research direction for robust PEFT.
comment: CVPR 2025. The code is available at https://github.com/OSU-MLB/ViT_PEFT_Vision
♻ ☆ PG-SAM: Prior-Guided SAM with Medical for Multi-organ Segmentation
Segment Anything Model (SAM) demonstrates powerful zero-shot capabilities; however, its accuracy and robustness significantly decrease when applied to medical image segmentation. Existing methods address this issue through modality fusion, integrating textual and image information to provide more detailed priors. In this study, we argue that the granularity of text and the domain gap affect the accuracy of the priors. Furthermore, the discrepancy between high-level abstract semantics and pixel-level boundary details in images can introduce noise into the fusion process. To address this, we propose Prior-Guided SAM (PG-SAM), which employs a fine-grained modality prior aligner to leverage specialized medical knowledge for better modality alignment. The core of our method lies in efficiently addressing the domain gap with fine-grained text from a medical LLM. Meanwhile, it also enhances the priors' quality after modality alignment, ensuring more accurate segmentation. In addition, our decoder enhances the model's expressive capabilities through multi-level feature fusion and iterative mask optimizer operations, supporting unprompted learning. We also propose a unified pipeline that effectively supplies high-quality semantic information to SAM. Extensive experiments on the Synapse dataset demonstrate that the proposed PG-SAM achieves state-of-the-art performance. Our anonymous code is released at https://github.com/logan-0623/PG-SAM.
♻ ☆ From My View to Yours: Ego-Augmented Learning in Large Vision Language Models for Understanding Exocentric Daily Living Activities
Large Vision Language Models (LVLMs) have demonstrated impressive capabilities in video understanding, yet their adoption for Activities of Daily Living (ADL) remains limited by their inability to capture fine-grained interactions and spatial relationships. To address this, we aim to leverage the complementary nature of egocentric views to enhance LVLM's understanding of exocentric ADL videos. Consequently, we propose ego2exo knowledge distillation to learn ego-augmented exp representations. While effective, this approach requires paired ego-exo videos, which are impractical to collect at scale. To address this, we propose Skeleton-guided Synthetic Ego Generation (SK-EGO), which leverages human skeleton motion to generate synthetic ego views from exocentric videos. To enhance the ego representation of LVLMs trained on synthetic data, we develop a domain-agnostic bootstrapped ego2exo strategy that effectively transfers knowledge from real ego-exo pairs to synthetic ego-exo pairs, while mitigating domain misalignment. We find that the exo representations of our ego-augmented LVLMs successfully learn to extract ego-perspective cues, demonstrated through comprehensive evaluation on six ADL benchmarks and our proposed Ego-in-Exo PerceptionMCQ benchmark designed specifically to assess egocentric understanding from exocentric videos. Code, models, and data will be open-sourced at https://github.com/dominickrei/EgoExo4ADL.
♻ ☆ Reanimating Images using Neural Representations of Dynamic Stimuli
While computer vision models have made incredible strides in static image recognition, they still do not match human performance in tasks that require the understanding of complex, dynamic motion. This is notably true for real-world scenarios where embodied agents face complex and motion-rich environments. Our approach, BrainNRDS (Brain-Neural Representations of Dynamic Stimuli), leverages state-of-the-art video diffusion models to decouple static image representation from motion generation, enabling us to utilize fMRI brain activity for a deeper understanding of human responses to dynamic visual stimuli. Conversely, we also demonstrate that information about the brain's representation of motion can enhance the prediction of optical flow in artificial systems. Our novel approach leads to four main findings: (1) Visual motion, represented as fine-grained, object-level resolution optical flow, can be decoded from brain activity generated by participants viewing video stimuli; (2) Video encoders outperform image-based models in predicting video-driven brain activity; (3) Brain-decoded motion signals enable realistic video reanimation based only on the initial frame of the video; and (4) We extend prior work to achieve full video decoding from video-driven brain activity. BrainNRDS advances our understanding of how the brain represents spatial and temporal information in dynamic visual scenes. Our findings demonstrate the potential of combining brain imaging with video diffusion models for developing more robust and biologically-inspired computer vision systems. We show additional decoding and encoding examples on this site: https://brain-nrds.github.io/.
comment: Project Page: https://brain-nrds.github.io
♻ ☆ Repurposing Pre-trained Video Diffusion Models for Event-based Video Interpolation CVPR 2025
Video Frame Interpolation aims to recover realistic missing frames between observed frames, generating a high-frame-rate video from a low-frame-rate video. However, without additional guidance, the large motion between frames makes this problem ill-posed. Event-based Video Frame Interpolation (EVFI) addresses this challenge by using sparse, high-temporal-resolution event measurements as motion guidance. This guidance allows EVFI methods to significantly outperform frame-only methods. However, to date, EVFI methods have relied on a limited set of paired event-frame training data, severely limiting their performance and generalization capabilities. In this work, we overcome the limited data challenge by adapting pre-trained video diffusion models trained on internet-scale datasets to EVFI. We experimentally validate our approach on real-world EVFI datasets, including a new one that we introduce. Our method outperforms existing methods and generalizes across cameras far better than existing approaches.
comment: Accepted to CVPR 2025
♻ ☆ MambaVision: A Hybrid Mamba-Transformer Vision Backbone CVPR'25
We propose a novel hybrid Mamba-Transformer backbone, MambaVision, specifically tailored for vision applications. Our core contribution includes redesigning the Mamba formulation to enhance its capability for efficient modeling of visual features. Through a comprehensive ablation study, we demonstrate the feasibility of integrating Vision Transformers (ViT) with Mamba. Our results show that equipping the Mamba architecture with self-attention blocks in the final layers greatly improves its capacity to capture long-range spatial dependencies. Based on these findings, we introduce a family of MambaVision models with a hierarchical architecture to meet various design criteria. For classification on the ImageNet-1K dataset, MambaVision variants achieve state-of-the-art (SOTA) performance in terms of both Top-1 accuracy and throughput. In downstream tasks such as object detection, instance segmentation, and semantic segmentation on MS COCO and ADE20K datasets, MambaVision outperforms comparably sized backbones while demonstrating favorable performance. Code: https://github.com/NVlabs/MambaVision
comment: Accepted to CVPR'25
♻ ☆ SAMWISE: Infusing Wisdom in SAM2 for Text-Driven Video Segmentation CVPR 2025
Referring Video Object Segmentation (RVOS) relies on natural language expressions to segment an object in a video clip. Existing methods restrict reasoning either to independent short clips, losing global context, or process the entire video offline, impairing their application in a streaming fashion. In this work, we aim to surpass these limitations and design an RVOS method capable of effectively operating in streaming-like scenarios while retaining contextual information from past frames. We build upon the Segment-Anything 2 (SAM2) model, that provides robust segmentation and tracking capabilities and is naturally suited for streaming processing. We make SAM2 wiser, by empowering it with natural language understanding and explicit temporal modeling at the feature extraction stage, without fine-tuning its weights, and without outsourcing modality interaction to external models. To this end, we introduce a novel adapter module that injects temporal information and multi-modal cues in the feature extraction process. We further reveal the phenomenon of tracking bias in SAM2 and propose a learnable module to adjust its tracking focus when the current frame features suggest a new object more aligned with the caption. Our proposed method, SAMWISE, achieves state-of-the-art across various benchmarks, by adding a negligible overhead of less than 5 M parameters. Code is available at https://github.com/ClaudiaCuttano/SAMWISE .
comment: CVPR 2025. Project page: https://claudiacuttano.github.io/SAMWISE
♻ ☆ Aesthetic Post-Training Diffusion Models from Generic Preferences with Step-by-step Preference Optimization CVPR 2025
Generating visually appealing images is fundamental to modern text-to-image generation models. A potential solution to better aesthetics is direct preference optimization (DPO), which has been applied to diffusion models to improve general image quality including prompt alignment and aesthetics. Popular DPO methods propagate preference labels from clean image pairs to all the intermediate steps along the two generation trajectories. However, preference labels provided in existing datasets are blended with layout and aesthetic opinions, which would disagree with aesthetic preference. Even if aesthetic labels were provided (at substantial cost), it would be hard for the two-trajectory methods to capture nuanced visual differences at different steps. To improve aesthetics economically, this paper uses existing generic preference data and introduces step-by-step preference optimization (SPO) that discards the propagation strategy and allows fine-grained image details to be assessed. Specifically, at each denoising step, we 1) sample a pool of candidates by denoising from a shared noise latent, 2) use a step-aware preference model to find a suitable win-lose pair to supervise the diffusion model, and 3) randomly select one from the pool to initialize the next denoising step. This strategy ensures that diffusion models focus on the subtle, fine-grained visual differences instead of layout aspect. We find that aesthetics can be significantly enhanced by accumulating these improved minor differences. When fine-tuning Stable Diffusion v1.5 and SDXL, SPO yields significant improvements in aesthetics compared with existing DPO methods while not sacrificing image-text alignment compared with vanilla models. Moreover, SPO converges much faster than DPO methods due to the use of more correct preference labels provided by the step-aware preference model.
comment: CVPR 2025. Project Page: https://rockeycoss.github.io/spo.github.io/
♻ ☆ CLIP-EBC: CLIP Can Count Accurately through Enhanced Blockwise Classification ICME 2025
We propose CLIP-EBC, the first fully CLIP-based model for accurate crowd density estimation. While the CLIP model has demonstrated remarkable success in addressing recognition tasks such as zero-shot image classification, its potential for counting has been largely unexplored due to the inherent challenges in transforming a regression problem, such as counting, into a recognition task. In this work, we investigate and enhance CLIP's ability to count, focusing specifically on the task of estimating crowd sizes from images. Existing classification-based crowd-counting frameworks have significant limitations, including the quantization of count values into bordering real-valued bins and the sole focus on classification errors. These practices result in label ambiguity near the shared borders and inaccurate prediction of count values. Hence, directly applying CLIP within these frameworks may yield suboptimal performance. To address these challenges, we first propose the Enhanced Blockwise Classification (EBC) framework. Unlike previous methods, EBC utilizes integer-valued bins, effectively reducing ambiguity near bin boundaries. Additionally, it incorporates a regression loss based on density maps to improve the prediction of count values. Within our backbone-agnostic EBC framework, we then introduce CLIP-EBC to fully leverage CLIP's recognition capabilities for this task. Extensive experiments demonstrate the effectiveness of EBC and the competitive performance of CLIP-EBC. Specifically, our EBC framework can improve existing classification-based methods by up to 44.5% on the UCF-QNRF dataset, and CLIP-EBC achieves state-of-the-art performance on the NWPU-Crowd test set, with an MAE of 58.2 and an RMSE of 268.5, representing improvements of 8.6% and 13.3% over the previous best method, STEERER. The code and weights are available at https://github.com/Yiming-M/CLIP-EBC.
comment: This is the author's accepted manuscript. The final version is published in ICME 2025
♻ ☆ UrbanCAD: Towards Highly Controllable and Photorealistic 3D Vehicles for Urban Scene Simulation
Photorealistic 3D vehicle models with high controllability are essential for autonomous driving simulation and data augmentation. While handcrafted CAD models provide flexible controllability, free CAD libraries often lack the high-quality materials necessary for photorealistic rendering. Conversely, reconstructed 3D models offer high-fidelity rendering but lack controllability. In this work, we introduce UrbanCAD, a framework that generates highly controllable and photorealistic 3D vehicle digital twins from a single urban image, leveraging a large collection of free 3D CAD models and handcrafted materials. To achieve this, we propose a novel pipeline that follows a retrieval-optimization manner, adapting to observational data while preserving fine-grained expert-designed priors for both geometry and material. This enables vehicles' realistic 360-degree rendering, background insertion, material transfer, relighting, and component manipulation. Furthermore, given multi-view background perspective and fisheye images, we approximate environment lighting using fisheye images and reconstruct the background with 3DGS, enabling the photorealistic insertion of optimized CAD models into rendered novel view backgrounds. Experimental results demonstrate that UrbanCAD outperforms baselines in terms of photorealism. Additionally, we show that various perception models maintain their accuracy when evaluated on UrbanCAD with in-distribution configurations but degrade when applied to realistic out-of-distribution data generated by our method. This suggests that UrbanCAD is a significant advancement in creating photorealistic, safety-critical driving scenarios for downstream applications.
comment: Project page: https://xdimlab.github.io/UrbanCAD/
♻ ☆ HyperFLINT: Hypernetwork-based Flow Estimation and Temporal Interpolation for Scientific Ensemble Visualization
We present HyperFLINT (Hypernetwork-based FLow estimation and temporal INTerpolation), a novel deep learning-based approach for estimating flow fields, temporally interpolating scalar fields, and facilitating parameter space exploration in spatio-temporal scientific ensemble data. This work addresses the critical need to explicitly incorporate ensemble parameters into the learning process, as traditional methods often neglect these, limiting their ability to adapt to diverse simulation settings and provide meaningful insights into the data dynamics. HyperFLINT introduces a hypernetwork to account for simulation parameters, enabling it to generate accurate interpolations and flow fields for each timestep by dynamically adapting to varying conditions, thereby outperforming existing parameter-agnostic approaches. The architecture features modular neural blocks with convolutional and deconvolutional layers, supported by a hypernetwork that generates weights for the main network, allowing the model to better capture intricate simulation dynamics. A series of experiments demonstrates HyperFLINT's significantly improved performance in flow field estimation and temporal interpolation, as well as its potential in enabling parameter space exploration, offering valuable insights into complex scientific ensembles.
♻ ☆ AuraFusion360: Augmented Unseen Region Alignment for Reference-based 360° Unbounded Scene Inpainting CVPR 2025
Three-dimensional scene inpainting is crucial for applications from virtual reality to architectural visualization, yet existing methods struggle with view consistency and geometric accuracy in 360{\deg} unbounded scenes. We present AuraFusion360, a novel reference-based method that enables high-quality object removal and hole filling in 3D scenes represented by Gaussian Splatting. Our approach introduces (1) depth-aware unseen mask generation for accurate occlusion identification, (2) Adaptive Guided Depth Diffusion, a zero-shot method for accurate initial point placement without requiring additional training, and (3) SDEdit-based detail enhancement for multi-view coherence. We also introduce 360-USID, the first comprehensive dataset for 360{\deg} unbounded scene inpainting with ground truth. Extensive experiments demonstrate that AuraFusion360 significantly outperforms existing methods, achieving superior perceptual quality while maintaining geometric accuracy across dramatic viewpoint changes.
comment: Paper accepted to CVPR 2025. Project page: https://kkennethwu.github.io/aurafusion360/
♻ ☆ FREE-Merging: Fourier Transform for Efficient Model Merging
With the rapid growth of deep learning, there is an increasing availability of open-source models for various tasks. However, single fine-tuned models often fall short of meeting the diverse needs of users. Model merging has thus emerged as an efficient method to integrate the capabilities of existing models into a unified model. Nevertheless, existing model merging methods face challenging trade-offs between performance and deployment costs, primarily due to task interference. For the first time, we reveal that task interference is evident in the frequency domain of model parameters, yet current efforts only focus on spatial domain solutions, which are largely ineffective in addressing frequency domain interference. To mitigate the impact of frequency domain interference, we propose FR-Merging, an innovative method that effectively filters harmful frequency domain interference on the backbone with minimal computational overhead. Since performance loss is inevitable with cost-free methods, we propose a lightweight task-specific expert module that dynamically compensates for information loss during merging. This proposed framework, FREE-Merging (FR-Merging with experts), strikes a balanced trade-off between training cost, inference latency, storage requirements, and performance. We demonstrate the effectiveness of both FR-Merging and FREE-Merging on multiple tasks across CV, NLP, and Multi-Modal domains and show that they can be flexibly adapted to specific needs.
comment: 20 pages, 10 figures
♻ ☆ GCC: Generative Color Constancy via Diffusing a Color Checker CVPR 2025
Color constancy methods often struggle to generalize across different camera sensors due to varying spectral sensitivities. We present GCC, which leverages diffusion models to inpaint color checkers into images for illumination estimation. Our key innovations include (1) a single-step deterministic inference approach that inpaints color checkers reflecting scene illumination, (2) a Laplacian decomposition technique that preserves checker structure while allowing illumination-dependent color adaptation, and (3) a mask-based data augmentation strategy for handling imprecise color checker annotations. By harnessing rich priors from pre-trained diffusion models, GCC demonstrates strong robustness in challenging cross-camera scenarios. These results highlight our method's effective generalization capability across different camera characteristics without requiring sensor-specific training, making it a versatile and practical solution for real-world applications.
comment: Paper accepted to CVPR 2025. Project page: https://chenwei891213.github.io/GCC/
♻ ☆ SpectroMotion: Dynamic 3D Reconstruction of Specular Scenes CVPR 2025
We present SpectroMotion, a novel approach that combines 3D Gaussian Splatting (3DGS) with physically-based rendering (PBR) and deformation fields to reconstruct dynamic specular scenes. Previous methods extending 3DGS to model dynamic scenes have struggled to represent specular surfaces accurately. Our method addresses this limitation by introducing a residual correction technique for accurate surface normal computation during deformation, complemented by a deformable environment map that adapts to time-varying lighting conditions. We implement a coarse-to-fine training strategy significantly enhancing scene geometry and specular color prediction. It is the only existing 3DGS method capable of synthesizing photorealistic real-world dynamic specular scenes, outperforming state-of-the-art methods in rendering complex, dynamic, and specular scenes.
comment: Paper accepted to CVPR 2025. Project page: https://cdfan0627.github.io/spectromotion/
♻ ☆ EmoAttack: Emotion-to-Image Diffusion Models for Emotional Backdoor Generation
Text-to-image diffusion models can generate realistic images based on textual inputs, enabling users to convey their opinions visually through language. Meanwhile, within language, emotion plays a crucial role in expressing personal opinions in our daily lives and the inclusion of maliciously negative content can lead users astray, exacerbating negative emotions. Recognizing the success of diffusion models and the significance of emotion, we investigate a previously overlooked risk associated with text-to-image diffusion models, that is, utilizing emotion in the input texts to introduce negative content and provoke unfavorable emotions in users. Specifically, we identify a new backdoor attack, i.e., emotion-aware backdoor attack (EmoAttack), which introduces malicious negative content triggered by emotional texts during image generation. We formulate such an attack as a diffusion personalization problem to avoid extensive model retraining and propose the EmoBooth. Unlike existing personalization methods, our approach fine-tunes a pre-trained diffusion model by establishing a mapping between a cluster of emotional words and a given reference image containing malicious negative content. To validate the effectiveness of our method, we built a dataset and conducted extensive analysis and discussion about its effectiveness. Given consumers' widespread use of diffusion models, uncovering this threat is critical for society.
♻ ☆ FrugalNeRF: Fast Convergence for Few-shot Novel View Synthesis without Learned Priors CVPR 2025
Neural Radiance Fields (NeRF) face significant challenges in extreme few-shot scenarios, primarily due to overfitting and long training times. Existing methods, such as FreeNeRF and SparseNeRF, use frequency regularization or pre-trained priors but struggle with complex scheduling and bias. We introduce FrugalNeRF, a novel few-shot NeRF framework that leverages weight-sharing voxels across multiple scales to efficiently represent scene details. Our key contribution is a cross-scale geometric adaptation scheme that selects pseudo ground truth depth based on reprojection errors across scales. This guides training without relying on externally learned priors, enabling full utilization of the training data. It can also integrate pre-trained priors, enhancing quality without slowing convergence. Experiments on LLFF, DTU, and RealEstate-10K show that FrugalNeRF outperforms other few-shot NeRF methods while significantly reducing training time, making it a practical solution for efficient and accurate 3D scene reconstruction.
comment: Paper accepted to CVPR 2025. Project page: https://linjohnss.github.io/frugalnerf/
♻ ☆ SPA-VL: A Comprehensive Safety Preference Alignment Dataset for Vision Language Model
The emergence of Vision Language Models (VLMs) has brought unprecedented advances in understanding multimodal information. The combination of textual and visual semantics in VLMs is highly complex and diverse, making the safety alignment of these models challenging. Furthermore, due to the limited study on the safety alignment of VLMs, there is a lack of large-scale, high-quality datasets. To address these limitations, we propose a Safety Preference Alignment dataset for Vision Language Models named SPA-VL. In terms of breadth, SPA-VL covers 6 harmfulness domains, 13 categories, and 53 subcategories, and contains 100,788 samples of the quadruple (question, image, chosen response, rejected response). In terms of depth, the responses are collected from 12 open-source (e.g., QwenVL) and closed-source (e.g., Gemini) VLMs to ensure diversity. The construction of preference data is fully automated, and the experimental results indicate that models trained with alignment techniques on the SPA-VL dataset exhibit substantial improvements in harmlessness and helpfulness while maintaining core capabilities. SPA-VL, as a large-scale, high-quality, and diverse dataset, represents a significant milestone in ensuring that VLMs achieve both harmlessness and helpfulness.
♻ ☆ Decorum: A Language-Based Approach For Style-Conditioned Synthesis of Indoor 3D Scenes
3D indoor scene generation is an important problem for the design of digital and real-world environments. To automate this process, a scene generation model should be able to not only generate plausible scene layouts, but also take into consideration visual features and style preferences. Existing methods for this task exhibit very limited control over these attributes, only allowing text inputs in the form of simple object-level descriptions or pairwise spatial relationships. Our proposed method Decorum enables users to control the scene generation process with natural language by adopting language-based representations at each stage. This enables us to harness recent advancements in Large Language Models (LLMs) to model language-to-language mappings. In addition, we show that using a text-based representation allows us to select furniture for our scenes using a novel object retrieval method based on multimodal LLMs. Evaluations on the benchmark 3D-FRONT dataset show that our methods achieve improvements over existing work in text-conditioned scene synthesis and object retrieval.
♻ ☆ DeNVeR: Deformable Neural Vessel Representations for Unsupervised Video Vessel Segmentation CVPR 2025
This paper presents Deformable Neural Vessel Representations (DeNVeR), an unsupervised approach for vessel segmentation in X-ray angiography videos without annotated ground truth. DeNVeR utilizes optical flow and layer separation techniques, enhancing segmentation accuracy and adaptability through test-time training. Key contributions include a novel layer separation bootstrapping technique, a parallel vessel motion loss, and the integration of Eulerian motion fields for modeling complex vessel dynamics. A significant component of this research is the introduction of the XACV dataset, the first X-ray angiography coronary video dataset with high-quality, manually labeled segmentation ground truth. Extensive evaluations on both XACV and CADICA datasets demonstrate that DeNVeR outperforms current state-of-the-art methods in vessel segmentation accuracy and generalization capability while maintaining temporal coherency.
comment: Paper accepted to CVPR 2025. Project page: https://kirito878.github.io/DeNVeR/
♻ ☆ FIPER: Generalizable Factorized Features for Robust Low-Level Vision Models
In this work, we propose using a unified representation, termed Factorized Features, for low-level vision tasks, where we test on Single Image Super-Resolution (SISR) and Image Compression. Motivated by the shared principles between these tasks, they require recovering and preserving fine image details, whether by enhancing resolution for SISR or reconstructing compressed data for Image Compression. Unlike previous methods that mainly focus on network architecture, our proposed approach utilizes a basis-coefficient decomposition as well as an explicit formulation of frequencies to capture structural components and multi-scale visual features in images, which addresses the core challenges of both tasks. We replace the representation of prior models from simple feature maps with Factorized Features to validate the potential for broad generalizability. In addition, we further optimize the pipelines by leveraging the mergeable-basis property of our Factorized Features, which consolidates shared structures on multi-frame compression and super-resolution. Extensive experiments show that our unified representation delivers state-of-the-art performance, achieving an average relative improvement of 204.4% in PSNR over the baseline in Super-Resolution (SR) and 9.35% BD-rate reduction in Image Compression compared to the previous SOTA.
comment: Project page: https://jayisaking.github.io/FIPER/
♻ ☆ Empowering LLMs to Understand and Generate Complex Vector Graphics CVPR 2025
The unprecedented advancements in Large Language Models (LLMs) have profoundly impacted natural language processing but have yet to fully embrace the realm of scalable vector graphics (SVG) generation. While LLMs encode partial knowledge of SVG data from web pages during training, recent findings suggest that semantically ambiguous and tokenized representations within LLMs may result in hallucinations in vector primitive predictions. Additionally, LLM training typically lacks modeling and understanding of the rendering sequence of vector paths, which can lead to occlusion between output vector primitives. In this paper, we present LLM4SVG, an initial yet substantial step toward bridging this gap by enabling LLMs to better understand and generate vector graphics. LLM4SVG facilitates a deeper understanding of SVG components through learnable semantic tokens, which precisely encode these tokens and their corresponding properties to generate semantically aligned SVG outputs. Using a series of learnable semantic tokens, a structured dataset for instruction following is developed to support comprehension and generation across two primary tasks. Our method introduces a modular architecture to existing large language models, integrating semantic tags, vector instruction encoders, fine-tuned commands, and powerful LLMs to tightly combine geometric, appearance, and language information. To overcome the scarcity of SVG-text instruction data, we developed an automated data generation pipeline that collected our SVGX-SFT Dataset, consisting of high-quality human-designed SVGs and 580k SVG instruction following data specifically crafted for LLM training, which facilitated the adoption of the supervised fine-tuning strategy popular in LLM development.
comment: Accepted by CVPR 2025. Project Page: https://ximinng.github.io/LLM4SVGProject/
♻ ☆ DiffIR2VR-Zero: Zero-Shot Video Restoration with Diffusion-based Image Restoration Models
We present DiffIR2VR-Zero, a zero-shot framework that enables any pre-trained image restoration diffusion model to perform high-quality video restoration without additional training. While image diffusion models have shown remarkable restoration capabilities, their direct application to video leads to temporal inconsistencies, and existing video restoration methods require extensive retraining for different degradation types. Our approach addresses these challenges through two key innovations: a hierarchical latent warping strategy that maintains consistency across both keyframes and local frames, and a hybrid token merging mechanism that adaptively combines optical flow and feature matching. Through extensive experiments, we demonstrate that our method not only maintains the high-quality restoration of base diffusion models but also achieves superior temporal consistency across diverse datasets and degradation conditions, including challenging scenarios like 8$\times$ super-resolution and severe noise. Importantly, our framework works with any image restoration diffusion model, providing a versatile solution for video enhancement without task-specific training or modifications.
comment: Project page: https://jimmycv07.github.io/DiffIR2VR_web/
♻ ☆ Localized Concept Erasure for Text-to-Image Diffusion Models Using Training-Free Gated Low-Rank Adaptation CVPR 2025
Fine-tuning based concept erasing has demonstrated promising results in preventing generation of harmful contents from text-to-image diffusion models by removing target concepts while preserving remaining concepts. To maintain the generation capability of diffusion models after concept erasure, it is necessary to remove only the image region containing the target concept when it locally appears in an image, leaving other regions intact. However, prior arts often compromise fidelity of the other image regions in order to erase the localized target concept appearing in a specific area, thereby reducing the overall performance of image generation. To address these limitations, we first introduce a framework called localized concept erasure, which allows for the deletion of only the specific area containing the target concept in the image while preserving the other regions. As a solution for the localized concept erasure, we propose a training-free approach, dubbed Gated Low-rank adaptation for Concept Erasure (GLoCE), that injects a lightweight module into the diffusion model. GLoCE consists of low-rank matrices and a simple gate, determined only by several generation steps for concepts without training. By directly applying GLoCE to image embeddings and designing the gate to activate only for target concepts, GLoCE can selectively remove only the region of the target concepts, even when target and remaining concepts coexist within an image. Extensive experiments demonstrated GLoCE not only improves the image fidelity to text prompts after erasing the localized target concepts, but also outperforms prior arts in efficacy, specificity, and robustness by large margin and can be extended to mass concept erasure.
comment: Accepted to CVPR 2025
♻ ☆ DepthSplat: Connecting Gaussian Splatting and Depth CVPR 2025
Gaussian splatting and single-view depth estimation are typically studied in isolation. In this paper, we present DepthSplat to connect Gaussian splatting and depth estimation and study their interactions. More specifically, we first contribute a robust multi-view depth model by leveraging pre-trained monocular depth features, leading to high-quality feed-forward 3D Gaussian splatting reconstructions. We also show that Gaussian splatting can serve as an unsupervised pre-training objective for learning powerful depth models from large-scale multi-view posed datasets. We validate the synergy between Gaussian splatting and depth estimation through extensive ablation and cross-task transfer experiments. Our DepthSplat achieves state-of-the-art performance on ScanNet, RealEstate10K and DL3DV datasets in terms of both depth estimation and novel view synthesis, demonstrating the mutual benefits of connecting both tasks. In addition, DepthSplat enables feed-forward reconstruction from 12 input views (512x960 resolutions) in 0.6 seconds.
comment: CVPR 2025, Project page: https://haofeixu.github.io/depthsplat/, Code: https://github.com/cvg/depthsplat
♻ ☆ Interpreting Object-level Foundation Models via Visual Precision Search CVPR 2025
Advances in multimodal pre-training have propelled object-level foundation models, such as Grounding DINO and Florence-2, in tasks like visual grounding and object detection. However, interpreting these models' decisions has grown increasingly challenging. Existing interpretable attribution methods for object-level task interpretation have notable limitations: (1) gradient-based methods lack precise localization due to visual-textual fusion in foundation models, and (2) perturbation-based methods produce noisy saliency maps, limiting fine-grained interpretability. To address these, we propose a Visual Precision Search method that generates accurate attribution maps with fewer regions. Our method bypasses internal model parameters to overcome attribution issues from multimodal fusion, dividing inputs into sparse sub-regions and using consistency and collaboration scores to accurately identify critical decision-making regions. We also conducted a theoretical analysis of the boundary guarantees and scope of applicability of our method. Experiments on RefCOCO, MS COCO, and LVIS show our approach enhances object-level task interpretability over SOTA for Grounding DINO and Florence-2 across various evaluation metrics, with faithfulness gains of 23.7%, 31.6%, and 20.1% on MS COCO, LVIS, and RefCOCO for Grounding DINO, and 102.9% and 66.9% on MS COCO and RefCOCO for Florence-2. Additionally, our method can interpret failures in visual grounding and object detection tasks, surpassing existing methods across multiple evaluation metrics. The code will be released at https://github.com/RuoyuChen10/VPS.
comment: Accepted to CVPR 2025
♻ ☆ When Large Vision-Language Model Meets Large Remote Sensing Imagery: Coarse-to-Fine Text-Guided Token Pruning
Efficient vision-language understanding of large Remote Sensing Images (RSIs) is meaningful but challenging. Current Large Vision-Language Models (LVLMs) typically employ limited pre-defined grids to process images, leading to information loss when handling gigapixel RSIs. Conversely, using unlimited grids significantly increases computational costs. To preserve image details while reducing computational complexity, we propose a text-guided token pruning method with Dynamic Image Pyramid (DIP) integration. Our method introduces: (i) a Region Focus Module (RFM) that leverages text-aware region localization capability to identify critical vision tokens, and (ii) a coarse-to-fine image tile selection and vision token pruning strategy based on DIP, which is guided by RFM outputs and avoids directly processing the entire large imagery. Additionally, existing benchmarks for evaluating LVLMs' perception ability on large RSI suffer from limited question diversity and constrained image sizes. We construct a new benchmark named LRS-VQA, which contains 7,333 QA pairs across 8 categories, with image length up to 27,328 pixels. Our method outperforms existing high-resolution strategies on four datasets using the same data. Moreover, compared to existing token reduction methods, our approach demonstrates higher efficiency under high-resolution settings. Dataset and code are in https://github.com/VisionXLab/LRS-VQA.
comment: 12 pages, 6 figures, 7 tables
♻ ☆ Interpretable Bilingual Multimodal Large Language Model for Diverse Biomedical Tasks ICLR 2025
Several medical Multimodal Large Languange Models (MLLMs) have been developed to address tasks involving visual images with textual instructions across various medical modalities, achieving impressive results. Most current medical generalist models are region-agnostic, treating the entire image as a holistic representation. However, they struggle to identify which specific regions they are focusing on when generating a sentence. To mimic the behavior of doctors, who typically begin by reviewing the entire image before concentrating on specific regions for a thorough evaluation, we aim to enhance the capability of medical MLLMs in understanding anatomical regions within entire medical scans. To achieve it, we first formulate Region-Centric tasks and construct a large-scale dataset, MedRegInstruct, to incorporate regional information into training. Combining our collected dataset with other medical multimodal corpora for training, we propose a Region-Aware medical MLLM, MedRegA, which is the first bilingual generalist medical AI system to simultaneously handle image-level and region-level medical vision-language tasks across a broad range of modalities. Our MedRegA not only enables three region-centric tasks, but also achieves the best performance for visual question answering, report generation and medical image classification over 8 modalities, showcasing significant versatility. Experiments demonstrate that our model can not only accomplish powerful performance across various medical vision-language tasks in bilingual settings, but also recognize and detect structures in multimodal medical scans, boosting the interpretability and user interactivity of medical MLLMs. Our project page is https://medrega.github.io.
comment: Accepted in ICLR 2025
♻ ☆ Pfungst and Clever Hans: Identifying the unintended cues in a widely used Alzheimer's disease MRI dataset using explainable deep learning
Backgrounds. Deep neural networks have demonstrated high accuracy in classifying Alzheimer's disease (AD). This study aims to enlighten the underlying black-box nature and reveal individual contributions of T1-weighted (T1w) gray-white matter texture, volumetric information and preprocessing on classification performance. Methods. We utilized T1w MRI data from the Alzheimer's Disease Neuroimaging Initiative to distinguish matched AD patients (990 MRIs) from healthy controls (990 MRIs). Preprocessing included skull stripping and binarization at varying thresholds to systematically eliminate texture information. A deep neural network was trained on these configurations, and the model performance was compared using McNemar tests with discrete Bonferroni-Holm correction. Layer-wise Relevance Propagation (LRP) and structural similarity metrics between heatmaps were applied to analyze learned features. Results. Classification performance metrics (accuracy, sensitivity, and specificity) were comparable across all configurations, indicating a negligible influence of T1w gray- and white signal texture. Models trained on binarized images demonstrated similar feature performance and relevance distributions, with volumetric features such as atrophy and skull-stripping features emerging as primary contributors. Conclusions. We revealed a previously undiscovered Clever Hans effect in a widely used AD MRI dataset. Deep neural networks classification predominantly rely on volumetric features, while eliminating gray-white matter T1w texture did not decrease the performance. This study clearly demonstrates an overestimation of the importance of gray-white matter contrasts, at least for widely used structural T1w images, and highlights potential misinterpretation of performance metrics.
♻ ☆ CLIP-Adapter: Better Vision-Language Models with Feature Adapters
Large-scale contrastive vision-language pre-training has shown significant progress in visual representation learning. Unlike traditional visual systems trained by a fixed set of discrete labels, a new paradigm was introduced in \cite{radford2021learning} to directly learn to align images with raw texts in an open-vocabulary setting. On downstream tasks, a carefully chosen text prompt is employed to make zero-shot predictions.~To avoid non-trivial prompt engineering, context optimization \cite{zhou2021coop} has been proposed to learn continuous vectors as task-specific prompts with few-shot training examples.~In this paper, we show that there is an alternative path to achieve better vision-language models other than prompt tuning.~While prompt tuning is for the textual inputs, we propose CLIP-Adapter to conduct fine-tuning with feature adapters on either visual or language branch. Specifically, CLIP-Adapter adopts an additional bottleneck layer to learn new features and performs residual-style feature blending with the original pre-trained features.~As a consequence, CLIP-Adapter is able to outperform context optimization while maintains a simple design. Experiments and extensive ablation studies on various visual classification tasks demonstrate the effectiveness of our approach. Code is released at t https://github.com/gaopengcuhk/CLIP-Adapter.
comment: Accepted by IJCV
♻ ☆ SG-GAN: Fine Stereoscopic-Aware Generation for 3D Brain Point Cloud Up-sampling from a Single Image
In minimally-invasive brain surgeries with indirect and narrow operating environments, 3D brain reconstruction is crucial. However, as requirements of accuracy for some new minimally-invasive surgeries (such as brain-computer interface surgery) are higher and higher, the outputs of conventional 3D reconstruction, such as point cloud (PC), are facing the challenges that sample points are too sparse and the precision is insufficient. On the other hand, there is a scarcity of high-density point cloud datasets, which makes it challenging to train models for direct reconstruction of high-density brain point clouds. In this work, a novel model named stereoscopic-aware graph generative adversarial network (SG-GAN) with two stages is proposed to generate fine high-density PC conditioned on a single image. The Stage-I GAN sketches the primitive shape and basic structure of the organ based on the given image, yielding Stage-I point clouds. The Stage-II GAN takes the results from Stage-I and generates high-density point clouds with detailed features. The Stage-II GAN is capable of correcting defects and restoring the detailed features of the region of interest (ROI) through the up-sampling process. Furthermore, a parameter-free-attention-based free-transforming module is developed to learn the efficient features of input, while upholding a promising performance. Comparing with the existing methods, the SG-GAN model shows superior performance in terms of visual quality, objective measurements, and performance in classification, as demonstrated by comprehensive results measured by several evaluation metrics including PC-to-PC error and Chamfer distance.
comment: Accepted by TETCI
♻ ☆ Helvipad: A Real-World Dataset for Omnidirectional Stereo Depth Estimation CVPR 2025
Despite progress in stereo depth estimation, omnidirectional imaging remains underexplored, mainly due to the lack of appropriate data. We introduce Helvipad, a real-world dataset for omnidirectional stereo depth estimation, featuring 40K video frames from video sequences across diverse environments, including crowded indoor and outdoor scenes with various lighting conditions. Collected using two 360{\deg} cameras in a top-bottom setup and a LiDAR sensor, the dataset includes accurate depth and disparity labels by projecting 3D point clouds onto equirectangular images. Additionally, we provide an augmented training set with an increased label density by using depth completion. We benchmark leading stereo depth estimation models for both standard and omnidirectional images. The results show that while recent stereo methods perform decently, a challenge persists in accurately estimating depth in omnidirectional imaging. To address this, we introduce necessary adaptations to stereo models, leading to improved performance.
comment: Accepted to CVPR 2025. Project page: https://vita-epfl.github.io/Helvipad
♻ ☆ Bokehlicious: Photorealistic Bokeh Rendering with Controllable Apertures
Bokeh rendering methods play a key role in creating the visually appealing, softly blurred backgrounds seen in professional photography. While recent learning-based approaches show promising results, generating realistic Bokeh with variable strength remains challenging. Existing methods require additional inputs and suffer from unrealistic Bokeh reproduction due to reliance on synthetic data. In this work, we propose Bokehlicious, a highly efficient network that provides intuitive control over Bokeh strength through an Aperture-Aware Attention mechanism, mimicking the physical lens aperture. To further address the lack of high-quality real-world data, we present RealBokeh, a novel dataset featuring 23,000 high-resolution (24-MP) images captured by professional photographers, covering diverse scenes with varied aperture and focal length settings. Evaluations on both our new RealBokeh and established Bokeh rendering benchmarks show that Bokehlicious consistently outperforms SOTA methods while significantly reducing computational cost and exhibiting strong zero-shot generalization. Our method and dataset further extend to defocus deblurring, achieving competitive results on the RealDOF benchmark. Our code and data can be found at https://github.com/TimSeizinger/Bokehlicious
comment: Technical Report
♻ ☆ MetaToken: Detecting Hallucination in Image Descriptions by Meta Classification
Large Vision Language Models (LVLMs) have shown remarkable capabilities in multimodal tasks like visual question answering or image captioning. However, inconsistencies between the visual information and the generated text, a phenomenon referred to as hallucinations, remain an unsolved problem with regard to the trustworthiness of LVLMs. To address this problem, recent works proposed to incorporate computationally costly Large (Vision) Language Models in order to detect hallucinations on a sentence- or subsentence-level. In this work, we introduce MetaToken, a lightweight binary classifier to detect hallucinations on the token-level at negligible cost. Based on a statistical analysis, we reveal key factors of hallucinations in LVLMs. MetaToken can be applied to any open-source LVLM without any knowledge about ground truth data providing a calibrated detection of hallucinations. We evaluate our method on four state-of-the-art LVLMs demonstrating the effectiveness of our approach.
♻ ☆ RobustEMD: Domain Robust Matching for Cross-domain Few-shot Medical Image Segmentation
Few-shot medical image segmentation (FSMIS) aims to perform the limited annotated data learning in the medical image analysis scope. Despite the progress has been achieved, current FSMIS models are all trained and deployed on the same data domain, as is not consistent with the clinical reality that medical imaging data is always across different data domains (e.g. imaging modalities, institutions and equipment sequences). How to enhance the FSMIS models to generalize well across the different specific medical imaging domains? In this paper, we focus on the matching mechanism of the few-shot semantic segmentation models and introduce an Earth Mover's Distance (EMD) calculation based domain robust matching mechanism for the cross-domain scenario. Specifically, we formulate the EMD transportation process between the foreground support-query features, the texture structure aware weights generation method, which proposes to perform the sobel based image gradient calculation over the nodes, is introduced in the EMD matching flow to restrain the domain relevant nodes. Besides, the point set level distance measurement metric is introduced to calculated the cost for the transportation from support set nodes to query set nodes. To evaluate the performance of our model, we conduct experiments on three scenarios (i.e., cross-modal, cross-sequence and cross-institution), which includes eight medical datasets and involves three body regions, and the results demonstrate that our model achieves the SoTA performance against the compared models.
comment: More details should be included, and more experiments
♻ ☆ Patch-Depth Fusion: Dichotomous Image Segmentation via Fine-Grained Patch Strategy and Depth Integrity-Prior
Dichotomous Image Segmentation (DIS) is a high-precision object segmentation task for high-resolution natural images. The current mainstream methods focus on the optimization of local details but overlook the fundamental challenge of modeling the integrity of objects. We have found that the depth integrity-prior implicit in the the pseudo-depth maps generated by Depth Anything Model v2 and the local detail features of image patches can jointly address the above dilemmas. Based on the above findings, we have designed a novel Patch-Depth Fusion Network (PDFNet) for high-precision dichotomous image segmentation. The core of PDFNet consists of three aspects. Firstly, the object perception is enhanced through multi-modal input fusion. By utilizing the patch fine-grained strategy, coupled with patch selection and enhancement, the sensitivity to details is improved. Secondly, by leveraging the depth integrity-prior distributed in the depth maps, we propose an integrity-prior loss to enhance the uniformity of the segmentation results in the depth maps. Finally, we utilize the features of the shared encoder and, through a simple depth refinement decoder, improve the ability of the shared encoder to capture subtle depth-related information in the images. Experiments on the DIS-5K dataset show that PDFNet significantly outperforms state-of-the-art non-diffusion methods. Due to the incorporation of the depth integrity-prior, PDFNet achieves or even surpassing the performance of the latest diffusion-based methods while using less than 11% of the parameters of diffusion-based methods. The source code at https://github.com/Tennine2077/PDFNet
♻ ☆ ProtoGS: Efficient and High-Quality Rendering with 3D Gaussian Prototypes
3D Gaussian Splatting (3DGS) has made significant strides in novel view synthesis but is limited by the substantial number of Gaussian primitives required, posing challenges for deployment on lightweight devices. Recent methods address this issue by compressing the storage size of densified Gaussians, yet fail to preserve rendering quality and efficiency. To overcome these limitations, we propose ProtoGS to learn Gaussian prototypes to represent Gaussian primitives, significantly reducing the total Gaussian amount without sacrificing visual quality. Our method directly uses Gaussian prototypes to enable efficient rendering and leverage the resulting reconstruction loss to guide prototype learning. To further optimize memory efficiency during training, we incorporate structure-from-motion (SfM) points as anchor points to group Gaussian primitives. Gaussian prototypes are derived within each group by clustering of K-means, and both the anchor points and the prototypes are optimized jointly. Our experiments on real-world and synthetic datasets prove that we outperform existing methods, achieving a substantial reduction in the number of Gaussians, and enabling high rendering speed while maintaining or even enhancing rendering fidelity.
♻ ☆ ProbeSDF: Light Field Probes for Neural Surface Reconstruction
SDF-based differential rendering frameworks have achieved state-of-the-art multiview 3D shape reconstruction. In this work, we re-examine this family of approaches by minimally reformulating its core appearance model in a way that simultaneously yields faster computation and increased performance. To this goal, we exhibit a physically-inspired minimal radiance parametrization decoupling angular and spatial contributions, by encoding them with a small number of features stored in two respective volumetric grids of different resolutions. Requiring as little as four parameters per voxel, and a tiny MLP call inside a single fully fused kernel, our approach allows to enhance performance with both surface and image (PSNR) metrics, while providing a significant training speedup and real-time rendering. We show this performance to be consistently achieved on real data over two widely different and popular application fields, generic object and human subject shape reconstruction, using four representative and challenging datasets.
comment: 10 pages, 10 figures
♻ ☆ RL-RC-DoT: A Block-level RL agent for Task-Aware Video Compression
Video encoders optimize compression for human perception by minimizing reconstruction error under bit-rate constraints. In many modern applications such as autonomous driving, an overwhelming majority of videos serve as input for AI systems performing tasks like object recognition or segmentation, rather than being watched by humans. It is therefore useful to optimize the encoder for a downstream task instead of for perceptual image quality. However, a major challenge is how to combine such downstream optimization with existing standard video encoders, which are highly efficient and popular. Here, we address this challenge by controlling the Quantization Parameters (QPs) at the macro-block level to optimize the downstream task. This granular control allows us to prioritize encoding for task-relevant regions within each frame. We formulate this optimization problem as a Reinforcement Learning (RL) task, where the agent learns to balance long-term implications of choosing QPs on both task performance and bit-rate constraints. Notably, our policy does not require the downstream task as an input during inference, making it suitable for streaming applications and edge devices such as vehicles. We demonstrate significant improvements in two tasks, car detection, and ROI (saliency) encoding. Our approach improves task performance for a given bit rate compared to traditional task agnostic encoding methods, paving the way for more efficient task-aware video compression.
♻ ☆ Promoting Segment Anything Model towards Highly Accurate Dichotomous Image Segmentation
The Segment Anything Model (SAM) represents a significant breakthrough into foundation models for computer vision, providing a large-scale image segmentation model. However, despite SAM's zero-shot performance, its segmentation masks lack fine-grained details, particularly in accurately delineating object boundaries. Therefore, it is both interesting and valuable to explore whether SAM can be improved towards highly accurate object segmentation, which is known as the dichotomous image segmentation (DIS) task. To address this issue, we propose DIS-SAM, which advances SAM towards DIS with extremely accurate details. DIS-SAM is a framework specifically tailored for highly accurate segmentation, maintaining SAM's promptable design. DIS-SAM employs a two-stage approach, integrating SAM with a modified advanced network that was previously designed to handle the prompt-free DIS task. To better train DIS-SAM, we employ a ground truth enrichment strategy by modifying original mask annotations. Despite its simplicity, DIS-SAM significantly advances the SAM, HQ-SAM, and Pi-SAM ~by 8.5%, ~6.9%, and ~3.7% maximum F-measure. Our code at https://github.com/Tennine2077/DIS-SAM
♻ ☆ Which2comm: An Efficient Collaborative Perception Framework for 3D Object Detection
Collaborative perception allows real-time inter-agent information exchange and thus offers invaluable opportunities to enhance the perception capabilities of individual agents. However, limited communication bandwidth in practical scenarios restricts the inter-agent data transmission volume, consequently resulting in performance declines in collaborative perception systems. This implies a trade-off between perception performance and communication cost. To address this issue, we propose Which2comm, a novel multi-agent 3D object detection framework leveraging object-level sparse features. By integrating semantic information of objects into 3D object detection boxes, we introduce semantic detection boxes (SemDBs). Innovatively transmitting these information-rich object-level sparse features among agents not only significantly reduces the demanding communication volume, but also improves 3D object detection performance. Specifically, a fully sparse network is constructed to extract SemDBs from individual agents; a temporal fusion approach with a relative temporal encoding mechanism is utilized to obtain the comprehensive spatiotemporal features. Extensive experiments on the V2XSet and OPV2V datasets demonstrate that Which2comm consistently outperforms other state-of-the-art methods on both perception performance and communication cost, exhibiting better robustness to real-world latency. These results present that for multi-agent collaborative 3D object detection, transmitting only object-level sparse features is sufficient to achieve high-precision and robust performance.
♻ ☆ Instruct-4DGS: Efficient Dynamic Scene Editing via 4D Gaussian-based Static-Dynamic Separation CVPR 2025
Recent 4D dynamic scene editing methods require editing thousands of 2D images used for dynamic scene synthesis and updating the entire scene with additional training loops, resulting in several hours of processing to edit a single dynamic scene. Therefore, these methods are not scalable with respect to the temporal dimension of the dynamic scene (i.e., the number of timesteps). In this work, we propose Instruct-4DGS, an efficient dynamic scene editing method that is more scalable in terms of temporal dimension. To achieve computational efficiency, we leverage a 4D Gaussian representation that models a 4D dynamic scene by combining static 3D Gaussians with a Hexplane-based deformation field, which captures dynamic information. We then perform editing solely on the static 3D Gaussians, which is the minimal but sufficient component required for visual editing. To resolve the misalignment between the edited 3D Gaussians and the deformation field, which may arise from the editing process, we introduce a refinement stage using a score distillation mechanism. Extensive editing results demonstrate that Instruct-4DGS is efficient, reducing editing time by more than half compared to existing methods while achieving high-quality edits that better follow user instructions.
comment: Accepted to CVPR 2025. The first two authors contributed equally
♻ ☆ Shot Sequence Ordering for Video Editing: Benchmarks, Metrics, and Cinematology-Inspired Computing Methods
With the rising popularity of short video platforms, the demand for video production has increased substantially. However, high-quality video creation continues to rely heavily on professional editing skills and a nuanced understanding of visual language. To address this challenge, the Shot Sequence Ordering (SSO) task in AI-assisted video editing has emerged as a pivotal approach for enhancing video storytelling and the overall viewing experience. Nevertheless, the progress in this field has been impeded by a lack of publicly available benchmark datasets. In response, this paper introduces two novel benchmark datasets, AVE-Order and ActivityNet-Order. Additionally, we employ the Kendall Tau distance as an evaluation metric for the SSO task and propose the Kendall Tau Distance-Cross Entropy Loss. We further introduce the concept of Cinematology Embedding, which incorporates movie metadata and shot labels as prior knowledge into the SSO model, and constructs the AVE-Meta dataset to validate the method's effectiveness. Experimental results indicate that the proposed loss function and method substantially enhance SSO task accuracy. All datasets are publicly accessible at https://github.com/litchiar/ShotSeqBench.
♻ ☆ StarGen: A Spatiotemporal Autoregression Framework with Video Diffusion Model for Scalable and Controllable Scene Generation
Recent advances in large reconstruction and generative models have significantly improved scene reconstruction and novel view generation. However, due to compute limitations, each inference with these large models is confined to a small area, making long-range consistent scene generation challenging. To address this, we propose StarGen, a novel framework that employs a pre-trained video diffusion model in an autoregressive manner for long-range scene generation. The generation of each video clip is conditioned on the 3D warping of spatially adjacent images and the temporally overlapping image from previously generated clips, improving spatiotemporal consistency in long-range scene generation with precise pose control. The spatiotemporal condition is compatible with various input conditions, facilitating diverse tasks, including sparse view interpolation, perpetual view generation, and layout-conditioned city generation. Quantitative and qualitative evaluations demonstrate StarGen's superior scalability, fidelity, and pose accuracy compared to state-of-the-art methods. Project page: https://zju3dv.github.io/StarGen.
♻ ☆ On-Device Self-Supervised Learning of Low-Latency Monocular Depth from Only Events CVPR 2025
Event cameras provide low-latency perception for only milliwatts of power. This makes them highly suitable for resource-restricted, agile robots such as small flying drones. Self-supervised learning based on contrast maximization holds great potential for event-based robot vision, as it foregoes the need for high-frequency ground truth and allows for online learning in the robot's operational environment. However, online, on-board learning raises the major challenge of achieving sufficient computational efficiency for real-time learning, while maintaining competitive visual perception performance. In this work, we improve the time and memory efficiency of the contrast maximization pipeline, making on-device learning of low-latency monocular depth possible. We demonstrate that online learning on board a small drone yields more accurate depth estimates and more successful obstacle avoidance behavior compared to only pre-training. Benchmarking experiments show that the proposed pipeline is not only efficient, but also achieves state-of-the-art depth estimation performance among self-supervised approaches. Our work taps into the unused potential of online, on-device robot learning, promising smaller reality gaps and better performance.
comment: Accepted at CVPR 2025
♻ ☆ BimArt: A Unified Approach for the Synthesis of 3D Bimanual Interaction with Articulated Objects CVPR2025
We present BimArt, a novel generative approach for synthesizing 3D bimanual hand interactions with articulated objects. Unlike prior works, we do not rely on a reference grasp, a coarse hand trajectory, or separate modes for grasping and articulating. To achieve this, we first generate distance-based contact maps conditioned on the object trajectory with an articulation-aware feature representation, revealing rich bimanual patterns for manipulation. The learned contact prior is then used to guide our hand motion generator, producing diverse and realistic bimanual motions for object movement and articulation. Our work offers key insights into feature representation and contact prior for articulated objects, demonstrating their effectiveness in taming the complex, high-dimensional space of bimanual hand-object interactions. Through comprehensive quantitative experiments, we demonstrate a clear step towards simplified and high-quality hand-object animations that surpass the state of the art in motion quality and diversity. Project page: https://vcai.mpi-inf.mpg.de/projects/bimart/.
comment: CVPR2025
♻ ☆ Scale generalisation properties of extended scale-covariant and scale-invariant Gaussian derivative networks on image datasets with spatial scaling variations
This paper presents an in-depth analysis of the scale generalisation properties of the scale-covariant and scale-invariant Gaussian derivative networks, complemented with both conceptual and algorithmic extensions. For this purpose, Gaussian derivative networks (GaussDerNets) are evaluated on new rescaled versions of the Fashion-MNIST and the CIFAR-10 datasets, with spatial scaling variations over a factor of 4 in the testing data, that are not present in the training data. Additionally, evaluations on the previously existing STIR datasets show that the GaussDerNets achieve better scale generalisation than previously reported for these datasets for other types of deep networks. We first experimentally demonstrate that the GaussDerNets have quite good scale generalisation properties on the new datasets, and that average pooling of feature responses over scales may sometimes also lead to better results than the previously used approach of max pooling over scales. Then, we demonstrate that using a spatial max pooling mechanism after the final layer enables localisation of non-centred objects in image domain, with maintained scale generalisation properties. We also show that regularisation during training, by applying dropout across the scale channels, referred to as scale-channel dropout, improves both the performance and the scale generalisation. In additional ablation studies, we demonstrate that discretisations of GaussDerNets, based on the discrete analogue of the Gaussian kernel in combination with central difference operators, perform best or among the best, compared to a set of other discrete approximations of the Gaussian derivative kernels. Finally, by visualising the activation maps and the learned receptive fields, we demonstrate that the GaussDerNets have very good explainability properties.
comment: 52 pages, 24 figures, 18 tables
♻ ☆ DynFocus: Dynamic Cooperative Network Empowers LLMs with Video Understanding CVPR 25
The challenge in LLM-based video understanding lies in preserving visual and semantic information in long videos while maintaining a memory-affordable token count. However, redundancy and correspondence in videos have hindered the performance potential of existing methods. Through statistical learning on current datasets, we observe that redundancy occurs in both repeated and answer-irrelevant frames, and the corresponding frames vary with different questions. This suggests the possibility of adopting dynamic encoding to balance detailed video information preservation with token budget reduction. To this end, we propose a dynamic cooperative network, DynFocus, for memory-efficient video encoding in this paper. Specifically, i) a Dynamic Event Prototype Estimation (DPE) module to dynamically select meaningful frames for question answering; (ii) a Compact Cooperative Encoding (CCE) module that encodes meaningful frames with detailed visual appearance and the remaining frames with sketchy perception separately. We evaluate our method on five publicly available benchmarks, and experimental results consistently demonstrate that our method achieves competitive performance.
comment: Accepted by CVPR 25
♻ ☆ Inverting Transformer-based Vision Models
Understanding the mechanisms underlying deep neural networks in computer vision remains a fundamental challenge. While many previous approaches have focused on visualizing intermediate representations within deep neural networks, particularly convolutional neural networks, these techniques have yet to be thoroughly explored in transformer-based vision models. In this study, we apply a modular approach of training inverse models to reconstruct input images from intermediate layers within a Detection Transformer and a Vision Transformer, showing that this approach is efficient and feasible. Through qualitative and quantitative evaluations of reconstructed images, we generate insights into the underlying mechanisms of these architectures, highlighting their similarities and differences in terms of contextual shape and preservation of image details, inter-layer correlation, and robustness to color perturbations. Our analysis illustrates how these properties emerge within the models, contributing to a deeper understanding of transformer-based vision models. The code for reproducing our experiments is available at github.com/wiskott-lab/inverse-tvm.
♻ ☆ VideoGLaMM: A Large Multimodal Model for Pixel-Level Visual Grounding in Videos
Fine-grained alignment between videos and text is challenging due to complex spatial and temporal dynamics in videos. Existing video-based Large Multimodal Models (LMMs) handle basic conversations but struggle with precise pixel-level grounding in videos. To address this, we introduce VideoGLaMM, a LMM designed for fine-grained pixel-level grounding in videos based on user-provided textual inputs. Our design seamlessly connects three key components: a Large Language Model, a dual vision encoder that emphasizes both spatial and temporal details, and a spatio-temporal decoder for accurate mask generation. This connection is facilitated via tunable V-L and L-V adapters that enable close Vision-Language (VL) alignment. The architecture is trained to synchronize both spatial and temporal elements of video content with textual instructions. To enable fine-grained grounding, we curate a multimodal dataset featuring detailed visually-grounded conversations using a semiautomatic annotation pipeline, resulting in a diverse set of 38k video-QA triplets along with 83k objects and 671k masks. We evaluate VideoGLaMM on three challenging tasks: Grounded Conversation Generation, Visual Grounding, and Referring Video Segmentation. Experimental results show that our model consistently outperforms existing approaches across all three tasks.
comment: Technical Report of VideoGLaMM
♻ ☆ PCDreamer: Point Cloud Completion Through Multi-view Diffusion Priors
This paper presents PCDreamer, a novel method for point cloud completion. Traditional methods typically extract features from partial point clouds to predict missing regions, but the large solution space often leads to unsatisfactory results. More recent approaches have started to use images as extra guidance, effectively improving performance, but obtaining paired data of images and partial point clouds is challenging in practice. To overcome these limitations, we harness the relatively view-consistent multi-view diffusion priors within large models, to generate novel views of the desired shape. The resulting image set encodes both global and local shape cues, which are especially beneficial for shape completion. To fully exploit the priors, we have designed a shape fusion module for producing an initial complete shape from multi-modality input (i.e.,, images and point clouds), and a follow-up shape consolidation module to obtain the final complete shape by discarding unreliable points introduced by the inconsistency from diffusion priors. Extensive experimental results demonstrate our superior performance, especially in recovering fine details.
comment: Project page: https://gsw-d.github.io/PCDreamer/
♻ ☆ Dissecting CLIP: Decomposition with a Schur Complement-based Approach
The use of CLIP embeddings to assess the alignment of samples produced by text-to-image generative models has been extensively explored in the literature. While the widely adopted CLIPScore, derived from the cosine similarity of text and image embeddings, effectively measures the relevance of a generated image, it does not quantify the diversity of images generated by a text-to-image model. In this work, we extend the application of CLIP embeddings to quantify and interpret the intrinsic diversity of text-to-image models, which is responsible for generating diverse images from similar text prompts. To achieve this, we propose a decomposition of the CLIP-based kernel covariance matrix of image data into text-based and non-text-based components. Using the Schur complement of the joint image-text kernel covariance matrix, we perform this decomposition and define the matrix-based entropy of the decomposed component as the \textit{Schur Complement Entropy (SCE)} score, a measure of the intrinsic diversity of a text-to-image model based on data collected with varying text prompts. Additionally, we demonstrate the use of the Schur complement-based decomposition to nullify the influence of a given prompt in the CLIP embedding of an image, enabling focus or defocus of embeddings on specific objects or properties for downstream tasks. We present several numerical results that apply our Schur complement-based approach to evaluate text-to-image models and modify CLIP image embeddings. The codebase is available at https://github.com/aziksh-ospanov/CLIP-DISSECTION
♻ ☆ Synergizing Motion and Appearance: Multi-Scale Compensatory Codebooks for Talking Head Video Generation CVPR 2025
Talking head video generation aims to generate a realistic talking head video that preserves the person's identity from a source image and the motion from a driving video. Despite the promising progress made in the field, it remains a challenging and critical problem to generate videos with accurate poses and fine-grained facial details simultaneously. Essentially, facial motion is often highly complex to model precisely, and the one-shot source face image cannot provide sufficient appearance guidance during generation due to dynamic pose changes. To tackle the problem, we propose to jointly learn motion and appearance codebooks and perform multi-scale codebook compensation to effectively refine both the facial motion conditions and appearance features for talking face image decoding. Specifically, the designed multi-scale motion and appearance codebooks are learned simultaneously in a unified framework to store representative global facial motion flow and appearance patterns. Then, we present a novel multi-scale motion and appearance compensation module, which utilizes a transformer-based codebook retrieval strategy to query complementary information from the two codebooks for joint motion and appearance compensation. The entire process produces motion flows of greater flexibility and appearance features with fewer distortions across different scales, resulting in a high-quality talking head video generation framework. Extensive experiments on various benchmarks validate the effectiveness of our approach and demonstrate superior generation results from both qualitative and quantitative perspectives when compared to state-of-the-art competitors.
comment: Accepted by CVPR 2025. Project page: https://shaelynz.github.io/synergize-motion-appearance/
♻ ☆ DiffusionAct: Controllable Diffusion Autoencoder for One-shot Face Reenactment
Video-driven neural face reenactment aims to synthesize realistic facial images that successfully preserve the identity and appearance of a source face, while transferring the target head pose and facial expressions. Existing GAN-based methods suffer from either distortions and visual artifacts or poor reconstruction quality, i.e., the background and several important appearance details, such as hair style/color, glasses and accessories, are not faithfully reconstructed. Recent advances in Diffusion Probabilistic Models (DPMs) enable the generation of high-quality realistic images. To this end, in this paper we present DiffusionAct, a novel method that leverages the photo-realistic image generation of diffusion models to perform neural face reenactment. Specifically, we propose to control the semantic space of a Diffusion Autoencoder (DiffAE), in order to edit the facial pose of the input images, defined as the head pose orientation and the facial expressions. Our method allows one-shot, self, and cross-subject reenactment, without requiring subject-specific fine-tuning. We compare against state-of-the-art GAN-, StyleGAN2-, and diffusion-based methods, showing better or on-par reenactment performance.
comment: Project page: https://stelabou.github.io/diffusionact/
♻ ☆ Lost in Time: A New Temporal Benchmark for VideoLLMs
Large language models have demonstrated impressive performance when integrated with vision models even enabling video understanding. However, evaluating video models presents its own unique challenges, for which several benchmarks have been proposed. In this paper, we show that the currently most used video-language benchmarks can be solved without requiring much temporal reasoning. We identified three main issues in existing datasets: (i) static information from single frames is often sufficient to solve the tasks (ii) the text of the questions and candidate answers is overly informative, allowing models to answer correctly without relying on any visual input (iii) world knowledge alone can answer many of the questions, making the benchmarks a test of knowledge replication rather than video reasoning. In addition, we found that open-ended question-answering benchmarks for video understanding suffer from similar issues while the automatic evaluation process with LLMs is unreliable, making it an unsuitable alternative. As a solution, we propose TVBench, a novel open-source video multiple-choice question-answering benchmark, and demonstrate through extensive evaluations that it requires a high level of temporal understanding. Surprisingly, we find that most recent state-of-the-art video-language models perform similarly to random performance on TVBench, with only a few models such as Qwen2-VL, and Tarsier clearly surpassing this baseline.
♻ ☆ RoboMatrix: A Skill-centric Hierarchical Framework for Scalable Robot Task Planning and Execution in Open-World
Existing robot policies predominantly adopt the task-centric approach, requiring end-to-end task data collection. This results in limited generalization to new tasks and difficulties in pinpointing errors within long-horizon, multi-stage tasks. To address this, we propose RoboMatrix, a skill-centric hierarchical framework designed for scalable robot task planning and execution in open-world environments. RoboMatrix extracts general meta-skills from diverse complex tasks, enabling the completion of unseen tasks through skill composition. Its architecture consists of a high-level scheduling layer that utilizes large language models (LLMs) for task decomposition, an intermediate skill layer housing meta-skill models, and a low-level hardware layer for robot control. A key innovation of our work is the introduction of the first unified vision-language-action (VLA) model capable of seamlessly integrating both movement and manipulation within one model. This is achieved by combining vision and language prompts to generate discrete actions. Experimental results demonstrate that RoboMatrix achieves a 50% higher success rate than task-centric baselines when applied to unseen objects, scenes, and tasks. To advance open-world robotics research, we will open-source code, hardware designs, model weights, and datasets at https://github.com/WayneMao/RoboMatrix.
comment: 17 pages, 16 figures
♻ ☆ Text-driven 3D Human Generation via Contrastive Preference Optimization
Recent advances in Score Distillation Sampling (SDS) have improved 3D human generation from textual descriptions. However, existing methods still face challenges in accurately aligning 3D models with long and complex textual inputs. To address this challenge, we propose a novel framework that introduces contrastive preferences, where human-level preference models, guided by both positive and negative prompts, assist SDS for improved alignment. Specifically, we design a preference optimization module that integrates multiple models to comprehensively capture the full range of textual features. Furthermore, we introduce a negation preference module to mitigate over-optimization of irrelevant details by leveraging static-dynamic negation prompts, effectively preventing ``reward hacking". Extensive experiments demonstrate that our method achieves state-of-the-art results, significantly enhancing texture realism and visual alignment with textual descriptions, particularly for long and complex inputs.
comment: 10+2
♻ ☆ TrafficLoc: Localizing Traffic Surveillance Cameras in 3D Scenes
We tackle the problem of localizing traffic cameras within a 3D reference map and propose a novel image-to-point cloud registration (I2P) method, TrafficLoc, in a coarse-tofine matching fashion. To overcome the lack of large-scale real-world intersection datasets, we first introduce Carla Intersection, a new simulated dataset with 75 urban and rural intersections in Carla. We find that current I2P methods struggle with cross-modal matching under large viewpoint differences, especially at traffic intersections. TrafficLoc thus employs a novel Geometry-guided Attention Loss (GAL) to focus only on the corresponding geometric regions under different viewpoints during 2D-3D feature fusion. To address feature inconsistency in paired image patch-point groups, we further propose Inter-intra Contrastive Learning (ICL) to enhance separating 2D patch/3D group features within each intra-modality and introduce Dense Training Alignment (DTA) with soft-argmax for improving position regression. Extensive experiments show our TrafficLoc greatly improves the performance over the SOTA I2P methods (up to 86%) on Carla Intersection and generalizes well to real-world data. TrafficLoc also achieves new SOTA performance on KITTI and NuScenes datasets, demonstrating the superiority across both in-vehicle and traffic cameras. Our project page is publicly available at https://tum-luk.github.io/projects/trafficloc/.
♻ ☆ RelationField: Relate Anything in Radiance Fields CVPR 2025
Neural radiance fields are an emerging 3D scene representation and recently even been extended to learn features for scene understanding by distilling open-vocabulary features from vision-language models. However, current method primarily focus on object-centric representations, supporting object segmentation or detection, while understanding semantic relationships between objects remains largely unexplored. To address this gap, we propose RelationField, the first method to extract inter-object relationships directly from neural radiance fields. RelationField represents relationships between objects as pairs of rays within a neural radiance field, effectively extending its formulation to include implicit relationship queries. To teach RelationField complex, open-vocabulary relationships, relationship knowledge is distilled from multi-modal LLMs. To evaluate RelationField, we solve open-vocabulary 3D scene graph generation tasks and relationship-guided instance segmentation, achieving state-of-the-art performance in both tasks. See the project website at https://relationfield.github.io.
comment: CVPR 2025. Project page: https://relationfield.github.io
♻ ☆ Understanding and Reducing the Class-Dependent Effects of Data Augmentation with A Two-Player Game Approach
Data augmentation is widely applied and has shown its benefits in different machine learning tasks. However, as recently observed, it may have an unfair effect in multi-class classification. While data augmentation generally improves the overall performance (and therefore is beneficial for many classes), it can actually be detrimental for other classes, which can be problematic in some application domains. In this paper, to counteract this phenomenon, we propose CLAM, a CLAss-dependent Multiplicative-weights method. To derive it, we first formulate the training of a classifier as a non-linear optimization problem that aims at simultaneously maximizing the individual class performances and balancing them. By rewriting this optimization problem as an adversarial two-player game, we propose a novel multiplicative weight algorithm, for which we prove the convergence. Interestingly, our formulation also reveals that the class-dependent effects of data augmentation is not due to data augmentation only, but is in fact a general phenomenon. Our empirical results over five datasets demonstrate that the performance of learned classifiers is indeed more fairly distributed over classes, with only limited impact on the average accuracy.
♻ ☆ Expert Race: A Flexible Routing Strategy for Scaling Diffusion Transformer with Mixture of Experts
Diffusion models have emerged as mainstream framework in visual generation. Building upon this success, the integration of Mixture of Experts (MoE) methods has shown promise in enhancing model scalability and performance. In this paper, we introduce Race-DiT, a novel MoE model for diffusion transformers with a flexible routing strategy, Expert Race. By allowing tokens and experts to compete together and select the top candidates, the model learns to dynamically assign experts to critical tokens. Additionally, we propose per-layer regularization to address challenges in shallow layer learning, and router similarity loss to prevent mode collapse, ensuring better expert utilization. Extensive experiments on ImageNet validate the effectiveness of our approach, showcasing significant performance gains while promising scaling properties.
♻ ☆ DyMO: Training-Free Diffusion Model Alignment with Dynamic Multi-Objective Scheduling
Text-to-image diffusion model alignment is critical for improving the alignment between the generated images and human preferences. While training-based methods are constrained by high computational costs and dataset requirements, training-free alignment methods remain underexplored and are often limited by inaccurate guidance. We propose a plug-and-play training-free alignment method, DyMO, for aligning the generated images and human preferences during inference. Apart from text-aware human preference scores, we introduce a semantic alignment objective for enhancing the semantic alignment in the early stages of diffusion, relying on the fact that the attention maps are effective reflections of the semantics in noisy images. We propose dynamic scheduling of multiple objectives and intermediate recurrent steps to reflect the requirements at different steps. Experiments with diverse pre-trained diffusion models and metrics demonstrate the effectiveness and robustness of the proposed method.
♻ ☆ A Multimodal Knowledge-enhanced Whole-slide Pathology Foundation Model
Remarkable strides in computational pathology have been made in the task-agnostic foundation model that advances the performance of a wide array of downstream clinical tasks. Despite the promising performance, there are still several challenges. First, prior works have resorted to either vision-only or image-caption data, disregarding pathology reports with more clinically authentic information from pathologists and gene expression profiles which respectively offer distinct knowledge for versatile clinical applications. Second, the current progress in pathology FMs predominantly concentrates on the patch level, where the restricted context of patch-level pretraining fails to capture whole-slide patterns. Even recent slide-level FMs still struggle to provide whole-slide context for patch representation. In this study, for the first time, we develop a pathology foundation model incorporating three levels of modalities: pathology slides, pathology reports, and gene expression data, which resulted in 26,169 slide-level modality pairs from 10,275 patients across 32 cancer types, amounting to over 116 million pathological patch images. To leverage these data for CPath, we propose a novel whole-slide pretraining paradigm that injects the multimodal whole-slide context into the patch representation, called Multimodal Self-TAught PRetraining (mSTAR). The proposed paradigm revolutionizes the pretraining workflow for CPath, enabling the pathology FM to acquire the whole-slide context. To the best of our knowledge, this is the first attempt to incorporate three modalities at the whole-slide context for enhancing pathology FMs. To systematically evaluate the capabilities of mSTAR, we built the largest spectrum of oncological benchmark, spanning 7 categories of oncological applications in 15 types of 97 practical oncological tasks.
comment: 62 pages
♻ ☆ Technical Approach for the EMI Challenge in the 8th Affective Behavior Analysis in-the-Wild Competition
Emotional Mimicry Intensity (EMI) estimation plays a pivotal role in understanding human social behavior and advancing human-computer interaction. The core challenges lie in dynamic correlation modeling and robust fusion of multimodal temporal signals. To address the limitations of existing methods--insufficient exploitation of cross-modal synergies, sensitivity to noise, and constrained fine-grained alignment capabilities--this paper proposes a dual-stage cross-modal alignment framework. Stage 1 develops vision-text and audio-text contrastive learning networks based on a CLIP architecture, achieving preliminary feature-space alignment through modality-decoupled pre-training. Stage 2 introduces a temporal-aware dynamic fusion module integrating Temporal Convolutional Networks (TCN) and gated bidirectional LSTM to capture macro-evolution patterns of facial expressions and local dynamics of acoustic features, respectively. A novel quality-guided fusion strategy further enables differentiable weight allocation for modality compensation under occlusion and noise. Experiments on the Hume-Vidmimic2 dataset demonstrate superior performance with an average Pearson correlation coefficient of 0.51 across six emotion dimensions on the validate set. Remarkably, our method achieved 0.68 on the test set, securing runner-up in the EMI Challenge Track of the 8th ABAW (Affective Behavior Analysis in the Wild) Competition, offering a novel pathway for fine-grained emotion analysis in open environments.
♻ ☆ CCUP: A Controllable Synthetic Data Generation Pipeline for Pretraining Cloth-Changing Person Re-Identification Models ICME 2025
Cloth-changing person re-identification (CC-ReID), also known as Long-Term Person Re-Identification (LT-ReID) is a critical and challenging research topic in computer vision that has recently garnered significant attention. However, due to the high cost of constructing CC-ReID data, the existing data-driven models are hard to train efficiently on limited data, causing overfitting issue. To address this challenge, we propose a low-cost and efficient pipeline for generating controllable and high-quality synthetic data simulating the surveillance of real scenarios specific to the CC-ReID task. Particularly, we construct a new self-annotated CC-ReID dataset named Cloth-Changing Unreal Person (CCUP), containing 6,000 IDs, 1,179,976 images, 100 cameras, and 26.5 outfits per individual. Based on this large-scale dataset, we introduce an effective and scalable pretrain-finetune framework for enhancing the generalization capabilities of the traditional CC-ReID models. The extensive experiments demonstrate that two typical models namely TransReID and FIRe^2, when integrated into our framework, outperform other state-of-the-art models after pretraining on CCUP and finetuning on the benchmarks such as PRCC, VC-Clothes and NKUP. The CCUP is available at: https://github.com/yjzhao1019/CCUP.
comment: Accepted by ICME 2025
♻ ☆ Extreme Precipitation Nowcasting using Multi-Task Latent Diffusion Models
Deep learning models have achieved remarkable progress in precipitation prediction. However, they still face significant challenges in accurately capturing spatial details of radar images, particularly in regions of high precipitation intensity. This limitation results in reduced spatial localization accuracy when predicting radar echo images across varying precipitation intensities. To address this challenge, we propose an innovative precipitation prediction approach termed the Multi-Task Latent Diffusion Model (MTLDM). The core idea of MTLDM lies in the recognition that precipitation radar images represent a combination of multiple components, each corresponding to different precipitation intensities. Thus, we adopt a divide-and-conquer strategy, decomposing radar images into several sub-images based on their precipitation intensities and individually modeling these components. During the prediction stage, MTLDM integrates these sub-image representations by utilizing a trained latent-space rainfall diffusion model, followed by decoding through a multi-task decoder to produce the final precipitation prediction. Experimental evaluations conducted on the MRMS dataset demonstrate that the proposed MTLDM method surpasses state-of-the-art techniques, achieving a Critical Success Index (CSI) improvement of 13-26%.
comment: 15 pages, 14figures
♻ ☆ CLIP-SR: Collaborative Linguistic and Image Processing for Super-Resolution
Convolutional Neural Networks (CNNs) have significantly advanced Image Super-Resolution (SR), yet most CNN-based methods rely solely on pixel-based transformations, often leading to artifacts and blurring, particularly under severe downsampling rates (\eg, 8$\times$ or 16$\times$). The recently developed text-guided SR approaches leverage textual descriptions to enhance their detail restoration capabilities but frequently struggle with effectively performing alignment, resulting in semantic inconsistencies. To address these challenges, we propose a multi-modal semantic enhancement framework that integrates textual semantics with visual features, effectively mitigating semantic mismatches and detail losses in highly degraded low-resolution (LR) images. Our method enables realistic, high-quality SR to be performed at large upscaling factors, with a maximum scaling ratio of 16$\times$. The framework integrates both text and image inputs using the prompt predictor, the Text-Image Fusion Block (TIFBlock), and the Iterative Refinement Module, leveraging Contrastive Language-Image Pretraining (CLIP) features to guide a progressive enhancement process with fine-grained alignment. This synergy produces high-resolution outputs with sharp textures and strong semantic coherence, even at substantial scaling factors. Extensive comparative experiments and ablation studies validate the effectiveness of our approach. Furthermore, by leveraging textual semantics, our method offers a degree of super-resolution editability, allowing for controlled enhancements while preserving semantic consistency.
comment: 12 pages, 10 figures
♻ ☆ VideoRefer Suite: Advancing Spatial-Temporal Object Understanding with Video LLM
Video Large Language Models (Video LLMs) have recently exhibited remarkable capabilities in general video understanding. However, they mainly focus on holistic comprehension and struggle with capturing fine-grained spatial and temporal details. Besides, the lack of high-quality object-level video instruction data and a comprehensive benchmark further hinders their advancements. To tackle these challenges, we introduce the VideoRefer Suite to empower Video LLM for finer-level spatial-temporal video understanding, i.e., enabling perception and reasoning on any objects throughout the video. Specially, we thoroughly develop VideoRefer Suite across three essential aspects: dataset, model, and benchmark. Firstly, we introduce a multi-agent data engine to meticulously curate a large-scale, high-quality object-level video instruction dataset, termed VideoRefer-700K. Next, we present the VideoRefer model, which equips a versatile spatial-temporal object encoder to capture precise regional and sequential representations. Finally, we meticulously create a VideoRefer-Bench to comprehensively assess the spatial-temporal understanding capability of a Video LLM, evaluating it across various aspects. Extensive experiments and analyses demonstrate that our VideoRefer model not only achieves promising performance on video referring benchmarks but also facilitates general video understanding capabilities.
comment: 17 pages, 14 figures, technical report
♻ ☆ Few-Shot Segmentation with Global and Local Contrastive Learning
In this work, we address the challenging task of few-shot segmentation. Previous few-shot segmentation methods mainly employ the information of support images as guidance for query image segmentation. Although some works propose to build cross-reference between support and query images, their extraction of query information still depends on the support images. We here propose to extract the information from the query itself independently to benefit the few-shot segmentation task. To this end, we first propose a prior extractor to learn the query information from the unlabeled images with our proposed global-local contrastive learning. Then, we extract a set of predetermined priors via this prior extractor. With the obtained priors, we generate the prior region maps for query images, which locate the objects, as guidance to perform cross interaction with support features. In such a way, the extraction of query information is detached from the support branch, overcoming the limitation by support, and could obtain more informative query clues to achieve better interaction. Without bells and whistles, the proposed approach achieves new state-of-the-art performance for the few-shot segmentation task on PASCAL-5$^{i}$ and COCO datasets.
♻ ☆ Masking meets Supervision: A Strong Learning Alliance CVPR 2025
Pre-training with random masked inputs has emerged as a novel trend in self-supervised training. However, supervised learning still faces a challenge in adopting masking augmentations, primarily due to unstable training. In this paper, we propose a novel way to involve masking augmentations dubbed Masked Sub-branch (MaskSub). MaskSub consists of the main-branch and sub-branch, the latter being a part of the former. The main-branch undergoes conventional training recipes, while the sub-branch merits intensive masking augmentations, during training. MaskSub tackles the challenge by mitigating adverse effects through a relaxed loss function similar to a self-distillation loss. Our analysis shows that MaskSub improves performance, with the training loss converging faster than in standard training, which suggests our method stabilizes the training process. We further validate MaskSub across diverse training scenarios and models, including DeiT-III training, MAE finetuning, CLIP finetuning, BERT training, and hierarchical architectures (ResNet and Swin Transformer). Our results show that MaskSub consistently achieves impressive performance gains across all the cases. MaskSub provides a practical and effective solution for introducing additional regularization under various training recipes. Code available at https://github.com/naver-ai/augsub
comment: Accepted to CVPR 2025
♻ ☆ Every SAM Drop Counts: Embracing Semantic Priors for Multi-Modality Image Fusion and Beyond
Multi-modality image fusion, particularly infrared and visible, plays a crucial role in integrating diverse modalities to enhance scene understanding. Although early research prioritized visual quality, preserving fine details and adapting to downstream tasks remains challenging. Recent approaches attempt task-specific design but rarely achieve "The Best of Both Worlds" due to inconsistent optimization goals. To address these issues, we propose a novel method that leverages the semantic knowledge from the Segment Anything Model (SAM) to Grow the quality of fusion results and Enable downstream task adaptability, namely SAGE. Specifically, we design a Semantic Persistent Attention (SPA) Module that efficiently maintains source information via the persistent repository while extracting high-level semantic priors from SAM. More importantly, to eliminate the impractical dependence on SAM during inference, we introduce a bi-level optimization-driven distillation mechanism with triplet losses, which allow the student network to effectively extract knowledge. Extensive experiments show that our method achieves a balance between high-quality visual results and downstream task adaptability while maintaining practical deployment efficiency. The code is available at https://github.com/RollingPlain/SAGE_IVIF.
♻ ☆ RoboSpatial: Teaching Spatial Understanding to 2D and 3D Vision-Language Models for Robotics CVPR 2025
Spatial understanding is a crucial capability that enables robots to perceive their surroundings, reason about their environment, and interact with it meaningfully. In modern robotics, these capabilities are increasingly provided by vision-language models. However, these models face significant challenges in spatial reasoning tasks, as their training data are based on general-purpose image datasets that often lack sophisticated spatial understanding. For example, datasets frequently do not capture reference frame comprehension, yet effective spatial reasoning requires understanding whether to reason from ego-, world-, or object-centric perspectives. To address this issue, we introduce RoboSpatial, a large-scale dataset for spatial understanding in robotics. It consists of real indoor and tabletop scenes, captured as 3D scans and egocentric images, and annotated with rich spatial information relevant to robotics. The dataset includes 1M images, 5k 3D scans, and 3M annotated spatial relationships, and the pairing of 2D egocentric images with 3D scans makes it both 2D- and 3D- ready. Our experiments show that models trained with RoboSpatial outperform baselines on downstream tasks such as spatial affordance prediction, spatial relationship prediction, and robotics manipulation.
comment: CVPR 2025
♻ ☆ GFlowVLM: Enhancing Multi-step Reasoning in Vision-Language Models with Generative Flow Networks
Vision-Language Models (VLMs) have recently shown promising advancements in sequential decision-making tasks through task-specific fine-tuning. However, common fine-tuning methods, such as Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL) techniques like Proximal Policy Optimization (PPO), present notable limitations: SFT assumes Independent and Identically Distributed (IID) data, while PPO focuses on maximizing cumulative rewards. These limitations often restrict solution diversity and hinder generalization in multi-step reasoning tasks. To address these challenges, we introduce a novel framework, GFlowVLM, a framework that fine-tune VLMs using Generative Flow Networks (GFlowNets) to promote generation of diverse solutions for complex reasoning tasks. GFlowVLM models the environment as a non-Markovian decision process, allowing it to capture long-term dependencies essential for real-world applications. It takes observations and task descriptions as inputs to prompt chain-of-thought (CoT) reasoning which subsequently guides action selection. We use task based rewards to fine-tune VLM with GFlowNets. This approach enables VLMs to outperform prior fine-tuning methods, including SFT and RL. Empirical results demonstrate the effectiveness of GFlowVLM on complex tasks such as card games (NumberLine, BlackJack) and embodied planning tasks (ALFWorld), showing enhanced training efficiency, solution diversity, and stronger generalization capabilities across both in-distribution and out-of-distribution scenarios.
♻ ☆ NoPain: No-box Point Cloud Attack via Optimal Transport Singular Boundary
Adversarial attacks exploit the vulnerability of deep models against adversarial samples. Existing point cloud attackers are tailored to specific models, iteratively optimizing perturbations based on gradients in either a white-box or black-box setting. Despite their promising attack performance, they often struggle to produce transferable adversarial samples due to overfitting the specific parameters of surrogate models. To overcome this issue, we shift our focus to the data distribution itself and introduce a novel approach named NoPain, which employs optimal transport (OT) to identify the inherent singular boundaries of the data manifold for cross-network point cloud attacks. Specifically, we first calculate the OT mapping from noise to the target feature space, then identify singular boundaries by locating non-differentiable positions. Finally, we sample along singular boundaries to generate adversarial point clouds. Once the singular boundaries are determined, NoPain can efficiently produce adversarial samples without the need of iterative updates or guidance from the surrogate classifiers. Extensive experiments demonstrate that the proposed end-to-end method outperforms baseline approaches in terms of both transferability and efficiency, while also maintaining notable advantages even against defense strategies. Code and model are available at https://github.com/cognaclee/nopain
♻ ☆ CSCO: Connectivity Search of Convolutional Operators CVPR
Exploring dense connectivity of convolutional operators establishes critical "synapses" to communicate feature vectors from different levels and enriches the set of transformations on Computer Vision applications. Yet, even with heavy-machinery approaches such as Neural Architecture Search (NAS), discovering effective connectivity patterns requires tremendous efforts due to either constrained connectivity design space or a sub-optimal exploration process induced by an unconstrained search space. In this paper, we propose CSCO, a novel paradigm that fabricates effective connectivity of convolutional operators with minimal utilization of existing design motifs and further utilizes the discovered wiring to construct high-performing ConvNets. CSCO guides the exploration via a neural predictor as a surrogate of the ground-truth performance. We introduce Graph Isomorphism as data augmentation to improve sample efficiency and propose a Metropolis-Hastings Evolutionary Search (MH-ES) to evade locally optimal architectures and advance search quality. Results on ImageNet show ~0.6% performance improvement over hand-crafted and NAS-crafted dense connectivity. Our code is publicly available.
comment: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops (2024)
♻ ☆ Discovering Hidden Visual Concepts Beyond Linguistic Input in Infant Learning CVPR 2025
Infants develop complex visual understanding rapidly, even preceding the acquisition of linguistic skills. As computer vision seeks to replicate the human vision system, understanding infant visual development may offer valuable insights. In this paper, we present an interdisciplinary study exploring this question: can a computational model that imitates the infant learning process develop broader visual concepts that extend beyond the vocabulary it has heard, similar to how infants naturally learn? To investigate this, we analyze a recently published model in Science by Vong et al., which is trained on longitudinal, egocentric images of a single child paired with transcribed parental speech. We perform neuron labeling to identify visual concept neurons hidden in the model's internal representations. We then demonstrate that these neurons can recognize objects beyond the model's original vocabulary. Furthermore, we compare the differences in representation between infant models and those in modern computer vision models, such as CLIP and ImageNet pre-trained model. Ultimately, our work bridges cognitive science and computer vision by analyzing the internal representations of a computational model trained on an infant visual and linguistic inputs. Our code is available at https://github.com/Kexueyi/discover_infant_vis.
comment: Accepted at CVPR 2025
♻ ☆ Unveil Inversion and Invariance in Flow Transformer for Versatile Image Editing CVPR 2025
Leveraging the large generative prior of the flow transformer for tuning-free image editing requires authentic inversion to project the image into the model's domain and a flexible invariance control mechanism to preserve non-target contents. However, the prevailing diffusion inversion performs deficiently in flow-based models, and the invariance control cannot reconcile diverse rigid and non-rigid editing tasks. To address these, we systematically analyze the \textbf{inversion and invariance} control based on the flow transformer. Specifically, we unveil that the Euler inversion shares a similar structure to DDIM yet is more susceptible to the approximation error. Thus, we propose a two-stage inversion to first refine the velocity estimation and then compensate for the leftover error, which pivots closely to the model prior and benefits editing. Meanwhile, we propose the invariance control that manipulates the text features within the adaptive layer normalization, connecting the changes in the text prompt to image semantics. This mechanism can simultaneously preserve the non-target contents while allowing rigid and non-rigid manipulation, enabling a wide range of editing types such as visual text, quantity, facial expression, etc. Experiments on versatile scenarios validate that our framework achieves flexible and accurate editing, unlocking the potential of the flow transformer for versatile image editing.
comment: CVPR 2025 Page: https://pengchengpcx.github.io/EditFT/
♻ ☆ BF-STVSR: B-Splines and Fourier-Best Friends for High Fidelity Spatial-Temporal Video Super-Resolution CVPR 2025
While prior methods in Continuous Spatial-Temporal Video Super-Resolution (C-STVSR) employ Implicit Neural Representation (INR) for continuous encoding, they often struggle to capture the complexity of video data, relying on simple coordinate concatenation and pre-trained optical flow networks for motion representation. Interestingly, we find that adding position encoding, contrary to common observations, does not improve--and even degrades--performance. This issue becomes particularly pronounced when combined with pre-trained optical flow networks, which can limit the model's flexibility. To address these issues, we propose BF-STVSR, a C-STVSR framework with two key modules tailored to better represent spatial and temporal characteristics of video: 1) B-spline Mapper for smooth temporal interpolation, and 2) Fourier Mapper for capturing dominant spatial frequencies. Our approach achieves state-of-the-art in various metrics, including PSNR and SSIM, showing enhanced spatial details and natural temporal consistency. Our code is available https://github.com/Eunjnnn/bfstvsr.
comment: CVPR 2025
♻ ☆ Think Before You Segment: High-Quality Reasoning Segmentation with GPT Chain of Thoughts
Reasoning segmentation is a challenging vision-language task that aims to output the segmentation mask with respect to a complex, implicit, and even non-visual query text. Previous works incorporated multimodal Large Language Models (MLLMs) with segmentation models to approach the difficult problem. However, their segmentation quality often falls short in complex cases, particularly when dealing with out-of-domain objects with intricate structures, blurry boundaries, occlusions, or high similarity with surroundings. In this paper, we introduce ThinkFirst, a training-free reasoning segmentation framework that leverages GPT's chain of thought to address these challenging cases. Our approach allows GPT-4o or other powerful MLLMs to generate a detailed, chain-of-thought description of an image. This summarized description is then passed to a language-instructed segmentation assistant to aid the segmentation process. Our framework allows users to easily interact with the segmentation agent using multimodal inputs, such as easy text and image scribbles, for successive refinement or communication. We evaluate the performance of ThinkFirst on diverse objects. Extensive experiments show that, this zero-shot-CoT approach significantly improves the vanilla reasoning segmentation agent, both qualitatively and quantitatively, while being less sensitive or critical to user-supplied prompts after Thinking First.
comment: Project page: https://cse.hkust.edu.hk/~skao/thinkfirst.html
♻ ☆ Improving Transferable Targeted Attacks with Feature Tuning Mixup CVPR 2025
Deep neural networks (DNNs) exhibit vulnerability to adversarial examples that can transfer across different DNN models. A particularly challenging problem is developing transferable targeted attacks that can mislead DNN models into predicting specific target classes. While various methods have been proposed to enhance attack transferability, they often incur substantial computational costs while yielding limited improvements. Recent clean feature mixup methods use random clean features to perturb the feature space but lack optimization for disrupting adversarial examples, overlooking the advantages of attack-specific perturbations. In this paper, we propose Feature Tuning Mixup (FTM), a novel method that enhances targeted attack transferability by combining both random and optimized noises in the feature space. FTM introduces learnable feature perturbations and employs an efficient stochastic update strategy for optimization. These learnable perturbations facilitate the generation of more robust adversarial examples with improved transferability. We further demonstrate that attack performance can be enhanced through an ensemble of multiple FTM-perturbed surrogate models. Extensive experiments on the ImageNet-compatible dataset across various DNN models demonstrate that our method achieves significant improvements over state-of-the-art methods while maintaining low computational cost.
comment: CVPR 2025
♻ ☆ GOAL: Global-local Object Alignment Learning
Vision-language models like CLIP have shown impressive capabilities in aligning images and text, but they often struggle with lengthy and detailed text descriptions because of their training focus on short and concise captions. We present GOAL (Global-local Object Alignment Learning), a novel fine-tuning method that enhances CLIP's ability to handle lengthy text by leveraging both global and local semantic alignments between image and lengthy text. Our approach consists of two key components: Local Image-Sentence Matching (LISM), which identifies corresponding pairs between image segments and descriptive sentences, and Token Similarity-based Learning (TSL), which efficiently propagates local element attention through these matched pairs. Evaluating GOAL on three new benchmarks for image-lengthy text retrieval, we demonstrate significant improvements over baseline CLIP fine-tuning, establishing a simple yet effective approach for adapting CLIP to detailed textual descriptions. Through extensive experiments, we show that our method's focus on local semantic alignment alongside global context leads to more nuanced and representative embeddings, particularly beneficial for tasks requiring fine-grained understanding of lengthy text descriptions.
comment: 16 pages, 5 figures
♻ ☆ AIpparel: A Multimodal Foundation Model for Digital Garments
Apparel is essential to human life, offering protection, mirroring cultural identities, and showcasing personal style. Yet, the creation of garments remains a time-consuming process, largely due to the manual work involved in designing them. To simplify this process, we introduce AIpparel, a multimodal foundation model for generating and editing sewing patterns. Our model fine-tunes state-of-the-art large multimodal models (LMMs) on a custom-curated large-scale dataset of over 120,000 unique garments, each with multimodal annotations including text, images, and sewing patterns. Additionally, we propose a novel tokenization scheme that concisely encodes these complex sewing patterns so that LLMs can learn to predict them efficiently. AIpparel achieves state-of-the-art performance in single-modal tasks, including text-to-garment and image-to-garment prediction, and enables novel multimodal garment generation applications such as interactive garment editing. The project website is at https://georgenakayama.github.io/AIpparel/.
comment: The project website is at https://georgenakayama.github.io/AIpparel/
♻ ☆ Pathological Prior-Guided Multiple Instance Learning For Mitigating Catastrophic Forgetting in Breast Cancer Whole Slide Image Classification
In histopathology, intelligent diagnosis of Whole Slide Images (WSIs) is essential for automating and objectifying diagnoses, reducing the workload of pathologists. However, diagnostic models often face the challenge of forgetting previously learned data during incremental training on datasets from different sources. To address this issue, we propose a new framework PaGMIL to mitigate catastrophic forgetting in breast cancer WSI classification. Our framework introduces two key components into the common MIL model architecture. First, it leverages microscopic pathological prior to select more accurate and diverse representative patches for MIL. Secondly, it trains separate classification heads for each task and uses macroscopic pathological prior knowledge, treating the thumbnail as a prompt guide (PG) to select the appropriate classification head. We evaluate the continual learning performance of PaGMIL across several public breast cancer datasets. PaGMIL achieves a better balance between the performance of the current task and the retention of previous tasks, outperforming other continual learning methods. Our code will be open-sourced upon acceptance.
comment: ICASSP2025(Oral)
♻ ☆ MatAnyone: Stable Video Matting with Consistent Memory Propagation
Auxiliary-free human video matting methods, which rely solely on input frames, often struggle with complex or ambiguous backgrounds. To address this, we propose MatAnyone, a robust framework tailored for target-assigned video matting. Specifically, building on a memory-based paradigm, we introduce a consistent memory propagation module via region-adaptive memory fusion, which adaptively integrates memory from the previous frame. This ensures semantic stability in core regions while preserving fine-grained details along object boundaries. For robust training, we present a larger, high-quality, and diverse dataset for video matting. Additionally, we incorporate a novel training strategy that efficiently leverages large-scale segmentation data, boosting matting stability. With this new network design, dataset, and training strategy, MatAnyone delivers robust and accurate video matting results in diverse real-world scenarios, outperforming existing methods.
comment: Project page: https://pq-yang.github.io/projects/MatAnyone
♻ ☆ Is a Pure Transformer Effective for Separated and Online Multi-Object Tracking?
Recent advances in Multi-Object Tracking (MOT) have demonstrated significant success in short-term association within the separated tracking-by-detection online paradigm. However, long-term tracking remains challenging. While graph-based approaches address this by modeling trajectories as global graphs, these methods are unsuitable for real-time applications due to their non-online nature. In this paper, we review the concept of trajectory graphs and propose a novel perspective by representing them as directed acyclic graphs. This representation can be described using frame-ordered object sequences and binary adjacency matrices. We observe that this structure naturally aligns with Transformer attention mechanisms, enabling us to model the association problem using a classic Transformer architecture. Based on this insight, we introduce a concise Pure Transformer (PuTR) to validate the effectiveness of Transformer in unifying short- and long-term tracking for separated online MOT. Extensive experiments on four diverse datasets (SportsMOT, DanceTrack, MOT17, and MOT20) demonstrate that PuTR effectively establishes a solid baseline compared to existing foundational online methods while exhibiting superior domain adaptation capabilities. Furthermore, the separated nature enables efficient training and inference, making it suitable for practical applications. Implementation code and trained models are available at https://github.com/chongweiliu/PuTR .
♻ ☆ A Benchmark for Cycling Close Pass Detection from Video Streams
Cycling is a healthy and sustainable mode of transport. However, interactions with motor vehicles remain a key barrier to increased cycling participation. The ability to detect potentially dangerous interactions from on-bike sensing could provide important information to riders and policymakers. A key influence on rider comfort and safety is close passes, i.e., when a vehicle narrowly passes a cyclist. In this paper, we introduce a novel benchmark, called Cyc-CP, towards close pass (CP) event detection from video streams. The task is formulated into two problem categories: scene-level and instance-level. Scene-level detection ascertains the presence of a CP event within the provided video clip. Instance-level detection identifies the specific vehicle within the scene that precipitates a CP event. To address these challenges, we introduce four benchmark models, each underpinned by advanced deep-learning methodologies. For training and evaluating those models, we have developed a synthetic dataset alongside the acquisition of a real-world dataset. The benchmark evaluations reveal that the models achieve an accuracy of 88.13\% for scene-level detection and 84.60\% for instance-level detection on the real-world dataset. We envision this benchmark as a test-bed to accelerate CP detection and facilitate interaction between the fields of road safety, intelligent transportation systems and artificial intelligence. Both the benchmark datasets and detection models will be available at https://github.com/SustainableMobility/cyc-cp to facilitate experimental reproducibility and encourage more in-depth research in the field.
comment: Accepted by Transportation Research Part C: Emerging Technologies
♻ ☆ CKD: Contrastive Knowledge Distillation from A Sample-wise Perspective
In this paper, we propose a simple yet effective contrastive knowledge distillation framework that achieves sample-wise logit alignment while preserving semantic consistency. Conventional knowledge distillation approaches exhibit over-reliance on feature similarity per sample, which risks overfitting, and contrastive approaches focus on inter-class discrimination at the expense of intra-sample semantic relationships. Our approach transfers "dark knowledge" through teacher-student contrastive alignment at the sample level. Specifically, our method first enforces intra-sample alignment by directly minimizing teacher-student logit discrepancies within individual samples. Then, we utilize inter-sample contrasts to preserve semantic dissimilarities across samples. By redefining positive pairs as aligned teacher-student logits from identical samples and negative pairs as cross-sample logit combinations, we reformulate these dual constraints into an InfoNCE loss framework, reducing computational complexity lower than sample squares while eliminating dependencies on temperature parameters and large batch sizes. We conduct comprehensive experiments across three benchmark datasets, including the CIFAR-100, ImageNet-1K, and MS COCO datasets, and experimental results clearly confirm the effectiveness of the proposed method on image classification, object detection, and instance segmentation tasks.
♻ ☆ Go-with-the-Flow: Motion-Controllable Video Diffusion Models Using Real-Time Warped Noise CVPR'25
Generative modeling aims to transform random noise into structured outputs. In this work, we enhance video diffusion models by allowing motion control via structured latent noise sampling. This is achieved by just a change in data: we pre-process training videos to yield structured noise. Consequently, our method is agnostic to diffusion model design, requiring no changes to model architectures or training pipelines. Specifically, we propose a novel noise warping algorithm, fast enough to run in real time, that replaces random temporal Gaussianity with correlated warped noise derived from optical flow fields, while preserving the spatial Gaussianity. The efficiency of our algorithm enables us to fine-tune modern video diffusion base models using warped noise with minimal overhead, and provide a one-stop solution for a wide range of user-friendly motion control: local object motion control, global camera movement control, and motion transfer. The harmonization between temporal coherence and spatial Gaussianity in our warped noise leads to effective motion control while maintaining per-frame pixel quality. Extensive experiments and user studies demonstrate the advantages of our method, making it a robust and scalable approach for controlling motion in video diffusion models. Video results are available on our webpage: https://eyeline-research.github.io/Go-with-the-Flow. Source code and model checkpoints are available on GitHub: https://github.com/Eyeline-Research/Go-with-the-Flow.
comment: Accepted to CVPR'25
♻ ☆ MS-NeRF: Multi-Space Neural Radiance Fields
Existing Neural Radiance Fields (NeRF) methods suffer from the existence of reflective objects, often resulting in blurry or distorted rendering. Instead of calculating a single radiance field, we propose a multi-space neural radiance field (MS-NeRF) that represents the scene using a group of feature fields in parallel sub-spaces, which leads to a better understanding of the neural network toward the existence of reflective and refractive objects. Our multi-space scheme works as an enhancement to existing NeRF methods, with only small computational overheads needed for training and inferring the extra-space outputs. We design different multi-space modules for representative MLP-based and grid-based NeRF methods, which improve Mip-NeRF 360 by 4.15 dB in PSNR with 0.5% extra parameters and further improve TensoRF by 2.71 dB with 0.046% extra parameters on reflective regions without degrading the rendering quality on other regions. We further construct a novel dataset consisting of 33 synthetic scenes and 7 real captured scenes with complex reflection and refraction, where we design complex camera paths to fully benchmark the robustness of NeRF-based methods. Extensive experiments show that our approach significantly outperforms the existing single-space NeRF methods for rendering high-quality scenes concerned with complex light paths through mirror-like objects. The source code, dataset, and results are available via our project page: https://zx-yin.github.io/msnerf/.
comment: TPAMI 2025, 18 pages, 23 figures
♻ ☆ OmniDocBench: Benchmarking Diverse PDF Document Parsing with Comprehensive Annotations CVPR2025
Document content extraction is a critical task in computer vision, underpinning the data needs of large language models (LLMs) and retrieval-augmented generation (RAG) systems. Despite recent progress, current document parsing methods have not been fairly and comprehensively evaluated due to the narrow coverage of document types and the simplified, unrealistic evaluation procedures in existing benchmarks. To address these gaps, we introduce OmniDocBench, a novel benchmark featuring high-quality annotations across nine document sources, including academic papers, textbooks, and more challenging cases such as handwritten notes and densely typeset newspapers. OmniDocBench supports flexible, multi-level evaluations--ranging from an end-to-end assessment to the task-specific and attribute--based analysis using 19 layout categories and 15 attribute labels. We conduct a thorough evaluation of both pipeline-based methods and end-to-end vision-language models, revealing their strengths and weaknesses across different document types. OmniDocBench sets a new standard for the fair, diverse, and fine-grained evaluation in document parsing. Dataset and code are available at https://github.com/opendatalab/OmniDocBench.
comment: Accepted by CVPR2025
♻ ☆ RayFlow: Instance-Aware Diffusion Acceleration via Adaptive Flow Trajectories CVPR 2025
Diffusion models have achieved remarkable success across various domains. However, their slow generation speed remains a critical challenge. Existing acceleration methods, while aiming to reduce steps, often compromise sample quality, controllability, or introduce training complexities. Therefore, we propose RayFlow, a novel diffusion framework that addresses these limitations. Unlike previous methods, RayFlow guides each sample along a unique path towards an instance-specific target distribution. This method minimizes sampling steps while preserving generation diversity and stability. Furthermore, we introduce Time Sampler, an importance sampling technique to enhance training efficiency by focusing on crucial timesteps. Extensive experiments demonstrate RayFlow's superiority in generating high-quality images with improved speed, control, and training efficiency compared to existing acceleration techniques.
comment: 23 pages, 5 figures, CVPR 2025
♻ ☆ Accuracy Improvement of Cell Image Segmentation Using Feedback Former ECCV2024
Semantic segmentation of microscopy cell images by deep learning is a significant technique. We considered that the Transformers, which have recently outperformed CNNs in image recognition, could also be improved and developed for cell image segmentation. Transformers tend to focus more on contextual information than on detailed information. This tendency leads to a lack of detailed information for segmentation. Therefore, to supplement or reinforce the missing detailed information, we hypothesized that feedback processing in the human visual cortex should be effective. Our proposed Feedback Former is a novel architecture for semantic segmentation, in which Transformers is used as an encoder and has a feedback processing mechanism. Feature maps with detailed information are fed back to the lower layers from near the output of the model to compensate for the lack of detailed information which is the weakness of Transformers and improve the segmentation accuracy. By experiments on three cell image datasets, we confirmed that our method surpasses methods without feedback, demonstrating its superior accuracy in cell image segmentation. Our method achieved higher segmentation accuracy while consuming less computational cost than conventional feedback approaches. Moreover, our method offered superior precision without simply increasing the model size of Transformer encoder, demonstrating higher accuracy with lower computational cost.
comment: Accepted by ECCV2024 Workshop "Human-inspired Computer Vision (HCV)". 2025/3/19 : This paper has been accepted for publication in IEEE Access. The published version is available at DOI: https://doi.org/10.1109/ACCESS.2025.3552847
♻ ☆ RoboBrain: A Unified Brain Model for Robotic Manipulation from Abstract to Concrete
Recent advancements in Multimodal Large Language Models (MLLMs) have shown remarkable capabilities across various multimodal contexts. However, their application in robotic scenarios, particularly for long-horizon manipulation tasks, reveals significant limitations. These limitations arise from the current MLLMs lacking three essential robotic brain capabilities: Planning Capability, which involves decomposing complex manipulation instructions into manageable sub-tasks; Affordance Perception, the ability to recognize and interpret the affordances of interactive objects; and Trajectory Prediction, the foresight to anticipate the complete manipulation trajectory necessary for successful execution. To enhance the robotic brain's core capabilities from abstract to concrete, we introduce ShareRobot, a high-quality heterogeneous dataset that labels multi-dimensional information such as task planning, object affordance, and end-effector trajectory. ShareRobot's diversity and accuracy have been meticulously refined by three human annotators. Building on this dataset, we developed RoboBrain, an MLLM-based model that combines robotic and general multi-modal data, utilizes a multi-stage training strategy, and incorporates long videos and high-resolution images to improve its robotic manipulation capabilities. Extensive experiments demonstrate that RoboBrain achieves state-of-the-art performance across various robotic tasks, highlighting its potential to advance robotic brain capabilities.
♻ ☆ AutoURDF: Unsupervised Robot Modeling from Point Cloud Frames Using Cluster Registration
Robot description models are essential for simulation and control, yet their creation often requires significant manual effort. To streamline this modeling process, we introduce AutoURDF, an unsupervised approach for constructing description files for unseen robots from point cloud frames. Our method leverages a cluster-based point cloud registration model that tracks the 6-DoF transformations of point clusters. Through analyzing cluster movements, we hierarchically address the following challenges: (1) moving part segmentation, (2) body topology inference, and (3) joint parameter estimation. The complete pipeline produces robot description files that are fully compatible with existing simulators. We validate our method across a variety of robots, using both synthetic and real-world scan data. Results indicate that our approach outperforms previous methods in registration and body topology estimation accuracy, offering a scalable solution for automated robot modeling.
comment: 16 pages
♻ ☆ Aberration Correcting Vision Transformers for High-Fidelity Metalens Imaging
Metalens is an emerging optical system with an irreplaceable merit in that it can be manufactured in ultra-thin and compact sizes, which shows great promise in various applications. Despite its advantage in miniaturization, its practicality is constrained by spatially varying aberrations and distortions, which significantly degrade the image quality. Several previous arts have attempted to address different types of aberrations, yet most of them are mainly designed for the traditional bulky lens and ineffective to remedy harsh aberrations of the metalens. While there have existed aberration correction methods specifically for metalens, they still fall short of restoration quality. In this work, we propose a novel aberration correction framework for metalens-captured images, harnessing Vision Transformers (ViT) that have the potential to restore metalens images with non-uniform aberrations. Specifically, we devise a Multiple Adaptive Filters Guidance (MAFG), where multiple Wiener filters enrich the degraded input images with various noise-detail balances and a cross-attention module reweights the features considering the different degrees of aberrations. In addition, we introduce a Spatial and Transposed self-Attention Fusion (STAF) module, which aggregates features from spatial self-attention and transposed self-attention modules to further ameliorate aberration correction. We conduct extensive experiments, including correcting aberrated images and videos, and clean 3D reconstruction. The proposed method outperforms the previous arts by a significant margin. We further fabricate a metalens and verify the practicality of our method by restoring the images captured with the manufactured metalens. Code and pre-trained models are available at https://benhenryl.github.io/Metalens-Transformer.
comment: 22 pages, 22 figures
♻ ☆ Hardware-Friendly Static Quantization Method for Video Diffusion Transformers
Diffusion Transformers for video generation have gained significant research interest since the impressive performance of SORA. Efficient deployment of such generative-AI models on GPUs has been demonstrated with dynamic quantization. However, resource-constrained devices cannot support dynamic quantization, and need static quantization of the models for their efficient deployment on AI processors. In this paper, we propose a novel method for the post-training quantization of OpenSora\cite{opensora}, a Video Diffusion Transformer, without relying on dynamic quantization techniques. Our approach employs static quantization, achieving video quality comparable to FP16 and dynamically quantized ViDiT-Q methods, as measured by CLIP, and VQA metrics. In particular, we utilize per-step calibration data to adequately provide a post-training statically quantized model for each time step, incorporating channel-wise quantization for weights and tensor-wise quantization for activations. By further applying the smooth-quantization technique, we can obtain high-quality video outputs with the statically quantized models. Extensive experimental results demonstrate that static quantization can be a viable alternative to dynamic quantization for video diffusion transformers, offering a more efficient approach without sacrificing performance.
♻ ☆ Historic Scripts to Modern Vision: A Novel Dataset and A VLM Framework for Transliteration of Modi Script to Devanagari
In medieval India, the Marathi language was written using the Modi script. The texts written in Modi script include extensive knowledge about medieval sciences, medicines, land records and authentic evidence about Indian history. Around 40 million documents are in poor condition and have not yet been transliterated. Furthermore, only a few experts in this domain can transliterate this script into English or Devanagari. Most of the past research predominantly focuses on individual character recognition. A system that can transliterate Modi script documents to Devanagari script is needed. We propose the MoDeTrans dataset, comprising 2,043 images of Modi script documents accompanied by their corresponding textual transliterations in Devanagari. We further introduce MoScNet (\textbf{Mo}di \textbf{Sc}ript \textbf{Net}work), a novel Vision-Language Model (VLM) framework for transliterating Modi script images into Devanagari text. MoScNet leverages Knowledge Distillation, where a student model learns from a teacher model to enhance transliteration performance. The final student model of MoScNet has better performance than the teacher model while having 163$\times$ lower parameters. Our work is the first to perform direct transliteration from the handwritten Modi script to the Devanagari script. MoScNet also shows competitive results on the optical character recognition (OCR) task.
comment: Under submission at a conference
♻ ☆ Zero-1-to-A: Zero-Shot One Image to Animatable Head Avatars Using Video Diffusion CVPR 2025
Animatable head avatar generation typically requires extensive data for training. To reduce the data requirements, a natural solution is to leverage existing data-free static avatar generation methods, such as pre-trained diffusion models with score distillation sampling (SDS), which align avatars with pseudo ground-truth outputs from the diffusion model. However, directly distilling 4D avatars from video diffusion often leads to over-smooth results due to spatial and temporal inconsistencies in the generated video. To address this issue, we propose Zero-1-to-A, a robust method that synthesizes a spatial and temporal consistency dataset for 4D avatar reconstruction using the video diffusion model. Specifically, Zero-1-to-A iteratively constructs video datasets and optimizes animatable avatars in a progressive manner, ensuring that avatar quality increases smoothly and consistently throughout the learning process. This progressive learning involves two stages: (1) Spatial Consistency Learning fixes expressions and learns from front-to-side views, and (2) Temporal Consistency Learning fixes views and learns from relaxed to exaggerated expressions, generating 4D avatars in a simple-to-complex manner. Extensive experiments demonstrate that Zero-1-to-A improves fidelity, animation quality, and rendering speed compared to existing diffusion-based methods, providing a solution for lifelike avatar creation. Code is publicly available at: https://github.com/ZhenglinZhou/Zero-1-to-A.
comment: Accepted by CVPR 2025, project page: https://zhenglinzhou.github.io/Zero-1-to-A/
♻ ☆ HD-EPIC: A Highly-Detailed Egocentric Video Dataset CVPR 2025
We present a validation dataset of newly-collected kitchen-based egocentric videos, manually annotated with highly detailed and interconnected ground-truth labels covering: recipe steps, fine-grained actions, ingredients with nutritional values, moving objects, and audio annotations. Importantly, all annotations are grounded in 3D through digital twinning of the scene, fixtures, object locations, and primed with gaze. Footage is collected from unscripted recordings in diverse home environments, making HDEPIC the first dataset collected in-the-wild but with detailed annotations matching those in controlled lab environments. We show the potential of our highly-detailed annotations through a challenging VQA benchmark of 26K questions assessing the capability to recognise recipes, ingredients, nutrition, fine-grained actions, 3D perception, object motion, and gaze direction. The powerful long-context Gemini Pro only achieves 38.5% on this benchmark, showcasing its difficulty and highlighting shortcomings in current VLMs. We additionally assess action recognition, sound recognition, and long-term video-object segmentation on HD-EPIC. HD-EPIC is 41 hours of video in 9 kitchens with digital twins of 413 kitchen fixtures, capturing 69 recipes, 59K fine-grained actions, 51K audio events, 20K object movements and 37K object masks lifted to 3D. On average, we have 263 annotations per minute of our unscripted videos.
comment: Accepted at CVPR 2025. Project Webpage and Dataset: http://hd-epic.github.io
♻ ☆ Explaining Deep Convolutional Neural Networks for Image Classification by Evolving Local Interpretable Model-agnostic Explanations
Deep convolutional neural networks have proven their effectiveness, and have been acknowledged as the most dominant method for image classification. However, a severe drawback of deep convolutional neural networks is poor explainability. Unfortunately, in many real-world applications, users need to understand the rationale behind the predictions of deep convolutional neural networks when determining whether they should trust the predictions or not. To resolve this issue, a novel genetic algorithm-based method is proposed for the first time to automatically evolve local explanations that can assist users to assess the rationality of the predictions. Furthermore, the proposed method is model-agnostic, i.e., it can be utilised to explain any deep convolutional neural network models. In the experiments, ResNet is used as an example model to be explained, and the ImageNet dataset is selected as the benchmark dataset. DenseNet and MobileNet are further explained to demonstrate the model-agnostic characteristic of the proposed method. The evolved local explanations on four images, randomly selected from ImageNet, are presented, which show that the evolved local explanations are straightforward to be recognised by humans. Moreover, the evolved explanations can explain the predictions of deep convolutional neural networks on all four images very well by successfully capturing meaningful interpretable features of the sample images. Further analysis based on the 30 runs of the experiments exhibits that the evolved local explanations can also improve the probabilities/confidences of the deep convolutional neural network models in making the predictions. The proposed method can obtain local explanations within one minute, which is more than ten times faster than LIME (the state-of-the-art method).
♻ ☆ Spectral Informed Mamba for Robust Point Cloud Processing
State space models have shown significant promise in Natural Language Processing (NLP) and, more recently, computer vision. This paper introduces a new methodology leveraging Mamba and Masked Autoencoder networks for point cloud data in both supervised and self-supervised learning. We propose three key contributions to enhance Mamba's capability in processing complex point cloud structures. First, we exploit the spectrum of a graph Laplacian to capture patch connectivity, defining an isometry-invariant traversal order that is robust to viewpoints and better captures shape manifolds than traditional 3D grid-based traversals. Second, we adapt segmentation via a recursive patch partitioning strategy informed by Laplacian spectral components, allowing finer integration and segment analysis. Third, we address token placement in Masked Autoencoder for Mamba by restoring tokens to their original positions, which preserves essential order and improves learning. Extensive experiments demonstrate the improvements of our approach in classification, segmentation, and few-shot tasks over state-of-the-art baselines.
♻ ☆ Parameter-Efficient Fine-Tuning for Pre-Trained Vision Models: A Survey
Large-scale pre-trained vision models (PVMs) have shown great potential for adaptability across various downstream vision tasks. However, with state-of-the-art PVMs growing to billions or even trillions of parameters, the standard full fine-tuning paradigm is becoming unsustainable due to high computational and storage demands. In response, researchers are exploring parameter-efficient fine-tuning (PEFT), which seeks to exceed the performance of full fine-tuning with minimal parameter modifications. This survey provides a comprehensive overview and future directions for visual PEFT, offering a systematic review of the latest advancements. First, we provide a formal definition of PEFT and discuss model pre-training methods. We then categorize existing methods into three categories: addition-based, partial-based, and unified-based. Finally, we introduce the commonly used datasets and applications and suggest potential future research challenges. A comprehensive collection of resources is available at https://github.com/synbol/Awesome-Parameter-Efficient-Transfer-Learning.
comment: 9 pages, 3 figures, 2 tables
♻ ☆ SyncDiff: Synchronized Motion Diffusion for Multi-Body Human-Object Interaction Synthesis
Synthesizing realistic human-object interaction motions is a critical problem in VR/AR and human animation. Unlike the commonly studied scenarios involving a single human or hand interacting with one object, we address a more generic multi-body setting with arbitrary numbers of humans, hands, and objects. This complexity introduces significant challenges in synchronizing motions due to the high correlations and mutual influences among bodies. To address these challenges, we introduce SyncDiff, a novel method for multi-body interaction synthesis using a synchronized motion diffusion strategy. SyncDiff employs a single diffusion model to capture the joint distribution of multi-body motions. To enhance motion fidelity, we propose a frequency-domain motion decomposition scheme. Additionally, we introduce a new set of alignment scores to emphasize the synchronization of different body motions. SyncDiff jointly optimizes both data sample likelihood and alignment likelihood through an explicit synchronization strategy. Extensive experiments across four datasets with various multi-body configurations demonstrate the superiority of SyncDiff over existing state-of-the-art motion synthesis methods.
♻ ☆ Identity-preserving Distillation Sampling by Fixed-Point Iterator
Score distillation sampling (SDS) demonstrates a powerful capability for text-conditioned 2D image and 3D object generation by distilling the knowledge from learned score functions. However, SDS often suffers from blurriness caused by noisy gradients. When SDS meets the image editing, such degradations can be reduced by adjusting bias shifts using reference pairs, but the de-biasing techniques are still corrupted by erroneous gradients. To this end, we introduce Identity-preserving Distillation Sampling (IDS), which compensates for the gradient leading to undesired changes in the results. Based on the analysis that these errors come from the text-conditioned scores, a new regularization technique, called fixed-point iterative regularization (FPR), is proposed to modify the score itself, driving the preservation of the identity even including poses and structures. Thanks to a self-correction by FPR, the proposed method provides clear and unambiguous representations corresponding to the given prompts in image-to-image editing and editable neural radiance field (NeRF). The structural consistency between the source and the edited data is obviously maintained compared to other state-of-the-art methods.
♻ ☆ Lightweight Models for Emotional Analysis in Video
In this study, we present an approach for efficient spatiotemporal feature extraction using MobileNetV4 and a multi-scale 3D MLP-Mixer-based temporal aggregation module. MobileNetV4, with its Universal Inverted Bottleneck (UIB) blocks, serves as the backbone for extracting hierarchical feature representations from input image sequences, ensuring both computational efficiency and rich semantic encoding. To capture temporal dependencies, we introduce a three-level MLP-Mixer module, which processes spatial features at multiple resolutions while maintaining structural integrity. Experimental results on the ABAW 8th competition demonstrate the effectiveness of our approach, showing promising performance in affective behavior analysis. By integrating an efficient vision backbone with a structured temporal modeling mechanism, the proposed framework achieves a balance between computational efficiency and predictive accuracy, making it well-suited for real-time applications in mobile and embedded computing environments.
comment: https://github.com/PRVSL/abaw-8th
♻ ☆ IDOL: Instant Photorealistic 3D Human Creation from a Single Image
Creating a high-fidelity, animatable 3D full-body avatar from a single image is a challenging task due to the diverse appearance and poses of humans and the limited availability of high-quality training data. To achieve fast and high-quality human reconstruction, this work rethinks the task from the perspectives of dataset, model, and representation. First, we introduce a large-scale HUman-centric GEnerated dataset, HuGe100K, consisting of 100K diverse, photorealistic sets of human images. Each set contains 24-view frames in specific human poses, generated using a pose-controllable image-to-multi-view model. Next, leveraging the diversity in views, poses, and appearances within HuGe100K, we develop a scalable feed-forward transformer model to predict a 3D human Gaussian representation in a uniform space from a given human image. This model is trained to disentangle human pose, body shape, clothing geometry, and texture. The estimated Gaussians can be animated without post-processing. We conduct comprehensive experiments to validate the effectiveness of the proposed dataset and method. Our model demonstrates the ability to efficiently reconstruct photorealistic humans at 1K resolution from a single input image using a single GPU instantly. Additionally, it seamlessly supports various applications, as well as shape and texture editing tasks. Project page: https://yiyuzhuang.github.io/IDOL/.
comment: 22 pages, 16 figures, includes main content, supplementary materials, and references
♻ ☆ Self-Corrected Flow Distillation for Consistent One-Step and Few-Step Text-to-Image Generation AAAI 2025
Flow matching has emerged as a promising framework for training generative models, demonstrating impressive empirical performance while offering relative ease of training compared to diffusion-based models. However, this method still requires numerous function evaluations in the sampling process. To address these limitations, we introduce a self-corrected flow distillation method that effectively integrates consistency models and adversarial training within the flow-matching framework. This work is a pioneer in achieving consistent generation quality in both few-step and one-step sampling. Our extensive experiments validate the effectiveness of our method, yielding superior results both quantitatively and qualitatively on CelebA-HQ and zero-shot benchmarks on the COCO dataset. Our implementation is released at https://github.com/VinAIResearch/SCFlow
comment: Accepted at AAAI 2025
♻ ☆ Commonsense Video Question Answering through Video-Grounded Entailment Tree Reasoning CVPR 2025
This paper proposes the first video-grounded entailment tree reasoning method for commonsense video question answering (VQA). Despite the remarkable progress of large visual-language models (VLMs), there are growing concerns that they learn spurious correlations between videos and likely answers, reinforced by their black-box nature and remaining benchmarking biases. Our method explicitly grounds VQA tasks to video fragments in four steps: entailment tree construction, video-language entailment verification, tree reasoning, and dynamic tree expansion. A vital benefit of the method is its generalizability to current video and image-based VLMs across reasoning types. To support fair evaluation, we devise a de-biasing procedure based on large-language models that rewrites VQA benchmark answer sets to enforce model reasoning. Systematic experiments on existing and de-biased benchmarks highlight the impact of our method components across benchmarks, VLMs, and reasoning types.
comment: Accepted by CVPR 2025
♻ ☆ LVFace: Progressive Cluster Optimization for Large Vision Models in Face Recognition
Vision Transformers (ViTs) have revolutionized large-scale visual modeling, yet remain underexplored in face recognition (FR) where CNNs still dominate. We identify a critical bottleneck: CNN-inspired training paradigms fail to unlock ViT's potential, leading to suboptimal performance and convergence instability.To address this challenge, we propose LVFace, a ViT-based FR model that integrates Progressive Cluster Optimization (PCO) to achieve superior results. Specifically, PCO sequentially applies negative class sub-sampling (NCS) for robust and fast feature alignment from random initialization, feature expectation penalties for centroid stabilization, performing cluster boundary refinement through full-batch training without NCS constraints. LVFace establishes a new state-of-the-art face recognition baseline, surpassing leading approaches such as UniFace and TopoFR across multiple benchmarks. Extensive experiments demonstrate that LVFace delivers consistent performance gains, while exhibiting scalability to large-scale datasets and compatibility with mainstream VLMs and LLMs. Notably, LVFace secured 1st place in the ICCV 2021 Masked Face Recognition (MFR)-Ongoing Challenge (March 2025), proving its efficacy in real-world scenarios.
♻ ☆ Hard-aware Instance Adaptive Self-training for Unsupervised Cross-domain Semantic Segmentation
The divergence between labeled training data and unlabeled testing data is a significant challenge for recent deep learning models. Unsupervised domain adaptation (UDA) attempts to solve such problem. Recent works show that self-training is a powerful approach to UDA. However, existing methods have difficulty in balancing the scalability and performance. In this paper, we propose a hard-aware instance adaptive self-training framework for UDA on the task of semantic segmentation. To effectively improve the quality and diversity of pseudo-labels, we develop a novel pseudo-label generation strategy with an instance adaptive selector. We further enrich the hard class pseudo-labels with inter-image information through a skillfully designed hard-aware pseudo-label augmentation. Besides, we propose the region-adaptive regularization to smooth the pseudo-label region and sharpen the non-pseudo-label region. For the non-pseudo-label region, consistency constraint is also constructed to introduce stronger supervision signals during model optimization. Our method is so concise and efficient that it is easy to be generalized to other UDA methods. Experiments on GTA5 to Cityscapes, SYNTHIA to Cityscapes, and Cityscapes to Oxford RobotCar demonstrate the superior performance of our approach compared with the state-of-the-art methods. Our codes are available at https://github.com/bupt-ai-cz/HIAST.
comment: arXiv admin note: text overlap with arXiv:2008.12197
♻ ☆ GameFactory: Creating New Games with Generative Interactive Videos
Generative videos have the potential to revolutionize game development by autonomously creating new content. In this paper, we present GameFactory, a framework for action-controlled scene-generalizable game video generation. We first address the fundamental challenge of action controllability by introducing GF-Minecraft, a action-annotated game video dataset without human bias, and developing a action control module that enables precise control over both keyboard and mouse inputs. We further extend to support autoregressive generation for unlimited-length interactive videos. More importantly, GameFactory tackles the critical challenge of scene-generalizable action control, which most existing methods fail to address. To enable the creation of entirely new and diverse games beyond fixed styles and scenes, we leverage the open-domain generative priors from pre-trained video diffusion models. To bridge the domain gap between open-domain priors and small-scale game datasets, we propose a multi-phase training strategy with a domain adapter that decouples game style learning from action control. This decoupling ensures that action control learning is no longer bound to specific game styles, thereby achieving scene-generalizable action control. Experimental results demonstrate that GameFactory effectively generates open-domain action-controllable game videos, representing a significant step forward in AI-driven game generation. Our dataset and project page are publicly available at https://yujiwen.github.io/gamefactory/.
♻ ☆ SelfSplat: Pose-Free and 3D Prior-Free Generalizable 3D Gaussian Splatting
We propose SelfSplat, a novel 3D Gaussian Splatting model designed to perform pose-free and 3D prior-free generalizable 3D reconstruction from unposed multi-view images. These settings are inherently ill-posed due to the lack of ground-truth data, learned geometric information, and the need to achieve accurate 3D reconstruction without finetuning, making it difficult for conventional methods to achieve high-quality results. Our model addresses these challenges by effectively integrating explicit 3D representations with self-supervised depth and pose estimation techniques, resulting in reciprocal improvements in both pose accuracy and 3D reconstruction quality. Furthermore, we incorporate a matching-aware pose estimation network and a depth refinement module to enhance geometry consistency across views, ensuring more accurate and stable 3D reconstructions. To present the performance of our method, we evaluated it on large-scale real-world datasets, including RealEstate10K, ACID, and DL3DV. SelfSplat achieves superior results over previous state-of-the-art methods in both appearance and geometry quality, also demonstrates strong cross-dataset generalization capabilities. Extensive ablation studies and analysis also validate the effectiveness of our proposed methods. Code and pretrained models are available at https://gynjn.github.io/selfsplat/
comment: Project page: https://gynjn.github.io/selfsplat/
♻ ☆ Generative Photography: Scene-Consistent Camera Control for Realistic Text-to-Image Synthesis CVPR 2025
Image generation today can produce somewhat realistic images from text prompts. However, if one asks the generator to synthesize a specific camera setting such as creating different fields of view using a 24mm lens versus a 70mm lens, the generator will not be able to interpret and generate scene-consistent images. This limitation not only hinders the adoption of generative tools in professional photography but also highlights the broader challenge of aligning data-driven models with real-world physical settings. In this paper, we introduce Generative Photography, a framework that allows controlling camera intrinsic settings during content generation. The core innovation of this work are the concepts of Dimensionality Lifting and Differential Camera Intrinsics Learning, enabling smooth and consistent transitions across different camera settings. Experimental results show that our method produces significantly more scene-consistent photorealistic images than state-of-the-art models such as Stable Diffusion 3 and FLUX. Our code and additional results are available at https://generative-photography.github.io/project.
comment: Accepted by CVPR 2025. Project page: https://generative-photography.github.io/project/
♻ ☆ Improved Training Technique for Latent Consistency Models ICLR 2025
Consistency models are a new family of generative models capable of producing high-quality samples in either a single step or multiple steps. Recently, consistency models have demonstrated impressive performance, achieving results on par with diffusion models in the pixel space. However, the success of scaling consistency training to large-scale datasets, particularly for text-to-image and video generation tasks, is determined by performance in the latent space. In this work, we analyze the statistical differences between pixel and latent spaces, discovering that latent data often contains highly impulsive outliers, which significantly degrade the performance of iCT in the latent space. To address this, we replace Pseudo-Huber losses with Cauchy losses, effectively mitigating the impact of outliers. Additionally, we introduce a diffusion loss at early timesteps and employ optimal transport (OT) coupling to further enhance performance. Lastly, we introduce the adaptive scaling-$c$ scheduler to manage the robust training process and adopt Non-scaling LayerNorm in the architecture to better capture the statistics of the features and reduce outlier impact. With these strategies, we successfully train latent consistency models capable of high-quality sampling with one or two steps, significantly narrowing the performance gap between latent consistency and diffusion models. The implementation is released here: https://github.com/quandao10/sLCT/
comment: Accepted at ICLR 2025
♻ ☆ HeatFormer: A Neural Optimizer for Multiview Human Mesh Recovery CVPR 2025
We introduce a novel method for human shape and pose recovery that can fully leverage multiple static views. We target fixed-multiview people monitoring, including elderly care and safety monitoring, in which calibrated cameras can be installed at the corners of a room or an open space but whose configuration may vary depending on the environment. Our key idea is to formulate it as neural optimization. We achieve this with HeatFormer, a neural optimizer that iteratively refines the SMPL parameters given multiview images, which is fundamentally agonistic to the configuration of views. HeatFormer realizes this SMPL parameter estimation as heat map generation and alignment with a novel transformer encoder and decoder. We demonstrate the effectiveness of HeatFormer including its accuracy, robustness to occlusion, and generalizability through an extensive set of experiments. We believe HeatFormer can serve a key role in passive human behavior modeling.
comment: To be published in CVPR 2025
♻ ☆ STOP: Integrated Spatial-Temporal Dynamic Prompting for Video Understanding
Pre-trained on tremendous image-text pairs, vision-language models like CLIP have demonstrated promising zero-shot generalization across numerous image-based tasks. However, extending these capabilities to video tasks remains challenging due to limited labeled video data and high training costs. Recent video prompting methods attempt to adapt CLIP for video tasks by introducing learnable prompts, but they typically rely on a single static prompt for all video sequences, overlooking the diverse temporal dynamics and spatial variations that exist across frames. This limitation significantly hinders the model's ability to capture essential temporal information for effective video understanding. To address this, we propose an integrated Spatial-TempOral dynamic Prompting (STOP) model which consists of two complementary modules, the intra-frame spatial prompting and inter-frame temporal prompting. Our intra-frame spatial prompts are designed to adaptively highlight discriminative regions within each frame by leveraging intra-frame attention and temporal variation, allowing the model to focus on areas with substantial temporal dynamics and capture fine-grained spatial details. Additionally, to highlight the varying importance of frames for video understanding, we further introduce inter-frame temporal prompts, dynamically inserting prompts between frames with high temporal variance as measured by frame similarity. This enables the model to prioritize key frames and enhances its capacity to understand temporal dependencies across sequences. Extensive experiments on various video benchmarks demonstrate that STOP consistently achieves superior performance against state-of-the-art methods. The code is available at https://github.com/zhoujiahuan1991/CVPR2025-STOP.
♻ ☆ TopoCellGen: Generating Histopathology Cell Topology with a Diffusion Model CVPR 2025
Accurately modeling multi-class cell topology is crucial in digital pathology, as it provides critical insights into tissue structure and pathology. The synthetic generation of cell topology enables realistic simulations of complex tissue environments, enhances downstream tasks by augmenting training data, aligns more closely with pathologists' domain knowledge, and offers new opportunities for controlling and generalizing the tumor microenvironment. In this paper, we propose a novel approach that integrates topological constraints into a diffusion model to improve the generation of realistic, contextually accurate cell topologies. Our method refines the simulation of cell distributions and interactions, increasing the precision and interpretability of results in downstream tasks such as cell detection and classification. To assess the topological fidelity of generated layouts, we introduce a new metric, Topological Frechet Distance (TopoFD), which overcomes the limitations of traditional metrics like FID in evaluating topological structure. Experimental results demonstrate the effectiveness of our approach in generating multi-class cell layouts that capture intricate topological relationships. Code is available at https://github.com/Melon-Xu/TopoCellGen.
comment: Accepted by CVPR 2025. 15 pages, 8 figures
♻ ☆ PRIMEdit: Probability Redistribution for Instance-aware Multi-object Video Editing with Benchmark Dataset
Recent AI-based video editing has enabled users to edit videos through simple text prompts, significantly simplifying the editing process. However, recent zero-shot video editing techniques primarily focus on global or single-object edits, which can lead to unintended changes in other parts of the video. When multiple objects require localized edits, existing methods face challenges, such as unfaithful editing, editing leakage, and lack of suitable evaluation datasets and metrics. To overcome these limitations, we propose $\textbf{P}$robability $\textbf{R}$edistribution for $\textbf{I}$nstance-aware $\textbf{M}$ulti-object Video $\textbf{Edit}$ing ($\textbf{PRIMEdit}$). PRIMEdit is a zero-shot framework that introduces two key modules: (i) Instance-centric Probability Redistribution (IPR) to ensure precise localization and faithful editing and (ii) Disentangled Multi-instance Sampling (DMS) to prevent editing leakage. Additionally, we present our new MIVE Dataset for video editing featuring diverse video scenarios, and introduce the Cross-Instance Accuracy (CIA) Score to evaluate editing leakage in multi-instance video editing tasks. Our extensive qualitative, quantitative, and user study evaluations demonstrate that PRIMEdit significantly outperforms recent state-of-the-art methods in terms of editing faithfulness, accuracy, and leakage prevention, setting a new benchmark for multi-instance video editing.
comment: The first two authors contributed equally to this work. The last two authors are co-corresponding authors. Please visit our project page at https://kaist-viclab.github.io/primedit-site/
♻ ☆ Zeroth-order Informed Fine-Tuning for Diffusion Model: A Recursive Likelihood Ratio Optimizer
The probabilistic diffusion model (DM), generating content by inferencing through a recursive chain structure, has emerged as a powerful framework for visual generation. After pre-training on enormous unlabeled data, the model needs to be properly aligned to meet requirements for downstream applications. How to efficiently align the foundation DM is a crucial task. Contemporary methods are either based on Reinforcement Learning (RL) or truncated Backpropagation (BP). However, RL and truncated BP suffer from low sample efficiency and biased gradient estimation respectively, resulting in limited improvement or, even worse, complete training failure. To overcome the challenges, we propose the Recursive Likelihood Ratio (RLR) optimizer, a zeroth-order informed fine-tuning paradigm for DM. The zeroth-order gradient estimator enables the computation graph rearrangement within the recursive diffusive chain, making the RLR's gradient estimator an unbiased one with the lower variance than other methods. We provide theoretical guarantees for the performance of the RLR. Extensive experiments are conducted on image and video generation tasks to validate the superiority of the RLR. Furthermore, we propose a novel prompt technique that is natural for the RLR to achieve a synergistic effect.
♻ ☆ Towards Unbiased and Robust Spatio-Temporal Scene Graph Generation and Anticipation CVPR 2025
Spatio-Temporal Scene Graphs (STSGs) provide a concise and expressive representation of dynamic scenes by modeling objects and their evolving relationships over time. However, real-world visual relationships often exhibit a long-tailed distribution, causing existing methods for tasks like Video Scene Graph Generation (VidSGG) and Scene Graph Anticipation (SGA) to produce biased scene graphs. To this end, we propose ImparTail, a novel training framework that leverages loss masking and curriculum learning to mitigate bias in the generation and anticipation of spatio-temporal scene graphs. Unlike prior methods that add extra architectural components to learn unbiased estimators, we propose an impartial training objective that reduces the dominance of head classes during learning and focuses on underrepresented tail relationships. Our curriculum-driven mask generation strategy further empowers the model to adaptively adjust its bias mitigation strategy over time, enabling more balanced and robust estimations. To thoroughly assess performance under various distribution shifts, we also introduce two new tasks Robust Spatio-Temporal Scene Graph Generation and Robust Scene Graph Anticipation offering a challenging benchmark for evaluating the resilience of STSG models. Extensive experiments on the Action Genome dataset demonstrate the superior unbiased performance and robustness of our method compared to existing baselines.
comment: CVPR 2025
♻ ☆ SV4D 2.0: Enhancing Spatio-Temporal Consistency in Multi-View Video Diffusion for High-Quality 4D Generation
We present Stable Video 4D 2.0 (SV4D 2.0), a multi-view video diffusion model for dynamic 3D asset generation. Compared to its predecessor SV4D, SV4D 2.0 is more robust to occlusions and large motion, generalizes better to real-world videos, and produces higher-quality outputs in terms of detail sharpness and spatio-temporal consistency. We achieve this by introducing key improvements in multiple aspects: 1) network architecture: eliminating the dependency of reference multi-views and designing blending mechanism for 3D and frame attention, 2) data: enhancing quality and quantity of training data, 3) training strategy: adopting progressive 3D-4D training for better generalization, and 4) 4D optimization: handling 3D inconsistency and large motion via 2-stage refinement and progressive frame sampling. Extensive experiments demonstrate significant performance gain by SV4D 2.0 both visually and quantitatively, achieving better detail (-14\% LPIPS) and 4D consistency (-44\% FV4D) in novel-view video synthesis and 4D optimization (-12\% LPIPS and -24\% FV4D) compared to SV4D. Project page: https://sv4d20.github.io.
comment: Project page: https://sv4d20.github.io/
♻ ☆ Multi-Disease-Aware Training Strategy for Cardiac MR Image Segmentation
Accurate segmentation of the ventricles from cardiac magnetic resonance images (CMRIs) is crucial for enhancing the diagnosis and analysis of heart conditions. Deep learning-based segmentation methods have recently garnered significant attention due to their impressive performance. However, these segmentation methods are typically good at partitioning regularly shaped organs, such as the left ventricle (LV) and the myocardium (MYO), whereas they perform poorly on irregularly shaped organs, such as the right ventricle (RV). In this study, we argue that this limitation of segmentation models stems from their insufficient generalization ability to address the distribution shift of segmentation targets across slices, cardiac phases, and disease conditions. To overcome this issue, we present a Multi-Disease-Aware Training Strategy (MTS) and restructure the introduced CMRI datasets into multi-disease datasets. Additionally, we propose a specialized data processing technique for preprocessing input images to support the MTS. To validate the effectiveness of our method, we performed control group experiments and cross-validation tests. The experimental results show that (1) network models trained using our proposed strategy achieved superior segmentation performance, particularly in RV segmentation, and (2) these networks exhibited robust performance even when applied to data from unknown diseases.
♻ ☆ WonderWorld: Interactive 3D Scene Generation from a Single Image CVPR 2025
We present WonderWorld, a novel framework for interactive 3D scene generation that enables users to interactively specify scene contents and layout and see the created scenes in low latency. The major challenge lies in achieving fast generation of 3D scenes. Existing scene generation approaches fall short of speed as they often require (1) progressively generating many views and depth maps, and (2) time-consuming optimization of the scene geometry representations. We introduce the Fast Layered Gaussian Surfels (FLAGS) as our scene representation and an algorithm to generate it from a single view. Our approach does not need multiple views, and it leverages a geometry-based initialization that significantly reduces optimization time. Another challenge is generating coherent geometry that allows all scenes to be connected. We introduce the guided depth diffusion that allows partial conditioning of depth estimation. WonderWorld generates connected and diverse 3D scenes in less than 10 seconds on a single A6000 GPU, enabling real-time user interaction and exploration. We demonstrate the potential of WonderWorld for user-driven content creation and exploration in virtual environments. We release full code and software for reproducibility. Project website: https://kovenyu.com/WonderWorld/.
comment: CVPR 2025. Project website: https://kovenyu.com/WonderWorld/. The first two authors contributed equally
♻ ☆ FloVD: Optical Flow Meets Video Diffusion Model for Enhanced Camera-Controlled Video Synthesis CVPR 2025
We present FloVD, a novel video diffusion model for camera-controllable video generation. FloVD leverages optical flow to represent the motions of the camera and moving objects. This approach offers two key benefits. Since optical flow can be directly estimated from videos, our approach allows for the use of arbitrary training videos without ground-truth camera parameters. Moreover, as background optical flow encodes 3D correlation across different viewpoints, our method enables detailed camera control by leveraging the background motion. To synthesize natural object motion while supporting detailed camera control, our framework adopts a two-stage video synthesis pipeline consisting of optical flow generation and flow-conditioned video synthesis. Extensive experiments demonstrate the superiority of our method over previous approaches in terms of accurate camera control and natural object motion synthesis.
comment: Our paper has been accepted to CVPR 2025. Website: https://jinwonjoon.github.io/flovd_site/ Code: https://github.com/JinWonjoon/FloVD
♻ ☆ Medical Report Generation Is A Multi-label Classification Problem
Medical report generation is a critical task in healthcare that involves the automatic creation of detailed and accurate descriptions from medical images. Traditionally, this task has been approached as a sequence generation problem, relying on vision-and-language techniques to generate coherent and contextually relevant reports. However, in this paper, we propose a novel perspective: rethinking medical report generation as a multi-label classification problem. By framing the task this way, we leverage the radiology nodes from the commonly used knowledge graph, which can be better captured through classification techniques. To verify our argument, we introduce a novel report generation framework based on BLIP integrated with classified key nodes, which allows for effective report generation with accurate classification of multiple key aspects within the medical images. This approach not only simplifies the report generation process but also significantly enhances performance metrics. Our extensive experiments demonstrate that leveraging key nodes can achieve state-of-the-art (SOTA) performance, surpassing existing approaches across two benchmark datasets. The results underscore the potential of re-envisioning traditional tasks with innovative methodologies, paving the way for more efficient and accurate medical report generation.
comment: Accepted to 2024 IEEE International Conference on Medical Artificial Intelligence
♻ ☆ Mitigating Data Redundancy to Revitalize Transformer-based Long-Term Time Series Forecasting System
Long-term time-series forecasting (LTSF) is fundamental to various real-world applications, where Transformer-based models have become the dominant framework due to their ability to capture long-range dependencies. However, these models often experience overfitting due to data redundancy in rolling forecasting settings, limiting their generalization ability particularly evident in longer sequences with highly similar adjacent data. In this work, we introduce CLMFormer, a novel framework that mitigates redundancy through curriculum learning and a memory-driven decoder. Specifically, we progressively introduce Bernoulli noise to the training samples, which effectively breaks the high similarity between adjacent data points. This curriculum-driven noise introduction aids the memory-driven decoder by supplying more diverse and representative training data, enhancing the decoder's ability to model seasonal tendencies and dependencies in the time-series data. To further enhance forecasting accuracy, we introduce a memory-driven decoder. This component enables the model to capture seasonal tendencies and dependencies in the time-series data and leverages temporal relationships to facilitate the forecasting process. Extensive experiments on six real-world LTSF benchmarks show that CLMFormer consistently improves Transformer-based models by up to 30%, demonstrating its effectiveness in long-horizon forecasting.
comment: ACM TIST
♻ ☆ Identity-Preserving Text-to-Video Generation by Frequency Decomposition CVPR 2025
Identity-preserving text-to-video (IPT2V) generation aims to create high-fidelity videos with consistent human identity. It is an important task in video generation but remains an open problem for generative models. This paper pushes the technical frontier of IPT2V in two directions that have not been resolved in literature: (1) A tuning-free pipeline without tedious case-by-case finetuning, and (2) A frequency-aware heuristic identity-preserving DiT-based control scheme. We propose ConsisID, a tuning-free DiT-based controllable IPT2V model to keep human identity consistent in the generated video. Inspired by prior findings in frequency analysis of diffusion transformers, it employs identity-control signals in the frequency domain, where facial features can be decomposed into low-frequency global features and high-frequency intrinsic features. First, from a low-frequency perspective, we introduce a global facial extractor, which encodes reference images and facial key points into a latent space, generating features enriched with low-frequency information. These features are then integrated into shallow layers of the network to alleviate training challenges associated with DiT. Second, from a high-frequency perspective, we design a local facial extractor to capture high-frequency details and inject them into transformer blocks, enhancing the model's ability to preserve fine-grained features. We propose a hierarchical training strategy to leverage frequency information for identity preservation, transforming a vanilla pre-trained video generation model into an IPT2V model. Extensive experiments demonstrate that our frequency-aware heuristic scheme provides an optimal control solution for DiT-based models. Thanks to this scheme, our ConsisID generates high-quality, identity-preserving videos, making strides towards more effective IPT2V. Code: https://github.com/PKU-YuanGroup/ConsisID.
comment: CVPR 2025
♻ ☆ Simulator HC: Regression-based Online Simulation of Starting Problem-Solution Pairs for Homotopy Continuation in Geometric Vision
While automatically generated polynomial elimination templates have sparked great progress in the field of 3D computer vision, there remain many problems for which the degree of the constraints or the number of unknowns leads to intractability. In recent years, homotopy continuation has been introduced as a plausible alternative. However, the method currently depends on expensive parallel tracking of all possible solutions in the complex domain, or a classification network for starting problem-solution pairs trained over a limited set of real-world examples. Our innovation lies in a novel approach to finding solution-problem pairs, where we only need to predict a rough initial solution, with the corresponding problem generated by an online simulator. Subsequently, homotopy continuation is applied to track that single solution back to the original problem. We apply this elegant combination to generalized camera resectioning, and also introduce a new solution to the challenging generalized relative pose and scale problem. As demonstrated, the proposed method successfully compensates the raw error committed by the regressor alone, and leads to state-of-the-art efficiency and success rates.
♻ ☆ Bézier Splatting for Fast and Differentiable Vector Graphics
Differentiable vector graphics (VGs) are widely used in image vectorization and vector synthesis, while existing representations are costly to optimize and struggle to achieve high-quality rendering results for high-resolution images. This work introduces a new differentiable VG representation, dubbed B\'ezier splatting, that enables fast yet high-fidelity VG rasterization. B\'ezier splatting samples 2D Gaussians along B\'ezier curves, which naturally provide positional gradients at object boundaries. Thanks to the efficient splatting-based differentiable rasterizer, B\'ezier splatting achieves over 20x and 150x faster per forward and backward rasterization step for open curves compared to DiffVG. Additionally, we introduce an adaptive pruning and densification strategy that dynamically adjusts the spatial distribution of curves to escape local minima, further improving VG quality. Experimental results show that B\'ezier splatting significantly outperforms existing methods with better visual fidelity and 10x faster optimization speed.
comment: Project page: https://xiliu8006.github.io/Bezier_splatting_project/
♻ ☆ VisionArena: 230K Real World User-VLM Conversations with Preference Labels CVPR
With the growing adoption and capabilities of vision-language models (VLMs) comes the need for benchmarks that capture authentic user-VLM interactions. In response, we create VisionArena, a dataset of 230K real-world conversations between users and VLMs. Collected from Chatbot Arena - an open-source platform where users interact with VLMs and submit preference votes - VisionArena spans 73K unique users, 45 VLMs, and 138 languages. Our dataset contains three subsets: VisionArena-Chat, 200k single and multi-turn conversations between a user and a VLM; VisionArena-Battle, 30K conversations comparing two anonymous VLMs with user preference votes; and VisionArena-Bench, an automatic benchmark of 500 diverse user prompts that efficiently approximate the live Chatbot Arena model rankings. Additionally, we highlight the types of question asked by users, the influence of response style on preference, and areas where models often fail. We find open-ended tasks like captioning and humor are highly style-dependent, and current VLMs struggle with spatial reasoning and planning tasks. Lastly, we show finetuning the same base model on VisionArena-Chat outperforms Llava-Instruct-158K, with a 17-point gain on MMMU and a 46-point gain on the WildVision benchmark. Dataset at https://huggingface.co/lmarena-ai
comment: updated for CVPR Camera Ready
♻ ☆ Similarity-Dissimilarity Loss for Multi-label Supervised Contrastive Learning
Supervised contrastive learning has achieved remarkable success by leveraging label information; however, determining positive samples in multi-label scenarios remains a critical challenge. In multi-label supervised contrastive learning (MSCL), relations among multi-label samples are not yet fully defined, leading to ambiguity in identifying positive samples and formulating contrastive loss functions to construct the representation space. To address these challenges, we: (i) first define five distinct multi-label relations in MSCL to systematically identify positive samples, (ii) introduce a novel Similarity-Dissimilarity Loss that dynamically re-weights samples through computing the similarity and dissimilarity factors between positive samples and given anchors based on multi-label relations, and (iii) further provide theoretical grounded proof for our method through rigorous mathematical analysis that supports the formulation and effectiveness of the proposed loss function. We conduct the experiments across both image and text modalities, and extend the evaluation to medical domain. The results demonstrate that our method consistently outperforms baselines in a comprehensive evaluation, confirming its effectiveness and robustness. Code is available at: https://github.com/guangminghuang/similarity-dissimilarity-loss.
♻ ☆ Simulation of prosthetic vision with PRIMA system and enhancement of face representation
Objective. Patients implanted with the PRIMA photovoltaic subretinal prosthesis in geographic atrophy report form vision with the average acuity matching the 100um pixel size. Although this remarkable outcome enables them to read and write, they report difficulty with perceiving faces. This paper provides a novel, non-pixelated algorithm for simulating prosthetic vision the way it is experienced by PRIMA patients, compares the algorithm's predictions to clinical perceptual outcomes, and offers computer vision and machine learning (ML) methods to improve face representation. Approach. Our simulation algorithm integrates a grayscale filter, spatial resolution filter, and contrast filter. This accounts for the limited sampling density of the retinal implant, as well as the reduced contrast sensitivity of prosthetic vision. Patterns of Landolt C and faces created using this simulation algorithm are compared to reports from actual PRIMA users. To recover the facial features lost in prosthetic vision, we apply an ML facial landmarking model as well as contrast adjusting tone curves to the face image prior to its projection onto the implant. Main results. Simulated prosthetic vision matches the maximum letter acuity observed in clinical studies as well as patients' subjective descriptions. Application of the inversed contrast filter helps preserve the contrast in prosthetic vision. Identification of the facial features using an ML facial landmarking model and accentuating them further improve face representation. Significance. Spatial and contrast constraints of prosthetic vision limit resolvable features and degrade natural images. ML based methods and contrast adjustments mitigate some limitations and improve face representation. Even though higher spatial resolution can be expected with implants having smaller pixels, contrast enhancement still remains essential for face recognition.
♻ ☆ Fidelity-Imposed Displacement Editing for the Learn2Reg 2024 SHG-BF Challenge
Co-examination of second-harmonic generation (SHG) and bright-field (BF) microscopy enables the differentiation of tissue components and collagen fibers, aiding the analysis of human breast and pancreatic cancer tissues. However, large discrepancies between SHG and BF images pose challenges for current learning-based registration models in aligning SHG to BF. In this paper, we propose a novel multi-modal registration framework that employs fidelity-imposed displacement editing to address these challenges. The framework integrates batch-wise contrastive learning, feature-based pre-alignment, and instance-level optimization. Experimental results from the Learn2Reg COMULISglobe SHG-BF Challenge validate the effectiveness of our method, securing the 1st place on the online leaderboard.
comment: Due to the instruction and conflict of co-author
♻ ☆ SimMotionEdit: Text-Based Human Motion Editing with Motion Similarity Prediction
Text-based 3D human motion editing is a critical yet challenging task in computer vision and graphics. While training-free approaches have been explored, the recent release of the MotionFix dataset, which includes source-text-motion triplets, has opened new avenues for training, yielding promising results. However, existing methods struggle with precise control, often leading to misalignment between motion semantics and language instructions. In this paper, we introduce a related task, motion similarity prediction, and propose a multi-task training paradigm, where we train the model jointly on motion editing and motion similarity prediction to foster the learning of semantically meaningful representations. To complement this task, we design an advanced Diffusion-Transformer-based architecture that separately handles motion similarity prediction and motion editing. Extensive experiments demonstrate the state-of-the-art performance of our approach in both editing alignment and fidelity.
comment: Project URL: https://github.com/lzhyu/SimMotionEdit
♻ ☆ Motion-Boundary-Driven Unsupervised Surgical Instrument Segmentation in Low-Quality Optical Flow
Unsupervised video-based surgical instrument segmentation has the potential to accelerate the adoption of robot-assisted procedures by reducing the reliance on manual annotations. However, the generally low quality of optical flow in endoscopic footage poses a great challenge for unsupervised methods that rely heavily on motion cues. To overcome this limitation, we propose a novel approach that pinpoints motion boundaries, regions with abrupt flow changes, while selectively discarding frames with globally low-quality flow and adapting to varying motion patterns. Experiments on the EndoVis2017 VOS and EndoVis2017 Challenge datasets show that our method achieves mean Intersection-over-Union (mIoU) scores of 0.75 and 0.72, respectively, effectively alleviating the constraints imposed by suboptimal optical flow. This enables a more scalable and robust surgical instrument segmentation solution in clinical settings. The code will be publicly released.
♻ ☆ VisFocus: Prompt-Guided Vision Encoders for OCR-Free Dense Document Understanding ECCV 2024
In recent years, notable advancements have been made in the domain of visual document understanding, with the prevailing architecture comprising a cascade of vision and language models. The text component can either be extracted explicitly with the use of external OCR models in OCR-based approaches, or alternatively, the vision model can be endowed with reading capabilities in OCR-free approaches. Typically, the queries to the model are input exclusively to the language component, necessitating the visual features to encompass the entire document. In this paper, we present VisFocus, an OCR-free method designed to better exploit the vision encoder's capacity by coupling it directly with the language prompt. To do so, we replace the down-sampling layers with layers that receive the input prompt and allow highlighting relevant parts of the document, while disregarding others. We pair the architecture enhancements with a novel pre-training task, using language masking on a snippet of the document text fed to the visual encoder in place of the prompt, to empower the model with focusing capabilities. Consequently, VisFocus learns to allocate its attention to text patches pertinent to the provided prompt. Our experiments demonstrate that this prompt-guided visual encoding approach significantly improves performance, achieving state-of-the-art results on various benchmarks.
comment: ECCV 2024, official code at https://github.com/amazon-science/visfocus
♻ ☆ LLAVIDAL: A Large LAnguage VIsion Model for Daily Activities of Living CVPR 2025
Current Large Language Vision Models (LLVMs) trained on web videos perform well in general video understanding but struggle with fine-grained details, complex human-object interactions (HOI), and view-invariant representation learning essential for Activities of Daily Living (ADL). This limitation stems from a lack of specialized ADL video instruction-tuning datasets and insufficient modality integration to capture discriminative action representations. To address this, we propose a semi-automated framework for curating ADL datasets, creating ADL-X, a multiview, multimodal RGBS instruction-tuning dataset. Additionally, we introduce LLAVIDAL, an LLVM integrating videos, 3D skeletons, and HOIs to model ADL's complex spatiotemporal relationships. For training LLAVIDAL a simple joint alignment of all modalities yields suboptimal results; thus, we propose a Multimodal Progressive (MMPro) training strategy, incorporating modalities in stages following a curriculum. We also establish ADL MCQ and video description benchmarks to assess LLVM performance in ADL tasks. Trained on ADL-X, LLAVIDAL achieves state-of-the-art performance across ADL benchmarks. Code and data will be made publicly available at: https://adl-x.github.io/.
comment: CVPR 2025 Camera Ready
♻ ☆ POp-GS: Next Best View in 3D-Gaussian Splatting with P-Optimality
In this paper, we present a novel algorithm for quantifying uncertainty and information gained within 3D Gaussian Splatting (3D-GS) through P-Optimality. While 3D-GS has proven to be a useful world model with high-quality rasterizations, it does not natively quantify uncertainty or information, posing a challenge for real-world applications such as 3D-GS SLAM. We propose to quantify information gain in 3D-GS by reformulating the problem through the lens of optimal experimental design, which is a classical solution widely used in literature. By restructuring information quantification of 3D-GS through optimal experimental design, we arrive at multiple solutions, of which T-Optimality and D-Optimality perform the best quantitatively and qualitatively as measured on two popular datasets. Additionally, we propose a block diagonal covariance approximation which provides a measure of correlation at the expense of a greater computation cost.
Machine Learning 206
☆ SuperFlow++: Enhanced Spatiotemporal Consistency for Cross-Modal Data Pretraining
LiDAR representation learning has emerged as a promising approach to reducing reliance on costly and labor-intensive human annotations. While existing methods primarily focus on spatial alignment between LiDAR and camera sensors, they often overlook the temporal dynamics critical for capturing motion and scene continuity in driving scenarios. To address this limitation, we propose SuperFlow++, a novel framework that integrates spatiotemporal cues in both pretraining and downstream tasks using consecutive LiDAR-camera pairs. SuperFlow++ introduces four key components: (1) a view consistency alignment module to unify semantic information across camera views, (2) a dense-to-sparse consistency regularization mechanism to enhance feature robustness across varying point cloud densities, (3) a flow-based contrastive learning approach that models temporal relationships for improved scene understanding, and (4) a temporal voting strategy that propagates semantic information across LiDAR scans to improve prediction consistency. Extensive evaluations on 11 heterogeneous LiDAR datasets demonstrate that SuperFlow++ outperforms state-of-the-art methods across diverse tasks and driving conditions. Furthermore, by scaling both 2D and 3D backbones during pretraining, we uncover emergent properties that provide deeper insights into developing scalable 3D foundation models. With strong generalizability and computational efficiency, SuperFlow++ establishes a new benchmark for data-efficient LiDAR-based perception in autonomous driving. The code is publicly available at https://github.com/Xiangxu-0103/SuperFlow
comment: Preprint; 15 pages, 6 figures, 10 tables; Code at https://github.com/Xiangxu-0103/SuperFlow
☆ Tracktention: Leveraging Point Tracking to Attend Videos Faster and Better CVPR 2025
Temporal consistency is critical in video prediction to ensure that outputs are coherent and free of artifacts. Traditional methods, such as temporal attention and 3D convolution, may struggle with significant object motion and may not capture long-range temporal dependencies in dynamic scenes. To address this gap, we propose the Tracktention Layer, a novel architectural component that explicitly integrates motion information using point tracks, i.e., sequences of corresponding points across frames. By incorporating these motion cues, the Tracktention Layer enhances temporal alignment and effectively handles complex object motions, maintaining consistent feature representations over time. Our approach is computationally efficient and can be seamlessly integrated into existing models, such as Vision Transformers, with minimal modification. It can be used to upgrade image-only models to state-of-the-art video ones, sometimes outperforming models natively designed for video prediction. We demonstrate this on video depth prediction and video colorization, where models augmented with the Tracktention Layer exhibit significantly improved temporal consistency compared to baselines.
comment: CVPR 2025. Project website: zlai0.github.io/TrackTention
☆ RCC-PFL: Robust Client Clustering under Noisy Labels in Personalized Federated Learning
We address the problem of cluster identity estimation in a personalized federated learning (PFL) setting in which users aim to learn different personal models. The backbone of effective learning in such a setting is to cluster users into groups whose objectives are similar. A typical approach in the literature is to achieve this by training users' data on different proposed personal models and assign them to groups based on which model achieves the lowest value of the users' loss functions. This process is to be done iteratively until group identities converge. A key challenge in such a setting arises when users have noisy labeled data, which may produce misleading values of their loss functions, and hence lead to ineffective clustering. To overcome this challenge, we propose a label-agnostic data similarity-based clustering algorithm, coined RCC-PFL, with three main advantages: the cluster identity estimation procedure is independent from the training labels; it is a one-shot clustering algorithm performed prior to the training; and it requires fewer communication rounds and less computation compared to iterative-based clustering methods. We validate our proposed algorithm using various models and datasets and show that it outperforms multiple baselines in terms of average accuracy and variance reduction.
comment: to appear in the 2025 IEEE International Conference on Communications
☆ Extensions of regret-minimization algorithm for optimal design
We explore extensions and applications of the regret minimization framework introduced by~\cite{design} for solving optimal experimental design problems. Specifically, we incorporate the entropy regularizer into this framework, leading to a novel sample selection objective and a provable sample complexity bound that guarantees a $(1+\epsilon)$-near optimal solution. We further extend the method to handle regularized optimal design settings. As an application, we use our algorithm to select a small set of representative samples from image classification datasets without relying on label information. To evaluate the quality of the selected samples, we train a logistic regression model and compare performance against several baseline sampling strategies. Experimental results on MNIST, CIFAR-10, and a 50-class subset of ImageNet show that our approach consistently outperforms competing methods in most cases.
☆ Identification of Average Treatment Effects in Nonparametric Panel Models
This paper studies identification of average treatment effects in a panel data setting. It introduces a novel nonparametric factor model and proves identification of average treatment effects. The identification proof is based on the introduction of a consistent estimator. Underlying the proof is a result that there is a consistent estimator for the expected outcome in the absence of the treatment for each unit and time period; this result can be applied more broadly, for example in problems of decompositions of group-level differences in outcomes, such as the much-studied gender wage gap.
☆ Geometric Meta-Learning via Coupled Ricci Flow: Unifying Knowledge Representation and Quantum Entanglement
This paper establishes a unified framework integrating geometric flows with deep learning through three fundamental innovations. First, we propose a thermodynamically coupled Ricci flow that dynamically adapts parameter space geometry to loss landscape topology, formally proved to preserve isometric knowledge embedding (Theorem~\ref{thm:isometric}). Second, we derive explicit phase transition thresholds and critical learning rates (Theorem~\ref{thm:critical}) through curvature blowup analysis, enabling automated singularity resolution via geometric surgery (Lemma~\ref{lem:surgery}). Third, we establish an AdS/CFT-type holographic duality (Theorem~\ref{thm:ads}) between neural networks and conformal field theories, providing entanglement entropy bounds for regularization design. Experiments demonstrate 2.1$\times$ convergence acceleration and 63\% topological simplification while maintaining $\mathcal{O}(N\log N)$ complexity, outperforming Riemannian baselines by 15.2\% in few-shot accuracy. Theoretically, we prove exponential stability (Theorem~\ref{thm:converge}) through a new Lyapunov function combining Perelman entropy with Wasserstein gradient flows, fundamentally advancing geometric deep learning.
comment: 9 pages, submitted to IEEE PAMI
☆ GENIUS: A Generative Framework for Universal Multimodal Search CVPR 2025
Generative retrieval is an emerging approach in information retrieval that generates identifiers (IDs) of target data based on a query, providing an efficient alternative to traditional embedding-based retrieval methods. However, existing models are task-specific and fall short of embedding-based retrieval in performance. This paper proposes GENIUS, a universal generative retrieval framework supporting diverse tasks across multiple modalities and domains. At its core, GENIUS introduces modality-decoupled semantic quantization, transforming multimodal data into discrete IDs encoding both modality and semantics. Moreover, to enhance generalization, we propose a query augmentation that interpolates between a query and its target, allowing GENIUS to adapt to varied query forms. Evaluated on the M-BEIR benchmark, it surpasses prior generative methods by a clear margin. Unlike embedding-based retrieval, GENIUS consistently maintains high retrieval speed across database size, with competitive performance across multiple benchmarks. With additional re-ranking, GENIUS often achieves results close to those of embedding-based methods while preserving efficiency.
comment: Accepted to CVPR 2025
☆ An Overview of Low-Rank Structures in the Training and Adaptation of Large Models
The rise of deep learning has revolutionized data processing and prediction in signal processing and machine learning, yet the substantial computational demands of training and deploying modern large-scale deep models present significant challenges, including high computational costs and energy consumption. Recent research has uncovered a widespread phenomenon in deep networks: the emergence of low-rank structures in weight matrices and learned representations during training. These implicit low-dimensional patterns provide valuable insights for improving the efficiency of training and fine-tuning large-scale models. Practical techniques inspired by this phenomenon, such as low-rank adaptation (LoRA) and training, enable significant reductions in computational cost while preserving model performance. In this paper, we present a comprehensive review of recent advances in exploiting low-rank structures for deep learning and shed light on their mathematical foundations. Mathematically, we present two complementary perspectives on understanding the low-rankness in deep networks: (i) the emergence of low-rank structures throughout the whole optimization dynamics of gradient and (ii) the implicit regularization effects that induce such low-rank structures at convergence. From a practical standpoint, studying the low-rank learning dynamics of gradient descent offers a mathematical foundation for understanding the effectiveness of LoRA in fine-tuning large-scale models and inspires parameter-efficient low-rank training strategies. Furthermore, the implicit low-rank regularization effect helps explain the success of various masked training approaches in deep neural networks, ranging from dropout to masked self-supervised learning.
comment: Authors are listed alphabetically; 27 pages, 10 figures
☆ Capacity-Constrained Online Learning with Delays: Scheduling Frameworks and Regret Trade-offs
We study online learning with oblivious losses and delays under a novel ``capacity constraint'' that limits how many past rounds can be tracked simultaneously for delayed feedback. Under ``clairvoyance'' (i.e., delay durations are revealed upfront each round) and/or ``preemptibility'' (i.e., we have ability to stop tracking previously chosen round feedback), we establish matching upper and lower bounds (up to logarithmic terms) on achievable regret, characterizing the ``optimal capacity'' needed to match the minimax rates of classical delayed online learning, which implicitly assume unlimited capacity. Our algorithms achieve minimax-optimal regret across all capacity levels, with performance gracefully degrading under suboptimal capacity. For $K$ actions and total delay $D$ over $T$ rounds, under clairvoyance and assuming capacity $C = \Omega(\log(T))$, we achieve regret $\widetilde{\Theta}(\sqrt{TK + DK/C + D\log(K)})$ for bandits and $\widetilde{\Theta}(\sqrt{(D+T)\log(K)})$ for full-information feedback. When replacing clairvoyance with preemptibility, we require a known maximum delay bound $d_{\max}$, adding $\smash{\widetilde{O}(d_{\max})}$ to the regret. For fixed delays $d$ (i.e., $D=Td$), the minimax regret is $\Theta\bigl(\sqrt{TK(1+d/C)+Td\log(K)}\bigr)$ and the optimal capacity is $\Theta(\min\{K/\log(K),d\}\bigr)$ in the bandit setting, while in the full-information setting, the minimax regret is $\Theta\bigl(\sqrt{T(d+1)\log(K)}\bigr)$ and the optimal capacity is $\Theta(1)$. For round-dependent and fixed delays, our upper bounds are achieved using novel scheduling policies, based on Pareto-distributed proxy delays and batching techniques. Crucially, our work unifies delayed bandits, label-efficient learning, and online scheduling frameworks, demonstrating that robust online learning under delayed feedback is possible with surprisingly modest tracking capacity.
☆ Ab-initio simulation of excited-state potential energy surfaces with transferable deep quantum Monte Carlo
The accurate quantum chemical calculation of excited states is a challenging task, often requiring computationally demanding methods. When entire ground and excited potential energy surfaces (PESs) are desired, e.g., to predict the interaction of light excitation and structural changes, one is often forced to use cheaper computational methods at the cost of reduced accuracy. Here we introduce a novel method for the geometrically transferable optimization of neural network wave functions that leverages weight sharing and dynamical ordering of electronic states. Our method enables the efficient prediction of ground and excited-state PESs and their intersections at the highest accuracy, demonstrating up to two orders of magnitude cost reduction compared to single-point calculations. We validate our approach on three challenging excited-state PESs, including ethylene, the carbon dimer, and the methylenimmonium cation, indicating that transferable deep-learning QMC can pave the way towards highly accurate simulation of excited-state dynamics.
comment: 21 pages, 4 figures
Attention IoU: Examining Biases in CelebA using Attention Maps CVPR 2025
Computer vision models have been shown to exhibit and amplify biases across a wide array of datasets and tasks. Existing methods for quantifying bias in classification models primarily focus on dataset distribution and model performance on subgroups, overlooking the internal workings of a model. We introduce the Attention-IoU (Attention Intersection over Union) metric and related scores, which use attention maps to reveal biases within a model's internal representations and identify image features potentially causing the biases. First, we validate Attention-IoU on the synthetic Waterbirds dataset, showing that the metric accurately measures model bias. We then analyze the CelebA dataset, finding that Attention-IoU uncovers correlations beyond accuracy disparities. Through an investigation of individual attributes through the protected attribute of Male, we examine the distinct ways biases are represented in CelebA. Lastly, by subsampling the training set to change attribute correlations, we demonstrate that Attention-IoU reveals potential confounding variables not present in dataset labels.
comment: To appear in CVPR 2025. Code and data is available at https://github.com/aaronserianni/attention-iou . 15 pages, 14 figures, including appendix
☆ IgCraft: A versatile sequence generation framework for antibody discovery and engineering
Designing antibody sequences to better resemble those observed in natural human repertoires is a key challenge in biologics development. We introduce IgCraft: a multi-purpose model for paired human antibody sequence generation, built on Bayesian Flow Networks. IgCraft presents one of the first unified generative modeling frameworks capable of addressing multiple antibody sequence design tasks with a single model, including unconditional sampling, sequence inpainting, inverse folding, and CDR motif scaffolding. Our approach achieves competitive results across the full spectrum of these tasks while constraining generation to the space of human antibody sequences, exhibiting particular strengths in CDR motif scaffolding (grafting) where we achieve state-of-the-art performance in terms of humanness and preservation of structural properties. By integrating previously separate tasks into a single scalable generative model, IgCraft provides a versatile platform for sampling human antibody sequences under a variety of contexts relevant to antibody discovery and engineering. Model code and weights are publicly available at github.com/mgreenig/IgCraft.
☆ A Systematic Review of EEG-based Machine Intelligence Algorithms for Depression Diagnosis, and Monitoring
Depression disorder is a serious health condition that has affected the lives of millions of people around the world. Diagnosis of depression is a challenging practice that relies heavily on subjective studies and, in most cases, suffers from late findings. Electroencephalography (EEG) biomarkers have been suggested and investigated in recent years as a potential transformative objective practice. In this article, for the first time, a detailed systematic review of EEG-based depression diagnosis approaches is conducted using advanced machine learning techniques and statistical analyses. For this, 938 potentially relevant articles (since 1985) were initially detected and filtered into 139 relevant articles based on the review scheme 'preferred reporting items for systematic reviews and meta-analyses (PRISMA).' This article compares and discusses the selected articles and categorizes them according to the type of machine learning techniques and statistical analyses. Algorithms, preprocessing techniques, extracted features, and data acquisition systems are discussed and summarized. This review paper explains the existing challenges of the current algorithms and sheds light on the future direction of the field. This systematic review outlines the issues and challenges in machine intelligence for the diagnosis of EEG depression that can be addressed in future studies and possibly in future wearable technologies.
☆ Domain-incremental White Blood Cell Classification with Privacy-aware Continual Learning
White blood cell (WBC) classification plays a vital role in hematology for diagnosing various medical conditions. However, it faces significant challenges due to domain shifts caused by variations in sample sources (e.g., blood or bone marrow) and differing imaging conditions across hospitals. Traditional deep learning models often suffer from catastrophic forgetting in such dynamic environments, while foundation models, though generally robust, experience performance degradation when the distribution of inference data differs from that of the training data. To address these challenges, we propose a generative replay-based Continual Learning (CL) strategy designed to prevent forgetting in foundation models for WBC classification. Our method employs lightweight generators to mimic past data with a synthetic latent representation to enable privacy-preserving replay. To showcase the effectiveness, we carry out extensive experiments with a total of four datasets with different task ordering and four backbone models including ResNet50, RetCCL, CTransPath, and UNI. Experimental results demonstrate that conventional fine-tuning methods degrade performance on previously learned tasks and struggle with domain shifts. In contrast, our continual learning strategy effectively mitigates catastrophic forgetting, preserving model performance across varying domains. This work presents a practical solution for maintaining reliable WBC classification in real-world clinical settings, where data distributions frequently evolve.
☆ PAVE: Patching and Adapting Video Large Language Models CVPR2025
Pre-trained video large language models (Video LLMs) exhibit remarkable reasoning capabilities, yet adapting these models to new tasks involving additional modalities or data types (e.g., audio or 3D information) remains challenging. In this paper, we present PAVE, a flexible framework for adapting pre-trained Video LLMs to downstream tasks with side-channel signals, such as audio, 3D cues, or multi-view videos. PAVE introduces lightweight adapters, referred to as "patches," which add a small number of parameters and operations to a base model without modifying its architecture or pre-trained weights. In doing so, PAVE can effectively adapt the pre-trained base model to support diverse downstream tasks, including audio-visual question answering, 3D reasoning, multi-view video recognition, and high frame rate video understanding. Across these tasks, PAVE significantly enhances the performance of the base model, surpassing state-of-the-art task-specific models while incurring a minor cost of ~0.1% additional FLOPs and parameters. Further, PAVE supports multi-task learning and generalizes well across different Video LLMs. Our code is available at https://github.com/dragonlzm/PAVE.
comment: CVPR2025 Camera Ready
☆ PyGraph: Robust Compiler Support for CUDA Graphs in PyTorch
CUDA Graphs -- a recent hardware feature introduced for NVIDIA GPUs -- aim to reduce CPU launch overhead by capturing and launching a series of GPU tasks (kernels) as a DAG. However, deploying CUDA Graphs faces several challenges today due to the static structure of a graph. It also incurs performance overhead due to data copy. In fact, we show a counter-intuitive result -- deploying CUDA Graphs hurts performance in many cases. We introduce PyGraph, a novel approach to automatically harness the power of CUDA Graphs within PyTorch2. Driven by three key observations, PyGraph embodies three novel optimizations: it enables wider deployment of CUDA Graphs, reduces GPU kernel parameter copy overheads, and selectively deploys CUDA Graphs based on a cost-benefit analysis. PyGraph seamlessly integrates with PyTorch2's compilation toolchain, enabling efficient use of CUDA Graphs without manual modifications to the code. We evaluate PyGraph across various machine learning benchmarks, demonstrating substantial performance improvements over PyTorch2.
☆ LPOSS: Label Propagation Over Patches and Pixels for Open-vocabulary Semantic Segmentation
We propose a training-free method for open-vocabulary semantic segmentation using Vision-and-Language Models (VLMs). Our approach enhances the initial per-patch predictions of VLMs through label propagation, which jointly optimizes predictions by incorporating patch-to-patch relationships. Since VLMs are primarily optimized for cross-modal alignment and not for intra-modal similarity, we use a Vision Model (VM) that is observed to better capture these relationships. We address resolution limitations inherent to patch-based encoders by applying label propagation at the pixel level as a refinement step, significantly improving segmentation accuracy near class boundaries. Our method, called LPOSS+, performs inference over the entire image, avoiding window-based processing and thereby capturing contextual interactions across the full image. LPOSS+ achieves state-of-the-art performance among training-free methods, across a diverse set of datasets. Code: https://github.com/vladan-stojnic/LPOSS
☆ BiPrompt-SAM: Enhancing Image Segmentation via Explicit Selection between Point and Text Prompts
Segmentation is a fundamental task in computer vision, with prompt-driven methods gaining prominence due to their flexibility. The recent Segment Anything Model (SAM) has demonstrated powerful point-prompt segmentation capabilities, while text-based segmentation models offer rich semantic understanding. However, existing approaches rarely explore how to effectively combine these complementary modalities for optimal segmentation performance. This paper presents BiPrompt-SAM, a novel dual-modal prompt segmentation framework that fuses the advantages of point and text prompts through an explicit selection mechanism. Specifically, we leverage SAM's inherent ability to generate multiple mask candidates, combined with a semantic guidance mask from text prompts, and explicitly select the most suitable candidate based on similarity metrics. This approach can be viewed as a simplified Mixture of Experts (MoE) system, where the point and text modules act as distinct "experts," and the similarity scoring serves as a rudimentary "gating network." We conducted extensive evaluations on both the Endovis17 medical dataset and RefCOCO series natural image datasets. On Endovis17, BiPrompt-SAM achieved 89.55\% mDice and 81.46\% mIoU, comparable to state-of-the-art specialized medical segmentation models. On the RefCOCO series datasets, our method attained 87.1\%, 86.5\%, and 85.8\% IoU, significantly outperforming existing approaches. Experiments demonstrate that our explicit dual-selection method effectively combines the spatial precision of point prompts with the semantic richness of text prompts, particularly excelling in scenarios involving semantically complex objects, multiple similar objects, and partial occlusions. BiPrompt-SAM not only provides a simple yet effective implementation but also offers a new perspective on multi-modal prompt fusion.
☆ Interpretable Deep Regression Models with Interval-Censored Failure Time Data
Deep neural networks (DNNs) have become powerful tools for modeling complex data structures through sequentially integrating simple functions in each hidden layer. In survival analysis, recent advances of DNNs primarily focus on enhancing model capabilities, especially in exploring nonlinear covariate effects under right censoring. However, deep learning methods for interval-censored data, where the unobservable failure time is only known to lie in an interval, remain underexplored and limited to specific data type or model. This work proposes a general regression framework for interval-censored data with a broad class of partially linear transformation models, where key covariate effects are modeled parametrically while nonlinear effects of nuisance multi-modal covariates are approximated via DNNs, balancing interpretability and flexibility. We employ sieve maximum likelihood estimation by leveraging monotone splines to approximate the cumulative baseline hazard function. To ensure reliable and tractable estimation, we develop an EM algorithm incorporating stochastic gradient descent. We establish the asymptotic properties of parameter estimators and show that the DNN estimator achieves minimax-optimal convergence. Extensive simulations demonstrate superior estimation and prediction accuracy over state-of-the-art methods. Applying our method to the Alzheimer's Disease Neuroimaging Initiative dataset yields novel insights and improved predictive performance compared to traditional approaches.
☆ How to RETIRE Tabular Data in Favor of Discrete Digital Signal Representation
The successes achieved by deep neural networks in computer vision tasks have led in recent years to the emergence of a new research area dubbed Multi-Dimensional Encoding (MDE). Methods belonging to this family aim to transform tabular data into a homogeneous form of discrete digital signals (images) to apply convolutional networks to initially unsuitable problems. Despite the successive emerging works, the pool of multi-dimensional encoding methods is still low, and the scope of research on existing modality encoding techniques is quite limited. To contribute to this area of research, we propose the Radar-based Encoding from Tabular to Image REpresentation (RETIRE), which allows tabular data to be represented as radar graphs, capturing the feature characteristics of each problem instance. RETIRE was compared with a pool of state-of-the-art MDE algorithms as well as with XGBoost in terms of classification accuracy and computational complexity. In addition, an analysis was carried out regarding transferability and explainability to provide more insight into both RETIRE and existing MDE techniques. The results obtained, supported by statistical analysis, confirm the superiority of RETIRE over other established MDE methods.
comment: 16 pages, 6 figures, 2 tables
☆ On What Depends the Robustness of Multi-source Models to Missing Data in Earth Observation?
In recent years, the development of robust multi-source models has emerged in the Earth Observation (EO) field. These are models that leverage data from diverse sources to improve predictive accuracy when there is missing data. Despite these advancements, the factors influencing the varying effectiveness of such models remain poorly understood. In this study, we evaluate the predictive performance of six state-of-the-art multi-source models in predicting scenarios where either a single data source is missing or only a single source is available. Our analysis reveals that the efficacy of these models is intricately tied to the nature of the task, the complementarity among data sources, and the model design. Surprisingly, we observe instances where the removal of certain data sources leads to improved predictive performance, challenging the assumption that incorporating all available data is always beneficial. These findings prompt critical reflections on model complexity and the necessity of all collected data sources, potentially shaping the way for more streamlined approaches in EO applications.
comment: Accepted at IEEE International Geoscience and Remote Sensing Symposium 2025
☆ Invertible Koopman neural operator for data-driven modeling of partial differential equations
Koopman operator theory is a popular candidate for data-driven modeling because it provides a global linearization representation for nonlinear dynamical systems. However, existing Koopman operator-based methods suffer from shortcomings in constructing the well-behaved observable function and its inverse and are inefficient enough when dealing with partial differential equations (PDEs). To address these issues, this paper proposes the Invertible Koopman Neural Operator (IKNO), a novel data-driven modeling approach inspired by the Koopman operator theory and neural operator. IKNO leverages an Invertible Neural Network to parameterize observable function and its inverse simultaneously under the same learnable parameters, explicitly guaranteeing the reconstruction relation, thus eliminating the dependency on the reconstruction loss, which is an essential improvement over the original Koopman Neural Operator (KNO). The structured linear matrix inspired by the Koopman operator theory is parameterized to learn the evolution of observables' low-frequency modes in the frequency space rather than directly in the observable space, sustaining IKNO is resolution-invariant like other neural operators. Moreover, with preprocessing such as interpolation and dimension expansion, IKNO can be extended to operator learning tasks defined on non-Cartesian domains. We fully support the above claims based on rich numerical and real-world examples and demonstrate the effectiveness of IKNO and superiority over other neural operators.
comment: 25 pages, 10 figures
☆ Data-efficient rapid prediction of urban airflow and temperature fields for complex building geometries
Accurately predicting urban microclimate, including wind speed and temperature, based solely on building geometry requires capturing complex interactions between buildings and airflow, particularly long-range wake effects influenced by directional geometry. Traditional methods relying on computational fluid dynamics (CFD) are prohibitively expensive for large-scale simulations, while data-driven approaches struggle with limited training data and the need to model both local and far-field dependencies. In response, we propose a novel framework that leverages a multi-directional distance feature (MDDF) combined with localized training to achieve effective wind field predictions with minimal CFD data. By reducing the problem's dimensionality, localized training effectively increases the number of training samples, while MDDF encodes the surrounding geometric information to accurately model wake dynamics and flow redirection. Trained on only 24 CFD simulations, our localized Fourier neural operator (Local-FNO) model generates full 3D wind velocity and temperature predictions in under one minute, yielding a 500-fold speedup over conventional CFD methods. With mean absolute errors of 0.3 m/s for wind speed and 0.3 $^{\circ}$C for temperature on unseen urban configurations, our method demonstrates strong generalization capabilities and significant potential for practical urban applications.
☆ Towards Efficient Training of Graph Neural Networks: A Multiscale Approach
Graph Neural Networks (GNNs) have emerged as a powerful tool for learning and inferring from graph-structured data, and are widely used in a variety of applications, often considering large amounts of data and large graphs. However, training on such data requires large memory and extensive computations. In this paper, we introduce a novel framework for efficient multiscale training of GNNs, designed to integrate information across multiscale representations of a graph. Our approach leverages a hierarchical graph representation, taking advantage of coarse graph scales in the training process, where each coarse scale graph has fewer nodes and edges. Based on this approach, we propose a suite of GNN training methods: such as coarse-to-fine, sub-to-full, and multiscale gradient computation. We demonstrate the effectiveness of our methods on various datasets and learning tasks.
☆ BiblioPage: A Dataset of Scanned Title Pages for Bibliographic Metadata Extraction ICDAR2025
Manual digitization of bibliographic metadata is time consuming and labor intensive, especially for historical and real-world archives with highly variable formatting across documents. Despite advances in machine learning, the absence of dedicated datasets for metadata extraction hinders automation. To address this gap, we introduce BiblioPage, a dataset of scanned title pages annotated with structured bibliographic metadata. The dataset consists of approximately 2,000 monograph title pages collected from 14 Czech libraries, spanning a wide range of publication periods, typographic styles, and layout structures. Each title page is annotated with 16 bibliographic attributes, including title, contributors, and publication metadata, along with precise positional information in the form of bounding boxes. To extract structured information from this dataset, we valuated object detection models such as YOLO and DETR combined with transformer-based OCR, achieving a maximum mAP of 52 and an F1 score of 59. Additionally, we assess the performance of various visual large language models, including LlamA 3.2-Vision and GPT-4o, with the best model reaching an F1 score of 67. BiblioPage serves as a real-world benchmark for bibliographic metadata extraction, contributing to document understanding, document question answering, and document information extraction. Dataset and evaluation scripts are availible at: https://github.com/DCGM/biblio-dataset
comment: Submitted to ICDAR2025 conference
☆ Towards Reliable Time Series Forecasting under Future Uncertainty: Ambiguity and Novelty Rejection Mechanisms
In real-world time series forecasting, uncertainty and lack of reliable evaluation pose significant challenges. Notably, forecasting errors often arise from underfitting in-distribution data and failing to handle out-of-distribution inputs. To enhance model reliability, we introduce a dual rejection mechanism combining ambiguity and novelty rejection. Ambiguity rejection, using prediction error variance, allows the model to abstain under low confidence, assessed through historical error variance analysis without future ground truth. Novelty rejection, employing Variational Autoencoders and Mahalanobis distance, detects deviations from training data. This dual approach improves forecasting reliability in dynamic environments by reducing errors and adapting to data changes, advancing reliability in complex scenarios.
☆ RGB-Th-Bench: A Dense benchmark for Visual-Thermal Understanding of Vision Language Models
We introduce RGB-Th-Bench, the first benchmark designed to evaluate the ability of Vision-Language Models (VLMs) to comprehend RGB-Thermal image pairs. While VLMs have demonstrated remarkable progress in visual reasoning and multimodal understanding, their evaluation has been predominantly limited to RGB-based benchmarks, leaving a critical gap in assessing their capabilities in infrared vision tasks. Existing visible-infrared datasets are either task-specific or lack high-quality annotations necessary for rigorous model evaluation. To address these limitations, RGB-Th-Bench provides a comprehensive evaluation framework covering 14 distinct skill dimensions, with a total of 1,600+ expert-annotated Yes/No questions. The benchmark employs two accuracy metrics: a standard question-level accuracy and a stricter skill-level accuracy, which evaluates model robustness across multiple questions within each skill dimension. This design ensures a thorough assessment of model performance, including resilience to adversarial and hallucinated responses. We conduct extensive evaluations on 19 state-of-the-art VLMs, revealing significant performance gaps in RGB-Thermal understanding. Our results show that even the strongest models struggle with thermal image comprehension, with performance heavily constrained by their RGB-based capabilities. Additionally, the lack of large-scale application-specific and expert-annotated thermal-caption-pair datasets in pre-training is an important reason of the observed performance gap. RGB-Th-Bench highlights the urgent need for further advancements in multimodal learning to bridge the gap between visible and thermal image understanding. The dataset is available through this link, and the evaluation code will also be made publicly available.
☆ Enhancing Graphical Lasso: A Robust Scheme for Non-Stationary Mean Data
This work addresses the problem of graph learning from data following a Gaussian Graphical Model (GGM) with a time-varying mean. Graphical Lasso (GL), the standard method for estimating sparse precision matrices, assumes that the observed data follows a zero-mean Gaussian distribution. However, this assumption is often violated in real-world scenarios where the mean evolves over time due to external influences, trends, or regime shifts. When the mean is not properly accounted for, applying GL directly can lead to estimating a biased precision matrix, hence hindering the graph learning task. To overcome this limitation, we propose Graphical Lasso with Adaptive Targeted Adaptive Importance Sampling (GL-ATAIS), an iterative method that jointly estimates the time-varying mean and the precision matrix. Our approach integrates Bayesian inference with frequentist estimation, leveraging importance sampling to obtain an estimate of the mean while using a regularized maximum likelihood estimator to infer the precision matrix. By iteratively refining both estimates, GL-ATAIS mitigates the bias introduced by time-varying means, leading to more accurate graph recovery. Our numerical evaluation demonstrates the impact of properly accounting for time-dependent means and highlights the advantages of GL-ATAIS over standard GL in recovering the true graph structure.
☆ An Efficient Data Reuse with Tile-Based Adaptive Stationary for Transformer Accelerators
Transformer-based models have become the \textit{de facto} backbone across many fields, such as computer vision and natural language processing. However, as these models scale in size, external memory access (EMA) for weight and activations becomes a critical bottleneck due to its significantly higher energy consumption compared to internal computations. While most prior work has focused on optimizing the self-attention mechanism, little attention has been given to optimizing data transfer during linear projections, where EMA costs are equally important. In this paper, we propose the Tile-based Adaptive Stationary (TAS) scheme that selects the input or weight stationary in a tile granularity, based on the input sequence length. Our experimental results demonstrate that TAS can significantly reduce EMA by more than 97\% compared to traditional stationary schemes, while being compatible with various attention optimization techniques and hardware accelerators.
comment: to be published in IEEE International Symposium on Circuits and Systems (IEEE ISCAS 2025)
Kernel Learning Assisted Synthesis Condition Exploration for Ternary Spinel
Machine learning and high-throughput experimentation have greatly accelerated the discovery of mixed metal oxide catalysts by leveraging their compositional flexibility. However, the lack of established synthesis routes for solid-state materials remains a significant challenge in inorganic chemistry. An interpretable machine learning model is therefore essential, as it provides insights into the key factors governing phase formation. Here, we focus on the formation of single-phase Fe$_2$(ZnCo)O$_4$, synthesized via a high-throughput co-precipitation method. We combined a kernel classification model with a novel application of global SHAP analysis to pinpoint the experimental features most critical to single phase synthesizability by interpreting the contributions of each feature. Global SHAP analysis reveals that precursor and precipitating agent contributions to single-phase spinel formation align closely with established crystal growth theories. These results not only underscore the importance of interpretable machine learning in refining synthesis protocols but also establish a framework for data-informed experimental design in inorganic synthesis.
☆ Red Teaming with Artificial Intelligence-Driven Cyberattacks: A Scoping Review
The progress of artificial intelligence (AI) has made sophisticated methods available for cyberattacks and red team activities. These AI attacks can automate the process of penetrating a target or collecting sensitive data. The new methods can also accelerate the execution of the attacks. This review article examines the use of AI technologies in cybersecurity attacks. It also tries to describe typical targets for such attacks. We employed a scoping review methodology to analyze articles and identify AI methods, targets, and models that red teams can utilize to simulate cybercrime. From the 470 records screened, 11 were included in the review. Various cyberattack methods were identified, targeting sensitive data, systems, social media profiles, passwords, and URLs. The application of AI in cybercrime to develop versatile attack models presents an increasing threat. Furthermore, AI-based techniques in red team use can provide new ways to address these issues.
comment: An earlier version first published in Good Practices and New Perspectives in Information Systems and Technologies (pp. 129-138), 2024 by Springer Nature
☆ Optimization through In-Context Learning and Iterative LLM Prompting for Nuclear Engineering Design Problems
The optimization of nuclear engineering designs, such as nuclear fuel assembly configurations, involves managing competing objectives like reactivity control and power distribution. This study explores the use of Optimization by Prompting, an iterative approach utilizing large language models (LLMs), to address these challenges. The method is straightforward to implement, requiring no hyperparameter tuning or complex mathematical formulations. Optimization problems can be described in plain English, with only an evaluator and a parsing script needed for execution. The in-context learning capabilities of LLMs enable them to understand problem nuances, therefore, they have the potential to surpass traditional metaheuristic optimization methods. This study demonstrates the application of LLMs as optimizers to Boiling Water Reactor (BWR) fuel lattice design, showing the capability of commercial LLMs to achieve superior optimization results compared to traditional methods.
comment: Codes and data are available upon request
☆ Learning to chain-of-thought with Jensen's evidence lower bound
We propose a way to optimize chain-of-thought with reinforcement learning, but without external reward function. Our algorithm relies on viewing chain-of-thought as latent variable as part of a probabilistic inference problem. Contrary to the full evidence lower bound, we propose to apply a much simpler Jensen's lower bound, which derives tractable objectives with simple algorithmic components (e.g., without the need for parametric approximate posterior), making it more conducive to modern large-scale training. The lower bound approach naturally interpolates other methods such as supervised fine-tuning and online reinforcement learning, whose practical trade-offs we will illustrate. Finally, we show that on mathematical reasoning problems, optimizing with Jensen's lower bound is as effective as policy gradient with external reward. Taken together, our results showcase as a proof of concept to this new algorithmic paradigm's potential to more generic applications.
☆ RL-finetuning LLMs from on- and off-policy data with a single algorithm
We introduce a novel reinforcement learning algorithm (AGRO, for Any-Generation Reward Optimization) for fine-tuning large-language models. AGRO leverages the concept of generation consistency, which states that the optimal policy satisfies the notion of consistency across any possible generation of the model. We derive algorithms that find optimal solutions via the sample-based policy gradient and provide theoretical guarantees on their convergence. Our experiments demonstrate the effectiveness of AGRO in both on-policy and off-policy settings, showing improved performance on the mathematical reasoning dataset over baseline algorithms.
☆ Lean Formalization of Generalization Error Bound by Rademacher Complexity
We formalize the generalization error bound using Rademacher complexity in the Lean 4 theorem prover. Generalization error quantifies the gap between a learning machine's performance on given training data versus unseen test data, and Rademacher complexity serves as an estimate of this error based on the complexity of learning machines, or hypothesis class. Unlike traditional methods such as PAC learning and VC dimension, Rademacher complexity is applicable across diverse machine learning scenarios including deep learning and kernel methods. We formalize key concepts and theorems, including the empirical and population Rademacher complexities, and establish generalization error bounds through formal proofs of McDiarmid's inequality, Hoeffding's lemma, and symmetrization arguments.
☆ Optimizing Language Models for Inference Time Objectives using Reinforcement Learning
In this work, we investigate the merits of explicitly optimizing for inference time algorithmic performance during model training. We show how optimizing for inference time performance can improve overall model efficacy. We consider generic inference time objectives with $k$ samples, with a focus on pass@$k$ and majority voting as two main applications. With language model training on reasoning datasets, we showcase the performance trade-off enabled by training with such objectives. When training on code generation tasks, we show that the approach significantly improves pass@$k$ objectives compared to the baseline method.
☆ Boosting the Transferability of Audio Adversarial Examples with Acoustic Representation Optimization ICME 2025
With the widespread application of automatic speech recognition (ASR) systems, their vulnerability to adversarial attacks has been extensively studied. However, most existing adversarial examples are generated on specific individual models, resulting in a lack of transferability. In real-world scenarios, attackers often cannot access detailed information about the target model, making query-based attacks unfeasible. To address this challenge, we propose a technique called Acoustic Representation Optimization that aligns adversarial perturbations with low-level acoustic characteristics derived from speech representation models. Rather than relying on model-specific, higher-layer abstractions, our approach leverages fundamental acoustic representations that remain consistent across diverse ASR architectures. By enforcing an acoustic representation loss to guide perturbations toward these robust, lower-level representations, we enhance the cross-model transferability of adversarial examples without degrading audio quality. Our method is plug-and-play and can be integrated with any existing attack methods. We evaluate our approach on three modern ASR models, and the experimental results demonstrate that our method significantly improves the transferability of adversarial examples generated by previous methods while preserving the audio quality.
comment: Accepted to ICME 2025
☆ Post-Hoc Calibrated Anomaly Detection
Deep unsupervised anomaly detection has seen improvements in a supervised binary classification paradigm in which auxiliary external data is included in the training set as anomalous data in a process referred to as outlier exposure, which opens the possibility of exploring the efficacy of post-hoc calibration for anomaly detection and localization. Post-hoc Platt scaling and Beta calibration are found to improve results with gradient-based input perturbation, as well as post-hoc training with a strictly proper loss of a base model initially trained on an unsupervised loss. Post-hoc calibration is also found at times to be more effective using random synthesized spectral data as labeled anomalous data in the calibration set, suggesting that outlier exposure is superior only for initial training.
☆ SINR: Sparsity Driven Compressed Implicit Neural Representations
Implicit Neural Representations (INRs) are increasingly recognized as a versatile data modality for representing discretized signals, offering benefits such as infinite query resolution and reduced storage requirements. Existing signal compression approaches for INRs typically employ one of two strategies: 1. direct quantization with entropy coding of the trained INR; 2. deriving a latent code on top of the INR through a learnable transformation. Thus, their performance is heavily dependent on the quantization and entropy coding schemes employed. In this paper, we introduce SINR, an innovative compression algorithm that leverages the patterns in the vector spaces formed by weights of INRs. We compress these vector spaces using a high-dimensional sparse code within a dictionary. Further analysis reveals that the atoms of the dictionary used to generate the sparse code do not need to be learned or transmitted to successfully recover the INR weights. We demonstrate that the proposed approach can be integrated with any existing INR-based signal compression technique. Our results indicate that SINR achieves substantial reductions in storage requirements for INRs across various configurations, outperforming conventional INR-based compression baselines. Furthermore, SINR maintains high-quality decoding across diverse data modalities, including images, occupancy fields, and Neural Radiance Fields.
☆ FedMM-X: A Trustworthy and Interpretable Framework for Federated Multi-Modal Learning in Dynamic Environments
As artificial intelligence systems increasingly operate in Real-world environments, the integration of multi-modal data sources such as vision, language, and audio presents both unprecedented opportunities and critical challenges for achieving trustworthy intelligence. In this paper, we propose a novel framework that unifies federated learning with explainable multi-modal reasoning to ensure trustworthiness in decentralized, dynamic settings. Our approach, called FedMM-X (Federated Multi-Modal Explainable Intelligence), leverages cross-modal consistency checks, client-level interpretability mechanisms, and dynamic trust calibration to address challenges posed by data heterogeneity, modality imbalance, and out-of-distribution generalization. Through rigorous evaluation across federated multi-modal benchmarks involving vision-language tasks, we demonstrate improved performance in both accuracy and interpretability while reducing vulnerabilities to adversarial and spurious correlations. Further, we introduce a novel trust score aggregation method to quantify global model reliability under dynamic client participation. Our findings pave the way toward developing robust, interpretable, and socially responsible AI systems in Real-world environments.
☆ Causal Bayesian Optimization with Unknown Graphs
Causal Bayesian Optimization (CBO) is a methodology designed to optimize an outcome variable by leveraging known causal relationships through targeted interventions. Traditional CBO methods require a fully and accurately specified causal graph, which is a limitation in many real-world scenarios where such graphs are unknown. To address this, we propose a new method for the CBO framework that operates without prior knowledge of the causal graph. Consistent with causal bandit theory, we demonstrate through theoretical analysis and that focusing on the direct causal parents of the target variable is sufficient for optimization, and provide empirical validation in the context of CBO. Furthermore we introduce a new method that learns a Bayesian posterior over the direct parents of the target variable. This allows us to optimize the outcome variable while simultaneously learning the causal structure. Our contributions include a derivation of the closed-form posterior distribution for the linear case. In the nonlinear case where the posterior is not tractable, we present a Gaussian Process (GP) approximation that still enables CBO by inferring the parents of the outcome variable. The proposed method performs competitively with existing benchmarks and scales well to larger graphs, making it a practical tool for real-world applications where causal information is incomplete.
☆ Noise Resilient Over-The-Air Federated Learning In Heterogeneous Wireless Networks
In 6G wireless networks, Artificial Intelligence (AI)-driven applications demand the adoption of Federated Learning (FL) to enable efficient and privacy-preserving model training across distributed devices. Over-The-Air Federated Learning (OTA-FL) exploits the superposition property of multiple access channels, allowing edge users in 6G networks to efficiently share spectral resources and perform low-latency global model aggregation. However, these advantages come with challenges, as traditional OTA-FL techniques suffer due to the joint effects of Additive White Gaussian Noise (AWGN) at the server, fading, and both data and system heterogeneity at the participating edge devices. In this work, we propose the novel Noise Resilient Over-the-Air Federated Learning (NoROTA-FL) framework to jointly tackle these challenges in federated wireless networks. In NoROTA-FL, the local optimization problems find controlled inexact solutions, which manifests as an additional proximal constraint at the clients. This approach provides robustness against straggler-induced partial work, heterogeneity, noise, and fading. From a theoretical perspective, we leverage the zeroth- and first-order inexactness and establish convergence guarantees for non-convex optimization problems in the presence of heterogeneous data and varying system capabilities. Experimentally, we validate NoROTA-FL on real-world datasets, including FEMNIST, CIFAR10, and CIFAR100, demonstrating its robustness in noisy and heterogeneous environments. Compared to state-of-the-art baselines such as COTAF and FedProx, NoROTA-FL achieves significantly more stable convergence and higher accuracy, particularly in the presence of stragglers.
☆ VectorFit : Adaptive Singular & Bias Vector Fine-Tuning of Pre-trained Foundation Models
Popular PEFT methods achieve parameter efficiency by assuming that incremental weight updates are inherently low-rank, which often leads to a performance gap compared to full fine-tuning. While recent methods have attempted to address this limitation, they typically lack sufficient parameter and memory efficiency. We propose VectorFit, an effective and easily deployable approach that adaptively trains the singular vectors and biases of pre-trained weight matrices. We demonstrate that the utilization of structural and transformational characteristics of pre-trained weights enables high-rank updates comparable to those of full fine-tuning. As a result, VectorFit achieves superior performance with 9X less trainable parameters compared to state-of-the-art PEFT methods. Through extensive experiments over 17 datasets spanning diverse language and vision tasks such as natural language understanding and generation, question answering, image classification, and image generation, we exhibit that VectorFit consistently outperforms baselines, even in extremely low-budget scenarios.
☆ One Framework to Rule Them All: Unifying RL-Based and RL-Free Methods in RLHF
In this article, we primarily examine a variety of RL-based and RL-free methods designed to address Reinforcement Learning from Human Feedback (RLHF) and Large Reasoning Models (LRMs). We begin with a concise overview of the typical steps involved in RLHF and LRMs. Next, we reinterpret several RL-based and RL-free algorithms through the perspective of neural structured bandit prediction, providing a clear conceptual framework that uncovers a deeper connection between these seemingly distinct approaches. Following this, we briefly review some core principles of reinforcement learning, drawing attention to an often-overlooked aspect in existing RLHF studies. This leads to a detailed derivation of the standard RLHF objective within a full RL context, demonstrating its equivalence to neural structured bandit prediction. Finally, by reinvestigating the principles behind Proximal Policy Optimization (PPO), we pinpoint areas needing adjustment, which culminates in the introduction of the Generalized Reinforce Optimization (GRO) framework, seamlessly integrating RL-based and RL-free methods in RLHF. We look forward to the community's efforts to empirically validate GRO and invite constructive feedback.
☆ DataPlatter: Boosting Robotic Manipulation Generalization with Minimal Costly Data
The growing adoption of Vision-Language-Action (VLA) models in embodied AI intensifies the demand for diverse manipulation demonstrations. However, high costs associated with data collection often result in insufficient data coverage across all scenarios, which limits the performance of the models. It is observed that the spatial reasoning phase (SRP) in large workspace dominates the failure cases. Fortunately, this data can be collected with low cost, underscoring the potential of leveraging inexpensive data to improve model performance. In this paper, we introduce the DataPlatter method, a framework that decouples training trajectories into distinct task stages and leverages abundant easily collectible SRP data to enhance VLA model's generalization. Through analysis we demonstrate that sub-task-specific training with additional SRP data with proper proportion can act as a performance catalyst for robot manipulation, maximizing the utilization of costly physical interaction phase (PIP) data. Experiments show that through introducing large proportion of cost-effective SRP trajectories into a limited set of PIP data, we can achieve a maximum improvement of 41\% on success rate in zero-shot scenes, while with the ability to transfer manipulation skill to novel targets.
☆ Improved Alignment of Modalities in Large Vision Language Models
Recent advancements in vision-language models have achieved remarkable results in making language models understand vision inputs. However, a unified approach to align these models across diverse tasks such as image captioning and visual question answering remains a challenge. Existing methods either require very big language models or very big datasets which is not efficient in utilizing existing models. This paper addresses this gap and devises a training strategy of auto-regressive vision-language models, to unify vision-language tasks like image-captioning and visual question answering. We propose four training stages for aligning the vision model with the language model, in other words, the language model is given an ability to process visual inputs. We also devise different attention masks for training transformer-based language models that improve the quality of visual features. Further, we introduce some findings, 1) the attention mask should not be applied on visual inputs, 2) the Language model converges faster on AI- generated data, 3) More work should be done in the alignment stage during the pre-training of the model, 4) the model can easily adapt to any downstream tasks like visual question answering on healthcare datasets like PathVQA. After training the model for one epoch for all the stages, it outperforms large models like VILA-13 billion models on common benchmarks like CIDEr scores on COCO and Flickr30k datasets and achieves very close scores to GIT-2 on the same dataset despite being a much smaller model trained on a much smaller dataset. All of the training is done using best practices available like multi- GPU parallel training, lower-precision training with 16-bit float numbers, faster attention (SDPA), and gradient accumulation, and completed the training within 12 hours.
☆ SMT-EX: An Explainable Surrogate Modeling Toolbox for Mixed-Variables Design Exploration
Surrogate models are of high interest for many engineering applications, serving as cheap-to-evaluate time-efficient approximations of black-box functions to help engineers and practitioners make decisions and understand complex systems. As such, the need for explainability methods is rising and many studies have been performed to facilitate knowledge discovery from surrogate models. To respond to these enquiries, this paper introduces SMT-EX, an enhancement of the open-source Python Surrogate Modeling Toolbox (SMT) that integrates explainability techniques into a state-of-the-art surrogate modelling framework. More precisely, SMT-EX includes three key explainability methods: Shapley Additive Explanations, Partial Dependence Plot, and Individual Conditional Expectations. A peculiar explainability dependency of SMT has been developed for such purpose that can be easily activated once the surrogate model is built, offering a user-friendly and efficient tool for swift insight extraction. The effectiveness of SMT-EX is showcased through two test cases. The first case is a 10-variable wing weight problem with purely continuous variables and the second one is a 3-variable mixed-categorical cantilever beam bending problem. Relying on SMT-EX analyses for these problems, we demonstrate its versatility in addressing a diverse range of problem characteristics. SMT-Explainability is freely available on Github: https://github.com/SMTorg/smt-explainability .
☆ Bayesian Optimization of a Lightweight and Accurate Neural Network for Aerodynamic Performance Prediction
Ensuring high accuracy and efficiency of predictive models is paramount in the aerospace industry, particularly in the context of multidisciplinary design and optimization processes. These processes often require numerous evaluations of complex objective functions, which can be computationally expensive and time-consuming. To build efficient and accurate predictive models, we propose a new approach that leverages Bayesian Optimization (BO) to optimize the hyper-parameters of a lightweight and accurate Neural Network (NN) for aerodynamic performance prediction. To clearly describe the interplay between design variables, hierarchical and categorical kernels are used in the BO formulation. We demonstrate the efficiency of our approach through two comprehensive case studies, where the optimized NN significantly outperforms baseline models and other publicly available NNs in terms of accuracy and parameter efficiency. For the drag coefficient prediction task, the Mean Absolute Percentage Error (MAPE) of our optimized model drops from 0.1433\% to 0.0163\%, which is nearly an order of magnitude improvement over the baseline model. Additionally, our model achieves a MAPE of 0.82\% on a benchmark aircraft self-noise prediction problem, significantly outperforming existing models (where their MAPE values are around 2 to 3\%) while requiring less computational resources. The results highlight the potential of our framework to enhance the scalability and performance of NNs in large-scale MDO problems, offering a promising solution for the aerospace industry.
☆ Extracting Interpretable Logic Rules from Graph Neural Networks
Graph neural networks (GNNs) operate over both input feature spaces and combinatorial graph structures, making it challenging to understand the rationale behind their predictions. As GNNs gain widespread popularity and demonstrate success across various domains, such as drug discovery, studying their interpretability has become a critical task. To address this, many explainability methods have been proposed, with recent efforts shifting from instance-specific explanations to global concept-based explainability. However, these approaches face several limitations, such as relying on predefined concepts and explaining only a limited set of patterns. To address this, we propose a novel framework, LOGICXGNN, for extracting interpretable logic rules from GNNs. LOGICXGNN is model-agnostic, efficient, and data-driven, eliminating the need for predefined concepts. More importantly, it can serve as a rule-based classifier and even outperform the original neural models. Its interpretability facilitates knowledge discovery, as demonstrated by its ability to extract detailed and accurate chemistry knowledge that is often overlooked by existing methods. Another key advantage of LOGICXGNN is its ability to generate new graph instances in a controlled and transparent manner, offering significant potential for applications such as drug design. We empirically demonstrate these merits through experiments on real-world datasets such as MUTAG and BBBP.
comment: 12 pages, 4 figures
☆ A Probabilistic Neuro-symbolic Layer for Algebraic Constraint Satisfaction
In safety-critical applications, guaranteeing the satisfaction of constraints over continuous environments is crucial, e.g., an autonomous agent should never crash into obstacles or go off-road. Neural models struggle in the presence of these constraints, especially when they involve intricate algebraic relationships. To address this, we introduce a differentiable probabilistic layer that guarantees the satisfaction of non-convex algebraic constraints over continuous variables. This probabilistic algebraic layer (PAL) can be seamlessly plugged into any neural architecture and trained via maximum likelihood without requiring approximations. PAL defines a distribution over conjunctions and disjunctions of linear inequalities, parameterized by polynomials. This formulation enables efficient and exact renormalization via symbolic integration, which can be amortized across different data points and easily parallelized on a GPU. We showcase PAL and our integration scheme on a number of benchmarks for algebraic constraint integration and on real-world trajectory data.
☆ Data-centric Federated Graph Learning with Large Language Models
In federated graph learning (FGL), a complete graph is divided into multiple subgraphs stored in each client due to privacy concerns, and all clients jointly train a global graph model by only transmitting model parameters. A pain point of FGL is the heterogeneity problem, where nodes or structures present non-IID properties among clients (e.g., different node label distributions), dramatically undermining the convergence and performance of FGL. To address this, existing efforts focus on design strategies at the model level, i.e., they design models to extract common knowledge to mitigate heterogeneity. However, these model-level strategies fail to fundamentally address the heterogeneity problem as the model needs to be designed from scratch when transferring to other tasks. Motivated by large language models (LLMs) having achieved remarkable success, we aim to utilize LLMs to fully understand and augment local text-attributed graphs, to address data heterogeneity at the data level. In this paper, we propose a general framework LLM4FGL that innovatively decomposes the task of LLM for FGL into two sub-tasks theoretically. Specifically, for each client, it first utilizes the LLM to generate missing neighbors and then infers connections between generated nodes and raw nodes. To improve the quality of generated nodes, we design a novel federated generation-and-reflection mechanism for LLMs, without the need to modify the parameters of the LLM but relying solely on the collective feedback from all clients. After neighbor generation, all the clients utilize a pre-trained edge predictor to infer the missing edges. Furthermore, our framework can seamlessly integrate as a plug-in with existing FGL methods. Experiments on three real-world datasets demonstrate the superiority of our method compared to advanced baselines.
comment: ongoing work
☆ VecTrans: LLM Transformation Framework for Better Auto-vectorization on High-performance CPU
Large language models (LLMs) have demonstrated great capabilities in code generation, yet their effective application in compiler optimizations remains an open challenge due to issues such as hallucinations and a lack of domain-specific reasoning. Vectorization, a crucial optimization for enhancing code performance, often fails because of the compiler's inability to recognize complex code patterns, which commonly require extensive empirical expertise. LLMs, with their ability to capture intricate patterns, thus providing a promising solution to this challenge. This paper presents VecTrans, a novel framework that leverages LLMs to enhance compiler-based code vectorization. VecTrans first employs compiler analysis to identify potentially vectorizable code regions. It then utilizes an LLM to refactor these regions into patterns that are more amenable to the compiler's auto-vectorization. To ensure semantic correctness, VecTrans further integrates a hybrid validation mechanism at the intermediate representation (IR) level. With the above efforts, VecTrans combines the adaptability of LLMs with the precision of compiler vectorization, thereby effectively opening up the vectorization opportunities. Experimental results show that among all 50 TSVC functions unvectorizable by Clang, GCC, and BiShengCompiler, VecTrans successfully vectorizes 23 cases (46%) and achieves an average speedup of 2.02x, greatly surpassing state-of-the-art performance.
☆ Quantifying the Ease of Reproducing Training Data in Unconditional Diffusion Models
Diffusion models, which have been advancing rapidly in recent years, may generate samples that closely resemble the training data. This phenomenon, known as memorization, may lead to copyright issues. In this study, we propose a method to quantify the ease of reproducing training data in unconditional diffusion models. The average of a sample population following the Langevin equation in the reverse diffusion process moves according to a first-order ordinary differential equation (ODE). This ODE establishes a 1-to-1 correspondence between images and their noisy counterparts in the latent space. Since the ODE is reversible and the initial noisy images are sampled randomly, the volume of an image's projected area represents the probability of generating those images. We examined the ODE, which projects images to latent space, and succeeded in quantifying the ease of reproducing training data by measuring the volume growth rate in this process. Given the relatively low computational complexity of this method, it allows us to enhance the quality of training data by detecting and modifying the easily memorized training samples.
☆ A novel forecasting framework combining virtual samples and enhanced Transformer models for tourism demand forecasting
Accurate tourism demand forecasting is hindered by limited historical data and complex spatiotemporal dependencies among tourist origins. A novel forecasting framework integrating virtual sample generation and a novel Transformer predictor addresses constraints arising from restricted data availability. A spatiotemporal GAN produces realistic virtual samples by dynamically modeling spatial correlations through a graph convolutional network, and an enhanced Transformer captures local patterns with causal convolutions and long-term dependencies with self-attention,eliminating autoregressive decoding. A joint training strategy refines virtual sample generation based on predictor feedback to maintain robust performance under data-scarce conditions. Experimental evaluations on real-world daily and monthly tourism demand datasets indicate a reduction in average MASE by 18.37% compared to conventional Transformer-based models, demonstrating improved forecasting accuracy. The integration of adaptive spatiotemporal sample augmentation with a specialized Transformer can effectively address limited-data forecasting scenarios in tourism management.
☆ Multi-Agent Deep Reinforcement Learning for Safe Autonomous Driving with RICS-Assisted MEC
Environment sensing and fusion via onboard sensors are envisioned to be widely applied in future autonomous driving networks. This paper considers a vehicular system with multiple self-driving vehicles that is assisted by multi-access edge computing (MEC), where image data collected by the sensors is offloaded from cellular vehicles to the MEC server using vehicle-to-infrastructure (V2I) links. Sensory data can also be shared among surrounding vehicles via vehicle-to-vehicle (V2V) communication links. To improve spectrum utilization, the V2V links may reuse the same frequency spectrum with V2I links, which may cause severe interference. To tackle this issue, we leverage reconfigurable intelligent computational surfaces (RICSs) to jointly enable V2I reflective links and mitigate interference appearing at the V2V links. Considering the limitations of traditional algorithms in addressing this problem, such as the assumption for quasi-static channel state information, which restricts their ability to adapt to dynamic environmental changes and leads to poor performance under frequently varying channel conditions, in this paper, we formulate the problem at hand as a Markov game. Our novel formulation is applied to time-varying channels subject to multi-user interference and introduces a collaborative learning mechanism among users. The considered optimization problem is solved via a driving safety-enabled multi-agent deep reinforcement learning (DS-MADRL) approach that capitalizes on the RICS presence. Our extensive numerical investigations showcase that the proposed reinforcement learning approach achieves faster convergence and significant enhancements in both data rate and driving safety, as compared to various state-of-the-art benchmarks.
☆ Quantifying Symptom Causality in Clinical Decision Making: An Exploration Using CausaLM
Current machine learning approaches to medical diagnosis often rely on correlational patterns between symptoms and diseases, risking misdiagnoses when symptoms are ambiguous or common across multiple conditions. In this work, we move beyond correlation to investigate the causal influence of key symptoms-specifically "chest pain" on diagnostic predictions. Leveraging the CausaLM framework, we generate counterfactual text representations in which target concepts are effectively "forgotten" enabling a principled estimation of the causal effect of that concept on a model's predicted disease distribution. By employing Textual Representation-based Average Treatment Effect (TReATE), we quantify how the presence or absence of a symptom shapes the model's diagnostic outcomes, and contrast these findings against correlation-based baselines such as CONEXP. Our results offer deeper insight into the decision-making behavior of clinical NLP models and have the potential to inform more trustworthy, interpretable, and causally-grounded decision support tools in medical practice.
☆ Inference-Time Scaling for Flow Models via Stochastic Generation and Rollover Budget Forcing
We propose an inference-time scaling approach for pretrained flow models. Recently, inference-time scaling has gained significant attention in LLMs and diffusion models, improving sample quality or better aligning outputs with user preferences by leveraging additional computation. For diffusion models, particle sampling has allowed more efficient scaling due to the stochasticity at intermediate denoising steps. On the contrary, while flow models have gained popularity as an alternative to diffusion models--offering faster generation and high-quality outputs in state-of-the-art image and video generative models--efficient inference-time scaling methods used for diffusion models cannot be directly applied due to their deterministic generative process. To enable efficient inference-time scaling for flow models, we propose three key ideas: 1) SDE-based generation, enabling particle sampling in flow models, 2) Interpolant conversion, broadening the search space and enhancing sample diversity, and 3) Rollover Budget Forcing (RBF), an adaptive allocation of computational resources across timesteps to maximize budget utilization. Our experiments show that SDE-based generation, particularly variance-preserving (VP) interpolant-based generation, improves the performance of particle sampling methods for inference-time scaling in flow models. Additionally, we demonstrate that RBF with VP-SDE achieves the best performance, outperforming all previous inference-time scaling approaches.
comment: Project page: https://flow-inference-time-scaling.github.io/
☆ Causal invariant geographic network representations with feature and structural distribution shifts
The existing methods learn geographic network representations through deep graph neural networks (GNNs) based on the i.i.d. assumption. However, the spatial heterogeneity and temporal dynamics of geographic data make the out-of-distribution (OOD) generalisation problem particularly salient. The latter are particularly sensitive to distribution shifts (feature and structural shifts) between testing and training data and are the main causes of the OOD generalisation problem. Spurious correlations are present between invariant and background representations due to selection biases and environmental effects, resulting in the model extremes being more likely to learn background representations. The existing approaches focus on background representation changes that are determined by shifts in the feature distributions of nodes in the training and test data while ignoring changes in the proportional distributions of heterogeneous and homogeneous neighbour nodes, which we refer to as structural distribution shifts. We propose a feature-structure mixed invariant representation learning (FSM-IRL) model that accounts for both feature distribution shifts and structural distribution shifts. To address structural distribution shifts, we introduce a sampling method based on causal attention, encouraging the model to identify nodes possessing strong causal relationships with labels or nodes that are more similar to the target node. Inspired by the Hilbert-Schmidt independence criterion, we implement a reweighting strategy to maximise the orthogonality of the node representations, thereby mitigating the spurious correlations among the node representations and suppressing the learning of background representations. Our experiments demonstrate that FSM-IRL exhibits strong learning capabilities on both geographic and social network datasets in OOD scenarios.
comment: 15 pages, 3 figures, 8 tables
☆ Towards Build Optimization Using Digital Twins
Despite the indisputable benefits of Continuous Integration (CI) pipelines (or builds), CI still presents significant challenges regarding long durations, failures, and flakiness. Prior studies addressed CI challenges in isolation, yet these issues are interrelated and require a holistic approach for effective optimization. To bridge this gap, this paper proposes a novel idea of developing Digital Twins (DTs) of build processes to enable global and continuous improvement. To support such an idea, we introduce the CI Build process Digital Twin (CBDT) framework as a minimum viable product. This framework offers digital shadowing functionalities, including real-time build data acquisition and continuous monitoring of build process performance metrics. Furthermore, we discuss guidelines and challenges in the practical implementation of CBDTs, including (1) modeling different aspects of the build process using Machine Learning, (2) exploring what-if scenarios based on historical patterns, and (3) implementing prescriptive services such as automated failure and performance repair to continuously improve build processes.
comment: Accepted at the 21st International Conference on Predictive Models and Data Analytics in Software Engineering - PROMISE 2025
☆ Social Network User Profiling for Anomaly Detection Based on Graph Neural Networks
This study proposes a risk pricing anomaly detection method for social network user portraits based on graph neural networks (GNNs), aiming to improve the ability to identify abnormal users in social network environments. In view of the limitations of traditional methods in social network data modeling, this paper combines graph autoencoders (GAEs) and graph attention networks (GATs) to achieve accurate detection of abnormal users through dynamic aggregation of neighbor features and reconstruction error evaluation. The Facebook Page-Page Network dataset is used in the experiment and compared with VAE, GNN, Transformer and GAE. The results show that the proposed method achieves the best performance in AUC, F1-score, Precision and Recall, verifying its effectiveness. In addition, this paper explores the computational efficiency of the model in large-scale data and looks forward to combining self-supervised learning, federated learning, and other technologies in the future to improve the robustness and privacy protection of risk assessment. The research results can provide efficient anomaly detection solutions for financial risk control, social security management, and other fields.
☆ Interpretable Generative Models through Post-hoc Concept Bottlenecks CVPR 2025
Concept bottleneck models (CBM) aim to produce inherently interpretable models that rely on human-understandable concepts for their predictions. However, existing approaches to design interpretable generative models based on CBMs are not yet efficient and scalable, as they require expensive generative model training from scratch as well as real images with labor-intensive concept supervision. To address these challenges, we present two novel and low-cost methods to build interpretable generative models through post-hoc techniques and we name our approaches: concept-bottleneck autoencoder (CB-AE) and concept controller (CC). Our proposed approaches enable efficient and scalable training without the need of real data and require only minimal to no concept supervision. Additionally, our methods generalize across modern generative model families including generative adversarial networks and diffusion models. We demonstrate the superior interpretability and steerability of our methods on numerous standard datasets like CelebA, CelebA-HQ, and CUB with large improvements (average ~25%) over the prior work, while being 4-15x faster to train. Finally, a large-scale user study is performed to validate the interpretability and steerability of our methods.
comment: CVPR 2025. Project Page: https://lilywenglab.github.io/posthoc-generative-cbm/
☆ Flow to Learn: Flow Matching on Neural Network Parameters ICLR
Foundational language models show a remarkable ability to learn new concepts during inference via context data. However, similar work for images lag behind. To address this challenge, we introduce FLoWN, a flow matching model that learns to generate neural network parameters for different tasks. Our approach models the flow on latent space, while conditioning the process on context data. Experiments verify that FLoWN attains various desiderata for a meta-learning model. In addition, it matches or exceeds baselines on in-distribution tasks, provides better initializations for classifier training, and is performant on out-of-distribution few-shot tasks while having a fine-tuning mechanism to improve performance.
comment: Accepted at the ICLR Workshop on Neural Network Weights as a New Data Modality 2025
☆ Data-driven Mesoscale Weather Forecasting Combining Swin-Unet and Diffusion Models
Data-driven weather prediction models exhibit promising performance and advance continuously. In particular, diffusion models represent fine-scale details without spatial smoothing, which is crucial for mesoscale predictions, such as heavy rainfall forecasting. However, the applications of diffusion models to mesoscale prediction remain limited. To address this gap, this study proposes an architecture that combines a diffusion model with Swin-Unet as a deterministic model, achieving mesoscale predictions while maintaining flexibility. The proposed architecture trains the two models independently, allowing the diffusion model to remain unchanged when the deterministic model is updated. Comparisons using the Fractions Skill Score and power spectral analysis demonstrate that incorporating the diffusion model leads to improved accuracy compared to predictions without it. These findings underscore the potential of the proposed architecture to enhance mesoscale predictions, particularly for strong rainfall events, while maintaining flexibility.
☆ QUAD: Quantization and Parameter-Efficient Tuning of LLM with Activation Decomposition
Large Language Models (LLMs) excel in diverse applications but suffer inefficiency due to massive scale. While quantization reduces computational costs, existing methods degrade accuracy in medium-sized LLMs (e.g., Llama-3-8B) due to activation outliers. To address this, we propose QUAD (Quantization with Activation Decomposition), a framework leveraging Singular Value Decomposition (SVD) to suppress activation outliers for effective 4-bit quantization. QUAD estimates activation singular vectors offline using calibration data to construct an orthogonal transformation matrix P, shifting outliers to additional dimensions in full precision while quantizing rest components to 4-bit. Additionally, QUAD enables parameter-efficient fine-tuning via adaptable full-precision outlier weights, narrowing the accuracy gap between quantized and full-precision models. Experiments demonstrate that QUAD achieves 94% ~ 96% accuracy under W4A4 quantization and 98% accuracy with W4A4/A8 and parameter-efficient fine-tuning for Llama-3 and Qwen-2.5 models. Our code is available at \href{https://github.com/hyx1999/Quad}{repository}.
comment: 18 pages, 8 figures, 8 tables
☆ Optimal Parameter Adaptation for Safety-Critical Control via Safe Barrier Bayesian Optimization
Safety is of paramount importance in control systems to avoid costly risks and catastrophic damages. The control barrier function (CBF) method, a promising solution for safety-critical control, poses a new challenge of enhancing control performance due to its direct modification of original control design and the introduction of uncalibrated parameters. In this work, we shed light on the crucial role of configurable parameters in the CBF method for performance enhancement with a systematical categorization. Based on that, we propose a novel framework combining the CBF method with Bayesian optimization (BO) to optimize the safe control performance. Considering feasibility/safety-critical constraints, we develop a safe version of BO using the barrier-based interior method to efficiently search for promising feasible configurable parameters. Furthermore, we provide theoretical criteria of our framework regarding safety and optimality. An essential advantage of our framework lies in that it can work in model-agnostic environments, leaving sufficient flexibility in designing objective and constraint functions. Finally, simulation experiments on swing-up control and high-fidelity adaptive cruise control are conducted to demonstrate the effectiveness of our framework.
comment: Preprent manuscript, review only
☆ Stop Walking in Circles! Bailing Out Early in Projected Gradient Descent CVPR
Projected Gradient Descent (PGD) under the $L_\infty$ ball has become one of the defacto methods used in adversarial robustness evaluation for computer vision (CV) due to its reliability and efficacy, making a strong and easy-to-implement iterative baseline. However, PGD is computationally demanding to apply, especially when using thousands of iterations is the current best-practice recommendation to generate an adversarial example for a single image. In this work, we introduce a simple novel method for early termination of PGD based on cycle detection by exploiting the geometry of how PGD is implemented in practice and show that it can produce large speedup factors while providing the \emph{exact} same estimate of model robustness as standard PGD. This method substantially speeds up PGD without sacrificing any attack strength, enabling evaluations of robustness that were previously computationally intractable.
comment: To appear in the 2025 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
☆ Membership Inference Attacks on Large-Scale Models: A Survey
The adoption of the Large Language Model (LLM) has accelerated dramatically since the ChatGPT from OpenAI went online in November 2022. Recent advances in Large Multimodal Models (LMMs), which process diverse data types and enable interaction through various channels, have expanded beyond the text-to-text limitations of early LLMs, attracting significant and concurrent attention from both researchers and industry. While LLMs and LMMs are starting to spread widely, concerns about their privacy risks are increasing as well. Membership Inference Attacks (MIAs), techniques used to determine whether a particular data point was part of a model's training set, serve as a key metric for assessing the privacy vulnerabilities of machine learning models. Hu et al. show that various machine learning algorithms are vulnerable to MIA. Despite extensive studies on MIAs in traditional models, there remains a lack of systematic surveys addressing their effectiveness and implications in modern large-scale models like LLMs and LMMs. In this paper, we systematically reviewed recent studies of MIA against LLMs and LMMs. We analyzed and categorized each attack based on their methodology and scenario and discussed the limitations in existing research. Additionally, we examine privacy concerns associated with the fine-tuning process. Finally, we provided some suggestions for future research in this direction.
☆ E-PINNs: Epistemic Physics-Informed Neural Networks
Physics-informed neural networks (PINNs) have demonstrated promise as a framework for solving forward and inverse problems involving partial differential equations. Despite recent progress in the field, it remains challenging to quantify uncertainty in these networks. While approaches such as Bayesian PINNs (B-PINNs) provide a principled approach to capturing uncertainty through Bayesian inference, they can be computationally expensive for large-scale applications. In this work, we propose Epistemic Physics-Informed Neural Networks (E-PINNs), a framework that leverages a small network, the \emph{epinet}, to efficiently quantify uncertainty in PINNs. The proposed approach works as an add-on to existing, pre-trained PINNs with a small computational overhead. We demonstrate the applicability of the proposed framework in various test cases and compare the results with B-PINNs using Hamiltonian Monte Carlo (HMC) posterior estimation and dropout-equipped PINNs (Dropout-PINNs). Our experiments show that E-PINNs provide similar coverage to B-PINNs, with often comparable sharpness, while being computationally more efficient. This observation, combined with E-PINNs' more consistent uncertainty estimates and better calibration compared to Dropout-PINNs for the examples presented, indicates that E-PINNs offer a promising approach in terms of accuracy-efficiency trade-off.
comment: 27 pages, 13 figures
☆ ChA-MAEViT: Unifying Channel-Aware Masked Autoencoders and Multi-Channel Vision Transformers for Improved Cross-Channel Learning
Prior work using Masked Autoencoders (MAEs) typically relies on random patch masking based on the assumption that images have significant redundancies across different channels, allowing for the reconstruction of masked content using cross-channel correlations. However, this assumption does not hold in Multi-Channel Imaging (MCI), where channels may provide complementary information with minimal feature overlap. Thus, these MAEs primarily learn local structures within individual channels from patch reconstruction, failing to fully leverage cross-channel interactions and limiting their MCI effectiveness. In this paper, we present ChA-MAEViT, an MAE-based method that enhances feature learning across MCI channels via four key strategies: (1) dynamic channel-patch masking, which compels the model to reconstruct missing channels in addition to masked patches, thereby enhancing cross-channel dependencies and improving robustness to varying channel configurations; (2) memory tokens, which serve as long-term memory aids to promote information sharing across channels, addressing the challenges of reconstructing structurally diverse channels; (3) hybrid token fusion module, which merges fine-grained patch tokens with a global class token to capture richer representations; and (4) Channel-Aware Decoder, a lightweight decoder utilizes channel tokens to effectively reconstruct image patches. Experiments on satellite and microscopy datasets, CHAMMI, JUMP-CP, and So2Sat, show that ChA-MAEViT significantly outperforms state-of-the-art MCI-ViTs by 3.0-21.5%, highlighting the importance of cross-channel interactions in MCI.
☆ How to optimize K-means?
Center-based clustering algorithms (e.g., K-means) are popular for clustering tasks, but they usually struggle to achieve high accuracy on complex datasets. We believe the main reason is that traditional center-based clustering algorithms identify only one clustering center in each cluster. Once the distribution of the dataset is complex, a single clustering center cannot strongly represent distant objects within the cluster. How to optimize the existing center-based clustering algorithms will be valuable research. In this paper, we propose a general optimization method called ECAC, and it can optimize different center-based clustering algorithms. ECAC is independent of the clustering principle and is embedded as a component between the center process and the category assignment process of center-based clustering algorithms. Specifically, ECAC identifies several extended-centers for each clustering center. The extended-centers will act as relays to expand the representative capability of the clustering center in the complex cluster, thus improving the accuracy of center-based clustering algorithms. We conducted numerous experiments to verify the robustness and effectiveness of ECAC. ECAC is robust to diverse datasets and diverse clustering centers. After ECAC optimization, the accuracy (NMI as well as RI) of center-based clustering algorithms improves by an average of 33.4% and 64.1%, respectively, and even K-means accurately identifies complex-shaped clusters.
☆ RGL: A Graph-Centric, Modular Framework for Efficient Retrieval-Augmented Generation on Graphs
Recent advances in graph learning have paved the way for innovative retrieval-augmented generation (RAG) systems that leverage the inherent relational structures in graph data. However, many existing approaches suffer from rigid, fixed settings and significant engineering overhead, limiting their adaptability and scalability. Additionally, the RAG community has largely overlooked the decades of research in the graph database community regarding the efficient retrieval of interesting substructures on large-scale graphs. In this work, we introduce the RAG-on-Graphs Library (RGL), a modular framework that seamlessly integrates the complete RAG pipeline-from efficient graph indexing and dynamic node retrieval to subgraph construction, tokenization, and final generation-into a unified system. RGL addresses key challenges by supporting a variety of graph formats and integrating optimized implementations for essential components, achieving speedups of up to 143x compared to conventional methods. Moreover, its flexible utilities, such as dynamic node filtering, allow for rapid extraction of pertinent subgraphs while reducing token consumption. Our extensive evaluations demonstrate that RGL not only accelerates the prototyping process but also enhances the performance and applicability of graph-based RAG systems across a range of tasks.
☆ Centroid Decision Forest
This paper introduces the centroid decision forest (CDF), a novel ensemble learning framework that redefines the splitting strategy and tree building in the ordinary decision trees for high-dimensional classification. The splitting approach in CDF differs from the traditional decision trees in theat the class separability score (CSS) determines the selection of the most discriminative features at each node to construct centroids of the partitions (daughter nodes). The splitting criterion uses the Euclidean distance measurements from each class centroid to achieve a splitting mechanism that is more flexible and robust. Centroids are constructed by computing the mean feature values of the selected features for each class, ensuring a class-representative division of the feature space. This centroid-driven approach enables CDF to capture complex class structures while maintaining interpretability and scalability. To evaluate CDF, 23 high-dimensional datasets are used to assess its performance against different state-of-the-art classifiers through classification accuracy and Cohen's kappa statistic. The experimental results show that CDF outperforms the conventional methods establishing its effectiveness and flexibility for high-dimensional classification problems.
comment: This article has 11 pages, 6 figures, and 3 tables and has been submitted to the "IEEE Transactions on Pattern Analysis and Machine Intelligence" journal
☆ Observation Adaptation via Annealed Importance Resampling for Partially Observable Markov Decision Processes
Partially observable Markov decision processes (POMDPs) are a general mathematical model for sequential decision-making in stochastic environments under state uncertainty. POMDPs are often solved \textit{online}, which enables the algorithm to adapt to new information in real time. Online solvers typically use bootstrap particle filters based on importance resampling for updating the belief distribution. Since directly sampling from the ideal state distribution given the latest observation and previous state is infeasible, particle filters approximate the posterior belief distribution by propagating states and adjusting weights through prediction and resampling steps. However, in practice, the importance resampling technique often leads to particle degeneracy and sample impoverishment when the state transition model poorly aligns with the posterior belief distribution, especially when the received observation is highly informative. We propose an approach that constructs a sequence of bridge distributions between the state-transition and optimal distributions through iterative Monte Carlo steps, better accommodating noisy observations in online POMDP solvers. Our algorithm demonstrates significantly superior performance compared to state-of-the-art methods when evaluated across multiple challenging POMDP domains.
comment: Accepted as Oral Presentation to ICAPS 2025
☆ UniMoMo: Unified Generative Modeling of 3D Molecules for De Novo Binder Design
The design of target-specific molecules such as small molecules, peptides, and antibodies is vital for biological research and drug discovery. Existing generative methods are restricted to single-domain molecules, failing to address versatile therapeutic needs or utilize cross-domain transferability to enhance model performance. In this paper, we introduce Unified generative Modeling of 3D Molecules (UniMoMo), the first framework capable of designing binders of multiple molecular domains using a single model. In particular, UniMoMo unifies the representations of different molecules as graphs of blocks, where each block corresponds to either a standard amino acid or a molecular fragment. Based on these unified representations, UniMoMo utilizes a geometric latent diffusion model for 3D molecular generation, featuring an iterative full-atom autoencoder to compress blocks into latent space points, followed by an E(3)-equivariant diffusion process. Extensive benchmarks across peptides, antibodies, and small molecules demonstrate the superiority of our unified framework over existing domain-specific models, highlighting the benefits of multi-domain training.
comment: preprint
☆ No Black Box Anymore: Demystifying Clinical Predictive Modeling with Temporal-Feature Cross Attention Mechanism
Despite the outstanding performance of deep learning models in clinical prediction tasks, explainability remains a significant challenge. Inspired by transformer architectures, we introduce the Temporal-Feature Cross Attention Mechanism (TFCAM), a novel deep learning framework designed to capture dynamic interactions among clinical features across time, enhancing both predictive accuracy and interpretability. In an experiment with 1,422 patients with Chronic Kidney Disease, predicting progression to End-Stage Renal Disease, TFCAM outperformed LSTM and RETAIN baselines, achieving an AUROC of 0.95 and an F1-score of 0.69. Beyond performance gains, TFCAM provides multi-level explainability by identifying critical temporal periods, ranking feature importance, and quantifying how features influence each other across time before affecting predictions. Our approach addresses the "black box" limitations of deep learning in healthcare, offering clinicians transparent insights into disease progression mechanisms while maintaining state-of-the-art predictive performance.
comment: 10 pages, 3 figures, submitted to AMIA 2025
☆ Machine-assisted writing evaluation: Exploring pre-trained language models in analyzing argumentative moves
The study investigates the efficacy of pre-trained language models (PLMs) in analyzing argumentative moves in a longitudinal learner corpus. Prior studies on argumentative moves often rely on qualitative analysis and manual coding, limiting their efficiency and generalizability. The study aims to: 1) to assess the reliability of PLMs in analyzing argumentative moves; 2) to utilize PLM-generated annotations to illustrate developmental patterns and predict writing quality. A longitudinal corpus of 1643 argumentative texts from 235 English learners in China is collected and annotated into six move types: claim, data, counter-claim, counter-data, rebuttal, and non-argument. The corpus is divided into training, validation, and application sets annotated by human experts and PLMs. We use BERT as one of the implementations of PLMs. The results indicate a robust reliability of PLMs in analyzing argumentative moves, with an overall F1 score of 0.743, surpassing existing models in the field. Additionally, PLM-labeled argumentative moves effectively capture developmental patterns and predict writing quality. Over time, students exhibit an increase in the use of data and counter-claims and a decrease in non-argument moves. While low-quality texts are characterized by a predominant use of claims and data supporting only oneside position, mid- and high-quality texts demonstrate an integrative perspective with a higher ratio of counter-claims, counter-data, and rebuttals. This study underscores the transformative potential of integrating artificial intelligence into language education, enhancing the efficiency and accuracy of evaluating students' writing. The successful application of PLMs can catalyze the development of educational technology, promoting a more data-driven and personalized learning environment that supports diverse educational needs.
☆ CoMAC: Conversational Agent for Multi-Source Auxiliary Context with Sparse and Symmetric Latent Interactions PAKDD2025
Recent advancements in AI-driven conversational agents have exhibited immense potential of AI applications. Effective response generation is crucial to the success of these agents. While extensive research has focused on leveraging multiple auxiliary data sources (e.g., knowledge bases and personas) to enhance response generation, existing methods often struggle to efficiently extract relevant information from these sources. There are still clear limitations in the ability to combine versatile conversational capabilities with adherence to known facts and adaptation to large variations in user preferences and belief systems, which continues to hinder the wide adoption of conversational AI tools. This paper introduces a novel method, Conversational Agent for Multi-Source Auxiliary Context with Sparse and Symmetric Latent Interactions (CoMAC), for conversation generation, which employs specialized encoding streams and post-fusion grounding networks for multiple data sources to identify relevant persona and knowledge information for the conversation. CoMAC also leverages a novel text similarity metric that allows bi-directional information sharing among multiple sources and focuses on a selective subset of meaningful words. Our experiments show that CoMAC improves the relevant persona and knowledge prediction accuracies and response generation quality significantly over two state-of-the-art methods.
comment: The 29th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD2025)
☆ NeoRL-2: Near Real-World Benchmarks for Offline Reinforcement Learning with Extended Realistic Scenarios
Offline reinforcement learning (RL) aims to learn from historical data without requiring (costly) access to the environment. To facilitate offline RL research, we previously introduced NeoRL, which highlighted that datasets from real-world tasks are often conservative and limited. With years of experience applying offline RL to various domains, we have identified additional real-world challenges. These include extremely conservative data distributions produced by deployed control systems, delayed action effects caused by high-latency transitions, external factors arising from the uncontrollable variance of transitions, and global safety constraints that are difficult to evaluate during the decision-making process. These challenges are underrepresented in previous benchmarks but frequently occur in real-world tasks. To address this, we constructed the extended Near Real-World Offline RL Benchmark (NeoRL-2), which consists of 7 datasets from 7 simulated tasks along with their corresponding evaluation simulators. Benchmarking results from state-of-the-art offline RL approaches demonstrate that current methods often struggle to outperform the data-collection behavior policy, highlighting the need for more effective methods. We hope NeoRL-2 will accelerate the development of reinforcement learning algorithms for real-world applications. The benchmark project page is available at https://github.com/polixir/NeoRL2.
☆ Linguistic Blind Spots of Large Language Models
Large language models (LLMs) are the foundation of many AI applications today. However, despite their remarkable proficiency in generating coherent text, questions linger regarding their ability to perform fine-grained linguistic annotation tasks, such as detecting nouns or verbs, or identifying more complex syntactic structures like clauses in input texts. These tasks require precise syntactic and semantic understanding of input text, and when LLMs underperform on specific linguistic structures, it raises concerns about their reliability for detailed linguistic analysis and whether their (even correct) outputs truly reflect an understanding of the inputs. In this paper, we empirically study the performance of recent LLMs on fine-grained linguistic annotation tasks. Through a series of experiments, we find that recent LLMs show limited efficacy in addressing linguistic queries and often struggle with linguistically complex inputs. We show that the most capable LLM (Llama3-70b) makes notable errors in detecting linguistic structures, such as misidentifying embedded clauses, failing to recognize verb phrases, and confusing complex nominals with clauses. Our results provide insights to inform future advancements in LLM design and development.
comment: NAACL 2025 Cognitive Modeling and Computational Linguistics Workshop
☆ Data-Driven, ML-assisted Approaches to Problem Well-Posedness
Classically, to solve differential equation problems, it is necessary to specify sufficient initial and/or boundary conditions so as to allow the existence of a unique solution. Well-posedness of differential equation problems thus involves studying the existence and uniqueness of solutions, and their dependence to such pre-specified conditions. However, in part due to mathematical necessity, these conditions are usually specified "to arbitrary precision" only on (appropriate portions of) the boundary of the space-time domain. This does not mirror how data acquisition is performed in realistic situations, where one may observe entire "patches" of solution data at arbitrary space-time locations; alternatively one might have access to more than one solutions stemming from the same differential operator. In our short work, we demonstrate how standard tools from machine and manifold learning can be used to infer, in a data driven manner, certain well-posedness features of differential equation problems, for initial/boundary condition combinations under which rigorous existence/uniqueness theorems are not known. Our study naturally combines a data assimilation perspective with an operator-learning one.
☆ From Interpretation to Correction: A Decentralized Optimization Framework for Exact Convergence in Federated Learning
This work introduces a novel decentralized framework to interpret federated learning (FL) and, consequently, correct the biases introduced by arbitrary client participation and data heterogeneity, which are two typical traits in practical FL. Specifically, we first reformulate the core processes of FedAvg - client participation, local updating, and model aggregation - as stochastic matrix multiplications. This reformulation allows us to interpret FedAvg as a decentralized algorithm. Leveraging the decentralized optimization framework, we are able to provide a concise analysis to quantify the impact of arbitrary client participation and data heterogeneity on FedAvg's convergence point. This insight motivates the development of Federated Optimization with Exact Convergence via Push-pull Strategy (FOCUS), a novel algorithm inspired by the decentralized algorithm that eliminates these biases and achieves exact convergence without requiring the bounded heterogeneity assumption. Furthermore, we theoretically prove that FOCUS exhibits linear convergence (exponential decay) for both strongly convex and non-convex functions satisfying the Polyak-Lojasiewicz condition, regardless of the arbitrary nature of client participation.
☆ Domain Adaptation Framework for Turning Movement Count Estimation with Limited Data
Urban transportation networks are vital for the efficient movement of people and goods, necessitating effective traffic management and planning. An integral part of traffic management is understanding the turning movement counts (TMCs) at intersections, Accurate TMCs at intersections are crucial for traffic signal control, congestion mitigation, and road safety. In general, TMCs are obtained using physical sensors installed at intersections, but this approach can be cost-prohibitive and technically challenging, especially for cities with extensive road networks. Recent advancements in machine learning and data-driven approaches have offered promising alternatives for estimating TMCs. Traffic patterns can vary significantly across different intersections due to factors such as road geometry, traffic signal settings, and local driver behaviors. This domain discrepancy limits the generalizability and accuracy of machine learning models when applied to new or unseen intersections. In response to these limitations, this research proposes a novel framework leveraging domain adaptation (DA) to estimate TMCs at intersections by using traffic controller event-based data, road infrastructure data, and point-of-interest (POI) data. Evaluated on 30 intersections in Tucson, Arizona, the performance of the proposed DA framework was compared with state-of-the-art models and achieved the lowest values in terms of Mean Absolute Error and Root Mean Square Error.
comment: arXiv admin note: substantial text overlap with arXiv:2412.09861
Efficient Model Development through Fine-tuning Transfer
Modern LLMs struggle with efficient updates, as each new pretrained model version requires repeating expensive alignment processes. This challenge also applies to domain- or language-specific models, where fine-tuning on specialized data must be redone for every new base model release. In this paper, we explore the transfer of fine-tuning updates between model versions. Specifically, we derive the diff vector from one source model version, which represents the weight changes from fine-tuning, and apply it to the base model of a different target version. Through empirical evaluations on various open-weight model versions, we show that transferring diff vectors can significantly improve the target base model, often achieving performance comparable to its fine-tuned counterpart. For example, reusing the fine-tuning updates from Llama 3.0 8B leads to an absolute accuracy improvement of 10.7% on GPQA over the base Llama 3.1 8B without additional training, surpassing Llama 3.1 8B Instruct. In a multilingual model development setting, we show that this approach can significantly increase performance on target-language tasks without retraining, achieving an absolute improvement of 4.7% and 15.5% on Global MMLU for Malagasy and Turkish, respectively, compared to Llama 3.1 8B Instruct. Our controlled experiments reveal that fine-tuning transfer is most effective when the source and target models are linearly connected in the parameter space. Additionally, we demonstrate that fine-tuning transfer offers a stronger and more computationally efficient starting point for further fine-tuning. Finally, we propose an iterative recycling-then-finetuning approach for continuous model development, which improves both efficiency and effectiveness. Our findings suggest that fine-tuning transfer is a viable strategy to reduce training costs while maintaining model performance.
comment: 21 pages, 4 figures, 13 tables
Extendable Long-Horizon Planning via Hierarchical Multiscale Diffusion
This paper tackles a novel problem, extendable long-horizon planning-enabling agents to plan trajectories longer than those in training data without compounding errors. To tackle this, we propose the Hierarchical Multiscale Diffuser (HM-Diffuser) and Progressive Trajectory Extension (PTE), an augmentation method that iteratively generates longer trajectories by stitching shorter ones. HM-Diffuser trains on these extended trajectories using a hierarchical structure, efficiently handling tasks across multiple temporal scales. Additionally, we introduce Adaptive Plan Pondering and the Recursive HM-Diffuser, which consolidate hierarchical layers into a single model to process temporal scales recursively. Experimental results demonstrate the effectiveness of our approach, advancing diffusion-based planners for scalable long-horizon planning.
comment: First two authors contributed equally
☆ Fundamental Limits of Perfect Concept Erasure AISTATS 2025
Concept erasure is the task of erasing information about a concept (e.g., gender or race) from a representation set while retaining the maximum possible utility -- information from original representations. Concept erasure is useful in several applications, such as removing sensitive concepts to achieve fairness and interpreting the impact of specific concepts on a model's performance. Previous concept erasure techniques have prioritized robustly erasing concepts over retaining the utility of the resultant representations. However, there seems to be an inherent tradeoff between erasure and retaining utility, making it unclear how to achieve perfect concept erasure while maintaining high utility. In this paper, we offer a fresh perspective toward solving this problem by quantifying the fundamental limits of concept erasure through an information-theoretic lens. Using these results, we investigate constraints on the data distribution and the erasure functions required to achieve the limits of perfect concept erasure. Empirically, we show that the derived erasure functions achieve the optimal theoretical bounds. Additionally, we show that our approach outperforms existing methods on a range of synthetic and real-world datasets using GPT-4 representations.
comment: Accepted at AISTATS 2025
☆ Random feature-based double Vovk-Azoury-Warmuth algorithm for online multi-kernel learning
We introduce a novel multi-kernel learning algorithm, VAW$^2$, for online least squares regression in reproducing kernel Hilbert spaces (RKHS). VAW$^2$ leverages random Fourier feature-based functional approximation and the Vovk-Azoury-Warmuth (VAW) method in a two-level procedure: VAW is used to construct expert strategies from random features generated for each kernel at the first level, and then again to combine their predictions at the second level. A theoretical analysis yields a regret bound of $O(T^{1/2}\ln T)$ in expectation with respect to artificial randomness, when the number of random features scales as $T^{1/2}$. Empirical results on some benchmark datasets demonstrate that VAW$^2$ achieves superior performance compared to the existing online multi-kernel learning algorithms: Raker and OMKL-GF, and to other theoretically grounded method methods involving convex combination of expert predictions at the second level.
☆ Abstracting Geo-specific Terrains to Scale Up Reinforcement Learning
Multi-agent reinforcement learning (MARL) is increasingly ubiquitous in training dynamic and adaptive synthetic characters for interactive simulations on geo-specific terrains. Frameworks such as Unity's ML-Agents help to make such reinforcement learning experiments more accessible to the simulation community. Military training simulations also benefit from advances in MARL, but they have immense computational requirements due to their complex, continuous, stochastic, partially observable, non-stationary, and doctrine-based nature. Furthermore, these simulations require geo-specific terrains, further exacerbating the computational resources problem. In our research, we leverage Unity's waypoints to automatically generate multi-layered representation abstractions of the geo-specific terrains to scale up reinforcement learning while still allowing the transfer of learned policies between different representations. Our early exploratory results on a novel MARL scenario, where each side has differing objectives, indicate that waypoint-based navigation enables faster and more efficient learning while producing trajectories similar to those taken by expert human players in CSGO gaming environments. This research points out the potential of waypoint-based navigation for reducing the computational costs of developing and training MARL models for military training simulations, where geo-specific terrains and differing objectives are crucial.
comment: 10 pages, 6 figures, 2024 Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)
☆ Peer Disambiguation in Self-Reported Surveys using Graph Attention Networks
Studying peer relationships is crucial in solving complex challenges underserved communities face and designing interventions. The effectiveness of such peer-based interventions relies on accurate network data regarding individual attributes and social influences. However, these datasets are often collected through self-reported surveys, introducing ambiguities in network construction. These ambiguities make it challenging to fully utilize the network data to understand the issues and to design the best interventions. We propose and solve two variations of link ambiguities in such network data -- (i) which among the two candidate links exists, and (ii) if a candidate link exists. We design a Graph Attention Network (GAT) that accounts for personal attributes and network relationships on real-world data with real and simulated ambiguities. We also demonstrate that by resolving these ambiguities, we improve network accuracy, and in turn, improve suicide risk prediction. We also uncover patterns using GNNExplainer to provide additional insights into vital features and relationships. This research demonstrates the potential of Graph Neural Networks (GNN) to advance real-world network data analysis facilitating more effective peer interventions across various fields.
☆ Deep Learning Approaches for Blood Disease Diagnosis Across Hematopoietic Lineages
We present a foundation modeling framework that leverages deep learning to uncover latent genetic signatures across the hematopoietic hierarchy. Our approach trains a fully connected autoencoder on multipotent progenitor cells, reducing over 20,000 gene features to a 256-dimensional latent space that captures predictive information for both progenitor and downstream differentiated cells such as monocytes and lymphocytes. We validate the quality of these embeddings by training feed-forward, transformer, and graph convolutional architectures for blood disease diagnosis tasks. We also explore zero-shot prediction using a progenitor disease state classification model to classify downstream cell conditions. Our models achieve greater than 95% accuracy for multi-class classification, and in the zero-shot setting, we achieve greater than 0.7 F1-score on the binary classification task. Future work should improve embeddings further to increase robustness on lymphocyte classification specifically.
comment: 6 pages, 4 figures
A scalable gene network model of regulatory dynamics in single cells
Single-cell data provide high-dimensional measurements of the transcriptional states of cells, but extracting insights into the regulatory functions of genes, particularly identifying transcriptional mechanisms affected by biological perturbations, remains a challenge. Many perturbations induce compensatory cellular responses, making it difficult to distinguish direct from indirect effects on gene regulation. Modeling how gene regulatory functions shape the temporal dynamics of these responses is key to improving our understanding of biological perturbations. Dynamical models based on differential equations offer a principled way to capture transcriptional dynamics, but their application to single-cell data has been hindered by computational constraints, stochasticity, sparsity, and noise. Existing methods either rely on low-dimensional representations or make strong simplifying assumptions, limiting their ability to model transcriptional dynamics at scale. We introduce a Functional and Learnable model of Cell dynamicS, FLeCS, that incorporates gene network structure into coupled differential equations to model gene regulatory functions. Given (pseudo)time-series single-cell data, FLeCS accurately infers cell dynamics at scale, provides improved functional insights into transcriptional mechanisms perturbed by gene knockouts, both in myeloid differentiation and K562 Perturb-seq experiments, and simulates single-cell trajectories of A549 cells following small-molecule perturbations.
comment: 42 pages, 10 figures
☆ Experience Replay Addresses Loss of Plasticity in Continual Learning
Loss of plasticity is one of the main challenges in continual learning with deep neural networks, where neural networks trained via backpropagation gradually lose their ability to adapt to new tasks and perform significantly worse than their freshly initialized counterparts. The main contribution of this paper is to propose a new hypothesis that experience replay addresses the loss of plasticity in continual learning. Here, experience replay is a form of memory. We provide supporting evidence for this hypothesis. In particular, we demonstrate in multiple different tasks, including regression, classification, and policy evaluation, that by simply adding an experience replay and processing the data in the experience replay with Transformers, the loss of plasticity disappears. Notably, we do not alter any standard components of deep learning. For example, we do not change backpropagation. We do not modify the activation functions. And we do not use any regularization. We conjecture that experience replay and Transformers can address the loss of plasticity because of the in-context learning phenomenon.
comment: 14 pages, 4 figures
☆ Low-resource Machine Translation for Code-switched Kazakh-Russian Language Pair
Machine translation for low resource language pairs is a challenging task. This task could become extremely difficult once a speaker uses code switching. We propose a method to build a machine translation model for code-switched Kazakh-Russian language pair with no labeled data. Our method is basing on generation of synthetic data. Additionally, we present the first codeswitching Kazakh-Russian parallel corpus and the evaluation results, which include a model achieving 16.48 BLEU almost reaching an existing commercial system and beating it by human evaluation.
☆ Unsupervised Learning for Quadratic Assignment
We introduce PLUME search, a data-driven framework that enhances search efficiency in combinatorial optimization through unsupervised learning. Unlike supervised or reinforcement learning, PLUME search learns directly from problem instances using a permutation-based loss with a non-autoregressive approach. We evaluate its performance on the quadratic assignment problem, a fundamental NP-hard problem that encompasses various combinatorial optimization problems. Experimental results demonstrate that PLUME search consistently improves solution quality. Furthermore, we study the generalization behavior and show that the learned model generalizes across different densities and sizes.
comment: preprint
☆ The Coralscapes Dataset: Semantic Scene Understanding in Coral Reefs
Coral reefs are declining worldwide due to climate change and local stressors. To inform effective conservation or restoration, monitoring at the highest possible spatial and temporal resolution is necessary. Conventional coral reef surveying methods are limited in scalability due to their reliance on expert labor time, motivating the use of computer vision tools to automate the identification and abundance estimation of live corals from images. However, the design and evaluation of such tools has been impeded by the lack of large high quality datasets. We release the Coralscapes dataset, the first general-purpose dense semantic segmentation dataset for coral reefs, covering 2075 images, 39 benthic classes, and 174k segmentation masks annotated by experts. Coralscapes has a similar scope and the same structure as the widely used Cityscapes dataset for urban scene segmentation, allowing benchmarking of semantic segmentation models in a new challenging domain which requires expert knowledge to annotate. We benchmark a wide range of semantic segmentation models, and find that transfer learning from Coralscapes to existing smaller datasets consistently leads to state-of-the-art performance. Coralscapes will catalyze research on efficient, scalable, and standardized coral reef surveying methods based on computer vision, and holds the potential to streamline the development of underwater ecological robotics.
☆ ExCoT: Optimizing Reasoning for Text-to-SQL with Execution Feedback
Text-to-SQL demands precise reasoning to convert natural language questions into structured queries. While large language models (LLMs) excel in many reasoning tasks, their ability to leverage Chain-of-Thought (CoT) reasoning for text-to-SQL remains underexplored. We identify critical limitations: zero-shot CoT offers minimal gains, and Direct Preference Optimization (DPO) applied without CoT yields marginal improvements. We propose ExCoT, a novel framework that iteratively optimizes open-source LLMs by combining CoT reasoning with off-policy and on-policy DPO, relying solely on execution accuracy as feedback. This approach eliminates the need for reward models or human-annotated preferences. Our experimental results demonstrate significant performance gains: ExCoT improves execution accuracy on BIRD dev set from 57.37% to 68.51% and on Spider test set from 78.81% to 86.59% for LLaMA-3 70B, with Qwen-2.5-Coder demonstrating similar improvements. Our best model achieves state-of-the-art performance in the single-model setting on both BIRD and Spider datasets, notably achieving 68.53% on the BIRD test set.
☆ Thin-Shell-SfT: Fine-Grained Monocular Non-rigid 3D Surface Tracking with Neural Deformation Fields CVPR 2025
3D reconstruction of highly deformable surfaces (e.g. cloths) from monocular RGB videos is a challenging problem, and no solution provides a consistent and accurate recovery of fine-grained surface details. To account for the ill-posed nature of the setting, existing methods use deformation models with statistical, neural, or physical priors. They also predominantly rely on nonadaptive discrete surface representations (e.g. polygonal meshes), perform frame-by-frame optimisation leading to error propagation, and suffer from poor gradients of the mesh-based differentiable renderers. Consequently, fine surface details such as cloth wrinkles are often not recovered with the desired accuracy. In response to these limitations, we propose ThinShell-SfT, a new method for non-rigid 3D tracking that represents a surface as an implicit and continuous spatiotemporal neural field. We incorporate continuous thin shell physics prior based on the Kirchhoff-Love model for spatial regularisation, which starkly contrasts the discretised alternatives of earlier works. Lastly, we leverage 3D Gaussian splatting to differentiably render the surface into image space and optimise the deformations based on analysis-bysynthesis principles. Our Thin-Shell-SfT outperforms prior works qualitatively and quantitatively thanks to our continuous surface formulation in conjunction with a specially tailored simulation prior and surface-induced 3D Gaussians. See our project page at https://4dqv.mpiinf.mpg.de/ThinShellSfT.
comment: 15 pages, 12 figures and 3 tables; project page: https://4dqv.mpiinf.mpg.de/ThinShellSfT; CVPR 2025
☆ LogQuant: Log-Distributed 2-Bit Quantization of KV Cache with Superior Accuracy Preservation ICLR 2025
We introduce LogQuant, a groundbreaking 2-bit quantization technique for KV Cache in large language model (LLM) inference, delivering substantial memory savings while preserving superior performance. Previous methods either assume that later tokens are more important or attempt to predict important tokens based on earlier attention patterns. Both approaches, however, can result in performance bottlenecks or frequent mispredictions. LogQuant takes a different approach. By applying a log-based filtering mechanism, it selectively compresses the KV Cache across the entire context, achieving better performance with the same or even reduced memory footprint compared to existing methods. In benchmark tests, it enhances throughput by 25% and boosts batch size by 60% without increasing memory consumption. For challenging tasks such as Math and Code Completion, LogQuant improves accuracy by 40% to 200% at the same compression ratio, outperforming comparable techniques.LogQuant integrates effortlessly with popular inference frameworks like Python's transformers library. Implementation can be available in https://github.com/Concyclics/LogQuantKV.
comment: Accepted by ICLR 2025 Workshop on Sparsity in LLMs (SLLM)
☆ Automated Video-EEG Analysis in Epilepsy Studies: Advances and Challenges
Epilepsy is typically diagnosed through electroencephalography (EEG) and long-term video-EEG (vEEG) monitoring. The manual analysis of vEEG recordings is time-consuming, necessitating automated tools for seizure detection. Recent advancements in machine learning have shown promise in real-time seizure detection and prediction using EEG and video data. However, diversity of seizure symptoms, markup ambiguities, and limited availability of multimodal datasets hinder progress. This paper reviews the latest developments in automated video-EEG analysis and discusses the integration of multimodal data. We also propose a novel pipeline for treatment effect estimation from vEEG data using concept-based learning, offering a pathway for future research in this domain.
☆ MindfulLIME: A Stable Solution for Explanations of Machine Learning Models with Enhanced Localization Precision -- A Medical Image Case Study
Ensuring transparency in machine learning decisions is critically important, especially in sensitive sectors such as healthcare, finance, and justice. Despite this, some popular explainable algorithms, such as Local Interpretable Model-agnostic Explanations (LIME), often produce unstable explanations due to the random generation of perturbed samples. Random perturbation introduces small changes or noise to modified instances of the original data, leading to inconsistent explanations. Even slight variations in the generated samples significantly affect the explanations provided by such models, undermining trust and hindering the adoption of interpretable models. To address this challenge, we propose MindfulLIME, a novel algorithm that intelligently generates purposive samples using a graph-based pruning algorithm and uncertainty sampling. MindfulLIME substantially improves the consistency of visual explanations compared to random sampling approaches. Our experimental evaluation, conducted on a widely recognized chest X-ray dataset, confirms MindfulLIME's stability with a 100% success rate in delivering reliable explanations under identical conditions. Additionally, MindfulLIME improves the localization precision of visual explanations by reducing the distance between the generated explanations and the actual local annotations compared to LIME. We also performed comprehensive experiments considering various segmentation algorithms and sample numbers, focusing on stability, quality, and efficiency. The results demonstrate the outstanding performance of MindfulLIME across different segmentation settings, generating fewer high-quality samples within a reasonable processing time. By addressing the stability limitations of LIME in image data, MindfulLIME enhances the trustworthiness and interpretability of machine learning models in specific medical imaging applications, a critical domain.
☆ A Spatiotemporal Radar-Based Precipitation Model for Water Level Prediction and Flood Forecasting
Study Region: Goslar and G\"ottingen, Lower Saxony, Germany. Study Focus: In July 2017, the cities of Goslar and G\"ottingen experienced severe flood events characterized by short warning time of only 20 minutes, resulting in extensive regional flooding and significant damage. This highlights the critical need for a more reliable and timely flood forecasting system. This paper presents a comprehensive study on the impact of radar-based precipitation data on forecasting river water levels in Goslar. Additionally, the study examines how precipitation influences water level forecasts in G\"ottingen. The analysis integrates radar-derived spatiotemporal precipitation patterns with hydrological sensor data obtained from ground stations to evaluate the effectiveness of this approach in improving flood prediction capabilities. New Hydrological Insights for the Region: A key innovation in this paper is the use of residual-based modeling to address the non-linearity between precipitation images and water levels, leading to a Spatiotemporal Radar-based Precipitation Model with residuals (STRPMr). Unlike traditional hydrological models, our approach does not rely on upstream data, making it independent of additional hydrological inputs. This independence enhances its adaptability and allows for broader applicability in other regions with RADOLAN precipitation. The deep learning architecture integrates (2+1)D convolutional neural networks for spatial and temporal feature extraction with LSTM for timeseries forecasting. The results demonstrate the potential of the STRPMr for capturing extreme events and more accurate flood forecasting.
comment: 28 pages, 11 figures, 6 tables
☆ A stochastic gradient descent algorithm with random search directions
Stochastic coordinate descent algorithms are efficient methods in which each iterate is obtained by fixing most coordinates at their values from the current iteration, and approximately minimizing the objective with respect to the remaining coordinates. However, this approach is usually restricted to canonical basis vectors of $\mathbb{R}^d$. In this paper, we develop a new class of stochastic gradient descent algorithms with random search directions which uses the directional derivative of the gradient estimate following more general random vectors. We establish the almost sure convergence of these algorithms with decreasing step. We further investigate their central limit theorem and pay particular attention to analyze the impact of the search distributions on the asymptotic covariance matrix. We also provide the non-asymptotic $\mathbb{L}^p$ rates of convergence.
☆ FuXi-RTM: A Physics-Guided Prediction Framework with Radiative Transfer Modeling
Similar to conventional video generation, current deep learning-based weather prediction frameworks often lack explicit physical constraints, leading to unphysical outputs that limit their reliability for operational forecasting. Among various physical processes requiring proper representation, radiation plays a fundamental role as it drives Earth's weather and climate systems. However, accurate simulation of radiative transfer processes remains challenging for traditional numerical weather prediction (NWP) models due to their inherent complexity and high computational costs. Here, we propose FuXi-RTM, a hybrid physics-guided deep learning framework designed to enhance weather forecast accuracy while enforcing physical consistency. FuXi-RTM integrates a primary forecasting model (FuXi) with a fixed deep learning-based radiative transfer model (DLRTM) surrogate that efficiently replaces conventional radiation parameterization schemes. This represents the first deep learning-based weather forecasting framework to explicitly incorporate physical process modeling. Evaluated over a comprehensive 5-year dataset, FuXi-RTM outperforms its unconstrained counterpart in 88.51% of 3320 variable and lead time combinations, with improvements in radiative flux predictions. By incorporating additional physical processes, FuXi-RTM paves the way for next-generation weather forecasting systems that are both accurate and physically consistent.
☆ Continual Learning With Quasi-Newton Methods
Catastrophic forgetting remains a major challenge when neural networks learn tasks sequentially. Elastic Weight Consolidation (EWC) attempts to address this problem by introducing a Bayesian-inspired regularization loss to preserve knowledge of previously learned tasks. However, EWC relies on a Laplace approximation where the Hessian is simplified to the diagonal of the Fisher information matrix, assuming uncorrelated model parameters. This overly simplistic assumption often leads to poor Hessian estimates, limiting its effectiveness. To overcome this limitation, we introduce Continual Learning with Sampled Quasi-Newton (CSQN), which leverages Quasi-Newton methods to compute more accurate Hessian approximations. CSQN captures parameter interactions beyond the diagonal without requiring architecture-specific modifications, making it applicable across diverse tasks and architectures. Experimental results across four benchmarks demonstrate that CSQN consistently outperforms EWC and other state-of-the-art baselines, including rehearsal-based methods. CSQN reduces EWC's forgetting by 50 percent and improves its performance by 8 percent on average. Notably, CSQN achieves superior results on three out of four benchmarks, including the most challenging scenarios, highlighting its potential as a robust solution for continual learning.
comment: Published in IEEE Access
♻ ☆ Aether: Geometric-Aware Unified World Modeling
The integration of geometric reconstruction and generative modeling remains a critical challenge in developing AI systems capable of human-like spatial reasoning. This paper proposes Aether, a unified framework that enables geometry-aware reasoning in world models by jointly optimizing three core capabilities: (1) 4D dynamic reconstruction, (2) action-conditioned video prediction, and (3) goal-conditioned visual planning. Through task-interleaved feature learning, Aether achieves synergistic knowledge sharing across reconstruction, prediction, and planning objectives. Building upon video generation models, our framework demonstrates unprecedented synthetic-to-real generalization despite never observing real-world data during training. Furthermore, our approach achieves zero-shot generalization in both action following and reconstruction tasks, thanks to its intrinsic geometric modeling. Remarkably, even without real-world data, its reconstruction performance is comparable with or even better than that of domain-specific models. Additionally, Aether employs camera trajectories as geometry-informed action spaces, enabling effective action-conditioned prediction and visual planning. We hope our work inspires the community to explore new frontiers in physically-reasonable world modeling and its applications.
comment: Project Page: https://aether-world.github.io/
♻ ☆ TARDIS: Mitigating Temporal Misalignment via Representation Steering
Language models often struggle with temporal misalignment, performance degradation caused by shifts in the temporal distribution of data. Continuously updating models to avoid degradation is expensive. Can models be adapted without updating model weights? We present TARDIS, an unsupervised representation editing method that addresses this challenge. TARDIS extracts steering vectors from unlabeled data and adjusts the model's representations to better align with the target time period's distribution. Our experiments reveal that TARDIS enhances downstream task performance without the need for fine-tuning, can mitigate temporal misalignment even when exact target time period data is unavailable, and remains efficient even when the temporal information of the target data points is unknown at inference time.
♻ ☆ Geometric Preference Elicitation for Minimax Regret Optimization in Uncertainty Matroids
This paper presents an efficient preference elicitation framework for uncertain matroid optimization, where precise weight information is unavailable, but insights into possible weight values are accessible. The core innovation of our approach lies in its ability to systematically elicit user preferences, aligning the optimization process more closely with decision-makers' objectives. By incrementally querying preferences between pairs of elements, we iteratively refine the parametric uncertainty regions, leveraging the structural properties of matroids. Our method aims to achieve the exact optimum by reducing regret with a few elicitation rounds. Additionally, our approach avoids the computation of Minimax Regret and the use of Linear programming solvers at every iteration, unlike previous methods. Experimental results on four standard matroids demonstrate that our method reaches optimality more quickly and with fewer preference queries than existing techniques.
♻ ☆ AutoBayes: A Compositional Framework for Generalized Variational Inference
We introduce a new compositional framework for generalized variational inference, clarifying the different parts of a model, how they interact, and how they compose. We explain that both exact Bayesian inference and the loss functions typical of variational inference (such as variational free energy and its generalizations) satisfy chain rules akin to that of reverse-mode automatic differentiation, and we advocate for exploiting this to build and optimize models accordingly. To this end, we construct a series of compositional tools: for building models; for constructing their inversions; for attaching local loss functions; and for exposing parameters. Finally, we explain how the resulting parameterized statistical games may be optimized locally, too. We illustrate our framework with a number of classic examples, pointing to new areas of extensibility that are revealed.
comment: 15 pages. v2: fixed a typo
♻ ☆ A Universal Model Combining Differential Equations and Neural Networks for Ball Trajectory Prediction
This paper presents a data driven universal ball trajectory prediction method integrated with physics equations. Existing methods are designed for specific ball types and struggle to generalize. This challenge arises from three key factors. First, learning-based models require large datasets but suffer from accuracy drops in unseen scenarios. Second, physics-based models rely on complex formulas and detailed inputs, yet accurately obtaining ball states, such as spin, is often impractical. Third, integrating physical principles with neural networks to achieve high accuracy, fast inference, and strong generalization remains difficult. To address these issues, we propose an innovative approach that incorporates physics-based equations and neural networks. We first derive three generalized physical formulas. Then, using a neural network and observed trajectory points, we infer certain parameters while fitting the remaining ones. These formulas enable precise trajectory prediction with minimal training data: only a few dozen samples. Extensive experiments demonstrate our method superiority in generalization, real-time performance, and accuracy.
comment: This submission was made without my advisor's consent, and I mistakenly uploaded an incorrect version of the paper. Additionally, some content in the paper should not be made publicly available at this time, as per my advisor's wishes. I apologize for any inconvenience this may have caused
♻ ☆ Learning Causal Transition Matrix for Instance-dependent Label Noise
Noisy labels are both inevitable and problematic in machine learning methods, as they negatively impact models' generalization ability by causing overfitting. In the context of learning with noise, the transition matrix plays a crucial role in the design of statistically consistent algorithms. However, the transition matrix is often considered unidentifiable. One strand of methods typically addresses this problem by assuming that the transition matrix is instance-independent; that is, the probability of mislabeling a particular instance is not influenced by its characteristics or attributes. This assumption is clearly invalid in complex real-world scenarios. To better understand the transition relationship and relax this assumption, we propose to study the data generation process of noisy labels from a causal perspective. We discover that an unobservable latent variable can affect either the instance itself, the label annotation procedure, or both, which complicates the identification of the transition matrix. To address various scenarios, we have unified these observations within a new causal graph. In this graph, the input instance is divided into a noise-resistant component and a noise-sensitive component based on whether they are affected by the latent variable. These two components contribute to identifying the ``causal transition matrix'', which approximates the true transition matrix with theoretical guarantee. In line with this, we have designed a novel training framework that explicitly models this causal relationship and, as a result, achieves a more accurate model for inferring the clean label.
♻ ☆ Using Anomaly Detection to Detect Poisoning Attacks in Federated Learning Applications
Adversarial attacks such as poisoning attacks have attracted the attention of many machine learning researchers. Traditionally, poisoning attacks attempt to inject adversarial training data in order to manipulate the trained model. In federated learning (FL), data poisoning attacks can be generalized to model poisoning attacks, which cannot be detected by simpler methods due to the lack of access to local training data by the detector. State-of-the-art poisoning attack detection methods for FL have various weaknesses, e.g., the number of attackers has to be known or not high enough, working with i.i.d. data only, and high computational complexity. To overcome above weaknesses, we propose a novel framework for detecting poisoning attacks in FL, which employs a reference model based on a public dataset and an auditor model to detect malicious updates. We implemented a detector based on the proposed framework and using a one-class support vector machine (OC-SVM), which reaches the lowest possible computational complexity O(K) where K is the number of clients. We evaluated our detector's performance against state-of-the-art (SOTA) poisoning attacks for two typical applications of FL: electrocardiograph (ECG) classification and human activity recognition (HAR). Our experimental results validated the performance of our detector over other SOTA detection methods.
comment: We will updated this article soon
♻ ☆ Lessons and Insights from a Unifying Study of Parameter-Efficient Fine-Tuning (PEFT) in Visual Recognition CVPR 2025
Parameter-efficient fine-tuning (PEFT) has attracted significant attention due to the growth of pre-trained model sizes and the need to fine-tune (FT) them for superior downstream performance. Despite a surge in new PEFT methods, a systematic study to understand their performance and suitable application scenarios is lacking, leaving questions like "when to apply PEFT" and "which method to use" largely unanswered, especially in visual recognition. In this paper, we conduct a unifying empirical study of representative PEFT methods with Vision Transformers. We systematically tune their hyperparameters to fairly compare their accuracy on downstream tasks. Our study offers a practical user guide and unveils several new insights. First, if tuned carefully, different PEFT methods achieve similar accuracy in the low-shot benchmark VTAB-1K. This includes simple approaches like FT the bias terms that were reported inferior. Second, despite similar accuracy, we find that PEFT methods make different mistakes and high-confidence predictions, likely due to their different inductive biases. Such an inconsistency (or complementarity) opens up the opportunity for ensemble methods, and we make preliminary attempts at this. Third, going beyond the commonly used low-shot tasks, we find that PEFT is also useful in many-shot regimes, achieving comparable or better accuracy than full FT while using significantly fewer parameters. Lastly, we investigate PEFT's ability to preserve a pre-trained model's robustness to distribution shifts (e.g., CLIP). Perhaps not surprisingly, PEFT approaches outperform full FT alone. However, with weight-space ensembles, full FT can better balance target distribution and distribution shift performance, suggesting a future research direction for robust PEFT.
comment: CVPR 2025. The code is available at https://github.com/OSU-MLB/ViT_PEFT_Vision
♻ ☆ A Mechanistic Explanatory Strategy for XAI
Despite significant advancements in XAI, scholars continue to note a persistent lack of robust conceptual foundations and integration with broader discourse on scientific explanation. In response, emerging XAI research increasingly draws on explanatory strategies from various scientific disciplines and the philosophy of science to address these gaps. This paper outlines a mechanistic strategy for explaining the functional organization of deep learning systems, situating recent developments in AI explainability within a broader philosophical context. According to the mechanistic approach, explaining opaque AI systems involves identifying the mechanisms underlying decision-making processes. For deep neural networks, this means discerning functionally relevant components - such as neurons, layers, circuits, or activation patterns - and understanding their roles through decomposition, localization, and recomposition. Proof-of-principle case studies from image recognition and language modeling align this theoretical framework with recent research from OpenAI and Anthropic. The findings suggest that pursuing mechanistic explanations can uncover elements that traditional explainability techniques may overlook, ultimately contributing to more thoroughly explainable AI.
comment: Forthcoming in M\"uller, V. C., Dung, L., L\"ohr, G., & Rumana, A. (Eds.). Philosophy of Artificial Intelligence: The State of the Art, Synthese Library, Springer Nature. Please cite the published version
♻ ☆ LoTUS: Large-Scale Machine Unlearning with a Taste of Uncertainty CVPR 2025
We present LoTUS, a novel Machine Unlearning (MU) method that eliminates the influence of training samples from pre-trained models, avoiding retraining from scratch. LoTUS smooths the prediction probabilities of the model up to an information-theoretic bound, mitigating its over-confidence stemming from data memorization. We evaluate LoTUS on Transformer and ResNet18 models against eight baselines across five public datasets. Beyond established MU benchmarks, we evaluate unlearning on ImageNet1k, a large-scale dataset, where retraining is impractical, simulating real-world conditions. Moreover, we introduce the novel Retrain-Free Jensen-Shannon Divergence (RF-JSD) metric to enable evaluation under real-world conditions. The experimental results show that LoTUS outperforms state-of-the-art methods in terms of both efficiency and effectiveness. Code: https://github.com/cspartalis/LoTUS.
comment: Accepted as a main conference paper at CVPR 2025 (https://cvpr.thecvf.com/virtual/2025/poster/33292)
♻ ☆ Evaluating Negative Sampling Approaches for Neural Topic Models
Negative sampling has emerged as an effective technique that enables deep learning models to learn better representations by introducing the paradigm of learn-to-compare. The goal of this approach is to add robustness to deep learning models to learn better representation by comparing the positive samples against the negative ones. Despite its numerous demonstrations in various areas of computer vision and natural language processing, a comprehensive study of the effect of negative sampling in an unsupervised domain like topic modeling has not been well explored. In this paper, we present a comprehensive analysis of the impact of different negative sampling strategies on neural topic models. We compare the performance of several popular neural topic models by incorporating a negative sampling technique in the decoder of variational autoencoder-based neural topic models. Experiments on four publicly available datasets demonstrate that integrating negative sampling into topic models results in significant enhancements across multiple aspects, including improved topic coherence, richer topic diversity, and more accurate document classification. Manual evaluations also indicate that the inclusion of negative sampling into neural topic models enhances the quality of the generated topics. These findings highlight the potential of negative sampling as a valuable tool for advancing the effectiveness of neural topic models.
comment: Code is available at: https://github.com/AdhyaSuman/Eval_NegTM
♻ ☆ Inductive Moment Matching
Diffusion models and Flow Matching generate high-quality samples but are slow at inference, and distilling them into few-step models often leads to instability and extensive tuning. To resolve these trade-offs, we propose Inductive Moment Matching (IMM), a new class of generative models for one- or few-step sampling with a single-stage training procedure. Unlike distillation, IMM does not require pre-training initialization and optimization of two networks; and unlike Consistency Models, IMM guarantees distribution-level convergence and remains stable under various hyperparameters and standard model architectures. IMM surpasses diffusion models on ImageNet-256x256 with 1.99 FID using only 8 inference steps and achieves state-of-the-art 2-step FID of 1.98 on CIFAR-10 for a model trained from scratch.
♻ ☆ Dataset Distillation for Quantum Neural Networks
Training Quantum Neural Networks (QNNs) on large amount of classical data can be both time consuming as well as expensive. Higher amount of training data would require higher number of gradient descent steps to reach convergence. This, in turn would imply that the QNN will require higher number of quantum executions, thereby driving up its overall execution cost. In this work, we propose performing the dataset distillation process for QNNs, where we use a novel quantum variant of classical LeNet model containing residual connection and trainable Hermitian observable in the Parametric Quantum Circuit (PQC) of the QNN. This approach yields highly informative yet small number of training data at similar performance as the original data. We perform distillation for MNIST and Cifar-10 datasets, and on comparison with classical models observe that both the datasets yield reasonably similar post-inferencing accuracy on quantum LeNet (91.9% MNIST, 50.3% Cifar-10) compared to classical LeNet (94% MNIST, 54% Cifar-10). We also introduce a non-trainable Hermitian for ensuring stability in the distillation process and note marginal reduction of up to 1.8% (1.3%) for MNIST (Cifar-10) dataset.
comment: 5 pages, 4 figures, 2 tables
♻ ☆ Deep learning framework for action prediction reveals multi-timescale locomotor control
Modeling movement in real-world tasks is a fundamental goal for motor control, biomechanics, and rehabilitation engineering. However, widely used data-driven models of essential tasks like locomotion make simplifying assumptions such as linear and fixed timescale mappings between past inputs and future actions, which do not generalize to real-world contexts. Here, we develop a deep learning-based framework for action prediction with architecture-dependent trial embeddings, outperforming traditional models across contexts (walking and running, treadmill and overground, varying terrains) and input modalities (multiple body states, gaze). We find that neural network architectures with flexible input history-dependence like GRU and Transformer perform best overall. By quantifying the model's predictions relative to an autoregressive baseline, we identify context- and modality-dependent timescales. These analyses reveal that there is greater reliance on fast-timescale predictions in complex terrain, gaze predicts future foot placement before body states, and the full-body state predictions precede those by center-of-mass-relevant states. This deep learning framework for action prediction provides quantifiable insights into the control of real-world locomotion and can be extended to other actions, contexts, and populations.
♻ ☆ Functional Acceleration for Policy Mirror Descent
We apply functional acceleration to the Policy Mirror Descent (PMD) general family of algorithms, which cover a wide range of novel and fundamental methods in Reinforcement Learning (RL). Leveraging duality, we propose a momentum-based PMD update. By taking the functional route, our approach is independent of the policy parametrization and applicable to large-scale optimization, covering previous applications of momentum at the level of policy parameters as a special case. We theoretically analyze several properties of this approach and complement with a numerical ablation study, which serves to illustrate the policy optimization dynamics on the value polytope, relative to different algorithmic design choices in this space. We further characterize numerically several features of the problem setting relevant for functional acceleration, and lastly, we investigate the impact of approximation on their learning mechanics.
♻ ☆ Mambular: A Sequential Model for Tabular Deep Learning
The analysis of tabular data has traditionally been dominated by gradient-boosted decision trees (GBDTs), known for their proficiency with mixed categorical and numerical features. However, recent deep learning innovations are challenging this dominance. This paper investigates the use of autoregressive state-space models for tabular data and compares their performance against established benchmark models. Additionally, we explore various adaptations of these models, including different pooling strategies, feature interaction mechanisms, and bi-directional processing techniques to understand their effectiveness for tabular data. Our findings indicate that interpreting features as a sequence and processing them and their interactions through structured state-space layers can lead to significant performance improvement. This research underscores the versatility of autoregressive models in tabular data analysis, positioning them as a promising alternative that could substantially enhance deep learning capabilities in this traditionally challenging area. The source code is available at https://github.com/basf/mamba-tabular.
♻ ☆ DeepIFSAC: Deep Imputation of Missing Values Using Feature and Sample Attention within Contrastive Framework
Missing values of varying patterns and rates in real-world tabular data pose a significant challenge in developing reliable data-driven models. The most commonly used statistical and machine learning methods for missing value imputation may be ineffective when the missing rate is high and not random. This paper explores row and column attention in tabular data as between-feature and between-sample attention in a novel framework to reconstruct missing values. The proposed method uses CutMix data augmentation within a contrastive learning framework to improve the uncertainty of missing value estimation. The performance and generalizability of trained imputation models are evaluated in set-aside test data folds with missing values. The proposed framework is compared with 11 state-of-the-art statistical, machine learning, and deep imputation methods using 12 diverse tabular data sets. The average performance rank of our proposed method demonstrates its superiority over the state-of-the-art methods for missing rates between 10% and 90% and three missing value types, especially when the missing values are not random. The quality of the imputed data using our proposed method is compared in a downstream patient classification task using real-world electronic health records. This paper highlights the heterogeneity of tabular data sets to recommend imputation methods based on missing value types and data characteristics.
♻ ☆ Decomposing The Dark Matter of Sparse Autoencoders
Sparse autoencoders (SAEs) are a promising technique for decomposing language model activations into interpretable linear features. However, current SAEs fall short of completely explaining model performance, resulting in "dark matter": unexplained variance in activations. This work investigates dark matter as an object of study in its own right. Surprisingly, we find that much of SAE dark matter -- about half of the error vector itself and >90% of its norm -- can be linearly predicted from the initial activation vector. Additionally, we find that the scaling behavior of SAE error norms at a per token level is remarkably predictable: larger SAEs mostly struggle to reconstruct the same contexts as smaller SAEs. We build on the linear representation hypothesis to propose models of activations that might lead to these observations. These insights imply that the part of the SAE error vector that cannot be linearly predicted ("nonlinear" error) might be fundamentally different from the linearly predictable component. To validate this hypothesis, we empirically analyze nonlinear SAE error and show that 1) it contains fewer not yet learned features, 2) SAEs trained on it are quantitatively worse, and 3) it is responsible for a proportional amount of the downstream increase in cross entropy loss when SAE activations are inserted into the model. Finally, we examine two methods to reduce nonlinear SAE error: inference time gradient pursuit, which leads to a very slight decrease in nonlinear error, and linear transformations from earlier layer SAE outputs, which leads to a larger reduction.
comment: Published in TMLR. Code at https://github.com/JoshEngels/SAE-Dark-Matter
♻ ☆ Phylo2Vec: a vector representation for binary trees
Binary phylogenetic trees inferred from biological data are central to understanding the shared history among evolutionary units. However, inferring the placement of latent nodes in a tree is computationally expensive. State-of-the-art methods rely on carefully designed heuristics for tree search, using different data structures for easy manipulation (e.g., classes in object-oriented programming languages) and readable representation of trees (e.g., Newick-format strings). Here, we present Phylo2Vec, a parsimonious encoding for phylogenetic trees that serves as a unified approach for both manipulating and representing phylogenetic trees. Phylo2Vec maps any binary tree with $n$ leaves to a unique integer vector of length $n-1$. The advantages of Phylo2Vec are fourfold: i) fast tree sampling, (ii) compressed tree representation compared to a Newick string, iii) quick and unambiguous verification if two binary trees are identical topologically, and iv) systematic ability to traverse tree space in very large or small jumps. As a proof of concept, we use Phylo2Vec for maximum likelihood inference on five real-world datasets and show that a simple hill-climbing-based optimisation scheme can efficiently traverse the vastness of tree space from a random to an optimal tree.
comment: 38 pages, 9 figures, 1 table, 2 supplementary figures
♻ ☆ LLM4DV: Using Large Language Models for Hardware Test Stimuli Generation
Hardware design verification (DV) is a process that checks the functional equivalence of a hardware design against its specifications, improving hardware reliability and robustness. A key task in the DV process is the test stimuli generation, which creates a set of conditions or inputs for testing. These test conditions are often complex and specific to the given hardware design, requiring substantial human engineering effort to optimize. We seek a solution of automated and efficient testing for arbitrary hardware designs that takes advantage of large language models (LLMs). LLMs have already shown promising results for improving hardware design automation, but remain under-explored for hardware DV. In this paper, we propose an open-source benchmarking framework named LLM4DV that efficiently orchestrates LLMs for automated hardware test stimuli generation. Our analysis evaluates six different LLMs involving six prompting improvements over eight hardware designs and provides insight for future work on LLMs development for efficient automated DV.
♻ ☆ Simplifying Deep Temporal Difference Learning
Q-learning played a foundational role in the field reinforcement learning (RL). However, TD algorithms with off-policy data, such as Q-learning, or nonlinear function approximation like deep neural networks require several additional tricks to stabilise training, primarily a large replay buffer and target networks. Unfortunately, the delayed updating of frozen network parameters in the target network harms the sample efficiency and, similarly, the large replay buffer introduces memory and implementation overheads. In this paper, we investigate whether it is possible to accelerate and simplify off-policy TD training while maintaining its stability. Our key theoretical result demonstrates for the first time that regularisation techniques such as LayerNorm can yield provably convergent TD algorithms without the need for a target network or replay buffer, even with off-policy data. Empirically, we find that online, parallelised sampling enabled by vectorised environments stabilises training without the need for a large replay buffer. Motivated by these findings, we propose PQN, our simplified deep online Q-Learning algorithm. Surprisingly, this simple algorithm is competitive with more complex methods like: Rainbow in Atari, PPO-RNN in Craftax, QMix in Smax, and can be up to 50x faster than traditional DQN without sacrificing sample efficiency. In an era where PPO has become the go-to RL algorithm, PQN reestablishes off-policy Q-learning as a viable alternative.
♻ ☆ HyperFLINT: Hypernetwork-based Flow Estimation and Temporal Interpolation for Scientific Ensemble Visualization
We present HyperFLINT (Hypernetwork-based FLow estimation and temporal INTerpolation), a novel deep learning-based approach for estimating flow fields, temporally interpolating scalar fields, and facilitating parameter space exploration in spatio-temporal scientific ensemble data. This work addresses the critical need to explicitly incorporate ensemble parameters into the learning process, as traditional methods often neglect these, limiting their ability to adapt to diverse simulation settings and provide meaningful insights into the data dynamics. HyperFLINT introduces a hypernetwork to account for simulation parameters, enabling it to generate accurate interpolations and flow fields for each timestep by dynamically adapting to varying conditions, thereby outperforming existing parameter-agnostic approaches. The architecture features modular neural blocks with convolutional and deconvolutional layers, supported by a hypernetwork that generates weights for the main network, allowing the model to better capture intricate simulation dynamics. A series of experiments demonstrates HyperFLINT's significantly improved performance in flow field estimation and temporal interpolation, as well as its potential in enabling parameter space exploration, offering valuable insights into complex scientific ensembles.
♻ ☆ Locally Private Nonparametric Contextual Multi-armed Bandits
Motivated by privacy concerns in sequential decision-making on sensitive data, we address the challenge of nonparametric contextual multi-armed bandits (MAB) under local differential privacy (LDP). We develop a uniform-confidence-bound-type estimator, showing its minimax optimality supported by a matching minimax lower bound. We further consider the case where auxiliary datasets are available, subject also to (possibly heterogeneous) LDP constraints. Under the widely-used covariate shift framework, we propose a jump-start scheme to effectively utilize the auxiliary data, the minimax optimality of which is further established by a matching lower bound. Comprehensive experiments on both synthetic and real-world datasets validate our theoretical results and underscore the effectiveness of the proposed methods.
♻ ☆ MetaSel: A Test Selection Approach for Fine-tuned DNN Models
Deep Neural Networks (DNNs) face challenges during deployment due to data distribution shifts. Fine-tuning adapts pre-trained models to new contexts requiring smaller labeled sets. However, testing fine-tuned models under constrained labeling budgets remains a critical challenge. This paper introduces MetaSel, a new approach, tailored for fine-tuned DNN models, to select tests from unlabeled inputs. MetaSel assumes that fine-tuned and pre-trained models share related data distributions and exhibit similar behaviors for many inputs. However, their behaviors diverge within the input subspace where fine-tuning alters decision boundaries, making those inputs more prone to misclassification. Unlike general approaches that rely solely on the DNN model and its input set, MetaSel leverages information from both the fine-tuned and pre-trained models and their behavioral differences to estimate misclassification probability for unlabeled test inputs, enabling more effective test selection. Our extensive empirical evaluation, comparing MetaSel against 10 state-of-the-art approaches and involving 68 fine-tuned models across weak, medium, and strong distribution shifts, demonstrates that MetaSel consistently delivers significant improvements in Test Relative Coverage (TRC) over existing baselines, particularly under highly constrained labeling budgets. MetaSel shows average TRC improvements of 28.46% to 56.18% over the most frequent second-best baselines while maintaining a high TRC median and low variability. Our results confirm MetaSel's practicality, robustness, and cost-effectiveness for test selection in the context of fine-tuned models.
♻ ☆ FW-Merging: Scaling Model Merging with Frank-Wolfe Optimization
Model merging has emerged as a promising approach for multi-task learning (MTL), offering a data-efficient alternative to conventional fine-tuning. However, with the rapid development of the open-source AI ecosystem and the increasing availability of fine-tuned foundation models, existing model merging methods face two key limitations: (i) They are primarily designed for in-house fine-tuned models, making them less adaptable to diverse model sources with partially unknown model and task information, (ii) They struggle to scale effectively when merging numerous model checkpoints. To address these challenges, we formulate model merging as a constrained optimization problem and introduce a novel approach: Frank-Wolfe Merging (FW-Merging). Inspired by Frank-Wolfe optimization, our approach iteratively selects the most relevant model in the pool to minimize a linear approximation of the objective function and then executes a local merging similar to the Frank-Wolfe update. The objective function is designed to capture the desired behavior of the target-merged model, while the fine-tuned candidate models define the constraint set. More importantly, FW-Merging serves as an orthogonal technique for existing merging methods, seamlessly integrating with them to further enhance accuracy performance. Our experiments show that FW-Merging scales across diverse model sources, remaining stable with 16 irrelevant models and improving by 15.3% with 16 relevant models on 20 CV tasks, while maintaining constant memory overhead, unlike the linear overhead of data-informed merging methods. Compared with the state-of-the-art approaches, FW-Merging surpasses the data-free merging method by 32.8% and outperforms the data-informed Adamerging by 8.39% when merging 20 ViT models. Our code is open-sourced at github.com/hmarkc/FW-Merging.
♻ ☆ Internet of Things-Based Smart Precision Farming in Soilless Agriculture:Opportunities and Challenges for Global Food Security
The rapid growth of the global population and the continuous decline in cultivable land pose significant threats to food security. This challenge worsens as climate change further reduces the availability of farmland. Soilless agriculture, such as hydroponics, aeroponics, and aquaponics, offers a sustainable solution by enabling efficient crop cultivation in controlled environments. The integration of the Internet of Things (IoT) with smart precision farming improves resource efficiency, automates environmental control, and ensures stable and high-yield crop production. IoT-enabled smart farming systems utilize real-time monitoring, data-driven decision-making, and automation to optimize water and nutrient usage while minimizing human intervention. This paper explores the opportunities and challenges of IoT-based soilless farming, highlighting its role in sustainable agriculture, urban farming, and global food security. These advanced farming methods ensure greater productivity, resource conservation, and year-round cultivation. However, they also face challenges such as high initial investment, technological dependency, and energy consumption. Through a comprehensive study, bibliometric analysis, and comparative analysis, this research highlights current trends and research gaps. It also outlines future directions for researchers, policymakers, and industry stakeholders to drive innovation and scalability in IoT-driven soilless agriculture. By emphasizing the benefits of vertical farming and Controlled Environment Agriculture (CEA)-enabled soilless techniques, this paper supports informed decision-making to address food security challenges and promote sustainable agricultural innovations.
♻ ☆ DeltaZip: Efficient Serving of Multiple Full-Model-Tuned LLMs
Fine-tuning large language models (LLMs) greatly improves model quality for downstream tasks. However, serving many fine-tuned LLMs concurrently is challenging due to the sporadic, bursty, and varying request patterns of different LLMs. To bridge this gap, we present DeltaZip, an LLM serving system that efficiently serves multiple full-parameter fine-tuned models concurrently by aggressively compressing model deltas by up to 10x while maintaining high model quality. The key insight behind this design is that fine-tuning results in small-magnitude changes to the pre-trained model. By co-designing the serving system with the compression algorithm, DeltaZip achieves 2x to 12x improvement in throughput compared to the state-of-the-art systems.
comment: EuroSys 2025'
♻ ☆ Pfungst and Clever Hans: Identifying the unintended cues in a widely used Alzheimer's disease MRI dataset using explainable deep learning
Backgrounds. Deep neural networks have demonstrated high accuracy in classifying Alzheimer's disease (AD). This study aims to enlighten the underlying black-box nature and reveal individual contributions of T1-weighted (T1w) gray-white matter texture, volumetric information and preprocessing on classification performance. Methods. We utilized T1w MRI data from the Alzheimer's Disease Neuroimaging Initiative to distinguish matched AD patients (990 MRIs) from healthy controls (990 MRIs). Preprocessing included skull stripping and binarization at varying thresholds to systematically eliminate texture information. A deep neural network was trained on these configurations, and the model performance was compared using McNemar tests with discrete Bonferroni-Holm correction. Layer-wise Relevance Propagation (LRP) and structural similarity metrics between heatmaps were applied to analyze learned features. Results. Classification performance metrics (accuracy, sensitivity, and specificity) were comparable across all configurations, indicating a negligible influence of T1w gray- and white signal texture. Models trained on binarized images demonstrated similar feature performance and relevance distributions, with volumetric features such as atrophy and skull-stripping features emerging as primary contributors. Conclusions. We revealed a previously undiscovered Clever Hans effect in a widely used AD MRI dataset. Deep neural networks classification predominantly rely on volumetric features, while eliminating gray-white matter T1w texture did not decrease the performance. This study clearly demonstrates an overestimation of the importance of gray-white matter contrasts, at least for widely used structural T1w images, and highlights potential misinterpretation of performance metrics.
♻ ☆ Federated Causal Inference: Multi-Study ATE Estimation beyond Meta-Analysis
We study Federated Causal Inference, an approach to estimate treatment effects from decentralized data across centers. We compare three classes of Average Treatment Effect (ATE) estimators derived from the Plug-in G-Formula, ranging from simple meta-analysis to one-shot and multi-shot federated learning, the latter leveraging the full data to learn the outcome model (albeit requiring more communication). Focusing on Randomized Controlled Trials (RCTs), we derive the asymptotic variance of these estimators for linear models. Our results provide practical guidance on selecting the appropriate estimator for various scenarios, including heterogeneity in sample sizes, covariate distributions, treatment assignment schemes, and center effects. We validate these findings with a simulation study.
♻ ☆ Communities in the Kuramoto Model: Dynamics and Detection via Path Signatures
The behavior of multivariate dynamical processes is often governed by underlying structural connections that relate the components of the system. For example, brain activity which is often measured via time series is determined by an underlying structural graph, where nodes represent neurons or brain regions and edges represent cortical connectivity. Existing methods for inferring structural connections from observed dynamics, such as correlation-based or spectral techniques, may fail to fully capture complex relationships in high-dimensional time series in an interpretable way. Here, we propose the use of path signatures a mathematical framework that encodes geometric and temporal properties of continuous paths to address this problem. Path signatures provide a reparametrization-invariant characterization of dynamical data and, in particular, can be used to compute the lead matrix which reveals lead-lag phenomena. We showcase our approach on time series from coupled oscillators in the Kuramoto model defined on a stochastic block model graph, termed the Kuramoto stochastic block model (KSBM). Using mean-field theory and Gaussian approximations, we analytically derive reduced models of KSBM dynamics in different temporal regimes and theoretically characterize the lead matrix in these settings. Leveraging these insights, we propose a novel signature-based community detection algorithm, achieving exact recovery of structural communities from observed time series in multiple KSBM instances. Our results demonstrate that path signatures provide a novel perspective on analyzing complex neural data and other high-dimensional systems, explicitly exploiting temporal functional relationships to infer underlying structure.
comment: 46 pages, 13 figures
♻ ☆ A Quantum Neural Network Transfer-Learning Model for Forecasting Problems with Continuous and Discrete Variables
This study introduces simple yet effective continuous- and discrete-variable quantum neural network (QNN) models as a transfer-learning approach for forecasting tasks. The CV-QNN features a single quantum layer with two qubits to establish entanglement and utilizes a minimal set of quantum gates, including displacement, rotation, beam splitter, squeezing, and a non-Gaussian cubic-phase gate, with a maximum of eight trainable parameters. A key advantage of this model is its ability to be trained on a single dataset, after which the learned parameters can be transferred to other forecasting problems with little to no fine-tuning. Initially trained on the Kurdistan load demand dataset, the model's frozen parameters are successfully applied to various forecasting tasks, including energy consumption, traffic flow, weather conditions, and cryptocurrency price prediction, demonstrating strong performance. Furthermore, the study introduces a discrete-variable quantum model with an equivalent 2- and 4-wire configuration and presents a performance assessment, showing good but relatively lower effectiveness compared to the continuous-variable model.
♻ ☆ One-vs.-One Mitigation of Intersectional Bias: A General Method to Extend Fairness-Aware Binary Classification
With the widespread adoption of machine learning in the real world, the impact of the discriminatory bias has attracted attention. In recent years, various methods to mitigate the bias have been proposed. However, most of them have not considered intersectional bias, which brings unfair situations where people belonging to specific subgroups of a protected group are treated worse when multiple sensitive attributes are taken into consideration. To mitigate this bias, in this paper, we propose a method called One-vs.-One Mitigation by applying a process of comparison between each pair of subgroups related to sensitive attributes to the fairness-aware machine learning for binary classification. We compare our method and the conventional fairness-aware binary classification methods in comprehensive settings using three approaches (pre-processing, in-processing, and post-processing), six metrics (the ratio and difference of demographic parity, equalized odds, and equal opportunity), and two real-world datasets (Adult and COMPAS). As a result, our method mitigates the intersectional bias much better than conventional methods in all the settings. With the result, we open up the potential of fairness-aware binary classification for solving more realistic problems occurring when there are multiple sensitive attributes.
♻ ☆ MetaToken: Detecting Hallucination in Image Descriptions by Meta Classification
Large Vision Language Models (LVLMs) have shown remarkable capabilities in multimodal tasks like visual question answering or image captioning. However, inconsistencies between the visual information and the generated text, a phenomenon referred to as hallucinations, remain an unsolved problem with regard to the trustworthiness of LVLMs. To address this problem, recent works proposed to incorporate computationally costly Large (Vision) Language Models in order to detect hallucinations on a sentence- or subsentence-level. In this work, we introduce MetaToken, a lightweight binary classifier to detect hallucinations on the token-level at negligible cost. Based on a statistical analysis, we reveal key factors of hallucinations in LVLMs. MetaToken can be applied to any open-source LVLM without any knowledge about ground truth data providing a calibrated detection of hallucinations. We evaluate our method on four state-of-the-art LVLMs demonstrating the effectiveness of our approach.
♻ ☆ Imitation Learning with Limited Actions via Diffusion Planners and Deep Koopman Controllers ICRA
Recent advances in diffusion-based robot policies have demonstrated significant potential in imitating multi-modal behaviors. However, these approaches typically require large quantities of demonstration data paired with corresponding robot action labels, creating a substantial data collection burden. In this work, we propose a plan-then-control framework aimed at improving the action-data efficiency of inverse dynamics controllers by leveraging observational demonstration data. Specifically, we adopt a Deep Koopman Operator framework to model the dynamical system and utilize observation-only trajectories to learn a latent action representation. This latent representation can then be effectively mapped to real high-dimensional continuous actions using a linear action decoder, requiring minimal action-labeled data. Through experiments on simulated robot manipulation tasks and a real robot experiment with multi-modal expert demonstrations, we demonstrate that our approach significantly enhances action-data efficiency and achieves high task success rates with limited action data.
comment: Accepted to IEEE International Conference on Robotics and Automation (ICRA) 2025
♻ ☆ Exploring Robustness of Image Recognition Models on Hardware Accelerators
As the usage of Artificial Intelligence (AI) on resource-intensive and safety-critical tasks increases, a variety of Machine Learning (ML) compilers have been developed, enabling compatibility of Deep Neural Networks (DNNs) with a variety of hardware acceleration devices. However, given that DNNs are widely utilized for challenging and demanding tasks, the behavior of these compilers must be verified. To this direction, we propose MutateNN, a tool that utilizes elements of both differential and mutation testing in order to examine the robustness of image recognition models when deployed on hardware accelerators with different capabilities, in the presence of faults in their target device code - introduced either by developers, or problems in their compilation process. We focus on the image recognition domain by applying mutation testing to 7 well-established DNN models, introducing 21 mutations of 6 different categories. We deployed our mutants on 4 different hardware acceleration devices of varying capabilities and observed that DNN models presented discrepancies of up to 90.3% in mutants related to conditional operators across devices. We also observed that mutations related to layer modification, arithmetic types and input affected severely the overall model performance (up to 99.8%) or led to model crashes, in a consistent manner across devices.
comment: 7 pages, 6 figures
♻ ☆ Early Classification of Time Series: Taxonomy and Benchmark
In many situations, the measurements of a studied phenomenon are provided sequentially, and the prediction of its class needs to be made as early as possible so as not to incur too high a time penalty, but not too early and risk paying the cost of misclassification. This problem has been particularly studied in the case of time series, and is known as Early Classification of Time Series (ECTS). Although it has been the subject of a growing body of literature, there is still a lack of a systematic, shared evaluation protocol to compare the relative merits of the various existing methods. This document begins by situating these methods within a principle-based taxonomy. It defines dimensions for organizing their evaluation, and then reports the results of a very extensive set of experiments along these dimensions involving nine state-of-the art ECTS algorithms. In addition, these and other experiments can be carried out using an open-source library in which most of the existing ECTS algorithms have been implemented (see https://github.com/ML-EDM/ml_edm).
♻ ☆ RL-RC-DoT: A Block-level RL agent for Task-Aware Video Compression
Video encoders optimize compression for human perception by minimizing reconstruction error under bit-rate constraints. In many modern applications such as autonomous driving, an overwhelming majority of videos serve as input for AI systems performing tasks like object recognition or segmentation, rather than being watched by humans. It is therefore useful to optimize the encoder for a downstream task instead of for perceptual image quality. However, a major challenge is how to combine such downstream optimization with existing standard video encoders, which are highly efficient and popular. Here, we address this challenge by controlling the Quantization Parameters (QPs) at the macro-block level to optimize the downstream task. This granular control allows us to prioritize encoding for task-relevant regions within each frame. We formulate this optimization problem as a Reinforcement Learning (RL) task, where the agent learns to balance long-term implications of choosing QPs on both task performance and bit-rate constraints. Notably, our policy does not require the downstream task as an input during inference, making it suitable for streaming applications and edge devices such as vehicles. We demonstrate significant improvements in two tasks, car detection, and ROI (saliency) encoding. Our approach improves task performance for a given bit rate compared to traditional task agnostic encoding methods, paving the way for more efficient task-aware video compression.
♻ ☆ Solvation Free Energies from Neural Thermodynamic Integration
We present a method for computing free-energy differences using thermodynamic integration with a neural network potential that interpolates between two target Hamiltonians. The interpolation is defined at the sample distribution level, and the neural network potential is optimized to match the corresponding equilibrium potential at every intermediate time-step. Once the interpolating potentials and samples are well-aligned, the free-energy difference can be estimated using (neural) thermodynamic integration. To target molecular systems, we simultaneously couple Lennard-Jones and electrostatic interactions and model the rigid-body rotation of molecules. We report accurate results for several benchmark systems: a Lennard-Jones particle in a Lennard-Jones fluid, as well as the insertion of both water and methane solutes in a water solvent at atomistic resolution using a simple three-body neural-network potential.
♻ ☆ Towards LLM Unlearning Resilient to Relearning Attacks: A Sharpness-Aware Minimization Perspective and Beyond
The LLM unlearning technique has recently been introduced to comply with data regulations and address the safety and ethical concerns of LLMs by removing the undesired data-model influence. However, state-of-the-art unlearning methods face a critical vulnerability: they are susceptible to ``relearning'' the removed information from a small number of forget data points, known as relearning attacks. In this paper, we systematically investigate how to make unlearned models robust against such attacks. For the first time, we establish a connection between robust unlearning and sharpness-aware minimization (SAM) through a unified robust optimization framework, in an analogy to adversarial training designed to defend against adversarial attacks. Our analysis for SAM reveals that smoothness optimization plays a pivotal role in mitigating relearning attacks. Thus, we further explore diverse smoothing strategies to enhance unlearning robustness. Extensive experiments on benchmark datasets, including WMDP and MUSE, demonstrate that SAM and other smoothness optimization approaches consistently improve the resistance of LLM unlearning to relearning attacks. Notably, smoothness-enhanced unlearning also helps defend against (input-level) jailbreaking attacks, broadening our proposal's impact in robustifying LLM unlearning. Codes are available at https://github.com/OPTML-Group/Unlearn-Smooth.
♻ ☆ Towards Understanding the Influence of Training Samples on Explanations
Explainable AI (XAI) is widely used to analyze AI systems' decision-making, such as providing counterfactual explanations for recourse. When unexpected explanations occur, users may want to understand the training data properties shaping them. Under the umbrella of data valuation, first approaches have been proposed that estimate the influence of data samples on a given model. This process not only helps determine the data's value, but also offers insights into how individual, potentially noisy, or misleading examples affect a model, which is crucial for interpretable AI. In this work, we apply the concept of data valuation to the significant area of model evaluations, focusing on how individual training samples impact a model's internal reasoning rather than the predictive performance only. Hence, we introduce the novel problem of identifying training samples shaping a given explanation or related quantity, and investigate the particular case of the cost of computational recourse. We propose an algorithm to identify such influential samples and conduct extensive empirical evaluations in two case studies.
comment: Extended version of the paper accepted at the "Workshop on Explainable Artificial Intelligence (XAI)" at IJCAI 2024
♻ ☆ Neuromorphic Principles for Efficient Large Language Models on Intel Loihi 2 ICLR
Large language models (LLMs) deliver impressive performance but require large amounts of energy. In this work, we present a MatMul-free LLM architecture adapted for Intel's neuromorphic processor, Loihi 2. Our approach leverages Loihi 2's support for low-precision, event-driven computation and stateful processing. Our hardware-aware quantized model on GPU demonstrates that a 370M parameter MatMul-free model can be quantized with no accuracy loss. Based on preliminary results, we report up to 3x higher throughput with 2x less energy, compared to transformer-based LLMs on an edge GPU, with significantly better scaling. Further hardware optimizations will increase throughput and decrease energy consumption. These results show the potential of neuromorphic hardware for efficient inference and pave the way for efficient reasoning models capable of generating complex, long-form text rapidly and cost-effectively.
comment: Accepted to International Conference on Learning Representations (ICLR) Workshop on Scalable Optimization for Efficient and Adaptive Foundation Models (SCOPE)
♻ ☆ Probabilistic Shielding for Safe Reinforcement Learning AAAI 2025
In real-life scenarios, a Reinforcement Learning (RL) agent aiming to maximise their reward, must often also behave in a safe manner, including at training time. Thus, much attention in recent years has been given to Safe RL, where an agent aims to learn an optimal policy among all policies that satisfy a given safety constraint. However, strict safety guarantees are often provided through approaches based on linear programming, and thus have limited scaling. In this paper we present a new, scalable method, which enjoys strict formal guarantees for Safe RL, in the case where the safety dynamics of the Markov Decision Process (MDP) are known, and safety is defined as an undiscounted probabilistic avoidance property. Our approach is based on state-augmentation of the MDP, and on the design of a shield that restricts the actions available to the agent. We show that our approach provides a strict formal safety guarantee that the agent stays safe at training and test time. Furthermore, we demonstrate that our approach is viable in practice through experimental evaluation.
comment: 13 pages, 3 figures, Conference: AAAI 2025
♻ ☆ Practical multi-fidelity machine learning: fusion of deterministic and Bayesian models
Multi-fidelity machine learning methods address the accuracy-efficiency trade-off by integrating scarce, resource-intensive high-fidelity data with abundant but less accurate low-fidelity data. We propose a practical multi-fidelity strategy for problems spanning low- and high-dimensional domains, integrating a non-probabilistic regression model for the low-fidelity with a Bayesian model for the high-fidelity. The models are trained in a staggered scheme, where the low-fidelity model is transfer-learned to the high-fidelity data and a Bayesian model is trained to learn the residual between the data and the transfer-learned model. This three-model strategy -- deterministic low-fidelity, transfer-learning, and Bayesian residual -- leads to a prediction that includes uncertainty quantification for noisy and noiseless multi-fidelity data. The strategy is general and unifies the topic, highlighting the expressivity trade-off between the transfer-learning and Bayesian models (a complex transfer-learning model leads to a simpler Bayesian model, and vice versa). We propose modeling choices for two scenarios, and argue in favor of using a linear transfer-learning model that fuses 1) kernel ridge regression for low-fidelity with Gaussian processes for high-fidelity; or 2) deep neural network for low-fidelity with a Bayesian neural network for high-fidelity. We demonstrate the effectiveness and efficiency of the proposed strategies and contrast them with the state-of-the-art based on various numerical examples and two engineering problems. The results indicate that the proposed approach achieves comparable performance in both mean and uncertainty estimation while significantly reducing training time for machine learning modeling in data-scarce scenarios. Moreover, in data-rich settings, it outperforms other multi-fidelity architectures by effectively mitigating overfitting.
comment: 39 Pages, 26 Figures
♻ ☆ Unsupervised Blind Joint Dereverberation and Room Acoustics Estimation with Diffusion Models
This paper presents an unsupervised method for single-channel blind dereverberation and room impulse response (RIR) estimation, called BUDDy. The algorithm is rooted in Bayesian posterior sampling: it combines a likelihood model enforcing fidelity to the reverberant measurement, and an anechoic speech prior implemented by an unconditional diffusion model. We design a parametric filter representing the RIR, with exponential decay for each frequency subband. Room acoustics estimation and speech dereverberation are jointly carried out, as the filter parameters are iteratively estimated and the speech utterance refined along the reverse diffusion trajectory. In a blind scenario where the RIR is unknown, BUDDy successfully performs speech dereverberation in various acoustic scenarios, significantly outperforming other blind unsupervised baselines. Unlike supervised methods, which often struggle to generalize, BUDDy seamlessly adapts to different acoustic conditions. This paper extends our previous work by offering new experimental results and insights into the algorithm's versatility. We demonstrate the robustness of our proposed method to new acoustic and speaker conditions, as well as its adaptability to high-resolution singing voice dereverberation, using both instrumental metrics and subjective listening evaluation. We study BUDDy's performance for RIR estimation and observe it surpasses a state-of-the-art supervised DNN-based estimator on mismatched acoustic conditions. Finally, we investigate the sensitivity of informed dereverberation methods to RIR estimation errors, thereby motivating the joint acoustic estimation and dereverberation design. Audio examples and code can be found online.
comment: Submitted to IEEE/ACM Transactions on Audio, Speech and Language Processing
♻ ☆ Investigating Data Hierarchies in Multifidelity Machine Learning for Excitation Energies
Recent progress in machine learning (ML) has made high-accuracy quantum chemistry (QC) calculations more accessible. Of particular interest are multifidelity machine learning (MFML) methods where training data from differing accuracies or fidelities are used. These methods usually employ a fixed scaling factor, $\gamma$, to relate the number of training samples across different fidelities, which reflects the cost and assumed sparsity of the data. This study investigates the impact of modifying $\gamma$ on model efficiency and accuracy for the prediction of vertical excitation energies using the QeMFi benchmark dataset. Further, this work introduces QC compute time informed scaling factors, denoted as $\theta$, that vary based on QC compute times at different fidelities. A novel error metric, error contours of MFML, is proposed to provide a comprehensive view of model error contributions from each fidelity. The results indicate that high model accuracy can be achieved with just 2 training samples at the target fidelity when a larger number of samples from lower fidelities are used. This is further illustrated through a novel concept, the $\Gamma$-curve, which compares model error against the time-cost of generating training samples, demonstrating that multifidelity models can achieve high accuracy while minimizing training data costs.
comment: Modified errors to be relative MAE. Transferability tests of training on QeMFi and testing on QUESTDB have now been added
♻ ☆ To FP8 and Back Again: Quantifying Reduced Precision Effects on LLM Training Stability
The massive computational costs associated with large language model (LLM) pretraining have spurred great interest in reduced-precision floating-point representations to accelerate the process. As a result, the BrainFloat16 (BF16) precision has become the de facto standard for LLM training, with hardware support included in recent generations of accelerators. This trend has gone even further in the latest processors, where FP8 has recently been introduced. However, prior experience with FP16, which was found to be less stable than BF16, raises concerns as to whether FP8, with even fewer bits than FP16, can be a cost-effective option for LLM training. We argue that reduced-precision training schemes must have similar training stability and hyperparameter sensitivities to their higher-precision counterparts in order to be cost-effective. However, we find that currently available methods for FP8 training are not robust enough to allow their use as economical replacements. This prompts us to investigate the stability of reduced-precision LLM training in terms of robustness across random seeds, learning rates, and datasets. To this end, we propose new evaluation techniques and a new metric for quantifying loss landscape sharpness in autoregressive language models. By simulating incremental bit reductions in floating-point representations, we analyze the relationship between representational power and training stability with the intent of aiding future research into the field.
♻ ☆ Benchmarking Data Efficiency in $Δ$-ML and Multifidelity Models for Quantum Chemistry
The development of machine learning (ML) methods has made quantum chemistry (QC) calculations more accessible by reducing the compute cost incurred in conventional QC methods. This has since been translated into the overhead cost of generating training data. Increased work in reducing the cost of generating training data resulted in the development of $\Delta$-ML and multifidelity machine learning methods which use data at more than one QC level of accuracy, or fidelity. This work compares the data costs associated with $\Delta$-ML, multifidelity machine learning (MFML), and optimized MFML (o-MFML) in contrast with a newly introduced Multifidelity$\Delta$-Machine Learning (MF$\Delta$ML) method for the prediction of ground state energies, vertical excitation energies, and the magnitude of electronic contribution of molecular dipole moments from the multifidelity benchmark dataset QeMFi. This assessment is made on the basis of training data generation cost associated with each model and is compared with the single fidelity kernel ridge regression (KRR) case. The results indicate that the use of multifidelity methods surpasses the standard $\Delta$-ML approaches in cases of a large number of predictions. For applications which require only a few evaluations to be made using ML models, while the $\Delta$-ML method might be favored, the MF$\Delta$ML method is shown to be more efficient.
comment: Supplementary sections S1-S4 and FIG.~S1-S4, Table S1.Work modified to include benchmarks for 3 more QC properties: first and second excitation energies, magnitude of electronic dipole moment
♻ ☆ The HalluRAG Dataset: Detecting Closed-Domain Hallucinations in RAG Applications Using an LLM's Internal States
Detecting hallucinations in large language models (LLMs) is critical for enhancing their reliability and trustworthiness. Most research focuses on hallucinations as deviations from information seen during training. However, the opaque nature of an LLM's parametric knowledge complicates the understanding of why generated texts appear ungrounded: The LLM might not have picked up the necessary knowledge from large and often inaccessible datasets, or the information might have been changed or contradicted during further training. Our focus is on hallucinations involving information not used in training, which we determine by using recency to ensure the information emerged after a cut-off date. This study investigates these hallucinations by detecting them at sentence level using different internal states of various LLMs. We present HalluRAG, a dataset designed to train classifiers on these hallucinations. Depending on the model and quantization, MLPs trained on HalluRAG detect hallucinations with test accuracies ranging up to 75 %, with Mistral-7B-Instruct-v0.1 achieving the highest test accuracies. Our results show that IAVs detect hallucinations as effectively as CEVs and reveal that answerable and unanswerable prompts are encoded differently as separate classifiers for these categories improved accuracy. However, HalluRAG showed some limited generalizability, advocating for more diversity in datasets on hallucinations.
comment: 19 pages, 3 figures
♻ ☆ Scale generalisation properties of extended scale-covariant and scale-invariant Gaussian derivative networks on image datasets with spatial scaling variations
This paper presents an in-depth analysis of the scale generalisation properties of the scale-covariant and scale-invariant Gaussian derivative networks, complemented with both conceptual and algorithmic extensions. For this purpose, Gaussian derivative networks (GaussDerNets) are evaluated on new rescaled versions of the Fashion-MNIST and the CIFAR-10 datasets, with spatial scaling variations over a factor of 4 in the testing data, that are not present in the training data. Additionally, evaluations on the previously existing STIR datasets show that the GaussDerNets achieve better scale generalisation than previously reported for these datasets for other types of deep networks. We first experimentally demonstrate that the GaussDerNets have quite good scale generalisation properties on the new datasets, and that average pooling of feature responses over scales may sometimes also lead to better results than the previously used approach of max pooling over scales. Then, we demonstrate that using a spatial max pooling mechanism after the final layer enables localisation of non-centred objects in image domain, with maintained scale generalisation properties. We also show that regularisation during training, by applying dropout across the scale channels, referred to as scale-channel dropout, improves both the performance and the scale generalisation. In additional ablation studies, we demonstrate that discretisations of GaussDerNets, based on the discrete analogue of the Gaussian kernel in combination with central difference operators, perform best or among the best, compared to a set of other discrete approximations of the Gaussian derivative kernels. Finally, by visualising the activation maps and the learned receptive fields, we demonstrate that the GaussDerNets have very good explainability properties.
comment: 52 pages, 24 figures, 18 tables
♻ ☆ Inverting Transformer-based Vision Models
Understanding the mechanisms underlying deep neural networks in computer vision remains a fundamental challenge. While many previous approaches have focused on visualizing intermediate representations within deep neural networks, particularly convolutional neural networks, these techniques have yet to be thoroughly explored in transformer-based vision models. In this study, we apply a modular approach of training inverse models to reconstruct input images from intermediate layers within a Detection Transformer and a Vision Transformer, showing that this approach is efficient and feasible. Through qualitative and quantitative evaluations of reconstructed images, we generate insights into the underlying mechanisms of these architectures, highlighting their similarities and differences in terms of contextual shape and preservation of image details, inter-layer correlation, and robustness to color perturbations. Our analysis illustrates how these properties emerge within the models, contributing to a deeper understanding of transformer-based vision models. The code for reproducing our experiments is available at github.com/wiskott-lab/inverse-tvm.
♻ ☆ Rank Reduction Autoencoders
The choice of an appropriate bottleneck dimension and the application of effective regularization are both essential for Autoencoders to learn meaningful representations from unlabeled data. In this paper, we introduce a new class of deterministic autoencoders, Rank Reduction Autoencoders (RRAEs), which regularize their latent spaces by employing a truncated singular value decomposition (SVD) during training. In RRAEs, the bottleneck is defined by the rank of the latent matrix, thereby alleviating the dependence of the encoder/decoder architecture on the bottleneck size. This approach enabled us to propose an adaptive algorithm (aRRAEs) that efficiently determines the optimal bottleneck size during training. We empirically demonstrate that both RRAEs and aRRAEs are stable, scalable, and reliable, as they do not introduce any additional training hyperparameters. We evaluate our proposed architecture on a synthetic data set, as well as on MNIST, Fashion MNIST, and CelebA. Our results show that RRAEs offer several advantages over Vanilla AEs with both large and small latent spaces, and outperform other regularizing AE architectures.
♻ ☆ Nonparametric estimation of Hawkes processes with RKHSs AISTATS 2025
This paper addresses nonparametric estimation of nonlinear multivariate Hawkes processes, where the interaction functions are assumed to lie in a reproducing kernel Hilbert space (RKHS). Motivated by applications in neuroscience, the model allows complex interaction functions, in order to express exciting and inhibiting effects, but also a combination of both (which is particularly interesting to model the refractory period of neurons), and considers in return that conditional intensities are rectified by the ReLU function. The latter feature incurs several methodological challenges, for which workarounds are proposed in this paper. In particular, it is shown that a representer theorem can be obtained for approximated versions of the log-likelihood and the least-squares criteria. Based on it, we propose an estimation method, that relies on two common approximations (of the ReLU function and of the integral operator). We provide a bound that controls the impact of these approximations. Numerical results on synthetic data confirm this fact as well as the good asymptotic behavior of the proposed estimator. It also shows that our method achieves a better performance compared to related nonparametric estimation techniques and suits neuronal applications.
comment: AISTATS 2025
♻ ☆ A Note on Estimation Error Bound and Grouping Effect of Transfer Elastic Net
The Transfer Elastic Net is an estimation method for linear regression models that combines $\ell_1$ and $\ell_2$ norm penalties to facilitate knowledge transfer. In this study, we derive a non-asymptotic $\ell_2$ norm estimation error bound for the estimator and discuss scenarios where the Transfer Elastic Net effectively works. Furthermore, we examine situations where it exhibits the grouping effect, which states that the estimates corresponding to highly correlated predictors have a small difference.
♻ ☆ KL-geodesics flow matching with a novel sampling scheme
Non-autoregressive language models generate all tokens simultaneously, offering potential speed advantages over traditional autoregressive models, but they face challenges in modeling the complex dependencies inherent in text data. In this work, we investigate a conditional flow matching approach for text generation. We represent tokens as one-hot vectors in a \(V\)-dimensional simplex and utilize geodesics under the Kullback-Leibler (KL) divergence, which correspond to linear interpolation in logit space. We provide a theoretical justification that maximizing the conditional likelihood \(P_{\theta}(x_1 \mid x_t, t)\) yields the exact flow matching velocity under logit interpolation. To address the suboptimal performance of basic inference, we propose a novel empirical sampling scheme that iteratively samples from the conditional distribution and introduces additional noise, significantly improving results despite lacking full theoretical underpinnings. Furthermore, we propose a hybrid inference method that combines the basic approach with the sampling scheme. This method demonstrates superior performance on both conditional and unconditional text generation experiments compared to previous SOTA method for discrete flow matching.
♻ ☆ Understanding and Reducing the Class-Dependent Effects of Data Augmentation with A Two-Player Game Approach
Data augmentation is widely applied and has shown its benefits in different machine learning tasks. However, as recently observed, it may have an unfair effect in multi-class classification. While data augmentation generally improves the overall performance (and therefore is beneficial for many classes), it can actually be detrimental for other classes, which can be problematic in some application domains. In this paper, to counteract this phenomenon, we propose CLAM, a CLAss-dependent Multiplicative-weights method. To derive it, we first formulate the training of a classifier as a non-linear optimization problem that aims at simultaneously maximizing the individual class performances and balancing them. By rewriting this optimization problem as an adversarial two-player game, we propose a novel multiplicative weight algorithm, for which we prove the convergence. Interestingly, our formulation also reveals that the class-dependent effects of data augmentation is not due to data augmentation only, but is in fact a general phenomenon. Our empirical results over five datasets demonstrate that the performance of learned classifiers is indeed more fairly distributed over classes, with only limited impact on the average accuracy.
♻ ☆ Expert Race: A Flexible Routing Strategy for Scaling Diffusion Transformer with Mixture of Experts
Diffusion models have emerged as mainstream framework in visual generation. Building upon this success, the integration of Mixture of Experts (MoE) methods has shown promise in enhancing model scalability and performance. In this paper, we introduce Race-DiT, a novel MoE model for diffusion transformers with a flexible routing strategy, Expert Race. By allowing tokens and experts to compete together and select the top candidates, the model learns to dynamically assign experts to critical tokens. Additionally, we propose per-layer regularization to address challenges in shallow layer learning, and router similarity loss to prevent mode collapse, ensuring better expert utilization. Extensive experiments on ImageNet validate the effectiveness of our approach, showcasing significant performance gains while promising scaling properties.
♻ ☆ A Closer Look at Time Steps is Worthy of Triple Speed-Up for Diffusion Model Training
Training diffusion models is always a computation-intensive task. In this paper, we introduce a novel speed-up method for diffusion model training, called, which is based on a closer look at time steps. Our key findings are: i) Time steps can be empirically divided into acceleration, deceleration, and convergence areas based on the process increment. ii) These time steps are imbalanced, with many concentrated in the convergence area. iii) The concentrated steps provide limited benefits for diffusion training. To address this, we design an asymmetric sampling strategy that reduces the frequency of steps from the convergence area while increasing the sampling probability for steps from other areas. Additionally, we propose a weighting strategy to emphasize the importance of time steps with rapid-change process increments. As a plug-and-play and architecture-agnostic approach, SpeeD consistently achieves 3-times acceleration across various diffusion architectures, datasets, and tasks. Notably, due to its simple design, our approach significantly reduces the cost of diffusion model training with minimal overhead. Our research enables more researchers to train diffusion models at a lower cost.
♻ ☆ Conditional Shift-Robust Conformal Prediction for Graph Neural Network
Graph Neural Networks (GNNs) have emerged as potent tools for predicting outcomes in graph-structured data. Despite their efficacy, a significant drawback of GNNs lies in their limited ability to provide robust uncertainty estimates, posing challenges to their reliability in contexts where errors carry significant consequences. Moreover, GNNs typically excel in in-distribution settings, assuming that training and test data follow identical distributions a condition often unmet in real world graph data scenarios. In this article, we leverage conformal prediction, a widely recognized statistical technique for quantifying uncertainty by transforming predictive model outputs into prediction sets, to address uncertainty quantification in GNN predictions amidst conditional shift\footnote{Representing the change in conditional probability distribution \(P(label|input)\) from source domain to target domain.} in graph-based semi-supervised learning (SSL). Additionally, we propose a novel loss function aimed at refining model predictions by minimizing conditional shift in latent stages. Termed Conditional Shift Robust (CondSR) conformal prediction for GNNs, our approach CondSR is model-agnostic and adaptable to various classification models. We validate the effectiveness of our method on standard graph benchmark datasets, integrating it with state-of-the-art GNNs in node classification tasks. Comprehensive evaluations demonstrate that our approach consistently achieves any predefined target marginal coverage, enhances the accuracy of state of the art GNN models by up to 12\% under conditional shift, and reduces the prediction set size by up to 48\%. The code implementation is publicly available for further exploration and experimentation.
comment: 15 pages, 3 figures, 4 tables
♻ ☆ VideoRefer Suite: Advancing Spatial-Temporal Object Understanding with Video LLM
Video Large Language Models (Video LLMs) have recently exhibited remarkable capabilities in general video understanding. However, they mainly focus on holistic comprehension and struggle with capturing fine-grained spatial and temporal details. Besides, the lack of high-quality object-level video instruction data and a comprehensive benchmark further hinders their advancements. To tackle these challenges, we introduce the VideoRefer Suite to empower Video LLM for finer-level spatial-temporal video understanding, i.e., enabling perception and reasoning on any objects throughout the video. Specially, we thoroughly develop VideoRefer Suite across three essential aspects: dataset, model, and benchmark. Firstly, we introduce a multi-agent data engine to meticulously curate a large-scale, high-quality object-level video instruction dataset, termed VideoRefer-700K. Next, we present the VideoRefer model, which equips a versatile spatial-temporal object encoder to capture precise regional and sequential representations. Finally, we meticulously create a VideoRefer-Bench to comprehensively assess the spatial-temporal understanding capability of a Video LLM, evaluating it across various aspects. Extensive experiments and analyses demonstrate that our VideoRefer model not only achieves promising performance on video referring benchmarks but also facilitates general video understanding capabilities.
comment: 17 pages, 14 figures, technical report
♻ ☆ Masking meets Supervision: A Strong Learning Alliance CVPR 2025
Pre-training with random masked inputs has emerged as a novel trend in self-supervised training. However, supervised learning still faces a challenge in adopting masking augmentations, primarily due to unstable training. In this paper, we propose a novel way to involve masking augmentations dubbed Masked Sub-branch (MaskSub). MaskSub consists of the main-branch and sub-branch, the latter being a part of the former. The main-branch undergoes conventional training recipes, while the sub-branch merits intensive masking augmentations, during training. MaskSub tackles the challenge by mitigating adverse effects through a relaxed loss function similar to a self-distillation loss. Our analysis shows that MaskSub improves performance, with the training loss converging faster than in standard training, which suggests our method stabilizes the training process. We further validate MaskSub across diverse training scenarios and models, including DeiT-III training, MAE finetuning, CLIP finetuning, BERT training, and hierarchical architectures (ResNet and Swin Transformer). Our results show that MaskSub consistently achieves impressive performance gains across all the cases. MaskSub provides a practical and effective solution for introducing additional regularization under various training recipes. Code available at https://github.com/naver-ai/augsub
comment: Accepted to CVPR 2025
♻ ☆ GFlowVLM: Enhancing Multi-step Reasoning in Vision-Language Models with Generative Flow Networks
Vision-Language Models (VLMs) have recently shown promising advancements in sequential decision-making tasks through task-specific fine-tuning. However, common fine-tuning methods, such as Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL) techniques like Proximal Policy Optimization (PPO), present notable limitations: SFT assumes Independent and Identically Distributed (IID) data, while PPO focuses on maximizing cumulative rewards. These limitations often restrict solution diversity and hinder generalization in multi-step reasoning tasks. To address these challenges, we introduce a novel framework, GFlowVLM, a framework that fine-tune VLMs using Generative Flow Networks (GFlowNets) to promote generation of diverse solutions for complex reasoning tasks. GFlowVLM models the environment as a non-Markovian decision process, allowing it to capture long-term dependencies essential for real-world applications. It takes observations and task descriptions as inputs to prompt chain-of-thought (CoT) reasoning which subsequently guides action selection. We use task based rewards to fine-tune VLM with GFlowNets. This approach enables VLMs to outperform prior fine-tuning methods, including SFT and RL. Empirical results demonstrate the effectiveness of GFlowVLM on complex tasks such as card games (NumberLine, BlackJack) and embodied planning tasks (ALFWorld), showing enhanced training efficiency, solution diversity, and stronger generalization capabilities across both in-distribution and out-of-distribution scenarios.
♻ ☆ DistDNAS: Search Efficient Feature Interactions within 2 Hours
Search efficiency and serving efficiency are two major axes in building feature interactions and expediting the model development process in recommender systems. On large-scale benchmarks, searching for the optimal feature interaction design requires extensive cost due to the sequential workflow on the large volume of data. In addition, fusing interactions of various sources, orders, and mathematical operations introduces potential conflicts and additional redundancy toward recommender models, leading to sub-optimal trade-offs in performance and serving cost. In this paper, we present DistDNAS as a neat solution to brew swift and efficient feature interaction design. DistDNAS proposes a supernet to incorporate interaction modules of varying orders and types as a search space. To optimize search efficiency, DistDNAS distributes the search and aggregates the choice of optimal interaction modules on varying data dates, achieving over 25x speed-up and reducing search cost from 2 days to 2 hours. To optimize serving efficiency, DistDNAS introduces a differentiable cost-aware loss to penalize the selection of redundant interaction modules, enhancing the efficiency of discovered feature interactions in serving. We extensively evaluate the best models crafted by DistDNAS on a 1TB Criteo Terabyte dataset. Experimental evaluations demonstrate 0.001 AUC improvement and 60% FLOPs saving over current state-of-the-art CTR models.
♻ ☆ Unveil Inversion and Invariance in Flow Transformer for Versatile Image Editing CVPR 2025
Leveraging the large generative prior of the flow transformer for tuning-free image editing requires authentic inversion to project the image into the model's domain and a flexible invariance control mechanism to preserve non-target contents. However, the prevailing diffusion inversion performs deficiently in flow-based models, and the invariance control cannot reconcile diverse rigid and non-rigid editing tasks. To address these, we systematically analyze the \textbf{inversion and invariance} control based on the flow transformer. Specifically, we unveil that the Euler inversion shares a similar structure to DDIM yet is more susceptible to the approximation error. Thus, we propose a two-stage inversion to first refine the velocity estimation and then compensate for the leftover error, which pivots closely to the model prior and benefits editing. Meanwhile, we propose the invariance control that manipulates the text features within the adaptive layer normalization, connecting the changes in the text prompt to image semantics. This mechanism can simultaneously preserve the non-target contents while allowing rigid and non-rigid manipulation, enabling a wide range of editing types such as visual text, quantity, facial expression, etc. Experiments on versatile scenarios validate that our framework achieves flexible and accurate editing, unlocking the potential of the flow transformer for versatile image editing.
comment: CVPR 2025 Page: https://pengchengpcx.github.io/EditFT/
♻ ☆ BioMamba: Leveraging Spectro-Temporal Embedding in Bidirectional Mamba for Enhanced Biosignal Classification
Biological signals, such as electroencephalograms (EEGs) and electrocardiograms (ECGs), play a pivotal role in numerous clinical practices, such as diagnosing brain and cardiac arrhythmic diseases. Existing methods for biosignal classification rely on Attention-based frameworks with dense Feed Forward layers, which lead to inefficient learning, high computational overhead, and suboptimal performance. In this work, we introduce BioMamba, a Spectro-Temporal Embedding strategy applied to the Bidirectional Mamba framework with Sparse Feed Forward layers to enable effective learning of biosignal sequences. By integrating these three key components, BioMamba effectively addresses the limitations of existing methods. Extensive experiments demonstrate that BioMamba significantly outperforms state-of-the-art methods with marked improvement in classification performance. The advantages of the proposed BioMamba include (1) Reliability: BioMamba consistently delivers robust results, confirmed across six evaluation metrics. (2) Efficiency: We assess both model and training efficiency, the BioMamba demonstrates computational effectiveness by reducing model size and resource consumption compared to existing approaches. (3) Generality: With the capacity to effectively classify a diverse set of tasks, BioMamba demonstrates adaptability and effectiveness across various domains and applications.
comment: Biological signals
♻ ☆ RayFlow: Instance-Aware Diffusion Acceleration via Adaptive Flow Trajectories CVPR 2025
Diffusion models have achieved remarkable success across various domains. However, their slow generation speed remains a critical challenge. Existing acceleration methods, while aiming to reduce steps, often compromise sample quality, controllability, or introduce training complexities. Therefore, we propose RayFlow, a novel diffusion framework that addresses these limitations. Unlike previous methods, RayFlow guides each sample along a unique path towards an instance-specific target distribution. This method minimizes sampling steps while preserving generation diversity and stability. Furthermore, we introduce Time Sampler, an importance sampling technique to enhance training efficiency by focusing on crucial timesteps. Extensive experiments demonstrate RayFlow's superiority in generating high-quality images with improved speed, control, and training efficiency compared to existing acceleration techniques.
comment: 23 pages, 5 figures, CVPR 2025
♻ ☆ XXLTraffic: Expanding and Extremely Long Traffic forecasting beyond test adaptation
Traffic forecasting is crucial for smart cities and intelligent transportation initiatives, where deep learning has made significant progress in modeling complex spatio-temporal patterns in recent years. However, current public datasets have limitations in reflecting the distribution shift nature of real-world scenarios, characterized by continuously evolving infrastructures, varying temporal distributions, and long temporal gaps due to sensor downtimes or changes in traffic patterns. These limitations inevitably restrict the practical applicability of existing traffic forecasting datasets. To bridge this gap, we present XXLTraffic, largest available public traffic dataset with the longest timespan collected from Los Angeles, USA, and New South Wales, Australia, curated to support research in extremely long forecasting beyond test adaptation. Our benchmark includes both typical time-series forecasting settings with hourly and daily aggregated data and novel configurations that introduce gaps and down-sample the training size to better simulate practical constraints. We anticipate the new XXLTraffic will provide a fresh perspective for the time-series and traffic forecasting communities. It would also offer a robust platform for developing and evaluating models designed to tackle the extremely long forecasting problems beyond test adaptation. Our dataset supplements existing spatio-temporal data resources and leads to new research directions in this domain.
♻ ☆ Polysemanticity and Capacity in Neural Networks
Individual neurons in neural networks often represent a mixture of unrelated features. This phenomenon, called polysemanticity, can make interpreting neural networks more difficult and so we aim to understand its causes. We propose doing so through the lens of feature \emph{capacity}, which is the fractional dimension each feature consumes in the embedding space. We show that in a toy model the optimal capacity allocation tends to monosemantically represent the most important features, polysemantically represent less important features (in proportion to their impact on the loss), and entirely ignore the least important features. Polysemanticity is more prevalent when the inputs have higher kurtosis or sparsity and more prevalent in some architectures than others. Given an optimal allocation of capacity, we go on to study the geometry of the embedding space. We find a block-semi-orthogonal structure, with differing block sizes in different models, highlighting the impact of model architecture on the interpretability of its neurons.
comment: 22 pages, 7 figures. Improved notation and corrected an error in the description of the most general efficient matrices
♻ ☆ Explaining Deep Convolutional Neural Networks for Image Classification by Evolving Local Interpretable Model-agnostic Explanations
Deep convolutional neural networks have proven their effectiveness, and have been acknowledged as the most dominant method for image classification. However, a severe drawback of deep convolutional neural networks is poor explainability. Unfortunately, in many real-world applications, users need to understand the rationale behind the predictions of deep convolutional neural networks when determining whether they should trust the predictions or not. To resolve this issue, a novel genetic algorithm-based method is proposed for the first time to automatically evolve local explanations that can assist users to assess the rationality of the predictions. Furthermore, the proposed method is model-agnostic, i.e., it can be utilised to explain any deep convolutional neural network models. In the experiments, ResNet is used as an example model to be explained, and the ImageNet dataset is selected as the benchmark dataset. DenseNet and MobileNet are further explained to demonstrate the model-agnostic characteristic of the proposed method. The evolved local explanations on four images, randomly selected from ImageNet, are presented, which show that the evolved local explanations are straightforward to be recognised by humans. Moreover, the evolved explanations can explain the predictions of deep convolutional neural networks on all four images very well by successfully capturing meaningful interpretable features of the sample images. Further analysis based on the 30 runs of the experiments exhibits that the evolved local explanations can also improve the probabilities/confidences of the deep convolutional neural network models in making the predictions. The proposed method can obtain local explanations within one minute, which is more than ten times faster than LIME (the state-of-the-art method).
♻ ☆ Language Models May Verbatim Complete Text They Were Not Explicitly Trained On
An important question today is whether a given text was used to train a large language model (LLM). A \emph{completion} test is often employed: check if the LLM completes a sufficiently complex text. This, however, requires a ground-truth definition of membership; most commonly, it is defined as a member based on the $n$-gram overlap between the target text and any text in the dataset. In this work, we demonstrate that this $n$-gram based membership definition can be effectively gamed. We study scenarios where sequences are \emph{non-members} for a given $n$ and we find that completion tests still succeed. We find many natural cases of this phenomenon by retraining LLMs from scratch after removing all training samples that were completed; these cases include exact duplicates, near-duplicates, and even short overlaps. They showcase that it is difficult to find a single viable choice of $n$ for membership definitions. Using these insights, we design adversarial datasets that can cause a given target sequence to be completed without containing it, for any reasonable choice of $n$. Our findings highlight the inadequacy of $n$-gram membership, suggesting membership definitions fail to account for auxiliary information available to the training algorithm.
comment: Main text: 9 pages, 7 figures, 1 table. Appendix: 29 pages, 20 tables, 15 figures
♻ ☆ Parameter-Efficient Fine-Tuning for Pre-Trained Vision Models: A Survey
Large-scale pre-trained vision models (PVMs) have shown great potential for adaptability across various downstream vision tasks. However, with state-of-the-art PVMs growing to billions or even trillions of parameters, the standard full fine-tuning paradigm is becoming unsustainable due to high computational and storage demands. In response, researchers are exploring parameter-efficient fine-tuning (PEFT), which seeks to exceed the performance of full fine-tuning with minimal parameter modifications. This survey provides a comprehensive overview and future directions for visual PEFT, offering a systematic review of the latest advancements. First, we provide a formal definition of PEFT and discuss model pre-training methods. We then categorize existing methods into three categories: addition-based, partial-based, and unified-based. Finally, we introduce the commonly used datasets and applications and suggest potential future research challenges. A comprehensive collection of resources is available at https://github.com/synbol/Awesome-Parameter-Efficient-Transfer-Learning.
comment: 9 pages, 3 figures, 2 tables
♻ ☆ SyncDiff: Synchronized Motion Diffusion for Multi-Body Human-Object Interaction Synthesis
Synthesizing realistic human-object interaction motions is a critical problem in VR/AR and human animation. Unlike the commonly studied scenarios involving a single human or hand interacting with one object, we address a more generic multi-body setting with arbitrary numbers of humans, hands, and objects. This complexity introduces significant challenges in synchronizing motions due to the high correlations and mutual influences among bodies. To address these challenges, we introduce SyncDiff, a novel method for multi-body interaction synthesis using a synchronized motion diffusion strategy. SyncDiff employs a single diffusion model to capture the joint distribution of multi-body motions. To enhance motion fidelity, we propose a frequency-domain motion decomposition scheme. Additionally, we introduce a new set of alignment scores to emphasize the synchronization of different body motions. SyncDiff jointly optimizes both data sample likelihood and alignment likelihood through an explicit synchronization strategy. Extensive experiments across four datasets with various multi-body configurations demonstrate the superiority of SyncDiff over existing state-of-the-art motion synthesis methods.
♻ ☆ PhiNets: Brain-inspired Non-contrastive Learning Based on Temporal Prediction Hypothesis ICLR 2025
Predictive coding is a theory which hypothesises that cortex predicts sensory inputs at various levels of abstraction to minimise prediction errors. Inspired by predictive coding, Chen et al. (2024) proposed another theory, temporal prediction hypothesis, to claim that sequence memory residing in hippocampus has emerged through predicting input signals from the past sensory inputs. Specifically, they supposed that the CA3 predictor in hippocampus creates synaptic delay between input signals, which is compensated by the following CA1 predictor. Though recorded neural activities were replicated based on the temporal prediction hypothesis, its validity has not been fully explored. In this work, we aim to explore the temporal prediction hypothesis from the perspective of self-supervised learning. Specifically, we focus on non-contrastive learning, which generates two augmented views of an input image and predicts one from another. Non-contrastive learning is intimately related to the temporal prediction hypothesis because the synaptic delay is implicitly created by StopGradient. Building upon a popular non-contrastive learner, SimSiam, we propose PhiNet, an extension of SimSiam to have two predictors explicitly corresponding to the CA3 and CA1, respectively. Through studying the PhiNet model, we discover two findings. First, meaningful data representations emerge in PhiNet more stably than in SimSiam. This is initially supported by our learning dynamics analysis: PhiNet is more robust to the representational collapse. Second, PhiNet adapts more quickly to newly incoming patterns in online and continual learning scenarios. For practitioners, we additionally propose an extension called X-PhiNet integrated with a momentum encoder, excelling in continual learning. All in all, our work reveals that the temporal prediction hypothesis is a reasonable model in terms of the robustness and adaptivity.
comment: ICLR 2025
♻ ☆ Sparse Alignment Enhanced Latent Diffusion Transformer for Zero-Shot Speech Synthesis
While recent zero-shot text-to-speech (TTS) models have significantly improved speech quality and expressiveness, mainstream systems still suffer from issues related to speech-text alignment modeling: 1) models without explicit speech-text alignment modeling exhibit less robustness, especially for hard sentences in practical applications; 2) predefined alignment-based models suffer from naturalness constraints of forced alignments. This paper introduces \textit{S-DiT}, a TTS system featuring an innovative sparse alignment algorithm that guides the latent diffusion transformer (DiT). Specifically, we provide sparse alignment boundaries to S-DiT to reduce the difficulty of alignment learning without limiting the search space, thereby achieving high naturalness. Moreover, we employ a multi-condition classifier-free guidance strategy for accent intensity adjustment and adopt the piecewise rectified flow technique to accelerate the generation process. Experiments demonstrate that S-DiT achieves state-of-the-art zero-shot TTS speech quality and supports highly flexible control over accent intensity. Notably, our system can generate high-quality one-minute speech with only 8 sampling steps. Audio samples are available at https://sditdemo.github.io/sditdemo/.
♻ ☆ IDOL: Instant Photorealistic 3D Human Creation from a Single Image
Creating a high-fidelity, animatable 3D full-body avatar from a single image is a challenging task due to the diverse appearance and poses of humans and the limited availability of high-quality training data. To achieve fast and high-quality human reconstruction, this work rethinks the task from the perspectives of dataset, model, and representation. First, we introduce a large-scale HUman-centric GEnerated dataset, HuGe100K, consisting of 100K diverse, photorealistic sets of human images. Each set contains 24-view frames in specific human poses, generated using a pose-controllable image-to-multi-view model. Next, leveraging the diversity in views, poses, and appearances within HuGe100K, we develop a scalable feed-forward transformer model to predict a 3D human Gaussian representation in a uniform space from a given human image. This model is trained to disentangle human pose, body shape, clothing geometry, and texture. The estimated Gaussians can be animated without post-processing. We conduct comprehensive experiments to validate the effectiveness of the proposed dataset and method. Our model demonstrates the ability to efficiently reconstruct photorealistic humans at 1K resolution from a single input image using a single GPU instantly. Additionally, it seamlessly supports various applications, as well as shape and texture editing tasks. Project page: https://yiyuzhuang.github.io/IDOL/.
comment: 22 pages, 16 figures, includes main content, supplementary materials, and references
♻ ☆ The Surprising Effectiveness of Test-Time Training for Few-Shot Learning
Language models (LMs) have shown impressive performance on tasks within their training distribution, but often struggle with structurally novel tasks even when given a small number of in-context task examples. We investigate the effectiveness of test-time training (TTT) -- temporarily updating model parameters during inference using a loss derived from input data -- as a mechanism for improving LMs' reasoning and few-shot learning capabilities. On the Abstraction and Reasoning Corpus (ARC), performing TTT with in-context examples yields up to $6\times$ higher accuracy compared to fine-tuned baselines -- reaching $53.0\%$ on the public validation set with an 8B-parameter LM and $61.9\%$ when ensembled with program-synthesis methods, matching average human performance. On BIG-Bench Hard (BBH), TTT on in-context examples surpasses standard few-shot prompting in the $10$-shot setting by $7.3$ percentage points ($50.5\%$ to $57.8\%$). Our findings highlight the limitations of in-context learning for novel tasks and demonstrate the potential of test-time training to enhance language model adaptability.
comment: Preprint
♻ ☆ Improved Training Technique for Latent Consistency Models ICLR 2025
Consistency models are a new family of generative models capable of producing high-quality samples in either a single step or multiple steps. Recently, consistency models have demonstrated impressive performance, achieving results on par with diffusion models in the pixel space. However, the success of scaling consistency training to large-scale datasets, particularly for text-to-image and video generation tasks, is determined by performance in the latent space. In this work, we analyze the statistical differences between pixel and latent spaces, discovering that latent data often contains highly impulsive outliers, which significantly degrade the performance of iCT in the latent space. To address this, we replace Pseudo-Huber losses with Cauchy losses, effectively mitigating the impact of outliers. Additionally, we introduce a diffusion loss at early timesteps and employ optimal transport (OT) coupling to further enhance performance. Lastly, we introduce the adaptive scaling-$c$ scheduler to manage the robust training process and adopt Non-scaling LayerNorm in the architecture to better capture the statistics of the features and reduce outlier impact. With these strategies, we successfully train latent consistency models capable of high-quality sampling with one or two steps, significantly narrowing the performance gap between latent consistency and diffusion models. The implementation is released here: https://github.com/quandao10/sLCT/
comment: Accepted at ICLR 2025
♻ ☆ On Diffusion Modeling for Anomaly Detection
Known for their impressive performance in generative modeling, diffusion models are attractive candidates for density-based anomaly detection. This paper investigates different variations of diffusion modeling for unsupervised and semi-supervised anomaly detection. In particular, we find that Denoising Diffusion Probability Models (DDPM) are performant on anomaly detection benchmarks yet computationally expensive. By simplifying DDPM in application to anomaly detection, we are naturally led to an alternative approach called Diffusion Time Estimation (DTE). DTE estimates the distribution over diffusion time for a given input and uses the mode or mean of this distribution as the anomaly score. We derive an analytical form for this density and leverage a deep neural network to improve inference efficiency. Through empirical evaluations on the ADBench benchmark, we demonstrate that all diffusion-based anomaly detection methods perform competitively for both semi-supervised and unsupervised settings. Notably, DTE achieves orders of magnitude faster inference time than DDPM, while outperforming it on this benchmark. These results establish diffusion-based anomaly detection as a scalable alternative to traditional methods and recent deep-learning techniques for standard unsupervised and semi-supervised anomaly detection settings.
♻ ☆ Swift Hydra: Self-Reinforcing Generative Framework for Anomaly Detection with Multiple Mamba Models
Despite a plethora of anomaly detection models developed over the years, their ability to generalize to unseen anomalies remains an issue, particularly in critical systems. This paper aims to address this challenge by introducing Swift Hydra, a new framework for training an anomaly detection method based on generative AI and reinforcement learning (RL). Through featuring an RL policy that operates on the latent variables of a generative model, the framework synthesizes novel and diverse anomaly samples that are capable of bypassing a detection model. These generated synthetic samples are, in turn, used to augment the detection model, further improving its ability to handle challenging anomalies. Swift Hydra also incorporates Mamba models structured as a Mixture of Experts (MoE) to enable scalable adaptation of the number of Mamba experts based on data complexity, effectively capturing diverse feature distributions without increasing the model's inference time. Empirical evaluations on ADBench benchmark demonstrate that Swift Hydra outperforms other state-of-the-art anomaly detection models while maintaining a relatively short inference time. From these results, our research highlights a new and auspicious paradigm of integrating RL and generative AI for advancing anomaly detection.
♻ ☆ Zeroth-order Informed Fine-Tuning for Diffusion Model: A Recursive Likelihood Ratio Optimizer
The probabilistic diffusion model (DM), generating content by inferencing through a recursive chain structure, has emerged as a powerful framework for visual generation. After pre-training on enormous unlabeled data, the model needs to be properly aligned to meet requirements for downstream applications. How to efficiently align the foundation DM is a crucial task. Contemporary methods are either based on Reinforcement Learning (RL) or truncated Backpropagation (BP). However, RL and truncated BP suffer from low sample efficiency and biased gradient estimation respectively, resulting in limited improvement or, even worse, complete training failure. To overcome the challenges, we propose the Recursive Likelihood Ratio (RLR) optimizer, a zeroth-order informed fine-tuning paradigm for DM. The zeroth-order gradient estimator enables the computation graph rearrangement within the recursive diffusive chain, making the RLR's gradient estimator an unbiased one with the lower variance than other methods. We provide theoretical guarantees for the performance of the RLR. Extensive experiments are conducted on image and video generation tasks to validate the superiority of the RLR. Furthermore, we propose a novel prompt technique that is natural for the RLR to achieve a synergistic effect.
♻ ☆ h4rm3l: A language for Composable Jailbreak Attack Synthesis ICLR 2025
Despite their demonstrated valuable capabilities, state-of-the-art (SOTA) widely deployed large language models (LLMs) still have the potential to cause harm to society due to the ineffectiveness of their safety filters, which can be bypassed by prompt transformations called jailbreak attacks. Current approaches to LLM safety assessment, which employ datasets of templated prompts and benchmarking pipelines, fail to cover sufficiently large and diverse sets of jailbreak attacks, leading to the widespread deployment of unsafe LLMs. Recent research showed that novel jailbreak attacks could be derived by composition; however, a formal composable representation for jailbreak attacks, which, among other benefits, could enable the exploration of a large compositional space of jailbreak attacks through program synthesis methods, has not been previously proposed. We introduce h4rm3l, a novel approach that addresses this gap with a human-readable domain-specific language (DSL). Our framework comprises: (1) The h4rm3l DSL, which formally expresses jailbreak attacks as compositions of parameterized string transformation primitives. (2) A synthesizer with bandit algorithms that efficiently generates jailbreak attacks optimized for a target black box LLM. (3) The h4rm3l red-teaming software toolkit that employs the previous two components and an automated harmful LLM behavior classifier that is strongly aligned with human judgment. We demonstrate h4rm3l's efficacy by synthesizing a dataset of 2656 successful novel jailbreak attacks targeting 6 SOTA open-source and proprietary LLMs, and by benchmarking those models against a subset of these synthesized attacks. Our results show that h4rm3l's synthesized attacks are diverse and more successful than existing jailbreak attacks in literature, with success rates exceeding 90% on SOTA LLMs.
comment: Accepted to the Thirteenth International Conference on Learning Representations (ICLR 2025)
♻ ☆ Long-term excitation energy transfer predicted by a modified convolutional neural networks in the FMO complexes
In machine learning (ML), the risk of recursive strategies overfitting historical data has driven the development of convolutional neural networks (CNNs) in simulating quantum dissipative dynamics. In this work, we propose an efficient CNNs scheme incorporating novel redundant time-functions to predict 100 picosecond (ps) excitation energy transfer (EET) in Fenna-Matthews-Olson (FMO) complexes, in which the original time $t$ is normalized by mapping it to the [0, 1] range, allowing different functions focus on distinct time intervals, thereby effectively capturing the multi-timescale characteristics of EET dynamics. This method simplifies optimization and enhances learning efficiency, and demonstrate the superior accuracy, robustness, and efficiency of our approach in predicting quantum dissipative dynamics.
comment: 11 pages, 10figures
♻ ☆ IPCGRL: Language-Instructed Reinforcement Learning for Procedural Level Generation
Recent research has highlighted the significance of natural language in enhancing the controllability of generative models. While various efforts have been made to leverage natural language for content generation, research on deep reinforcement learning (DRL) agents utilizing text-based instructions for procedural content generation remains limited. In this paper, we propose IPCGRL, an instruction-based procedural content generation method via reinforcement learning, which incorporates a sentence embedding model. IPCGRL fine-tunes task-specific embedding representations to effectively compress game-level conditions. We evaluate IPCGRL in a two-dimensional level generation task and compare its performance with a general-purpose embedding method. The results indicate that IPCGRL achieves up to a 21.4% improvement in controllability and a 17.2% improvement in generalizability for unseen instructions. Furthermore, the proposed method extends the modality of conditional input, enabling a more flexible and expressive interaction framework for procedural content generation.
comment: 9 pages, 9 figures, 3 tables
♻ ☆ TUNI: A Textual Unimodal Detector for Identity Inference in CLIP Models
The widespread usage of large-scale multimodal models like CLIP has heightened concerns about the leakage of PII. Existing methods for identity inference in CLIP models require querying the model with full PII, including textual descriptions of the person and corresponding images (e.g., the name and the face photo of the person). However, applying images may risk exposing personal information to target models, as the image might not have been previously encountered by the target model. Additionally, previous MIAs train shadow models to mimic the behaviors of the target model, which incurs high computational costs, especially for large CLIP models. To address these challenges, we propose a textual unimodal detector (TUNI) in CLIP models, a novel technique for identity inference that: 1) only utilizes text data to query the target model; and 2) eliminates the need for training shadow models. Extensive experiments of TUNI across various CLIP model architectures and datasets demonstrate its superior performance over baselines, albeit with only text data.
♻ ☆ Free-Space Optical Channel Turbulence Prediction: A Machine Learning Approach
Channel turbulence is a formidable obstacle for free-space optical (FSO) communication. Anticipation of turbulence levels is highly important for mitigating disruptions but has not been demonstrated without dedicated, auxiliary hardware. We show that machine learning (ML) can be applied to raw FSO data streams to rapidly predict channel turbulence levels with no additional sensing hardware. FSO was conducted through a controlled channel in the lab under six distinct turbulence levels, and the efficacy of using ML to classify turbulence levels was examined. ML-based turbulence level classification was found to be >98% accurate with multiple ML training parameters. Classification effectiveness was found to depend on the timescale of changes between turbulence levels but converges when turbulence stabilizes over about a one minute timescale.
comment: 5 pages, 4 figures, 3 tables, accepted for publication in IEEE Communications Letters
♻ ☆ Knowledge Enhanced Multi-Domain Recommendations in an AI Assistant Application
This work explores unifying knowledge enhanced recommendation with multi-domain recommendation systems in a conversational AI assistant application. Multi-domain recommendation leverages users' interactions in previous domains to improve recommendations in a new one. Knowledge graph enhancement seeks to use external knowledge graphs to improve recommendations within a single domain. Both research threads incorporate related information to improve the recommendation task. We propose to unify these approaches: using information from interactions in other domains as well as external knowledge graphs to make predictions in a new domain that would not be possible with either information source alone. We develop a new model and demonstrate the additive benefit of these approaches on a dataset derived from millions of users' queries for content across three domains (videos, music, and books) in a live virtual assistant application. We demonstrate significant improvement on overall recommendations as well as on recommendations for new users of a domain.
♻ ☆ Towards Understanding Distilled Reasoning Models: A Representational Approach
In this paper, we investigate how model distillation impacts the development of reasoning features in large language models (LLMs). To explore this, we train a crosscoder on Qwen-series models and their fine-tuned variants. Our results suggest that the crosscoder learns features corresponding to various types of reasoning, including self-reflection and computation verification. Moreover, we observe that distilled models contain unique reasoning feature directions, which could be used to steer the model into over-thinking or incisive-thinking mode. In particular, we perform analysis on four specific reasoning categories: (a) self-reflection, (b) deductive reasoning, (c) alternative reasoning, and (d) contrastive reasoning. Finally, we examine the changes in feature geometry resulting from the distillation process and find indications that larger distilled models may develop more structured representations, which correlate with enhanced distillation performance. By providing insights into how distillation modifies the model, our study contributes to enhancing the transparency and reliability of AI systems.
comment: 13 pages, 9 figures
♻ ☆ Persistent Homology for Structural Characterization in Disordered Systems
We propose a unified framework based on persistent homology (PH) to characterize both local and global structures in disordered systems. It can simultaneously generate local and global descriptors using the same algorithm and data structure, and has shown to be highly effective and interpretable in predicting particle rearrangements and classifying global phases. We also demonstrated that using a single variable enables a linear SVM to achieve nearly perfect three-phase classification. Inspired by this discovery, we define a non-parametric metric, the Separation Index (SI), which not only achieves this classification without sacrificing significant performance but also establishes a connection between particle environments and the global phase structure. Our methods provide an effective framework for understanding and analyzing the properties of disordered materials, with broad potential applications in materials science and even wider studies of complex systems.
comment: 21 pages, 19 figures
♻ ☆ Semi-Decision-Focused Learning with Deep Ensembles: A Practical Framework for Robust Portfolio Optimization ICLR 2025
I propose Semi-Decision-Focused Learning, a practical adaptation of Decision-Focused Learning for portfolio optimization. Rather than directly optimizing complex financial metrics, I employ simple target portfolios (Max-Sortino or One-Hot) and train models with a convex, cross-entropy loss. I further incorporate Deep Ensemble methods to reduce variance and stabilize performance. Experiments on two universes (one upward-trending and another range-bound) show consistent outperformance over baseline portfolios, demonstrating the effectiveness and robustness of my approach. Code is available at https://github.com/sDFLwDE/sDFLwDE
comment: ICLR 2025 Advances in Financial AI Workshop
♻ ☆ Denoising Diffusion Variational Inference: Diffusion Models as Expressive Variational Posteriors AAAI 2025
We propose denoising diffusion variational inference (DDVI), a black-box variational inference algorithm for latent variable models which relies on diffusion models as flexible approximate posteriors. Specifically, our method introduces an expressive class of diffusion-based variational posteriors that perform iterative refinement in latent space; we train these posteriors with a novel regularized evidence lower bound (ELBO) on the marginal likelihood inspired by the wake-sleep algorithm. Our method is easy to implement (it fits a regularized extension of the ELBO), is compatible with black-box variational inference, and outperforms alternative classes of approximate posteriors based on normalizing flows or adversarial networks. We find that DDVI improves inference and learning in deep latent variable models across common benchmarks as well as on a motivating task in biology -- inferring latent ancestry from human genomes -- where it outperforms strong baselines on the Thousand Genomes dataset.
comment: published at AAAI 2025; code available at https://github.com/topwasu/DDVI
♻ ☆ Mitigating Data Redundancy to Revitalize Transformer-based Long-Term Time Series Forecasting System
Long-term time-series forecasting (LTSF) is fundamental to various real-world applications, where Transformer-based models have become the dominant framework due to their ability to capture long-range dependencies. However, these models often experience overfitting due to data redundancy in rolling forecasting settings, limiting their generalization ability particularly evident in longer sequences with highly similar adjacent data. In this work, we introduce CLMFormer, a novel framework that mitigates redundancy through curriculum learning and a memory-driven decoder. Specifically, we progressively introduce Bernoulli noise to the training samples, which effectively breaks the high similarity between adjacent data points. This curriculum-driven noise introduction aids the memory-driven decoder by supplying more diverse and representative training data, enhancing the decoder's ability to model seasonal tendencies and dependencies in the time-series data. To further enhance forecasting accuracy, we introduce a memory-driven decoder. This component enables the model to capture seasonal tendencies and dependencies in the time-series data and leverages temporal relationships to facilitate the forecasting process. Extensive experiments on six real-world LTSF benchmarks show that CLMFormer consistently improves Transformer-based models by up to 30%, demonstrating its effectiveness in long-horizon forecasting.
comment: ACM TIST
♻ ☆ Map-Based Path Loss Prediction in Multiple Cities Using Convolutional Neural Networks
Radio deployments and spectrum planning benefit from path loss predictions. Obstructions along a communications link are often considered implicitly or through derived metrics such as representative clutter height or total obstruction depth. In this paper, we propose a path-specific path loss prediction method that uses convolutional neural networks to automatically perform feature extraction from 2-D obstruction height maps. Our methods result in low prediction error in a variety of environments without requiring derived metrics.
comment: 5 pages, 3 figures, 3 tables
♻ ☆ Dataset-learning duality and emergent criticality
In artificial neural networks, the activation dynamics of non-trainable variables is strongly coupled to the learning dynamics of trainable variables. During the activation pass, the boundary neurons (e.g., input neurons) are mapped to the bulk neurons (e.g., hidden neurons), and during the learning pass, both bulk and boundary neurons are mapped to changes in trainable variables (e.g., weights and biases). For example, in feed-forward neural networks, forward propagation is the activation pass and backward propagation is the learning pass. We show that a composition of the two maps establishes a duality map between a subspace of non-trainable boundary variables (e.g., dataset) and a tangent subspace of trainable variables (i.e., learning). In general, the dataset-learning duality is a complex non-linear map between high-dimensional spaces. We use duality to study the emergence of criticality, or the power-law distribution of fluctuations of the trainable variables, using a toy model at learning equilibrium. In particular, we show that criticality can emerge in the learning system even from the dataset in a non-critical state, and that the power-law distribution can be modified by changing either the activation function or the loss function.
comment: 22 pages, 5 figures, 1 table. Improved analysis; main results unchanged
♻ ☆ Training Domain Draft Models for Speculative Decoding: Best Practices and Insights ICLR 2025
Speculative decoding is an effective method for accelerating inference of large language models (LLMs) by employing a small draft model to predict the output of a target model. However, when adapting speculative decoding to domain-specific target models, the acceptance rate of the generic draft model drops significantly due to domain shift. In this work, we systematically investigate knowledge distillation techniques for training domain draft models to improve their speculation accuracy. We compare white-box and black-box distillation approaches and explore their effectiveness in various data accessibility scenarios, including historical user queries, curated domain data, and synthetically generated alignment data. Our experiments across Function Calling, Biology, and Chinese domains show that offline distillation consistently outperforms online distillation by 11% to 25%, white-box distillation surpasses black-box distillation by 2% to 10%, and data scaling trends hold across domains. Additionally, we find that synthetic data can effectively align draft models and achieve 80% to 93% of the performance of training on historical user queries. These findings provide practical guidelines for training domain-specific draft models to improve speculative decoding efficiency.
comment: Published as a workshop paper at SCOPE - ICLR 2025
♻ ☆ FedECA: A Federated External Control Arm Method for Causal Inference with Time-To-Event Data in Distributed Settings
External control arms (ECA) can inform the early clinical development of experimental drugs and provide efficacy evidence for regulatory approval. However, the main challenge in implementing ECA lies in accessing real-world or historical clinical trials data. Indeed, regulations protecting patients' rights by strictly controlling data processing make pooling data from multiple sources in a central server often difficult. To address these limitations, we develop a new method, 'FedECA' that leverages federated learning (FL) to enable inverse probability of treatment weighting (IPTW) for time-to-event outcomes on separate cohorts without needing to pool data. To showcase the potential of FedECA, we apply it in different settings of increasing complexity culminating with a real-world use-case in which FedECA provides evidence for a differential effect between two drugs that would have otherwise gone unnoticed. By sharing our code, we hope FedECA will foster the creation of federated research networks and thus accelerate drug development.
comment: code available at: https://github.com/owkin/fedeca, bug in SMD computation present in v1 and v2 fixed, many experiments on real data added + fix in YODA experiments using imputed data instead of raw data (v3->v4) + affiliations fix + more precise wording for acknowledgments, real-world experiment results fixed by excluding data with bias + text polished (v5->v6)
♻ ☆ Ambient Noise Full Waveform Inversion with Neural Operators
Numerical simulations of seismic wave propagation are crucial for investigating velocity structures and improving seismic hazard assessment. However, standard methods such as finite difference or finite element are computationally expensive. Recent studies have shown that a new class of machine learning models, called neural operators, can solve the elastodynamic wave equation orders of magnitude faster than conventional methods. Full waveform inversion is a prime beneficiary of the accelerated simulations. Neural operators, as end-to-end differentiable operators, combined with automatic differentiation, provide an alternative approach to the adjoint-state method. Since neural operators do not involve the Born approximation, when used for full waveform inversion they have the potential to include additional phases and alleviate cycle-skipping problems present in traditional adjoint-state formulations. In this study, we demonstrate the first application of neural operators for full waveform inversion on a real seismic dataset, which consists of several nodal transects collected across the San Gabriel, Chino, and San Bernardino basins in the Los Angeles metropolitan area.
comment: Added references
♻ ☆ Similarity-Dissimilarity Loss for Multi-label Supervised Contrastive Learning
Supervised contrastive learning has achieved remarkable success by leveraging label information; however, determining positive samples in multi-label scenarios remains a critical challenge. In multi-label supervised contrastive learning (MSCL), relations among multi-label samples are not yet fully defined, leading to ambiguity in identifying positive samples and formulating contrastive loss functions to construct the representation space. To address these challenges, we: (i) first define five distinct multi-label relations in MSCL to systematically identify positive samples, (ii) introduce a novel Similarity-Dissimilarity Loss that dynamically re-weights samples through computing the similarity and dissimilarity factors between positive samples and given anchors based on multi-label relations, and (iii) further provide theoretical grounded proof for our method through rigorous mathematical analysis that supports the formulation and effectiveness of the proposed loss function. We conduct the experiments across both image and text modalities, and extend the evaluation to medical domain. The results demonstrate that our method consistently outperforms baselines in a comprehensive evaluation, confirming its effectiveness and robustness. Code is available at: https://github.com/guangminghuang/similarity-dissimilarity-loss.
♻ ☆ Fidelity-Imposed Displacement Editing for the Learn2Reg 2024 SHG-BF Challenge
Co-examination of second-harmonic generation (SHG) and bright-field (BF) microscopy enables the differentiation of tissue components and collagen fibers, aiding the analysis of human breast and pancreatic cancer tissues. However, large discrepancies between SHG and BF images pose challenges for current learning-based registration models in aligning SHG to BF. In this paper, we propose a novel multi-modal registration framework that employs fidelity-imposed displacement editing to address these challenges. The framework integrates batch-wise contrastive learning, feature-based pre-alignment, and instance-level optimization. Experimental results from the Learn2Reg COMULISglobe SHG-BF Challenge validate the effectiveness of our method, securing the 1st place on the online leaderboard.
comment: Due to the instruction and conflict of co-author
♻ ☆ Pretraining Generative Flow Networks with Inexpensive Rewards for Molecular Graph Generation
Generative Flow Networks (GFlowNets) have recently emerged as a suitable framework for generating diverse and high-quality molecular structures by learning from rewards treated as unnormalized distributions. Previous works in this framework often restrict exploration by using predefined molecular fragments as building blocks, limiting the chemical space that can be accessed. In this work, we introduce Atomic GFlowNets (A-GFNs), a foundational generative model leveraging individual atoms as building blocks to explore drug-like chemical space more comprehensively. We propose an unsupervised pre-training approach using drug-like molecule datasets, which teaches A-GFNs about inexpensive yet informative molecular descriptors such as drug-likeliness, topological polar surface area, and synthetic accessibility scores. These properties serve as proxy rewards, guiding A-GFNs towards regions of chemical space that exhibit desirable pharmacological properties. We further implement a goal-conditioned finetuning process, which adapts A-GFNs to optimize for specific target properties. In this work, we pretrain A-GFN on a subset of ZINC dataset, and by employing robust evaluation metrics we show the effectiveness of our approach when compared to other relevant baseline methods for a wide range of drug design tasks.
comment: arXiv admin note: text overlap with arXiv:2409.09702
♻ ☆ Elastic Federated Learning over Open Radio Access Network (O-RAN) for Concurrent Execution of Multiple Distributed Learning Tasks
Federated learning (FL) is a popular distributed machine learning (ML) technique in Internet of Things (IoT) networks, where resource-constrained devices collaboratively train ML models while preserving data privacy. However, implementation of FL over 5G-and-beyond wireless networks faces key challenges caused by (i) dynamics of the wireless network conditions and (ii) the coexistence of multiple FL-services in the system. In this paper, we unveil two key phenomena that arise from these challenges: over/under-provisioning of resources and perspective-driven load balancing, both of which significantly impact FL performance in IoT environments. We take the first steps towards addressing these phenomena by proposing a novel distributed ML architecture called elastic FL (EFL). EFL unleashes the full potential of Open RAN (O-RAN) systems and introduces an elastic resource provisioning methodology to execute FL-services. It further constitutes a multi-time-scale FL management system that introduces three dedicated network control functionalities tailored for FL-services, including (i) non-real-time (non-RT) system descriptor, which trains ML-based applications to predict both system and FL-related dynamics and parameters; (ii) near-RT FL controller, which handles O-RAN slicing and mobility management for the seamless execution of FL-services; (iii) FL MAC scheduler, which conducts real-time resource allocation to the end clients of various FL-services. We finally prototype EFL to demonstrate its potential in improving the performance of FL-services.
comment: 9 pages, 4 figures
♻ ☆ Autoregressive Action Sequence Learning for Robotic Manipulation
Designing a universal policy architecture that performs well across diverse robots and task configurations remains a key challenge. In this work, we address this by representing robot actions as sequential data and generating actions through autoregressive sequence modeling. Existing autoregressive architectures generate end-effector waypoints sequentially as word tokens in language modeling, which are limited to low-frequency control tasks. Unlike language, robot actions are heterogeneous and often include continuous values -- such as joint positions, 2D pixel coordinates, and end-effector poses -- which are not easily suited for language-based modeling. Based on this insight, we introduce a straightforward enhancement: we extend causal transformers' single-token prediction to support predicting a variable number of tokens in a single step through our Chunking Causal Transformer (CCT). This enhancement enables robust performance across diverse tasks of various control frequencies, greater efficiency by having fewer autoregression steps, and lead to a hybrid action sequence design by mixing different types of actions and using a different chunk size for each action type. Based on CCT, we propose the Autoregressive Policy (ARP) architecture, which solves manipulation tasks by generating hybrid action sequences. We evaluate ARP across diverse robotic manipulation environments, including Push-T, ALOHA, and RLBench, and show that ARP, as a universal architecture, matches or outperforms the environment-specific state-of-the-art in all tested benchmarks, while being more efficient in computation and parameter sizes. Videos of our real robot demonstrations, all source code and the pretrained models of ARP can be found at http://github.com/mlzxy/arp.
comment: (RA-L 2025) Add a new figure to explain why chunking autoregression works. Put back the previous in-depth discussion for arxiv release
♻ ☆ LLAVIDAL: A Large LAnguage VIsion Model for Daily Activities of Living CVPR 2025
Current Large Language Vision Models (LLVMs) trained on web videos perform well in general video understanding but struggle with fine-grained details, complex human-object interactions (HOI), and view-invariant representation learning essential for Activities of Daily Living (ADL). This limitation stems from a lack of specialized ADL video instruction-tuning datasets and insufficient modality integration to capture discriminative action representations. To address this, we propose a semi-automated framework for curating ADL datasets, creating ADL-X, a multiview, multimodal RGBS instruction-tuning dataset. Additionally, we introduce LLAVIDAL, an LLVM integrating videos, 3D skeletons, and HOIs to model ADL's complex spatiotemporal relationships. For training LLAVIDAL a simple joint alignment of all modalities yields suboptimal results; thus, we propose a Multimodal Progressive (MMPro) training strategy, incorporating modalities in stages following a curriculum. We also establish ADL MCQ and video description benchmarks to assess LLVM performance in ADL tasks. Trained on ADL-X, LLAVIDAL achieves state-of-the-art performance across ADL benchmarks. Code and data will be made publicly available at: https://adl-x.github.io/.
comment: CVPR 2025 Camera Ready
♻ ☆ Linear Diffusion Networks
We present Linear Diffusion Networks (LDNs), a novel architecture that reinterprets sequential data processing as a unified diffusion process. Our model integrates adaptive diffusion modules with localized nonlinear updates and a diffusion-inspired attention mechanism. This design enables efficient global information propagation while preserving fine-grained temporal details. LDN overcomes the limitations of conventional recurrent and transformer models by allowing full parallelization across time steps and supporting robust multi-scale temporal representations. Experiments on benchmark sequence modeling tasks demonstrate that LDN delivers competitive performance across ImageNet and LRA tasks.
♻ ☆ Unlocking Guidance for Discrete State-Space Diffusion and Flow Models
Generative models on discrete state-spaces have a wide range of potential applications, particularly in the domain of natural sciences. In continuous state-spaces, controllable and flexible generation of samples with desired properties has been realized using guidance on diffusion and flow models. However, these guidance approaches are not readily amenable to discrete state-space models. Consequently, we introduce a general and principled method for applying guidance on such models. Our method depends on leveraging continuous-time Markov processes on discrete state-spaces, which unlocks computational tractability for sampling from a desired guided distribution. We demonstrate the utility of our approach, Discrete Guidance, on a range of applications including guided generation of small-molecules, DNA sequences and protein sequences.
Computer Vision and Pattern Recognition 270
☆ Target-Aware Video Diffusion Models
We present a target-aware video diffusion model that generates videos from an input image in which an actor interacts with a specified target while performing a desired action. The target is defined by a segmentation mask and the desired action is described via a text prompt. Unlike existing controllable image-to-video diffusion models that often rely on dense structural or motion cues to guide the actor's movements toward the target, our target-aware model requires only a simple mask to indicate the target, leveraging the generalization capabilities of pretrained models to produce plausible actions. This makes our method particularly effective for human-object interaction (HOI) scenarios, where providing precise action guidance is challenging, and further enables the use of video diffusion models for high-level action planning in applications such as robotics. We build our target-aware model by extending a baseline model to incorporate the target mask as an additional input. To enforce target awareness, we introduce a special token that encodes the target's spatial information within the text prompt. We then fine-tune the model with our curated dataset using a novel cross-attention loss that aligns the cross-attention maps associated with this token with the input target mask. To further improve performance, we selectively apply this loss to the most semantically relevant transformer blocks and attention regions. Experimental results show that our target-aware model outperforms existing solutions in generating videos where actors interact accurately with the specified targets. We further demonstrate its efficacy in two downstream applications: video content creation and zero-shot 3D HOI motion synthesis.
comment: The project page is available at https://taeksuu.github.io/tavid/
Equivariant Image Modeling
Current generative models, such as autoregressive and diffusion approaches, decompose high-dimensional data distribution learning into a series of simpler subtasks. However, inherent conflicts arise during the joint optimization of these subtasks, and existing solutions fail to resolve such conflicts without sacrificing efficiency or scalability. We propose a novel equivariant image modeling framework that inherently aligns optimization targets across subtasks by leveraging the translation invariance of natural visual signals. Our method introduces (1) column-wise tokenization which enhances translational symmetry along the horizontal axis, and (2) windowed causal attention which enforces consistent contextual relationships across positions. Evaluated on class-conditioned ImageNet generation at 256x256 resolution, our approach achieves performance comparable to state-of-the-art AR models while using fewer computational resources. Systematic analysis demonstrates that enhanced equivariance reduces inter-task conflicts, significantly improving zero-shot generalization and enabling ultra-long image synthesis. This work establishes the first framework for task-aligned decomposition in generative modeling, offering insights into efficient parameter sharing and conflict-free optimization. The code and models are publicly available at https://github.com/drx-code/EquivariantModeling.
☆ Tuning-Free Amodal Segmentation via the Occlusion-Free Bias of Inpainting Models
Amodal segmentation aims to predict segmentation masks for both the visible and occluded regions of an object. Most existing works formulate this as a supervised learning problem, requiring manually annotated amodal masks or synthetic training data. Consequently, their performance depends on the quality of the datasets, which often lack diversity and scale. This work introduces a tuning-free approach that repurposes pretrained diffusion-based inpainting models for amodal segmentation. Our approach is motivated by the "occlusion-free bias" of inpainting models, i.e., the inpainted objects tend to be complete objects without occlusions. Specifically, we reconstruct the occluded regions of an object via inpainting and then apply segmentation, all without additional training or fine-tuning. Experiments on five datasets demonstrate the generalizability and robustness of our approach. On average, our approach achieves 5.3% more accurate masks over the state-of-the-art.
☆ Aether: Geometric-Aware Unified World Modeling
The integration of geometric reconstruction and generative modeling remains a critical challenge in developing AI systems capable of human-like spatial reasoning. This paper proposes Aether, a unified framework that enables geometry-aware reasoning in world models by jointly optimizing three core capabilities: (1) 4D dynamic reconstruction, (2) action-conditioned video prediction, and (3) goal-conditioned visual planning. Through task-interleaved feature learning, Aether achieves synergistic knowledge sharing across reconstruction, prediction, and planning objectives. Building upon video generation models, our framework demonstrates unprecedented synthetic-to-real generalization despite never observing real-world data during training. Furthermore, our approach achieves zero-shot generalization in both action following and reconstruction tasks, thanks to its intrinsic geometric modeling. Remarkably, even without real-world data, its reconstruction performance far exceeds that of domain-specific models. Additionally, Aether leverages a geometry-informed action space to seamlessly translate predictions into actions, enabling effective autonomous trajectory planning. We hope our work inspires the community to explore new frontiers in physically-reasonable world modeling and its applications.
comment: Project Page: https://aether-world.github.io/
☆ DINO in the Room: Leveraging 2D Foundation Models for 3D Segmentation
Vision foundation models (VFMs) trained on large-scale image datasets provide high-quality features that have significantly advanced 2D visual recognition. However, their potential in 3D vision remains largely untapped, despite the common availability of 2D images alongside 3D point cloud datasets. While significant research has been dedicated to 2D-3D fusion, recent state-of-the-art 3D methods predominantly focus on 3D data, leaving the integration of VFMs into 3D models underexplored. In this work, we challenge this trend by introducing DITR, a simple yet effective approach that extracts 2D foundation model features, projects them to 3D, and finally injects them into a 3D point cloud segmentation model. DITR achieves state-of-the-art results on both indoor and outdoor 3D semantic segmentation benchmarks. To enable the use of VFMs even when images are unavailable during inference, we further propose to distill 2D foundation models into a 3D backbone as a pretraining task. By initializing the 3D backbone with knowledge distilled from 2D VFMs, we create a strong basis for downstream 3D segmentation tasks, ultimately boosting performance across various datasets.
comment: Project page at https://vision.rwth-aachen.de/DITR
☆ SlowFast-LLaVA-1.5: A Family of Token-Efficient Video Large Language Models for Long-Form Video Understanding
We introduce SlowFast-LLaVA-1.5 (abbreviated as SF-LLaVA-1.5), a family of video large language models (LLMs) offering a token-efficient solution for long-form video understanding. This model family employs the two-stream SlowFast mechanism, enabling efficient modeling of long-range temporal context to meet the demand for lightweight, mobile-friendly Video LLMs. We provide models ranging from 1B to 7B parameters, optimized through a streamlined training pipeline and a high-quality data mixture composed of publicly available datasets. Experimental results demonstrate that SF-LLaVA-1.5 achieves competitive performance on a wide range of video and image benchmarks, with robust results across all model sizes. Notably, SF-LLaVA-1.5 achieves state-of-the-art results in long-form video understanding (e.g., LongVideoBench and MLVU) and excels at small scales (1B and 3B) across various video benchmarks.
comment: Technical report
Video-T1: Test-Time Scaling for Video Generation
With the scale capability of increasing training data, model size, and computational cost, video generation has achieved impressive results in digital creation, enabling users to express creativity across various domains. Recently, researchers in Large Language Models (LLMs) have expanded the scaling to test-time, which can significantly improve LLM performance by using more inference-time computation. Instead of scaling up video foundation models through expensive training costs, we explore the power of Test-Time Scaling (TTS) in video generation, aiming to answer the question: if a video generation model is allowed to use non-trivial amount of inference-time compute, how much can it improve generation quality given a challenging text prompt. In this work, we reinterpret the test-time scaling of video generation as a searching problem to sample better trajectories from Gaussian noise space to the target video distribution. Specifically, we build the search space with test-time verifiers to provide feedback and heuristic algorithms to guide searching process. Given a text prompt, we first explore an intuitive linear search strategy by increasing noise candidates at inference time. As full-step denoising all frames simultaneously requires heavy test-time computation costs, we further design a more efficient TTS method for video generation called Tree-of-Frames (ToF) that adaptively expands and prunes video branches in an autoregressive manner. Extensive experiments on text-conditioned video generation benchmarks demonstrate that increasing test-time compute consistently leads to significant improvements in the quality of videos. Project page: https://liuff19.github.io/Video-T1
comment: Project page: https://liuff19.github.io/Video-T1
☆ Training-free Diffusion Acceleration with Bottleneck Sampling
Diffusion models have demonstrated remarkable capabilities in visual content generation but remain challenging to deploy due to their high computational cost during inference. This computational burden primarily arises from the quadratic complexity of self-attention with respect to image or video resolution. While existing acceleration methods often compromise output quality or necessitate costly retraining, we observe that most diffusion models are pre-trained at lower resolutions, presenting an opportunity to exploit these low-resolution priors for more efficient inference without degrading performance. In this work, we introduce Bottleneck Sampling, a training-free framework that leverages low-resolution priors to reduce computational overhead while preserving output fidelity. Bottleneck Sampling follows a high-low-high denoising workflow: it performs high-resolution denoising in the initial and final stages while operating at lower resolutions in intermediate steps. To mitigate aliasing and blurring artifacts, we further refine the resolution transition points and adaptively shift the denoising timesteps at each stage. We evaluate Bottleneck Sampling on both image and video generation tasks, where extensive experiments demonstrate that it accelerates inference by up to 3$\times$ for image generation and 2.5$\times$ for video generation, all while maintaining output quality comparable to the standard full-resolution sampling process across multiple evaluation metrics. Code is available at: https://github.com/tyfeld/Bottleneck-Sampling
comment: Code Repo: https://github.com/tyfeld/Bottleneck-Sampling ,Project Page: https://tyfeld.github.io/BottleneckSampling.github.io/
☆ AdaWorld: Learning Adaptable World Models with Latent Actions
World models aim to learn action-controlled prediction models and have proven essential for the development of intelligent agents. However, most existing world models rely heavily on substantial action-labeled data and costly training, making it challenging to adapt to novel environments with heterogeneous actions through limited interactions. This limitation can hinder their applicability across broader domains. To overcome this challenge, we propose AdaWorld, an innovative world model learning approach that enables efficient adaptation. The key idea is to incorporate action information during the pretraining of world models. This is achieved by extracting latent actions from videos in a self-supervised manner, capturing the most critical transitions between frames. We then develop an autoregressive world model that conditions on these latent actions. This learning paradigm enables highly adaptable world models, facilitating efficient transfer and learning of new actions even with limited interactions and finetuning. Our comprehensive experiments across multiple environments demonstrate that AdaWorld achieves superior performance in both simulation quality and visual planning.
comment: Project page: https://adaptable-world-model.github.io/
☆ SyncVP: Joint Diffusion for Synchronous Multi-Modal Video Prediction
Predicting future video frames is essential for decision-making systems, yet RGB frames alone often lack the information needed to fully capture the underlying complexities of the real world. To address this limitation, we propose a multi-modal framework for Synchronous Video Prediction (SyncVP) that incorporates complementary data modalities, enhancing the richness and accuracy of future predictions. SyncVP builds on pre-trained modality-specific diffusion models and introduces an efficient spatio-temporal cross-attention module to enable effective information sharing across modalities. We evaluate SyncVP on standard benchmark datasets, such as Cityscapes and BAIR, using depth as an additional modality. We furthermore demonstrate its generalization to other modalities on SYNTHIA with semantic information and ERA5-Land with climate data. Notably, SyncVP achieves state-of-the-art performance, even in scenarios where only one modality is present, demonstrating its robustness and potential for a wide range of applications.
☆ CoMP: Continual Multimodal Pre-training for Vision Foundation Models
Pre-trained Vision Foundation Models (VFMs) provide strong visual representations for a wide range of applications. In this paper, we continually pre-train prevailing VFMs in a multimodal manner such that they can effortlessly process visual inputs of varying sizes and produce visual representations that are more aligned with language representations, regardless of their original pre-training process. To this end, we introduce CoMP, a carefully designed multimodal pre-training pipeline. CoMP uses a Continual Rotary Position Embedding to support native resolution continual pre-training, and an Alignment Loss between visual and textual features through language prototypes to align multimodal representations. By three-stage training, our VFMs achieve remarkable improvements not only in multimodal understanding but also in other downstream tasks such as classification and segmentation. Remarkably, CoMP-SigLIP achieves scores of 66.7 on ChartQA and 75.9 on DocVQA with a 0.5B LLM, while maintaining an 87.4% accuracy on ImageNet-1K and a 49.5 mIoU on ADE20K under frozen chunk evaluation.
comment: Code is available in https://github.com/SliMM-X/CoMP-MM
Video SimpleQA: Towards Factuality Evaluation in Large Video Language Models
Recent advancements in Large Video Language Models (LVLMs) have highlighted their potential for multi-modal understanding, yet evaluating their factual grounding in video contexts remains a critical unsolved challenge. To address this gap, we introduce Video SimpleQA, the first comprehensive benchmark tailored for factuality evaluation of LVLMs. Our work distinguishes from existing video benchmarks through the following key features: 1) Knowledge required: demanding integration of external knowledge beyond the explicit narrative; 2) Fact-seeking question: targeting objective, undisputed events or relationships, avoiding subjective interpretation; 3) Definitive & short-form answer: Answers are crafted as unambiguous and definitively correct in a short format, enabling automated evaluation through LLM-as-a-judge frameworks with minimal scoring variance; 4) External-source verified: All annotations undergo rigorous validation against authoritative external references to ensure the reliability; 5) Temporal reasoning required: The annotated question types encompass both static single-frame understanding and dynamic temporal reasoning, explicitly evaluating LVLMs factuality under the long-context dependencies. We extensively evaluate 41 state-of-the-art LVLMs and summarize key findings as follows: 1) Current LVLMs exhibit notable deficiencies in factual adherence, particularly for open-source models. The best-performing model Gemini-1.5-Pro achieves merely an F-score of 54.4%; 2) Test-time compute paradigms show insignificant performance gains, revealing fundamental constraints for enhancing factuality through post-hoc computation; 3) Retrieval-Augmented Generation demonstrates consistent improvements at the cost of additional inference time overhead, presenting a critical efficiency-performance trade-off.
comment: 24 pages
☆ Building Blocks for Robust and Effective Semi-Supervised Real-World Object Detection
Semi-supervised object detection (SSOD) based on pseudo-labeling significantly reduces dependence on large labeled datasets by effectively leveraging both labeled and unlabeled data. However, real-world applications of SSOD often face critical challenges, including class imbalance, label noise, and labeling errors. We present an in-depth analysis of SSOD under real-world conditions, uncovering causes of suboptimal pseudo-labeling and key trade-offs between label quality and quantity. Based on our findings, we propose four building blocks that can be seamlessly integrated into an SSOD framework. Rare Class Collage (RCC): a data augmentation method that enhances the representation of rare classes by creating collages of rare objects. Rare Class Focus (RCF): a stratified batch sampling strategy that ensures a more balanced representation of all classes during training. Ground Truth Label Correction (GLC): a label refinement method that identifies and corrects false, missing, and noisy ground truth labels by leveraging the consistency of teacher model predictions. Pseudo-Label Selection (PLS): a selection method for removing low-quality pseudo-labeled images, guided by a novel metric estimating the missing detection rate while accounting for class rarity. We validate our methods through comprehensive experiments on autonomous driving datasets, resulting in up to 6% increase in SSOD performance. Overall, our investigation and novel, data-centric, and broadly applicable building blocks enable robust and effective SSOD in complex, real-world scenarios. Code is available at https://mos-ks.github.io/publications.
comment: Accepted to Transactions on Machine Learning Research (TMLR). OpenReview: https://openreview.net/forum?id=vRYt8QLKqK
☆ Online 3D Scene Reconstruction Using Neural Object Priors 3DV 2025
This paper addresses the problem of reconstructing a scene online at the level of objects given an RGB-D video sequence. While current object-aware neural implicit representations hold promise, they are limited in online reconstruction efficiency and shape completion. Our main contributions to alleviate the above limitations are twofold. First, we propose a feature grid interpolation mechanism to continuously update grid-based object-centric neural implicit representations as new object parts are revealed. Second, we construct an object library with previously mapped objects in advance and leverage the corresponding shape priors to initialize geometric object models in new videos, subsequently completing them with novel views as well as synthesized past views to avoid losing original object details. Extensive experiments on synthetic environments from the Replica dataset, real-world ScanNet sequences and videos captured in our laboratory demonstrate that our approach outperforms state-of-the-art neural implicit models for this task in terms of reconstruction accuracy and completeness.
comment: 3DV 2025. Project page: https://www.di.ens.fr/willow/research/online-scene-reconstruction/
☆ CFG-Zero*: Improved Classifier-Free Guidance for Flow Matching Models
Classifier-Free Guidance (CFG) is a widely adopted technique in diffusion/flow models to improve image fidelity and controllability. In this work, we first analytically study the effect of CFG on flow matching models trained on Gaussian mixtures where the ground-truth flow can be derived. We observe that in the early stages of training, when the flow estimation is inaccurate, CFG directs samples toward incorrect trajectories. Building on this observation, we propose CFG-Zero*, an improved CFG with two contributions: (a) optimized scale, where a scalar is optimized to correct for the inaccuracies in the estimated velocity, hence the * in the name; and (b) zero-init, which involves zeroing out the first few steps of the ODE solver. Experiments on both text-to-image (Lumina-Next, Stable Diffusion 3, and Flux) and text-to-video (Wan-2.1) generation demonstrate that CFG-Zero* consistently outperforms CFG, highlighting its effectiveness in guiding Flow Matching models. (Code is available at github.com/WeichenFan/CFG-Zero-star)
Efficient and Accurate Scene Text Recognition with Cascaded-Transformers
In recent years, vision transformers with text decoder have demonstrated remarkable performance on Scene Text Recognition (STR) due to their ability to capture long-range dependencies and contextual relationships with high learning capacity. However, the computational and memory demands of these models are significant, limiting their deployment in resource-constrained applications. To address this challenge, we propose an efficient and accurate STR system. Specifically, we focus on improving the efficiency of encoder models by introducing a cascaded-transformers structure. This structure progressively reduces the vision token size during the encoding step, effectively eliminating redundant tokens and reducing computational cost. Our experimental results confirm that our STR system achieves comparable performance to state-of-the-art baselines while substantially decreasing computational requirements. In particular, for large-models, the accuracy remains same, 92.77 to 92.68, while computational complexity is almost halved with our structure.
comment: Accepted to ACM-MMSys2025
☆ Seeing Speech and Sound: Distinguishing and Locating Audios in Visual Scenes CVPR 2025
We present a unified model capable of simultaneously grounding both spoken language and non-speech sounds within a visual scene, addressing key limitations in current audio-visual grounding models. Existing approaches are typically limited to handling either speech or non-speech sounds independently, or at best, together but sequentially without mixing. This limitation prevents them from capturing the complexity of real-world audio sources that are often mixed. Our approach introduces a 'mix-and-separate' framework with audio-visual alignment objectives that jointly learn correspondence and disentanglement using mixed audio. Through these objectives, our model learns to produce distinct embeddings for each audio type, enabling effective disentanglement and grounding across mixed audio sources. Additionally, we created a new dataset to evaluate simultaneous grounding of mixed audio sources, demonstrating that our model outperforms prior methods. Our approach also achieves comparable or better performance in standard segmentation and cross-modal retrieval tasks, highlighting the benefits of our mix-and-separate approach.
comment: CVPR 2025
A semantic communication-based workload-adjustable transceiver for wireless AI-generated content (AIGC) delivery
With the significant advances in generative AI (GAI) and the proliferation of mobile devices, providing high-quality AI-generated content (AIGC) services via wireless networks is becoming the future direction. However, the primary challenges of AIGC service delivery in wireless networks lie in unstable channels, limited bandwidth resources, and unevenly distributed computational resources. In this paper, we employ semantic communication (SemCom) in diffusion-based GAI models to propose a Resource-aware wOrkload-adjUstable TransceivEr (ROUTE) for AIGC delivery in dynamic wireless networks. Specifically, to relieve the communication resource bottleneck, SemCom is utilized to prioritize semantic information of the generated content. Then, to improve computational resource utilization in both edge and local and reduce AIGC semantic distortion in transmission, modified diffusion-based models are applied to adjust the computing workload and semantic density in cooperative content generation. Simulations verify the superiority of our proposed ROUTE in terms of latency and content quality compared to conventional AIGC approaches.
Efficient Self-Supervised Adaptation for Medical Image Analysis
Self-supervised adaptation (SSA) improves foundation model transfer to medical domains but is computationally prohibitive. Although parameter efficient fine-tuning methods such as LoRA have been explored for supervised adaptation, their effectiveness for SSA remains unknown. In this work, we introduce efficient self-supervised adaptation (ESSA), a framework that applies parameter-efficient fine-tuning techniques to SSA with the aim of reducing computational cost and improving adaptation performance. Among the methods tested, Attention Projection Layer Adaptation (APLA) sets a new state-of-the-art, consistently surpassing full-parameter SSA and supervised fine-tuning across diverse medical tasks, while reducing GPU memory by up to 40.1% and increasing training throughput by 25.2%, all while maintaining inference efficiency.
☆ Curriculum Coarse-to-Fine Selection for High-IPC Dataset Distillation CVPR2025
Dataset distillation (DD) excels in synthesizing a small number of images per class (IPC) but struggles to maintain its effectiveness in high-IPC settings. Recent works on dataset distillation demonstrate that combining distilled and real data can mitigate the effectiveness decay. However, our analysis of the combination paradigm reveals that the current one-shot and independent selection mechanism induces an incompatibility issue between distilled and real images. To address this issue, we introduce a novel curriculum coarse-to-fine selection (CCFS) method for efficient high-IPC dataset distillation. CCFS employs a curriculum selection framework for real data selection, where we leverage a coarse-to-fine strategy to select appropriate real data based on the current synthetic dataset in each curriculum. Extensive experiments validate CCFS, surpassing the state-of-the-art by +6.6\% on CIFAR-10, +5.8\% on CIFAR-100, and +3.4\% on Tiny-ImageNet under high-IPC settings. Notably, CCFS achieves 60.2\% test accuracy on ResNet-18 with a 20\% compression ratio of Tiny-ImageNet, closely matching full-dataset training with only 0.3\% degradation. Code: https://github.com/CYDaaa30/CCFS.
comment: Accepted by CVPR2025
☆ Exploring the Integration of Key-Value Attention Into Pure and Hybrid Transformers for Semantic Segmentation
While CNNs were long considered state of the art for image processing, the introduction of Transformer architectures has challenged this position. While achieving excellent results in image classification and segmentation, Transformers remain inherently reliant on large training datasets and remain computationally expensive. A newly introduced Transformer derivative named KV Transformer shows promising results in synthetic, NLP, and image classification tasks, while reducing complexity and memory usage. This is especially conducive to use cases where local inference is required, such as medical screening applications. We endeavoured to further evaluate the merit of KV Transformers on semantic segmentation tasks, specifically in the domain of medical imaging. By directly comparing traditional and KV variants of the same base architectures, we provide further insight into the practical tradeoffs of reduced model complexity. We observe a notable reduction in parameter count and multiply accumulate operations, while achieving similar performance from most of the KV variant models when directly compared to their QKV implementation.
comment: 6 pages, 3 figures, Preprint. Final version published in: Bildverarbeitung f\"ur die Medizin 2025, Springer. DOI: https://doi.org/10.1007/978-3-658-47422-5_71
☆ HunyuanPortrait: Implicit Condition Control for Enhanced Portrait Animation CVPR 2025
We introduce HunyuanPortrait, a diffusion-based condition control method that employs implicit representations for highly controllable and lifelike portrait animation. Given a single portrait image as an appearance reference and video clips as driving templates, HunyuanPortrait can animate the character in the reference image by the facial expression and head pose of the driving videos. In our framework, we utilize pre-trained encoders to achieve the decoupling of portrait motion information and identity in videos. To do so, implicit representation is adopted to encode motion information and is employed as control signals in the animation phase. By leveraging the power of stable video diffusion as the main building block, we carefully design adapter layers to inject control signals into the denoising unet through attention mechanisms. These bring spatial richness of details and temporal consistency. HunyuanPortrait also exhibits strong generalization performance, which can effectively disentangle appearance and motion under different image styles. Our framework outperforms existing methods, demonstrating superior temporal consistency and controllability. Our project is available at https://kkakkkka.github.io/HunyuanPortrait.
comment: CVPR 2025
☆ MC-LLaVA: Multi-Concept Personalized Vision-Language Model
Current vision-language models (VLMs) show exceptional abilities across diverse tasks, such as visual question answering. To enhance user experience, recent studies investigate VLM personalization to understand user-provided concepts. However, they mainly focus on single-concept personalization, neglecting the existence and interplay of multiple concepts, which limits real-world applicability. This paper proposes the first multi-concept personalization paradigm, MC-LLaVA. Specifically, MC-LLaVA employs a multi-concept instruction tuning strategy, effectively integrating multiple concepts in a single training step. To reduce the costs related to joint training, we propose a personalized textual prompt that uses visual token information to initialize concept tokens. Additionally, we introduce a personalized visual prompt during inference, aggregating location confidence maps for enhanced recognition and grounding capabilities. To advance multi-concept personalization research, we further contribute a high-quality instruction tuning dataset. We carefully collect images with multiple characters and objects from movies and manually generate question-answer samples for multi-concept scenarios, featuring superior diversity. Comprehensive qualitative and quantitative experiments demonstrate that MC-LLaVA can achieve impressive multi-concept personalized responses, paving the way for VLMs to become better user-specific assistants. The code and dataset will be publicly available at $\href{https://github.com/arctanxarc/MC-LLaVA}{https://github.com/arctanxarc/MC-LLaVA}$.
comment: The code and dataset will be publicly available at $\href{https://github.com/arctanxarc/MC-LLaVA}{https://github.com/arctanxarc/MC-LLaVA}$
☆ 3DSwapping: Texture Swapping For 3D Object From Single Reference Image
3D texture swapping allows for the customization of 3D object textures, enabling efficient and versatile visual transformations in 3D editing. While no dedicated method exists, adapted 2D editing and text-driven 3D editing approaches can serve this purpose. However, 2D editing requires frame-by-frame manipulation, causing inconsistencies across views, while text-driven 3D editing struggles to preserve texture characteristics from reference images. To tackle these challenges, we introduce 3DSwapping, a 3D texture swapping method that integrates: 1) progressive generation, 2) view-consistency gradient guidance, and 3) prompt-tuned gradient guidance. To ensure view consistency, our progressive generation process starts by editing a single reference image and gradually propagates the edits to adjacent views. Our view-consistency gradient guidance further reinforces consistency by conditioning the generation model on feature differences between consistent and inconsistent outputs. To preserve texture characteristics, we introduce prompt-tuning-based gradient guidance, which learns a token that precisely captures the difference between the reference image and the 3D object. This token then guides the editing process, ensuring more consistent texture preservation across views. Overall, 3DSwapping integrates these novel strategies to achieve higher-fidelity texture transfer while preserving structural coherence across multiple viewpoints. Extensive qualitative and quantitative evaluations confirm that our three novel components enable convincing and effective 2D texture swapping for 3D objects. Code will be available upon acceptance.
☆ Learning to segment anatomy and lesions from disparately labeled sources in brain MRI
Segmenting healthy tissue structures alongside lesions in brain Magnetic Resonance Images (MRI) remains a challenge for today's algorithms due to lesion-caused disruption of the anatomy and lack of jointly labeled training datasets, where both healthy tissues and lesions are labeled on the same images. In this paper, we propose a method that is robust to lesion-caused disruptions and can be trained from disparately labeled training sets, i.e., without requiring jointly labeled samples, to automatically segment both. In contrast to prior work, we decouple healthy tissue and lesion segmentation in two paths to leverage multi-sequence acquisitions and merge information with an attention mechanism. During inference, an image-specific adaptation reduces adverse influences of lesion regions on healthy tissue predictions. During training, the adaptation is taken into account through meta-learning and co-training is used to learn from disparately labeled training images. Our model shows an improved performance on several anatomical structures and lesions on a publicly available brain glioblastoma dataset compared to the state-of-the-art segmentation methods.
☆ Dual-domain Multi-path Self-supervised Diffusion Model for Accelerated MRI Reconstruction
Magnetic resonance imaging (MRI) is a vital diagnostic tool, but its inherently long acquisition times reduce clinical efficiency and patient comfort. Recent advancements in deep learning, particularly diffusion models, have improved accelerated MRI reconstruction. However, existing diffusion models' training often relies on fully sampled data, models incur high computational costs, and often lack uncertainty estimation, limiting their clinical applicability. To overcome these challenges, we propose a novel framework, called Dual-domain Multi-path Self-supervised Diffusion Model (DMSM), that integrates a self-supervised dual-domain diffusion model training scheme, a lightweight hybrid attention network for the reconstruction diffusion model, and a multi-path inference strategy, to enhance reconstruction accuracy, efficiency, and explainability. Unlike traditional diffusion-based models, DMSM eliminates the dependency on training from fully sampled data, making it more practical for real-world clinical settings. We evaluated DMSM on two human MRI datasets, demonstrating that it achieves favorable performance over several supervised and self-supervised baselines, particularly in preserving fine anatomical structures and suppressing artifacts under high acceleration factors. Additionally, our model generates uncertainty maps that correlate reasonably well with reconstruction errors, offering valuable clinically interpretable guidance and potentially enhancing diagnostic confidence.
comment: 10 pages, 8 figures, 5 tables
☆ DAGait: Generalized Skeleton-Guided Data Alignment for Gait Recognition
Gait recognition is emerging as a promising and innovative area within the field of computer vision, widely applied to remote person identification. Although existing gait recognition methods have achieved substantial success in controlled laboratory datasets, their performance often declines significantly when transitioning to wild datasets.We argue that the performance gap can be primarily attributed to the spatio-temporal distribution inconsistencies present in wild datasets, where subjects appear at varying angles, positions, and distances across the frames. To achieve accurate gait recognition in the wild, we propose a skeleton-guided silhouette alignment strategy, which uses prior knowledge of the skeletons to perform affine transformations on the corresponding silhouettes.To the best of our knowledge, this is the first study to explore the impact of data alignment on gait recognition. We conducted extensive experiments across multiple datasets and network architectures, and the results demonstrate the significant advantages of our proposed alignment strategy.Specifically, on the challenging Gait3D dataset, our method achieved an average performance improvement of 7.9% across all evaluated networks. Furthermore, our method achieves substantial improvements on cross-domain datasets, with accuracy improvements of up to 24.0%.
☆ Enhanced OoD Detection through Cross-Modal Alignment of Multi-Modal Representations CVPR 2025
Prior research on out-of-distribution detection (OoDD) has primarily focused on single-modality models. Recently, with the advent of large-scale pretrained vision-language models such as CLIP, OoDD methods utilizing such multi-modal representations through zero-shot and prompt learning strategies have emerged. However, these methods typically involve either freezing the pretrained weights or only partially tuning them, which can be suboptimal for downstream datasets. In this paper, we highlight that multi-modal fine-tuning (MMFT) can achieve notable OoDD performance. Despite some recent works demonstrating the impact of fine-tuning methods for OoDD, there remains significant potential for performance improvement. We investigate the limitation of na\"ive fine-tuning methods, examining why they fail to fully leverage the pretrained knowledge. Our empirical analysis suggests that this issue could stem from the modality gap within in-distribution (ID) embeddings. To address this, we propose a training objective that enhances cross-modal alignment by regularizing the distances between image and text embeddings of ID data. This adjustment helps in better utilizing pretrained textual information by aligning similar semantics from different modalities (i.e., text and image) more closely in the hyperspherical representation space. We theoretically demonstrate that the proposed regularization corresponds to the maximum likelihood estimation of an energy-based model on a hypersphere. Utilizing ImageNet-1k OoD benchmark datasets, we show that our method, combined with post-hoc OoDD approaches leveraging pretrained knowledge (e.g., NegLabel), significantly outperforms existing methods, achieving state-of-the-art OoDD performance and leading ID accuracy.
comment: CVPR 2025
☆ SKDU at De-Factify 4.0: Vision Transformer with Data Augmentation for AI-Generated Image Detection AAAI
The aim of this work is to explore the potential of pre-trained vision-language models, e.g. Vision Transformers (ViT), enhanced with advanced data augmentation strategies for the detection of AI-generated images. Our approach leverages a fine-tuned ViT model trained on the Defactify-4.0 dataset, which includes images generated by state-of-the-art models such as Stable Diffusion 2.1, Stable Diffusion XL, Stable Diffusion 3, DALL-E 3, and MidJourney. We employ perturbation techniques like flipping, rotation, Gaussian noise injection, and JPEG compression during training to improve model robustness and generalisation. The experimental results demonstrate that our ViT-based pipeline achieves state-of-the-art performance, significantly outperforming competing methods on both validation and test datasets.
comment: De-Factify 4.0 workshop at the 39th Annual AAAI Conference on Artificial Intelligence (AAAI 2025)
☆ CRCL: Causal Representation Consistency Learning for Anomaly Detection in Surveillance Videos
Video Anomaly Detection (VAD) remains a fundamental yet formidable task in the video understanding community, with promising applications in areas such as information forensics and public safety protection. Due to the rarity and diversity of anomalies, existing methods only use easily collected regular events to model the inherent normality of normal spatial-temporal patterns in an unsupervised manner. Previous studies have shown that existing unsupervised VAD models are incapable of label-independent data offsets (e.g., scene changes) in real-world scenarios and may fail to respond to light anomalies due to the overgeneralization of deep neural networks. Inspired by causality learning, we argue that there exist causal factors that can adequately generalize the prototypical patterns of regular events and present significant deviations when anomalous instances occur. In this regard, we propose Causal Representation Consistency Learning (CRCL) to implicitly mine potential scene-robust causal variable in unsupervised video normality learning. Specifically, building on the structural causal models, we propose scene-debiasing learning and causality-inspired normality learning to strip away entangled scene bias in deep representations and learn causal video normality, respectively. Extensive experiments on benchmarks validate the superiority of our method over conventional deep representation learning. Moreover, ablation studies and extension validation show that the CRCL can cope with label-independent biases in multi-scene settings and maintain stable performance with only limited training data available.
comment: Accepted for publication by IEEE Transactions on Image Processing
☆ Change3D: Revisiting Change Detection and Captioning from A Video Modeling Perspective CVPR 2025
In this paper, we present Change3D, a framework that reconceptualizes the change detection and captioning tasks through video modeling. Recent methods have achieved remarkable success by regarding each pair of bi-temporal images as separate frames. They employ a shared-weight image encoder to extract spatial features and then use a change extractor to capture differences between the two images. However, image feature encoding, being a task-agnostic process, cannot attend to changed regions effectively. Furthermore, different change extractors designed for various change detection and captioning tasks make it difficult to have a unified framework. To tackle these challenges, Change3D regards the bi-temporal images as comprising two frames akin to a tiny video. By integrating learnable perception frames between the bi-temporal images, a video encoder enables the perception frames to interact with the images directly and perceive their differences. Therefore, we can get rid of the intricate change extractors, providing a unified framework for different change detection and captioning tasks. We verify Change3D on multiple tasks, encompassing change detection (including binary change detection, semantic change detection, and building damage assessment) and change captioning, across eight standard benchmarks. Without bells and whistles, this simple yet effective framework can achieve superior performance with an ultra-light video model comprising only ~6%-13% of the parameters and ~8%-34% of the FLOPs compared to state-of-the-art methods. We hope that Change3D could be an alternative to 2D-based models and facilitate future research.
comment: conference paper, accepted by CVPR 2025
☆ NexusGS: Sparse View Synthesis with Epipolar Depth Priors in 3D Gaussian Splatting CVPR 2025
Neural Radiance Field (NeRF) and 3D Gaussian Splatting (3DGS) have noticeably advanced photo-realistic novel view synthesis using images from densely spaced camera viewpoints. However, these methods struggle in few-shot scenarios due to limited supervision. In this paper, we present NexusGS, a 3DGS-based approach that enhances novel view synthesis from sparse-view images by directly embedding depth information into point clouds, without relying on complex manual regularizations. Exploiting the inherent epipolar geometry of 3DGS, our method introduces a novel point cloud densification strategy that initializes 3DGS with a dense point cloud, reducing randomness in point placement while preventing over-smoothing and overfitting. Specifically, NexusGS comprises three key steps: Epipolar Depth Nexus, Flow-Resilient Depth Blending, and Flow-Filtered Depth Pruning. These steps leverage optical flow and camera poses to compute accurate depth maps, while mitigating the inaccuracies often associated with optical flow. By incorporating epipolar depth priors, NexusGS ensures reliable dense point cloud coverage and supports stable 3DGS training under sparse-view conditions. Experiments demonstrate that NexusGS significantly enhances depth accuracy and rendering quality, surpassing state-of-the-art methods by a considerable margin. Furthermore, we validate the superiority of our generated point clouds by substantially boosting the performance of competing methods. Project page: https://usmizuki.github.io/NexusGS/.
comment: This paper is accepted by CVPR 2025
☆ LGI-DETR: Local-Global Interaction for UAV Object Detection
UAV has been widely used in various fields. However, most of the existing object detectors used in drones are not end-to-end and require the design of various complex components and careful fine-tuning. Most of the existing end-to-end object detectors are designed for natural scenes. It is not ideal to apply them directly to UAV images. In order to solve the above challenges, we design an local-global information interaction DETR for UAVs, namely LGI-DETR. Cross-layer bidirectional low-level and high-level feature information enhancement, this fusion method is effective especially in the field of small objection detection. At the initial stage of encoder, we propose a local spatial enhancement module (LSE), which enhances the low-level rich local spatial information into the high-level feature, and reduces the loss of local information in the transmission process of high-level information. At the final stage of the encoder, we propose a novel global information injection module (GII) designed to integrate rich high-level global semantic representations with low-level feature maps. This hierarchical fusion mechanism effectively addresses the inherent limitations of local receptive fields by propagating contextual information across the feature hierarchy. Experimental results on two challenging UAV image object detection benchmarks, VisDrone2019 and UAVDT, show that our proposed model outperforms the SOTA model. Compared to the baseline model, AP and AP50 improved by 1.9% and 2.4%, respectively.
comment: 14 pages
☆ Leveraging Perturbation Robustness to Enhance Out-of-Distribution Detection
Out-of-distribution (OOD) detection is the task of identifying inputs that deviate from the training data distribution. This capability is essential for safely deploying deep computer vision models in open-world environments. In this work, we propose a post-hoc method, Perturbation-Rectified OOD detection (PRO), based on the insight that prediction confidence for OOD inputs is more susceptible to reduction under perturbation than in-distribution (IND) inputs. Based on the observation, we propose an adversarial score function that searches for the local minimum scores near the original inputs by applying gradient descent. This procedure enhances the separability between IND and OOD samples. Importantly, the approach improves OOD detection performance without complex modifications to the underlying model architectures. We conduct extensive experiments using the OpenOOD benchmark~\cite{yang2022openood}. Our approach further pushes the limit of softmax-based OOD detection and is the leading post-hoc method for small-scale models. On a CIFAR-10 model with adversarial training, PRO effectively detects near-OOD inputs, achieving a reduction of more than 10\% on FPR@95 compared to state-of-the-art methods.
☆ Frequency Dynamic Convolution for Dense Image Prediction CVPR 2025
While Dynamic Convolution (DY-Conv) has shown promising performance by enabling adaptive weight selection through multiple parallel weights combined with an attention mechanism, the frequency response of these weights tends to exhibit high similarity, resulting in high parameter costs but limited adaptability. In this work, we introduce Frequency Dynamic Convolution (FDConv), a novel approach that mitigates these limitations by learning a fixed parameter budget in the Fourier domain. FDConv divides this budget into frequency-based groups with disjoint Fourier indices, enabling the construction of frequency-diverse weights without increasing the parameter cost. To further enhance adaptability, we propose Kernel Spatial Modulation (KSM) and Frequency Band Modulation (FBM). KSM dynamically adjusts the frequency response of each filter at the spatial level, while FBM decomposes weights into distinct frequency bands in the frequency domain and modulates them dynamically based on local content. Extensive experiments on object detection, segmentation, and classification validate the effectiveness of FDConv. We demonstrate that when applied to ResNet-50, FDConv achieves superior performance with a modest increase of +3.6M parameters, outperforming previous methods that require substantial increases in parameter budgets (e.g., CondConv +90M, KW +76.5M). Moreover, FDConv seamlessly integrates into a variety of architectures, including ConvNeXt, Swin-Transformer, offering a flexible and efficient solution for modern vision tasks. The code is made publicly available at https://github.com/Linwei-Chen/FDConv.
comment: Accepted by CVPR 2025
☆ Good Keypoints for the Two-View Geometry Estimation Problem CVPR 2025
Local features are essential to many modern downstream applications. Therefore, it is of interest to determine the properties of local features that contribute to the downstream performance for a better design of feature detectors and descriptors. In our work, we propose a new theoretical model for scoring feature points (keypoints) in the context of the two-view geometry estimation problem. The model determines two properties that a good keypoint for solving the homography estimation problem should have: be repeatable and have a small expected measurement error. This result provides key insights into why maximizing the number of correspondences doesn't always lead to better homography estimation accuracy. We use the developed model to design a method that detects keypoints that benefit the homography estimation introducing the Bounded NeSS-ST (BoNeSS-ST) keypoint detector. The novelty of BoNeSS-ST comes from strong theoretical foundations, a more accurate keypoint scoring due to subpixel refinement and a cost designed for superior robustness to low saliency keypoints. As a result, BoNeSS-ST outperforms prior self-supervised local feature detectors in both planar homography and epipolar geometry estimation problems.
comment: Camera-ready version of the CVPR 2025 paper
☆ EgoSurgery-HTS: A Dataset for Egocentric Hand-Tool Segmentation in Open Surgery Videos
Egocentric open-surgery videos capture rich, fine-grained details essential for accurately modeling surgical procedures and human behavior in the operating room. A detailed, pixel-level understanding of hands and surgical tools is crucial for interpreting a surgeon's actions and intentions. We introduce EgoSurgery-HTS, a new dataset with pixel-wise annotations and a benchmark suite for segmenting surgical tools, hands, and interacting tools in egocentric open-surgery videos. Specifically, we provide a labeled dataset for (1) tool instance segmentation of 14 distinct surgical tools, (2) hand instance segmentation, and (3) hand-tool segmentation to label hands and the tools they manipulate. Using EgoSurgery-HTS, we conduct extensive evaluations of state-of-the-art segmentation methods and demonstrate significant improvements in the accuracy of hand and hand-tool segmentation in egocentric open-surgery videos compared to existing datasets. The dataset will be released at https://github.com/Fujiry0/EgoSurgery.
☆ Self-Supervised Learning based on Transformed Image Reconstruction for Equivariance-Coherent Feature Representation
The equivariant behaviour of features is essential in many computer vision tasks, yet popular self-supervised learning (SSL) methods tend to constrain equivariance by design. We propose a self-supervised learning approach where the system learns transformations independently by reconstructing images that have undergone previously unseen transformations. Specifically, the model is tasked to reconstruct intermediate transformed images, e.g. translated or rotated images, without prior knowledge of these transformations. This auxiliary task encourages the model to develop equivariance-coherent features without relying on predefined transformation rules. To this end, we apply transformations to the input image, generating an image pair, and then split the extracted features into two sets per image. One set is used with a usual SSL loss encouraging invariance, the other with our loss based on the auxiliary task to reconstruct the intermediate transformed images. Our loss and the SSL loss are linearly combined with weighted terms. Evaluating on synthetic tasks with natural images, our proposed method strongly outperforms all competitors, regardless of whether they are designed to learn equivariance. Furthermore, when trained alongside augmentation-based methods as the invariance tasks, such as iBOT or DINOv2, we successfully learn a balanced combination of invariant and equivariant features. Our approach performs strong on a rich set of realistic computer vision downstream tasks, almost always improving over all baselines.
☆ Robust Tube-based Control Strategy for Vision-guided Autonomous Vehicles
A robust control strategy for autonomous vehicles can improve system stability, enhance riding comfort, and prevent driving accidents. This paper presents a novel interpolation tube-based constrained iterative linear quadratic regulator (itube-CILQR) algorithm for autonomous computer-vision-based vehicle lane-keeping. The goal of the algorithm is to enhance robustness during high-speed cornering on tight turns. The advantages of itube-CILQR over the standard tube-approach include reduced system conservatism and increased computational speed. Numerical and vision-based experiments were conducted to examine the feasibility of the proposed algorithm. The proposed itube-CILQR algorithm is better suited to vehicle lane-keeping than variational CILQR-based methods and model predictive control (MPC) approaches using a classical interior-point solver. Specifically, in evaluation experiments, itube-CILQR achieved an average runtime of 3.16 ms to generate a control signal to guide a self-driving vehicle; itube-MPC typically required a 4.67-times longer computation time to complete the same task. Moreover, the influence of conservatism on system behavior was investigated by exploring the interpolation variable trajectories derived from the proposed itube-CILQR algorithm during lane-keeping maneuvers.
comment: 13 pages, 14 figures
☆ Linguistics-aware Masked Image Modeling for Self-supervised Scene Text Recognition CVPR 2025
Text images are unique in their dual nature, encompassing both visual and linguistic information. The visual component encompasses structural and appearance-based features, while the linguistic dimension incorporates contextual and semantic elements. In scenarios with degraded visual quality, linguistic patterns serve as crucial supplements for comprehension, highlighting the necessity of integrating both aspects for robust scene text recognition (STR). Contemporary STR approaches often use language models or semantic reasoning modules to capture linguistic features, typically requiring large-scale annotated datasets. Self-supervised learning, which lacks annotations, presents challenges in disentangling linguistic features related to the global context. Typically, sequence contrastive learning emphasizes the alignment of local features, while masked image modeling (MIM) tends to exploit local structures to reconstruct visual patterns, resulting in limited linguistic knowledge. In this paper, we propose a Linguistics-aware Masked Image Modeling (LMIM) approach, which channels the linguistic information into the decoding process of MIM through a separate branch. Specifically, we design a linguistics alignment module to extract vision-independent features as linguistic guidance using inputs with different visual appearances. As features extend beyond mere visual structures, LMIM must consider the global context to achieve reconstruction. Extensive experiments on various benchmarks quantitatively demonstrate our state-of-the-art performance, and attention visualizations qualitatively show the simultaneous capture of both visual and linguistic information.
comment: CVPR 2025
☆ SFDLA: Source-Free Document Layout Analysis
Document Layout Analysis (DLA) is a fundamental task in document understanding. However, existing DLA and adaptation methods often require access to large-scale source data and target labels. This requirements severely limiting their real-world applicability, particularly in privacy-sensitive and resource-constrained domains, such as financial statements, medical records, and proprietary business documents. According to our observation, directly transferring source-domain fine-tuned models on target domains often results in a significant performance drop (Avg. -32.64%). In this work, we introduce Source-Free Document Layout Analysis (SFDLA), aiming for adapting a pre-trained source DLA models to an unlabeled target domain, without access to any source data. To address this challenge, we establish the first SFDLA benchmark, covering three major DLA datasets for geometric- and content-aware adaptation. Furthermore, we propose Document Layout Analysis Adapter (DLAdapter), a novel framework that is designed to improve source-free adaptation across document domains. Our method achieves a +4.21% improvement over the source-only baseline and a +2.26% gain over existing source-free methods from PubLayNet to DocLayNet. We believe this work will inspire the DLA community to further investigate source-free document understanding. To support future research of the community, the benchmark, models, and code will be publicly available at https://github.com/s3setewe/sfdla-DLAdapter.
comment: The benchmark, models, and code will be publicly available at https://github.com/s3setewe/sfdla-DLAdapter
☆ FG$^2$: Fine-Grained Cross-View Localization by Fine-Grained Feature Matching
We propose a novel fine-grained cross-view localization method that estimates the 3 Degrees of Freedom pose of a ground-level image in an aerial image of the surroundings by matching fine-grained features between the two images. The pose is estimated by aligning a point plane generated from the ground image with a point plane sampled from the aerial image. To generate the ground points, we first map ground image features to a 3D point cloud. Our method then learns to select features along the height dimension to pool the 3D points to a Bird's-Eye-View (BEV) plane. This selection enables us to trace which feature in the ground image contributes to the BEV representation. Next, we sample a set of sparse matches from computed point correspondences between the two point planes and compute their relative pose using Procrustes alignment. Compared to the previous state-of-the-art, our method reduces the mean localization error by 28% on the VIGOR cross-area test set. Qualitative results show that our method learns semantically consistent matches across ground and aerial views through weakly supervised learning from the camera pose.
☆ Boosting Resolution Generalization of Diffusion Transformers with Randomized Positional Encodings
Resolution generalization in image generation tasks enables the production of higher-resolution images with lower training resolution overhead. However, a significant challenge in resolution generalization, particularly in the widely used Diffusion Transformers, lies in the mismatch between the positional encodings encountered during testing and those used during training. While existing methods have employed techniques such as interpolation, extrapolation, or their combinations, none have fully resolved this issue. In this paper, we propose a novel two-dimensional randomized positional encodings (RPE-2D) framework that focuses on learning positional order of image patches instead of the specific distances between them, enabling seamless high- and low-resolution image generation without requiring high- and low-resolution image training. Specifically, RPE-2D independently selects positions over a broader range along both the horizontal and vertical axes, ensuring that all position encodings are trained during the inference phase, thus improving resolution generalization. Additionally, we propose a random data augmentation technique to enhance the modeling of position order. To address the issue of image cropping caused by the augmentation, we introduce corresponding micro-conditioning to enable the model to perceive the specific cropping patterns. On the ImageNet dataset, our proposed RPE-2D achieves state-of-the-art resolution generalization performance, outperforming existing competitive methods when trained at a resolution of $256 \times 256$ and inferred at $384 \times 384$ and $512 \times 512$, as well as when scaling from $512 \times 512$ to $768 \times 768$ and $1024 \times 1024$. And it also exhibits outstanding capabilities in low-resolution image generation, multi-stage training acceleration and multi-resolution inheritance.
☆ GS-Marker: Generalizable and Robust Watermarking for 3D Gaussian Splatting
In the Generative AI era, safeguarding 3D models has become increasingly urgent. While invisible watermarking is well-established for 2D images with encoder-decoder frameworks, generalizable and robust solutions for 3D remain elusive. The main difficulty arises from the renderer between the 3D encoder and 2D decoder, which disrupts direct gradient flow and complicates training. Existing 3D methods typically rely on per-scene iterative optimization, resulting in time inefficiency and limited generalization. In this work, we propose a single-pass watermarking approach for 3D Gaussian Splatting (3DGS), a well-known yet underexplored representation for watermarking. We identify two major challenges: (1) ensuring effective training generalized across diverse 3D models, and (2) reliably extracting watermarks from free-view renderings, even under distortions. Our framework, named GS-Marker, incorporates a 3D encoder to embed messages, distortion layers to enhance resilience against various distortions, and a 2D decoder to extract watermarks from renderings. A key innovation is the Adaptive Marker Control mechanism that adaptively perturbs the initially optimized 3DGS, escaping local minima and improving both training stability and convergence. Extensive experiments show that GS-Marker outperforms per-scene training approaches in terms of decoding accuracy and model fidelity, while also significantly reducing computation time.
☆ LLaVAction: evaluating and training multi-modal large language models for action recognition
Understanding human behavior requires measuring behavioral actions. Due to its complexity, behavior is best mapped onto a rich, semantic structure such as language. The recent development of multi-modal large language models (MLLMs) is a promising candidate for a wide range of action understanding tasks. In this work, we focus on evaluating and then improving MLLMs to perform action recognition. We reformulate EPIC-KITCHENS-100, one of the largest and most challenging egocentric action datasets, to the form of video multiple question answering (EPIC-KITCHENS-100-MQA). We show that when we sample difficult incorrect answers as distractors, leading MLLMs struggle to recognize the correct actions. We propose a series of methods that greatly improve the MLLMs' ability to perform action recognition, achieving state-of-the-art on both the EPIC-KITCHENS-100 validation set, as well as outperforming GPT-4o by 21 points in accuracy on EPIC-KITCHENS-100-MQA. Lastly, we show improvements on other action-related video benchmarks such as EgoSchema, PerceptionTest, LongVideoBench, VideoMME and MVBench, suggesting that MLLMs are a promising path forward for complex action tasks. Code and models are available at: https://github.com/AdaptiveMotorControlLab/LLaVAction.
comment: https://github.com/AdaptiveMotorControlLab/LLaVAction
☆ Accenture-NVS1: A Novel View Synthesis Dataset
This paper introduces ACC-NVS1, a specialized dataset designed for research on Novel View Synthesis specifically for airborne and ground imagery. Data for ACC-NVS1 was collected in Austin, TX and Pittsburgh, PA in 2023 and 2024. The collection encompasses six diverse real-world scenes captured from both airborne and ground cameras, resulting in a total of 148,000 images. ACC-NVS1 addresses challenges such as varying altitudes and transient objects. This dataset is intended to supplement existing datasets, providing additional resources for comprehensive research, rather than serving as a benchmark.
comment: 6 pages, 7 figures
☆ Revisiting Automatic Data Curation for Vision Foundation Models in Digital Pathology MICCAI 2025
Vision foundation models (FMs) are accelerating the development of digital pathology algorithms and transforming biomedical research. These models learn, in a self-supervised manner, to represent histological features in highly heterogeneous tiles extracted from whole-slide images (WSIs) of real-world patient samples. The performance of these FMs is significantly influenced by the size, diversity, and balance of the pre-training data. However, data selection has been primarily guided by expert knowledge at the WSI level, focusing on factors such as disease classification and tissue types, while largely overlooking the granular details available at the tile level. In this paper, we investigate the potential of unsupervised automatic data curation at the tile-level, taking into account 350 million tiles. Specifically, we apply hierarchical clustering trees to pre-extracted tile embeddings, allowing us to sample balanced datasets uniformly across the embedding space of the pretrained FM. We further identify these datasets are subject to a trade-off between size and balance, potentially compromising the quality of representations learned by FMs, and propose tailored batch sampling strategies to mitigate this effect. We demonstrate the effectiveness of our method through improved performance on a diverse range of clinically relevant downstream tasks.
comment: MICCAI 2025
☆ Benchmarking Burst Super-Resolution for Polarization Images: Noise Dataset and Analysis
Snapshot polarization imaging calculates polarization states from linearly polarized subimages. To achieve this, a polarization camera employs a double Bayer-patterned sensor to capture both color and polarization. It demonstrates low light efficiency and low spatial resolution, resulting in increased noise and compromised polarization measurements. Although burst super-resolution effectively reduces noise and enhances spatial resolution, applying it to polarization imaging poses challenges due to the lack of tailored datasets and reliable ground truth noise statistics. To address these issues, we introduce PolarNS and PolarBurstSR, two innovative datasets developed specifically for polarization imaging. PolarNS provides characterization of polarization noise statistics, facilitating thorough analysis, while PolarBurstSR functions as a benchmark for burst super-resolution in polarization images. These datasets, collected under various real-world conditions, enable comprehensive evaluation. Additionally, we present a model for analyzing polarization noise to quantify noise propagation, tested on a large dataset captured in a darkroom environment. As part of our application, we compare the latest burst super-resolution models, highlighting the advantages of training tailored to polarization compared to RGB-based methods. This work establishes a benchmark for polarization burst super-resolution and offers critical insights into noise propagation, thereby enhancing polarization image reconstruction.
☆ Channel Consistency Prior and Self-Reconstruction Strategy Based Unsupervised Image Deraining CVPR2025
Recently, deep image deraining models based on paired datasets have made a series of remarkable progress. However, they cannot be well applied in real-world applications due to the difficulty of obtaining real paired datasets and the poor generalization performance. In this paper, we propose a novel Channel Consistency Prior and Self-Reconstruction Strategy Based Unsupervised Image Deraining framework, CSUD, to tackle the aforementioned challenges. During training with unpaired data, CSUD is capable of generating high-quality pseudo clean and rainy image pairs which are used to enhance the performance of deraining network. Specifically, to preserve more image background details while transferring rain streaks from rainy images to the unpaired clean images, we propose a novel Channel Consistency Loss (CCLoss) by introducing the Channel Consistency Prior (CCP) of rain streaks into training process, thereby ensuring that the generated pseudo rainy images closely resemble the real ones. Furthermore, we propose a novel Self-Reconstruction (SR) strategy to alleviate the redundant information transfer problem of the generator, further improving the deraining performance and the generalization capability of our method. Extensive experiments on multiple synthetic and real-world datasets demonstrate that the deraining performance of CSUD surpasses other state-of-the-art unsupervised methods and CSUD exhibits superior generalization capability.
comment: Accepted to CVPR2025
☆ OCRT: Boosting Foundation Models in the Open World with Object-Concept-Relation Triad CVPR 2025
Although foundation models (FMs) claim to be powerful, their generalization ability significantly decreases when faced with distribution shifts, weak supervision, or malicious attacks in the open world. On the other hand, most domain generalization or adversarial fine-tuning methods are task-related or model-specific, ignoring the universality in practical applications and the transferability between FMs. This paper delves into the problem of generalizing FMs to the out-of-domain data. We propose a novel framework, the Object-Concept-Relation Triad (OCRT), that enables FMs to extract sparse, high-level concepts and intricate relational structures from raw visual inputs. The key idea is to bind objects in visual scenes and a set of object-centric representations through unsupervised decoupling and iterative refinement. To be specific, we project the object-centric representations onto a semantic concept space that the model can readily interpret and estimate their importance to filter out irrelevant elements. Then, a concept-based graph, which has a flexible degree, is constructed to incorporate the set of concepts and their corresponding importance, enabling the extraction of high-order factors from informative concepts and facilitating relational reasoning among these concepts. Extensive experiments demonstrate that OCRT can substantially boost the generalizability and robustness of SAM and CLIP across multiple downstream tasks.
comment: Accepted by CVPR 2025
☆ Hardware-Rasterized Ray-Based Gaussian Splatting
We present a novel, hardware rasterized rendering approach for ray-based 3D Gaussian Splatting (RayGS), obtaining both fast and high-quality results for novel view synthesis. Our work contains a mathematically rigorous and geometrically intuitive derivation about how to efficiently estimate all relevant quantities for rendering RayGS models, structured with respect to standard hardware rasterization shaders. Our solution is the first enabling rendering RayGS models at sufficiently high frame rates to support quality-sensitive applications like Virtual and Mixed Reality. Our second contribution enables alias-free rendering for RayGS, by addressing MIP-related issues arising when rendering diverging scales during training and testing. We demonstrate significant performance gains, across different benchmark scenes, while retaining state-of-the-art appearance quality of RayGS.
☆ NullSwap: Proactive Identity Cloaking Against Deepfake Face Swapping
Suffering from performance bottlenecks in passively detecting high-quality Deepfake images due to the advancement of generative models, proactive perturbations offer a promising approach to disabling Deepfake manipulations by inserting signals into benign images. However, existing proactive perturbation approaches remain unsatisfactory in several aspects: 1) visual degradation due to direct element-wise addition; 2) limited effectiveness against face swapping manipulation; 3) unavoidable reliance on white- and grey-box settings to involve generative models during training. In this study, we analyze the essence of Deepfake face swapping and argue the necessity of protecting source identities rather than target images, and we propose NullSwap, a novel proactive defense approach that cloaks source image identities and nullifies face swapping under a pure black-box scenario. We design an Identity Extraction module to obtain facial identity features from the source image, while a Perturbation Block is then devised to generate identity-guided perturbations accordingly. Meanwhile, a Feature Block extracts shallow-level image features, which are then fused with the perturbation in the Cloaking Block for image reconstruction. Furthermore, to ensure adaptability across different identity extractors in face swapping algorithms, we propose Dynamic Loss Weighting to adaptively balance identity losses. Experiments demonstrate the outstanding ability of our approach to fool various identity recognition models, outperforming state-of-the-art proactive perturbations in preventing face swapping models from generating images with correct source identities.
☆ Human Motion Unlearning
We introduce the task of human motion unlearning to prevent the synthesis of toxic animations while preserving the general text-to-motion generative performance. Unlearning toxic motions is challenging as those can be generated from explicit text prompts and from implicit toxic combinations of safe motions (e.g., ``kicking" is ``loading and swinging a leg"). We propose the first motion unlearning benchmark by filtering toxic motions from the large and recent text-to-motion datasets of HumanML3D and Motion-X. We propose baselines, by adapting state-of-the-art image unlearning techniques to process spatio-temporal signals. Finally, we propose a novel motion unlearning model based on Latent Code Replacement, which we dub LCR. LCR is training-free and suitable to the discrete latent spaces of state-of-the-art text-to-motion diffusion models. LCR is simple and consistently outperforms baselines qualitatively and quantitatively. Project page: \href{https://www.pinlab.org/hmu}{https://www.pinlab.org/hmu}.
☆ Any6D: Model-free 6D Pose Estimation of Novel Objects CVPR 2025
We introduce Any6D, a model-free framework for 6D object pose estimation that requires only a single RGB-D anchor image to estimate both the 6D pose and size of unknown objects in novel scenes. Unlike existing methods that rely on textured 3D models or multiple viewpoints, Any6D leverages a joint object alignment process to enhance 2D-3D alignment and metric scale estimation for improved pose accuracy. Our approach integrates a render-and-compare strategy to generate and refine pose hypotheses, enabling robust performance in scenarios with occlusions, non-overlapping views, diverse lighting conditions, and large cross-environment variations. We evaluate our method on five challenging datasets: REAL275, Toyota-Light, HO3D, YCBINEOAT, and LM-O, demonstrating its effectiveness in significantly outperforming state-of-the-art methods for novel object pose estimation. Project page: https://taeyeop.com/any6d
comment: CVPR 2025, Project Page: https://taeyeop.com/any6d
☆ Feature Calibration enhanced Parameter Synthesis for CLIP-based Class-incremental Learning
Class-incremental Learning (CIL) enables models to continuously learn new class knowledge while memorizing previous classes, facilitating their adaptation and evolution in dynamic environments. Traditional CIL methods are mainly based on visual features, which limits their ability to handle complex scenarios. In contrast, Vision-Language Models (VLMs) show promising potential to promote CIL by integrating pretrained knowledge with textual features. However, previous methods make it difficult to overcome catastrophic forgetting while preserving the generalization capabilities of VLMs. To tackle these challenges, we propose Feature Calibration enhanced Parameter Synthesis (FCPS) in this paper. Specifically, our FCPS employs a specific parameter adjustment mechanism to iteratively refine the proportion of original visual features participating in the final class determination, ensuring the model's foundational generalization capabilities. Meanwhile, parameter integration across different tasks achieves a balance between learning new class knowledge and retaining old knowledge. Experimental results on popular benchmarks (e.g., CIFAR100 and ImageNet100) validate the superiority of the proposed method.
☆ Structure-Aware Correspondence Learning for Relative Pose Estimation CVPR2025
Relative pose estimation provides a promising way for achieving object-agnostic pose estimation. Despite the success of existing 3D correspondence-based methods, the reliance on explicit feature matching suffers from small overlaps in visible regions and unreliable feature estimation for invisible regions. Inspired by humans' ability to assemble two object parts that have small or no overlapping regions by considering object structure, we propose a novel Structure-Aware Correspondence Learning method for Relative Pose Estimation, which consists of two key modules. First, a structure-aware keypoint extraction module is designed to locate a set of kepoints that can represent the structure of objects with different shapes and appearance, under the guidance of a keypoint based image reconstruction loss. Second, a structure-aware correspondence estimation module is designed to model the intra-image and inter-image relationships between keypoints to extract structure-aware features for correspondence estimation. By jointly leveraging these two modules, the proposed method can naturally estimate 3D-3D correspondences for unseen objects without explicit feature matching for precise relative pose estimation. Experimental results on the CO3D, Objaverse and LineMOD datasets demonstrate that the proposed method significantly outperforms prior methods, i.e., with 5.7{\deg}reduction in mean angular error on the CO3D dataset.
comment: CVPR2025
☆ Boosting Virtual Agent Learning and Reasoning: A Step-wise, Multi-dimensional, and Generalist Reward Model with Benchmark
The development of Generalist Virtual Agents (GVAs) powered by Multimodal Large Language Models (MLLMs) has shown significant promise in autonomous task execution. However, current training paradigms face critical limitations, including reliance on outcome supervision and labor-intensive human annotations. To address these challenges, we propose Similar, a Step-wise Multi-dimensional Generalist Reward Model, which offers fine-grained signals for agent training and can choose better action for inference-time scaling. Specifically, we begin by systematically defining five dimensions for evaluating agent actions. Building on this framework, we design an MCTS-P algorithm to automatically collect and annotate step-wise, five-dimensional agent execution data. Using this data, we train Similar with the Triple-M strategy. Furthermore, we introduce the first benchmark in the virtual agent domain for step-wise, multi-dimensional reward model training and evaluation, named SRM. This benchmark consists of two components: SRMTrain, which serves as the training set for Similar, and SRMEval, a manually selected test set for evaluating the reward model. Experimental results demonstrate that Similar, through its step-wise, multi-dimensional assessment and synergistic gain, provides GVAs with effective intermediate signals during both training and inference-time scaling. The code is available at https://github.com/Galery23/Similar-v1.
☆ Leveraging Land Cover Priors for Isoprene Emission Super-Resolution
Remote sensing plays a crucial role in monitoring Earth's ecosystems, yet satellite-derived data often suffer from limited spatial resolution, restricting their applicability in atmospheric modeling and climate research. In this work, we propose a deep learning-based Super-Resolution (SR) framework that leverages land cover information to enhance the spatial accuracy of Biogenic Volatile Organic Compounds (BVOCs) emissions, with a particular focus on isoprene. Our approach integrates land cover priors as emission drivers, capturing spatial patterns more effectively than traditional methods. We evaluate the model's performance across various climate conditions and analyze statistical correlations between isoprene emissions and key environmental information such as cropland and tree cover data. Additionally, we assess the generalization capabilities of our SR model by applying it to unseen climate zones and geographical regions. Experimental results demonstrate that incorporating land cover data significantly improves emission SR accuracy, particularly in heterogeneous landscapes. This study contributes to atmospheric chemistry and climate modeling by providing a cost-effective, data-driven approach to refining BVOC emission maps. The proposed method enhances the usability of satellite-based emissions data, supporting applications in air quality forecasting, climate impact assessments, and environmental studies.
comment: 17 pages, 16 figures, 4 tables
☆ Robust face recognition based on the wing loss and the $\ell_1$ regularization
In recent years, sparse sampling techniques based on regression analysis have witnessed extensive applications in face recognition research. Presently, numerous sparse sampling models based on regression analysis have been explored by various researchers. Nevertheless, the recognition rates of the majority of these models would be significantly decreased when confronted with highly occluded and highly damaged face images. In this paper, a new wing-constrained sparse coding model(WCSC) and its weighted version(WWCSC) are introduced, so as to deal with the face recognition problem in complex circumstances, where the alternating direction method of multipliers (ADMM) algorithm is employed to solve the corresponding minimization problems. In addition, performances of the proposed method are examined based on the four well-known facial databases, namely the ORL facial database, the Yale facial database, the AR facial database and the FERET facial database. Also, compared to the other methods in the literatures, the WWCSC has a very high recognition rate even in complex situations where face images have high occlusion or high damage, which illustrates the robustness of the WWCSC method in facial recognition.
comment: 10 pages, 3 figures
☆ Rethinking Glaucoma Calibration: Voting-Based Binocular and Metadata Integration
Glaucoma is an incurable ophthalmic disease that damages the optic nerve, leads to vision loss, and ranks among the leading causes of blindness worldwide. Diagnosing glaucoma typically involves fundus photography, optical coherence tomography (OCT), and visual field testing. However, the high cost of OCT often leads to reliance on fundus photography and visual field testing, both of which exhibit inherent inter-observer variability. This stems from glaucoma being a multifaceted disease that influenced by various factors. As a result, glaucoma diagnosis is highly subjective, emphasizing the necessity of calibration, which aligns predicted probabilities with actual disease likelihood. Proper calibration is essential to prevent overdiagnosis or misdiagnosis, which are critical concerns for high-risk diseases. Although AI has significantly improved diagnostic accuracy, overconfidence in models have worsen calibration performance. Recent study has begun focusing on calibration for glaucoma. Nevertheless, previous study has not fully considered glaucoma's systemic nature and the high subjectivity in its diagnostic process. To overcome these limitations, we propose V-ViT (Voting-based ViT), a novel framework that enhances calibration by incorporating disease-specific characteristics. V-ViT integrates binocular data and metadata, reflecting the multi-faceted nature of glaucoma diagnosis. Additionally, we introduce a MC dropout-based Voting System to address high subjectivity. Our approach achieves state-of-the-art performance across all metrics, including accuracy, demonstrating that our proposed methods are effective in addressing calibration issues. We validate our method using a custom dataset including binocular data.
☆ LLGS: Unsupervised Gaussian Splatting for Image Enhancement and Reconstruction in Pure Dark Environment
3D Gaussian Splatting has shown remarkable capabilities in novel view rendering tasks and exhibits significant potential for multi-view optimization.However, the original 3D Gaussian Splatting lacks color representation for inputs in low-light environments. Simply using enhanced images as inputs would lead to issues with multi-view consistency, and current single-view enhancement systems rely on pre-trained data, lacking scene generalization. These problems limit the application of 3D Gaussian Splatting in low-light conditions in the field of robotics, including high-fidelity modeling and feature matching. To address these challenges, we propose an unsupervised multi-view stereoscopic system based on Gaussian Splatting, called Low-Light Gaussian Splatting (LLGS). This system aims to enhance images in low-light environments while reconstructing the scene. Our method introduces a decomposable Gaussian representation called M-Color, which separately characterizes color information for targeted enhancement. Furthermore, we propose an unsupervised optimization method with zero-knowledge priors, using direction-based enhancement to ensure multi-view consistency. Experiments conducted on real-world datasets demonstrate that our system outperforms state-of-the-art methods in both low-light enhancement and 3D Gaussian Splatting.
☆ Unbiasing through Textual Descriptions: Mitigating Representation Bias in Video Benchmarks CVPR 2025
We propose a new "Unbiased through Textual Description (UTD)" video benchmark based on unbiased subsets of existing video classification and retrieval datasets to enable a more robust assessment of video understanding capabilities. Namely, we tackle the problem that current video benchmarks may suffer from different representation biases, e.g., object bias or single-frame bias, where mere recognition of objects or utilization of only a single frame is sufficient for correct prediction. We leverage VLMs and LLMs to analyze and debias benchmarks from such representation biases. Specifically, we generate frame-wise textual descriptions of videos, filter them for specific information (e.g. only objects) and leverage them to examine representation biases across three dimensions: 1) concept bias - determining if a specific concept (e.g., objects) alone suffice for prediction; 2) temporal bias - assessing if temporal information contributes to prediction; and 3) common sense vs. dataset bias - evaluating whether zero-shot reasoning or dataset correlations contribute to prediction. We conduct a systematic analysis of 12 popular video classification and retrieval datasets and create new object-debiased test splits for these datasets. Moreover, we benchmark 30 state-of-the-art video models on original and debiased splits and analyze biases in the models. To facilitate the future development of more robust video understanding benchmarks and models, we release: "UTD-descriptions", a dataset with our rich structured descriptions for each dataset, and "UTD-splits", a dataset of object-debiased test splits.
comment: To be published at CVPR 2025, project webpage https://utd-project.github.io/
☆ OCCO: LVM-guided Infrared and Visible Image Fusion Framework based on Object-aware and Contextual COntrastive Learning
Image fusion is a crucial technique in the field of computer vision, and its goal is to generate high-quality fused images and improve the performance of downstream tasks. However, existing fusion methods struggle to balance these two factors. Achieving high quality in fused images may result in lower performance in downstream visual tasks, and vice versa. To address this drawback, a novel LVM (large vision model)-guided fusion framework with Object-aware and Contextual COntrastive learning is proposed, termed as OCCO. The pre-trained LVM is utilized to provide semantic guidance, allowing the network to focus solely on fusion tasks while emphasizing learning salient semantic features in form of contrastive learning. Additionally, a novel feature interaction fusion network is also designed to resolve information conflicts in fusion images caused by modality differences. By learning the distinction between positive samples and negative samples in the latent feature space (contextual space), the integrity of target information in fused image is improved, thereby benefiting downstream performance. Finally, compared with eight state-of-the-art methods on four datasets, the effectiveness of the proposed method is validated, and exceptional performance is also demonstrated on downstream visual task.
☆ Robust Lane Detection with Wavelet-Enhanced Context Modeling and Adaptive Sampling
Lane detection is critical for autonomous driving and ad-vanced driver assistance systems (ADAS). While recent methods like CLRNet achieve strong performance, they struggle under adverse con-ditions such as extreme weather, illumination changes, occlusions, and complex curves. We propose a Wavelet-Enhanced Feature Pyramid Net-work (WE-FPN) to address these challenges. A wavelet-based non-local block is integrated before the feature pyramid to improve global context modeling, especially for occluded and curved lanes. Additionally, we de-sign an adaptive preprocessing module to enhance lane visibility under poor lighting. An attention-guided sampling strategy further reffnes spa-tial features, boosting accuracy on distant and curved lanes. Experiments on CULane and TuSimple demonstrate that our approach signiffcantly outperforms baselines in challenging scenarios, achieving better robust-ness and accuracy in real-world driving conditions.
☆ Towards Human-Understandable Multi-Dimensional Concept Discovery
Concept-based eXplainable AI (C-XAI) aims to overcome the limitations of traditional saliency maps by converting pixels into human-understandable concepts that are consistent across an entire dataset. A crucial aspect of C-XAI is completeness, which measures how well a set of concepts explains a model's decisions. Among C-XAI methods, Multi-Dimensional Concept Discovery (MCD) effectively improves completeness by breaking down the CNN latent space into distinct and interpretable concept subspaces. However, MCD's explanations can be difficult for humans to understand, raising concerns about their practical utility. To address this, we propose Human-Understandable Multi-dimensional Concept Discovery (HU-MCD). HU-MCD uses the Segment Anything Model for concept identification and implements a CNN-specific input masking technique to reduce noise introduced by traditional masking methods. These changes to MCD, paired with the completeness relation, enable HU-MCD to enhance concept understandability while maintaining explanation faithfulness. Our experiments, including human subject studies, show that HU-MCD provides more precise and reliable explanations than existing C-XAI methods. The code is available at https://github.com/grobruegge/hu-mcd.
☆ Dig2DIG: Dig into Diffusion Information Gains for Image Fusion
Image fusion integrates complementary information from multi-source images to generate more informative results. Recently, the diffusion model, which demonstrates unprecedented generative potential, has been explored in image fusion. However, these approaches typically incorporate predefined multimodal guidance into diffusion, failing to capture the dynamically changing significance of each modality, while lacking theoretical guarantees. To address this issue, we reveal a significant spatio-temporal imbalance in image denoising; specifically, the diffusion model produces dynamic information gains in different image regions with denoising steps. Based on this observation, we Dig into the Diffusion Information Gains (Dig2DIG) and theoretically derive a diffusion-based dynamic image fusion framework that provably reduces the upper bound of the generalization error. Accordingly, we introduce diffusion information gains (DIG) to quantify the information contribution of each modality at different denoising steps, thereby providing dynamic guidance during the fusion process. Extensive experiments on multiple fusion scenarios confirm that our method outperforms existing diffusion-based approaches in terms of both fusion quality and inference efficiency.
☆ Generative Dataset Distillation using Min-Max Diffusion Model ECCV2024
In this paper, we address the problem of generative dataset distillation that utilizes generative models to synthesize images. The generator may produce any number of images under a preserved evaluation time. In this work, we leverage the popular diffusion model as the generator to compute a surrogate dataset, boosted by a min-max loss to control the dataset's diversity and representativeness during training. However, the diffusion model is time-consuming when generating images, as it requires an iterative generation process. We observe a critical trade-off between the number of image samples and the image quality controlled by the diffusion steps and propose Diffusion Step Reduction to achieve optimal performance. This paper details our comprehensive method and its performance. Our model achieved $2^{nd}$ place in the generative track of \href{https://www.dd-challenge.com/#/}{The First Dataset Distillation Challenge of ECCV2024}, demonstrating its superior performance.
comment: The paper is accepted as the ECCV2024 workshop paper and achieved second place in the generative track of The First Dataset Distillation Challenge of ECCV2024, https://www.dd-challenge.com/#/
☆ Training-Free Personalization via Retrieval and Reasoning on Fingerprints
Vision Language Models (VLMs) have lead to major improvements in multimodal reasoning, yet they still struggle to understand user-specific concepts. Existing personalization methods address this limitation but heavily rely on training procedures, that can be either costly or unpleasant to individual users. We depart from existing work, and for the first time explore the training-free setting in the context of personalization. We propose a novel method, Retrieval and Reasoning for Personalization (R2P), leveraging internal knowledge of VLMs. First, we leverage VLMs to extract the concept fingerprint, i.e., key attributes uniquely defining the concept within its semantic class. When a query arrives, the most similar fingerprints are retrieved and scored via chain-of-thought-reasoning. To reduce the risk of hallucinations, the scores are validated through cross-modal verification at the attribute level: in case of a discrepancy between the scores, R2P refines the concept association via pairwise multimodal matching, where the retrieved fingerprints and their images are directly compared with the query. We validate R2P on two publicly available benchmarks and a newly introduced dataset, Personal Concepts with Visual Ambiguity (PerVA), for concept identification highlighting challenges in visual ambiguity. R2P consistently outperforms state-of-the-art approaches on various downstream tasks across all benchmarks. Code will be available upon acceptance.
☆ Unified Uncertainty-Aware Diffusion for Multi-Agent Trajectory Modeling CVPR 2025
Multi-agent trajectory modeling has primarily focused on forecasting future states, often overlooking broader tasks like trajectory completion, which are crucial for real-world applications such as correcting tracking data. Existing methods also generally predict agents' states without offering any state-wise measure of uncertainty. Moreover, popular multi-modal sampling methods lack any error probability estimates for each generated scene under the same prior observations, making it difficult to rank the predictions during inference time. We introduce U2Diff, a \textbf{unified} diffusion model designed to handle trajectory completion while providing state-wise \textbf{uncertainty} estimates jointly. This uncertainty estimation is achieved by augmenting the simple denoising loss with the negative log-likelihood of the predicted noise and propagating latent space uncertainty to the real state space. Additionally, we incorporate a Rank Neural Network in post-processing to enable \textbf{error probability} estimation for each generated mode, demonstrating a strong correlation with the error relative to ground truth. Our method outperforms the state-of-the-art solutions in trajectory completion and forecasting across four challenging sports datasets (NBA, Basketball-U, Football-U, Soccer-U), highlighting the effectiveness of uncertainty and error probability estimation. Video at https://youtu.be/ngw4D4eJToE
comment: Accepted to CVPR 2025 conference
☆ Adapting Video Diffusion Models for Time-Lapse Microscopy
We present a domain adaptation of video diffusion models to generate highly realistic time-lapse microscopy videos of cell division in HeLa cells. Although state-of-the-art generative video models have advanced significantly for natural videos, they remain underexplored in microscopy domains. To address this gap, we fine-tune a pretrained video diffusion model on microscopy-specific sequences, exploring three conditioning strategies: (1) text prompts derived from numeric phenotypic measurements (e.g., proliferation rates, migration speeds, cell-death frequencies), (2) direct numeric embeddings of phenotype scores, and (3) image-conditioned generation, where an initial microscopy frame is extended into a complete video sequence. Evaluation using biologically meaningful morphological, proliferation, and migration metrics demonstrates that fine-tuning substantially improves realism and accurately captures critical cellular behaviors such as mitosis and migration. Notably, the fine-tuned model also generalizes beyond the training horizon, generating coherent cell dynamics even in extended sequences. However, precisely controlling specific phenotypic characteristics remains challenging, highlighting opportunities for future work to enhance conditioning methods. Our results demonstrate the potential for domain-specific fine-tuning of generative video models to produce biologically plausible synthetic microscopy data, supporting applications such as in-silico hypothesis testing and data augmentation.
☆ Galaxy Walker: Geometry-aware VLMs For Galaxy-scale Understanding
Modern vision-language models (VLMs) develop patch embedding and convolution backbone within vector space, especially Euclidean ones, at the very founding. When expanding VLMs to a galaxy scale for understanding astronomical phenomena, the integration of spherical space for planetary orbits and hyperbolic spaces for black holes raises two formidable challenges. a) The current pre-training model is confined to Euclidean space rather than a comprehensive geometric embedding. b) The predominant architecture lacks suitable backbones for anisotropic physical geometries. In this paper, we introduced Galaxy-Walker, a geometry-aware VLM, for the universe-level vision understanding tasks. We proposed the geometry prompt that generates geometry tokens by random walks across diverse spaces on a multi-scale physical graph, along with a geometry adapter that compresses and reshapes the space anisotropy in a mixture-of-experts manner. Extensive experiments demonstrate the effectiveness of our approach, with Galaxy-Walker achieving state-of-the-art performance in both galaxy property estimation ($R^2$ scores up to $0.91$) and morphology classification tasks (up to $+0.17$ F1 improvement in challenging features), significantly outperforming both domain-specific models and general-purpose VLMs.
☆ Advancing Cross-Organ Domain Generalization with Test-Time Style Transfer and Diversity Enhancement
Deep learning has made significant progress in addressing challenges in various fields including computational pathology (CPath). However, due to the complexity of the domain shift problem, the performance of existing models will degrade, especially when it comes to multi-domain or cross-domain tasks. In this paper, we propose a Test-time style transfer (T3s) that uses a bidirectional mapping mechanism to project the features of the source and target domains into a unified feature space, enhancing the generalization ability of the model. To further increase the style expression space, we introduce a Cross-domain style diversification module (CSDM) to ensure the orthogonality between style bases. In addition, data augmentation and low-rank adaptation techniques are used to improve feature alignment and sensitivity, enabling the model to adapt to multi-domain inputs effectively. Our method has demonstrated effectiveness on three unseen datasets.
comment: 2025 IEEE International Symposium on Biomedical Imaging (ISBI)
☆ AMD-Hummingbird: Towards an Efficient Text-to-Video Model
Text-to-Video (T2V) generation has attracted significant attention for its ability to synthesize realistic videos from textual descriptions. However, existing models struggle to balance computational efficiency and high visual quality, particularly on resource-limited devices, e.g.,iGPUs and mobile phones. Most prior work prioritizes visual fidelity while overlooking the need for smaller, more efficient models suitable for real-world deployment. To address this challenge, we propose a lightweight T2V framework, termed Hummingbird, which prunes existing models and enhances visual quality through visual feedback learning. Our approach reduces the size of the U-Net from 1.4 billion to 0.7 billion parameters, significantly improving efficiency while preserving high-quality video generation. Additionally, we introduce a novel data processing pipeline that leverages Large Language Models (LLMs) and Video Quality Assessment (VQA) models to enhance the quality of both text prompts and video data. To support user-driven training and style customization, we publicly release the full training code, including data processing and model training. Extensive experiments show that our method achieves a 31X speedup compared to state-of-the-art models such as VideoCrafter2, while also attaining the highest overall score on VBench. Moreover, our method supports the generation of videos with up to 26 frames, addressing the limitations of existing U-Net-based methods in long video generation. Notably, the entire training process requires only four GPUs, yet delivers performance competitive with existing leading methods. Hummingbird presents a practical and efficient solution for T2V generation, combining high performance, scalability, and flexibility for real-world applications.
comment: Homepage: https://www.amd.com/en/developer/resources/technical-articles/amd-hummingbird-0-9b-text-to-video-diffusion-model-with-4-step-inferencing.html| GitHub: https://github.com/AMD-AIG-AIMA/AMD-Hummingbird-T2V
☆ LeanStereo: A Leaner Backbone based Stereo Network
Recently, end-to-end deep networks based stereo matching methods, mainly because of their performance, have gained popularity. However, this improvement in performance comes at the cost of increased computational and memory bandwidth requirements, thus necessitating specialized hardware (GPUs); even then, these methods have large inference times compared to classical methods. This limits their applicability in real-world applications. Although we desire high accuracy stereo methods albeit with reasonable inference time. To this end, we propose a fast end-to-end stereo matching method. Majority of this speedup comes from integrating a leaner backbone. To recover the performance lost because of a leaner backbone, we propose to use learned attention weights based cost volume combined with LogL1 loss for stereo matching. Using LogL1 loss not only improves the overall performance of the proposed network but also leads to faster convergence. We do a detailed empirical evaluation of different design choices and show that our method requires 4x less operations and is also about 9 to 14x faster compared to the state of the art methods like ACVNet [1], LEAStereo [2] and CFNet [3] while giving comparable performance.
comment: 8 pages, 4 figures
☆ Instruction-Aligned Visual Attention for Mitigating Hallucinations in Large Vision-Language Models ICME2025
Despite the significant success of Large Vision-Language models(LVLMs), these models still suffer hallucinations when describing images, generating answers that include non-existent objects. It is reported that these models tend to over-focus on certain irrelevant image tokens that do not contain critical information for answering the question and distort the output. To address this, we propose an Instruction-Aligned Visual Attention(IAVA) approach, which identifies irrelevant tokens by comparing changes in attention weights under two different instructions. By applying contrastive decoding, we dynamically adjust the logits generated from original image tokens and irrelevant image tokens, reducing the model's over-attention to irrelevant information. The experimental results demonstrate that IAVA consistently outperforms existing decoding techniques on benchmarks such as MME, POPE, and TextVQA in mitigating object hallucinations. Our IAVA approach is available online at https://github.com/Lee-lab558/IAVA.
comment: Accepted by ICME2025
☆ ATARS: An Aerial Traffic Atomic Activity Recognition and Temporal Segmentation Dataset
Traffic Atomic Activity which describes traffic patterns for topological intersection dynamics is a crucial topic for the advancement of intelligent driving systems. However, existing atomic activity datasets are collected from an egocentric view, which cannot support the scenarios where traffic activities in an entire intersection are required. Moreover, existing datasets only provide video-level atomic activity annotations, which require exhausting efforts to manually trim the videos for recognition and limit their applications to untrimmed videos. To bridge this gap, we introduce the Aerial Traffic Atomic Activity Recognition and Segmentation (ATARS) dataset, the first aerial dataset designed for multi-label atomic activity analysis. We offer atomic activity labels for each frame, which accurately record the intervals for traffic activities. Moreover, we propose a novel task, Multi-label Temporal Atomic Activity Recognition, enabling the study of accurate temporal localization for atomic activity and easing the burden of manual video trimming for recognition. We conduct extensive experiments to evaluate existing state-of-the-art models on both atomic activity recognition and temporal atomic activity segmentation. The results highlight the unique challenges of our ATARS dataset, such as recognizing extremely small objects' activities. We further provide comprehensive discussion analyzing these challenges and offer valuable insights for future direction to improve recognizing atomic activity in aerial view. Our source code and dataset are available at https://github.com/magecliff96/ATARS/
☆ EvAnimate: Event-conditioned Image-to-Video Generation for Human Animation
Conditional human animation transforms a static reference image into a dynamic sequence by applying motion cues such as poses. These motion cues are typically derived from video data but are susceptible to limitations including low temporal resolution, motion blur, overexposure, and inaccuracies under low-light conditions. In contrast, event cameras provide data streams with exceptionally high temporal resolution, a wide dynamic range, and inherent resistance to motion blur and exposure issues. In this work, we propose EvAnimate, a framework that leverages event streams as motion cues to animate static human images. Our approach employs a specialized event representation that transforms asynchronous event streams into 3-channel slices with controllable slicing rates and appropriate slice density, ensuring compatibility with diffusion models. Subsequently, a dual-branch architecture generates high-quality videos by harnessing the inherent motion dynamics of the event streams, thereby enhancing both video quality and temporal consistency. Specialized data augmentation strategies further enhance cross-person generalization. Finally, we establish a new benchmarking, including simulated event data for training and validation, and a real-world event dataset capturing human actions under normal and extreme scenarios. The experiment results demonstrate that EvAnimate achieves high temporal fidelity and robust performance in scenarios where traditional video-derived cues fall short.
☆ Benchmarking Post-Hoc Unknown-Category Detection in Food Recognition
Food recognition models often struggle to distinguish between seen and unseen samples, frequently misclassifying samples from unseen categories by assigning them an in-distribution (ID) label. This misclassification presents significant challenges when deploying these models in real-world applications, particularly within automatic dietary assessment systems, where incorrect labels can lead to cascading errors throughout the system. Ideally, such models should prompt the user when an unknown sample is encountered, allowing for corrective action. Given no prior research exploring food recognition in real-world settings, in this work we conduct an empirical analysis of various post-hoc out-of-distribution (OOD) detection methods for fine-grained food recognition. Our findings indicate that virtual logit matching (ViM) performed the best overall, likely due to its combination of logits and feature-space representations. Additionally, our work reinforces prior notions in the OOD domain, noting that models with higher ID accuracy performed better across the evaluated OOD detection methods. Furthermore, transformer-based architectures consistently outperformed convolution-based models in detecting OOD samples across various methods.
☆ Distilling Stereo Networks for Performant and Efficient Leaner Networks
Knowledge distillation has been quite popular in vision for tasks like classification and segmentation however not much work has been done for distilling state-of-the-art stereo matching methods despite their range of applications. One of the reasons for its lack of use in stereo matching networks is due to the inherent complexity of these networks, where a typical network is composed of multiple two- and three-dimensional modules. In this work, we systematically combine the insights from state-of-the-art stereo methods with general knowledge-distillation techniques to develop a joint framework for stereo networks distillation with competitive results and faster inference. Moreover, we show, via a detailed empirical analysis, that distilling knowledge from the stereo network requires careful design of the complete distillation pipeline starting from backbone to the right selection of distillation points and corresponding loss functions. This results in the student networks that are not only leaner and faster but give excellent performance . For instance, our student network while performing better than the performance oriented methods like PSMNet [1], CFNet [2], and LEAStereo [3]) on benchmark SceneFlow dataset, is 8x, 5x, and 8x faster respectively. Furthermore, compared to speed oriented methods having inference time less than 100ms, our student networks perform better than all the tested methods. In addition, our student network also shows better generalization capabilities when tested on unseen datasets like ETH3D and Middlebury.
comment: 8 pages, 3 figures. Published in: 2023 International Joint Conference on Neural Networks (IJCNN)
☆ UniPCGC: Towards Practical Point Cloud Geometry Compression via an Efficient Unified Approach AAAI 2025
Learning-based point cloud compression methods have made significant progress in terms of performance. However, these methods still encounter challenges including high complexity, limited compression modes, and a lack of support for variable rate, which restrict the practical application of these methods. In order to promote the development of practical point cloud compression, we propose an efficient unified point cloud geometry compression framework, dubbed as UniPCGC. It is a lightweight framework that supports lossy compression, lossless compression, variable rate and variable complexity. First, we introduce the Uneven 8-Stage Lossless Coder (UELC) in the lossless mode, which allocates more computational complexity to groups with higher coding difficulty, and merges groups with lower coding difficulty. Second, Variable Rate and Complexity Module (VRCM) is achieved in the lossy mode through joint adoption of a rate modulation module and dynamic sparse convolution. Finally, through the dynamic combination of UELC and VRCM, we achieve lossy compression, lossless compression, variable rate and complexity within a unified framework. Compared to the previous state-of-the-art method, our method achieves a compression ratio (CR) gain of 8.1\% on lossless compression, and a Bjontegaard Delta Rate (BD-Rate) gain of 14.02\% on lossy compression, while also supporting variable rate and variable complexity.
comment: Accepted to AAAI 2025
☆ HiRes-FusedMIM: A High-Resolution RGB-DSM Pre-trained Model for Building-Level Remote Sensing Applications
Recent advances in self-supervised learning have led to the development of foundation models that have significantly advanced performance in various computer vision tasks. However, despite their potential, these models often overlook the crucial role of high-resolution digital surface models (DSMs) in understanding urban environments, particularly for building-level analysis, which is essential for applications like digital twins. To address this gap, we introduce HiRes-FusedMIM, a novel pre-trained model specifically designed to leverage the rich information contained within high-resolution RGB and DSM data. HiRes-FusedMIM utilizes a dual-encoder simple masked image modeling (SimMIM) architecture with a multi-objective loss function that combines reconstruction and contrastive objectives, enabling it to learn powerful, joint representations from both modalities. We conducted a comprehensive evaluation of HiRes-FusedMIM on a diverse set of downstream tasks, including classification, semantic segmentation, and instance segmentation. Our results demonstrate that: 1) HiRes-FusedMIM outperforms previous state-of-the-art geospatial methods on several building-related datasets, including WHU Aerial and LoveDA, demonstrating its effectiveness in capturing and leveraging fine-grained building information; 2) Incorporating DSMs during pre-training consistently improves performance compared to using RGB data alone, highlighting the value of elevation information for building-level analysis; 3) The dual-encoder architecture of HiRes-FusedMIM, with separate encoders for RGB and DSM data, significantly outperforms a single-encoder model on the Vaihingen segmentation task, indicating the benefits of learning specialized representations for each modality. To facilitate further research and applications in this direction, we will publicly release the trained model weights.
☆ DiN: Diffusion Model for Robust Medical VQA with Semantic Noisy Labels
Medical Visual Question Answering (Med-VQA) systems benefit the interpretation of medical images containing critical clinical information. However, the challenge of noisy labels and limited high-quality datasets remains underexplored. To address this, we establish the first benchmark for noisy labels in Med-VQA by simulating human mislabeling with semantically designed noise types. More importantly, we introduce the DiN framework, which leverages a diffusion model to handle noisy labels in Med-VQA. Unlike the dominant classification-based VQA approaches that directly predict answers, our Answer Diffuser (AD) module employs a coarse-to-fine process, refining answer candidates with a diffusion model for improved accuracy. The Answer Condition Generator (ACG) further enhances this process by generating task-specific conditional information via integrating answer embeddings with fused image-question features. To address label noise, our Noisy Label Refinement(NLR) module introduces a robust loss function and dynamic answer adjustment to further boost the performance of the AD module.
☆ k-NN as a Simple and Effective Estimator of Transferability
How well can one expect transfer learning to work in a new setting where the domain is shifted, the task is different, and the architecture changes? Many transfer learning metrics have been proposed to answer this question. But how accurate are their predictions in a realistic new setting? We conducted an extensive evaluation involving over 42,000 experiments comparing 23 transferability metrics across 16 different datasets to assess their ability to predict transfer performance. Our findings reveal that none of the existing metrics perform well across the board. However, we find that a simple k-nearest neighbor evaluation -- as is commonly used to evaluate feature quality for self-supervision -- not only surpasses existing metrics, but also offers better computational efficiency and ease of implementation.
☆ AIM2PC: Aerial Image to 3D Building Point Cloud Reconstruction
Three-dimensional urban reconstruction of buildings from single-view images has attracted significant attention over the past two decades. However, recent methods primarily focus on rooftops from aerial images, often overlooking essential geometrical details. Additionally, there is a notable lack of datasets containing complete 3D point clouds for entire buildings, along with challenges in obtaining reliable camera pose information for aerial images. This paper addresses these challenges by presenting a novel methodology, AIM2PC , which utilizes our generated dataset that includes complete 3D point clouds and determined camera poses. Our approach takes features from a single aerial image as input and concatenates them with essential additional conditions, such as binary masks and Sobel edge maps, to enable more edge-aware reconstruction. By incorporating a point cloud diffusion model based on Centered denoising Diffusion Probabilistic Models (CDPM), we project these concatenated features onto the partially denoised point cloud using our camera poses at each diffusion step. The proposed method is able to reconstruct the complete 3D building point cloud, including wall information and demonstrates superior performance compared to existing baseline techniques. To allow further comparisons with our methodology the dataset has been made available at https://github.com/Soulaimene/AIM2PCDataset
comment: Accepted to ISPRS Geospatial Week 2025
☆ LookCloser: Frequency-aware Radiance Field for Tiny-Detail Scene CVPR 2025
Humans perceive and comprehend their surroundings through information spanning multiple frequencies. In immersive scenes, people naturally scan their environment to grasp its overall structure while examining fine details of objects that capture their attention. However, current NeRF frameworks primarily focus on modeling either high-frequency local views or the broad structure of scenes with low-frequency information, which is limited to balancing both. We introduce FA-NeRF, a novel frequency-aware framework for view synthesis that simultaneously captures the overall scene structure and high-definition details within a single NeRF model. To achieve this, we propose a 3D frequency quantification method that analyzes the scene's frequency distribution, enabling frequency-aware rendering. Our framework incorporates a frequency grid for fast convergence and querying, a frequency-aware feature re-weighting strategy to balance features across different frequency contents. Extensive experiments show that our method significantly outperforms existing approaches in modeling entire scenes while preserving fine details.
comment: 8 pages, 6 figures. Accepted to CVPR 2025
☆ Uncertainty-guided Perturbation for Image Super-Resolution Diffusion Model CVPR 2025
Diffusion-based image super-resolution methods have demonstrated significant advantages over GAN-based approaches, particularly in terms of perceptual quality. Building upon a lengthy Markov chain, diffusion-based methods possess remarkable modeling capacity, enabling them to achieve outstanding performance in real-world scenarios. Unlike previous methods that focus on modifying the noise schedule or sampling process to enhance performance, our approach emphasizes the improved utilization of LR information. We find that different regions of the LR image can be viewed as corresponding to different timesteps in a diffusion process, where flat areas are closer to the target HR distribution but edge and texture regions are farther away. In these flat areas, applying a slight noise is more advantageous for the reconstruction. We associate this characteristic with uncertainty and propose to apply uncertainty estimate to guide region-specific noise level control, a technique we refer to as Uncertainty-guided Noise Weighting. Pixels with lower uncertainty (i.e., flat regions) receive reduced noise to preserve more LR information, therefore improving performance. Furthermore, we modify the network architecture of previous methods to develop our Uncertainty-guided Perturbation Super-Resolution (UPSR) model. Extensive experimental results demonstrate that, despite reduced model size and training overhead, the proposed UWSR method outperforms current state-of-the-art methods across various datasets, both quantitatively and qualitatively.
comment: Accepted to CVPR 2025
☆ Can Text-to-Video Generation help Video-Language Alignment? CVPR 2025
Recent video-language alignment models are trained on sets of videos, each with an associated positive caption and a negative caption generated by large language models. A problem with this procedure is that negative captions may introduce linguistic biases, i.e., concepts are seen only as negatives and never associated with a video. While a solution would be to collect videos for the negative captions, existing databases lack the fine-grained variations needed to cover all possible negatives. In this work, we study whether synthetic videos can help to overcome this issue. Our preliminary analysis with multiple generators shows that, while promising on some tasks, synthetic videos harm the performance of the model on others. We hypothesize this issue is linked to noise (semantic and visual) in the generated videos and develop a method, SynViTA, that accounts for those. SynViTA dynamically weights the contribution of each synthetic video based on how similar its target caption is w.r.t. the real counterpart. Moreover, a semantic consistency loss makes the model focus on fine-grained differences across captions, rather than differences in video appearance. Experiments show that, on average, SynViTA improves over existing methods on VideoCon test sets and SSv2-Temporal, SSv2-Events, and ATP-Hard benchmarks, being a first promising step for using synthetic videos when learning video-language models.
comment: CVPR 2025. Project website at https://lucazanella.github.io/synvita/
☆ PM4Bench: A Parallel Multilingual Multi-Modal Multi-task Benchmark for Large Vision Language Model
Existing multilingual benchmarks for Large Vision Language Models (LVLMs) suffer from limitations including language-specific content biases, disjointed multimodal input formats, and a lack of safety evaluation. To address these gaps, we propose PM4Bench, the first Parallel Multilingual Multi-Modal Multi-task Benchmark for LVLMs. PM4Bench features a parallel corpus design across 10 languages, enabling fair and accurate cross-lingual comparisons. It includes the vision setting where text and queries are embedded in images, requiring LVLMs to simultaneously "see", "read", and "think", aligning with real-world applications. Additionally, PM\textsuperscript{4}Bench incorporates safety evaluations, addressing critical oversight in existing multilingual benchmarks. Using PM4Bench, we evaluate 11 mainstream LVLMs, revealing significant cross-linguistic performance disparities, particularly in vision settings, and identifying OCR capability as a key determinant of these imbalances. We will release PM4Bench at https://github.com/opendatalab/PM4Bench .
comment: Equal contribution: Junyuan Gao, Jiahe Song, Jiang Wu; Corresponding author: Conghui He
☆ Explaining Domain Shifts in Language: Concept erasing for Interpretable Image Classification CVPR2025
Concept-based models can map black-box representations to human-understandable concepts, which makes the decision-making process more transparent and then allows users to understand the reason behind predictions. However, domain-specific concepts often impact the final predictions, which subsequently undermine the model generalization capabilities, and prevent the model from being used in high-stake applications. In this paper, we propose a novel Language-guided Concept-Erasing (LanCE) framework. In particular, we empirically demonstrate that pre-trained vision-language models (VLMs) can approximate distinct visual domain shifts via domain descriptors while prompting large Language Models (LLMs) can easily simulate a wide range of descriptors of unseen visual domains. Then, we introduce a novel plug-in domain descriptor orthogonality (DDO) regularizer to mitigate the impact of these domain-specific concepts on the final predictions. Notably, the DDO regularizer is agnostic to the design of concept-based models and we integrate it into several prevailing models. Through evaluation of domain generalization on four standard benchmarks and three newly introduced benchmarks, we demonstrate that DDO can significantly improve the out-of-distribution (OOD) generalization over the previous state-of-the-art concept-based models.Our code is available at https://github.com/joeyz0z/LanCE.
comment: Accepted by CVPR2025
Video-XL-Pro: Reconstructive Token Compression for Extremely Long Video Understanding
Despite advanced token compression techniques, existing multimodal large language models (MLLMs) still struggle with hour-long video understanding. In this work, we propose Video-XL-Pro, an efficient method for extremely long video understanding, built upon Reconstructive Compression of Tokens (ReCoT), a learnable module that leverages self-supervised learning to generate comprehensive and compact video tokens. ReCoT introduces two key components: (i) Dynamic Token Synthesizer (DTS): DTS generates pseudo-video tokens from static image tokens by learning intra-token relationships, which are then used in masked video modeling. (ii) Semantic-Guided Masking (SGM): SGM adaptively masks redundant visual tokens to facilitate more effective reconstructive learning. To improve training efficiency in MLLMs fine-tuning, we introduce a video-specific dataset pruning strategy and design a simple yet Query-aware Selector that enables the model to precisely locate query-relevant video tokens. With only 3B parameters, Video-XL-Pro outperforms most 7B models trained on larger datasets across multiple long video understanding benchmarks. Moreover, it can process over 8K frames on a single A100 GPU while maintaining high-quality performance.
☆ Global-Local Tree Search for Language Guided 3D Scene Generation CVPR 2025
Large Vision-Language Models (VLMs), such as GPT-4, have achieved remarkable success across various fields. However, there are few studies on 3D indoor scene generation with VLMs. This paper considers this task as a planning problem subject to spatial and layout common sense constraints. To solve the problem with a VLM, we propose a new global-local tree search algorithm. Globally, the method places each object sequentially and explores multiple placements during each placement process, where the problem space is represented as a tree. To reduce the depth of the tree, we decompose the scene structure hierarchically, i.e. room level, region level, floor object level, and supported object level. The algorithm independently generates the floor objects in different regions and supported objects placed on different floor objects. Locally, we also decompose the sub-task, the placement of each object, into multiple steps. The algorithm searches the tree of problem space. To leverage the VLM model to produce positions of objects, we discretize the top-down view space as a dense grid and fill each cell with diverse emojis to make to cells distinct. We prompt the VLM with the emoji grid and the VLM produces a reasonable location for the object by describing the position with the name of emojis. The quantitative and qualitative experimental results illustrate our approach generates more plausible 3D scenes than state-of-the-art approaches. Our source code is available at https://github.com/dw-dengwei/TreeSearchGen .
comment: Accepted by CVPR 2025
☆ MetaSpatial: Reinforcing 3D Spatial Reasoning in VLMs for the Metaverse
We present MetaSpatial, the first reinforcement learning (RL)-based framework designed to enhance 3D spatial reasoning in vision-language models (VLMs), enabling real-time 3D scene generation without the need for hard-coded optimizations. MetaSpatial addresses two core challenges: (i) the lack of internalized 3D spatial reasoning in VLMs, which limits their ability to generate realistic layouts, and (ii) the inefficiency of traditional supervised fine-tuning (SFT) for layout generation tasks, as perfect ground truth annotations are unavailable. Our key innovation is a multi-turn RL-based optimization mechanism that integrates physics-aware constraints and rendered image evaluations, ensuring generated 3D layouts are coherent, physically plausible, and aesthetically consistent. Methodologically, MetaSpatial introduces an adaptive, iterative reasoning process, where the VLM refines spatial arrangements over multiple turns by analyzing rendered outputs, improving scene coherence progressively. Empirical evaluations demonstrate that MetaSpatial significantly enhances the spatial consistency and formatting stability of various scale models. Post-training, object placements are more realistic, aligned, and functionally coherent, validating the effectiveness of RL for 3D spatial reasoning in metaverse, AR/VR, digital twins, and game development applications. Our code, data, and training pipeline are publicly available at https://github.com/PzySeere/MetaSpatial.
comment: Working Paper
☆ CFReID: Continual Few-shot Person Re-Identification
Real-world surveillance systems are dynamically evolving, requiring a person Re-identification model to continuously handle newly incoming data from various domains. To cope with these dynamics, Lifelong ReID (LReID) has been proposed to learn and accumulate knowledge across multiple domains incrementally. However, LReID models need to be trained on large-scale labeled data for each unseen domain, which are typically inaccessible due to privacy and cost concerns. In this paper, we propose a new paradigm called Continual Few-shot ReID (CFReID), which requires models to be incrementally trained using few-shot data and tested on all seen domains. Under few-shot conditions, CFREID faces two core challenges: 1) learning knowledge from few-shot data of unseen domain, and 2) avoiding catastrophic forgetting of seen domains. To tackle these two challenges, we propose a Stable Distribution Alignment (SDA) framework from feature distribution perspective. Specifically, our SDA is composed of two modules, i.e., Meta Distribution Alignment (MDA) and Prototype-based Few-shot Adaptation (PFA). To support the study of CFReID, we establish an evaluation benchmark for CFReID on five publicly available ReID datasets. Extensive experiments demonstrate that our SDA can enhance the few-shot learning and anti-forgetting capabilities under few-shot conditions. Notably, our approach, using only 5\% of the data, i.e., 32 IDs, significantly outperforms LReID's state-of-the-art performance, which requires 700 to 1,000 IDs.
comment: 16 pages, 8 figures
☆ SIT-FER: Integration of Semantic-, Instance-, Text-level Information for Semi-supervised Facial Expression Recognition
Semi-supervised deep facial expression recognition (SS-DFER) has gained increasingly research interest due to the difficulty in accessing sufficient labeled data in practical settings. However, existing SS-DFER methods mainly utilize generated semantic-level pseudo-labels for supervised learning, the unreliability of which compromises their performance and undermines the practical utility. In this paper, we propose a novel SS-DFER framework that simultaneously incorporates semantic, instance, and text-level information to generate high-quality pseudo-labels. Specifically, for the unlabeled data, considering the comprehensive knowledge within the textual descriptions and instance representations, we respectively calculate the similarities between the facial vision features and the corresponding textual and instance features to obtain the probabilities at the text- and instance-level. Combining with the semantic-level probability, these three-level probabilities are elaborately aggregated to gain the final pseudo-labels. Furthermore, to enhance the utilization of one-hot labels for the labeled data, we also incorporate text embeddings excavated from textual descriptions to co-supervise model training, enabling facial visual features to exhibit semantic correlations in the text space. Experiments on three datasets demonstrate that our method significantly outperforms current state-of-the-art SS-DFER methods and even exceeds fully supervised baselines. The code will be available at https://github.com/PatrickStarL/SIT-FER.
☆ PALATE: Peculiar Application of the Law of Total Expectation to Enhance the Evaluation of Deep Generative Models
Deep generative models (DGMs) have caused a paradigm shift in the field of machine learning, yielding noteworthy advancements in domains such as image synthesis, natural language processing, and other related areas. However, a comprehensive evaluation of these models that accounts for the trichotomy between fidelity, diversity, and novelty in generated samples remains a formidable challenge. A recently introduced solution that has emerged as a promising approach in this regard is the Feature Likelihood Divergence (FLD), a method that offers a theoretically motivated practical tool, yet also exhibits some computational challenges. In this paper, we propose PALATE, a novel enhancement to the evaluation of DGMs that addresses limitations of existing metrics. Our approach is based on a peculiar application of the law of total expectation to random variables representing accessible real data. When combined with the MMD baseline metric and DINOv2 feature extractor, PALATE offers a holistic evaluation framework that matches or surpasses state-of-the-art solutions while providing superior computational efficiency and scalability to large-scale datasets. Through a series of experiments, we demonstrate the effectiveness of the PALATE enhancement, contributing a computationally efficient, holistic evaluation approach that advances the field of DGMs assessment, especially in detecting sample memorization and evaluating generalization capabilities.
☆ MuMA: 3D PBR Texturing via Multi-Channel Multi-View Generation and Agentic Post-Processing
Current methods for 3D generation still fall short in physically based rendering (PBR) texturing, primarily due to limited data and challenges in modeling multi-channel materials. In this work, we propose MuMA, a method for 3D PBR texturing through Multi-channel Multi-view generation and Agentic post-processing. Our approach features two key innovations: 1) We opt to model shaded and albedo appearance channels, where the shaded channels enables the integration intrinsic decomposition modules for material properties. 2) Leveraging multimodal large language models, we emulate artists' techniques for material assessment and selection. Experiments demonstrate that MuMA achieves superior results in visual quality and material fidelity compared to existing methods.
comment: 17 pages, 14 figures
☆ Hiding Images in Diffusion Models by Editing Learned Score Functions
Hiding data using neural networks (i.e., neural steganography) has achieved remarkable success across both discriminative classifiers and generative adversarial networks. However, the potential of data hiding in diffusion models remains relatively unexplored. Current methods exhibit limitations in achieving high extraction accuracy, model fidelity, and hiding efficiency due primarily to the entanglement of the hiding and extraction processes with multiple denoising diffusion steps. To address these, we describe a simple yet effective approach that embeds images at specific timesteps in the reverse diffusion process by editing the learned score functions. Additionally, we introduce a parameter-efficient fine-tuning method that combines gradient-based parameter selection with low-rank adaptation to enhance model fidelity and hiding efficiency. Comprehensive experiments demonstrate that our method extracts high-quality images at human-indistinguishable levels, replicates the original model behaviors at both sample and population levels, and embeds images orders of magnitude faster than prior methods. Besides, our method naturally supports multi-recipient scenarios through independent extraction channels.
StableGS: A Floater-Free Framework for 3D Gaussian Splatting
Recent years have witnessed remarkable success of 3D Gaussian Splatting (3DGS) in novel view synthesis, surpassing prior differentiable rendering methods in both quality and efficiency. However, its training process suffers from coupled opacity-color optimization that frequently converges to local minima, producing floater artifacts that degrade visual fidelity. We present StableGS, a framework that eliminates floaters through cross-view depth consistency constraints while introducing a dual-opacity GS model to decouple geometry and material properties of translucent objects. To further enhance reconstruction quality in weakly-textured regions, we integrate DUSt3R depth estimation, significantly improving geometric stability. Our method fundamentally addresses 3DGS training instabilities, outperforming existing state-of-the-art methods across open-source datasets.
☆ InPO: Inversion Preference Optimization with Reparametrized DDIM for Efficient Diffusion Model Alignment CVPR2025
Without using explicit reward, direct preference optimization (DPO) employs paired human preference data to fine-tune generative models, a method that has garnered considerable attention in large language models (LLMs). However, exploration of aligning text-to-image (T2I) diffusion models with human preferences remains limited. In comparison to supervised fine-tuning, existing methods that align diffusion model suffer from low training efficiency and subpar generation quality due to the long Markov chain process and the intractability of the reverse process. To address these limitations, we introduce DDIM-InPO, an efficient method for direct preference alignment of diffusion models. Our approach conceptualizes diffusion model as a single-step generative model, allowing us to fine-tune the outputs of specific latent variables selectively. In order to accomplish this objective, we first assign implicit rewards to any latent variable directly via a reparameterization technique. Then we construct an Inversion technique to estimate appropriate latent variables for preference optimization. This modification process enables the diffusion model to only fine-tune the outputs of latent variables that have a strong correlation with the preference dataset. Experimental results indicate that our DDIM-InPO achieves state-of-the-art performance with just 400 steps of fine-tuning, surpassing all preference aligning baselines for T2I diffusion models in human preference evaluation tasks.
comment: Accepted by CVPR2025
☆ Latent Space Super-Resolution for Higher-Resolution Image Generation with Diffusion Models CVPR 2025
In this paper, we propose LSRNA, a novel framework for higher-resolution (exceeding 1K) image generation using diffusion models by leveraging super-resolution directly in the latent space. Existing diffusion models struggle with scaling beyond their training resolutions, often leading to structural distortions or content repetition. Reference-based methods address the issues by upsampling a low-resolution reference to guide higher-resolution generation. However, they face significant challenges: upsampling in latent space often causes manifold deviation, which degrades output quality. On the other hand, upsampling in RGB space tends to produce overly smoothed outputs. To overcome these limitations, LSRNA combines Latent space Super-Resolution (LSR) for manifold alignment and Region-wise Noise Addition (RNA) to enhance high-frequency details. Our extensive experiments demonstrate that integrating LSRNA outperforms state-of-the-art reference-based methods across various resolutions and metrics, while showing the critical role of latent space upsampling in preserving detail and sharpness. The code is available at https://github.com/3587jjh/LSRNA.
comment: Accepted by CVPR 2025
☆ Benchmarking Multi-modal Semantic Segmentation under Sensor Failures: Missing and Noisy Modality Robustness
Multi-modal semantic segmentation (MMSS) addresses the limitations of single-modality data by integrating complementary information across modalities. Despite notable progress, a significant gap persists between research and real-world deployment due to variability and uncertainty in multi-modal data quality. Robustness has thus become essential for practical MMSS applications. However, the absence of standardized benchmarks for evaluating robustness hinders further advancement. To address this, we first survey existing MMSS literature and categorize representative methods to provide a structured overview. We then introduce a robustness benchmark that evaluates MMSS models under three scenarios: Entire-Missing Modality (EMM), Random-Missing Modality (RMM), and Noisy Modality (NM). From a probabilistic standpoint, we model modality failure under two conditions: (1) all damaged combinations are equally probable; (2) each modality fails independently following a Bernoulli distribution. Based on these, we propose four metrics-$mIoU^{Avg}_{EMM}$, $mIoU^{E}_{EMM}$, $mIoU^{Avg}_{RMM}$, and $mIoU^{E}_{RMM}$-to assess model robustness under EMM and RMM. This work provides the first dedicated benchmark for MMSS robustness, offering new insights and tools to advance the field. Source code is available at https://github.com/Chenfei-Liao/Multi-Modal-Semantic-Segmentation-Robustness-Benchmark.
☆ ReconDreamer++: Harmonizing Generative and Reconstructive Models for Driving Scene Representation
Combining reconstruction models with generative models has emerged as a promising paradigm for closed-loop simulation in autonomous driving. For example, ReconDreamer has demonstrated remarkable success in rendering large-scale maneuvers. However, a significant gap remains between the generated data and real-world sensor observations, particularly in terms of fidelity for structured elements, such as the ground surface. To address these challenges, we propose ReconDreamer++, an enhanced framework that significantly improves the overall rendering quality by mitigating the domain gap and refining the representation of the ground surface. Specifically, ReconDreamer++ introduces the Novel Trajectory Deformable Network (NTDNet), which leverages learnable spatial deformation mechanisms to bridge the domain gap between synthesized novel views and original sensor observations. Moreover, for structured elements such as the ground surface, we preserve geometric prior knowledge in 3D Gaussians, and the optimization process focuses on refining appearance attributes while preserving the underlying geometric structure. Experimental evaluations conducted on multiple datasets (Waymo, nuScenes, PandaSet, and EUVS) confirm the superior performance of ReconDreamer++. Specifically, on Waymo, ReconDreamer++ achieves performance comparable to Street Gaussians for the original trajectory while significantly outperforming ReconDreamer on novel trajectories. In particular, it achieves substantial improvements, including a 6.1% increase in NTA-IoU, a 23. 0% improvement in FID, and a remarkable 4.5% gain in the ground surface metric NTL-IoU, highlighting its effectiveness in accurately reconstructing structured elements such as the road surface.
comment: Project Page: https://recondreamer-plus.github.io/
☆ On the Perception Bottleneck of VLMs for Chart Understanding
Chart understanding requires models to effectively analyze and reason about numerical data, textual elements, and complex visual components. Our observations reveal that the perception capabilities of existing large vision-language models (LVLMs) constitute a critical bottleneck in this process. In this study, we delve into this perception bottleneck by decomposing it into two components: the vision encoder bottleneck, where the visual representation may fail to encapsulate the correct information, and the extraction bottleneck, where the language model struggles to extract the necessary information from the provided visual representations. Through comprehensive experiments, we find that (1) the information embedded within visual representations is substantially richer than what is typically captured by linear extractors, such as the widely used retrieval accuracy metric; (2) While instruction tuning effectively enhances the extraction capability of LVLMs, the vision encoder remains a critical bottleneck, demanding focused attention and improvement. Therefore, we further enhance the visual encoder to mitigate the vision encoder bottleneck under a contrastive learning framework. Empirical results demonstrate that our approach significantly mitigates the perception bottleneck and improves the ability of LVLMs to comprehend charts. Code is publicly available at https://github.com/hkust-nlp/Vision4Chart.
☆ A Simple yet Effective Layout Token in Large Language Models for Document Understanding CVPR 2025
Recent methods that integrate spatial layouts with text for document understanding in large language models (LLMs) have shown promising results. A commonly used method is to represent layout information as text tokens and interleave them with text content as inputs to the LLMs. However, such a method still demonstrates limitations, as it requires additional position IDs for tokens that are used to represent layout information. Due to the constraint on max position IDs, assigning them to layout information reduces those available for text content, reducing the capacity for the model to learn from the text during training, while also introducing a large number of potentially untrained position IDs during long-context inference, which can hinder performance on document understanding tasks. To address these issues, we propose LayTokenLLM, a simple yet effective method for document understanding. LayTokenLLM represents layout information as a single token per text segment and uses a specialized positional encoding scheme. It shares position IDs between text and layout tokens, eliminating the need for additional position IDs. This design maintains the model's capacity to learn from text while mitigating long-context issues during inference. Furthermore, a novel pre-training objective called Next Interleaved Text and Layout Token Prediction (NTLP) is devised to enhance cross-modality learning between text and layout tokens. Extensive experiments show that LayTokenLLM outperforms existing layout-integrated LLMs and MLLMs of similar scales on multi-page document understanding tasks, as well as most single-page tasks.
comment: CVPR 2025
☆ CQ-DINO: Mitigating Gradient Dilution via Category Queries for Vast Vocabulary Object Detection
With the exponential growth of data, traditional object detection methods are increasingly struggling to handle vast vocabulary object detection tasks effectively. We analyze two key limitations of classification-based detectors: positive gradient dilution, where rare positive categories receive insufficient learning signals, and hard negative gradient dilution, where discriminative gradients are overwhelmed by numerous easy negatives. To address these challenges, we propose CQ-DINO, a category query-based object detection framework that reformulates classification as a contrastive task between object queries and learnable category queries. Our method introduces image-guided query selection, which reduces the negative space by adaptively retrieving top-K relevant categories per image via cross-attention, thereby rebalancing gradient distributions and facilitating implicit hard example mining. Furthermore, CQ-DINO flexibly integrates explicit hierarchical category relationships in structured datasets (e.g., V3Det) or learns implicit category correlations via self-attention in generic datasets (e.g., COCO). Experiments demonstrate that CQ-DINO achieves superior performance on the challenging V3Det benchmark (surpassing previous methods by 2.1% AP) while maintaining competitiveness in COCO. Our work provides a scalable solution for real-world detection systems requiring wide category coverage. The dataset and code will be publicly at https://github.com/RedAIGC/CQ-DINO.
☆ Teller: Real-Time Streaming Audio-Driven Portrait Animation with Autoregressive Motion Generation CVPR 2025
In this work, we introduce the first autoregressive framework for real-time, audio-driven portrait animation, a.k.a, talking head. Beyond the challenge of lengthy animation times, a critical challenge in realistic talking head generation lies in preserving the natural movement of diverse body parts. To this end, we propose Teller, the first streaming audio-driven protrait animation framework with autoregressive motion generation. Specifically, Teller first decomposes facial and body detail animation into two components: Facial Motion Latent Generation (FMLG) based on an autoregressive transfromer, and movement authenticity refinement using a Efficient Temporal Module (ETM).Concretely, FMLG employs a Residual VQ model to map the facial motion latent from the implicit keypoint-based model into discrete motion tokens, which are then temporally sliced with audio embeddings. This enables the AR tranformer to learn real-time, stream-based mappings from audio to motion. Furthermore, Teller incorporate ETM to capture finer motion details. This module ensures the physical consistency of body parts and accessories, such as neck muscles and earrings, improving the realism of these movements. Teller is designed to be efficient, surpassing the inference speed of diffusion-based models (Hallo 20.93s vs. Teller 0.92s for one second video generation), and achieves a real-time streaming performance of up to 25 FPS. Extensive experiments demonstrate that our method outperforms recent audio-driven portrait animation models, especially in small movements, as validated by human evaluations with a significant margin in quality and realism.
comment: Accept in CVPR 2025 Conference Submission
☆ Breaking the Encoder Barrier for Seamless Video-Language Understanding
Most Video-Large Language Models (Video-LLMs) adopt an encoder-decoder framework, where a vision encoder extracts frame-wise features for processing by a language model. However, this approach incurs high computational costs, introduces resolution biases, and struggles to capture fine-grained multimodal interactions. To overcome these limitations, we propose ELVA, an encoder-free Video-LLM that directly models nuanced video-language interactions without relying on a vision encoder. ELVA employs token merging to construct a bottom-up hierarchical representation and incorporates a video guidance supervisor for direct spatiotemporal representation learning. Additionally, a hybrid-resolution mechanism strategically integrates high- and low-resolution frames as inputs to achieve an optimal balance between performance and efficiency. With only 7M publicly available video-text pairs, ELVA achieves performance on par with encoder-based Video-LLMs while reducing FLOPs by up to 95\% and inference latency by 92\%, offering a scalable and efficient solution for real-time video understanding.
comment: 12 pages
☆ 4DGC: Rate-Aware 4D Gaussian Compression for Efficient Streamable Free-Viewpoint Video CVPR2025
3D Gaussian Splatting (3DGS) has substantial potential for enabling photorealistic Free-Viewpoint Video (FVV) experiences. However, the vast number of Gaussians and their associated attributes poses significant challenges for storage and transmission. Existing methods typically handle dynamic 3DGS representation and compression separately, neglecting motion information and the rate-distortion (RD) trade-off during training, leading to performance degradation and increased model redundancy. To address this gap, we propose 4DGC, a novel rate-aware 4D Gaussian compression framework that significantly reduces storage size while maintaining superior RD performance for FVV. Specifically, 4DGC introduces a motion-aware dynamic Gaussian representation that utilizes a compact motion grid combined with sparse compensated Gaussians to exploit inter-frame similarities. This representation effectively handles large motions, preserving quality and reducing temporal redundancy. Furthermore, we present an end-to-end compression scheme that employs differentiable quantization and a tiny implicit entropy model to compress the motion grid and compensated Gaussians efficiently. The entire framework is jointly optimized using a rate-distortion trade-off. Extensive experiments demonstrate that 4DGC supports variable bitrates and consistently outperforms existing methods in RD performance across multiple datasets.
comment: CVPR2025
☆ Panorama Generation From NFoV Image Done Right CVPR2025
Generating 360-degree panoramas from narrow field of view (NFoV) image is a promising computer vision task for Virtual Reality (VR) applications. Existing methods mostly assess the generated panoramas with InceptionNet or CLIP based metrics, which tend to perceive the image quality and is \textbf{not suitable for evaluating the distortion}. In this work, we first propose a distortion-specific CLIP, named Distort-CLIP to accurately evaluate the panorama distortion and discover the \textbf{``visual cheating''} phenomenon in previous works (\ie, tending to improve the visual results by sacrificing distortion accuracy). This phenomenon arises because prior methods employ a single network to learn the distinct panorama distortion and content completion at once, which leads the model to prioritize optimizing the latter. To address the phenomenon, we propose \textbf{PanoDecouple}, a decoupled diffusion model framework, which decouples the panorama generation into distortion guidance and content completion, aiming to generate panoramas with both accurate distortion and visual appeal. Specifically, we design a DistortNet for distortion guidance by imposing panorama-specific distortion prior and a modified condition registration mechanism; and a ContentNet for content completion by imposing perspective image information. Additionally, a distortion correction loss function with Distort-CLIP is introduced to constrain the distortion explicitly. The extensive experiments validate that PanoDecouple surpasses existing methods both in distortion and visual metrics.
comment: CVPR2025. Project page:https://isee-laboratory.github.io/PanoDecouple/ Code:https://github.com/iSEE-Laboratory/PanoDecouple/
☆ U-REPA: Aligning Diffusion U-Nets to ViTs
Representation Alignment (REPA) that aligns Diffusion Transformer (DiT) hidden-states with ViT visual encoders has proven highly effective in DiT training, demonstrating superior convergence properties, but it has not been validated on the canonical diffusion U-Net architecture that shows faster convergence compared to DiTs. However, adapting REPA to U-Net architectures presents unique challenges: (1) different block functionalities necessitate revised alignment strategies; (2) spatial-dimension inconsistencies emerge from U-Net's spatial downsampling operations; (3) space gaps between U-Net and ViT hinder the effectiveness of tokenwise alignment. To encounter these challenges, we propose U-REPA, a representation alignment paradigm that bridges U-Net hidden states and ViT features as follows: Firstly, we propose via observation that due to skip connection, the middle stage of U-Net is the best alignment option. Secondly, we propose upsampling of U-Net features after passing them through MLPs. Thirdly, we observe difficulty when performing tokenwise similarity alignment, and further introduces a manifold loss that regularizes the relative similarity between samples. Experiments indicate that the resulting U-REPA could achieve excellent generation quality and greatly accelerates the convergence speed. With CFG guidance interval, U-REPA could reach $FID<1.5$ in 200 epochs or 1M iterations on ImageNet 256 $\times$ 256, and needs only half the total epochs to perform better than REPA. Codes are available at https://github.com/YuchuanTian/U-REPA.
comment: 15 pages, 7 figures
☆ Fast and Physically-based Neural Explicit Surface for Relightable Human Avatars
Efficiently modeling relightable human avatars from sparse-view videos is crucial for AR/VR applications. Current methods use neural implicit representations to capture dynamic geometry and reflectance, which incur high costs due to the need for dense sampling in volume rendering. To overcome these challenges, we introduce Physically-based Neural Explicit Surface (PhyNES), which employs compact neural material maps based on the Neural Explicit Surface (NES) representation. PhyNES organizes human models in a compact 2D space, enhancing material disentanglement efficiency. By connecting Signed Distance Fields to explicit surfaces, PhyNES enables efficient geometry inference around a parameterized human shape model. This approach models dynamic geometry, texture, and material maps as 2D neural representations, enabling efficient rasterization. PhyNES effectively captures physical surface attributes under varying illumination, enabling real-time physically-based rendering. Experiments show that PhyNES achieves relighting quality comparable to SOTA methods while significantly improving rendering speed, memory efficiency, and reconstruction quality.
☆ VTD-CLIP: Video-to-Text Discretization via Prompting CLIP
Vision-language models bridge visual and linguistic understanding and have proven to be powerful for video recognition tasks. Existing approaches primarily rely on parameter-efficient fine-tuning of image-text pre-trained models, yet they often suffer from limited interpretability and poor generalization due to inadequate temporal modeling. To address these, we propose a simple yet effective video-to-text discretization framework. Our method repurposes the frozen text encoder to construct a visual codebook from video class labels due to the many-to-one contrastive alignment between visual and textual embeddings in multimodal pretraining. This codebook effectively transforms temporal visual data into textual tokens via feature lookups and offers interpretable video representations through explicit video modeling. Then, to enhance robustness against irrelevant or noisy frames, we introduce a confidence-aware fusion module that dynamically weights keyframes by assessing their semantic relevance via the codebook. Furthermore, our method incorporates learnable text prompts to conduct adaptive codebook updates. Extensive experiments on HMDB-51, UCF-101, SSv2, and Kinetics-400 have validated the superiority of our approach, achieving more competitive improvements over state-of-the-art methods. The code will be publicly available at https://github.com/isxinxin/VTD-CLIP.
☆ Instruct-CLIP: Improving Instruction-Guided Image Editing with Automated Data Refinement Using Contrastive Learning
Although natural language instructions offer an intuitive way to guide automated image editing, deep-learning models often struggle to achieve high-quality results, largely due to challenges in creating large, high-quality training datasets. Previous work has typically relied on text-toimage (T2I) generative models to produce pairs of original and edited images that simulate the input/output of an instruction-guided image-editing model. However, these image pairs often fail to align with the specified edit instructions due to the limitations of T2I models, which negatively impacts models trained on such datasets. To address this, we present Instruct-CLIP, a self-supervised method that learns the semantic changes between original and edited images to refine and better align the instructions in existing datasets. Furthermore, we adapt Instruct-CLIP to handle noisy latent images and diffusion timesteps so that it can be used to train latent diffusion models (LDMs) [19] and efficiently enforce alignment between the edit instruction and the image changes in latent space at any step of the diffusion pipeline. We use Instruct-CLIP to correct the InstructPix2Pix dataset and get over 120K refined samples we then use to fine-tune their model, guided by our novel Instruct-CLIP-based loss function. The resulting model can produce edits that are more aligned with the given instructions. Our code and dataset are available at https://github.com/SherryXTChen/Instruct-CLIP.git.
comment: Computer Vision and Pattern Recognition 2025
☆ Offline Meteorology-Pollution Coupling Global Air Pollution Forecasting Model with Bilinear Pooling
Air pollution has become a major threat to human health, making accurate forecasting crucial for pollution control. Traditional physics-based models forecast global air pollution by coupling meteorology and pollution processes, using either online or offline methods depending on whether fully integrated with meteorological models and run simultaneously. However, the high computational demands of both methods severely limit real-time prediction efficiency. Existing deep learning (DL) solutions employ online coupling strategies for global air pollution forecasting, which finetune pollution forecasting based on pretrained atmospheric models, requiring substantial training resources. This study pioneers a DL-based offline coupling framework that utilizes bilinear pooling to achieve offline coupling between meteorological fields and pollutants. The proposed model requires only 13% of the parameters of DL-based online coupling models while achieving competitive performance. Compared with the state-of-the-art global air pollution forecasting model CAMS, our approach demonstrates superiority in 63% variables across all forecast time steps and 85% variables in predictions exceeding 48 hours. This work pioneers experimental validation of the effectiveness of meteorological fields in DL-based global air pollution forecasting, demonstrating that offline coupling meteorological fields with pollutants can achieve a 15% relative reduction in RMSE across all pollution variables. The research establishes a new paradigm for real-time global air pollution warning systems and delivers critical technical support for developing more efficient and comprehensive AI-powered global atmospheric forecasting frameworks.
☆ Knowledge Graph Enhanced Generative Multi-modal Models for Class-Incremental Learning
Continual learning in computer vision faces the critical challenge of catastrophic forgetting, where models struggle to retain prior knowledge while adapting to new tasks. Although recent studies have attempted to leverage the generalization capabilities of pre-trained models to mitigate overfitting on current tasks, models still tend to forget details of previously learned categories as tasks progress, leading to misclassification. To address these limitations, we introduce a novel Knowledge Graph Enhanced Generative Multi-modal model (KG-GMM) that builds an evolving knowledge graph throughout the learning process. Our approach utilizes relationships within the knowledge graph to augment the class labels and assigns different relations to similar categories to enhance model differentiation. During testing, we propose a Knowledge Graph Augmented Inference method that locates specific categories by analyzing relationships within the generated text, thereby reducing the loss of detailed information about old classes when learning new knowledge and alleviating forgetting. Experiments demonstrate that our method effectively leverages relational information to help the model correct mispredictions, achieving state-of-the-art results in both conventional CIL and few-shot CIL settings, confirming the efficacy of knowledge graphs at preserving knowledge in the continual learning scenarios.
☆ DashGaussian: Optimizing 3D Gaussian Splatting in 200 Seconds CVPR2025
3D Gaussian Splatting (3DGS) renders pixels by rasterizing Gaussian primitives, where the rendering resolution and the primitive number, concluded as the optimization complexity, dominate the time cost in primitive optimization. In this paper, we propose DashGaussian, a scheduling scheme over the optimization complexity of 3DGS that strips redundant complexity to accelerate 3DGS optimization. Specifically, we formulate 3DGS optimization as progressively fitting 3DGS to higher levels of frequency components in the training views, and propose a dynamic rendering resolution scheme that largely reduces the optimization complexity based on this formulation. Besides, we argue that a specific rendering resolution should cooperate with a proper primitive number for a better balance between computing redundancy and fitting quality, where we schedule the growth of the primitives to synchronize with the rendering resolution. Extensive experiments show that our method accelerates the optimization of various 3DGS backbones by 45.7% on average while preserving the rendering quality.
comment: Accepted by CVPR2025. Project page: https://dashgaussian.github.io
☆ PDDM: Pseudo Depth Diffusion Model for RGB-PD Semantic Segmentation Based in Complex Indoor Scenes
The integration of RGB and depth modalities significantly enhances the accuracy of segmenting complex indoor scenes, with depth data from RGB-D cameras playing a crucial role in this improvement. However, collecting an RGB-D dataset is more expensive than an RGB dataset due to the need for specialized depth sensors. Aligning depth and RGB images also poses challenges due to sensor positioning and issues like missing data and noise. In contrast, Pseudo Depth (PD) from high-precision depth estimation algorithms can eliminate the dependence on RGB-D sensors and alignment processes, as well as provide effective depth information and show significant potential in semantic segmentation. Therefore, to explore the practicality of utilizing pseudo depth instead of real depth for semantic segmentation, we design an RGB-PD segmentation pipeline to integrate RGB and pseudo depth and propose a Pseudo Depth Aggregation Module (PDAM) for fully exploiting the informative clues provided by the diverse pseudo depth maps. The PDAM aggregates multiple pseudo depth maps into a single modality, making it easily adaptable to other RGB-D segmentation methods. In addition, the pre-trained diffusion model serves as a strong feature extractor for RGB segmentation tasks, but multi-modal diffusion-based segmentation methods remain unexplored. Therefore, we present a Pseudo Depth Diffusion Model (PDDM) that adopts a large-scale text-image diffusion model as a feature extractor and a simple yet effective fusion strategy to integrate pseudo depth. To verify the applicability of pseudo depth and our PDDM, we perform extensive experiments on the NYUv2 and SUNRGB-D datasets. The experimental results demonstrate that pseudo depth can effectively enhance segmentation performance, and our PDDM achieves state-of-the-art performance, outperforming other methods by +6.98 mIoU on NYUv2 and +2.11 mIoU on SUNRGB-D.
☆ Resource-Efficient Motion Control for Video Generation via Dynamic Mask Guidance
Recent advances in diffusion models bring new vitality to visual content creation. However, current text-to-video generation models still face significant challenges such as high training costs, substantial data requirements, and difficulties in maintaining consistency between given text and motion of the foreground object. To address these challenges, we propose mask-guided video generation, which can control video generation through mask motion sequences, while requiring limited training data. Our model enhances existing architectures by incorporating foreground masks for precise text-position matching and motion trajectory control. Through mask motion sequences, we guide the video generation process to maintain consistent foreground objects throughout the sequence. Additionally, through a first-frame sharing strategy and autoregressive extension approach, we achieve more stable and longer video generation. Extensive qualitative and quantitative experiments demonstrate that this approach excels in various video generation tasks, such as video editing and generating artistic videos, outperforming previous methods in terms of consistency and quality. Our generated results can be viewed in the supplementary materials.
☆ LiDAR Remote Sensing Meets Weak Supervision: Concepts, Methods, and Perspectives
LiDAR (Light Detection and Ranging) enables rapid and accurate acquisition of three-dimensional spatial data, widely applied in remote sensing areas such as surface mapping, environmental monitoring, urban modeling, and forestry inventory. LiDAR remote sensing primarily includes data interpretation and LiDAR-based inversion. However, LiDAR interpretation typically relies on dense and precise annotations, which are costly and time-consuming. Similarly, LiDAR inversion depends on scarce supervisory signals and expensive field surveys for annotations. To address this challenge, weakly supervised learning has gained significant attention in recent years, with many methods emerging to tackle LiDAR remote sensing tasks using incomplete, inaccurate, and inexact annotations, as well as annotations from other domains. Existing review articles treat LiDAR interpretation and inversion as separate tasks. This review, for the first time, adopts a unified weakly supervised learning perspective to systematically examine research on both LiDAR interpretation and inversion. We summarize the latest advancements, provide a comprehensive review of the development and application of weakly supervised techniques in LiDAR remote sensing, and discuss potential future research directions in this field.
☆ PP-FormulaNet: Bridging Accuracy and Efficiency in Advanced Formula Recognition
Formula recognition is an important task in document intelligence. It involves converting mathematical expressions from document images into structured symbolic formats that computers can easily work with. LaTeX is the most common format used for this purpose. In this work, we present PP-FormulaNet, a state-of-the-art formula recognition model that excels in both accuracy and efficiency. To meet the diverse needs of applications, we have developed two specialized models: PP-FormulaNet-L, tailored for high-accuracy scenarios, and PP-FormulaNet-S, optimized for high-efficiency contexts. Our extensive evaluations reveal that PP-FormulaNet-L attains accuracy levels that surpass those of prominent models such as UniMERNet by a significant 6%. Conversely, PP-FormulaNet-S operates at speeds that are over 16 times faster. These advancements facilitate seamless integration of PP-FormulaNet into a broad spectrum of document processing environments that involve intricate mathematical formulas. Furthermore, we introduce a Formula Mining System, which is capable of extracting a vast amount of high-quality formula data. This system further enhances the robustness and applicability of our formula recognition model. Code and models are publicly available at PaddleOCR(https://github.com/PaddlePaddle/PaddleOCR) and PaddleX(https://github.com/PaddlePaddle/PaddleX).
☆ Exploring State Space Model in Wavelet Domain: An Infrared and Visible Image Fusion Network via Wavelet Transform and State Space Model
Deep learning techniques have revolutionized the infrared and visible image fusion (IVIF), showing remarkable efficacy on complex scenarios. However, current methods do not fully combine frequency domain features with global semantic information, which will result in suboptimal extraction of global features across modalities and insufficient preservation of local texture details. To address these issues, we propose Wavelet-Mamba (W-Mamba), which integrates wavelet transform with the state-space model (SSM). Specifically, we introduce Wavelet-SSM module, which incorporates wavelet-based frequency domain feature extraction and global information extraction through SSM, thereby effectively capturing both global and local features. Additionally, we propose a cross-modal feature attention modulation, which facilitates efficient interaction and fusion between different modalities. The experimental results indicate that our method achieves both visually compelling results and superior performance compared to current state-of-the-art methods. Our code is available at https://github.com/Lmmh058/W-Mamba.
☆ Do Your Best and Get Enough Rest for Continual Learning CVPR
According to the forgetting curve theory, we can enhance memory retention by learning extensive data and taking adequate rest. This means that in order to effectively retain new knowledge, it is essential to learn it thoroughly and ensure sufficient rest so that our brain can memorize without forgetting. The main takeaway from this theory is that learning extensive data at once necessitates sufficient rest before learning the same data again. This aspect of human long-term memory retention can be effectively utilized to address the continual learning of neural networks. Retaining new knowledge for a long period of time without catastrophic forgetting is the critical problem of continual learning. Therefore, based on Ebbinghaus' theory, we introduce the view-batch model that adjusts the learning schedules to optimize the recall interval between retraining the same samples. The proposed view-batch model allows the network to get enough rest to learn extensive knowledge from the same samples with a recall interval of sufficient length. To this end, we specifically present two approaches: 1) a replay method that guarantees the optimal recall interval, and 2) a self-supervised learning that acquires extensive knowledge from a single training sample at a time. We empirically show that these approaches of our method are aligned with the forgetting curve theory, which can enhance long-term memory. In our experiments, we also demonstrate that our method significantly improves many state-of-the-art continual learning methods in various protocols and scenarios. We open-source this project at https://github.com/hankyul2/ViewBatchModel.
comment: Accepted by IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2025
DiffusedWrinkles: A Diffusion-Based Model for Data-Driven Garment Animation BMVC 2024
We present a data-driven method for learning to generate animations of 3D garments using a 2D image diffusion model. In contrast to existing methods, typically based on fully connected networks, graph neural networks, or generative adversarial networks, which have difficulties to cope with parametric garments with fine wrinkle detail, our approach is able to synthesize high-quality 3D animations for a wide variety of garments and body shapes, while being agnostic to the garment mesh topology. Our key idea is to represent 3D garment deformations as a 2D layout-consistent texture that encodes 3D offsets with respect to a parametric garment template. Using this representation, we encode a large dataset of garments simulated in various motions and shapes and train a novel conditional diffusion model that is able to synthesize high-quality pose-shape-and-design dependent 3D garment deformations. Since our model is generative, we can synthesize various plausible deformations for a given target pose, shape, and design. Additionally, we show that we can further condition our model using an existing garment state, which enables the generation of temporally coherent sequences.
comment: BMVC 2024
☆ MoST: Efficient Monarch Sparse Tuning for 3D Representation Learning
We introduce Monarch Sparse Tuning (MoST), the first reparameterization-based parameter-efficient fine-tuning (PEFT) method tailored for 3D representation learning. Unlike existing adapter-based and prompt-tuning 3D PEFT methods, MoST introduces no additional inference overhead and is compatible with many 3D representation learning backbones. At its core, we present a new family of structured matrices for 3D point clouds, Point Monarch, which can capture local geometric features of irregular points while offering high expressiveness. MoST reparameterizes the dense update weight matrices as our sparse Point Monarch matrices, significantly reducing parameters while retaining strong performance. Experiments on various backbones show that MoST is simple, effective, and highly generalizable. It captures local features in point clouds, achieving state-of-the-art results on multiple benchmarks, e.g., 97.5% acc. on ScanObjectNN (PB_50_RS) and 96.2% on ModelNet40 classification, while it can also combine with other matrix decompositions (e.g., Low-rank, Kronecker) to further reduce parameters.
comment: 11 pages, 6 figures, 6 tables. Code and weights are available at https://github.com/xhanxu/MoST
MaSS13K: A Matting-level Semantic Segmentation Benchmark
High-resolution semantic segmentation is essential for applications such as image editing, bokeh imaging, AR/VR, etc. Unfortunately, existing datasets often have limited resolution and lack precise mask details and boundaries. In this work, we build a large-scale, matting-level semantic segmentation dataset, named MaSS13K, which consists of 13,348 real-world images, all at 4K resolution. MaSS13K provides high-quality mask annotations of a number of objects, which are categorized into seven categories: human, vegetation, ground, sky, water, building, and others. MaSS13K features precise masks, with an average mask complexity 20-50 times higher than existing semantic segmentation datasets. We consequently present a method specifically designed for high-resolution semantic segmentation, namely MaSSFormer, which employs an efficient pixel decoder that aggregates high-level semantic features and low-level texture features across three stages, aiming to produce high-resolution masks with minimal computational cost. Finally, we propose a new learning paradigm, which integrates the high-quality masks of the seven given categories with pseudo labels from new classes, enabling MaSSFormer to transfer its accurate segmentation capability to other classes of objects. Our proposed MaSSFormer is comprehensively evaluated on the MaSS13K benchmark together with 14 representative segmentation models. We expect that our meticulously annotated MaSS13K dataset and the MaSSFormer model can facilitate the research of high-resolution and high-quality semantic segmentation. Datasets and codes can be found at https://github.com/xiechenxi99/MaSS13K.
☆ MonoInstance: Enhancing Monocular Priors via Multi-view Instance Alignment for Neural Rendering and Reconstruction CVPR 2025
Monocular depth priors have been widely adopted by neural rendering in multi-view based tasks such as 3D reconstruction and novel view synthesis. However, due to the inconsistent prediction on each view, how to more effectively leverage monocular cues in a multi-view context remains a challenge. Current methods treat the entire estimated depth map indiscriminately, and use it as ground truth supervision, while ignoring the inherent inaccuracy and cross-view inconsistency in monocular priors. To resolve these issues, we propose MonoInstance, a general approach that explores the uncertainty of monocular depths to provide enhanced geometric priors for neural rendering and reconstruction. Our key insight lies in aligning each segmented instance depths from multiple views within a common 3D space, thereby casting the uncertainty estimation of monocular depths into a density measure within noisy point clouds. For high-uncertainty areas where depth priors are unreliable, we further introduce a constraint term that encourages the projected instances to align with corresponding instance masks on nearby views. MonoInstance is a versatile strategy which can be seamlessly integrated into various multi-view neural rendering frameworks. Our experimental results demonstrate that MonoInstance significantly improves the performance in both reconstruction and novel view synthesis under various benchmarks.
comment: Accepted by CVPR 2025. Project page: https://wen-yuan-zhang.github.io/MonoInstance/
☆ NeRFPrior: Learning Neural Radiance Field as a Prior for Indoor Scene Reconstruction CVPR 2025
Recently, it has shown that priors are vital for neural implicit functions to reconstruct high-quality surfaces from multi-view RGB images. However, current priors require large-scale pre-training, and merely provide geometric clues without considering the importance of color. In this paper, we present NeRFPrior, which adopts a neural radiance field as a prior to learn signed distance fields using volume rendering for surface reconstruction. Our NeRF prior can provide both geometric and color clues, and also get trained fast under the same scene without additional data. Based on the NeRF prior, we are enabled to learn a signed distance function (SDF) by explicitly imposing a multi-view consistency constraint on each ray intersection for surface inference. Specifically, at each ray intersection, we use the density in the prior as a coarse geometry estimation, while using the color near the surface as a clue to check its visibility from another view angle. For the textureless areas where the multi-view consistency constraint does not work well, we further introduce a depth consistency loss with confidence weights to infer the SDF. Our experimental results outperform the state-of-the-art methods under the widely used benchmarks.
comment: Accepted by CVPR 2025. Project page: https://wen-yuan-zhang.github.io/NeRFPrior/
☆ Context-Enhanced Memory-Refined Transformer for Online Action Detection CVPR 2025
Online Action Detection (OAD) detects actions in streaming videos using past observations. State-of-the-art OAD approaches model past observations and their interactions with an anticipated future. The past is encoded using short- and long-term memories to capture immediate and long-range dependencies, while anticipation compensates for missing future context. We identify a training-inference discrepancy in existing OAD methods that hinders learning effectiveness. The training uses varying lengths of short-term memory, while inference relies on a full-length short-term memory. As a remedy, we propose a Context-enhanced Memory-Refined Transformer (CMeRT). CMeRT introduces a context-enhanced encoder to improve frame representations using additional near-past context. It also features a memory-refined decoder to leverage near-future generation to enhance performance. CMeRT achieves state-of-the-art in online detection and anticipation on THUMOS'14, CrossTask, and EPIC-Kitchens-100.
comment: Accepted by CVPR 2025
☆ Cost-Sensitive Learning for Long-Tailed Temporal Action Segmentation
Temporal action segmentation in untrimmed procedural videos aims to densely label frames into action classes. These videos inherently exhibit long-tailed distributions, where actions vary widely in frequency and duration. In temporal action segmentation approaches, we identified a bi-level learning bias. This bias encompasses (1) a class-level bias, stemming from class imbalance favoring head classes, and (2) a transition-level bias arising from variations in transitions, prioritizing commonly observed transitions. As a remedy, we introduce a constrained optimization problem to alleviate both biases. We define learning states for action classes and their associated transitions and integrate them into the optimization process. We propose a novel cost-sensitive loss function formulated as a weighted cross-entropy loss, with weights adaptively adjusted based on the learning state of actions and their transitions. Experiments on three challenging temporal segmentation benchmarks and various frameworks demonstrate the effectiveness of our approach, resulting in significant improvements in both per-class frame-wise and segment-wise performance.
comment: BMCV 2024
Diffusion-4K: Ultra-High-Resolution Image Synthesis with Latent Diffusion Models CVPR 2025
In this paper, we present Diffusion-4K, a novel framework for direct ultra-high-resolution image synthesis using text-to-image diffusion models. The core advancements include: (1) Aesthetic-4K Benchmark: addressing the absence of a publicly available 4K image synthesis dataset, we construct Aesthetic-4K, a comprehensive benchmark for ultra-high-resolution image generation. We curated a high-quality 4K dataset with carefully selected images and captions generated by GPT-4o. Additionally, we introduce GLCM Score and Compression Ratio metrics to evaluate fine details, combined with holistic measures such as FID, Aesthetics and CLIPScore for a comprehensive assessment of ultra-high-resolution images. (2) Wavelet-based Fine-tuning: we propose a wavelet-based fine-tuning approach for direct training with photorealistic 4K images, applicable to various latent diffusion models, demonstrating its effectiveness in synthesizing highly detailed 4K images. Consequently, Diffusion-4K achieves impressive performance in high-quality image synthesis and text prompt adherence, especially when powered by modern large-scale diffusion models (e.g., SD3-2B and Flux-12B). Extensive experimental results from our benchmark demonstrate the superiority of Diffusion-4K in ultra-high-resolution image synthesis.
comment: Accepted to CVPR 2025
☆ Human-Object Interaction with Vision-Language Model Guided Relative Movement Dynamics
Human-Object Interaction (HOI) is vital for advancing simulation, animation, and robotics, enabling the generation of long-term, physically plausible motions in 3D environments. However, existing methods often fall short of achieving physics realism and supporting diverse types of interactions. To address these challenges, this paper introduces a unified Human-Object Interaction framework that provides unified control over interactions with static scenes and dynamic objects using language commands. The interactions between human and object parts can always be described as the continuous stable Relative Movement Dynamics (RMD) between human and object parts. By leveraging the world knowledge and scene perception capabilities of Vision-Language Models (VLMs), we translate language commands into RMD diagrams, which are used to guide goal-conditioned reinforcement learning for sequential interaction with objects. Our framework supports long-horizon interactions among dynamic, articulated, and static objects. To support the training and evaluation of our framework, we present a new dataset named Interplay, which includes multi-round task plans generated by VLMs, covering both static and dynamic HOI tasks. Extensive experiments demonstrate that our proposed framework can effectively handle a wide range of HOI tasks, showcasing its ability to maintain long-term, multi-round transitions. For more details, please refer to our project webpage: https://rmd-hoi.github.io/.
☆ PS-EIP: Robust Photometric Stereo Based on Event Interval Profile CVPR2025
Recently, the energy-efficient photometric stereo method using an event camera has been proposed to recover surface normals from events triggered by changes in logarithmic Lambertian reflections under a moving directional light source. However, EventPS treats each event interval independently, making it sensitive to noise, shadows, and non-Lambertian reflections. This paper proposes Photometric Stereo based on Event Interval Profile (PS-EIP), a robust method that recovers pixelwise surface normals from a time-series profile of event intervals. By exploiting the continuity of the profile and introducing an outlier detection method based on profile shape, our approach enhances robustness against outliers from shadows and specular reflections. Experiments using real event data from 3D-printed objects demonstrate that PS-EIP significantly improves robustness to outliers compared to EventPS's deep-learning variant, EventPS-FCN, without relying on deep learning.
comment: CVPR2025
☆ GranQ: Granular Zero-Shot Quantization with Unified Layer-Channel Awareness
Zero-shot quantization (ZSQ) enables neural network compression without training data, which is crucial in restricted data access environments. However, existing ZSQ methods suffer from significant activation loss in low-bit environments owing to their coarse-grained scaling strategy. To address this issue, we propose GranQ, a novel ZSQ approach that leverages layer-channel awareness to minimize the quantization error. Unlike conventional layer- or channel-wise quantization, GranQ dynamically adjusts quantization granularity by considering both layer- and channel-level activation distributions. This enables fine-grained quantization while minimizing activation distortion. Additionally, we introduce vectorized activation quantization, which enables efficient parallel computation and reduces computational overhead while preserving accuracy. GranQ achieves superior performance compared with those of state-of-the-art ZSQ methods that employ quantization-aware training. With these findings, we anticipate that GranQ will inspire novel research directions beyond conventional ZSQ approaches focused on data generation and model training.
☆ SPMTrack: Spatio-Temporal Parameter-Efficient Fine-Tuning with Mixture of Experts for Scalable Visual Tracking CVPR2025
Most state-of-the-art trackers adopt one-stream paradigm, using a single Vision Transformer for joint feature extraction and relation modeling of template and search region images. However, relation modeling between different image patches exhibits significant variations. For instance, background regions dominated by target-irrelevant information require reduced attention allocation, while foreground, particularly boundary areas, need to be be emphasized. A single model may not effectively handle all kinds of relation modeling simultaneously. In this paper, we propose a novel tracker called SPMTrack based on mixture-of-experts tailored for visual tracking task (TMoE), combining the capability of multiple experts to handle diverse relation modeling more flexibly. Benefiting from TMoE, we extend relation modeling from image pairs to spatio-temporal context, further improving tracking accuracy with minimal increase in model parameters. Moreover, we employ TMoE as a parameter-efficient fine-tuning method, substantially reducing trainable parameters, which enables us to train SPMTrack of varying scales efficiently and preserve the generalization ability of pretrained models to achieve superior performance. We conduct experiments on seven datasets, and experimental results demonstrate that our method significantly outperforms current state-of-the-art trackers. The source code is available at https://github.com/WenRuiCai/SPMTrack.
comment: Accepted by CVPR2025
☆ Coeff-Tuning: A Graph Filter Subspace View for Tuning Attention-Based Large Models
Transformer-based large pre-trained models have shown remarkable generalization ability, and various parameter-efficient fine-tuning (PEFT) methods have been proposed to customize these models on downstream tasks with minimal computational and memory budgets. Previous PEFT methods are primarily designed from a tensor-decomposition perspective that tries to effectively tune the linear transformation by finding the smallest subset of parameters to train. Our study adopts an orthogonal view by representing the attention operation as a graph convolution and formulating the multi-head attention maps as a convolutional filter subspace, with each attention map as a subspace element. In this paper, we propose to tune the large pre-trained transformers by learning a small set of combination coefficients that construct a more expressive filter subspace from the original multi-head attention maps. We show analytically and experimentally that the tuned filter subspace can effectively expand the feature space of the multi-head attention and further enhance the capacity of transformers. We further stabilize the fine-tuning with a residual parameterization of the tunable subspace coefficients, and enhance the generalization with a regularization design by directly applying dropout on the tunable coefficient during training. The tunable coefficients take a tiny number of parameters and can be combined with previous PEFT methods in a plug-and-play manner. Extensive experiments show that our approach achieves superior performances than PEFT baselines with neglectable additional parameters.
☆ Mitigating Cache Noise in Test-Time Adaptation for Large Vision-Language Models ICME 2025
Test-time adaptation (TTA) of visual language models has recently attracted significant attention as a solution to the performance degradation caused by distribution shifts in downstream tasks. However, existing cache-based TTA methods have certain limitations. They mainly rely on the accuracy of cached feature labels, and the presence of noisy pseudo-labels can cause these features to deviate from their true distribution. This makes cache retrieval methods based on similarity matching highly sensitive to outliers or extreme samples. Moreover, current methods lack effective mechanisms to model class distributions, which limits their ability to fully exploit the potential of cached information. To address these challenges, we introduce a comprehensive and reliable caching mechanism and propose a novel zero-shot TTA method called ``Cache, Residual, Gaussian" (CRG). This method not only employs learnable residual parameters to better align positive and negative visual prototypes with text prototypes, thereby optimizing the quality of cached features, but also incorporates Gaussian Discriminant Analysis (GDA) to dynamically model intra-class feature distributions, further mitigating the impact of noisy features. Experimental results on 13 benchmarks demonstrate that CRG outperforms state-of-the-art TTA methods, showcasing exceptional robustness and adaptability.
comment: Accepted by ICME 2025 and ICLR 2025 Workshop on Foundation Models in the Wild
☆ TensoFlow: Tensorial Flow-based Sampler for Inverse Rendering CVPR 2025
Inverse rendering aims to recover scene geometry, material properties, and lighting from multi-view images. Given the complexity of light-surface interactions, importance sampling is essential for the evaluation of the rendering equation, as it reduces variance and enhances the efficiency of Monte Carlo sampling. Existing inverse rendering methods typically use pre-defined non-learnable importance samplers in prior manually, struggling to effectively match the spatially and directionally varied integrand and resulting in high variance and suboptimal performance. To address this limitation, we propose the concept of learning a spatially and directionally aware importance sampler for the rendering equation to accurately and flexibly capture the unconstrained complexity of a typical scene. We further formulate TensoFlow, a generic approach for sampler learning in inverse rendering, enabling to closely match the integrand of the rendering equation spatially and directionally. Concretely, our sampler is parameterized by normalizing flows, allowing both directional sampling of incident light and probability density function (PDF) inference. To capture the characteristics of the sampler spatially, we learn a tensorial representation of the scene space, which imposes spatial conditions, together with reflected direction, leading to spatially and directionally aware sampling distributions. Our model can be optimized by minimizing the difference between the integrand and our normalizing flow. Extensive experiments validate the superiority of TensoFlow over prior alternatives on both synthetic and real-world benchmarks.
comment: CVPR 2025. Code: https://github.com/fudan-zvg/tensoflow
☆ Towards Training-free Anomaly Detection with Vision and Language Foundation Models CVPR 2025
Anomaly detection is valuable for real-world applications, such as industrial quality inspection. However, most approaches focus on detecting local structural anomalies while neglecting compositional anomalies incorporating logical constraints. In this paper, we introduce LogSAD, a novel multi-modal framework that requires no training for both Logical and Structural Anomaly Detection. First, we propose a match-of-thought architecture that employs advanced large multi-modal models (i.e. GPT-4V) to generate matching proposals, formulating interests and compositional rules of thought for anomaly detection. Second, we elaborate on multi-granularity anomaly detection, consisting of patch tokens, sets of interests, and composition matching with vision and language foundation models. Subsequently, we present a calibration module to align anomaly scores from different detectors, followed by integration strategies for the final decision. Consequently, our approach addresses both logical and structural anomaly detection within a unified framework and achieves state-of-the-art results without the need for training, even when compared to supervised approaches, highlighting its robustness and effectiveness. Code is available at https://github.com/zhang0jhon/LogSAD.
comment: Accepted to CVPR 2025
☆ Plug-and-Play Interpretable Responsible Text-to-Image Generation via Dual-Space Multi-facet Concept Control
Ethical issues around text-to-image (T2I) models demand a comprehensive control over the generative content. Existing techniques addressing these issues for responsible T2I models aim for the generated content to be fair and safe (non-violent/explicit). However, these methods remain bounded to handling the facets of responsibility concepts individually, while also lacking in interpretability. Moreover, they often require alteration to the original model, which compromises the model performance. In this work, we propose a unique technique to enable responsible T2I generation by simultaneously accounting for an extensive range of concepts for fair and safe content generation in a scalable manner. The key idea is to distill the target T2I pipeline with an external plug-and-play mechanism that learns an interpretable composite responsible space for the desired concepts, conditioned on the target T2I pipeline. We use knowledge distillation and concept whitening to enable this. At inference, the learned space is utilized to modulate the generative content. A typical T2I pipeline presents two plug-in points for our approach, namely; the text embedding space and the diffusion model latent space. We develop modules for both points and show the effectiveness of our approach with a range of strong results.
☆ Diff-Palm: Realistic Palmprint Generation with Polynomial Creases and Intra-Class Variation Controllable Diffusion Models CVPR2025
Palmprint recognition is significantly limited by the lack of large-scale publicly available datasets. Previous methods have adopted B\'ezier curves to simulate the palm creases, which then serve as input for conditional GANs to generate realistic palmprints. However, without employing real data fine-tuning, the performance of the recognition model trained on these synthetic datasets would drastically decline, indicating a large gap between generated and real palmprints. This is primarily due to the utilization of an inaccurate palm crease representation and challenges in balancing intra-class variation with identity consistency. To address this, we introduce a polynomial-based palm crease representation that provides a new palm crease generation mechanism more closely aligned with the real distribution. We also propose the palm creases conditioned diffusion model with a novel intra-class variation control method. By applying our proposed $K$-step noise-sharing sampling, we are able to synthesize palmprint datasets with large intra-class variation and high identity consistency. Experimental results show that, for the first time, recognition models trained solely on our synthetic datasets, without any fine-tuning, outperform those trained on real datasets. Furthermore, our approach achieves superior recognition performance as the number of generated identities increases.
comment: Accepted by CVPR2025
☆ Image-to-Text for Medical Reports Using Adaptive Co-Attention and Triple-LSTM Module
Medical report generation requires specialized expertise that general large models often fail to accurately capture. Moreover, the inherent repetition and similarity in medical data make it difficult for models to extract meaningful features, resulting in a tendency to overfit. So in this paper, we propose a multimodal model, Co-Attention Triple-LSTM Network (CA-TriNet), a deep learning model that combines transformer architectures with a Multi-LSTM network. Its Co-Attention module synergistically links a vision transformer with a text transformer to better differentiate medical images with similarities, augmented by an adaptive weight operator to catch and amplify image labels with minor similarities. Furthermore, its Triple-LSTM module refines generated sentences using targeted image objects. Extensive evaluations over three public datasets have demonstrated that CA-TriNet outperforms state-of-the-art models in terms of comprehensive ability, even pre-trained large language models on some metrics.
☆ LGPS: A Lightweight GAN-Based Approach for Polyp Segmentation in Colonoscopy Images
Colorectal cancer (CRC) is a major global cause of cancer-related deaths, with early polyp detection and removal during colonoscopy being crucial for prevention. While deep learning methods have shown promise in polyp segmentation, challenges such as high computational costs, difficulty in segmenting small or low-contrast polyps, and limited generalizability across datasets persist. To address these issues, we propose LGPS, a lightweight GAN-based framework for polyp segmentation. LGPS incorporates three key innovations: (1) a MobileNetV2 backbone enhanced with modified residual blocks and Squeeze-and-Excitation (ResE) modules for efficient feature extraction; (2) Convolutional Conditional Random Fields (ConvCRF) for precise boundary refinement; and (3) a hybrid loss function combining Binary Cross-Entropy, Weighted IoU Loss, and Dice Loss to address class imbalance and enhance segmentation accuracy. LGPS is validated on five benchmark datasets and compared with state-of-the-art(SOTA) methods. On the largest and challenging PolypGen test dataset, LGPS achieves a Dice of 0.7299 and an IoU of 0.7867, outperformed all SOTA works and demonstrating robust generalization. With only 1.07 million parameters, LGPS is 17 times smaller than the smallest existing model, making it highly suitable for real-time clinical applications. Its lightweight design and strong performance underscore its potential for improving early CRC diagnosis. Code is available at https://github.com/Falmi/LGPS/.
comment: 10 pages, 56 Figures
☆ CO-SPY: Combining Semantic and Pixel Features to Detect Synthetic Images by AI
With the rapid advancement of generative AI, it is now possible to synthesize high-quality images in a few seconds. Despite the power of these technologies, they raise significant concerns regarding misuse. Current efforts to distinguish between real and AI-generated images may lack generalization, being effective for only certain types of generative models and susceptible to post-processing techniques like JPEG compression. To overcome these limitations, we propose a novel framework, Co-Spy, that first enhances existing semantic features (e.g., the number of fingers in a hand) and artifact features (e.g., pixel value differences), and then adaptively integrates them to achieve more general and robust synthetic image detection. Additionally, we create Co-Spy-Bench, a comprehensive dataset comprising 5 real image datasets and 22 state-of-the-art generative models, including the latest models like FLUX. We also collect 50k synthetic images in the wild from the Internet to enable evaluation in a more practical setting. Our extensive evaluations demonstrate that our detector outperforms existing methods under identical training conditions, achieving an average accuracy improvement of approximately 11% to 34%. The code is available at https://github.com/Megum1/Co-Spy.
☆ Voxel-based Point Cloud Geometry Compression with Space-to-Channel Context
Voxel-based methods are among the most efficient for point cloud geometry compression, particularly with dense point clouds. However, they face limitations due to a restricted receptive field, especially when handling high-bit depth point clouds. To overcome this issue, we introduce a stage-wise Space-to-Channel (S2C) context model for both dense point clouds and low-level sparse point clouds. This model utilizes a channel-wise autoregressive strategy to effectively integrate neighborhood information at a coarse resolution. For high-level sparse point clouds, we further propose a level-wise S2C context model that addresses resolution limitations by incorporating Geometry Residual Coding (GRC) for consistent-resolution cross-level prediction. Additionally, we use the spherical coordinate system for its compact representation and enhance our GRC approach with a Residual Probability Approximation (RPA) module, which features a large kernel size. Experimental results show that our S2C context model not only achieves bit savings while maintaining or improving reconstruction quality but also reduces computational complexity compared to state-of-the-art voxel-based compression methods.
☆ TrackID3x3: A Dataset and Algorithm for Multi-Player Tracking with Identification and Pose Estimation in 3x3 Basketball Full-court Videos
Multi-object tracking, player identification, and pose estimation are fundamental components of sports analytics, essential for analyzing player movements, performance, and tactical strategies. However, existing datasets and methodologies primarily target mainstream team sports such as soccer and conventional 5-on-5 basketball, often overlooking scenarios involving fixed-camera setups commonly used at amateur levels, less mainstream sports, or datasets that explicitly incorporate pose annotations. In this paper, we propose the TrackID3x3 dataset, the first publicly available comprehensive dataset specifically designed for multi-player tracking, player identification, and pose estimation in 3x3 basketball scenarios. The dataset comprises three distinct subsets (Indoor fixed-camera, Outdoor fixed-camera, and Drone camera footage), capturing diverse full-court camera perspectives and environments. We also introduce the Track-ID task, a simplified variant of the game state reconstruction task that excludes field detection and focuses exclusively on fixed-camera scenarios. To evaluate performance, we propose a baseline algorithm called Track-ID algorithm, tailored to assess tracking and identification quality. Furthermore, our benchmark experiments, utilizing recent multi-object tracking algorithms (e.g., BoT-SORT-ReID) and top-down pose estimation methods (HRNet, RTMPose, and SwinPose), demonstrate robust results and highlight remaining challenges. Our dataset and evaluation benchmarks provide a solid foundation for advancing automated analytics in 3x3 basketball. Dataset and code will be available at https://github.com/open-starlab/TrackID3x3.
☆ TopV: Compatible Token Pruning with Inference Time Optimization for Fast and Low-Memory Multimodal Vision Language Model CVPR 2025
Vision-Language Models (VLMs) demand substantial computational resources during inference, largely due to the extensive visual input tokens for representing visual information. Previous studies have noted that visual tokens tend to receive less attention than text tokens, suggesting their lower importance during inference and potential for pruning. However, their methods encounter several challenges: reliance on greedy heuristic criteria for token importance and incompatibility with FlashAttention and KV cache. To address these issues, we introduce \textbf{TopV}, a compatible \textbf{TO}ken \textbf{P}runing with inference Time Optimization for fast and low-memory \textbf{V}LM, achieving efficient pruning without additional training or fine-tuning. Instead of relying on attention scores, we formulate token pruning as an optimization problem, accurately identifying important visual tokens while remaining compatible with FlashAttention. Additionally, since we only perform this pruning once during the prefilling stage, it effectively reduces KV cache size. Our optimization framework incorporates a visual-aware cost function considering factors such as Feature Similarity, Relative Spatial Distance, and Absolute Central Distance, to measure the importance of each source visual token, enabling effective pruning of low-importance tokens. Extensive experiments demonstrate that our method outperforms previous token pruning methods, validating the effectiveness and efficiency of our approach.
comment: Accepted by CVPR 2025
☆ GI-SLAM: Gaussian-Inertial SLAM
3D Gaussian Splatting (3DGS) has recently emerged as a powerful representation of geometry and appearance for dense Simultaneous Localization and Mapping (SLAM). Through rapid, differentiable rasterization of 3D Gaussians, many 3DGS SLAM methods achieve near real-time rendering and accelerated training. However, these methods largely overlook inertial data, witch is a critical piece of information collected from the inertial measurement unit (IMU). In this paper, we present GI-SLAM, a novel gaussian-inertial SLAM system which consists of an IMU-enhanced camera tracking module and a realistic 3D Gaussian-based scene representation for mapping. Our method introduces an IMU loss that seamlessly integrates into the deep learning framework underpinning 3D Gaussian Splatting SLAM, effectively enhancing the accuracy, robustness and efficiency of camera tracking. Moreover, our SLAM system supports a wide range of sensor configurations, including monocular, stereo, and RGBD cameras, both with and without IMU integration. Our method achieves competitive performance compared with existing state-of-the-art real-time methods on the EuRoC and TUM-RGBD datasets.
comment: 10 pages, 2 figures, 5 tables
☆ Enhancing Dataset Distillation via Non-Critical Region Refinement CVPR 2025
Dataset distillation has become a popular method for compressing large datasets into smaller, more efficient representations while preserving critical information for model training. Data features are broadly categorized into two types: instance-specific features, which capture unique, fine-grained details of individual examples, and class-general features, which represent shared, broad patterns across a class. However, previous approaches often struggle to balance these features-some focus solely on class-general patterns, neglecting finer instance details, while others prioritize instance-specific features, overlooking the shared characteristics essential for class-level understanding. In this paper, we introduce the Non-Critical Region Refinement Dataset Distillation (NRR-DD) method, which preserves instance-specific details and fine-grained regions in synthetic data while enriching non-critical regions with class-general information. This approach enables models to leverage all pixel information, capturing both feature types and enhancing overall performance. Additionally, we present Distance-Based Representative (DBR) knowledge transfer, which eliminates the need for soft labels in training by relying on the distance between synthetic data predictions and one-hot encoded labels. Experimental results show that NRR-DD achieves state-of-the-art performance on both small- and large-scale datasets. Furthermore, by storing only two distances per instance, our method delivers comparable results across various settings. The code is available at https://github.com/tmtuan1307/NRR-DD.
comment: Accepted at CVPR 2025
☆ Surface-Aware Distilled 3D Semantic Features
Many 3D tasks such as pose alignment, animation, motion transfer, and 3D reconstruction rely on establishing correspondences between 3D shapes. This challenge has recently been approached by matching of semantic features from pre-trained vision models. However, despite their power, these features struggle to differentiate instances of the same semantic class such as "left hand" versus "right hand" which leads to substantial mapping errors. To solve this, we learn a surface-aware embedding space that is robust to these ambiguities. Importantly, our approach is self-supervised and requires only a small number of unpaired training meshes to infer features for new 3D shapes at test time. We achieve this by introducing a contrastive loss that preserves the semantic content of the features distilled from foundational models while disambiguating features located far apart on the shape's surface. We observe superior performance in correspondence matching benchmarks and enable downstream applications including in-part segmentation, pose alignment, and motion transfer. The project site is available at https://lukas.uzolas.com/SurfaceAware3DFeaturesSite.
☆ ZECO: ZeroFusion Guided 3D MRI Conditional Generation
Medical image segmentation is crucial for enhancing diagnostic accuracy and treatment planning in Magnetic Resonance Imaging (MRI). However, acquiring precise lesion masks for segmentation model training demands specialized expertise and significant time investment, leading to a small dataset scale in clinical practice. In this paper, we present ZECO, a ZeroFusion guided 3D MRI conditional generation framework that extracts, compresses, and generates high-fidelity MRI images with corresponding 3D segmentation masks to mitigate data scarcity. To effectively capture inter-slice relationships within volumes, we introduce a Spatial Transformation Module that encodes MRI images into a compact latent space for the diffusion process. Moving beyond unconditional generation, our novel ZeroFusion method progressively maps 3D masks to MRI images in latent space, enabling robust training on limited datasets while avoiding overfitting. ZECO outperforms state-of-the-art models in both quantitative and qualitative evaluations on Brain MRI datasets across various modalities, showcasing its exceptional capability in synthesizing high-quality MRI images conditioned on segmentation masks.
comment: Project page: \url{https://brack-wang.github.io/ZECO_web/}; Github Code: \url{https://github.com/Brack-Wang/ZECO}
☆ LGPS: A Lightweight GAN-Based Approach for Polyp Segmentation in Colonoscopy Images
Colorectal cancer (CRC) is a major global cause of cancer-related deaths, with early polyp detection and removal during colonoscopy being crucial for prevention. While deep learning methods have shown promise in polyp segmentation, challenges such as high computational costs, difficulty in segmenting small or low-contrast polyps, and limited generalizability across datasets persist. To address these issues, we propose LGPS, a lightweight GAN-based framework for polyp segmentation. LGPS incorporates three key innovations: (1) a MobileNetV2 backbone enhanced with modified residual blocks and Squeeze-and-Excitation (ResE) modules for efficient feature extraction; (2) Convolutional Conditional Random Fields (ConvCRF) for precise boundary refinement; and (3) a hybrid loss function combining Binary Cross-Entropy, Weighted IoU Loss, and Dice Loss to address class imbalance and enhance segmentation accuracy. LGPS is validated on five benchmark datasets and compared with state-of-the-art(SOTA) methods. On the largest and challenging PolypGen test dataset, LGPS achieves a Dice of 0.7299 and an IoU of 0.7867, outperformed all SOTA works and demonstrating robust generalization. With only 1.07 million parameters, LGPS is 17 times smaller than the smallest existing model, making it highly suitable for real-time clinical applications. Its lightweight design and strong performance underscore its potential for improving early CRC diagnosis. Code is available at https://github.com/Falmi/LGPS/.
comment: 10 pages, 6 Figures
☆ On Symmetries in Convolutional Weights ICLR 2025
We explore the symmetry of the mean k x k weight kernel in each layer of various convolutional neural networks. Unlike individual neurons, the mean kernels in internal layers tend to be symmetric about their centers instead of favoring specific directions. We investigate why this symmetry emerges in various datasets and models, and how it is impacted by certain architectural choices. We show how symmetry correlates with desirable properties such as shift and flip consistency, and might constitute an inherent inductive bias in convolutional neural networks.
comment: Accepted to the ICLR 2025 Workshop on Weight Space Learning (WSL)
☆ FRESA:Feedforward Reconstruction of Personalized Skinned Avatars from Few Images CVPR 2025
We present a novel method for reconstructing personalized 3D human avatars with realistic animation from only a few images. Due to the large variations in body shapes, poses, and cloth types, existing methods mostly require hours of per-subject optimization during inference, which limits their practical applications. In contrast, we learn a universal prior from over a thousand clothed humans to achieve instant feedforward generation and zero-shot generalization. Specifically, instead of rigging the avatar with shared skinning weights, we jointly infer personalized avatar shape, skinning weights, and pose-dependent deformations, which effectively improves overall geometric fidelity and reduces deformation artifacts. Moreover, to normalize pose variations and resolve coupled ambiguity between canonical shapes and skinning weights, we design a 3D canonicalization process to produce pixel-aligned initial conditions, which helps to reconstruct fine-grained geometric details. We then propose a multi-frame feature aggregation to robustly reduce artifacts introduced in canonicalization and fuse a plausible avatar preserving person-specific identities. Finally, we train the model in an end-to-end framework on a large-scale capture dataset, which contains diverse human subjects paired with high-quality 3D scans. Extensive experiments show that our method generates more authentic reconstruction and animation than state-of-the-arts, and can be directly generalized to inputs from casually taken phone photos. Project page and code is available at https://github.com/rongakowang/FRESA.
comment: Published in CVPR 2025
☆ Benchmarking Object Detectors under Real-World Distribution Shifts in Satellite Imagery CVPR 2025
Object detectors have achieved remarkable performance in many applications; however, these deep learning models are typically designed under the i.i.d. assumption, meaning they are trained and evaluated on data sampled from the same (source) distribution. In real-world deployment, however, target distributions often differ from source data, leading to substantial performance degradation. Domain Generalisation (DG) seeks to bridge this gap by enabling models to generalise to Out-Of-Distribution (OOD) data without access to target distributions during training, enhancing robustness to unseen conditions. In this work, we examine the generalisability and robustness of state-of-the-art object detectors under real-world distribution shifts, focusing particularly on spatial domain shifts. Despite the need, a standardised benchmark dataset specifically designed for assessing object detection under realistic DG scenarios is currently lacking. To address this, we introduce Real-World Distribution Shifts (RWDS), a suite of three novel DG benchmarking datasets that focus on humanitarian and climate change applications. These datasets enable the investigation of domain shifts across (i) climate zones and (ii) various disasters and geographic regions. To our knowledge, these are the first DG benchmarking datasets tailored for object detection in real-world, high-impact contexts. We aim for these datasets to serve as valuable resources for evaluating the robustness and generalisation of future object detection models. Our datasets and code are available at https://github.com/RWGAI/RWDS.
comment: Accepted at CVPR 2025
☆ Open-Vocabulary Functional 3D Scene Graphs for Real-World Indoor Spaces CVPR 2025
We introduce the task of predicting functional 3D scene graphs for real-world indoor environments from posed RGB-D images. Unlike traditional 3D scene graphs that focus on spatial relationships of objects, functional 3D scene graphs capture objects, interactive elements, and their functional relationships. Due to the lack of training data, we leverage foundation models, including visual language models (VLMs) and large language models (LLMs), to encode functional knowledge. We evaluate our approach on an extended SceneFun3D dataset and a newly collected dataset, FunGraph3D, both annotated with functional 3D scene graphs. Our method significantly outperforms adapted baselines, including Open3DSG and ConceptGraph, demonstrating its effectiveness in modeling complex scene functionalities. We also demonstrate downstream applications such as 3D question answering and robotic manipulation using functional 3D scene graphs. See our project page at https://openfungraph.github.io
comment: Accepted at CVPR 2025
♻ ☆ GroundCap: A Visually Grounded Image Captioning Dataset
Current image captioning systems lack the ability to link descriptive text to specific visual elements, making their outputs difficult to verify. While recent approaches offer some grounding capabilities, they cannot track object identities across multiple references or ground both actions and objects simultaneously. We propose a novel ID-based grounding system that enables consistent object reference tracking and action-object linking, and present GroundCap, a dataset containing 52,016 images from 77 movies, with 344 human-annotated and 52,016 automatically generated captions. Each caption is grounded on detected objects (132 classes) and actions (51 classes) using a tag system that maintains object identity while linking actions to the corresponding objects. Our approach features persistent object IDs for reference tracking, explicit action-object linking, and segmentation of background elements through K-means clustering. We propose gMETEOR, a metric combining caption quality with grounding accuracy, and establish baseline performance by fine-tuning Pixtral-12B. Human evaluation demonstrates our approach's effectiveness in producing verifiable descriptions with coherent object references.
comment: 37 pages
♻ ☆ Zero-Shot Styled Text Image Generation, but Make It Autoregressive CVPR2025
Styled Handwritten Text Generation (HTG) has recently received attention from the computer vision and document analysis communities, which have developed several solutions, either GAN- or diffusion-based, that achieved promising results. Nonetheless, these strategies fail to generalize to novel styles and have technical constraints, particularly in terms of maximum output length and training efficiency. To overcome these limitations, in this work, we propose a novel framework for text image generation, dubbed Emuru. Our approach leverages a powerful text image representation model (a variational autoencoder) combined with an autoregressive Transformer. Our approach enables the generation of styled text images conditioned on textual content and style examples, such as specific fonts or handwriting styles. We train our model solely on a diverse, synthetic dataset of English text rendered in over 100,000 typewritten and calligraphy fonts, which gives it the capability to reproduce unseen styles (both fonts and users' handwriting) in zero-shot. To the best of our knowledge, Emuru is the first autoregressive model for HTG, and the first designed specifically for generalization to novel styles. Moreover, our model generates images without background artifacts, which are easier to use for downstream applications. Extensive evaluation on both typewritten and handwritten, any-length text image generation scenarios demonstrates the effectiveness of our approach.
comment: Accepted at CVPR2025
♻ ☆ Relative Pose Estimation through Affine Corrections of Monocular Depth Priors CVPR 2025
Monocular depth estimation (MDE) models have undergone significant advancements over recent years. Many MDE models aim to predict affine-invariant relative depth from monocular images, while recent developments in large-scale training and vision foundation models enable reasonable estimation of metric (absolute) depth. However, effectively leveraging these predictions for geometric vision tasks, in particular relative pose estimation, remains relatively under explored. While depths provide rich constraints for cross-view image alignment, the intrinsic noise and ambiguity from the monocular depth priors present practical challenges to improving upon classic keypoint-based solutions. In this paper, we develop three solvers for relative pose estimation that explicitly account for independent affine (scale and shift) ambiguities, covering both calibrated and uncalibrated conditions. We further propose a hybrid estimation pipeline that combines our proposed solvers with classic point-based solvers and epipolar constraints. We find that the affine correction modeling is beneficial to not only the relative depth priors but also, surprisingly, the "metric" ones. Results across multiple datasets demonstrate large improvements of our approach over classic keypoint-based baselines and PnP-based solutions, under both calibrated and uncalibrated setups. We also show that our method improves consistently with different feature matchers and MDE models, and can further benefit from very recent advances on both modules. Code is available at https://github.com/MarkYu98/madpose.
comment: CVPR 2025
♻ ☆ Complementary Advantages: Exploiting Cross-Field Frequency Correlation for NIR-Assisted Image Denoising
Existing single-image denoising algorithms often struggle to restore details when dealing with complex noisy images. The introduction of near-infrared (NIR) images offers new possibilities for RGB image denoising. However, due to the inconsistency between NIR and RGB images, the existing works still struggle to balance the contributions of two fields in the process of image fusion. In response to this, in this paper, we develop a cross-field Frequency Correlation Exploiting Network (FCENet) for NIR-assisted image denoising. We first propose the frequency correlation prior based on an in-depth statistical frequency analysis of NIR-RGB image pairs. The prior reveals the complementary correlation of NIR and RGB images in the frequency domain. Leveraging frequency correlation prior, we then establish a frequency learning framework composed of Frequency Dynamic Selection Mechanism (FDSM) and Frequency Exhaustive Fusion Mechanism (FEFM). FDSM dynamically selects complementary information from NIR and RGB images in the frequency domain, and FEFM strengthens the control of common and differential features during the fusion process of NIR and RGB features. Extensive experiments on simulated and real data validate that the proposed method outperforms other state-of-the-art methods. The code will be released at https://github.com/yuchenwang815/FCENet.
♻ ☆ Merging synthetic and real embryo data for advanced AI predictions
Accurate embryo morphology assessment is essential in assisted reproductive technology for selecting the most viable embryo. Artificial intelligence has the potential to enhance this process. However, the limited availability of embryo data presents challenges for training deep learning models. To address this, we trained two generative models using two datasets-one we created and made publicly available, and one existing public dataset-to generate synthetic embryo images at various cell stages, including 2-cell, 4-cell, 8-cell, morula, and blastocyst. These were combined with real images to train classification models for embryo cell stage prediction. Our results demonstrate that incorporating synthetic images alongside real data improved classification performance, with the model achieving 97% accuracy compared to 94.5% when trained solely on real data. This trend remained consistent when tested on an external Blastocyst dataset from a different clinic. Notably, even when trained exclusively on synthetic data and tested on real data, the model achieved a high accuracy of 92%. Furthermore, combining synthetic data from both generative models yielded better classification results than using data from a single generative model. Four embryologists evaluated the fidelity of the synthetic images through a Turing test, during which they annotated inaccuracies and offered feedback. The analysis showed the diffusion model outperformed the generative adversarial network, deceiving embryologists 66.6% versus 25.3% and achieving lower Frechet inception distance scores.
♻ ☆ RaCFormer: Towards High-Quality 3D Object Detection via Query-based Radar-Camera Fusion CVPR 2025
We propose Radar-Camera fusion transformer (RaCFormer) to boost the accuracy of 3D object detection by the following insight. The Radar-Camera fusion in outdoor 3D scene perception is capped by the image-to-BEV transformation--if the depth of pixels is not accurately estimated, the naive combination of BEV features actually integrates unaligned visual content. To avoid this problem, we propose a query-based framework that enables adaptive sampling of instance-relevant features from both the bird's-eye view (BEV) and the original image view. Furthermore, we enhance system performance by two key designs: optimizing query initialization and strengthening the representational capacity of BEV. For the former, we introduce an adaptive circular distribution in polar coordinates to refine the initialization of object queries, allowing for a distance-based adjustment of query density. For the latter, we initially incorporate a radar-guided depth head to refine the transformation from image view to BEV. Subsequently, we focus on leveraging the Doppler effect of radar and introduce an implicit dynamic catcher to capture the temporal elements within the BEV. Extensive experiments on nuScenes and View-of-Delft (VoD) datasets validate the merits of our design. Remarkably, our method achieves superior results of 64.9% mAP and 70.2% NDS on nuScenes. RaCFormer also secures the state-of-the-art performance on the VoD dataset. Code is available at https://github.com/cxmomo/RaCFormer.
comment: Accepted to CVPR 2025
♻ ☆ MotionMap: Representing Multimodality in Human Pose Forecasting CVPR 2025
Human pose forecasting is inherently multimodal since multiple futures exist for an observed pose sequence. However, evaluating multimodality is challenging since the task is ill-posed. Therefore, we first propose an alternative paradigm to make the task well-posed. Next, while state-of-the-art methods predict multimodality, this requires oversampling a large volume of predictions. This raises key questions: (1) Can we capture multimodality by efficiently sampling a smaller number of predictions? (2) Subsequently, which of the predicted futures is more likely for an observed pose sequence? We address these questions with MotionMap, a simple yet effective heatmap based representation for multimodality. We extend heatmaps to represent a spatial distribution over the space of all possible motions, where different local maxima correspond to different forecasts for a given observation. MotionMap can capture a variable number of modes per observation and provide confidence measures for different modes. Further, MotionMap allows us to introduce the notion of uncertainty and controllability over the forecasted pose sequence. Finally, MotionMap captures rare modes that are non-trivial to evaluate yet critical for safety. We support our claims through multiple qualitative and quantitative experiments using popular 3D human pose datasets: Human3.6M and AMASS, highlighting the strengths and limitations of our proposed method. Project Page: https://vita-epfl.github.io/MotionMap
comment: CVPR 2025. We propose a new representation for learning multimodality in human pose forecasting which does not depend on generative models
♻ ☆ Dora: Sampling and Benchmarking for 3D Shape Variational Auto-Encoders CVPR 2025
Recent 3D content generation pipelines commonly employ Variational Autoencoders (VAEs) to encode shapes into compact latent representations for diffusion-based generation. However, the widely adopted uniform point sampling strategy in Shape VAE training often leads to a significant loss of geometric details, limiting the quality of shape reconstruction and downstream generation tasks. We present Dora-VAE, a novel approach that enhances VAE reconstruction through our proposed sharp edge sampling strategy and a dual cross-attention mechanism. By identifying and prioritizing regions with high geometric complexity during training, our method significantly improves the preservation of fine-grained shape features. Such sampling strategy and the dual attention mechanism enable the VAE to focus on crucial geometric details that are typically missed by uniform sampling approaches. To systematically evaluate VAE reconstruction quality, we additionally propose Dora-bench, a benchmark that quantifies shape complexity through the density of sharp edges, introducing a new metric focused on reconstruction accuracy at these salient geometric features. Extensive experiments on the Dora-bench demonstrate that Dora-VAE achieves comparable reconstruction quality to the state-of-the-art dense XCube-VAE while requiring a latent space at least 8$\times$ smaller (1,280 vs. > 10,000 codes).
comment: Accepted by CVPR 2025. Project page: https://aruichen.github.io/Dora/
♻ ☆ Visual Position Prompt for MLLM based Visual Grounding
Although Multimodal Large Language Models (MLLMs) excel at various image-related tasks, they encounter challenges in precisely aligning coordinates with spatial information within images, particularly in position-aware tasks such as visual grounding. This limitation arises from two key factors. First, MLLMs lack explicit spatial references, making it difficult to associate textual descriptions with precise image locations. Second, their feature extraction processes prioritize global context over fine-grained spatial details, leading to weak localization capability. To address this issue, we introduce VPP-LLaVA, an MLLM equipped with Visual Position Prompt (VPP) to improve its grounding capability. VPP-LLaVA integrates two complementary mechanisms. The global VPP overlays learnable, axis-like embeddings onto the input image to provide structured spatial cues. The local VPP focuses on fine-grained localization by incorporating position-aware queries, which suggests probable object locations. We also introduce a VPP-SFT dataset with 0.6M samples, consolidating high-quality visual grounding data into a compact format for efficient model training. Training on this dataset with VPP enhances the model's performance, achieving state-of-the-art results on standard grounding benchmarks despite using fewer training samples compared to other MLLMs like MiniGPT-v2, which rely on much larger datasets ($\sim$21M samples). The code and VPP-SFT dataset will be available at https://github.com/WayneTomas/VPP-LLaVA upon acceptance.
♻ ☆ PRISM: Privacy-Preserving Improved Stochastic Masking for Federated Generative Models
Despite recent advancements in federated learning (FL), the integration of generative models into FL has been limited due to challenges such as high communication costs and unstable training in heterogeneous data environments. To address these issues, we propose PRISM, a FL framework tailored for generative models that ensures (i) stable performance in heterogeneous data distributions and (ii) resource efficiency in terms of communication cost and final model size. The key of our method is to search for an optimal stochastic binary mask for a random network rather than updating the model weights, identifying a sparse subnetwork with high generative performance; i.e., a ``strong lottery ticket''. By communicating binary masks in a stochastic manner, PRISM minimizes communication overhead. This approach, combined with the utilization of maximum mean discrepancy (MMD) loss and a mask-aware dynamic moving average aggregation method (MADA) on the server side, facilitates stable and strong generative capabilities by mitigating local divergence in FL scenarios. Moreover, thanks to its sparsifying characteristic, PRISM yields a lightweight model without extra pruning or quantization, making it ideal for environments such as edge devices. Experiments on MNIST, FMNIST, CelebA, and CIFAR10 demonstrate that PRISM outperforms existing methods, while maintaining privacy with minimal communication costs. PRISM is the first to successfully generate images under challenging non-IID and privacy-preserving FL environments on complex datasets, where previous methods have struggled.
♻ ☆ STEVE: A Step Verification Pipeline for Computer-use Agent Training
Developing AI agents to autonomously manipulate graphical user interfaces is a long challenging task. Recent advances in data scaling law inspire us to train computer-use agents with a scaled instruction set, yet using behavior cloning to train agents still requires immense high-quality trajectories. To meet the scalability need, we designed STEVE, a step verification pipeline for computer-use agent training. First, we establish a large instruction set for computer-use agents and collect trajectory data with some suboptimal agents. GPT-4o is used to verify the correctness of each step in the trajectories based on the screens before and after the action execution, assigning each step with a binary label. Last, we adopt the Kahneman and Tversky Optimization to optimize the agent from the binary stepwise labels. Extensive experiments manifest that our agent outperforms supervised finetuning by leveraging both positive and negative actions within a trajectory. Also, STEVE enables us to train a 7B vision-language model as a computer-use agent, achieving leading performance in the challenging live desktop environment WinAgentArena with great efficiency at a reduced cost. Code and data: https://github.com/FanbinLu/STEVE.
♻ ☆ Positive2Negative: Breaking the Information-Lossy Barrier in Self-Supervised Single Image Denoising
Image denoising enhances image quality, serving as a foundational technique across various computational photography applications. The obstacle to clean image acquisition in real scenarios necessitates the development of self-supervised image denoising methods only depending on noisy images, especially a single noisy image. Existing self-supervised image denoising paradigms (Noise2Noise and Noise2Void) rely heavily on information-lossy operations, such as downsampling and masking, culminating in low quality denoising performance. In this paper, we propose a novel self-supervised single image denoising paradigm, Positive2Negative, to break the information-lossy barrier. Our paradigm involves two key steps: Renoised Data Construction (RDC) and Denoised Consistency Supervision (DCS). RDC renoises the predicted denoised image by the predicted noise to construct multiple noisy images, preserving all the information of the original image. DCS ensures consistency across the multiple denoised images, supervising the network to learn robust denoising. Our Positive2Negative paradigm achieves state-of-the-art performance in self-supervised single image denoising with significant speed improvements. The code is released to the public at https://github.com/Li-Tong-621/P2N.
comment: 8 figures, 5 tables, 11 pages
♻ ☆ Interleaved Scene Graphs for Interleaved Text-and-Image Generation Assessment ICLR 2025
Many real-world user queries (e.g. "How do to make egg fried rice?") could benefit from systems capable of generating responses with both textual steps with accompanying images, similar to a cookbook. Models designed to generate interleaved text and images face challenges in ensuring consistency within and across these modalities. To address these challenges, we present ISG, a comprehensive evaluation framework for interleaved text-and-image generation. ISG leverages a scene graph structure to capture relationships between text and image blocks, evaluating responses on four levels of granularity: holistic, structural, block-level, and image-specific. This multi-tiered evaluation allows for a nuanced assessment of consistency, coherence, and accuracy, and provides interpretable question-answer feedback. In conjunction with ISG, we introduce a benchmark, ISG-Bench, encompassing 1,150 samples across 8 categories and 21 subcategories. This benchmark dataset includes complex language-vision dependencies and golden answers to evaluate models effectively on vision-centric tasks such as style transfer, a challenging area for current models. Using ISG-Bench, we demonstrate that recent unified vision-language models perform poorly on generating interleaved content. While compositional approaches that combine separate language and image models show a 111% improvement over unified models at the holistic level, their performance remains suboptimal at both block and image levels. To facilitate future work, we develop ISG-Agent, a baseline agent employing a "plan-execute-refine" pipeline to invoke tools, achieving a 122% performance improvement.
comment: Accepted by ICLR 2025 as Spotlight. Project homepage: https://interleave-eval.github.io/
♻ ☆ Generative Omnimatte: Learning to Decompose Video into Layers CVPR 2025
Given a video and a set of input object masks, an omnimatte method aims to decompose the video into semantically meaningful layers containing individual objects along with their associated effects, such as shadows and reflections. Existing omnimatte methods assume a static background or accurate pose and depth estimation and produce poor decompositions when these assumptions are violated. Furthermore, due to the lack of generative prior on natural videos, existing methods cannot complete dynamic occluded regions. We present a novel generative layered video decomposition framework to address the omnimatte problem. Our method does not assume a stationary scene or require camera pose or depth information and produces clean, complete layers, including convincing completions of occluded dynamic regions. Our core idea is to train a video diffusion model to identify and remove scene effects caused by a specific object. We show that this model can be finetuned from an existing video inpainting model with a small, carefully curated dataset, and demonstrate high-quality decompositions and editing results for a wide range of casually captured videos containing soft shadows, glossy reflections, splashing water, and more.
comment: CVPR 2025. Project page: https://gen-omnimatte.github.io/
♻ ☆ Learned, uncertainty-driven adaptive acquisition for photon-efficient scanning microscopy
Scanning microscopy systems, such as confocal and multiphoton microscopy, are powerful imaging tools for probing deep into biological tissue. However, scanning systems have an inherent trade-off between acquisition time, field of view, phototoxicity, and image quality, often resulting in noisy measurements when fast, large field of view, and/or gentle imaging is needed. Deep learning could be used to denoise noisy microscopy measurements, but these algorithms can be prone to hallucination, which can be disastrous for medical and scientific applications. We propose a method to simultaneously denoise and predict pixel-wise uncertainty for scanning microscopy systems, improving algorithm trustworthiness and providing statistical guarantees for deep learning predictions. Furthermore, we propose to leverage this learned, pixel-wise uncertainty to drive an adaptive acquisition technique that rescans only the most uncertain regions of a sample, saving time and reducing the total light dose to the sample. We demonstrate our method on experimental confocal and multiphoton microscopy systems, showing that our uncertainty maps can pinpoint hallucinations in the deep learned predictions. Finally, with our adaptive acquisition technique, we demonstrate up to 16X reduction in acquisition time and total light dose while successfully recovering fine features in the sample and reducing hallucinations. We are the first to demonstrate distribution-free uncertainty quantification for a denoising task with real experimental data and the first to propose adaptive acquisition based on reconstruction uncertainty.
♻ ☆ Lightweight Embedded FPGA Deployment of Learned Image Compression with Knowledge Distillation and Hybrid Quantization
Learnable Image Compression (LIC) has shown the potential to outperform standardized video codecs in RD efficiency, prompting the research for hardware-friendly implementations. Most existing LIC hardware implementations prioritize latency to RD-efficiency and through an extensive exploration of the hardware design space. We present a novel design paradigm where the burden of tuning the design for a specific hardware platform is shifted towards model dimensioning and without compromising on RD-efficiency. First, we design a framework for distilling a leaner student LIC model from a reference teacher: by tuning a single model hyperparameters, we can meet the constraints of different hardware platforms without a complex hardware design exploration. Second, we propose a hardware-friendly implementation of the Generalized Divisive Normalization - GDN activation that preserves RD efficiency even post parameter quantization. Third, we design a pipelined FPGA configuration which takes full advantage of available FPGA resources by leveraging parallel processing and optimizing resource allocation. Our experiments with a state of the art LIC model show that we outperform all existing FPGA implementations while performing very close to the original model.
comment: Submitted to IEEE Transactions on Circuits and Systems for Video Technology in March 2025
♻ ☆ Mani-GS: Gaussian Splatting Manipulation with Triangular Mesh CVPR 2025
Neural 3D representations such as Neural Radiance Fields (NeRF), excel at producing photo-realistic rendering results but lack the flexibility for manipulation and editing which is crucial for content creation. Previous works have attempted to address this issue by deforming a NeRF in canonical space or manipulating the radiance field based on an explicit mesh. However, manipulating NeRF is not highly controllable and requires a long training and inference time. With the emergence of 3D Gaussian Splatting (3DGS), extremely high-fidelity novel view synthesis can be achieved using an explicit point-based 3D representation with much faster training and rendering speed. However, there is still a lack of effective means to manipulate 3DGS freely while maintaining rendering quality. In this work, we aim to tackle the challenge of achieving manipulable photo-realistic rendering. We propose to utilize a triangular mesh to manipulate 3DGS directly with self-adaptation. This approach reduces the need to design various algorithms for different types of Gaussian manipulation. By utilizing a triangle shape-aware Gaussian binding and adapting method, we can achieve 3DGS manipulation and preserve high-fidelity rendering after manipulation. Our approach is capable of handling large deformations, local manipulations, and soft body simulations while keeping high-quality rendering. Furthermore, we demonstrate that our method is also effective with inaccurate meshes extracted from 3DGS. Experiments conducted demonstrate the effectiveness of our method and its superiority over baseline approaches.
comment: CVPR 2025. Project page here: https://gaoxiangjun.github.io/mani_gs/
♻ ☆ MaRS: A Fast Sampler for Mean Reverting Diffusion based on ODE and SDE Solvers ICLR 2025
In applications of diffusion models, controllable generation is of practical significance, but is also challenging. Current methods for controllable generation primarily focus on modifying the score function of diffusion models, while Mean Reverting (MR) Diffusion directly modifies the structure of the stochastic differential equation (SDE), making the incorporation of image conditions simpler and more natural. However, current training-free fast samplers are not directly applicable to MR Diffusion. And thus MR Diffusion requires hundreds of NFEs (number of function evaluations) to obtain high-quality samples. In this paper, we propose a new algorithm named MaRS (MR Sampler) to reduce the sampling NFEs of MR Diffusion. We solve the reverse-time SDE and the probability flow ordinary differential equation (PF-ODE) associated with MR Diffusion, and derive semi-analytical solutions. The solutions consist of an analytical function and an integral parameterized by a neural network. Based on this solution, we can generate high-quality samples in fewer steps. Our approach does not require training and supports all mainstream parameterizations, including noise prediction, data prediction and velocity prediction. Extensive experiments demonstrate that MR Sampler maintains high sampling quality with a speedup of 10 to 20 times across ten different image restoration tasks. Our algorithm accelerates the sampling procedure of MR Diffusion, making it more practical in controllable generation.
comment: Accepted by ICLR 2025
♻ ☆ Beyond Training: Dynamic Token Merging for Zero-Shot Video Understanding
Recent advancements in multimodal large language models (MLLMs) have opened new avenues for video understanding. However, achieving high fidelity in zero-shot video tasks remains challenging. Traditional video processing methods rely heavily on fine-tuning to capture nuanced spatial-temporal details, which incurs significant data and computation costs. In contrast, training-free approaches, though efficient, often lack robustness in preserving context-rich features across complex video content. To this end, we propose DYTO, a novel dynamic token merging framework for zero-shot video understanding that adaptively optimizes token efficiency while preserving crucial scene details. DYTO integrates a hierarchical frame selection and a bipartite token merging strategy to dynamically cluster key frames and selectively compress token sequences, striking a balance between computational efficiency with semantic richness. Extensive experiments across multiple benchmarks demonstrate the effectiveness of DYTO, achieving superior performance compared to both fine-tuned and training-free methods and setting a new state-of-the-art for zero-shot video understanding.
comment: Code is available at https://github.com/Jam1ezhang/DYTO
♻ ☆ SAT-HMR: Real-Time Multi-Person 3D Mesh Estimation via Scale-Adaptive Tokens
We propose a one-stage framework for real-time multi-person 3D human mesh estimation from a single RGB image. While current one-stage methods, which follow a DETR-style pipeline, achieve state-of-the-art (SOTA) performance with high-resolution inputs, we observe that this particularly benefits the estimation of individuals in smaller scales of the image (e.g., those far from the camera), but at the cost of significantly increased computation overhead. To address this, we introduce scale-adaptive tokens that are dynamically adjusted based on the relative scale of each individual in the image within the DETR framework. Specifically, individuals in smaller scales are processed at higher resolutions, larger ones at lower resolutions, and background regions are further distilled. These scale-adaptive tokens more efficiently encode the image features, facilitating subsequent decoding to regress the human mesh, while allowing the model to allocate computational resources more effectively and focus on more challenging cases. Experiments show that our method preserves the accuracy benefits of high-resolution processing while substantially reducing computational cost, achieving real-time inference with performance comparable to SOTA methods.
comment: 18 pages, 12 figures
♻ ☆ RankCLIP: Ranking-Consistent Language-Image Pretraining
Self-supervised contrastive learning models, such as CLIP, have set new benchmarks for vision-language models in many downstream tasks. However, their dependency on rigid one-to-one mappings overlooks the complex and often multifaceted relationships between and within texts and images. To this end, we introduce RankCLIP, a novel pre-training method that extends beyond the rigid one-to-one matching framework of CLIP and its variants. By extending the traditional pair-wise loss to list-wise, and leveraging both in-modal and cross-modal ranking consistency, RankCLIP improves the alignment process, enabling it to capture the nuanced many-to-many relationships between and within each modality. Through comprehensive experiments, we demonstrate the effectiveness of RankCLIP in various downstream tasks, notably achieving significant gains in zero-shot classifications over state-of-the-art methods, underscoring the importance of this enhanced learning process.
comment: Code and model checkpoints are available at https://github.com/Jam1ezhang/RankCLIP
♻ ☆ DUNE: Distilling a Universal Encoder from Heterogeneous 2D and 3D Teachers CVPR-2025
Recent multi-teacher distillation methods have unified the encoders of multiple foundation models into a single encoder, achieving competitive performance on core vision tasks like classification, segmentation, and depth estimation. This led us to ask: Could similar success be achieved when the pool of teachers also includes vision models specialized in diverse tasks across both 2D and 3D perception? In this paper, we define and investigate the problem of heterogeneous teacher distillation, or co-distillation, a challenging multi-teacher distillation scenario where teacher models vary significantly in both (a) their design objectives and (b) the data they were trained on. We explore data-sharing strategies and teacher-specific encoding, and introduce DUNE, a single encoder excelling in 2D vision, 3D understanding, and 3D human perception. Our model achieves performance comparable to that of its larger teachers, sometimes even outperforming them, on their respective tasks. Notably, DUNE surpasses MASt3R in Map-free Visual Relocalization with a much smaller encoder.
comment: Accepted to CVPR-2025. Project page: https://europe.naverlabs.com/dune
♻ ☆ Understanding Model Calibration -- A gentle introduction and visual exploration of calibration and the expected calibration error (ECE)
To be considered reliable, a model must be calibrated so that its confidence in each decision closely reflects its true outcome. In this blogpost we'll take a look at the most commonly used definition for calibration and then dive into a frequently used evaluation measure for model calibration. We'll then cover some of the drawbacks of this measure and how these surfaced the need for additional notions of calibration, which require their own new evaluation measures. This post is not intended to be an in-depth dissection of all works on calibration, nor does it focus on how to calibrate models. Instead, it is meant to provide a gentle introduction to the different notions and their evaluation measures as well as to re-highlight some issues with a measure that is still widely used to evaluate calibration.
♻ ☆ GAEA: A Geolocation Aware Conversational Model
Image geolocalization, in which, traditionally, an AI model predicts the precise GPS coordinates of an image is a challenging task with many downstream applications. However, the user cannot utilize the model to further their knowledge other than the GPS coordinate; the model lacks an understanding of the location and the conversational ability to communicate with the user. In recent days, with tremendous progress of large multimodal models (LMMs) -- proprietary and open-source -- researchers have attempted to geolocalize images via LMMs. However, the issues remain unaddressed; beyond general tasks, for more specialized downstream tasks, one of which is geolocalization, LMMs struggle. In this work, we propose to solve this problem by introducing a conversational model GAEA that can provide information regarding the location of an image, as required by a user. No large-scale dataset enabling the training of such a model exists. Thus we propose GAEA-1.6M, a comprehensive dataset with 800K images and around 1.6M question-answer pairs constructed by leveraging OpenStreetMap (OSM) attributes and geographical context clues. For quantitative evaluation, we propose a diverse benchmark, GAEA-Bench, comprising 4K image-text pairs to evaluate conversational capabilities equipped with diverse question types. We consider 11 state-of-the-art open-source and proprietary LMMs and demonstrate that GAEA significantly outperforms the best open-source model, LLaVA-OneVision by 25.69% and the best proprietary model, GPT-4o by 8.28%. Our dataset, model and codes are available.
comment: The dataset and code used in this submission is available at: https://ucf-crcv.github.io/GAEA/
♻ ☆ Multiple Object Tracking as ID Prediction CVPR 2025
Multi-Object Tracking (MOT) has been a long-standing challenge in video understanding. A natural and intuitive approach is to split this task into two parts: object detection and association. Most mainstream methods employ meticulously crafted heuristic techniques to maintain trajectory information and compute cost matrices for object matching. Although these methods can achieve notable tracking performance, they often require a series of elaborate handcrafted modifications while facing complicated scenarios. We believe that manually assumed priors limit the method's adaptability and flexibility in learning optimal tracking capabilities from domain-specific data. Therefore, we introduce a new perspective that treats Multiple Object Tracking as an in-context ID Prediction task, transforming the aforementioned object association into an end-to-end trainable task. Based on this, we propose a simple yet effective method termed MOTIP. Given a set of trajectories carried with ID information, MOTIP directly decodes the ID labels for current detections to accomplish the association process. Without using tailored or sophisticated architectures, our method achieves state-of-the-art results across multiple benchmarks by solely leveraging object-level features as tracking cues. The simplicity and impressive results of MOTIP leave substantial room for future advancements, thereby making it a promising baseline for subsequent research. Our code and checkpoints are released at https://github.com/MCG-NJU/MOTIP.
comment: Accepted by CVPR 2025
♻ ☆ Kalib: Easy Hand-Eye Calibration with Reference Point Tracking
Hand-eye calibration aims to estimate the transformation between a camera and a robot. Traditional methods rely on fiducial markers, which require considerable manual effort and precise setup. Recent advances in deep learning have introduced markerless techniques but come with more prerequisites, such as retraining networks for each robot, and accessing accurate mesh models for data generation. In this paper, we propose Kalib, an automatic and easy-to-setup hand-eye calibration method that leverages the generalizability of visual foundation models to overcome these challenges. It features only two basic prerequisites, the robot's kinematic chain and a predefined reference point on the robot. During calibration, the reference point is tracked in the camera space. Its corresponding 3D coordinates in the robot coordinate can be inferred by forward kinematics. Then, a PnP solver directly estimates the transformation between the camera and the robot without training new networks or accessing mesh models. Evaluations in simulated and real-world benchmarks show that Kalib achieves good accuracy with a lower manual workload compared with recent baseline methods. We also demonstrate its application in multiple real-world settings with various robot arms and grippers. Kalib's user-friendly design and minimal setup requirements make it a possible solution for continuous operation in unstructured environments.
comment: The code, data, and supplementary materials are available at https://sites.google.com/view/hand-eye-kalib
♻ ☆ Towards Universal Soccer Video Understanding CVPR 2025
As a globally celebrated sport, soccer has attracted widespread interest from fans all over the world. This paper aims to develop a comprehensive multi-modal framework for soccer video understanding. Specifically, we make the following contributions in this paper: (i) we introduce SoccerReplay-1988, the largest multi-modal soccer dataset to date, featuring videos and detailed annotations from 1,988 complete matches, with an automated annotation pipeline; (ii) we present an advanced soccer-specific visual encoder, MatchVision, which leverages spatiotemporal information across soccer videos and excels in various downstream tasks; (iii) we conduct extensive experiments and ablation studies on event classification, commentary generation, and multi-view foul recognition. MatchVision demonstrates state-of-the-art performance on all of them, substantially outperforming existing models, which highlights the superiority of our proposed data and model. We believe that this work will offer a standard paradigm for sports understanding research.
comment: CVPR 2025; Project Page: https://jyrao.github.io/UniSoccer/
♻ ☆ CAGE: Unsupervised Visual Composition and Animation for Controllable Video Generation AAAI2025
The field of video generation has expanded significantly in recent years, with controllable and compositional video generation garnering considerable interest. Most methods rely on leveraging annotations such as text, objects' bounding boxes, and motion cues, which require substantial human effort and thus limit their scalability. In contrast, we address the challenge of controllable and compositional video generation without any annotations by introducing a novel unsupervised approach. Our model is trained from scratch on a dataset of unannotated videos. At inference time, it can compose plausible novel scenes and animate objects by placing object parts at the desired locations in space and time. The core innovation of our method lies in the unified control format and the training process, where video generation is conditioned on a randomly selected subset of pre-trained self-supervised local features. This conditioning compels the model to learn how to inpaint the missing information in the video both spatially and temporally, thereby learning the inherent compositionality of a scene and the dynamics of moving objects. The abstraction level and the imposed invariance of the conditioning input to minor visual perturbations enable control over object motion by simply using the same features at all the desired future locations. We call our model CAGE, which stands for visual Composition and Animation for video GEneration. We conduct extensive experiments to validate the effectiveness of CAGE across various scenarios, demonstrating its capability to accurately follow the control and to generate high-quality videos that exhibit coherent scene composition and realistic animation.
comment: Published at AAAI2025; Project website: https://araachie.github.io/cage
♻ ☆ Re-HOLD: Video Hand Object Interaction Reenactment via adaptive Layout-instructed Diffusion Model CVPR 2025
Current digital human studies focusing on lip-syncing and body movement are no longer sufficient to meet the growing industrial demand, while human video generation techniques that support interacting with real-world environments (e.g., objects) have not been well investigated. Despite human hand synthesis already being an intricate problem, generating objects in contact with hands and their interactions presents an even more challenging task, especially when the objects exhibit obvious variations in size and shape. To cope with these issues, we present a novel video Reenactment framework focusing on Human-Object Interaction (HOI) via an adaptive Layout-instructed Diffusion model (Re-HOLD). Our key insight is to employ specialized layout representation for hands and objects, respectively. Such representations enable effective disentanglement of hand modeling and object adaptation to diverse motion sequences. To further improve the generation quality of HOI, we have designed an interactive textural enhancement module for both hands and objects by introducing two independent memory banks. We also propose a layout-adjusting strategy for the cross-object reenactment scenario to adaptively adjust unreasonable layouts caused by diverse object sizes during inference. Comprehensive qualitative and quantitative evaluations demonstrate that our proposed framework significantly outperforms existing methods. Project page: https://fyycs.github.io/Re-HOLD.
comment: Accepted to CVPR 2025
♻ ☆ IncEventGS: Pose-Free Gaussian Splatting from a Single Event Camera
Implicit neural representation and explicit 3D Gaussian Splatting (3D-GS) for novel view synthesis have achieved remarkable progress with frame-based camera (e.g. RGB and RGB-D cameras) recently. Compared to frame-based camera, a novel type of bio-inspired visual sensor, i.e. event camera, has demonstrated advantages in high temporal resolution, high dynamic range, low power consumption and low latency. Due to its unique asynchronous and irregular data capturing process, limited work has been proposed to apply neural representation or 3D Gaussian splatting for an event camera. In this work, we present IncEventGS, an incremental 3D Gaussian Splatting reconstruction algorithm with a single event camera. To recover the 3D scene representation incrementally, we exploit the tracking and mapping paradigm of conventional SLAM pipelines for IncEventGS. Given the incoming event stream, the tracker firstly estimates an initial camera motion based on prior reconstructed 3D-GS scene representation. The mapper then jointly refines both the 3D scene representation and camera motion based on the previously estimated motion trajectory from the tracker. The experimental results demonstrate that IncEventGS delivers superior performance compared to prior NeRF-based methods and other related baselines, even we do not have the ground-truth camera poses. Furthermore, our method can also deliver better performance compared to state-of-the-art event visual odometry methods in terms of camera motion estimation. Code is publicly available at: https://github.com/wu-cvgl/IncEventGS.
comment: Code Page: https://github.com/wu-cvgl/IncEventGS
♻ ☆ CholecTrack20: A Multi-Perspective Tracking Dataset for Surgical Tools CVPR 2025
Tool tracking in surgical videos is essential for advancing computer-assisted interventions, such as skill assessment, safety zone estimation, and human-machine collaboration. However, the lack of context-rich datasets limits AI applications in this field. Existing datasets rely on overly generic tracking formalizations that fail to capture surgical-specific dynamics, such as tools moving out of the camera's view or exiting the body. This results in less clinically relevant trajectories and a lack of flexibility for real-world surgical applications. Methods trained on these datasets often struggle with visual challenges such as smoke, reflection, and bleeding, further exposing the limitations of current approaches. We introduce CholecTrack20, a specialized dataset for multi-class, multi-tool tracking in surgical procedures. It redefines tracking formalization with three perspectives: (i) intraoperative, (ii) intracorporeal, and (iii) visibility, enabling adaptable and clinically meaningful tool trajectories. The dataset comprises 20 full-length surgical videos, annotated at 1 fps, yielding over 35K frames and 65K labeled tool instances. Annotations include spatial location, category, identity, operator, phase, and scene visual challenge. Benchmarking state-of-the-art methods on CholecTrack20 reveals significant performance gaps, with current approaches (< 45\% HOTA) failing to meet the accuracy required for clinical translation. These findings motivate the need for advanced and intuitive tracking algorithms and establish CholecTrack20 as a foundation for developing robust AI-driven surgical assistance systems.
comment: Surgical tool tracking dataset paper, 11 pages, 10 figures, 3 tables, CVPR 2025
♻ ☆ ETAP: Event-based Tracking of Any Point
Tracking any point (TAP) recently shifted the motion estimation paradigm from focusing on individual salient points with local templates to tracking arbitrary points with global image contexts. However, while research has mostly focused on driving the accuracy of models in nominal settings, addressing scenarios with difficult lighting conditions and high-speed motions remains out of reach due to the limitations of the sensor. This work addresses this challenge with the first event camera-based TAP method. It leverages the high temporal resolution and high dynamic range of event cameras for robust high-speed tracking, and the global contexts in TAP methods to handle asynchronous and sparse event measurements. We further extend the TAP framework to handle event feature variations induced by motion -- thereby addressing an open challenge in purely event-based tracking -- with a novel feature-alignment loss which ensures the learning of motion-robust features. Our method is trained with data from a new data generation pipeline and systematically ablated across all design decisions. Our method shows strong cross-dataset generalization and performs 136% better on the average Jaccard metric than the baselines. Moreover, on an established feature tracking benchmark, it achieves a 20% improvement over the previous best event-only method and even surpasses the previous best events-and-frames method by 4.1%. Our code is available at https://github.com/tub-rip/ETAP
comment: 17 pages, 15 figures, 8 tables. Project page: https://github.com/tub-rip/ETAP
♻ ☆ NeSS-ST: Detecting Good and Stable Keypoints with a Neural Stability Score and the Shi-Tomasi Detector ICCV 2023
Learning a feature point detector presents a challenge both due to the ambiguity of the definition of a keypoint and, correspondingly, the need for specially prepared ground truth labels for such points. In our work, we address both of these issues by utilizing a combination of a hand-crafted Shi-Tomasi detector, a specially designed metric that assesses the quality of keypoints, the stability score (SS), and a neural network. We build on the principled and localized keypoints provided by the Shi-Tomasi detector and learn the neural network to select good feature points via the stability score. The neural network incorporates the knowledge from the training targets in the form of the neural stability score (NeSS). Therefore, our method is named NeSS-ST since it combines the Shi-Tomasi detector and the properties of the neural stability score. It only requires sets of images for training without dataset pre-labeling or the need for reconstructed correspondence labels. We evaluate NeSS-ST on HPatches, ScanNet, MegaDepth and IMC-PT demonstrating state-of-the-art performance and good generalization on downstream tasks.
comment: Camera-ready version of ICCV 2023 paper
♻ ☆ CarPlanner: Consistent Auto-regressive Trajectory Planning for Large-scale Reinforcement Learning in Autonomous Driving CVPR 2025
Trajectory planning is vital for autonomous driving, ensuring safe and efficient navigation in complex environments. While recent learning-based methods, particularly reinforcement learning (RL), have shown promise in specific scenarios, RL planners struggle with training inefficiencies and managing large-scale, real-world driving scenarios. In this paper, we introduce \textbf{CarPlanner}, a \textbf{C}onsistent \textbf{a}uto-\textbf{r}egressive \textbf{Planner} that uses RL to generate multi-modal trajectories. The auto-regressive structure enables efficient large-scale RL training, while the incorporation of consistency ensures stable policy learning by maintaining coherent temporal consistency across time steps. Moreover, CarPlanner employs a generation-selection framework with an expert-guided reward function and an invariant-view module, simplifying RL training and enhancing policy performance. Extensive analysis demonstrates that our proposed RL framework effectively addresses the challenges of training efficiency and performance enhancement, positioning CarPlanner as a promising solution for trajectory planning in autonomous driving. To the best of our knowledge, we are the first to demonstrate that the RL-based planner can surpass both IL- and rule-based state-of-the-arts (SOTAs) on the challenging large-scale real-world dataset nuPlan. Our proposed CarPlanner surpasses RL-, IL-, and rule-based SOTA approaches within this demanding dataset.
comment: CVPR 2025
♻ ☆ Revisiting Monocular 3D Object Detection with Depth Thickness Field
Monocular 3D object detection is challenging due to the lack of accurate depth. However, existing depth-assisted solutions still exhibit inferior performance, whose reason is universally acknowledged as the unsatisfactory accuracy of monocular depth estimation models. In this paper, we revisit monocular 3D object detection from the depth perspective and formulate an additional issue as the limited 3D structure-aware capability of existing depth representations (e.g., depth one-hot encoding or depth distribution). To address this issue, we introduce a novel Depth Thickness Field approach to embed clear 3D structures of the scenes. Specifically, we present MonoDTF, a scene-to-instance depth-adapted network for monocular 3D object detection. The framework mainly comprises a Scene-Level Depth Retargeting (SDR) module and an Instance-Level Spatial Refinement (ISR) module. The former retargets traditional depth representations to the proposed depth thickness field, incorporating the scene-level perception of 3D structures. The latter refines the voxel space with the guidance of instances, enhancing the 3D instance-aware capability of the depth thickness field and thus improving detection accuracy. Extensive experiments on the KITTI and Waymo datasets demonstrate our superiority to existing state-of-the-art (SoTA) methods and the universality when equipped with different depth estimation models. The code will be available.
♻ ☆ OnlineAnySeg: Online Zero-Shot 3D Segmentation by Visual Foundation Model Guided 2D Mask Merging
Online 3D open-vocabulary segmentation of a progressively reconstructed scene is both a critical and challenging task for embodied applications. With the success of visual foundation models (VFMs) in the image domain, leveraging 2D priors to address 3D online segmentation has become a prominent research focus. Since segmentation results provided by 2D priors often require spatial consistency to be lifted into final 3D segmentation, an efficient method for identifying spatial overlap among 2D masks is essential - yet existing methods rarely achieve this in real time, mainly limiting its use to offline approaches. To address this, we propose an efficient method that lifts 2D masks generated by VFMs into a unified 3D instance using a hashing technique. By employing voxel hashing for efficient 3D scene querying, our approach reduces the time complexity of costly spatial overlap queries from $O(n^2)$ to $O(n)$. Accurate spatial associations further enable 3D merging of 2D masks through simple similarity-based filtering in a zero-shot manner, making our approach more robust to incomplete and noisy data. Evaluated on the ScanNet and SceneNN benchmarks, our approach achieves state-of-the-art performance in online, open-vocabulary 3D instance segmentation with leading efficiency.
♻ ☆ MoCha-Stereo: Motif Channel Attention Network for Stereo Matching CVPR 2024
Learning-based stereo matching techniques have made significant progress. However, existing methods inevitably lose geometrical structure information during the feature channel generation process, resulting in edge detail mismatches. In this paper, the Motif Cha}nnel Attention Stereo Matching Network (MoCha-Stereo) is designed to address this problem. We provide the Motif Channel Correlation Volume (MCCV) to determine more accurate edge matching costs. MCCV is achieved by projecting motif channels, which capture common geometric structures in feature channels, onto feature maps and cost volumes. In addition, edge variations in %potential feature channels of the reconstruction error map also affect details matching, we propose the Reconstruction Error Motif Penalty (REMP) module to further refine the full-resolution disparity estimation. REMP integrates the frequency information of typical channel features from the reconstruction error. MoCha-Stereo ranks 1st on the KITTI-2015 and KITTI-2012 Reflective leaderboards. Our structure also shows excellent performance in Multi-View Stereo. Code is avaliable at https://github.com/ZYangChen/MoCha-Stereo.
comment: Accepted to CVPR 2024
♻ ☆ Believing is Seeing: Unobserved Object Detection using Generative Models
Can objects that are not visible in an image -- but are in the vicinity of the camera -- be detected? This study introduces the novel tasks of 2D, 2.5D and 3D unobserved object detection for predicting the location of nearby objects that are occluded or lie outside the image frame. We adapt several state-of-the-art pre-trained generative models to address this task, including 2D and 3D diffusion models and vision-language models, and show that they can be used to infer the presence of objects that are not directly observed. To benchmark this task, we propose a suite of metrics that capture different aspects of performance. Our empirical evaluation on indoor scenes from the RealEstate10k and NYU Depth v2 datasets demonstrate results that motivate the use of generative models for the unobserved object detection task.
comment: IEEE/CVF Computer Vision and Pattern Recognition 2025; 22 pages
♻ ☆ Image Over Text: Transforming Formula Recognition Evaluation with Character Detection Matching CVPR2025
Formula recognition presents significant challenges due to the complicated structure and varied notation of mathematical expressions. Despite continuous advancements in formula recognition models, the evaluation metrics employed by these models, such as BLEU and Edit Distance, still exhibit notable limitations. They overlook the fact that the same formula has diverse representations and is highly sensitive to the distribution of training data, thereby causing unfairness in formula recognition evaluation. To this end, we propose a Character Detection Matching (CDM) metric, ensuring the evaluation objectivity by designing an image-level rather than a LaTeX-level metric score. Specifically, CDM renders both the model-predicted LaTeX and the ground-truth LaTeX formulas into image-formatted formulas, then employs visual feature extraction and localization techniques for precise character-level matching, incorporating spatial position information. Such a spatially-aware and character-matching method offers a more accurate and equitable evaluation compared with previous BLEU and Edit Distance metrics that rely solely on text-based character matching. Experimentally, we evaluated various formula recognition models using CDM, BLEU, and ExpRate metrics. Their results demonstrate that the CDM aligns more closely with human evaluation standards and provides a fairer comparison across different models by eliminating discrepancies caused by diverse formula representations. Code is available at https://github.com/opendatalab/UniMERNet/tree/main/cdm.
comment: Accepted by CVPR2025
♻ ☆ Deep Polycuboid Fitting for Compact 3D Representation of Indoor Scenes 3DV 2025
This paper presents a novel framework for compactly representing a 3D indoor scene using a set of polycuboids through a deep learning-based fitting method. Indoor scenes mainly consist of man-made objects, such as furniture, which often exhibit rectilinear geometry. This property allows indoor scenes to be represented using combinations of polycuboids, providing a compact representation that benefits downstream applications like furniture rearrangement. Our framework takes a noisy point cloud as input and first detects six types of cuboid faces using a transformer network. Then, a graph neural network is used to validate the spatial relationships of the detected faces to form potential polycuboids. Finally, each polycuboid instance is reconstructed by forming a set of boxes based on the aggregated face labels. To train our networks, we introduce a synthetic dataset encompassing a diverse range of cuboid and polycuboid shapes that reflect the characteristics of indoor scenes. Our framework generalizes well to real-world indoor scene datasets, including Replica, ScanNet, and scenes captured with an iPhone. The versatility of our method is demonstrated through practical applications, such as virtual room tours and scene editing.
comment: Accepted to 3DV 2025. For project page, see this https://waldstein94.github.io/deep-polycuboid-fitting/
♻ ☆ Learning Physics From Video: Unsupervised Physical Parameter Estimation for Continuous Dynamical Systems
Extracting physical dynamical system parameters from recorded observations is key in natural science. Current methods for automatic parameter estimation from video train supervised deep networks on large datasets. Such datasets require labels, which are difficult to acquire. While some unsupervised techniques--which depend on frame prediction--exist, they suffer from long training times, initialization instabilities, only consider motion-based dynamical systems, and are evaluated mainly on synthetic data. In this work, we propose an unsupervised method to estimate the physical parameters of known, continuous governing equations from single videos suitable for different dynamical systems beyond motion and robust to initialization. Moreover, we remove the need for frame prediction by implementing a KL-divergence-based loss function in the latent space, which avoids convergence to trivial solutions and reduces model size and compute. We first evaluate our model on synthetic data, as commonly done. After which, we take the field closer to reality by recording Delfys75: our own real-world dataset of 75 videos for five different types of dynamical systems to evaluate our method and others. Our method compares favorably to others. %, yet, and real-world video datasets and demonstrate improved parameter estimation accuracy compared to existing methods. Code and data are available online:https://github.com/Alejandro-neuro/Learning_physics_from_video.
♻ ☆ Learnable Infinite Taylor Gaussian for Dynamic View Rendering
Capturing the temporal evolution of Gaussian properties such as position, rotation, and scale is a challenging task due to the vast number of time-varying parameters and the limited photometric data available, which generally results in convergence issues, making it difficult to find an optimal solution. While feeding all inputs into an end-to-end neural network can effectively model complex temporal dynamics, this approach lacks explicit supervision and struggles to generate high-quality transformation fields. On the other hand, using time-conditioned polynomial functions to model Gaussian trajectories and orientations provides a more explicit and interpretable solution, but requires significant handcrafted effort and lacks generalizability across diverse scenes. To overcome these limitations, this paper introduces a novel approach based on a learnable infinite Taylor Formula to model the temporal evolution of Gaussians. This method offers both the flexibility of an implicit network-based approach and the interpretability of explicit polynomial functions, allowing for more robust and generalizable modeling of Gaussian dynamics across various dynamic scenes. Extensive experiments on dynamic novel view rendering tasks are conducted on public datasets, demonstrating that the proposed method achieves state-of-the-art performance in this domain. More information is available on our project page(https://ellisonking.github.io/TaylorGaussian).
♻ ☆ SAMKD: Spatial-aware Adaptive Masking Knowledge Distillation for Object Detection
Most of recent attention-guided feature masking distillation methods perform knowledge transfer via global teacher attention maps without delving into fine-grained clues. Instead, performing distillation at finer granularity is conducive to uncovering local details supplementary to global knowledge transfer and reconstructing comprehensive student features. In this study, we propose a Spatial-aware Adaptive Masking Knowledge Distillation (SAMKD) framework for accurate object detection. Different from previous feature distillation methods which mainly perform single-scale feature masking, we develop spatially hierarchical feature masking distillation scheme, such that the object-aware locality is encoded during coarse-to-fine distillation process for improved feature reconstruction. In addition, our spatial-aware feature distillation strategy is combined with a masking logit distillation scheme in which region-specific feature difference between teacher and student networks is utilized to adaptively guide the distillation process. Thus, it can help the student model to better learn from the teacher counterpart with improved knowledge transfer and reduced gap. Extensive experiments for detection task demonstrate the superiority of our method. For example, when FCOS is used as teacher detector with ResNet101 backbone, our method improves the student network from 35.3\% to 38.8\% mAP, outperforming state-of-the-art distillation methods including MGD, FreeKD and DMKD.
♻ ☆ GaussTR: Foundation Model-Aligned Gaussian Transformer for Self-Supervised 3D Spatial Understanding CVPR 2025
3D Semantic Occupancy Prediction is fundamental for spatial understanding, yet existing approaches face challenges in scalability and generalization due to their reliance on extensive labeled data and computationally intensive voxel-wise representations. In this paper, we introduce GaussTR, a novel Gaussian-based Transformer framework that unifies sparse 3D modeling with foundation model alignment through Gaussian representations to advance 3D spatial understanding. GaussTR predicts sparse sets of Gaussians in a feed-forward manner to represent 3D scenes. By splatting the Gaussians into 2D views and aligning the rendered features with foundation models, GaussTR facilitates self-supervised 3D representation learning and enables open-vocabulary semantic occupancy prediction without requiring explicit annotations. Empirical experiments on the Occ3D-nuScenes dataset demonstrate GaussTR's state-of-the-art zero-shot performance of 12.27 mIoU, along with a 40% reduction in training time. These results highlight the efficacy of GaussTR for scalable and holistic 3D spatial understanding, with promising implications in autonomous driving and embodied agents. The code is available at https://github.com/hustvl/GaussTR.
comment: CVPR 2025
♻ ☆ Personalization Toolkit: Training Free Personalization of Large Vision Language Models
Large Vision Language Models (LVLMs) have significant potential to provide personalized assistance by adapting to the unique needs and preferences of individual users. The personalization of LVLMs has emerged as a field that focuses on customizing models to recognize specific object instances and provide tailored responses. However, current methodologies depend on time-consuming test-time training for each user and object, which proves to be impractical. This paper introduces a novel, training-free approach to LVLM personalization by leveraging pre-trained vision foundation models to extract distinct features, retrieval-augmented generation (RAG) techniques to recognize instances in the visual input, and visual prompting methods. Our model-agnostic vision toolkit enables flexible and efficient personalization without the need for extensive retraining. We demonstrate state-of-the-art results, surpassing conventional training-based approaches, and set a new benchmark for LVLM personalization.
♻ ☆ BI-RADS prediction of mammographic masses using uncertainty information extracted from a Bayesian Deep Learning model
The BI_RADS score is a probabilistic reporting tool used by radiologists to express the level of uncertainty in predicting breast cancer based on some morphological features in mammography images. There is a significant variability in describing masses which sometimes leads to BI_RADS misclassification. Using a BI_RADS prediction system is required to support the final radiologist decisions. In this study, the uncertainty information extracted by a Bayesian deep learning model is utilized to predict the BI_RADS score. The investigation results based on the pathology information demonstrate that the f1-scores of the predictions of the radiologist are 42.86%, 48.33% and 48.28%, meanwhile, the f1-scores of the model performance are 73.33%, 59.60% and 59.26% in the BI_RADS 2, 3 and 5 dataset samples, respectively. Also, the model can distinguish malignant from benign samples in the BI_RADS 0 category of the used dataset with an accuracy of 75.86% and correctly identify all malignant samples as BI_RADS 5. The Grad-CAM visualization shows the model pays attention to the morphological features of the lesions. Therefore, this study shows the uncertainty-aware Bayesian Deep Learning model can report his uncertainty about the malignancy of a lesion based on morphological features, like a radiologist.
♻ ☆ From Objects to Events: Unlocking Complex Visual Understanding in Object Detectors via LLM-guided Symbolic Reasoning
Our key innovation lies in bridging the semantic gap between object detection and event understanding without requiring expensive task-specific training. The proposed plug-and-play framework interfaces with any open-vocabulary detector while extending their inherent capabilities across architectures. At its core, our approach combines (i) a symbolic regression mechanism exploring relationship patterns among detected entities and (ii) a LLM-guided strategically guiding the search toward meaningful expressions. These discovered symbolic rules transform low-level visual perception into interpretable event understanding, providing a transparent reasoning path from objects to events with strong transferability across domains.We compared our training-free framework against specialized event recognition systems across diverse application domains. Experiments demonstrate that our framework enhances multiple object detector architectures to recognize complex events such as illegal fishing activities (75% AUROC, +8.36% improvement), construction safety violations (+15.77%), and abnormal crowd behaviors (+23.16%). The code will be released soon.
comment: 13 pages, 5 figures
♻ ☆ A Vision Centric Remote Sensing Benchmark
Multimodal Large Language Models (MLLMs) have achieved remarkable success in vision-language tasks but their remote sensing (RS) counterpart are relatively under explored. Unlike natural images, RS imagery presents unique challenges that current MLLMs struggle to handle, particularly in visual grounding and spatial reasoning. This study investigates the limitations of CLIP-based MLLMs in RS, highlighting their failure to differentiate visually distinct yet semantically similar RS images. To address this, we introduce a remote sensing multimodal visual patterns (RSMMVP) benchmark. It is designed to evaluate MLLMs in RS tasks by identifying the CLIP-blind pairs, where CLIP-based models incorrectly assign high similarity scores to visually distinct RS images. Through a visual question answering (VQA) evaluation, we analyze the performance of state-of-the-art MLLMs, revealing significant limitations in RS specific representation learning. The results provide valuable insights into the weaknesses of CLIP-based visual encoding and offer a foundation for future research to develop more effective MLLMs tailored for remote sensing applications.
comment: Under Review
♻ ☆ No Thing, Nothing: Highlighting Safety-Critical Classes for Robust LiDAR Semantic Segmentation in Adverse Weather CVPR 2025
Existing domain generalization methods for LiDAR semantic segmentation under adverse weather struggle to accurately predict "things" categories compared to "stuff" categories. In typical driving scenes, "things" categories can be dynamic and associated with higher collision risks, making them crucial for safe navigation and planning. Recognizing the importance of "things" categories, we identify their performance drop as a serious bottleneck in existing approaches. We observed that adverse weather induces degradation of semantic-level features and both corruption of local features, leading to a misprediction of "things" as "stuff". To mitigate these corruptions, we suggest our method, NTN - segmeNt Things for No-accident. To address semantic-level feature corruption, we bind each point feature to its superclass, preventing the misprediction of things classes into visually dissimilar categories. Additionally, to enhance robustness against local corruption caused by adverse weather, we define each LiDAR beam as a local region and propose a regularization term that aligns the clean data with its corrupted counterpart in feature space. NTN achieves state-of-the-art performance with a +2.6 mIoU gain on the SemanticKITTI-to-SemanticSTF benchmark and +7.9 mIoU on the SemanticPOSS-to-SemanticSTF benchmark. Notably, NTN achieves a +4.8 and +7.9 mIoU improvement on "things" classes, respectively, highlighting its effectiveness.
comment: 18 pages, accepted in CVPR 2025
♻ ☆ Attention Overlap Is Responsible for The Entity Missing Problem in Text-to-image Diffusion Models!
Text-to-image diffusion models, such as Stable Diffusion and DALL-E, are capable of generating high-quality, diverse, and realistic images from textual prompts. However, they sometimes struggle to accurately depict specific entities described in prompts, a limitation known as the entity missing problem in compositional generation. While prior studies suggested that adjusting cross-attention maps during the denoising process could alleviate this problem, they did not systematically investigate which objective functions could best address it. This study examines three potential causes of the entity-missing problem, focusing on cross-attention dynamics: (1) insufficient attention intensity for certain entities, (2) overly broad attention spread, and (3) excessive overlap between attention maps of different entities. We found that reducing overlap in attention maps between entities can effectively minimize the rate of entity missing. Specifically, we hypothesize that tokens related to specific entities compete for attention on certain image regions during the denoising process, which can lead to divided attention across tokens and prevent accurate representation of each entity. To address this issue, we introduced four loss functions, Intersection over Union (IoU), center-of-mass (CoM) distance, Kullback-Leibler (KL) divergence, and clustering compactness (CC) to regulate attention overlap during denoising steps without the need for retraining. Experimental results across a wide variety of benchmarks reveal that these proposed training-free methods significantly improve compositional accuracy, outperforming previous approaches in visual question answering (VQA), captioning scores, CLIP similarity, and human evaluations. Notably, these methods improved human evaluation scores by 9% over the best baseline, demonstrating substantial improvements in compositional alignment.
comment: TMLR - 2025
♻ ☆ Superpixel Tokenization for Vision Transformers: Preserving Semantic Integrity in Visual Tokens
Transformers, a groundbreaking architecture proposed for Natural Language Processing (NLP), have also achieved remarkable success in Computer Vision. A cornerstone of their success lies in the attention mechanism, which models relationships among tokens. While the tokenization process in NLP inherently ensures that a single token does not contain multiple semantics, the tokenization of Vision Transformer (ViT) utilizes tokens from uniformly partitioned square image patches, which may result in an arbitrary mixing of visual concepts in a token. In this work, we propose to substitute the grid-based tokenization in ViT with superpixel tokenization, which employs superpixels to generate a token that encapsulates a sole visual concept. Unfortunately, the diverse shapes, sizes, and locations of superpixels make integrating superpixels into ViT tokenization rather challenging. Our tokenization pipeline, comprised of pre-aggregate extraction and superpixel-aware aggregation, overcomes the challenges that arise in superpixel tokenization. Extensive experiments demonstrate that our approach, which exhibits strong compatibility with existing frameworks, enhances the accuracy and robustness of ViT on various downstream tasks.
♻ ☆ GUI-World: A Video Benchmark and Dataset for Multimodal GUI-oriented Understanding ICLR 2025
Recently, Multimodal Large Language Models (MLLMs) have been used as agents to control keyboard and mouse inputs by directly perceiving the Graphical User Interface (GUI) and generating corresponding commands. However, current agents primarily demonstrate strong understanding capabilities in static environments and are mainly applied to relatively simple domains, such as Web or mobile interfaces. We argue that a robust GUI agent should be capable of perceiving temporal information on the GUI, including dynamic Web content and multi-step tasks. Additionally, it should possess a comprehensive understanding of various GUI scenarios, including desktop software and multi-window interactions. To this end, this paper introduces a new dataset, termed GUI-World, which features meticulously crafted Human-MLLM annotations, extensively covering six GUI scenarios and eight types of GUI-oriented questions in three formats. We evaluate the capabilities of current state-of-the-art MLLMs, including Image LLMs and Video LLMs, in understanding various types of GUI content, especially dynamic and sequential content. Our findings reveal that current models struggle with dynamic GUI content without manually annotated keyframes or operation history. On the other hand, Video LLMs fall short in all GUI-oriented tasks given the sparse GUI video dataset. Therefore, we take the initial step of leveraging a fine-tuned Video LLM, GUI-Vid, as a GUI-oriented assistant, demonstrating an improved understanding of various GUI tasks. However, due to the limitations in the performance of base LLMs, we conclude that using video LLMs as GUI agents remains a significant challenge. We believe our work provides valuable insights for future research in dynamic GUI content understanding. All the dataset and code are publicly available at: https://gui-world.github.io.
comment: Accepted by ICLR 2025
♻ ☆ CompMarkGS: Robust Watermarking for Compression 3D Gaussian Splatting
3D Gaussian Splatting (3DGS) enables rapid differentiable rendering for 3D reconstruction and novel view synthesis, leading to its widespread commercial use. Consequently, copyright protection via watermarking has become critical. However, because 3DGS relies on millions of Gaussians, which require gigabytes of storage, efficient transfer and storage require compression. Existing 3DGS watermarking methods are vulnerable to quantization-based compression, often resulting in the loss of the embedded watermark. To address this challenge, we propose a novel watermarking method that ensures watermark robustness after model compression while maintaining high rendering quality. In detail, we incorporate a quantization distortion layer that simulates compression during training, preserving the watermark under quantization-based compression. Also, we propose a learnable watermark embedding feature that embeds the watermark into the anchor feature, ensuring structural consistency and seamless integration into the 3D scene. Furthermore, we present a frequency-aware anchor growing mechanism to enhance image quality in high-frequency regions by effectively identifying Guassians within these regions. Experimental results confirm that our method preserves the watermark and maintains superior image quality under high compression, validating it as a promising approach for a secure 3DGS model.
comment: 23 pages, 17 figures
♻ ☆ Grounded Chain-of-Thought for Multimodal Large Language Models
Despite great progress, existing multimodal large language models (MLLMs) are prone to visual hallucination, greatly impeding their trustworthy applications. In this paper, we study this problem from the perspective of visual-spatial reasoning, and propose a new learning task for MLLMs, termed Grounded Chain-of-Thought (GCoT). Different from recent visual CoT studies, which focus more on visual knowledge reasoning, GCoT is keen to helping MLLMs to recognize and ground the relevant visual cues step by step, thereby predicting the correct answer with grounding coordinates as the intuitive basis. To facilitate this task, we also carefully design and construct a dataset called multimodal grounded chain-of-thought (MM-GCoT) consisting of 24,022 GCoT examples for 5,033 images. Besides, a comprehensive consistency evaluation system is also introduced, including the metrics of answer accuracy, grounding accuracy and answer-grounding consistency. We further design and conduct a bunch of experiments on 12 advanced MLLMs, and reveal some notable findings: i. most MLLMs performs poorly on the consistency evaluation, indicating obvious visual hallucination; ii. visual hallucination is not directly related to the parameter size and general multimodal performance, i.e., a larger and stronger MLLM is not less affected by this issue. Lastly, we also demonstrate that the proposed dataset can help existing MLLMs to well cultivate their GCoT capability and reduce the inconsistent answering significantly. Moreover, their GCoT can be also generalized to exiting multimodal tasks, such as open-world QA and REC.
♻ ☆ FLARE: Feed-forward Geometry, Appearance and Camera Estimation from Uncalibrated Sparse Views CVPR 2025
We present FLARE, a feed-forward model designed to infer high-quality camera poses and 3D geometry from uncalibrated sparse-view images (i.e., as few as 2-8 inputs), which is a challenging yet practical setting in real-world applications. Our solution features a cascaded learning paradigm with camera pose serving as the critical bridge, recognizing its essential role in mapping 3D structures onto 2D image planes. Concretely, FLARE starts with camera pose estimation, whose results condition the subsequent learning of geometric structure and appearance, optimized through the objectives of geometry reconstruction and novel-view synthesis. Utilizing large-scale public datasets for training, our method delivers state-of-the-art performance in the tasks of pose estimation, geometry reconstruction, and novel view synthesis, while maintaining the inference efficiency (i.e., less than 0.5 seconds). The project page and code can be found at: https://zhanghe3z.github.io/FLARE/
comment: CVPR 2025. Website: https://zhanghe3z.github.io/FLARE/
♻ ☆ Task-driven Image Fusion with Learnable Fusion Loss CVPR 2025
Multi-modal image fusion aggregates information from multiple sensor sources, achieving superior visual quality and perceptual features compared to single-source images, often improving downstream tasks. However, current fusion methods for downstream tasks still use predefined fusion objectives that potentially mismatch the downstream tasks, limiting adaptive guidance and reducing model flexibility. To address this, we propose Task-driven Image Fusion (TDFusion), a fusion framework incorporating a learnable fusion loss guided by task loss. Specifically, our fusion loss includes learnable parameters modeled by a neural network called the loss generation module. This module is supervised by the downstream task loss in a meta-learning manner. The learning objective is to minimize the task loss of fused images after optimizing the fusion module with the fusion loss. Iterative updates between the fusion module and the loss module ensure that the fusion network evolves toward minimizing task loss, guiding the fusion process toward the task objectives. TDFusion's training relies entirely on the downstream task loss, making it adaptable to any specific task. It can be applied to any architecture of fusion and task networks. Experiments demonstrate TDFusion's performance through fusion experiments conducted on four different datasets, in addition to evaluations on semantic segmentation and object detection tasks.
comment: Accepted to CVPR 2025
♻ ☆ ComicsPAP: understanding comic strips by picking the correct panel
Large multimodal models (LMMs) have made impressive strides in image captioning, VQA, and video comprehension, yet they still struggle with the intricate temporal and spatial cues found in comics. To address this gap, we introduce ComicsPAP, a large-scale benchmark designed for comic strip understanding. Comprising over 100k samples and organized into 5 subtasks under a Pick-a-Panel framework, ComicsPAP demands models to identify the missing panel in a sequence. Our evaluations, conducted under both multi-image and single-image protocols, reveal that current state-of-the-art LMMs perform near chance on these tasks, underscoring significant limitations in capturing sequential and contextual dependencies. To close the gap, we adapted LMMs for comic strip understanding, obtaining better results on ComicsPAP than 10x bigger models, demonstrating that ComicsPAP offers a robust resource to drive future research in multimodal comic comprehension.
♻ ☆ Continual Low-Rank Scaled Dot-product Attention
Transformers are widely used for their ability to capture data relations in sequence processing, with great success for a wide range of static tasks. However, the computational and memory footprint of their main component, i.e., the Scaled Dot-product Attention, is commonly overlooked. This makes their adoption in applications involving stream data processing with constraints in response latency, computational and memory resources infeasible. Some works have proposed methods to lower the computational cost of Transformers, i.e. low-rank approximations, sparsity in attention, and efficient formulations for Continual Inference. In this paper, we introduce a new formulation of the Scaled Dot-product Attention based on the Nystr\"om approximation that is suitable for Continual Inference. In experiments on Online Audio Classification and Online Action Detection tasks, the proposed Continual Scaled Dot-product Attention can lower the number of operations by up to three orders of magnitude compared to the original Transformers while retaining the predictive performance of competing models.
comment: 14 pages, 7 figures
♻ ☆ Fractal Calibration for long-tailed object detection CVPR2025
Real-world datasets follow an imbalanced distribution, which poses significant challenges in rare-category object detection. Recent studies tackle this problem by developing re-weighting and re-sampling methods, that utilise the class frequencies of the dataset. However, these techniques focus solely on the frequency statistics and ignore the distribution of the classes in image space, missing important information. In contrast to them, we propose FRActal CALibration (FRACAL): a novel post-calibration method for long-tailed object detection. FRACAL devises a logit adjustment method that utilises the fractal dimension to estimate how uniformly classes are distributed in image space. During inference, it uses the fractal dimension to inversely downweight the probabilities of uniformly spaced class predictions achieving balance in two axes: between frequent and rare categories, and between uniformly spaced and sparsely spaced classes. FRACAL is a post-processing method and it does not require any training, also it can be combined with many off-the-shelf models such as one-stage sigmoid detectors and two-stage instance segmentation models. FRACAL boosts the rare class performance by up to 8.6% and surpasses all previous methods on LVIS dataset, while showing good generalisation to other datasets such as COCO, V3Det and OpenImages. We provide the code at https://github.com/kostas1515/FRACAL.
comment: CVPR2025 (camera-ready)
♻ ☆ Constraint-Aware Feature Learning for Parametric Point Cloud
Parametric point clouds are sampled from CAD shapes and are becoming increasingly common in industrial manufacturing. Most existing CAD-specific deep learning methods only focus on geometric features, while overlooking constraints which are inherent and important in CAD shapes. This limits their ability to discern CAD shapes with similar appearance but different constraints. To tackle this challenge, we first analyze the constraint importance via a simple validation experiment. Then, we introduce a deep learning-friendly constraints representation with three vectorized components, and design a constraint-aware feature learning network (CstNet), which includes two stages. Stage 1 extracts constraint feature from B-Rep data or point cloud based on shape local information. It enables better generalization ability to unseen dataset after model pre-training. Stage 2 employs attention layers to adaptively adjust the weights of three constraints' components. It facilitates the effective utilization of constraints. In addition, we built the first multi-modal parametric-purpose dataset, i.e. Param20K, comprising about 20K shape instances of 75 classes. On this dataset, we performed the classification and rotation robustness experiments, and CstNet achieved 3.52\% and 26.17\% absolute improvements in instance accuracy over the state-of-the-art methods, respectively. To the best of our knowledge, CstNet is the first constraint-aware deep learning method tailored for parametric point cloud analysis in CAD domain.
♻ ☆ APLA: A Simple Adaptation Method for Vision Transformers
Existing adaptation techniques typically require architectural modifications or added parameters, leading to high computational costs and complexity. We introduce Attention Projection Layer Adaptation (APLA), a simple approach to adapt vision transformers (ViTs) without altering the architecture or adding parameters. Through a systematic analysis, we find that the layer immediately after the attention mechanism is crucial for adaptation. By updating only this projection layer, or even just a random subset of this layer's weights, APLA achieves state-of-the-art performance while reducing GPU memory usage by up to 52.63% and training time by up to 43.0%, with no extra cost at inference. Across 46 datasets covering a variety of tasks including scene classification, medical imaging, satellite imaging, and fine-grained classification, APLA consistently outperforms 17 other leading adaptation methods, including full fine-tuning, on classification, segmentation, and detection tasks. The code is available at https://github.com/MoeinSorkhei/APLA.
♻ ☆ Auto Cherry-Picker: Learning from High-quality Generative Data Driven by Language CVPR2025
Diffusion models can generate realistic and diverse images, potentially facilitating data availability for data-intensive perception tasks. However, leveraging these models to boost performance on downstream tasks with synthetic data poses several challenges, including aligning with real data distribution, scaling synthetic sample volumes, and ensuring their quality. To bridge these gaps, we present \textbf{A}uto \textbf{C}herry-\textbf{P}icker (ACP), a novel framework that generates high-quality cross-modality training samples at scale to augment perception and multi-modal training. ACP first uses LLMs to sample descriptions and layouts based on object combinations from real data priors, eliminating the need for ground truth image captions or annotations. Next, we use an off-the-shelf controllable diffusion model to generate multiple images. Then, the generated data are refined using a comprehensively designed metric, Composite Layout and Image Score (CLIS), to ensure quality. Our customized synthetic high-quality samples boost performance in various scenarios, especially in addressing challenges associated with long-tailed distribution and imbalanced datasets. Experiment results on downstream tasks demonstrate that ACP can significantly improve the performance of existing models. In addition, we find a positive correlation between CLIS and performance gains in downstream tasks. This finding shows the potential for evaluation metrics as the role for various visual perception and MLLM tasks.
comment: Accepted to CVPR2025
♻ ☆ Forensics Adapter: Adapting CLIP for Generalizable Face Forgery Detection CVPR 2025
We describe the Forensics Adapter, an adapter network designed to transform CLIP into an effective and generalizable face forgery detector. Although CLIP is highly versatile, adapting it for face forgery detection is non-trivial as forgery-related knowledge is entangled with a wide range of unrelated knowledge. Existing methods treat CLIP merely as a feature extractor, lacking task-specific adaptation, which limits their effectiveness. To address this, we introduce an adapter to learn face forgery traces -- the blending boundaries unique to forged faces, guided by task-specific objectives. Then we enhance the CLIP visual tokens with a dedicated interaction strategy that communicates knowledge across CLIP and the adapter. Since the adapter is alongside CLIP, its versatility is highly retained, naturally ensuring strong generalizability in face forgery detection. With only 5.7M trainable parameters, our method achieves a significant performance boost, improving by approximately 7% on average across five standard datasets. We believe the proposed method can serve as a baseline for future CLIP-based face forgery detection methods. The code is available at https://github.com/OUC-VAS/ForensicsAdapter.
comment: CVPR 2025
♻ ☆ LLM Post-Training: A Deep Dive into Reasoning Large Language Models
Large Language Models (LLMs) have transformed the natural language processing landscape and brought to life diverse applications. Pretraining on vast web-scale data has laid the foundation for these models, yet the research community is now increasingly shifting focus toward post-training techniques to achieve further breakthroughs. While pretraining provides a broad linguistic foundation, post-training methods enable LLMs to refine their knowledge, improve reasoning, enhance factual accuracy, and align more effectively with user intents and ethical considerations. Fine-tuning, reinforcement learning, and test-time scaling have emerged as critical strategies for optimizing LLMs performance, ensuring robustness, and improving adaptability across various real-world tasks. This survey provides a systematic exploration of post-training methodologies, analyzing their role in refining LLMs beyond pretraining, addressing key challenges such as catastrophic forgetting, reward hacking, and inference-time trade-offs. We highlight emerging directions in model alignment, scalable adaptation, and inference-time reasoning, and outline future research directions. We also provide a public repository to continually track developments in this fast-evolving field: https://github.com/mbzuai-oryx/Awesome-LLM-Post-training.
comment: 32 pages, 7 figures, 3 tables, 377 references. Github Repo: https://github.com/mbzuai-oryx/Awesome-LLM-Post-training
♻ ☆ Bokeh Diffusion: Defocus Blur Control in Text-to-Image Diffusion Models
Recent advances in large-scale text-to-image models have revolutionized creative fields by generating visually captivating outputs from textual prompts; however, while traditional photography offers precise control over camera settings to shape visual aesthetics -- such as depth-of-field -- current diffusion models typically rely on prompt engineering to mimic such effects. This approach often results in crude approximations and inadvertently altering the scene content. In this work, we propose Bokeh Diffusion, a scene-consistent bokeh control framework that explicitly conditions a diffusion model on a physical defocus blur parameter. By grounding depth-of-field adjustments, our method preserves the underlying scene structure as the level of blur is varied. To overcome the scarcity of paired real-world images captured under different camera settings, we introduce a hybrid training pipeline that aligns in-the-wild images with synthetic blur augmentations. Extensive experiments demonstrate that our approach not only achieves flexible, lens-like blur control but also supports applications such as real image editing via inversion.
comment: Project page: https://atfortes.github.io/projects/bokeh-diffusion/
♻ ☆ HRGR: Enhancing Image Manipulation Detection via Hierarchical Region-aware Graph Reasoning ICME 2025
Image manipulation detection is to identify the authenticity of each pixel in images. One typical approach to uncover manipulation traces is to model image correlations. The previous methods commonly adopt the grids, which are fixed-size squares, as graph nodes to model correlations. However, these grids, being independent of image content, struggle to retain local content coherence, resulting in imprecise detection.To address this issue, we describe a new method named Hierarchical Region-aware Graph Reasoning (HRGR) to enhance image manipulation detection. Unlike existing grid-based methods, we model image correlations based on content-coherence feature regions with irregular shapes, generated by a novel Differentiable Feature Partition strategy. Then we construct a Hierarchical Region-aware Graph based on these regions within and across different feature layers. Subsequently, we describe a structural-agnostic graph reasoning strategy tailored for our graph to enhance the representation of nodes. Our method is fully differentiable and can seamlessly integrate into mainstream networks in an end-to-end manner, without requiring additional supervision. Extensive experiments demonstrate the effectiveness of our method in image manipulation detection, exhibiting its great potential as a plug-and-play component for existing architectures. Codes and models are available at https://github.com/OUC-VAS/HRGR-IMD.
comment: ICME 2025
♻ ☆ Distilled Prompt Learning for Incomplete Multimodal Survival Prediction CVPR2025
The integration of multimodal data including pathology images and gene profiles is widely applied in precise survival prediction. Despite recent advances in multimodal survival models, collecting complete modalities for multimodal fusion still poses a significant challenge, hindering their application in clinical settings. Current approaches tackling incomplete modalities often fall short, as they typically compensate for only a limited part of the knowledge of missing modalities. To address this issue, we propose a Distilled Prompt Learning framework (DisPro) to utilize the strong robustness of Large Language Models (LLMs) to missing modalities, which employs two-stage prompting for compensation of comprehensive information for missing modalities. In the first stage, Unimodal Prompting (UniPro) distills the knowledge distribution of each modality, preparing for supplementing modality-specific knowledge of the missing modality in the subsequent stage. In the second stage, Multimodal Prompting (MultiPro) leverages available modalities as prompts for LLMs to infer the missing modality, which provides modality-common information. Simultaneously, the unimodal knowledge acquired in the first stage is injected into multimodal inference to compensate for the modality-specific knowledge of the missing modality. Extensive experiments covering various missing scenarios demonstrated the superiority of the proposed method. The code is available at https://github.com/Innse/DisPro.
comment: Accepted by CVPR2025
♻ ☆ S2CFormer: Revisiting the RD-Latency Trade-off in Transformer-based Learned Image Compression
Transformer-based Learned Image Compression (LIC) suffers from a suboptimal trade-off between decoding latency and rate-distortion (R-D) performance. Moreover, the critical role of the FeedForward Network (FFN)-based channel aggregation module has been largely overlooked. Our research reveals that efficient channel aggregation-rather than complex and time-consuming spatial operations-is the key to achieving competitive LIC models. Based on this insight, we initiate the ``S2CFormer'' paradigm, a general architecture that simplifies spatial operations and enhances channel operations to overcome the previous trade-off. We present two instances of the S2CFormer: S2C-Conv, and S2C-Attention. Both models demonstrate state-of-the-art (SOTA) R-D performance and significantly faster decoding speed. Furthermore, we introduce S2C-Hybrid, an enhanced variant that maximizes the strengths of different S2CFormer instances to achieve a better performance-latency trade-off. This model outperforms all the existing methods on the Kodak, Tecnick, and CLIC Professional Validation datasets, setting a new benchmark for efficient and high-performance LIC. The code is at \href{https://github.com/YunuoChen/S2CFormer}{https://github.com/YunuoChen/S2CFormer}.
♻ ☆ JanusFlow: Harmonizing Autoregression and Rectified Flow for Unified Multimodal Understanding and Generation CVPR 2025
We present JanusFlow, a powerful framework that unifies image understanding and generation in a single model. JanusFlow introduces a minimalist architecture that integrates autoregressive language models with rectified flow, a state-of-the-art method in generative modeling. Our key finding demonstrates that rectified flow can be straightforwardly trained within the large language model framework, eliminating the need for complex architectural modifications. To further improve the performance of our unified model, we adopt two key strategies: (i) decoupling the understanding and generation encoders, and (ii) aligning their representations during unified training. Extensive experiments show that JanusFlow achieves comparable or superior performance to specialized models in their respective domains, while significantly outperforming existing unified approaches across standard benchmarks. This work represents a step toward more efficient and versatile vision-language models.
comment: Accepted by CVPR 2025
♻ ☆ Humanoid Policy ~ Human Policy
Training manipulation policies for humanoid robots with diverse data enhances their robustness and generalization across tasks and platforms. However, learning solely from robot demonstrations is labor-intensive, requiring expensive tele-operated data collection which is difficult to scale. This paper investigates a more scalable data source, egocentric human demonstrations, to serve as cross-embodiment training data for robot learning. We mitigate the embodiment gap between humanoids and humans from both the data and modeling perspectives. We collect an egocentric task-oriented dataset (PH2D) that is directly aligned with humanoid manipulation demonstrations. We then train a human-humanoid behavior policy, which we term Human Action Transformer (HAT). The state-action space of HAT is unified for both humans and humanoid robots and can be differentiably retargeted to robot actions. Co-trained with smaller-scale robot data, HAT directly models humanoid robots and humans as different embodiments without additional supervision. We show that human data improves both generalization and robustness of HAT with significantly better data collection efficiency. Code and data: https://human-as-robot.github.io/
comment: Code and data: https://human-as-robot.github.io/
♻ ☆ Adapter Merging with Centroid Prototype Mapping for Scalable Class-Incremental Learning CVPR 2025
We propose Adapter Merging with Centroid Prototype Mapping (ACMap), an exemplar-free framework for class-incremental learning (CIL) that addresses both catastrophic forgetting and scalability. While existing methods involve a trade-off between inference time and accuracy, ACMap consolidates task-specific adapters into a single adapter, thus achieving constant inference time across tasks without sacrificing accuracy. The framework employs adapter merging to build a shared subspace that aligns task representations and mitigates forgetting, while centroid prototype mapping maintains high accuracy by consistently adapting representations within the shared subspace. To further improve scalability, an early stopping strategy limits adapter merging as tasks increase. Extensive experiments on five benchmark datasets demonstrate that ACMap matches state-of-the-art accuracy while maintaining inference time comparable to the fastest existing methods. The code is available at https://github.com/tf63/ACMap.
comment: Accepted to CVPR 2025
♻ ☆ Using deep neural networks to detect non-analytically defined expert event labels in canoe sprint force sensor signals
Assessing an athlete's performance in canoe sprint is often established by measuring a variety of kinematic parameters during training sessions. Many of these parameters are related to single or multiple paddle stroke cycles. Determining on- and offset of these cycles in force sensor signals is usually not straightforward and requires human interaction. This paper explores convolutional neural networks (CNNs) and recurrent neural networks (RNNs) in terms of their ability to automatically predict these events. In addition, our work proposes an extension to the recently published SoftED metric for event detection in order to properly assess the model performance on time windows. In our results, an RNN based on bidirectional gated recurrent units (BGRUs) turned out to be the most suitable model for paddle stroke detection.
♻ ☆ MoDec-GS: Global-to-Local Motion Decomposition and Temporal Interval Adjustment for Compact Dynamic 3D Gaussian Splatting CVPR2025
3D Gaussian Splatting (3DGS) has made significant strides in scene representation and neural rendering, with intense efforts focused on adapting it for dynamic scenes. Despite delivering remarkable rendering quality and speed, existing methods struggle with storage demands and representing complex real-world motions. To tackle these issues, we propose MoDecGS, a memory-efficient Gaussian splatting framework designed for reconstructing novel views in challenging scenarios with complex motions. We introduce GlobaltoLocal Motion Decomposition (GLMD) to effectively capture dynamic motions in a coarsetofine manner. This approach leverages Global Canonical Scaffolds (Global CS) and Local Canonical Scaffolds (Local CS), extending static Scaffold representation to dynamic video reconstruction. For Global CS, we propose Global Anchor Deformation (GAD) to efficiently represent global dynamics along complex motions, by directly deforming the implicit Scaffold attributes which are anchor position, offset, and local context features. Next, we finely adjust local motions via the Local Gaussian Deformation (LGD) of Local CS explicitly. Additionally, we introduce Temporal Interval Adjustment (TIA) to automatically control the temporal coverage of each Local CS during training, allowing MoDecGS to find optimal interval assignments based on the specified number of temporal segments. Extensive evaluations demonstrate that MoDecGS achieves an average 70% reduction in model size over stateoftheart methods for dynamic 3D Gaussians from realworld dynamic videos while maintaining or even improving rendering quality.
comment: CVPR2025 (camera ready ver.). The last two authors are co-corresponding authors. Please visit our project page at https://kaist-viclab.github.io/MoDecGS-site/
♻ ☆ GEOcc: Geometrically Enhanced 3D Occupancy Network with Implicit-Explicit Depth Fusion and Contextual Self-Supervision
3D occupancy perception holds a pivotal role in recent vision-centric autonomous driving systems by converting surround-view images into integrated geometric and semantic representations within dense 3D grids. Nevertheless, current models still encounter two main challenges: modeling depth accurately in the 2D-3D view transformation stage, and overcoming the lack of generalizability issues due to sparse LiDAR supervision. To address these issues, this paper presents GEOcc, a Geometric-Enhanced Occupancy network tailored for vision-only surround-view perception. Our approach is three-fold: 1) Integration of explicit lift-based depth prediction and implicit projection-based transformers for depth modeling, enhancing the density and robustness of view transformation. 2) Utilization of mask-based encoder-decoder architecture for fine-grained semantic predictions; 3) Adoption of context-aware self-training loss functions in the pertaining stage to complement LiDAR supervision, involving the re-rendering of 2D depth maps from 3D occupancy features and leveraging image reconstruction loss to obtain denser depth supervision besides sparse LiDAR ground-truths. Our approach achieves State-Of-The-Art performance on the Occ3D-nuScenes dataset with the least image resolution needed and the most weightless image backbone compared with current models, marking an improvement of 3.3% due to our proposed contributions. Comprehensive experimentation also demonstrates the consistent superiority of our method over baselines and alternative approaches.
comment: This work has been accepted for publication in IEEE Transactions on Intelligent Transportation Systems
♻ ☆ Visual Persona: Foundation Model for Full-Body Human Customization CVPR 2025
We introduce Visual Persona, a foundation model for text-to-image full-body human customization that, given a single in-the-wild human image, generates diverse images of the individual guided by text descriptions. Unlike prior methods that focus solely on preserving facial identity, our approach captures detailed full-body appearance, aligning with text descriptions for body structure and scene variations. Training this model requires large-scale paired human data, consisting of multiple images per individual with consistent full-body identities, which is notoriously difficult to obtain. To address this, we propose a data curation pipeline leveraging vision-language models to evaluate full-body appearance consistency, resulting in Visual Persona-500K, a dataset of 580k paired human images across 100k unique identities. For precise appearance transfer, we introduce a transformer encoder-decoder architecture adapted to a pre-trained text-to-image diffusion model, which augments the input image into distinct body regions, encodes these regions as local appearance features, and projects them into dense identity embeddings independently to condition the diffusion model for synthesizing customized images. Visual Persona consistently surpasses existing approaches, generating high-quality, customized images from in-the-wild inputs. Extensive ablation studies validate design choices, and we demonstrate the versatility of Visual Persona across various downstream tasks.
comment: CVPR 2025, Project page is available at https://cvlab-kaist.github.io/Visual-Persona
♻ ☆ A Deep Learning Model for Coronary Artery Segmentation and Quantitative Stenosis Detection in Angiographic Images
Coronary artery disease (CAD) is a leading cause of cardiovascular-related mortality, and accurate stenosis detection is crucial for effective clinical decision-making. Coronary angiography remains the gold standard for diagnosing CAD, but manual analysis of angiograms is prone to errors and subjectivity. This study aims to develop a deep learning-based approach for the automatic segmentation of coronary arteries from angiographic images and the quantitative detection of stenosis, thereby improving the accuracy and efficiency of CAD diagnosis. We propose a novel deep learning-based method for the automatic segmentation of coronary arteries in angiographic images, coupled with a dynamic cohort method for stenosis detection. The segmentation model combines the MedSAM and VM-UNet architectures to achieve high-performance results. After segmentation, the vascular centerline is extracted, vessel diameter is computed, and the degree of stenosis is measured with high precision, enabling accurate identification of arterial stenosis. On the mixed dataset (including the ARCADE, DCA1, and GH datasets), the model achieved an average IoU of 0.6308, with sensitivity and specificity of 0.9772 and 0.9903, respectively. On the ARCADE dataset, the average IoU was 0.6303, with sensitivity of 0.9832 and specificity of 0.9933. Additionally, the stenosis detection algorithm achieved a true positive rate (TPR) of 0.5867 and a positive predictive value (PPV) of 0.5911, demonstrating the effectiveness of our model in analyzing coronary angiography images. SAM-VMNet offers a promising tool for the automated segmentation and detection of coronary artery stenosis. The model's high accuracy and robustness provide significant clinical value for the early diagnosis and treatment planning of CAD. The code and examples are available at https://github.com/qimingfan10/SAM-VMNet.
♻ ☆ Divide and Conquer: Heterogeneous Noise Integration for Diffusion-based Adversarial Purification
Existing diffusion-based purification methods aim to disrupt adversarial perturbations by introducing a certain amount of noise through a forward diffusion process, followed by a reverse process to recover clean examples. However, this approach is fundamentally flawed: the uniform operation of the forward process across all pixels compromises normal pixels while attempting to combat adversarial perturbations, resulting in the target model producing incorrect predictions. Simply relying on low-intensity noise is insufficient for effective defense. To address this critical issue, we implement a heterogeneous purification strategy grounded in the interpretability of neural networks. Our method decisively applies higher-intensity noise to specific pixels that the target model focuses on while the remaining pixels are subjected to only low-intensity noise. This requirement motivates us to redesign the sampling process of the diffusion model, allowing for the effective removal of varying noise levels. Furthermore, to evaluate our method against strong adaptative attack, our proposed method sharply reduces time cost and memory usage through a single-step resampling. The empirical evidence from extensive experiments across three datasets demonstrates that our method outperforms most current adversarial training and purification techniques by a substantial margin.
♻ ☆ Lessons and Insights from a Unifying Study of Parameter-Efficient Fine-Tuning (PEFT) in Visual Recognition CVPR 2025
Parameter-efficient fine-tuning (PEFT) has attracted significant attention due to the growth of pre-trained model sizes and the need to fine-tune (FT) them for superior downstream performance. Despite a surge in new PEFT methods, a systematic study to understand their performance and suitable application scenarios is lacking, leaving questions like "when to apply PEFT" and "which method to use" largely unanswered, especially in visual recognition. In this paper, we conduct a unifying empirical study of representative PEFT methods with Vision Transformers. We systematically tune their hyper-parameters to fairly compare their accuracy on downstream tasks. Our study offers a practical user guide and unveils several new insights. First, if tuned carefully, different PEFT methods achieve similar accuracy in the low-shot benchmark VTAB-1K. This includes simple approaches like FT the bias terms that were reported inferior. Second, despite similar accuracy, we find that PEFT methods make different mistakes and high-confidence predictions, likely due to their different inductive biases. Such an inconsistency (or complementarity) opens up the opportunity for ensemble methods, and we make preliminary attempts at this. Third, going beyond the commonly used low-shot tasks, we find that PEFT is also useful in many-shot regimes, achieving comparable or better accuracy than full FT while using significantly fewer parameters. Lastly, we investigate PEFT's ability to preserve a pre-trained model's robustness to distribution shifts (e.g., CLIP). Perhaps not surprisingly, PEFT approaches outperform full FT alone. However, with weight-space ensembles, full FT can better balance target distribution and distribution shift performance, suggesting a future research direction for robust PEFT.
comment: CVPR 2025. The code is available at https://github.com/OSU-MLB/ViT_PEFT_Vision
♻ ☆ HiLM-D: Enhancing MLLMs with Multi-Scale High-Resolution Details for Autonomous Driving
Recent efforts to use natural language for interpretable driving focus mainly on planning, neglecting perception tasks. In this paper, we address this gap by introducing ROLISP (Risk Object Localization and Intention and Suggestion Prediction), which towards interpretable risk object detection and suggestion for ego car motions. Accurate ROLISP implementation requires extensive reasoning to identify critical traffic objects and infer their intentions, prompting us to explore the capabilities of multimodal large language models (MLLMs). However, the limited perception performance of CLIP-ViT vision encoders in existing MLLMs struggles with capturing essential visual perception information, e.g., high-resolution, multi-scale and visual-related inductive biases, which are important for autonomous driving. Addressing these challenges, we introduce HiLM-D, a resource-efficient framework that enhances visual information processing in MLLMs for ROLISP. Our method is motivated by the fact that the primary variations in autonomous driving scenarios are the motion trajectories rather than the semantic or appearance information (e.g., the shapes and colors) of objects. Hence, the visual process of HiLM-D is a two-stream framework: (i) a temporal reasoning stream, receiving low-resolution dynamic video content, to capture temporal semantics, and (ii) a spatial perception stream, receiving a single high-resolution frame, to capture holistic visual perception-related information. The spatial perception stream can be made very lightweight by a well-designed P-Adapter, which is lightweight, training-efficient, and easily integrated into existing MLLMs. Experiments on the DRAMA-ROLISP dataset show HiLM-D's significant improvements over current MLLMs, with a 3.7% in BLEU-4 for captioning and 8.7% in mIoU for detection.
comment: Accepted by IJCV
♻ ☆ Prediction and Reference Quality Adaptation for Learned Video Compression
Temporal prediction is one of the most important technologies for video compression. Various prediction coding modes are designed in traditional video codecs. Traditional video codecs will adaptively to decide the optimal coding mode according to the prediction quality and reference quality. Recently, learned video codecs have made great progress. However, they did not effectively address the problem of prediction and reference quality adaptation, which limits the effective utilization of temporal prediction and reduction of reconstruction error propagation. Therefore, in this paper, we first propose a confidence-based prediction quality adaptation (PQA) module to provide explicit discrimination for the spatial and channel-wise prediction quality difference. With this module, the prediction with low quality will be suppressed and that with high quality will be enhanced. The codec can adaptively decide which spatial or channel location of predictions to use. Then, we further propose a reference quality adaptation (RQA) module and an associated repeat-long training strategy to provide dynamic spatially variant filters for diverse reference qualities. With these filters, our codec can adapt to different reference qualities, making it easier to achieve the target reconstruction quality and reduce the reconstruction error propagation. Experimental results verify that our proposed modules can effectively help our codec achieve a higher compression performance.
♻ ☆ DEEPTalk: Dynamic Emotion Embedding for Probabilistic Speech-Driven 3D Face Animation AAAI 2025
Speech-driven 3D facial animation has garnered lots of attention thanks to its broad range of applications. Despite recent advancements in achieving realistic lip motion, current methods fail to capture the nuanced emotional undertones conveyed through speech and produce monotonous facial motion. These limitations result in blunt and repetitive facial animations, reducing user engagement and hindering their applicability. To address these challenges, we introduce DEEPTalk, a novel approach that generates diverse and emotionally rich 3D facial expressions directly from speech inputs. To achieve this, we first train DEE (Dynamic Emotion Embedding), which employs probabilistic contrastive learning to forge a joint emotion embedding space for both speech and facial motion. This probabilistic framework captures the uncertainty in interpreting emotions from speech and facial motion, enabling the derivation of emotion vectors from its multifaceted space. Moreover, to generate dynamic facial motion, we design TH-VQVAE (Temporally Hierarchical VQ-VAE) as an expressive and robust motion prior overcoming limitations of VAEs and VQ-VAEs. Utilizing these strong priors, we develop DEEPTalk, a talking head generator that non-autoregressively predicts codebook indices to create dynamic facial motion, incorporating a novel emotion consistency loss. Extensive experiments on various datasets demonstrate the effectiveness of our approach in creating diverse, emotionally expressive talking faces that maintain accurate lip-sync. Our project page is available at https://whwjdqls.github.io/deeptalk\_website/
comment: First two authors contributed equally. This is a revised version of the original submission, which has been accepted for publication at AAAI 2025
♻ ☆ Attention-guided Feature Distillation for Semantic Segmentation
Deep learning models have achieved significant results across various computer vision tasks. However, due to the large number of parameters in these models, deploying them in real-time scenarios is a critical challenge, specifically in dense prediction tasks such as semantic segmentation. Knowledge distillation has emerged as a successful technique for addressing this problem by transferring knowledge from a cumbersome model (teacher) to a lighter model (student). In contrast to existing complex methodologies commonly employed for distilling knowledge from a teacher to a student, this paper showcases the efficacy of a simple yet powerful method for utilizing refined feature maps to transfer attention. The proposed method has proven to be effective in distilling rich information, outperforming existing methods in semantic segmentation as a dense prediction task. The proposed Attention-guided Feature Distillation (AttnFD) method, employs the Convolutional Block Attention Module (CBAM), which refines feature maps by taking into account both channel-specific and spatial information content. Simply using the Mean Squared Error (MSE) loss function between the refined feature maps of the teacher and the student, AttnFD demonstrates outstanding performance in semantic segmentation, achieving state-of-the-art results in terms of improving the mean Intersection over Union (mIoU) of the student network on the PascalVoc 2012, Cityscapes, COCO, and CamVid datasets.
comment: 26 pages, 10 figures, and 6 tables
♻ ☆ DreamText: High Fidelity Scene Text Synthesis
Scene text synthesis involves rendering specified texts onto arbitrary images. Current methods typically formulate this task in an end-to-end manner but lack effective character-level guidance during training. Besides, their text encoders, pre-trained on a single font type, struggle to adapt to the diverse font styles encountered in practical applications. Consequently, these methods suffer from character distortion, repetition, and absence, particularly in polystylistic scenarios. To this end, this paper proposes DreamText for high-fidelity scene text synthesis. Our key idea is to reconstruct the diffusion training process, introducing more refined guidance tailored to this task, to expose and rectify the model's attention at the character level and strengthen its learning of text regions. This transformation poses a hybrid optimization challenge, involving both discrete and continuous variables. To effectively tackle this challenge, we employ a heuristic alternate optimization strategy. Meanwhile, we jointly train the text encoder and generator to comprehensively learn and utilize the diverse font present in the training dataset. This joint training is seamlessly integrated into the alternate optimization process, fostering a synergistic relationship between learning character embedding and re-estimating character attention. Specifically, in each step, we first encode potential character-generated position information from cross-attention maps into latent character masks. These masks are then utilized to update the representation of specific characters in the current step, which, in turn, enables the generator to correct the character's attention in the subsequent steps. Both qualitative and quantitative results demonstrate the superiority of our method to the state of the art.
comment: Code: https://github.com/CodeGoat24/DreamText, Project page: https://codegoat24.github.io/DreamText/
♻ ☆ MMO-IG: Multi-Class and Multi-Scale Object Image Generation for Remote Sensing
The rapid advancement of deep generative models (DGMs) has significantly advanced research in computer vision, providing a cost-effective alternative to acquiring vast quantities of expensive imagery. However, existing methods predominantly focus on synthesizing remote sensing (RS) images aligned with real images in a global layout view, which limits their applicability in RS image object detection (RSIOD) research. To address these challenges, we propose a multi-class and multi-scale object image generator based on DGMs, termed MMO-IG, designed to generate RS images with supervised object labels from global and local aspects simultaneously. Specifically, from the local view, MMO-IG encodes various RS instances using an iso-spacing instance map (ISIM). During the generation process, it decodes each instance region with iso-spacing value in ISIM-corresponding to both background and foreground instances-to produce RS images through the denoising process of diffusion models. Considering the complex interdependencies among MMOs, we construct a spatial-cross dependency knowledge graph (SCDKG). This ensures a realistic and reliable multidirectional distribution among MMOs for region embedding, thereby reducing the discrepancy between source and target domains. Besides, we propose a structured object distribution instruction (SODI) to guide the generation of synthesized RS image content from a global aspect with SCDKG-based ISIM together. Extensive experimental results demonstrate that our MMO-IG exhibits superior generation capabilities for RS images with dense MMO-supervised labels, and RS detectors pre-trained with MMO-IG show excellent performance on real-world datasets.
♻ ☆ Zero-Shot Head Swapping in Real-World Scenarios CVPR'25
With growing demand in media and social networks for personalized images, the need for advanced head-swapping techniques, integrating an entire head from the head image with the body from the body image, has increased. However, traditional head swapping methods heavily rely on face-centered cropped data with primarily frontal facing views, which limits their effectiveness in real world applications. Additionally, their masking methods, designed to indicate regions requiring editing, are optimized for these types of dataset but struggle to achieve seamless blending in complex situations, such as when the original data includes features like long hair extending beyond the masked area. To overcome these limitations and enhance adaptability in diverse and complex scenarios, we propose a novel head swapping method, HID, that is robust to images including the full head and the upper body, and handles from frontal to side views, while automatically generating context aware masks. For automatic mask generation, we introduce the IOMask, which enables seamless blending of the head and body, effectively addressing integration challenges. We further introduce the hair injection module to capture hair details with greater precision. Our experiments demonstrate that the proposed approach achieves state-of-the-art performance in head swapping, providing visually consistent and realistic results across a wide range of challenging conditions.
comment: CVPR'25
♻ ☆ SplatFlow: Multi-View Rectified Flow Model for 3D Gaussian Splatting Synthesis
Text-based generation and editing of 3D scenes hold significant potential for streamlining content creation through intuitive user interactions. While recent advances leverage 3D Gaussian Splatting (3DGS) for high-fidelity and real-time rendering, existing methods are often specialized and task-focused, lacking a unified framework for both generation and editing. In this paper, we introduce SplatFlow, a comprehensive framework that addresses this gap by enabling direct 3DGS generation and editing. SplatFlow comprises two main components: a multi-view rectified flow (RF) model and a Gaussian Splatting Decoder (GSDecoder). The multi-view RF model operates in latent space, generating multi-view images, depths, and camera poses simultaneously, conditioned on text prompts, thus addressing challenges like diverse scene scales and complex camera trajectories in real-world settings. Then, the GSDecoder efficiently translates these latent outputs into 3DGS representations through a feed-forward 3DGS method. Leveraging training-free inversion and inpainting techniques, SplatFlow enables seamless 3DGS editing and supports a broad range of 3D tasks-including object editing, novel view synthesis, and camera pose estimation-within a unified framework without requiring additional complex pipelines. We validate SplatFlow's capabilities on the MVImgNet and DL3DV-7K datasets, demonstrating its versatility and effectiveness in various 3D generation, editing, and inpainting-based tasks.
comment: Project Page: https://gohyojun15.github.io/SplatFlow/
♻ ☆ Large-scale Pre-training for Grounded Video Caption Generation
We propose a novel approach for captioning and object grounding in video, where the objects in the caption are grounded in the video via temporally dense bounding boxes. We introduce the following contributions. First, we present a large-scale automatic annotation method that aggregates captions grounded with bounding boxes across individual frames into temporally dense and consistent bounding box annotations. We apply this approach on the HowTo100M dataset to construct a large-scale pre-training dataset, named HowToGround1M. We also introduce a Grounded Video Caption Generation model, dubbed GROVE, and pre-train the model on HowToGround1M. Second, we introduce a new dataset, called iGround, of 3500 videos with manually annotated captions and dense spatio-temporally grounded bounding boxes. This allows us to measure progress on this challenging problem, as well as to fine-tune our model on this small-scale but high-quality data. Third, we demonstrate that our approach achieves state-of-the-art results on the proposed iGround dataset compared to a number of baselines, as well as on the VidSTG and ActivityNet-Entities datasets. We perform extensive ablations that demonstrate the importance of pre-training using our automatically annotated HowToGround1M dataset followed by fine-tuning on the manually annotated iGround dataset and validate the key technical contributions of our model.
♻ ☆ Task-Augmented Cross-View Imputation Network for Partial Multi-View Incomplete Multi-Label Classification
In real-world scenarios, multi-view multi-label learning often encounters the challenge of incomplete training data due to limitations in data collection and unreliable annotation processes. The absence of multi-view features impairs the comprehensive understanding of samples, omitting crucial details essential for classification. To address this issue, we present a task-augmented cross-view imputation network (TACVI-Net) for the purpose of handling partial multi-view incomplete multi-label classification. Specifically, we employ a two-stage network to derive highly task-relevant features to recover the missing views. In the first stage, we leverage the information bottleneck theory to obtain a discriminative representation of each view by extracting task-relevant information through a view-specific encoder-classifier architecture. In the second stage, an autoencoder based multi-view reconstruction network is utilized to extract high-level semantic representation of the augmented features and recover the missing data, thereby aiding the final classification task. Extensive experiments on five datasets demonstrate that our TACVI-Net outperforms other state-of-the-art methods.
♻ ☆ Flowing from Words to Pixels: A Noise-Free Framework for Cross-Modality Evolution CVPR 2025
Diffusion models, and their generalization, flow matching, have had a remarkable impact on the field of media generation. Here, the conventional approach is to learn the complex mapping from a simple source distribution of Gaussian noise to the target media distribution. For cross-modal tasks such as text-to-image generation, this same mapping from noise to image is learnt whilst including a conditioning mechanism in the model. One key and thus far relatively unexplored feature of flow matching is that, unlike Diffusion models, they are not constrained for the source distribution to be noise. Hence, in this paper, we propose a paradigm shift, and ask the question of whether we can instead train flow matching models to learn a direct mapping from the distribution of one modality to the distribution of another, thus obviating the need for both the noise distribution and conditioning mechanism. We present a general and simple framework, CrossFlow, for cross-modal flow matching. We show the importance of applying Variational Encoders to the input data, and introduce a method to enable Classifier-free guidance. Surprisingly, for text-to-image, CrossFlow with a vanilla transformer without cross attention slightly outperforms standard flow matching, and we show that it scales better with training steps and model size, while also allowing for interesting latent arithmetic which results in semantically meaningful edits in the output space. To demonstrate the generalizability of our approach, we also show that CrossFlow is on par with or outperforms the state-of-the-art for various cross-modal / intra-modal mapping tasks, viz. image captioning, depth estimation, and image super-resolution. We hope this paper contributes to accelerating progress in cross-modal media generation.
comment: CVPR 2025 camera-ready version. Project page: https://cross-flow.github.io/
♻ ☆ MOSAIC: Generating Consistent, Privacy-Preserving Scenes from Multiple Depth Views in Multi-Room Environments
We introduce a novel diffusion-based approach for generating privacy-preserving digital twins of multi-room indoor environments from depth images only. Central to our approach is a novel Multi-view Overlapped Scene Alignment with Implicit Consistency (MOSAIC) model that explicitly considers cross-view dependencies within the same scene in the probabilistic sense. MOSAIC operates through a novel inference-time optimization that avoids error accumulation common in sequential or single-room constraint in panorama-based approaches. MOSAIC scales to complex scenes with zero extra training and provably reduces the variance during denoising processes when more overlapping views are added, leading to improved generation quality. Experiments show that MOSAIC outperforms state-of-the-art baselines on image fidelity metrics in reconstructing complex multi-room environments. Project page is available at: https://mosaic-cmubig.github.io
♻ ☆ Multi-modal Multi-platform Person Re-Identification: Benchmark and Method
Conventional person re-identification (ReID) research is often limited to single-modality sensor data from static cameras, which fails to address the complexities of real-world scenarios where multi-modal signals are increasingly prevalent. For instance, consider an urban ReID system integrating stationary RGB cameras, nighttime infrared sensors, and UAVs equipped with dynamic tracking capabilities. Such systems face significant challenges due to variations in camera perspectives, lighting conditions, and sensor modalities, hindering effective person ReID. To address these challenges, we introduce the MP-ReID benchmark, a novel dataset designed specifically for multi-modality and multi-platform ReID. This benchmark uniquely compiles data from 1,930 identities across diverse modalities, including RGB, infrared, and thermal imaging, captured by both UAVs and ground-based cameras in indoor and outdoor environments. Building on this benchmark, we introduce Uni-Prompt ReID, a framework with specific-designed prompts, tailored for cross-modality and cross-platform scenarios. Our method consistently outperforms state-of-the-art approaches, establishing a robust foundation for future research in complex and dynamic ReID environments. Our dataset are available at:https://mp-reid.github.io/.
♻ ☆ IRGS: Inter-Reflective Gaussian Splatting with 2D Gaussian Ray Tracing CVPR 2025
In inverse rendering, accurately modeling visibility and indirect radiance for incident light is essential for capturing secondary effects. Due to the absence of a powerful Gaussian ray tracer, previous 3DGS-based methods have either adopted a simplified rendering equation or used learnable parameters to approximate incident light, resulting in inaccurate material and lighting estimations. To this end, we introduce inter-reflective Gaussian splatting (IRGS) for inverse rendering. To capture inter-reflection, we apply the full rendering equation without simplification and compute incident radiance on the fly using the proposed differentiable 2D Gaussian ray tracing. Additionally, we present an efficient optimization scheme to handle the computational demands of Monte Carlo sampling for rendering equation evaluation. Furthermore, we introduce a novel strategy for querying the indirect radiance of incident light when relighting the optimized scenes. Extensive experiments on multiple standard benchmarks validate the effectiveness of IRGS, demonstrating its capability to accurately model complex inter-reflection effects.
comment: CVPR 2025. Project page: https://fudan-zvg.github.io/IRGS
♻ ☆ iFlame: Interleaving Full and Linear Attention for Efficient Mesh Generation
This paper propose iFlame, a novel transformer-based network architecture for mesh generation. While attention-based models have demonstrated remarkable performance in mesh generation, their quadratic computational complexity limits scalability, particularly for high-resolution 3D data. Conversely, linear attention mechanisms offer lower computational costs but often struggle to capture long-range dependencies, resulting in suboptimal outcomes. To address this trade-off, we propose an interleaving autoregressive mesh generation framework that combines the efficiency of linear attention with the expressive power of full attention mechanisms. To further enhance efficiency and leverage the inherent structure of mesh representations, we integrate this interleaving approach into an hourglass architecture, which significantly boosts efficiency. Our approach reduces training time while achieving performance comparable to pure attention-based models. To improve inference efficiency, we implemented a caching algorithm that almost doubles the speed and reduces the KV cache size by seven-eighths compared to the original Transformer. We evaluate our framework on ShapeNet and Objaverse, demonstrating its ability to generate high-quality 3D meshes efficiently. Our results indicate that the proposed interleaving framework effectively balances computational efficiency and generative performance, making it a practical solution for mesh generation. The training takes only 2 days with 4 GPUs on 39k data with a maximum of 4k faces on Objaverse.
comment: Project website: https://wanghanxiao123.github.io/iFa/
♻ ☆ DiffusionDrive: Truncated Diffusion Model for End-to-End Autonomous Driving CVPR 2025
Recently, the diffusion model has emerged as a powerful generative technique for robotic policy learning, capable of modeling multi-mode action distributions. Leveraging its capability for end-to-end autonomous driving is a promising direction. However, the numerous denoising steps in the robotic diffusion policy and the more dynamic, open-world nature of traffic scenes pose substantial challenges for generating diverse driving actions at a real-time speed. To address these challenges, we propose a novel truncated diffusion policy that incorporates prior multi-mode anchors and truncates the diffusion schedule, enabling the model to learn denoising from anchored Gaussian distribution to the multi-mode driving action distribution. Additionally, we design an efficient cascade diffusion decoder for enhanced interaction with conditional scene context. The proposed model, DiffusionDrive, demonstrates 10$\times$ reduction in denoising steps compared to vanilla diffusion policy, delivering superior diversity and quality in just 2 steps. On the planning-oriented NAVSIM dataset, with the aligned ResNet-34 backbone, DiffusionDrive achieves 88.1 PDMS without bells and whistles, setting a new record, while running at a real-time speed of 45 FPS on an NVIDIA 4090. Qualitative results on challenging scenarios further confirm that DiffusionDrive can robustly generate diverse plausible driving actions. Code and model will be available at https://github.com/hustvl/DiffusionDrive.
comment: Accepted to CVPR 2025. Code & demo & model are available at https://github.com/hustvl/DiffusionDrive
♻ ☆ Applications of Spiking Neural Networks in Visual Place Recognition
In robotics, Spiking Neural Networks (SNNs) are increasingly recognized for their largely-unrealized potential energy efficiency and low latency particularly when implemented on neuromorphic hardware. Our paper highlights three advancements for SNNs in Visual Place Recognition (VPR). Firstly, we propose Modular SNNs, where each SNN represents a set of non-overlapping geographically distinct places, enabling scalable networks for large environments. Secondly, we present Ensembles of Modular SNNs, where multiple networks represent the same place, significantly enhancing accuracy compared to single-network models. Each of our Modular SNN modules is compact, comprising only 1500 neurons and 474k synapses, making them ideally suited for ensembling due to their small size. Lastly, we investigate the role of sequence matching in SNN-based VPR, a technique where consecutive images are used to refine place recognition. We demonstrate competitive performance of our method on a range of datasets, including higher responsiveness to ensembling compared to conventional VPR techniques and higher R@1 improvements with sequence matching than VPR techniques with comparable baseline performance. Our contributions highlight the viability of SNNs for VPR, offering scalable and robust solutions, and paving the way for their application in various energy-sensitive robotic tasks.
comment: 20 pages, 10 figures, IEEE Transactions on Robotics (TRO)
♻ ☆ Similarity-Dissimilarity Loss for Multi-label Supervised Contrastive Learning
Supervised contrastive learning has been explored in making use of label information for multi-label classification, but determining positive samples in multi-label scenario remains challenging. Previous studies have examined strategies for identifying positive samples, considering label overlap proportion between anchors and samples. However, they ignore various relations between given anchors and samples, as well as how to dynamically adjust the weights in contrastive loss functions based on different relations, leading to great ambiguity. In this paper, we introduce five distinct relations between multi-label samples and propose a Similarity-Dissimilarity Loss with contrastive learning for multi-label classification. Our loss function re-weights the loss by computing the similarity and dissimilarity between positive samples and a given anchor based on the introduced relations. We mainly conduct experiments for multi-label text classification on MIMIC datasets, then further extend the evaluation on MS-COCO. The Experimental results show that our proposed loss effectively improves the performance on all encoders under supervised contrastive learning paradigm, demonstrating its effectiveness and robustness.
♻ ☆ CoRLD: Contrastive Representation Learning Of Deformable Shapes In Images
Deformable shape representations, parameterized by deformations relative to a given template, have proven effective for improved image analysis tasks. However, their broader applicability is hindered by two major challenges. First, existing methods mainly rely on a known template during testing, which is impractical and limits flexibility. Second, they often struggle to capture fine-grained, voxel-level distinctions between similar shapes (e.g., anatomical variations among healthy individuals, those with mild cognitive impairment, and diseased states). To address these limitations, we propose a novel framework - Contrastive Representation Learning of Deformable shapes (CoRLD) in learned deformation spaces and demonstrate its effectiveness in the context of image classification. Our CoRLD leverages a class-aware contrastive supervised learning objective in latent deformation spaces, promoting proximity among representations of similar classes while ensuring separation of dissimilar groups. In contrast to previous deep learning networks that require a reference image as input to predict deformation changes, our approach eliminates this dependency. Instead, template images are utilized solely as ground truth in the loss function during the training process, making our model more flexible and generalizable to a wide range of medical applications. We validate CoRLD on diverse datasets, including real brain magnetic resonance imaging (MRIs) and adrenal shapes derived from computed tomography (CT) scans. Experimental results show that our model effectively extracts deformable shape features, which can be easily integrated with existing classifiers to substantially boost the classification accuracy. Our code is available at GitHub.
♻ ☆ BiM-VFI: Bidirectional Motion Field-Guided Frame Interpolation for Video with Non-uniform Motions
Existing Video Frame interpolation (VFI) models tend to suffer from time-to-location ambiguity when trained with video of non-uniform motions, such as accelerating, decelerating, and changing directions, which often yield blurred interpolated frames. In this paper, we propose (i) a novel motion description map, Bidirectional Motion field (BiM), to effectively describe non-uniform motions; (ii) a BiM-guided Flow Net (BiMFN) with Content-Aware Upsampling Network (CAUN) for precise optical flow estimation; and (iii) Knowledge Distillation for VFI-centric Flow supervision (KDVCF) to supervise the motion estimation of VFI model with VFI-centric teacher flows. The proposed VFI is called a Bidirectional Motion field-guided VFI (BiM-VFI) model. Extensive experiments show that our BiM-VFI model significantly surpasses the recent state-of-the-art VFI methods by 26% and 45% improvements in LPIPS and STLPIPS respectively, yielding interpolated frames with much fewer blurs at arbitrary time instances.
comment: The last two authors are co-corresponding authors
♻ ☆ ReTaKe: Reducing Temporal and Knowledge Redundancy for Long Video Understanding
Video Large Language Models (VideoLLMs) have made significant strides in video understanding but struggle with long videos due to the limitations of their backbone LLMs. Existing solutions rely on length extrapolation, which is memory-constrained, or visual token compression, which primarily leverages low-level temporal redundancy while overlooking the more effective high-level knowledge redundancy. To address this, we propose $\textbf{ReTaKe}$, a training-free method with two novel modules DPSelect and PivotKV, to jointly reduce both temporal visual redundancy and knowledge redundancy for video compression. To align with the way of human temporal perception, DPSelect identifies keyframes based on inter-frame distance peaks. To leverage LLMs' learned prior knowledge, PivotKV marks the keyframes as pivots and compress non-pivot frames by pruning low-attention tokens in their KV cache. ReTaKe enables VideoLLMs to process 8 times longer frames (up to 2048), outperforming similar-sized models by 3-5% and even rivaling much larger ones on VideoMME, MLVU, LongVideoBench, and LVBench. Moreover, by overlapping compression operations with prefilling, ReTaKe introduces only ~10% prefilling latency overhead while reducing decoding latency by ~20%. Our code is available at https://github.com/SCZwangxiao/video-ReTaKe.
comment: Rewrite the methods section. Add more ablation studies and results in LongVideoBench. Update metadata
♻ ☆ Spiking Neural Network as Adaptive Event Stream Slicer NeurIPS 2024
Event-based cameras are attracting significant interest as they provide rich edge information, high dynamic range, and high temporal resolution. Many state-of-the-art event-based algorithms rely on splitting the events into fixed groups, resulting in the omission of crucial temporal information, particularly when dealing with diverse motion scenarios (\eg, high/low speed).In this work, we propose SpikeSlicer, a novel-designed plug-and-play event processing method capable of splitting events stream adaptively.SpikeSlicer utilizes a low-energy spiking neural network (SNN) to trigger event slicing. To guide the SNN to fire spikes at optimal time steps, we propose the Spiking Position-aware Loss (SPA-Loss) to modulate the neuron's state. Additionally, we develop a Feedback-Update training strategy that refines the slicing decisions using feedback from the downstream artificial neural network (ANN). Extensive experiments demonstrate that our method yields significant performance improvements in event-based object tracking and recognition. Notably, SpikeSlicer provides a brand-new SNN-ANN cooperation paradigm, where the SNN acts as an efficient, low-energy data processor to assist the ANN in improving downstream performance, injecting new perspectives and potential avenues of exploration. Our code is available at https://github.com/AndyCao1125/SpikeSlicer.
comment: Accepted to NeurIPS 2024
♻ ☆ Good, Cheap, and Fast: Overfitted Image Compression with Wasserstein Distortion CVPR 2025
Inspired by the success of generative image models, recent work on learned image compression increasingly focuses on better probabilistic models of the natural image distribution, leading to excellent image quality. This, however, comes at the expense of a computational complexity that is several orders of magnitude higher than today's commercial codecs, and thus prohibitive for most practical applications. With this paper, we demonstrate that by focusing on modeling visual perception rather than the data distribution, we can achieve a very good trade-off between visual quality and bit rate similar to "generative" compression models such as HiFiC, while requiring less than 1% of the multiply-accumulate operations (MACs) for decompression. We do this by optimizing C3, an overfitted image codec, for Wasserstein Distortion (WD), and evaluating the image reconstructions with a human rater study, showing that WD clearly outperforms LPIPS as an optimization objective. The study also reveals that WD outperforms other perceptual metrics such as LPIPS, DISTS, and MS-SSIM as a predictor of human ratings, remarkably achieving over 94% Pearson correlation with Elo scores.
comment: 16 pages, 12 figures. Accepted for presentation at CVPR 2025
♻ ☆ Bayesian Prompt Flow Learning for Zero-Shot Anomaly Detection
Recently, vision-language models (e.g. CLIP) have demonstrated remarkable performance in zero-shot anomaly detection (ZSAD). By leveraging auxiliary data during training, these models can directly perform cross-category anomaly detection on target datasets, such as detecting defects on industrial product surfaces or identifying tumors in organ tissues. Existing approaches typically construct text prompts through either manual design or the optimization of learnable prompt vectors. However, these methods face several challenges: 1) handcrafted prompts require extensive expert knowledge and trial-and-error; 2) single-form learnable prompts struggle to capture complex anomaly semantics; and 3) an unconstrained prompt space limits generalization to unseen categories. To address these issues, we propose Bayesian Prompt Flow Learning (Bayes-PFL), which models the prompt space as a learnable probability distribution from a Bayesian perspective. Specifically, a prompt flow module is designed to learn both image-specific and image-agnostic distributions, which are jointly utilized to regularize the text prompt space and improve the model's generalization on unseen categories. These learned distributions are then sampled to generate diverse text prompts, effectively covering the prompt space. Additionally, a residual cross-model attention (RCA) module is introduced to better align dynamic text embeddings with fine-grained image features. Extensive experiments on 15 industrial and medical datasets demonstrate our method's superior performance. The code is available at https://github.com/xiaozhen228/Bayes-PFL.
♻ ☆ 3D-MVP: 3D Multiview Pretraining for Robotic Manipulation CVPR 2025
Recent works have shown that visual pretraining on egocentric datasets using masked autoencoders (MAE) can improve generalization for downstream robotics tasks. However, these approaches pretrain only on 2D images, while many robotics applications require 3D scene understanding. In this work, we propose 3D-MVP, a novel approach for 3D Multi-View Pretraining using masked autoencoders. We leverage Robotic View Transformer (RVT), which uses a multi-view transformer to understand the 3D scene and predict gripper pose actions. We split RVT's multi-view transformer into visual encoder and action decoder, and pretrain its visual encoder using masked autoencoding on large-scale 3D datasets such as Objaverse. We evaluate 3D-MVP on a suite of virtual robot manipulation tasks and demonstrate improved performance over baselines. Our results suggest that 3D-aware pretraining is a promising approach to improve generalization of vision-based robotic manipulation policies. Project site: https://jasonqsy.github.io/3DMVP
comment: CVPR 2025
♻ ☆ CADDreamer: CAD Object Generation from Single-view Images CVPR 2025
Diffusion-based 3D generation has made remarkable progress in recent years. However, existing 3D generative models often produce overly dense and unstructured meshes, which stand in stark contrast to the compact, structured, and sharply-edged Computer-Aided Design (CAD) models crafted by human designers. To address this gap, we introduce CADDreamer, a novel approach for generating boundary representations (B-rep) of CAD objects from a single image. CADDreamer employs a primitive-aware multi-view diffusion model that captures both local geometric details and high-level structural semantics during the generation process. By encoding primitive semantics into the color domain, the method leverages the strong priors of pre-trained diffusion models to align with well-defined primitives. This enables the inference of multi-view normal maps and semantic maps from a single image, facilitating the reconstruction of a mesh with primitive labels. Furthermore, we introduce geometric optimization techniques and topology-preserving extraction methods to mitigate noise and distortion in the generated primitives. These enhancements result in a complete and seamless B-rep of the CAD model. Experimental results demonstrate that our method effectively recovers high-quality CAD objects from single-view images. Compared to existing 3D generation techniques, the B-rep models produced by CADDreamer are compact in representation, clear in structure, sharp in edges, and watertight in topology.
comment: Accepted to CVPR 2025
♻ ☆ Zero-Shot Low Light Image Enhancement with Diffusion Prior
In this paper, we present a simple yet highly effective "free lunch" solution for low-light image enhancement (LLIE), which aims to restore low-light images as if acquired in well-illuminated environments. Our method necessitates no optimization, training, fine-tuning, text conditioning, or hyperparameter adjustments, yet it consistently reconstructs low-light images with superior fidelity. Specifically, we leverage a pre-trained text-to-image diffusion prior, learned from training on a large collection of natural images, and the features present in the model itself to guide the inference, in contrast to existing methods that depend on customized constraints. Comprehensive quantitative evaluations demonstrate that our approach outperforms SOTA methods on established datasets, while qualitative analyses indicate enhanced color accuracy and the rectification of subtle chromatic deviations. Furthermore, additional experiments reveal that our method, without any modifications, achieves SOTA-comparable performance in the auto white balance (AWB) task.
♻ ☆ ZoomLDM: Latent Diffusion Model for multi-scale image generation
Diffusion models have revolutionized image generation, yet several challenges restrict their application to large-image domains, such as digital pathology and satellite imagery. Given that it is infeasible to directly train a model on 'whole' images from domains with potential gigapixel sizes, diffusion-based generative methods have focused on synthesizing small, fixed-size patches extracted from these images. However, generating small patches has limited applicability since patch-based models fail to capture the global structures and wider context of large images, which can be crucial for synthesizing (semantically) accurate samples. To overcome this limitation, we present ZoomLDM, a diffusion model tailored for generating images across multiple scales. Central to our approach is a novel magnification-aware conditioning mechanism that utilizes self-supervised learning (SSL) embeddings and allows the diffusion model to synthesize images at different 'zoom' levels, i.e., fixed-size patches extracted from large images at varying scales. ZoomLDM synthesizes coherent histopathology images that remain contextually accurate and detailed at different zoom levels, achieving state-of-the-art image generation quality across all scales and excelling in the data-scarce setting of generating thumbnails of entire large images. The multi-scale nature of ZoomLDM unlocks additional capabilities in large image generation, enabling computationally tractable and globally coherent image synthesis up to $4096 \times 4096$ pixels and $4\times$ super-resolution. Additionally, multi-scale features extracted from ZoomLDM are highly effective in multiple instance learning experiments.
♻ ☆ MVCTrack: Boosting 3D Point Cloud Tracking via Multimodal-Guided Virtual Cues ICRA 2025
3D single object tracking is essential in autonomous driving and robotics. Existing methods often struggle with sparse and incomplete point cloud scenarios. To address these limitations, we propose a Multimodal-guided Virtual Cues Projection (MVCP) scheme that generates virtual cues to enrich sparse point clouds. Additionally, we introduce an enhanced tracker MVCTrack based on the generated virtual cues. Specifically, the MVCP scheme seamlessly integrates RGB sensors into LiDAR-based systems, leveraging a set of 2D detections to create dense 3D virtual cues that significantly improve the sparsity of point clouds. These virtual cues can naturally integrate with existing LiDAR-based 3D trackers, yielding substantial performance gains. Extensive experiments demonstrate that our method achieves competitive performance on the NuScenes dataset.
comment: Accepted by ICRA 2025
♻ ☆ CalibQuant: 1-Bit KV Cache Quantization for Multimodal LLMs
Multimodal Large Language Models (MLLMs) have demonstrated remarkable performance across diverse applications. However, their computational overhead during deployment remains a critical bottleneck. While Key-Value (KV) caching effectively trades memory for computation to enhance inference efficiency, the growing memory footprint from extensive KV caches significantly reduces throughput and restricts prolonged deployment on memory-constrained GPU devices. To address this challenge, we propose CalibQuant, a simple yet highly effective visual quantization strategy that drastically reduces both memory and computational overhead. Specifically, CalibQuant introduces an extreme 1-bit quantization scheme, complemented by novel post-scaling and calibration techniques tailored to the intrinsic patterns of KV caches, thereby ensuring high efficiency without compromising model performance. Leveraging Triton for runtime optimization, we achieve a 10x throughput increase on InternVL models. Our method is designed to be plug-and-play, seamlessly integrating with various existing MLLMs without requiring architectural changes. Extensive experiments confirm that our approach significantly reduces memory usage while maintaining computational efficiency and preserving multimodal capabilities. Codes are available at https://github.com/insuhan/calibquant.
♻ ☆ Seeing A 3D World in A Grain of Sand
We present a snapshot imaging technique for recovering 3D surrounding views of miniature scenes. Due to their intricacy, miniature scenes with objects sized in millimeters are difficult to reconstruct, yet miniatures are common in life and their 3D digitalization is desirable. We design a catadioptric imaging system with a single camera and eight pairs of planar mirrors for snapshot 3D reconstruction from a dollhouse perspective. We place paired mirrors on nested pyramid surfaces for capturing surrounding multi-view images in a single shot. Our mirror design is customizable based on the size of the scene for optimized view coverage. We use the 3D Gaussian Splatting (3DGS) representation for scene reconstruction and novel view synthesis. We overcome the challenge posed by our sparse view input by integrating visual hull-derived depth constraint. Our method demonstrates state-of-the-art performance on a variety of synthetic and real miniature scenes.
♻ ☆ SILMM: Self-Improving Large Multimodal Models for Compositional Text-to-Image Generation CVPR 2025
Large Multimodal Models (LMMs) have demonstrated impressive capabilities in multimodal understanding and generation, pushing forward advancements in text-to-image generation. However, achieving accurate text-image alignment for LMMs, particularly in compositional scenarios, remains challenging. Existing approaches, such as layout planning for multi-step generation and learning from human feedback or AI feedback, depend heavily on prompt engineering, costly human annotations, and continual upgrading, limiting flexibility and scalability. In this work, we introduce a model-agnostic iterative self-improvement framework (SILMM) that can enable LMMs to provide helpful and scalable self-feedback and optimize text-image alignment via Direct Preference Optimization (DPO). DPO can readily applied to LMMs that use discrete visual tokens as intermediate image representations; while it is less suitable for LMMs with continuous visual features, as obtaining generation probabilities is challenging. To adapt SILMM to LMMs with continuous features, we propose a diversity mechanism to obtain diverse representations and a kernel-based continuous DPO for alignment. Extensive experiments on three compositional text-to-image generation benchmarks validate the effectiveness and superiority of SILMM, showing improvements exceeding 30% on T2I-CompBench++ and around 20% on DPG-Bench.
comment: CVPR 2025 Camera-ready. Project page: https://silmm.github.io/
♻ ☆ 3D Shape Tokenization via Latent Flow Matching
We introduce a latent 3D representation that models 3D surfaces as probability density functions in 3D, i.e., p(x,y,z), with flow-matching. Our representation is specifically designed for consumption by machine learning models, offering continuity and compactness by construction while requiring only point clouds and minimal data preprocessing. Despite being a data-driven method, our use of flow matching in the 3D space enables interesting geometry properties, including the capabilities to perform zero-shot estimation of surface normal and deformation field. We evaluate with several machine learning tasks, including 3D-CLIP, unconditional generative models, single-image conditioned generative model, and intersection-point estimation. Across all experiments, our models achieve competitive performance to existing baselines, while requiring less preprocessing and auxiliary information from training data.
♻ ☆ TIGeR: Unifying Text-to-Image Generation and Retrieval with Large Multimodal Models ICLR 2025
How humans can effectively and efficiently acquire images has always been a perennial question. A classic solution is text-to-image retrieval from an existing database; however, the limited database typically lacks creativity. By contrast, recent breakthroughs in text-to-image generation have made it possible to produce attractive and counterfactual visual content, but it faces challenges in synthesizing knowledge-intensive images. In this work, we rethink the relationship between text-to-image generation and retrieval, proposing a unified framework for both tasks with one single Large Multimodal Model (LMM). Specifically, we first explore the intrinsic discriminative abilities of LMMs and introduce an efficient generative retrieval method for text-to-image retrieval in a training-free manner. Subsequently, we unify generation and retrieval autoregressively and propose an autonomous decision mechanism to choose the best-matched one between generated and retrieved images as the response to the text prompt. To standardize the evaluation of unified text-to-image generation and retrieval, we construct TIGeR-Bench, a benchmark spanning both creative and knowledge-intensive domains. Extensive experiments on TIGeR-Bench and two retrieval benchmarks, i.e., Flickr30K and MS-COCO, demonstrate the superiority of our proposed framework.
comment: ICLR 2025 Camera-ready
♻ ☆ CrossSDF: 3D Reconstruction of Thin Structures From Cross-Sections
Reconstructing complex structures from planar cross-sections is a challenging problem, with wide-reaching applications in medical imaging, manufacturing, and topography. Out-of-the-box point cloud reconstruction methods can often fail due to the data sparsity between slicing planes, while current bespoke methods struggle to reconstruct thin geometric structures and preserve topological continuity. This is important for medical applications where thin vessel structures are present in CT and MRI scans. This paper introduces CrossSDF, a novel approach for extracting a 3D signed distance field from 2D signed distances generated from planar contours. Our approach makes the training of neural SDFs contour-aware by using losses designed for the case where geometry is known within 2D slices. Our results demonstrate a significant improvement over existing methods, effectively reconstructing thin structures and producing accurate 3D models without the interpolation artifacts or over-smoothing of prior approaches.
♻ ☆ Fixing Imbalanced Attention to Mitigate In-Context Hallucination of Large Vision-Language Model
Large Vision Language Models (LVLMs) have demonstrated remarkable capabilities in understanding and describing visual content, achieving state-of-the-art performance across various vision-language tasks. However, these models often generate descriptions containing objects or details that are absent in the input image, a phenomenon commonly known as hallucination. Our work investigates the key reasons behind this issue by analyzing the pattern of self-attention in transformer layers. We find that hallucinations often arise from the progressive weakening of attention weight to visual tokens in the deeper layers of the LLM. Some previous works naively boost the attention of all visual tokens to mitigate this issue, resulting in suboptimal hallucination reduction. To address this, we identify two critical sets of visual tokens that facilitate the transfer of visual information from the vision encoder to the LLM. Local tokens encode grounded information about objects present in an image, while summary tokens capture the overall aggregated representation of the image. Importantly, these two sets of tokens require different levels of weight enhancement. To this end, we propose \textbf{PAINT} (\textbf{P}aying \textbf{A}ttention to \textbf{IN}formed \textbf{T}okens), a plug-and-play framework that intervenes in the self-attention mechanism of the LLM, selectively boosting the attention weights of local and summary tokens with experimentally learned margins. Evaluation on the MSCOCO image captioning dataset demonstrate that our approach reduces hallucination rates by up to 62.3\% compared to baseline models while maintaining accuracy.
comment: 6 pages, 4 tables, 3 figures
♻ ☆ Zero-shot Action Localization via the Confidence of Large Vision-Language Models
Precise action localization in untrimmed video is vital for fields such as professional sports and minimally invasive surgery, where the delineation of particular motions in recordings can dramatically enhance analysis. But in many cases, large scale datasets with video-label pairs for localization are unavailable, limiting the opportunity to fine-tune video-understanding models. Recent developments in large vision-language models (LVLM) address this need with impressive zero-shot capabilities in a variety of video understanding tasks. However, the adaptation of LVLMs, with their powerful visual question answering capabilities, to zero-shot localization in long-form video is still relatively unexplored. To this end, we introduce a true Zero-shot Action Localization method (ZEAL). Specifically, we leverage the built-in action knowledge of a large language model (LLM) to inflate actions into detailed descriptions of the archetypal start and end of the action. These descriptions serve as queries to LVLM for generating frame-level confidence scores which can be aggregated to produce localization outputs. The simplicity and flexibility of our method lends it amenable to more capable LVLMs as they are developed, and we demonstrate remarkable results in zero-shot action localization on a challenging benchmark, without any training. Our code is publicly available at $\href{https://github.com/josaklil-ai/zeal}{github.com/josaklil-ai/zeal}$.
Machine Learning 201
☆ Aether: Geometric-Aware Unified World Modeling
The integration of geometric reconstruction and generative modeling remains a critical challenge in developing AI systems capable of human-like spatial reasoning. This paper proposes Aether, a unified framework that enables geometry-aware reasoning in world models by jointly optimizing three core capabilities: (1) 4D dynamic reconstruction, (2) action-conditioned video prediction, and (3) goal-conditioned visual planning. Through task-interleaved feature learning, Aether achieves synergistic knowledge sharing across reconstruction, prediction, and planning objectives. Building upon video generation models, our framework demonstrates unprecedented synthetic-to-real generalization despite never observing real-world data during training. Furthermore, our approach achieves zero-shot generalization in both action following and reconstruction tasks, thanks to its intrinsic geometric modeling. Remarkably, even without real-world data, its reconstruction performance far exceeds that of domain-specific models. Additionally, Aether leverages a geometry-informed action space to seamlessly translate predictions into actions, enabling effective autonomous trajectory planning. We hope our work inspires the community to explore new frontiers in physically-reasonable world modeling and its applications.
comment: Project Page: https://aether-world.github.io/
☆ AdaWorld: Learning Adaptable World Models with Latent Actions
World models aim to learn action-controlled prediction models and have proven essential for the development of intelligent agents. However, most existing world models rely heavily on substantial action-labeled data and costly training, making it challenging to adapt to novel environments with heterogeneous actions through limited interactions. This limitation can hinder their applicability across broader domains. To overcome this challenge, we propose AdaWorld, an innovative world model learning approach that enables efficient adaptation. The key idea is to incorporate action information during the pretraining of world models. This is achieved by extracting latent actions from videos in a self-supervised manner, capturing the most critical transitions between frames. We then develop an autoregressive world model that conditions on these latent actions. This learning paradigm enables highly adaptable world models, facilitating efficient transfer and learning of new actions even with limited interactions and finetuning. Our comprehensive experiments across multiple environments demonstrate that AdaWorld achieves superior performance in both simulation quality and visual planning.
comment: Project page: https://adaptable-world-model.github.io/
Trajectory Balance with Asynchrony: Decoupling Exploration and Learning for Fast, Scalable LLM Post-Training
Reinforcement learning (RL) is a critical component of large language model (LLM) post-training. However, existing on-policy algorithms used for post-training are inherently incompatible with the use of experience replay buffers, which can be populated scalably by distributed off-policy actors to enhance exploration as compute increases. We propose efficiently obtaining this benefit of replay buffers via Trajectory Balance with Asynchrony (TBA), a massively scalable LLM RL system. In contrast to existing approaches, TBA uses a larger fraction of compute on search, constantly generating off-policy data for a central replay buffer. A training node simultaneously samples data from this buffer based on reward or recency to update the policy using Trajectory Balance (TB), a diversity-seeking RL objective introduced for GFlowNets. TBA offers three key advantages: (1) decoupled training and search, speeding up training wall-clock time by 4x or more; (2) improved diversity through large-scale off-policy sampling; and (3) scalable search for sparse reward settings. On mathematical reasoning, preference-tuning, and automated red-teaming (diverse and representative post-training tasks), TBA produces speed and performance improvements over strong baselines.
☆ FFN Fusion: Rethinking Sequential Computation in Large Language Models
We introduce FFN Fusion, an architectural optimization technique that reduces sequential computation in large language models by identifying and exploiting natural opportunities for parallelization. Our key insight is that sequences of Feed-Forward Network (FFN) layers, particularly those remaining after the removal of specific attention layers, can often be parallelized with minimal accuracy impact. We develop a principled methodology for identifying and fusing such sequences, transforming them into parallel operations that significantly reduce inference latency while preserving model behavior. Applying these techniques to Llama-3.1-405B-Instruct, we create Llama-Nemotron-Ultra-253B-Base (Ultra-253B-Base), an efficient and soon-to-be publicly available model that achieves a 1.71X speedup in inference latency and 35X lower per-token cost while maintaining strong performance across benchmarks. Through extensive experiments on models from 49B to 253B parameters, we demonstrate that FFN Fusion becomes increasingly effective at larger scales and can complement existing optimization techniques like quantization and pruning. Most intriguingly, we find that even full transformer blocks containing both attention and FFN layers can sometimes be parallelized, suggesting new directions for neural architecture design.
☆ Building Blocks for Robust and Effective Semi-Supervised Real-World Object Detection
Semi-supervised object detection (SSOD) based on pseudo-labeling significantly reduces dependence on large labeled datasets by effectively leveraging both labeled and unlabeled data. However, real-world applications of SSOD often face critical challenges, including class imbalance, label noise, and labeling errors. We present an in-depth analysis of SSOD under real-world conditions, uncovering causes of suboptimal pseudo-labeling and key trade-offs between label quality and quantity. Based on our findings, we propose four building blocks that can be seamlessly integrated into an SSOD framework. Rare Class Collage (RCC): a data augmentation method that enhances the representation of rare classes by creating collages of rare objects. Rare Class Focus (RCF): a stratified batch sampling strategy that ensures a more balanced representation of all classes during training. Ground Truth Label Correction (GLC): a label refinement method that identifies and corrects false, missing, and noisy ground truth labels by leveraging the consistency of teacher model predictions. Pseudo-Label Selection (PLS): a selection method for removing low-quality pseudo-labeled images, guided by a novel metric estimating the missing detection rate while accounting for class rarity. We validate our methods through comprehensive experiments on autonomous driving datasets, resulting in up to 6% increase in SSOD performance. Overall, our investigation and novel, data-centric, and broadly applicable building blocks enable robust and effective SSOD in complex, real-world scenarios. Code is available at https://mos-ks.github.io/publications.
comment: Accepted to Transactions on Machine Learning Research (TMLR). OpenReview: https://openreview.net/forum?id=vRYt8QLKqK
☆ xKV: Cross-Layer SVD for KV-Cache Compression
Large Language Models (LLMs) with long context windows enable powerful applications but come at the cost of high memory consumption to store the Key and Value states (KV-Cache). Recent studies attempted to merge KV-cache from multiple layers into shared representations, yet these approaches either require expensive pretraining or rely on assumptions of high per-token cosine similarity across layers which generally does not hold in practice. We find that the dominant singular vectors are remarkably well-aligned across multiple layers of the KV-Cache. Exploiting this insight, we propose xKV, a simple post-training method that applies Singular Value Decomposition (SVD) on the KV-Cache of grouped layers. xKV consolidates the KV-Cache of multiple layers into a shared low-rank subspace, significantly reducing KV-Cache sizes. Through extensive evaluations on the RULER long-context benchmark with widely-used LLMs (e.g., Llama-3.1 and Qwen2.5), xKV achieves up to 6.8x higher compression rates than state-of-the-art inter-layer technique while improving accuracy by 2.7%. Moreover, xKV is compatible with the emerging Multi-Head Latent Attention (MLA) (e.g., DeepSeek-Coder-V2), yielding a notable 3x compression rates on coding tasks without performance degradation. These results highlight xKV's strong capability and versatility in addressing memory bottlenecks for long-context LLM inference. Our code is publicly available at: https://github.com/abdelfattah-lab/xKV.
☆ SimpleRL-Zoo: Investigating and Taming Zero Reinforcement Learning for Open Base Models in the Wild
DeepSeek-R1 has shown that long chain-of-thought (CoT) reasoning can naturally emerge through a simple reinforcement learning (RL) framework with rule-based rewards, where the training may directly start from the base models-a paradigm referred to as zero RL training. Most recent efforts to reproduce zero RL training have primarily focused on the Qwen2.5 model series, which may not be representative as we find the base models already exhibit strong instruction-following and self-reflection abilities. In this work, we investigate zero RL training across 10 diverse base models, spanning different families and sizes including LLama3-8B, Mistral-7B/24B, DeepSeek-Math-7B, Qwen2.5-math-7B, and all Qwen2.5 models from 0.5B to 32B. Leveraging several key design strategies-such as adjusting format reward and controlling query difficulty-we achieve substantial improvements in both reasoning accuracy and response length across most settings. However, by carefully monitoring the training dynamics, we observe that different base models exhibit distinct patterns during training. For instance, the increased response length does not always correlate with the emergence of certain cognitive behaviors such as verification (i.e., the "aha moment"). Notably, we observe the "aha moment" for the first time in small models not from the Qwen family. We share the key designs that enable successful zero RL training, along with our findings and practices. To facilitate further research, we open-source the code, models, and analysis tools.
A semantic communication-based workload-adjustable transceiver for wireless AI-generated content (AIGC) delivery
With the significant advances in generative AI (GAI) and the proliferation of mobile devices, providing high-quality AI-generated content (AIGC) services via wireless networks is becoming the future direction. However, the primary challenges of AIGC service delivery in wireless networks lie in unstable channels, limited bandwidth resources, and unevenly distributed computational resources. In this paper, we employ semantic communication (SemCom) in diffusion-based GAI models to propose a Resource-aware wOrkload-adjUstable TransceivEr (ROUTE) for AIGC delivery in dynamic wireless networks. Specifically, to relieve the communication resource bottleneck, SemCom is utilized to prioritize semantic information of the generated content. Then, to improve computational resource utilization in both edge and local and reduce AIGC semantic distortion in transmission, modified diffusion-based models are applied to adjust the computing workload and semantic density in cooperative content generation. Simulations verify the superiority of our proposed ROUTE in terms of latency and content quality compared to conventional AIGC approaches.
☆ Bootstrapped Model Predictive Control ICLR 2025
Model Predictive Control (MPC) has been demonstrated to be effective in continuous control tasks. When a world model and a value function are available, planning a sequence of actions ahead of time leads to a better policy. Existing methods typically obtain the value function and the corresponding policy in a model-free manner. However, we find that such an approach struggles with complex tasks, resulting in poor policy learning and inaccurate value estimation. To address this problem, we leverage the strengths of MPC itself. In this work, we introduce Bootstrapped Model Predictive Control (BMPC), a novel algorithm that performs policy learning in a bootstrapped manner. BMPC learns a network policy by imitating an MPC expert, and in turn, uses this policy to guide the MPC process. Combined with model-based TD-learning, our policy learning yields better value estimation and further boosts the efficiency of MPC. We also introduce a lazy reanalyze mechanism, which enables computationally efficient imitation learning. Our method achieves superior performance over prior works on diverse continuous control tasks. In particular, on challenging high-dimensional locomotion tasks, BMPC significantly improves data efficiency while also enhancing asymptotic performance and training stability, with comparable training time and smaller network sizes. Code is available at https://github.com/wertyuilife2/bmpc.
comment: Published as a conference paper at ICLR 2025
☆ Reasoning to Learn from Latent Thoughts
Compute scaling for language model (LM) pretraining has outpaced the growth of human-written texts, leading to concerns that data will become the bottleneck to LM scaling. To continue scaling pretraining in this data-constrained regime, we propose that explicitly modeling and inferring the latent thoughts that underlie the text generation process can significantly improve pretraining data efficiency. Intuitively, our approach views web text as the compressed final outcome of a verbose human thought process and that the latent thoughts contain important contextual knowledge and reasoning steps that are critical to data-efficient learning. We empirically demonstrate the effectiveness of our approach through data-constrained continued pretraining for math. We first show that synthetic data approaches to inferring latent thoughts significantly improve data efficiency, outperforming training on the same amount of raw data (5.7\% $\rightarrow$ 25.4\% on MATH). Furthermore, we demonstrate latent thought inference without a strong teacher, where an LM bootstraps its own performance by using an EM algorithm to iteratively improve the capability of the trained LM and the quality of thought-augmented pretraining data. We show that a 1B LM can bootstrap its performance across at least three iterations and significantly outperform baselines trained on raw data, with increasing gains from additional inference compute when performing the E-step. The gains from inference scaling and EM iterations suggest new opportunities for scaling data-constrained pretraining.
☆ Exploring the Integration of Key-Value Attention Into Pure and Hybrid Transformers for Semantic Segmentation
While CNNs were long considered state of the art for image processing, the introduction of Transformer architectures has challenged this position. While achieving excellent results in image classification and segmentation, Transformers remain inherently reliant on large training datasets and remain computationally expensive. A newly introduced Transformer derivative named KV Transformer shows promising results in synthetic, NLP, and image classification tasks, while reducing complexity and memory usage. This is especially conducive to use cases where local inference is required, such as medical screening applications. We endeavoured to further evaluate the merit of KV Transformers on semantic segmentation tasks, specifically in the domain of medical imaging. By directly comparing traditional and KV variants of the same base architectures, we provide further insight into the practical tradeoffs of reduced model complexity. We observe a notable reduction in parameter count and multiply accumulate operations, while achieving similar performance from most of the KV variant models when directly compared to their QKV implementation.
comment: 6 pages, 3 figures, Preprint. Final version published in: Bildverarbeitung f\"ur die Medizin 2025, Springer. DOI: https://doi.org/10.1007/978-3-658-47422-5_71
☆ MODIS: Multi-Omics Data Integration for Small and Unpaired Datasets
A key challenge today lies in the ability to efficiently handle multi-omics data since such multimodal data may provide a more comprehensive overview of the underlying processes in a system. Yet it comes with challenges: multi-omics data are most often unpaired and only partially labeled, moreover only small amounts of data are available in some situation such as rare diseases. We propose MODIS which stands for Multi-Omics Data Integration for Small and unpaired datasets, a semi supervised approach to account for these particular settings. MODIS learns a probabilistic coupling of heterogeneous data modalities and learns a shared latent space where modalities are aligned. We rely on artificial data to build controlled experiments to explore how much supervision is needed for an accurate alignment of modalities, and how our approach enables dealing with new conditions for which few data are available. The code is available athttps://github.com/VILLOUTREIXLab/MODIS.
☆ Self-Organizing Graph Reasoning Evolves into a Critical State for Continuous Discovery Through Structural-Semantic Dynamics
We report fundamental insights into how agentic graph reasoning systems spontaneously evolve toward a critical state that sustains continuous semantic discovery. By rigorously analyzing structural (Von Neumann graph entropy) and semantic (embedding) entropy, we identify a subtle yet robust regime in which semantic entropy persistently dominates over structural entropy. This interplay is quantified by a dimensionless Critical Discovery Parameter that stabilizes at a small negative value, indicating a consistent excess of semantic entropy. Empirically, we observe a stable fraction (12%) of "surprising" edges, links between semantically distant concepts, providing evidence of long-range or cross-domain connections that drive continuous innovation. Concomitantly, the system exhibits scale-free and small-world topological features, alongside a negative cross-correlation between structural and semantic measures, reinforcing the analogy to self-organized criticality. These results establish clear parallels with critical phenomena in physical, biological, and cognitive complex systems, revealing an entropy-based principle governing adaptability and continuous innovation. Crucially, semantic richness emerges as the underlying driver of sustained exploration, despite not being explicitly used by the reasoning process. Our findings provide interdisciplinary insights and practical strategies for engineering intelligent systems with intrinsic capacities for long-term discovery and adaptation, and offer insights into how model training strategies can be developed that reinforce critical discovery.
☆ Unsupervised Detection of Fraudulent Transactions in E-commerce Using Contrastive Learning
With the rapid development of e-commerce, e-commerce platforms are facing an increasing number of fraud threats. Effectively identifying and preventing these fraudulent activities has become a critical research problem. Traditional fraud detection methods typically rely on supervised learning, which requires large amounts of labeled data. However, such data is often difficult to obtain, and the continuous evolution of fraudulent activities further reduces the adaptability and effectiveness of traditional methods. To address this issue, this study proposes an unsupervised e-commerce fraud detection algorithm based on SimCLR. The algorithm leverages the contrastive learning framework to effectively detect fraud by learning the underlying representations of transaction data in an unlabeled setting. Experimental results on the eBay platform dataset show that the proposed algorithm outperforms traditional unsupervised methods such as K-means, Isolation Forest, and Autoencoders in terms of accuracy, precision, recall, and F1 score, demonstrating strong fraud detection capabilities. The results confirm that the SimCLR-based unsupervised fraud detection method has broad application prospects in e-commerce platform security, improving both detection accuracy and robustness. In the future, with the increasing scale and diversity of datasets, the model's performance will continue to improve, and it could be integrated with real-time monitoring systems to provide more efficient security for e-commerce platforms.
☆ Interpretable and Fair Mechanisms for Abstaining Classifiers ECML
Abstaining classifiers have the option to refrain from providing a prediction for instances that are difficult to classify. The abstention mechanism is designed to trade off the classifier's performance on the accepted data while ensuring a minimum number of predictions. In this setting, often fairness concerns arise when the abstention mechanism solely reduces errors for the majority groups of the data, resulting in increased performance differences across demographic groups. While there exist a bunch of methods that aim to reduce discrimination when abstaining, there is no mechanism that can do so in an explainable way. In this paper, we fill this gap by introducing Interpretable and Fair Abstaining Classifier IFAC, an algorithm that can reject predictions both based on their uncertainty and their unfairness. By rejecting possibly unfair predictions, our method reduces error and positive decision rate differences across demographic groups of the non-rejected data. Since the unfairness-based rejections are based on an interpretable-by-design method, i.e., rule-based fairness checks and situation testing, we create a transparent process that can empower human decision-makers to review the unfair predictions and make more just decisions for them. This explainable aspect is especially important in light of recent AI regulations, mandating that any high-risk decision task should be overseen by human experts to reduce discrimination risks.
comment: 25 pages, 8 figures. In: Machine Learning and Knowledge Discovery in Databases. Research Track. ECML PKDD 2024
☆ Classical Planning with LLM-Generated Heuristics: Challenging the State of the Art with Python Code
In recent years, large language models (LLMs) have shown remarkable capabilities in various artificial intelligence problems. However, they fail to plan reliably, even when prompted with a detailed definition of the planning task. Attempts to improve their planning capabilities, such as chain-of-thought prompting, fine-tuning, and explicit "reasoning" still yield incorrect plans and usually fail to generalize to larger tasks. In this paper, we show how to use LLMs to generate correct plans, even for out-of-distribution tasks of increasing size. For a given planning domain, we ask an LLM to generate several domain-dependent heuristic functions in the form of Python code, evaluate them on a set of training tasks within a greedy best-first search, and choose the strongest one. The resulting LLM-generated heuristics solve many more unseen test tasks than state-of-the-art domain-independent heuristics for classical planning. They are even competitive with the strongest learning algorithm for domain-dependent planning. These findings are especially remarkable given that our proof-of-concept implementation is based on an unoptimized Python planner and the baselines all build upon highly optimized C++ code. In some domains, the LLM-generated heuristics expand fewer states than the baselines, revealing that they are not only efficiently computable, but sometimes even more informative than the state-of-the-art heuristics. Overall, our results show that sampling a set of planning heuristic function programs can significantly improve the planning capabilities of LLMs.
☆ Streaming Federated Learning with Markovian Data
Federated learning (FL) is now recognized as a key framework for communication-efficient collaborative learning. Most theoretical and empirical studies, however, rely on the assumption that clients have access to pre-collected data sets, with limited investigation into scenarios where clients continuously collect data. In many real-world applications, particularly when data is generated by physical or biological processes, client data streams are often modeled by non-stationary Markov processes. Unlike standard i.i.d. sampling, the performance of FL with Markovian data streams remains poorly understood due to the statistical dependencies between client samples over time. In this paper, we investigate whether FL can still support collaborative learning with Markovian data streams. Specifically, we analyze the performance of Minibatch SGD, Local SGD, and a variant of Local SGD with momentum. We answer affirmatively under standard assumptions and smooth non-convex client objectives: the sample complexity is proportional to the inverse of the number of clients with a communication complexity comparable to the i.i.d. scenario. However, the sample complexity for Markovian data streams remains higher than for i.i.d. sampling.
comment: Work under review
☆ Sample-Efficient Reinforcement Learning of Koopman eNMPC
Reinforcement learning (RL) can be used to tune data-driven (economic) nonlinear model predictive controllers ((e)NMPCs) for optimal performance in a specific control task by optimizing the dynamic model or parameters in the policy's objective function or constraints, such as state bounds. However, the sample efficiency of RL is crucial, and to improve it, we combine a model-based RL algorithm with our published method that turns Koopman (e)NMPCs into automatically differentiable policies. We apply our approach to an eNMPC case study of a continuous stirred-tank reactor (CSTR) model from the literature. The approach outperforms benchmark methods, i.e., data-driven eNMPCs using models based on system identification without further RL tuning of the resulting policy, and neural network controllers trained with model-based RL, by achieving superior control performance and higher sample efficiency. Furthermore, utilizing partial prior knowledge about the system dynamics via physics-informed learning further increases sample efficiency.
comment: 24 pages, 9 figures, 2 tables
☆ The case for delegated AI autonomy for Human AI teaming in healthcare
In this paper we propose an advanced approach to integrating artificial intelligence (AI) into healthcare: autonomous decision support. This approach allows the AI algorithm to act autonomously for a subset of patient cases whilst serving a supportive role in other subsets of patient cases based on defined delegation criteria. By leveraging the complementary strengths of both humans and AI, it aims to deliver greater overall performance than existing human-AI teaming models. It ensures safe handling of patient cases and potentially reduces clinician review time, whilst being mindful of AI tool limitations. After setting the approach within the context of current human-AI teaming models, we outline the delegation criteria and apply them to a specific AI-based tool used in histopathology. The potential impact of the approach and the regulatory requirements for its successful implementation are then discussed.
☆ Mechanistic Interpretability of Fine-Tuned Vision Transformers on Distorted Images: Decoding Attention Head Behavior for Transparent and Trustworthy AI
Mechanistic interpretability improves the safety, reliability, and robustness of large AI models. This study examined individual attention heads in vision transformers (ViTs) fine tuned on distorted 2D spectrogram images containing non relevant content (axis labels, titles, color bars). By introducing extraneous features, the study analyzed how transformer components processed unrelated information, using mechanistic interpretability to debug issues and reveal insights into transformer architectures. Attention maps assessed head contributions across layers. Heads in early layers (1 to 3) showed minimal task impact with ablation increased MSE loss slightly ({\mu}=0.11%, {\sigma}=0.09%), indicating focus on less critical low level features. In contrast, deeper heads (e.g., layer 6) caused a threefold higher loss increase ({\mu}=0.34%, {\sigma}=0.02%), demonstrating greater task importance. Intermediate layers (6 to 11) exhibited monosemantic behavior, attending exclusively to chirp regions. Some early heads (1 to 4) were monosemantic but non task relevant (e.g. text detectors, edge or corner detectors). Attention maps distinguished monosemantic heads (precise chirp localization) from polysemantic heads (multiple irrelevant regions). These findings revealed functional specialization in ViTs, showing how heads processed relevant vs. extraneous information. By decomposing transformers into interpretable components, this work enhanced model understanding, identified vulnerabilities, and advanced safer, more transparent AI.
comment: 15 pages, 8 figures
☆ On the Optimality of Single-label and Multi-label Neural Network Decoders
We investigate the design of two neural network (NN) architectures recently proposed as decoders for forward error correction: the so-called single-label NN (SLNN) and multi-label NN (MLNN) decoders. These decoders have been reported to achieve near-optimal codeword- and bit-wise performance, respectively. Results in the literature show near-optimality for a variety of short codes. In this paper, we analytically prove that certain SLNN and MLNN architectures can, in fact, always realize optimal decoding, regardless of the code. These optimal architectures and their binary weights are shown to be defined by the codebook, i.e., no training or network optimization is required. Our proposed architectures are in fact not NNs, but a different way of implementing the maximum likelihood decoding rule. Optimal performance is numerically demonstrated for Hamming $(7,4)$, Polar $(16,8)$, and BCH $(31,21)$ codes. The results show that our optimal architectures are less complex than the SLNN and MLNN architectures proposed in the literature, which in fact only achieve near-optimal performance. Extension to longer codes is still hindered by the curse of dimensionality. Therefore, even though SLNN and MLNN can perform maximum likelihood decoding, such architectures cannot be used for medium and long codes.
comment: 8 pages, 8 figures
☆ EgoSurgery-HTS: A Dataset for Egocentric Hand-Tool Segmentation in Open Surgery Videos
Egocentric open-surgery videos capture rich, fine-grained details essential for accurately modeling surgical procedures and human behavior in the operating room. A detailed, pixel-level understanding of hands and surgical tools is crucial for interpreting a surgeon's actions and intentions. We introduce EgoSurgery-HTS, a new dataset with pixel-wise annotations and a benchmark suite for segmenting surgical tools, hands, and interacting tools in egocentric open-surgery videos. Specifically, we provide a labeled dataset for (1) tool instance segmentation of 14 distinct surgical tools, (2) hand instance segmentation, and (3) hand-tool segmentation to label hands and the tools they manipulate. Using EgoSurgery-HTS, we conduct extensive evaluations of state-of-the-art segmentation methods and demonstrate significant improvements in the accuracy of hand and hand-tool segmentation in egocentric open-surgery videos compared to existing datasets. The dataset will be released at https://github.com/Fujiry0/EgoSurgery.
☆ Simulation-Driven Balancing of Competitive Game Levels with Reinforcement Learning
The balancing process for game levels in competitive two-player contexts involves a lot of manual work and testing, particularly for non-symmetrical game levels. In this work, we frame game balancing as a procedural content generation task and propose an architecture for automatically balancing of tile-based levels within the PCGRL framework (procedural content generation via reinforcement learning). Our architecture is divided into three parts: (1) a level generator, (2) a balancing agent, and (3) a reward modeling simulation. Through repeated simulations, the balancing agent receives rewards for adjusting the level towards a given balancing objective, such as equal win rates for all players. To this end, we propose new swap-based representations to improve the robustness of playability, thereby enabling agents to balance game levels more effectively and quickly compared to traditional PCGRL. By analyzing the agent's swapping behavior, we can infer which tile types have the most impact on the balance. We validate our approach in the Neural MMO (NMMO) environment in a competitive two-player scenario. In this extended conference paper, we present improved results, explore the applicability of the method to various forms of balancing beyond equal balancing, compare the performance to another search-based approach, and discuss the application of existing fairness metrics to game balancing.
comment: Preprint of the journal (IEEE Transactions on Games) paper of the same name
☆ Thermalizer: Stable autoregressive neural emulation of spatiotemporal chaos
Autoregressive surrogate models (or \textit{emulators}) of spatiotemporal systems provide an avenue for fast, approximate predictions, with broad applications across science and engineering. At inference time, however, these models are generally unable to provide predictions over long time rollouts due to accumulation of errors leading to diverging trajectories. In essence, emulators operate out of distribution, and controlling the online distribution quickly becomes intractable in large-scale settings. To address this fundamental issue, and focusing on time-stationary systems admitting an invariant measure, we leverage diffusion models to obtain an implicit estimator of the score of this invariant measure. We show that this model of the score function can be used to stabilize autoregressive emulator rollouts by applying on-the-fly denoising during inference, a process we call \textit{thermalization}. Thermalizing an emulator rollout is shown to extend the time horizon of stable predictions by an order of magnitude in complex systems exhibiting turbulent and chaotic behavior, opening up a novel application of diffusion models in the context of neural emulation.
☆ Differentially Private Joint Independence Test
Identification of joint dependence among more than two random vectors plays an important role in many statistical applications, where the data may contain sensitive or confidential information. In this paper, we consider the the d-variable Hilbert-Schmidt independence criterion (dHSIC) in the context of differential privacy. Given the limiting distribution of the empirical estimate of dHSIC is complicated Gaussian chaos, constructing tests in the non-privacy regime is typically based on permutation and bootstrap. To detect joint dependence in privacy, we propose a dHSIC-based testing procedure by employing a differentially private permutation methodology. Our method enjoys privacy guarantee, valid level and pointwise consistency, while the bootstrap counterpart suffers inconsistent power. We further investigate the uniform power of the proposed test in dHSIC metric and $L_2$ metric, indicating that the proposed test attains the minimax optimal power across different privacy regimes. As a byproduct, our results also contain the pointwise and uniform power of the non-private permutation dHSIC, addressing an unsolved question remained in Pfister et al. (2018).
comment: 51pages
☆ Accenture-NVS1: A Novel View Synthesis Dataset
This paper introduces ACC-NVS1, a specialized dataset designed for research on Novel View Synthesis specifically for airborne and ground imagery. Data for ACC-NVS1 was collected in Austin, TX and Pittsburgh, PA in 2023 and 2024. The collection encompasses six diverse real-world scenes captured from both airborne and ground cameras, resulting in a total of 148,000 images. ACC-NVS1 addresses challenges such as varying altitudes and transient objects. This dataset is intended to supplement existing datasets, providing additional resources for comprehensive research, rather than serving as a benchmark.
comment: 6 pages, 7 figures
☆ Energy-Efficient Dynamic Training and Inference for GNN-Based Network Modeling
Efficient network modeling is essential for resource optimization and network planning in next-generation large-scale complex networks. Traditional approaches, such as queuing theory-based modeling and packet-based simulators, can be inefficient due to the assumption made and the computational expense, respectively. To address these challenges, we propose an innovative energy-efficient dynamic orchestration of Graph Neural Networks (GNN) based model training and inference framework for context-aware network modeling and predictions. We have developed a low-complexity solution framework, QAG, that is a Quantum approximation optimization (QAO) algorithm for Adaptive orchestration of GNN-based network modeling. We leverage the tripartite graph model to represent a multi-application system with many compute nodes. Thereafter, we apply the constrained graph-cutting using QAO to find the feasible energy-efficient configurations of the GNN-based model and deploying them on the available compute nodes to meet the network modeling application requirements. The proposed QAG scheme closely matches the optimum and offers atleast a 50% energy saving while meeting the application requirements with 60% lower churn-rate.
comment: Accepted in IEEE WCNC 2025
☆ OCRT: Boosting Foundation Models in the Open World with Object-Concept-Relation Triad CVPR 2025
Although foundation models (FMs) claim to be powerful, their generalization ability significantly decreases when faced with distribution shifts, weak supervision, or malicious attacks in the open world. On the other hand, most domain generalization or adversarial fine-tuning methods are task-related or model-specific, ignoring the universality in practical applications and the transferability between FMs. This paper delves into the problem of generalizing FMs to the out-of-domain data. We propose a novel framework, the Object-Concept-Relation Triad (OCRT), that enables FMs to extract sparse, high-level concepts and intricate relational structures from raw visual inputs. The key idea is to bind objects in visual scenes and a set of object-centric representations through unsupervised decoupling and iterative refinement. To be specific, we project the object-centric representations onto a semantic concept space that the model can readily interpret and estimate their importance to filter out irrelevant elements. Then, a concept-based graph, which has a flexible degree, is constructed to incorporate the set of concepts and their corresponding importance, enabling the extraction of high-order factors from informative concepts and facilitating relational reasoning among these concepts. Extensive experiments demonstrate that OCRT can substantially boost the generalizability and robustness of SAM and CLIP across multiple downstream tasks.
comment: Accepted by CVPR 2025
☆ TARDIS: Mitigate Temporal Misalignment via Representation Steering
Language models often struggle with temporal misalignment, performance degradation caused by shifts in the temporal distribution of data. Continuously updating models to avoid degradation is expensive. Can models be adapted without updating model weights? We present TARDIS, an unsupervised representation editing method that addresses this challenge. TARDIS extracts steering vectors from unlabeled data and adjusts the model's representations to better align with the target time period's distribution. Our experiments reveal that TARDIS enhances downstream task performance without the need for fine-tuning, can mitigate temporal misalignment even when exact target time period data is unavailable, and remains efficient even when the temporal information of the target data points is unknown at inference time.
☆ Feature Qualification by Deep Nets: A Constructive Approach
The great success of deep learning has stimulated avid research activities in verifying the power of depth in theory, a common consensus of which is that deep net are versatile in approximating and learning numerous functions. Such a versatility certainly enhances the understanding of the power of depth, but makes it difficult to judge which data features are crucial in a specific learning task. This paper proposes a constructive approach to equip deep nets for the feature qualification purpose. Using the product-gate nature and localized approximation property of deep nets with sigmoid activation (deep sigmoid nets), we succeed in constructing a linear deep net operator that possesses optimal approximation performance in approximating smooth and radial functions. Furthermore, we provide theoretical evidences that the constructed deep net operator is capable of qualifying multiple features such as the smoothness and radialness of the target functions.
☆ Geometric Preference Elicitation for Minimax Regret Optimization in Uncertainty Matroids
This paper presents an efficient preference elicitation framework for uncertain matroid optimization, where precise weight information is unavailable, but insights into possible weight values are accessible. The core innovation of our approach lies in its ability to systematically elicit user preferences, aligning the optimization process more closely with decision-makers' objectives. By incrementally querying preferences between pairs of elements, we iteratively refine the parametric uncertainty regions, leveraging the structural properties of matroids. Our method aims to achieve the exact optimum by reducing regret with a few elicitation rounds. Additionally, our approach avoids the computation of Minimax Regret and the use of Linear programming solvers at every iteration, unlike previous methods. Experimental results on four standard matroids demonstrate that our method reaches optimality more quickly and with fewer preference queries than existing techniques.
☆ Adaptive Machine Learning for Resource-Constrained Environments KDD 2024
The Internet of Things is an example domain where data is perpetually generated in ever-increasing quantities, reflecting the proliferation of connected devices and the formation of continuous data streams over time. Consequently, the demand for ad-hoc, cost-effective machine learning solutions must adapt to this evolving data influx. This study tackles the task of offloading in small gateways, exacerbated by their dynamic availability over time. An approach leveraging CPU utilization metrics using online and continual machine learning techniques is proposed to predict gateway availability. These methods are compared to popular machine learning algorithms and a recent time-series foundation model, Lag-Llama, for fine-tuned and zero-shot setups. Their performance is benchmarked on a dataset of CPU utilization measurements over time from an IoT gateway and focuses on model metrics such as prediction errors, training and inference times, and memory consumption. Our primary objective is to study new efficient ways to predict CPU performance in IoT environments. Across various scenarios, our findings highlight that ensemble and online methods offer promising results for this task in terms of accuracy while maintaining a low resource footprint.
comment: 17 pages, 11 figures, accepted at DELTA 2024 (Workshop on Discovering Drift Phenomena in Evolving Landscapes), co-located with ACM SIGKDD 2024. This preprint has not undergone peer review. The Version of Record is available at https://doi.org/10.1007/978-3-031-82346-6_1
☆ Scaling Laws for Emulation of Stellar Spectra
Neural network-based emulators for the inference of stellar parameters and elemental abundances represent an increasingly popular methodology in modern spectroscopic surveys. However, these approaches are often constrained by their emulation precision and domain transfer capabilities. Greater generalizability has previously been achieved only with significantly larger model architectures, as demonstrated by Transformer-based models in natural language processing. This observation aligns with neural scaling laws, where model performance predictably improves with increased model size, computational resources allocated to model training, and training data volume. In this study, we demonstrate that these scaling laws also apply to Transformer-based spectral emulators in astronomy. Building upon our previous work with TransformerPayne and incorporating Maximum Update Parametrization techniques from natural language models, we provide training guidelines for scaling models to achieve optimal performance. Our results show that within the explored parameter space, clear scaling relationships emerge. These findings suggest that optimal computational resource allocation requires balanced scaling. Specifically, given a tenfold increase in training compute, achieving an optimal seven-fold reduction in mean squared error necessitates an approximately 2.5-fold increase in dataset size and a 3.8-fold increase in model size. This study establishes a foundation for developing spectral foundational models with enhanced domain transfer capabilities.
comment: 25 pages, 11 figures, submitted to OJA
☆ Adventurer: Exploration with BiGAN for Deep Reinforcement Learning
Recent developments in deep reinforcement learning have been very successful in learning complex, previously intractable problems. Sample efficiency and local optimality, however, remain significant challenges. To address these challenges, novelty-driven exploration strategies have emerged and shown promising potential. Unfortunately, no single algorithm outperforms all others in all tasks and most of them struggle with tasks with high-dimensional and complex observations. In this work, we propose Adventurer, a novelty-driven exploration algorithm that is based on Bidirectional Generative Adversarial Networks (BiGAN), where BiGAN is trained to estimate state novelty. Intuitively, a generator that has been trained on the distribution of visited states should only be able to generate a state coming from the distribution of visited states. As a result, novel states using the generator to reconstruct input states from certain latent representations would lead to larger reconstruction errors. We show that BiGAN performs well in estimating state novelty for complex observations. This novelty estimation method can be combined with intrinsic-reward-based exploration. Our empirical results show that Adventurer produces competitive results on a range of popular benchmark tasks, including continuous robotic manipulation tasks (e.g. Mujoco robotics) and high-dimensional image-based tasks (e.g. Atari games).
comment: Accepted at Applied Intelligence
☆ AutoBayes: A Compositional Framework for Generalized Variational Inference
We introduce a new compositional framework for generalized variational inference, clarifying the different parts of a model, how they interact, and how they compose. We explain that both exact Bayesian inference and the loss functions typical of variational inference (such as variational free energy and its generalizations) satisfy chain rules akin to that of reverse-mode automatic differentiation, and we advocate for exploiting this to build and optimize models accordingly. To this end, we construct a series of compositional tools: for building models; for constructing their inversions; for attaching local loss functions; and for exposing parameters. Finally, we explain how the resulting parameterized statistical games may be optimized locally, too. We illustrate our framework with a number of classic examples, pointing to new areas of extensibility that are revealed.
comment: 15 pages
☆ Reinforcement Learning in Switching Non-Stationary Markov Decision Processes: Algorithms and Convergence Analysis
Reinforcement learning in non-stationary environments is challenging due to abrupt and unpredictable changes in dynamics, often causing traditional algorithms to fail to converge. However, in many real-world cases, non-stationarity has some structure that can be exploited to develop algorithms and facilitate theoretical analysis. We introduce one such structure, Switching Non-Stationary Markov Decision Processes (SNS-MDP), where environments switch over time based on an underlying Markov chain. Under a fixed policy, the value function of an SNS-MDP admits a closed-form solution determined by the Markov chain's statistical properties, and despite the inherent non-stationarity, Temporal Difference (TD) learning methods still converge to the correct value function. Furthermore, policy improvement can be performed, and it is shown that policy iteration converges to the optimal policy. Moreover, since Q-learning converges to the optimal Q-function, it likewise yields the corresponding optimal policy. To illustrate the practical advantages of SNS-MDPs, we present an example in communication networks where channel noise follows a Markovian pattern, demonstrating how this framework can effectively guide decision-making in complex, time-varying contexts.
☆ Oaken: Fast and Efficient LLM Serving with Online-Offline Hybrid KV Cache Quantization
Modern Large Language Model serving system batches multiple requests to achieve high throughput, while batching attention operations is challenging, rendering memory bandwidth a critical bottleneck. The community relies on high-end GPUs with multiple high-bandwidth memory channels. Unfortunately, HBM's high bandwidth often comes at the expense of limited memory capacity, which reduces core utilization and increases costs. Recent advancements enabling longer contexts for LLMs have substantially increased the key-value cache size, further intensifying the pressures on memory capacity. The literature has explored KV cache quantization techniques, which commonly use low bitwidth for most values, selectively using higher bitwidth for outlier values. While this approach helps achieve high accuracy and low bitwidth simultaneously, it comes with the limitation that cost for online outlier detection is excessively high, negating the advantages. We propose Oaken, an acceleration solution that achieves high accuracy and high performance simultaneously through co-designing algorithm and hardware. To effectively find a sweet spot in the accuracy-performance trade-off space of KV cache quantization, Oaken employs an online-offline hybrid approach, setting outlier thresholds offline, which are then used to determine the quantization scale online. To translate the proposed algorithmic technique into tangible performance gains, Oaken also comes with custom quantization engines and memory management units that can be integrated with any LLM accelerators. We built an Oaken accelerator on top of an LLM accelerator, LPU, and conducted a comprehensive evaluation. Our experiments show that for a batch size of 256, Oaken achieves up to 1.58x throughput improvement over NVIDIA A100 GPU, incurring a minimal accuracy loss of only 0.54\% on average, compared to state-of-the-art KV cache quantization techniques.
comment: 15 pages, 14 figures, and 4 tables
☆ Adaptive Unimodal Regulation for Balanced Multimodal Information Acquisition CVPR2025
Sensory training during the early ages is vital for human development. Inspired by this cognitive phenomenon, we observe that the early training stage is also important for the multimodal learning process, where dataset information is rapidly acquired. We refer to this stage as the prime learning window. However, based on our observation, this prime learning window in multimodal learning is often dominated by information-sufficient modalities, which in turn suppresses the information acquisition of information-insufficient modalities. To address this issue, we propose Information Acquisition Regulation (InfoReg), a method designed to balance information acquisition among modalities. Specifically, InfoReg slows down the information acquisition process of information-sufficient modalities during the prime learning window, which could promote information acquisition of information-insufficient modalities. This regulation enables a more balanced learning process and improves the overall performance of the multimodal network. Experiments show that InfoReg outperforms related multimodal imbalanced methods across various datasets, achieving superior model performance. The code is available at https://github.com/GeWu-Lab/InfoReg_CVPR2025.
comment: 10pages, 16 figures, CVPR2025
☆ The Role of Artificial Intelligence in Enhancing Insulin Recommendations and Therapy Outcomes
The growing worldwide incidence of diabetes requires more effective approaches for managing blood glucose levels. Insulin delivery systems have advanced significantly, with artificial intelligence (AI) playing a key role in improving their precision and adaptability. AI algorithms, particularly those based on reinforcement learning, allow for personalised insulin dosing by continuously adapting to an individual's responses. Despite these advancements, challenges such as data privacy, algorithm transparency, and accessibility still need to be addressed. Continued progress and validation in AI-driven insulin delivery systems promise to improve therapy outcomes further, offering people more effective and individualised management of their diabetes. This paper presents an overview of current strategies, key challenges, and future directions.
☆ A Universal Model Combining Differential Equations and Neural Networks for Ball Trajectory Prediction
This paper presents a data driven universal ball trajectory prediction method integrated with physics equations. Existing methods are designed for specific ball types and struggle to generalize. This challenge arises from three key factors. First, learning-based models require large datasets but suffer from accuracy drops in unseen scenarios. Second, physics-based models rely on complex formulas and detailed inputs, yet accurately obtaining ball states, such as spin, is often impractical. Third, integrating physical principles with neural networks to achieve high accuracy, fast inference, and strong generalization remains difficult. To address these issues, we propose an innovative approach that incorporates physics-based equations and neural networks. We first derive three generalized physical formulas. Then, using a neural network and observed trajectory points, we infer certain parameters while fitting the remaining ones. These formulas enable precise trajectory prediction with minimal training data: only a few dozen samples. Extensive experiments demonstrate our method superiority in generalization, real-time performance, and accuracy.
☆ Galaxy Walker: Geometry-aware VLMs For Galaxy-scale Understanding
Modern vision-language models (VLMs) develop patch embedding and convolution backbone within vector space, especially Euclidean ones, at the very founding. When expanding VLMs to a galaxy scale for understanding astronomical phenomena, the integration of spherical space for planetary orbits and hyperbolic spaces for black holes raises two formidable challenges. a) The current pre-training model is confined to Euclidean space rather than a comprehensive geometric embedding. b) The predominant architecture lacks suitable backbones for anisotropic physical geometries. In this paper, we introduced Galaxy-Walker, a geometry-aware VLM, for the universe-level vision understanding tasks. We proposed the geometry prompt that generates geometry tokens by random walks across diverse spaces on a multi-scale physical graph, along with a geometry adapter that compresses and reshapes the space anisotropy in a mixture-of-experts manner. Extensive experiments demonstrate the effectiveness of our approach, with Galaxy-Walker achieving state-of-the-art performance in both galaxy property estimation ($R^2$ scores up to $0.91$) and morphology classification tasks (up to $+0.17$ F1 improvement in challenging features), significantly outperforming both domain-specific models and general-purpose VLMs.
☆ Parametric Dynamic Mode Decomposition with multi-linear interpolation for prediction of thermal fields of Al2O3-water nanofluid flows at unseen parameters
The study proposes a data-driven model which combines the Dynamic Mode Decomposition with multi-linear interpolation to predict the thermal fields of nanofluid flows at unseen Reynolds numbers (Re) and particle volume concentrations ($\epsilon$). The flow, considered for the study, is laminar and incompressible. The study employs an in-house Fortran-based solver to predict the thermal fields of Al$_2$O$_3$-water nanofluid flow through a two-dimensional rectangular channel, with the bottom wall subjected to a uniform heat flux. The performance of two models operating in one- and two-dimensional parametric spaces are investigated. Initially, a DMD with linear interpolation (DMD-LI) based solver is used for prediction of temperature of the nanofluid at any Re $>$ 100. The DMD-LI based model, predicts temperature fields with a maximum percentage difference of just 0.0273\%, in comparison with the CFD-based solver at Re =960, and $\epsilon$ = 1.0\%. The corresponding difference in the average Nusselt numbers is only 0.39\%. Following that a DMD with bi-linear interpolation (DMD-BLI) based solver is used for prediction of temperature of the nanofluid at any Re $>$ 100 and $\epsilon$ $>$ 0.5\%. The performance of two different ways of stacking the data are also examined. When compared to the CFD-based model, the DMD-BLI-based model predicts the temperature fields with a maximum percentage difference of 0.21 \%, at Re = 800 and $\epsilon$ = 1.35\%. And the corresponding percentage difference in the average Nusselt number prediction is only 6.08\%. All the results are reported in detail. Along side the important conclusions, the future scope of the study is also listed.
comment: 19 pages, 19 figures
☆ Anchor-based oversampling for imbalanced tabular data via contrastive and adversarial learning
Imbalanced data represent a distribution with more frequencies of one class (majority) than the other (minority). This phenomenon occurs across various domains, such as security, medical care and human activity. In imbalanced learning, classification algorithms are typically inclined to classify the majority class accurately, resulting in artificially high accuracy rates. As a result, many minority samples are mistakenly labelled as majority-class instances, resulting in a bias that benefits the majority class. This study presents a framework based on boundary anchor samples to tackle the imbalance learning challenge. First, we select and use anchor samples to train a multilayer perceptron (MLP) classifier, which acts as a prior knowledge model and aids the adversarial and contrastive learning procedures. Then, we designed a novel deep generative model called Anchor Stabilized Conditional Generative Adversarial Network or Anch-SCGAN in short. Anch-SCGAN is supported with two generators for the minority and majority classes and a discriminator incorporating additional class-specific information from the pre-trained feature extractor MLP. In addition, we facilitate the generator's training procedure in two ways. First, we define a new generator loss function based on reprocessed anchor samples and contrastive learning. Second, we apply a scoring strategy to stabilize the adversarial training part in generators. We train Anch-SCGAN and further finetune it with anchor samples to improve the precision of the generated samples. Our experiments on 16 real-world imbalanced datasets illustrate that Anch-SCGAN outperforms the renowned methods in imbalanced learning.
☆ Distil-xLSTM: Learning Attention Mechanisms through Recurrent Structures
The current era of Natural Language Processing (NLP) is dominated by Transformer models. However, novel architectures relying on recurrent mechanisms, such as xLSTM and Mamba, have been proposed as alternatives to attention-based models. Although computation is done differently than with the attention mechanism mechanism, these recurrent models yield good results and sometimes even outperform state-of-the-art attention-based models. In this work, we propose Distil-xLSTM, an xLSTM-based Small Language Model (SLM) trained by distilling knowledge from a Large Language Model (LLM) that shows promising results while being compute and scale efficient. Our Distil-xLSTM focuses on approximating a transformer-based model attention parametrization using its recurrent sequence mixing components and shows good results with minimal training.
☆ Self-Reported Confidence of Large Language Models in Gastroenterology: Analysis of Commercial, Open-Source, and Quantized Models
This study evaluated self-reported response certainty across several large language models (GPT, Claude, Llama, Phi, Mistral, Gemini, Gemma, and Qwen) using 300 gastroenterology board-style questions. The highest-performing models (GPT-o1 preview, GPT-4o, and Claude-3.5-Sonnet) achieved Brier scores of 0.15-0.2 and AUROC of 0.6. Although newer models demonstrated improved performance, all exhibited a consistent tendency towards overconfidence. Uncertainty estimation presents a significant challenge to the safe use of LLMs in healthcare. Keywords: Large Language Models; Confidence Elicitation; Artificial Intelligence; Gastroenterology; Uncertainty Quantification
comment: 35 pages, 5 figures, 1 table, 7 supplementary figures
☆ Discriminative protein sequence modelling with Latent Space Diffusion
We explore a framework for protein sequence representation learning that decomposes the task between manifold learning and distributional modelling. Specifically we present a Latent Space Diffusion architecture which combines a protein sequence autoencoder with a denoising diffusion model operating on its latent space. We obtain a one-parameter family of learned representations from the diffusion model, along with the autoencoder's latent representation. We propose and evaluate two autoencoder architectures: a homogeneous model forcing amino acids of the same type to be identically distributed in the latent space, and an inhomogeneous model employing a noise-based variant of masking. As a baseline we take a latent space learned by masked language modelling, and evaluate discriminative capability on a range of protein property prediction tasks. Our finding is twofold: the diffusion models trained on both our proposed variants display higher discriminative power than the one trained on the masked language model baseline, none of the diffusion representations achieve the performance of the masked language model embeddings themselves.
☆ RLCAD: Reinforcement Learning Training Gym for Revolution Involved CAD Command Sequence Generation
A CAD command sequence is a typical parametric design paradigm in 3D CAD systems where a model is constructed by overlaying 2D sketches with operations such as extrusion, revolution, and Boolean operations. Although there is growing academic interest in the automatic generation of command sequences, existing methods and datasets only support operations such as 2D sketching, extrusion,and Boolean operations. This limitation makes it challenging to represent more complex geometries. In this paper, we present a reinforcement learning (RL) training environment (gym) built on a CAD geometric engine. Given an input boundary representation (B-Rep) geometry, the policy network in the RL algorithm generates an action. This action, along with previously generated actions, is processed within the gym to produce the corresponding CAD geometry, which is then fed back into the policy network. The rewards, determined by the difference between the generated and target geometries within the gym, are used to update the RL network. Our method supports operations beyond sketches, Boolean, and extrusion, including revolution operations. With this training gym, we achieve state-of-the-art (SOTA) quality in generating command sequences from B-Rep geometries. In addition, our method can significantly improve the efficiency of command sequence generation by a factor of 39X compared with the previous training gym.
☆ Natural Language Processing for Electronic Health Records in Scandinavian Languages: Norwegian, Swedish, and Danish
Background: Clinical natural language processing (NLP) refers to the use of computational methods for extracting, processing, and analyzing unstructured clinical text data, and holds a huge potential to transform healthcare in various clinical tasks. Objective: The study aims to perform a systematic review to comprehensively assess and analyze the state-of-the-art NLP methods for the mainland Scandinavian clinical text. Method: A literature search was conducted in various online databases including PubMed, ScienceDirect, Google Scholar, ACM digital library, and IEEE Xplore between December 2022 and February 2024. Further, relevant references to the included articles were also used to solidify our search. The final pool includes articles that conducted clinical NLP in the mainland Scandinavian languages and were published in English between 2010 and 2024. Results: Out of the 113 articles, 18% (n=21) focus on Norwegian clinical text, 64% (n=72) on Swedish, 10% (n=11) on Danish, and 8% (n=9) focus on more than one language. Generally, the review identified positive developments across the region despite some observable gaps and disparities between the languages. There are substantial disparities in the level of adoption of transformer-based models. In essential tasks such as de-identification, there is significantly less research activity focusing on Norwegian and Danish compared to Swedish text. Further, the review identified a low level of sharing resources such as data, experimentation code, pre-trained models, and rate of adaptation and transfer learning in the region. Conclusion: The review presented a comprehensive assessment of the state-of-the-art Clinical NLP for electronic health records (EHR) text in mainland Scandinavian languages and, highlighted the potential barriers and challenges that hinder the rapid advancement of the field in the region.
comment: 45 pages including the appendix, 9 figures in the main manuscript and 11 figures in the Appendix
☆ Parental Guidance: Efficient Lifelong Learning through Evolutionary Distillation
Developing robotic agents that can perform well in diverse environments while showing a variety of behaviors is a key challenge in AI and robotics. Traditional reinforcement learning (RL) methods often create agents that specialize in narrow tasks, limiting their adaptability and diversity. To overcome this, we propose a preliminary, evolution-inspired framework that includes a reproduction module, similar to natural species reproduction, balancing diversity and specialization. By integrating RL, imitation learning (IL), and a coevolutionary agent-terrain curriculum, our system evolves agents continuously through complex tasks. This approach promotes adaptability, inheritance of useful traits, and continual learning. Agents not only refine inherited skills but also surpass their predecessors. Our initial experiments show that this method improves exploration efficiency and supports open-ended learning, offering a scalable solution where sparse reward coupled with diverse terrain environments induces a multi-task setting.
comment: 4 pages, 3 figures, CoRL 2024 Workshop MAPoDeL
☆ k-NN as a Simple and Effective Estimator of Transferability
How well can one expect transfer learning to work in a new setting where the domain is shifted, the task is different, and the architecture changes? Many transfer learning metrics have been proposed to answer this question. But how accurate are their predictions in a realistic new setting? We conducted an extensive evaluation involving over 42,000 experiments comparing 23 transferability metrics across 16 different datasets to assess their ability to predict transfer performance. Our findings reveal that none of the existing metrics perform well across the board. However, we find that a simple k-nearest neighbor evaluation -- as is commonly used to evaluate feature quality for self-supervision -- not only surpasses existing metrics, but also offers better computational efficiency and ease of implementation.
☆ Global Convergence of Continual Learning on Non-IID Data
Continual learning, which aims to learn multiple tasks sequentially, has gained extensive attention. However, most existing work focuses on empirical studies, and the theoretical aspect remains under-explored. Recently, a few investigations have considered the theory of continual learning only for linear regressions, establishes the results based on the strict independent and identically distributed (i.i.d.) assumption and the persistent excitation on the feature data that may be difficult to verify or guarantee in practice. To overcome this fundamental limitation, in this paper, we provide a general and comprehensive theoretical analysis for continual learning of regression models. By utilizing the stochastic Lyapunov function and martingale estimation techniques, we establish the almost sure convergence results of continual learning under a general data condition for the first time. Additionally, without any excitation condition imposed on the data, the convergence rates for the forgetting and regret metrics are provided.
comment: We establish the almost sure convergence results of continual learning under a general data condition
☆ Neuro-symbolic Weak Supervision: Theory and Semantics
Weak supervision allows machine learning models to learn from limited or noisy labels, but it introduces challenges in interpretability and reliability - particularly in multi-instance partial label learning (MI-PLL), where models must resolve both ambiguous labels and uncertain instance-label mappings. We propose a semantics for neuro-symbolic framework that integrates Inductive Logic Programming (ILP) to improve MI-PLL by providing structured relational constraints that guide learning. Within our semantic characterization, ILP defines a logical hypothesis space for label transitions, clarifies classifier semantics, and establishes interpretable performance standards. This hybrid approach improves robustness, transparency, and accountability in weakly supervised settings, ensuring neural predictions align with domain knowledge. By embedding weak supervision into a logical framework, we enhance both interpretability and learning, making weak supervision more suitable for real-world, high-stakes applications.
☆ Deterministic Certification of Graph Neural Networks against Graph Poisoning Attacks with Arbitrary Perturbations CVPR 2025
Graph neural networks (GNNs) are becoming the de facto method to learn on the graph data and have achieved the state-of-the-art on node and graph classification tasks. However, recent works show GNNs are vulnerable to training-time poisoning attacks -- marginally perturbing edges, nodes, or/and node features of training graph(s) can largely degrade GNNs' testing performance. Most previous defenses against graph poisoning attacks are empirical and are soon broken by adaptive / stronger ones. A few provable defenses provide robustness guarantees, but have large gaps when applied in practice: 1) restrict the attacker on only one type of perturbation; 2) design for a particular GNN architecture or task; and 3) robustness guarantees are not 100\% accurate. In this work, we bridge all these gaps by developing PGNNCert, the first certified defense of GNNs against poisoning attacks under arbitrary (edge, node, and node feature) perturbations with deterministic robustness guarantees. Extensive evaluations on multiple node and graph classification datasets and GNNs demonstrate the effectiveness of PGNNCert to provably defend against arbitrary poisoning perturbations. PGNNCert is also shown to significantly outperform the state-of-the-art certified defenses against edge perturbation or node perturbation during GNN training.
comment: Accepted at CVPR 2025
☆ Learning a Class of Mixed Linear Regressions: Global Convergence under General Data Conditions
Mixed linear regression (MLR) has attracted increasing attention because of its great theoretical and practical importance in capturing nonlinear relationships by utilizing a mixture of linear regression sub-models. Although considerable efforts have been devoted to the learning problem of such systems, i.e., estimating data labels and identifying model parameters, most existing investigations employ the offline algorithm, impose the strict independent and identically distributed (i.i.d.) or persistent excitation (PE) conditions on the regressor data, and provide local convergence results only. In this paper, we investigate the recursive estimation and data clustering problems for a class of stochastic MLRs with two components. To address this inherently nonconvex optimization problem, we propose a novel two-step recursive identification algorithm to estimate the true parameters, where the direction vector and the scaling coefficient of the unknown parameters are estimated by the least squares and the expectation-maximization (EM) principles, respectively. Under a general data condition, which is much weaker than the traditional i.i.d. and PE conditions, we establish the global convergence and the convergence rate of the proposed identification algorithm for the first time. Furthermore, we prove that, without any excitation condition on the regressor data, the data clustering performance including the cumulative mis-classification error and the within-cluster error can be optimal asymptotically. Finally, we provide a numerical example to illustrate the performance of the proposed learning algorithm.
☆ Statistically Testing Training Data for Unwanted Error Patterns using Rule-Oriented Regression
Artificial intelligence models trained from data can only be as good as the underlying data is. Biases in training data propagating through to the output of a machine learning model are a well-documented and well-understood phenomenon, but the machinery to prevent these undesired effects is much less developed. Efforts to ensure data is clean during collection, such as using bias-aware sampling, are most effective when the entity controlling data collection also trains the AI. In cases where the data is already available, how do we find out if the data was already manipulated, i.e., ``poisoned'', so that an undesired behavior would be trained into a machine learning model? This is a challenge fundamentally different to (just) improving approximation accuracy or efficiency, and we provide a method to test training data for flaws, to establish a trustworthy ground-truth for a subsequent training of machine learning models (of any kind). Unlike the well-studied problem of approximating data using fuzzy rules that are generated from the data, our method hinges on a prior definition of rules to happen before seeing the data to be tested. Therefore, the proposed method can also discover hidden error patterns, which may also have substantial influence. Our approach extends the abilities of conventional statistical testing by letting the ``test-condition'' be any Boolean condition to describe a pattern in the data, whose presence we wish to determine. The method puts fuzzy inference into a regression model, to get the best of the two: explainability from fuzzy logic with statistical properties and diagnostics from the regression, and finally also being applicable to ``small data'', hence not requiring large datasets as deep learning methods do. We provide an open source implementation for demonstration and experiments.
☆ Verbal Process Supervision Elicits Better Coding Agents
The emergence of large language models and their applications as AI agents have significantly advanced state-of-the-art code generation benchmarks, transforming modern software engineering tasks. However, even with test-time computed reasoning models, these systems still struggle with complex software engineering challenges. This work introduces CURA, a code understanding and reasoning agent system enhanced with verbal process supervision (VPS), achieving a 3.65\% improvement over baseline models on challenging benchmarks like BigCodeBench. Furthermore, CURA, when paired with the o3-mini model and VPS techniques, attains state-of-the-art performance. This work represents a step forward in integrating reasoning-driven architectures with LLM-based code generation, enabling agentic reasoning for language models to solve complex software engineering tasks.
☆ Whispering in Amharic: Fine-tuning Whisper for Low-resource Language
This work explores fine-tuning OpenAI's Whisper automatic speech recognition (ASR) model for Amharic, a low-resource language, to improve transcription accuracy. While the foundational Whisper model struggles with Amharic due to limited representation in its training data, we fine-tune it using datasets like Mozilla Common Voice, FLEURS, and the BDU-speech dataset. The best-performing model, Whispersmall-am, significantly improves when finetuned on a mix of existing FLEURS data and new, unseen Amharic datasets. Training solely on new data leads to poor performance, but combining it with FLEURS data reinforces the model, enabling better specialization in Amharic. We also demonstrate that normalizing Amharic homophones significantly enhances Word Error Rate (WER) and Bilingual Evaluation Understudy (BLEU) scores. This study underscores the importance of fine-tuning strategies and dataset composition for improving ASR in low-resource languages, providing insights for future Amharic speech recognition research.
☆ PALATE: Peculiar Application of the Law of Total Expectation to Enhance the Evaluation of Deep Generative Models
Deep generative models (DGMs) have caused a paradigm shift in the field of machine learning, yielding noteworthy advancements in domains such as image synthesis, natural language processing, and other related areas. However, a comprehensive evaluation of these models that accounts for the trichotomy between fidelity, diversity, and novelty in generated samples remains a formidable challenge. A recently introduced solution that has emerged as a promising approach in this regard is the Feature Likelihood Divergence (FLD), a method that offers a theoretically motivated practical tool, yet also exhibits some computational challenges. In this paper, we propose PALATE, a novel enhancement to the evaluation of DGMs that addresses limitations of existing metrics. Our approach is based on a peculiar application of the law of total expectation to random variables representing accessible real data. When combined with the MMD baseline metric and DINOv2 feature extractor, PALATE offers a holistic evaluation framework that matches or surpasses state-of-the-art solutions while providing superior computational efficiency and scalability to large-scale datasets. Through a series of experiments, we demonstrate the effectiveness of the PALATE enhancement, contributing a computationally efficient, holistic evaluation approach that advances the field of DGMs assessment, especially in detecting sample memorization and evaluating generalization capabilities.
☆ InPO: Inversion Preference Optimization with Reparametrized DDIM for Efficient Diffusion Model Alignment CVPR2025
Without using explicit reward, direct preference optimization (DPO) employs paired human preference data to fine-tune generative models, a method that has garnered considerable attention in large language models (LLMs). However, exploration of aligning text-to-image (T2I) diffusion models with human preferences remains limited. In comparison to supervised fine-tuning, existing methods that align diffusion model suffer from low training efficiency and subpar generation quality due to the long Markov chain process and the intractability of the reverse process. To address these limitations, we introduce DDIM-InPO, an efficient method for direct preference alignment of diffusion models. Our approach conceptualizes diffusion model as a single-step generative model, allowing us to fine-tune the outputs of specific latent variables selectively. In order to accomplish this objective, we first assign implicit rewards to any latent variable directly via a reparameterization technique. Then we construct an Inversion technique to estimate appropriate latent variables for preference optimization. This modification process enables the diffusion model to only fine-tune the outputs of latent variables that have a strong correlation with the preference dataset. Experimental results indicate that our DDIM-InPO achieves state-of-the-art performance with just 400 steps of fine-tuning, surpassing all preference aligning baselines for T2I diffusion models in human preference evaluation tasks.
comment: Accepted by CVPR2025
☆ Distributionally Robust Federated Learning: An ADMM Algorithm
Federated learning (FL) aims to train machine learning (ML) models collaboratively using decentralized data, bypassing the need for centralized data aggregation. Standard FL models often assume that all data come from the same unknown distribution. However, in practical situations, decentralized data frequently exhibit heterogeneity. We propose a novel FL model, Distributionally Robust Federated Learning (DRFL), that applies distributionally robust optimization to overcome the challenges posed by data heterogeneity and distributional ambiguity. We derive a tractable reformulation for DRFL and develop a novel solution method based on the alternating direction method of multipliers (ADMM) algorithm to solve this problem. Our experimental results demonstrate that DRFL outperforms standard FL models under data heterogeneity and ambiguity.
☆ Teaching LLMs for Step-Level Automatic Math Correction via Reinforcement Learning
Automatic math correction aims to check students' solutions to mathematical problems via artificial intelligence technologies. Most existing studies focus on judging the final answer at the problem level, while they ignore detailed feedback on each step in a math problem-solving process, which requires abilities of semantic understanding and reasoning. In this paper, we propose a reinforcement learning (RL)-based method to boost large language model (LLM) for step-level automatic math correction, named StepAMC. Particularly, we convert the step-level automatic math correction within the text classification task into an RL problem to enhance the reasoning capabilities of LLMs. Then, we design a space-constrained policy network to improve the stability of RL. Then, we introduce a fine-grained reward network to convert the binary human feedback into a continuous value. We conduct extensive experiments over two benchmark datasets and the results show that our model outperforms the eleven strong baselines.
☆ Offline Meteorology-Pollution Coupling Global Air Pollution Forecasting Model with Bilinear Pooling
Air pollution has become a major threat to human health, making accurate forecasting crucial for pollution control. Traditional physics-based models forecast global air pollution by coupling meteorology and pollution processes, using either online or offline methods depending on whether fully integrated with meteorological models and run simultaneously. However, the high computational demands of both methods severely limit real-time prediction efficiency. Existing deep learning (DL) solutions employ online coupling strategies for global air pollution forecasting, which finetune pollution forecasting based on pretrained atmospheric models, requiring substantial training resources. This study pioneers a DL-based offline coupling framework that utilizes bilinear pooling to achieve offline coupling between meteorological fields and pollutants. The proposed model requires only 13% of the parameters of DL-based online coupling models while achieving competitive performance. Compared with the state-of-the-art global air pollution forecasting model CAMS, our approach demonstrates superiority in 63% variables across all forecast time steps and 85% variables in predictions exceeding 48 hours. This work pioneers experimental validation of the effectiveness of meteorological fields in DL-based global air pollution forecasting, demonstrating that offline coupling meteorological fields with pollutants can achieve a 15% relative reduction in RMSE across all pollution variables. The research establishes a new paradigm for real-time global air pollution warning systems and delivers critical technical support for developing more efficient and comprehensive AI-powered global atmospheric forecasting frameworks.
☆ Knowledge Graph Enhanced Generative Multi-modal Models for Class-Incremental Learning
Continual learning in computer vision faces the critical challenge of catastrophic forgetting, where models struggle to retain prior knowledge while adapting to new tasks. Although recent studies have attempted to leverage the generalization capabilities of pre-trained models to mitigate overfitting on current tasks, models still tend to forget details of previously learned categories as tasks progress, leading to misclassification. To address these limitations, we introduce a novel Knowledge Graph Enhanced Generative Multi-modal model (KG-GMM) that builds an evolving knowledge graph throughout the learning process. Our approach utilizes relationships within the knowledge graph to augment the class labels and assigns different relations to similar categories to enhance model differentiation. During testing, we propose a Knowledge Graph Augmented Inference method that locates specific categories by analyzing relationships within the generated text, thereby reducing the loss of detailed information about old classes when learning new knowledge and alleviating forgetting. Experiments demonstrate that our method effectively leverages relational information to help the model correct mispredictions, achieving state-of-the-art results in both conventional CIL and few-shot CIL settings, confirming the efficacy of knowledge graphs at preserving knowledge in the continual learning scenarios.
☆ Solving Situation Puzzles with Large Language Model and External Reformulation
In recent years, large language models (LLMs) have shown an impressive ability to perform arithmetic and symbolic reasoning tasks. However, we found that LLMs (e.g., ChatGPT) cannot perform well on reasoning that requires multiple rounds of dialogue, especially when solving situation puzzles. Specifically, LLMs intend to ask very detailed questions focusing on a specific aspect or same/similar questions after several rounds of Q&As. To help LLMs get out of the above dilemma, we propose a novel external reformulation methodology, where the situation puzzle will be reformulated after several rounds of Q&A or when the LLMs raise an incorrect guess. Experiments show superior performance (e.g., win rate, number of question/guess attempts) of our method than directly using LLMs for solving situation puzzles, highlighting the potential of strategic problem reformulation to enhance the reasoning capabilities of LLMs in complex interactive scenarios.
☆ Finite-Time Bounds for Two-Time-Scale Stochastic Approximation with Arbitrary Norm Contractions and Markovian Noise
Two-time-scale Stochastic Approximation (SA) is an iterative algorithm with applications in reinforcement learning and optimization. Prior finite time analysis of such algorithms has focused on fixed point iterations with mappings contractive under Euclidean norm. Motivated by applications in reinforcement learning, we give the first mean square bound on non linear two-time-scale SA where the iterations have arbitrary norm contractive mappings and Markovian noise. We show that the mean square error decays at a rate of $O(1/n^{2/3})$ in the general case, and at a rate of $O(1/n)$ in a special case where the slower timescale is noiseless. Our analysis uses the generalized Moreau envelope to handle the arbitrary norm contractions and solutions of Poisson equation to deal with the Markovian noise. By analyzing the SSP Q-Learning algorithm, we give the first $O(1/n)$ bound for an algorithm for asynchronous control of MDPs under the average reward criterion. We also obtain a rate of $O(1/n)$ for Q-Learning with Polyak-averaging and provide an algorithm for learning Generalized Nash Equilibrium (GNE) for strongly monotone games which converges at a rate of $O(1/n^{2/3})$.
comment: Submitted to IEEE Conference on Decision and Control (CDC) 2025
☆ RoCA: Robust Contrastive One-class Time Series Anomaly Detection with Contaminated Data
The accumulation of time-series signals and the absence of labels make time-series Anomaly Detection (AD) a self-supervised task of deep learning. Methods based on normality assumptions face the following three limitations: (1) A single assumption could hardly characterize the whole normality or lead to some deviation. (2) Some assumptions may go against the principle of AD. (3) Their basic assumption is that the training data is uncontaminated (free of anomalies), which is unrealistic in practice, leading to a decline in robustness. This paper proposes a novel robust approach, RoCA, which is the first to address all of the above three challenges, as far as we are aware. It fuses the separated assumptions of one-class classification and contrastive learning in a single training process to characterize a more complete so-called normality. Additionally, it monitors the training data and computes a carefully designed anomaly score throughout the training process. This score helps identify latent anomalies, which are then used to define the classification boundary, inspired by the concept of outlier exposure. The performance on AIOps datasets improved by 6% compared to when contamination was not considered (COCA). On two large and high-dimensional multivariate datasets, the performance increased by 5% to 10%. RoCA achieves the highest average performance on both univariate and multivariate datasets. The source code is available at https://github.com/ruiking04/RoCA.
☆ Maximum Redundancy Pruning: A Principle-Driven Layerwise Sparsity Allocation for LLMs
Large language models (LLMs) have demonstrated impressive capabilities, but their enormous size poses significant challenges for deployment in real-world applications. To address this issue, researchers have sought to apply network pruning techniques to LLMs. A critical challenge in pruning is allocation the sparsity for each layer. Recent sparsity allocation methods is often based on heuristics or search that can easily lead to suboptimal performance. In this paper, we conducted an extensive investigation into various LLMs and revealed three significant discoveries: (1) the layerwise pruning sensitivity (LPS) of LLMs is highly non-uniform, (2) the choice of pruning metric affects LPS, and (3) the performance of a sparse model is related to the uniformity of its layerwise redundancy level. Based on these observations, we propose that the layerwise sparsity of LLMs should adhere to three principles: \emph{non-uniformity}, \emph{pruning metric dependency}, and \emph{uniform layerwise redundancy level} in the pruned model. To this end, we proposed Maximum Redundancy Pruning (MRP), an iterative pruning algorithm that prunes in the most redundant layers (\emph{i.e.}, those with the highest non-outlier ratio) at each iteration. The achieved layerwise sparsity aligns with the outlined principles. We conducted extensive experiments on publicly available LLMs, including the LLaMA2 and OPT, across various benchmarks. Experimental results validate the effectiveness of MRP, demonstrating its superiority over previous methods.
☆ ALWNN Empowered Automatic Modulation Classification: Conquering Complexity and Scarce Sample Conditions
In Automatic Modulation Classification (AMC), deep learning methods have shown remarkable performance, offering significant advantages over traditional approaches and demonstrating their vast potential. Nevertheless, notable drawbacks, particularly in their high demands for storage, computational resources, and large-scale labeled data, which limit their practical application in real-world scenarios. To tackle this issue, this paper innovatively proposes an automatic modulation classification model based on the Adaptive Lightweight Wavelet Neural Network (ALWNN) and the few-shot framework (MALWNN). The ALWNN model, by integrating the adaptive wavelet neural network and depth separable convolution, reduces the number of model parameters and computational complexity. The MALWNN framework, using ALWNN as an encoder and incorporating prototype network technology, decreases the model's dependence on the quantity of samples. Simulation results indicate that this model performs remarkably well on mainstream datasets. Moreover, in terms of Floating Point Operations Per Second (FLOPS) and Normalized Multiply - Accumulate Complexity (NMACC), ALWNN significantly reduces computational complexity compared to existing methods. This is further validated by real-world system tests on USRP and Raspberry Pi platforms. Experiments with MALWNN show its superior performance in few-shot learning scenarios compared to other algorithms.
☆ Do Your Best and Get Enough Rest for Continual Learning CVPR
According to the forgetting curve theory, we can enhance memory retention by learning extensive data and taking adequate rest. This means that in order to effectively retain new knowledge, it is essential to learn it thoroughly and ensure sufficient rest so that our brain can memorize without forgetting. The main takeaway from this theory is that learning extensive data at once necessitates sufficient rest before learning the same data again. This aspect of human long-term memory retention can be effectively utilized to address the continual learning of neural networks. Retaining new knowledge for a long period of time without catastrophic forgetting is the critical problem of continual learning. Therefore, based on Ebbinghaus' theory, we introduce the view-batch model that adjusts the learning schedules to optimize the recall interval between retraining the same samples. The proposed view-batch model allows the network to get enough rest to learn extensive knowledge from the same samples with a recall interval of sufficient length. To this end, we specifically present two approaches: 1) a replay method that guarantees the optimal recall interval, and 2) a self-supervised learning that acquires extensive knowledge from a single training sample at a time. We empirically show that these approaches of our method are aligned with the forgetting curve theory, which can enhance long-term memory. In our experiments, we also demonstrate that our method significantly improves many state-of-the-art continual learning methods in various protocols and scenarios. We open-source this project at https://github.com/hankyul2/ViewBatchModel.
comment: Accepted by IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2025
☆ MoST: Efficient Monarch Sparse Tuning for 3D Representation Learning
We introduce Monarch Sparse Tuning (MoST), the first reparameterization-based parameter-efficient fine-tuning (PEFT) method tailored for 3D representation learning. Unlike existing adapter-based and prompt-tuning 3D PEFT methods, MoST introduces no additional inference overhead and is compatible with many 3D representation learning backbones. At its core, we present a new family of structured matrices for 3D point clouds, Point Monarch, which can capture local geometric features of irregular points while offering high expressiveness. MoST reparameterizes the dense update weight matrices as our sparse Point Monarch matrices, significantly reducing parameters while retaining strong performance. Experiments on various backbones show that MoST is simple, effective, and highly generalizable. It captures local features in point clouds, achieving state-of-the-art results on multiple benchmarks, e.g., 97.5% acc. on ScanObjectNN (PB_50_RS) and 96.2% on ModelNet40 classification, while it can also combine with other matrix decompositions (e.g., Low-rank, Kronecker) to further reduce parameters.
comment: 11 pages, 6 figures, 6 tables. Code and weights are available at https://github.com/xhanxu/MoST
☆ Latent Embedding Adaptation for Human Preference Alignment in Diffusion Planners
This work addresses the challenge of personalizing trajectories generated in automated decision-making systems by introducing a resource-efficient approach that enables rapid adaptation to individual users' preferences. Our method leverages a pretrained conditional diffusion model with Preference Latent Embeddings (PLE), trained on a large, reward-free offline dataset. The PLE serves as a compact representation for capturing specific user preferences. By adapting the pretrained model using our proposed preference inversion method, which directly optimizes the learnable PLE, we achieve superior alignment with human preferences compared to existing solutions like Reinforcement Learning from Human Feedback (RLHF) and Low-Rank Adaptation (LoRA). To better reflect practical applications, we create a benchmark experiment using real human preferences on diverse, high-reward trajectories.
comment: 8 pages
☆ A New Stochastic Approximation Method for Gradient-based Simulated Parameter Estimation
This paper tackles the challenge of parameter calibration in stochastic models, particularly in scenarios where the likelihood function is unavailable in an analytical form. We introduce a gradient-based simulated parameter estimation framework, which employs a multi-time scale stochastic approximation algorithm. This approach effectively addresses the ratio bias that arises in both maximum likelihood estimation and posterior density estimation problems. The proposed algorithm enhances estimation accuracy and significantly reduces computational costs, as demonstrated through extensive numerical experiments. Our work extends the GSPE framework to handle complex models such as hidden Markov models and variational inference-based problems, offering a robust solution for parameter estimation in challenging stochastic environments.
☆ Improved Rates of Differentially Private Nonconvex-Strongly-Concave Minimax Optimization AAAI 2025
In this paper, we study the problem of (finite sum) minimax optimization in the Differential Privacy (DP) model. Unlike most of the previous studies on the (strongly) convex-concave settings or loss functions satisfying the Polyak-Lojasiewicz condition, here we mainly focus on the nonconvex-strongly-concave one, which encapsulates many models in deep learning such as deep AUC maximization. Specifically, we first analyze a DP version of Stochastic Gradient Descent Ascent (SGDA) and show that it is possible to get a DP estimator whose $l_2$-norm of the gradient for the empirical risk function is upper bounded by $\tilde{O}(\frac{d^{1/4}}{({n\epsilon})^{1/2}})$, where $d$ is the model dimension and $n$ is the sample size. We then propose a new method with less gradient noise variance and improve the upper bound to $\tilde{O}(\frac{d^{1/3}}{(n\epsilon)^{2/3}})$, which matches the best-known result for DP Empirical Risk Minimization with non-convex loss. We also discussed several lower bounds of private minimax optimization. Finally, experiments on AUC maximization, generative adversarial networks, and temporal difference learning with real-world data support our theoretical analysis.
comment: Published in AAAI 2025
☆ LoTUS: Large-Scale Machine Unlearning with a Taste of Uncertainty CVPR 2025
We present LoTUS, a novel Machine Unlearning (MU) method that eliminates the influence of training samples from pre-trained models, avoiding retraining from scratch. LoTUS smooths the prediction probabilities of the model -- up to an information theoretic bound -- mitigating its over-confidence that stems from data memorization. We evaluate LoTUS on the Transformer and ResNet18 models, against eight baseline methods, on five public datasets. Beyond established MU benchmarks, we evaluate unlearning on a large-scale dataset (ImageNet1k) which deters retraining, simulating real-world conditions. Moreover, we introduce the novel Retrain-Free Jensen-Shannon Divergence (RF-JSD) metric to enable evaluation under real-world conditions. Experimental results show that LoTUS outperforms state-of-the-art methods in terms of both efficiency and effectiveness. Code: https://github.com/cspartalis/LoTUS.
comment: Accepted as a main conference paper at CVPR 2025
Efficient Transformed Gaussian Process State-Space Models for Non-Stationary High-Dimensional Dynamical Systems
Gaussian process state-space models (GPSSMs) have emerged as a powerful framework for modeling dynamical systems, offering interpretable uncertainty quantification and inherent regularization. However, existing GPSSMs face significant challenges in handling high-dimensional, non-stationary systems due to computational inefficiencies, limited scalability, and restrictive stationarity assumptions. In this paper, we propose an efficient transformed Gaussian process state-space model (ETGPSSM) to address these limitations. Our approach leverages a single shared Gaussian process (GP) combined with normalizing flows and Bayesian neural networks, enabling efficient modeling of complex, high-dimensional state transitions while preserving scalability. To address the lack of closed-form expressions for the implicit process in the transformed GP, we follow its generative process and introduce an efficient variational inference algorithm, aided by the ensemble Kalman filter (EnKF), to enable computationally tractable learning and inference. Extensive empirical evaluations on synthetic and real-world datasets demonstrate the superior performance of our ETGPSSM in system dynamics learning, high-dimensional state estimation, and time-series forecasting, outperforming existing GPSSMs and neural network-based methods in both accuracy and computational efficiency.
comment: 13 pages, 6 figures
☆ DiffMove: Group Mobility Tendency Enhanced Trajectory Recovery via Diffusion Model
In the real world, trajectory data is often sparse and incomplete due to low collection frequencies or limited device coverage. Trajectory recovery aims to recover these missing trajectory points, making the trajectories denser and more complete. However, this task faces two key challenges: 1) The excessive sparsity of individual trajectories makes it difficult to effectively leverage historical information for recovery; 2) Sparse trajectories make it harder to capture complex individual mobility preferences. To address these challenges, we propose a novel method called DiffMove. Firstly, we harness crowd wisdom for trajectory recovery. Specifically, we construct a group tendency graph using the collective trajectories of all users and then integrate the group mobility trends into the location representations via graph embedding. This solves the challenge of sparse trajectories being unable to rely on individual historical trajectories for recovery. Secondly, we capture individual mobility preferences from both historical and current perspectives. Finally, we integrate group mobility tendencies and individual preferences into the spatiotemporal distribution of the trajectory to recover high-quality trajectories. Extensive experiments on two real-world datasets demonstrate that DiffMove outperforms existing state-of-the-art methods. Further analysis validates the robustness of our method.
☆ Byzantine-Resilient Over-the-Air Federated Learning under Zero-Trust Architecture
Over-the-air computation (AirComp) has emerged as an essential approach for enabling communication-efficient federated learning (FL) over wireless networks. Nonetheless, the inherent analog transmission mechanism in AirComp-based FL (AirFL) intensifies challenges posed by potential Byzantine attacks. In this paper, we propose a novel Byzantine-robust FL paradigm for over-the-air transmissions, referred to as federated learning with secure adaptive clustering (FedSAC). FedSAC aims to protect a portion of the devices from attacks through zero trust architecture (ZTA) based Byzantine identification and adaptive device clustering. By conducting a one-step convergence analysis, we theoretically characterize the convergence behavior with different device clustering mechanisms and uneven aggregation weighting factors for each device. Building upon our analytical results, we formulate a joint optimization problem for the clustering and weighting factors in each communication round. To facilitate the targeted optimization, we propose a dynamic Byzantine identification method using historical reputation based on ZTA. Furthermore, we introduce a sequential clustering method, transforming the joint optimization into a weighting optimization problem without sacrificing the optimality. To optimize the weighting, we capitalize on the penalty convex-concave procedure (P-CCP) to obtain a stationary solution. Numerical results substantiate the superiority of the proposed FedSAC over existing methods in terms of both test accuracy and convergence rate.
comment: Accepted by IEEE JSAC
☆ Analyzing Islamophobic Discourse Using Semi-Coded Terms and LLMs
Islamophobia started evolving into a global phenomenon by attracting followers across the globe, particularly in Western societies. Thus, understanding Islamophobia's global spread and online dissemination is crucial. This paper performs a large-scale analysis of specialized, semi-coded Islamophobic terms such as (muzrat, pislam, mudslime, mohammedan, muzzies) floated on extremist social platforms, i.e., 4Chan, Gab, Telegram, etc. First, we use large language models (LLMs) to show their ability to understand these terms. Second, using Google Perspective API, we also find that Islamophobic text is more toxic compared to other kinds of hate speech. Finally, we use BERT topic modeling approach to extract different topics and Islamophobic discourse on these social platforms. Our findings indicate that LLMs understand these Out-Of-Vocabulary (OOV) slurs; however, measures are still required to control such discourse. Our topic modeling also indicates that Islamophobic text is found across various political, conspiratorial, and far-right movements and is particularly directed against Muslim immigrants. Taken altogether, we performed the first study on Islamophobic semi-coded terms and shed a global light on Islamophobia.
☆ Risk Management for Distributed Arbitrage Systems: Integrating Artificial Intelligence
Effective risk management solutions become absolutely crucial when financial markets embrace distributed technology and decentralized financing (DeFi). This study offers a thorough survey and comparative analysis of the integration of artificial intelligence (AI) in risk management for distributed arbitrage systems. We examine several modern caching techniques namely in memory caching, distributed caching, and proxy caching and their functions in enhancing performance in decentralized settings. Through literature review we examine the utilization of AI techniques for alleviating risks related to market volatility, liquidity challenges, operational failures, regulatory compliance, and security threats. This comparison research evaluates various case studies from prominent DeFi technologies, emphasizing critical performance metrics like latency reduction, load balancing, and system resilience. Additionally, we examine the problems and trade offs associated with these technologies, emphasizing their effects on consistency, scalability, and fault tolerance. By meticulously analyzing real world applications, specifically centering on the Aave platform as our principal case study, we illustrate how the purposeful amalgamation of AI with contemporary caching methodologies has revolutionized risk management in distributed arbitrage systems.
comment: International Conference on AI and Financial Innovation AIFI-2025
☆ PNN: A Novel Progressive Neural Network for Fault Classification in Rotating Machinery under Small Dataset Constraint
Fault detection in rotating machinery is a complex task, particularly in small and heterogeneous dataset scenarios. Variability in sensor placement, machinery configurations, and structural differences further increase the complexity of the problem. Conventional deep learning approaches often demand large, homogeneous datasets, limiting their applicability in data-scarce industrial environments. While transfer learning and few-shot learning have shown potential, however, they are often constrained by the need for extensive fault datasets. This research introduces a unified framework leveraging a novel progressive neural network (PNN) architecture designed to address these challenges. The PNN sequentially estimates the fixed-size refined features of the higher order with the help of all previously estimated features and appends them to the feature set. This fixed-size feature output at each layer controls the complexity of the PNN and makes it suitable for effective learning from small datasets. The framework's effectiveness is validated on eight datasets, including six open-source datasets, one in-house fault simulator, and one real-world industrial dataset. The PNN achieves state-of-the-art performance in fault detection across varying dataset sizes and machinery types, highlighting superior generalization and classification capabilities.
☆ Bridging Emotions and Architecture: Sentiment Analysis in Modern Distributed Systems
Sentiment analysis is a field within NLP that has gained importance because it is applied in various areas such as; social media surveillance, customer feedback evaluation and market research. At the same time, distributed systems allow for effective processing of large amounts of data. Therefore, this paper examines how sentiment analysis converges with distributed systems by concentrating on different approaches, challenges and future investigations. Furthermore, we do an extensive experiment where we train sentiment analysis models using both single node configuration and distributed architecture to bring out the benefits and shortcomings of each method in terms of performance and accuracy.
comment: IEEE 3rd International Conference on Advancements in Smart, Secure and Intelligent Computing (ASSIC)
☆ Severing Spurious Correlations with Data Pruning ICLR 2025
Deep neural networks have been shown to learn and rely on spurious correlations present in the data that they are trained on. Reliance on such correlations can cause these networks to malfunction when deployed in the real world, where these correlations may no longer hold. To overcome the learning of and reliance on such correlations, recent studies propose approaches that yield promising results. These works, however, study settings where the strength of the spurious signal is significantly greater than that of the core, invariant signal, making it easier to detect the presence of spurious features in individual training samples and allow for further processing. In this paper, we identify new settings where the strength of the spurious signal is relatively weaker, making it difficult to detect any spurious information while continuing to have catastrophic consequences. We also discover that spurious correlations are learned primarily due to only a handful of all the samples containing the spurious feature and develop a novel data pruning technique that identifies and prunes small subsets of the training data that contain these samples. Our proposed technique does not require inferred domain knowledge, information regarding the sample-wise presence or nature of spurious information, or human intervention. Finally, we show that such data pruning attains state-of-the-art performance on previously studied settings where spurious information is identifiable.
comment: ICLR 2025, Spotlight
☆ DiffGED: Computing Graph Edit Distance via Diffusion-based Graph Matching
The Graph Edit Distance (GED) problem, which aims to compute the minimum number of edit operations required to transform one graph into another, is a fundamental challenge in graph analysis with wide-ranging applications. However, due to its NP-hard nature, traditional A* approaches often suffer from scalability issue, making them computationally intractable for large graphs. Many recent deep learning frameworks address GED by formulating it as a regression task, which, while efficient, fails to recover the edit path -- a central interest in GED. Furthermore, recent hybrid approaches that combine deep learning with traditional methods to recover the edit path often yield poor solution quality. These methods also struggle to generate candidate solutions in parallel, resulting in increased running times.In this paper, we present a novel approach, DiffGED, that leverages generative diffusion model to solve GED and recover the corresponding edit path. Specifically, we first generate multiple diverse node matching matrices in parallel through a diffusion-based graph matching model. Next, node mappings are extracted from each generated matching matrices in parallel, and each extracted node mapping can be simply transformed into an edit path. Benefiting from the generative diversity provided by the diffusion model, DiffGED is less likely to fall into local sub-optimal solutions, thereby achieving superior overall solution quality close to the exact solution. Experimental results on real-world datasets demonstrate that DiffGED can generate multiple diverse edit paths with exceptionally high accuracy comparable to exact solutions while maintaining a running time shorter than most of hybrid approaches.
☆ Analytic DAG Constraints for Differentiable DAG Learning ICLR 2025
Recovering the underlying Directed Acyclic Graph (DAG) structures from observational data presents a formidable challenge, partly due to the combinatorial nature of the DAG-constrained optimization problem. Recently, researchers have identified gradient vanishing as one of the primary obstacles in differentiable DAG learning and have proposed several DAG constraints to mitigate this issue. By developing the necessary theory to establish a connection between analytic functions and DAG constraints, we demonstrate that analytic functions from the set $\{f(x) = c_0 + \sum_{i=1}^{\infty}c_ix^i | \forall i > 0, c_i > 0; r = \lim_{i\rightarrow \infty}c_{i}/c_{i+1} > 0\}$ can be employed to formulate effective DAG constraints. Furthermore, we establish that this set of functions is closed under several functional operators, including differentiation, summation, and multiplication. Consequently, these operators can be leveraged to create novel DAG constraints based on existing ones. Using these properties, we design a series of DAG constraints and develop an efficient algorithm to evaluate them. Experiments in various settings demonstrate that our DAG constraints outperform previous state-of-the-art comparators. Our implementation is available at https://github.com/zzhang1987/AnalyticDAGLearning.
comment: Accepted to ICLR 2025
☆ LLM Benchmarking with LLaMA2: Evaluating Code Development Performance Across Multiple Programming Languages
The rapid evolution of large language models (LLMs) has opened new possibilities for automating various tasks in software development. This paper evaluates the capabilities of the Llama 2-70B model in automating these tasks for scientific applications written in commonly used programming languages. Using representative test problems, we assess the model's capacity to generate code, documentation, and unit tests, as well as its ability to translate existing code between commonly used programming languages. Our comprehensive analysis evaluates the compilation, runtime behavior, and correctness of the generated and translated code. Additionally, we assess the quality of automatically generated code, documentation and unit tests. Our results indicate that while Llama 2-70B frequently generates syntactically correct and functional code for simpler numerical tasks, it encounters substantial difficulties with more complex, parallelized, or distributed computations, requiring considerable manual corrections. We identify key limitations and suggest areas for future improvements to better leverage AI-driven automation in scientific computing workflows.
☆ Continual Reinforcement Learning for HVAC Systems Control: Integrating Hypernetworks and Transfer Learning
Buildings with Heating, Ventilation, and Air Conditioning (HVAC) systems play a crucial role in ensuring indoor comfort and efficiency. While traditionally governed by physics-based models, the emergence of big data has enabled data-driven methods like Deep Reinforcement Learning (DRL). However, Reinforcement Learning (RL)-based techniques often suffer from sample inefficiency and limited generalization, especially across varying HVAC systems. We introduce a model-based reinforcement learning framework that uses a Hypernetwork to continuously learn environment dynamics across tasks with different action spaces. This enables efficient synthetic rollout generation and improved sample usage. Our approach demonstrates strong backward transfer in a continual learning setting after training on a second task, minimal fine-tuning on the first task allows rapid convergence within just 5 episodes and thus outperforming Model Free Reinforcement Learning (MFRL) and effectively mitigating catastrophic forgetting. These findings have significant implications for reducing energy consumption and operational costs in building management, thus supporting global sustainability goals. Keywords: Deep Reinforcement Learning, HVAC Systems Control, Hypernetworks, Transfer and Continual Learning, Catastrophic Forgetting
☆ Byzantine Resilient Federated Multi-Task Representation Learning
In this paper, we propose BR-MTRL, a Byzantine-resilient multi-task representation learning framework that handles faulty or malicious agents. Our approach leverages representation learning through a shared neural network model, where all clients share fixed layers, except for a client-specific final layer. This structure captures shared features among clients while enabling individual adaptation, making it a promising approach for leveraging client data and computational power in heterogeneous federated settings to learn personalized models. To learn the model, we employ an alternating gradient descent strategy: each client optimizes its local model, updates its final layer, and sends estimates of the shared representation to a central server for aggregation. To defend against Byzantine agents, we employ geometric median aggregation for robust client-server communication. Our method enables personalized learning while maintaining resilience in distributed settings. We implemented the proposed alternating gradient descent algorithm in a federated testbed built using Amazon Web Services (AWS) platform and compared its performance with various benchmark algorithms and their variations. Through extensive experiments using real-world datasets, including CIFAR-10 and FEMINIST, we demonstrated the effectiveness and robustness of our approach and its transferability to new unseen clients with limited data, even in the presence of Byzantine adversaries.
☆ A Shared Low-Rank Adaptation Approach to Personalized RLHF AISTATS 2025
Reinforcement Learning from Human Feedback (RLHF) has emerged as a pivotal technique for aligning artificial intelligence systems with human values, achieving remarkable success in fine-tuning large language models. However, existing RLHF frameworks often assume that human preferences are relatively homogeneous and can be captured by a single, unified reward model. This assumption overlooks the inherent diversity and heterogeneity across individuals, limiting the adaptability of RLHF to personalized scenarios and risking misalignments that can diminish user satisfaction and trust in AI systems. In this paper, we address these challenges by introducing Low-Rank Adaptation (LoRA) into the personalized RLHF framework. We apply LoRA in the the aggregated parameter space of all personalized reward functions, thereby enabling efficient learning of personalized reward models from potentially limited local datasets. Our approach exploits potential shared structures among the local ground-truth reward models while allowing for individual adaptation, without relying on restrictive assumptions about shared representations as in prior works. We further establish sample complexity guarantees for our method. Theoretical analysis demonstrates the effectiveness of the proposed approach in capturing both shared and individual-specific structures within heterogeneous human preferences, addressing the dual challenge of personalization requirements and practical data constraints. Experimental results on real-world datasets corroborate the efficiency of our algorithm in the personalized RLHF setting.
comment: Published as a conference paper at AISTATS 2025
☆ Mining-Gym: A Configurable RL Benchmarking Environment for Truck Dispatch Scheduling
Mining process optimization particularly truck dispatch scheduling is a critical factor in enhancing the efficiency of open pit mining operations However the dynamic and stochastic nature of mining environments characterized by uncertainties such as equipment failures truck maintenance and variable haul cycle times poses significant challenges for traditional optimization methods While Reinforcement Learning RL has shown promise in adaptive decision making for mining logistics its practical deployment requires rigorous evaluation in realistic and customizable simulation environments The lack of standardized benchmarking environments limits fair algorithm comparisons reproducibility and the real world applicability of RL based approaches in open pit mining settings To address this challenge we introduce Mining Gym a configurable open source benchmarking environment designed for training testing and comparing RL algorithms in mining process optimization Built on Discrete Event Simulation DES and seamlessly integrated with the OpenAI Gym interface Mining Gym provides a structured testbed that enables the direct application of advanced RL algorithms from Stable Baselines The framework models key mining specific uncertainties such as equipment failures queue congestion and the stochasticity of mining processes ensuring a realistic and adaptive learning environment Additionally Mining Gym features a graphical user interface GUI for intuitive mine site configuration a comprehensive data logging system a built in KPI dashboard and real time visual representation of the mine site These capabilities facilitate standardized reproducible evaluations across multiple RL strategies and baseline heuristics
comment: 11 pages, 8 figures
☆ Universal Architectures for the Learning of Polyhedral Norms and Convex Regularization Functionals
This paper addresses the task of learning convex regularizers to guide the reconstruction of images from limited data. By imposing that the reconstruction be amplitude-equivariant, we narrow down the class of admissible functionals to those that can be expressed as a power of a seminorm. We then show that such functionals can be approximated to arbitrary precision with the help of polyhedral norms. In particular, we identify two dual parameterizations of such systems: (i) a synthesis form with an $\ell_1$-penalty that involves some learnable dictionary; and (ii) an analysis form with an $\ell_\infty$-penalty that involves a trainable regularization operator. After having provided geometric insights and proved that the two forms are universal, we propose an implementation that relies on a specific architecture (tight frame with a weighted $\ell_1$ penalty) that is easy to train. We illustrate its use for denoising and the reconstruction of biomedical images. We find that the proposed framework outperforms the sparsity-based methods of compressed sensing, while it offers essentially the same convergence and robustness guarantees.
☆ Graph neural networks extrapolate out-of-distribution for shortest paths
Neural networks (NNs), despite their success and wide adoption, still struggle to extrapolate out-of-distribution (OOD), i.e., to inputs that are not well-represented by their training dataset. Addressing the OOD generalization gap is crucial when models are deployed in environments significantly different from the training set, such as applying Graph Neural Networks (GNNs) trained on small graphs to large, real-world graphs. One promising approach for achieving robust OOD generalization is the framework of neural algorithmic alignment, which incorporates ideas from classical algorithms by designing neural architectures that resemble specific algorithmic paradigms (e.g. dynamic programming). The hope is that trained models of this form would have superior OOD capabilities, in much the same way that classical algorithms work for all instances. We rigorously analyze the role of algorithmic alignment in achieving OOD generalization, focusing on graph neural networks (GNNs) applied to the canonical shortest path problem. We prove that GNNs, trained to minimize a sparsity-regularized loss over a small set of shortest path instances, exactly implement the Bellman-Ford (BF) algorithm for shortest paths. In fact, if a GNN minimizes this loss within an error of $\epsilon$, it implements the BF algorithm with an error of $O(\epsilon)$. Consequently, despite limited training data, these GNNs are guaranteed to extrapolate to arbitrary shortest-path problems, including instances of any size. Our empirical results support our theory by showing that NNs trained by gradient descent are able to minimize this loss and extrapolate in practice.
☆ Integrating Biological-Informed Recurrent Neural Networks for Glucose-Insulin Dynamics Modeling
Type 1 Diabetes (T1D) management is a complex task due to many variability factors. Artificial Pancreas (AP) systems have alleviated patient burden by automating insulin delivery through advanced control algorithms. However, the effectiveness of these systems depends on accurate modeling of glucose-insulin dynamics, which traditional mathematical models often fail to capture due to their inability to adapt to patient-specific variations. This study introduces a Biological-Informed Recurrent Neural Network (BIRNN) framework to address these limitations. The BIRNN leverages a Gated Recurrent Units (GRU) architecture augmented with physics-informed loss functions that embed physiological constraints, ensuring a balance between predictive accuracy and consistency with biological principles. The framework is validated using the commercial UVA/Padova simulator, outperforming traditional linear models in glucose prediction accuracy and reconstruction of unmeasured states, even under circadian variations in insulin sensitivity. The results demonstrate the potential of BIRNN for personalized glucose regulation and future adaptive control strategies in AP systems.
comment: Accepted for pubblication in the proceedings of the Engineering Diabetes Technologies (EDT 2025). 7 pages, 2 figures and 1 table
☆ Out-of-distribution evaluations of channel agnostic masked autoencoders in fluorescence microscopy
Developing computer vision for high-content screening is challenging due to various sources of distribution-shift caused by changes in experimental conditions, perturbagens, and fluorescent markers. The impact of different sources of distribution-shift are confounded in typical evaluations of models based on transfer learning, which limits interpretations of how changes to model design and training affect generalisation. We propose an evaluation scheme that isolates sources of distribution-shift using the JUMP-CP dataset, allowing researchers to evaluate generalisation with respect to specific sources of distribution-shift. We then present a channel-agnostic masked autoencoder $\mathbf{Campfire}$ which, via a shared decoder for all channels, scales effectively to datasets containing many different fluorescent markers, and show that it generalises to out-of-distribution experimental batches, perturbagens, and fluorescent markers, and also demonstrates successful transfer learning from one cell type to another.
comment: 13 pages, 5 figures
☆ Risk-Based Thresholding for Reliable Anomaly Detection in Concentrated Solar Power Plants
Efficient and reliable operation of Concentrated Solar Power (CSP) plants is essential for meeting the growing demand for sustainable energy. However, high-temperature solar receivers face severe operational risks, such as freezing, deformation, and corrosion, resulting in costly downtime and maintenance. To monitor CSP plants, cameras mounted on solar receivers record infrared images at irregular intervals ranging from one to five minutes throughout the day. Anomalous images can be detected by thresholding an anomaly score, where the threshold is chosen to optimize metrics such as the F1-score on a validation set. This work proposes a framework for generating more reliable decision thresholds with finite-sample coverage guarantees on any chosen risk function. Our framework also incorporates an abstention mechanism, allowing high-risk predictions to be deferred to domain experts. Second, we propose a density forecasting method to estimate the likelihood of an observed image given a sequence of previously observed images, using this likelihood as its anomaly score. Third, we analyze the deployment results of our framework across multiple training scenarios over several months for two CSP plants. This analysis provides valuable insights to our industry partner for optimizing maintenance operations. Finally, given the confidential nature of our dataset, we provide an extended simulated dataset, leveraging recent advancements in generative modeling to create diverse thermal images that simulate multiple CSP plants. Our code is publicly available.
☆ Activation Functions Considered Harmful: Recovering Neural Network Weights through Controlled Channels
With high-stakes machine learning applications increasingly moving to untrusted end-user or cloud environments, safeguarding pre-trained model parameters becomes essential for protecting intellectual property and user privacy. Recent advancements in hardware-isolated enclaves, notably Intel SGX, hold the promise to secure the internal state of machine learning applications even against compromised operating systems. However, we show that privileged software adversaries can exploit input-dependent memory access patterns in common neural network activation functions to extract secret weights and biases from an SGX enclave. Our attack leverages the SGX-Step framework to obtain a noise-free, instruction-granular page-access trace. In a case study of an 11-input regression network using the Tensorflow Microlite library, we demonstrate complete recovery of all first-layer weights and biases, as well as partial recovery of parameters from deeper layers under specific conditions. Our novel attack technique requires only 20 queries per input per weight to obtain all first-layer weights and biases with an average absolute error of less than 1%, improving over prior model stealing attacks. Additionally, a broader ecosystem analysis reveals the widespread use of activation functions with input-dependent memory access patterns in popular machine learning frameworks (either directly or via underlying math libraries). Our findings highlight the limitations of deploying confidential models in SGX enclaves and emphasise the need for stricter side-channel validation of machine learning implementations, akin to the vetting efforts applied to secure cryptographic libraries.
comment: 17 pages, 5 figures
☆ Stochastic Poisson Surface Reconstruction with One Solve using Geometric Gaussian Processes
Poisson Surface Reconstruction is a widely-used algorithm for reconstructing a surface from an oriented point cloud. To facilitate applications where only partial surface information is available, or scanning is performed sequentially, a recent line of work proposes to incorporate uncertainty into the reconstructed surface via Gaussian process models. The resulting algorithms first perform Gaussian process interpolation, then solve a set of volumetric partial differential equations globally in space, resulting in a computationally expensive two-stage procedure. In this work, we apply recently-developed techniques from geometric Gaussian processes to combine interpolation and surface reconstruction into a single stage, requiring only one linear solve per sample. The resulting reconstructed surface samples can be queried locally in space, without the use of problem-dependent volumetric meshes or grids. These capabilities enable one to (a) perform probabilistic collision detection locally around the region of interest, (b) perform ray casting without evaluating points not on the ray's trajectory, and (c) perform next-view planning on a per-slice basis. They also improve reconstruction quality, by not requiring one to approximate kernel matrix inverses with diagonal matrices as part of intermediate computations. Results show that our approach provides a cleaner, more-principled, and more-flexible stochastic surface reconstruction pipeline.
☆ Understanding and Improving Information Preservation in Prompt Compression for LLMs
Recent advancements in large language models (LLMs) have enabled their successful application to a broad range of tasks. However, in information-intensive tasks, the prompt length can grow fast, leading to increased computational requirements, performance degradation, and induced biases from irrelevant or redundant information. Recently, various prompt compression techniques have been introduced to optimize the trade-off between reducing input length and retaining performance. We propose a holistic evaluation framework that allows for in-depth analysis of prompt compression methods. We focus on three key aspects, besides compression ratio: (i) downstream task performance, (ii) grounding in the input context, and (iii) information preservation. Through this framework, we investigate state-of-the-art soft and hard compression methods, showing that they struggle to preserve key details from the original prompt, limiting their performance on complex tasks. We demonstrate that modifying soft prompting methods to control better the granularity of the compressed information can significantly improve their effectiveness -- up to +23\% in downstream task performance, more than +8 BERTScore points in grounding, and 2.7x more entities preserved in compression.
comment: 21 pages, 6 figures, 23 tables
☆ Uncertainty-Aware Decomposed Hybrid Networks
The robustness of image recognition algorithms remains a critical challenge, as current models often depend on large quantities of labeled data. In this paper, we propose a hybrid approach that combines the adaptability of neural networks with the interpretability, transparency, and robustness of domain-specific quasi-invariant operators. Our method decomposes the recognition into multiple task-specific operators that focus on different characteristics, supported by a novel confidence measurement tailored to these operators. This measurement enables the network to prioritize reliable features and accounts for noise. We argue that our design enhances transparency and robustness, leading to improved performance, particularly in low-data regimes. Experimental results in traffic sign detection highlight the effectiveness of the proposed method, especially in semi-supervised and unsupervised scenarios, underscoring its potential for data-constrained applications.
☆ High Probability Complexity Bounds of Trust-Region Stochastic Sequential Quadratic Programming with Heavy-Tailed Noise
In this paper, we consider nonlinear optimization problems with a stochastic objective and deterministic equality constraints. We propose a Trust-Region Stochastic Sequential Quadratic Programming (TR-SSQP) method and establish its high-probability iteration complexity bounds for identifying first- and second-order $\epsilon$-stationary points. In our algorithm, we assume that exact objective values, gradients, and Hessians are not directly accessible but can be estimated via zeroth-, first-, and second-order probabilistic oracles. Compared to existing complexity studies of SSQP methods that rely on a zeroth-order oracle with sub-exponential tail noise (i.e., light-tailed) and focus mostly on first-order stationarity, our analysis accommodates irreducible and heavy-tailed noise in the zeroth-order oracle and significantly extends the analysis to second-order stationarity. We show that under weaker noise conditions, our method achieves the same high-probability first-order iteration complexity bounds, while also exhibiting promising second-order iteration complexity bounds. Specifically, the method identifies a first-order $\epsilon$-stationary point in $\mathcal{O}(\epsilon^{-2})$ iterations and a second-order $\epsilon$-stationary point in $\mathcal{O}(\epsilon^{-3})$ iterations with high probability, provided that $\epsilon$ is lower bounded by a constant determined by the irreducible noise level in estimation. We validate our theoretical findings and evaluate the practical performance of our method on CUTEst benchmark test set.
comment: 50 pages, 5 figures
☆ Paving the way for scientific foundation models: enhancing generalization and robustness in PDEs with constraint-aware pre-training
Partial differential equations (PDEs) govern a wide range of physical systems, but solving them efficiently remains a major challenge. The idea of a scientific foundation model (SciFM) is emerging as a promising tool for learning transferable representations across diverse domains. However, SciFMs require large amounts of solution data, which may be scarce or computationally expensive to generate. To maximize generalization while reducing data dependence, we propose incorporating PDE residuals into pre-training either as the sole learning signal or in combination with data loss to compensate for limited or infeasible training data. We evaluate this constraint-aware pre-training across three key benchmarks: (i) generalization to new physics, where material properties, e.g., the diffusion coefficient, is shifted with respect to the training distribution; (ii) generalization to entirely new PDEs, requiring adaptation to different operators; and (iii) robustness against noisy fine-tuning data, ensuring stability in real-world applications. Our results show that pre-training with PDE constraints significantly enhances generalization, outperforming models trained solely on solution data across all benchmarks. These findings prove the effectiveness of our proposed constraint-aware pre-training as a crucial component for SciFMs, providing a scalable approach to data-efficient, generalizable PDE solvers.
comment: pre-print, 31 pages
☆ HingeRLC-GAN: Combating Mode Collapse with Hinge Loss and RLC Regularization
Recent advances in Generative Adversarial Networks (GANs) have demonstrated their capability for producing high-quality images. However, a significant challenge remains mode collapse, which occurs when the generator produces a limited number of data patterns that do not reflect the diversity of the training dataset. This study addresses this issue by proposing a number of architectural changes aimed at increasing the diversity and stability of GAN models. We start by improving the loss function with Wasserstein loss and Gradient Penalty to better capture the full range of data variations. We also investigate various network architectures and conclude that ResNet significantly contributes to increased diversity. Building on these findings, we introduce HingeRLC-GAN, a novel approach that combines RLC Regularization and the Hinge loss function. With a FID Score of 18 and a KID Score of 0.001, our approach outperforms existing methods by effectively balancing training stability and increased diversity.
☆ Graph-Level Label-Only Membership Inference Attack against Graph Neural Networks
Graph neural networks (GNNs) are widely used for graph-structured data but are vulnerable to membership inference attacks (MIAs) in graph classification tasks, which determine if a graph was part of the training dataset, potentially causing data leakage. Existing MIAs rely on prediction probability vectors, but they become ineffective when only prediction labels are available. We propose a Graph-level Label-Only Membership Inference Attack (GLO-MIA), which is based on the intuition that the target model's predictions on training data are more stable than those on testing data. GLO-MIA generates a set of perturbed graphs for target graph by adding perturbations to its effective features and queries the target model with the perturbed graphs to get their prediction labels, which are then used to calculate robustness score of the target graph. Finally, by comparing the robustness score with a predefined threshold, the membership of the target graph can be inferred correctly with high probability. Our evaluation on three datasets and four GNN models shows that GLO-MIA achieves an attack accuracy of up to 0.825, outperforming baseline work by 8.5% and closely matching the performance of probability-based MIAs, even with only prediction labels.
☆ Detecting Arbitrary Planted Subgraphs in Random Graphs
The problems of detecting and recovering planted structures/subgraphs in Erd\H{o}s-R\'{e}nyi random graphs, have received significant attention over the past three decades, leading to many exciting results and mathematical techniques. However, prior work has largely focused on specific ad hoc planted structures and inferential settings, while a general theory has remained elusive. In this paper, we bridge this gap by investigating the detection of an \emph{arbitrary} planted subgraph $\Gamma = \Gamma_n$ in an Erd\H{o}s-R\'{e}nyi random graph $\mathcal{G}(n, q_n)$, where the edge probability within $\Gamma$ is $p_n$. We examine both the statistical and computational aspects of this problem and establish the following results. In the dense regime, where the edge probabilities $p_n$ and $q_n$ are fixed, we tightly characterize the information-theoretic and computational thresholds for detecting $\Gamma$, and provide conditions under which a computational-statistical gap arises. Most notably, these thresholds depend on $\Gamma$ only through its number of edges, maximum degree, and maximum subgraph density. Our lower and upper bounds are general and apply to any value of $p_n$ and $q_n$ as functions of $n$. Accordingly, we also analyze the sparse regime where $q_n = \Theta(n^{-\alpha})$ and $p_n-q_n =\Theta(q_n)$, with $\alpha\in[0,2]$, as well as the critical regime where $p_n=1-o(1)$ and $q_n = \Theta(n^{-\alpha})$, both of which have been widely studied, for specific choices of $\Gamma$. For these regimes, we show that our bounds are tight for all planted subgraphs investigated in the literature thus far\textemdash{}and many more. Finally, we identify conditions under which detection undergoes sharp phase transition, where the boundaries at which algorithms succeed or fail shift abruptly as a function of $q_n$.
comment: 110 pages
☆ Minimum Volume Conformal Sets for Multivariate Regression
Conformal prediction provides a principled framework for constructing predictive sets with finite-sample validity. While much of the focus has been on univariate response variables, existing multivariate methods either impose rigid geometric assumptions or rely on flexible but computationally expensive approaches that do not explicitly optimize prediction set volume. We propose an optimization-driven framework based on a novel loss function that directly learns minimum-volume covering sets while ensuring valid coverage. This formulation naturally induces a new nonconformity score for conformal prediction, which adapts to the residual distribution and covariates. Our approach optimizes over prediction sets defined by arbitrary norm balls, including single and multi-norm formulations. Additionally, by jointly optimizing both the predictive model and predictive uncertainty, we obtain prediction sets that are tight, informative, and computationally efficient, as demonstrated in our experiments on real-world datasets.
☆ Learning Beamforming Codebooks for Active Sensing with Reconfigurable Intelligent Surface
This paper explores the design of beamforming codebooks for the base station (BS) and for the reconfigurable intelligent surfaces (RISs) in an active sensing scheme for uplink localization, in which the mobile user transmits a sequence of pilots to the BS through reflection at the RISs, and the BS and the RISs are adaptively configured by carefully choosing BS beamforming codeword and RIS codewords from their respective codebooks in a sequential manner to progressively focus onto the user. Most existing codebook designs for RIS are not tailored for active sensing, by which we mean the choice of the next codeword should depend on the measurements made so far, and the sequence of codewords should dynamically focus reflection toward the user. Moreover, most existing codeword selection methods rely on exhaustive search in beam training to identify the codeword with the highest signal-to-noise ratio (SNR), thus incurring substantial pilot overhead as the size of the codebook scales. This paper proposes learning-based approaches for codebook construction and for codeword selection for active sensing. The proposed learning approach aims to locate a target in the service area by recursively selecting a sequence of BS beamforming codewords and RIS codewords from the respective codebooks as more measurements become available without exhaustive beam training. The codebook design and the codeword selection fuse key ideas from the vector quantized-variational autoencoder (VQ-VAE) and the long short-term memory (LSTM) network to learn respectively the discrete function space of the codebook and the temporal dependencies between measurements.
comment: Accepted in IEEE Transactions on Wireless Communications
☆ LookAhead Tuning: Safer Language Models via Partial Answer Previews
Fine-tuning enables large language models (LLMs) to adapt to specific domains, but often undermines their previously established safety alignment. To mitigate the degradation of model safety during fine-tuning, we introduce LookAhead Tuning, which comprises two simple, low-resource, and effective data-driven methods that modify training data by previewing partial answer prefixes. Both methods aim to preserve the model's inherent safety mechanisms by minimizing perturbations to initial token distributions. Comprehensive experiments demonstrate that LookAhead Tuning effectively maintains model safety without sacrificing robust performance on downstream tasks. Our findings position LookAhead Tuning as a reliable and efficient solution for the safe and effective adaptation of LLMs. Code is released at https://github.com/zjunlp/LookAheadTuning.
comment: Work in progress
☆ Evolutionary Policy Optimization
Despite its extreme sample inefficiency, on-policy reinforcement learning has become a fundamental tool in real-world applications. With recent advances in GPU-driven simulation, the ability to collect vast amounts of data for RL training has scaled exponentially. However, studies show that current on-policy methods, such as PPO, fail to fully leverage the benefits of parallelized environments, leading to performance saturation beyond a certain scale. In contrast, Evolutionary Algorithms (EAs) excel at increasing diversity through randomization, making them a natural complement to RL. However, existing EvoRL methods have struggled to gain widespread adoption due to their extreme sample inefficiency. To address these challenges, we introduce Evolutionary Policy Optimization (EPO), a novel policy gradient algorithm that combines the strengths of EA and policy gradients. We show that EPO significantly improves performance across diverse and challenging environments, demonstrating superior scalability with parallelized simulations.
comment: Website at https://sites.google.com/view/epo-rl
☆ Option Discovery Using LLM-guided Semantic Hierarchical Reinforcement Learning
Large Language Models (LLMs) have shown remarkable promise in reasoning and decision-making, yet their integration with Reinforcement Learning (RL) for complex robotic tasks remains underexplored. In this paper, we propose an LLM-guided hierarchical RL framework, termed LDSC, that leverages LLM-driven subgoal selection and option reuse to enhance sample efficiency, generalization, and multi-task adaptability. Traditional RL methods often suffer from inefficient exploration and high computational cost. Hierarchical RL helps with these challenges, but existing methods often fail to reuse options effectively when faced with new tasks. To address these limitations, we introduce a three-stage framework that uses LLMs for subgoal generation given natural language description of the task, a reusable option learning and selection method, and an action-level policy, enabling more effective decision-making across diverse tasks. By incorporating LLMs for subgoal prediction and policy guidance, our approach improves exploration efficiency and enhances learning performance. On average, LDSC outperforms the baseline by 55.9\% in average reward, demonstrating its effectiveness in complex RL settings. More details and experiment videos could be found in \href{https://raaslab.org/projects/LDSC/}{this link\footnote{https://raaslab.org/projects/LDSC}}.
☆ Quantum Complex-Valued Self-Attention Model
The self-attention mechanism has revolutionized classical machine learning, yet its quantum counterpart remains underexplored in fully harnessing the representational power of quantum states. Current quantum self-attention models exhibit a critical limitation by neglecting the indispensable phase information inherent in quantum systems when compressing attention weights into real-valued overlaps. To address this fundamental gap, we propose the Quantum Complex-Valued Self-Attention Model (QCSAM), the first framework that explicitly leverages complex-valued similarities between quantum states to capture both amplitude and phase relationships. Simultaneously, we enhance the standard Linear Combination of Unitaries (LCUs) method by introducing a Complex LCUs (CLCUs) framework that natively supports complex-valued coefficients. This framework enables the weighting of corresponding quantum values using fixed quantum complex self-attention weights, while also supporting trainable complex-valued parameters for value aggregation and quantum multi-head attention. Experimental evaluations on MNIST and Fashion-MNIST demonstrate our model's superiority over recent quantum self-attention architectures including QKSAN, QSAN, and GQHAN, with multi-head configurations showing consistent advantages over single-head variants. We systematically evaluate model scalability through qubit configurations ranging from 3 to 8 qubits and multi-class classification tasks spanning 2 to 4 categories. Through comprehensive ablation studies, we establish the critical advantage of complex-valued quantum attention weights over real-valued alternatives.
♻ ☆ Modern Hopfield Networks with Continuous-Time Memories
Recent research has established a connection between modern Hopfield networks (HNs) and transformer attention heads, with guarantees of exponential storage capacity. However, these models still face challenges scaling storage efficiently. Inspired by psychological theories of continuous neural resource allocation in working memory, we propose an approach that compresses large discrete Hopfield memories into smaller, continuous-time memories. Leveraging continuous attention, our new energy function modifies the update rule of HNs, replacing the traditional softmax-based probability mass function with a probability density, over the continuous memory. This formulation aligns with modern perspectives on human executive function, offering a principled link between attractor dynamics in working memory and resource-efficient memory allocation. Our framework maintains competitive performance with HNs while leveraging a compressed memory, reducing computational costs across synthetic and video datasets.
♻ ☆ Gradient-Guided Annealing for Domain Generalization CVPR2025
Domain Generalization (DG) research has gained considerable traction as of late, since the ability to generalize to unseen data distributions is a requirement that eludes even state-of-the-art training algorithms. In this paper we observe that the initial iterations of model training play a key role in domain generalization effectiveness, since the loss landscape may be significantly different across the training and test distributions, contrary to the case of i.i.d. data. Conflicts between gradients of the loss components of each domain lead the optimization procedure to undesirable local minima that do not capture the domain-invariant features of the target classes. We propose alleviating domain conflicts in model optimization, by iteratively annealing the parameters of a model in the early stages of training and searching for points where gradients align between domains. By discovering a set of parameter values where gradients are updated towards the same direction for each data distribution present in the training set, the proposed Gradient-Guided Annealing (GGA) algorithm encourages models to seek out minima that exhibit improved robustness against domain shifts. The efficacy of GGA is evaluated on five widely accepted and challenging image classification domain generalization benchmarks, where its use alone is able to establish highly competitive or even state-of-the-art performance. Moreover, when combined with previously proposed domain-generalization algorithms it is able to consistently improve their effectiveness by significant margins.
comment: Paper accepted in CVPR2025
♻ ☆ Noisy Low Rank Column-wise Sensing
This letter studies the AltGDmin algorithm for solving the noisy low rank column-wise sensing (LRCS) problem. Our sample complexity guarantee improves upon the best existing one by a factor $\max(r, \log(1/\epsilon))/r$ where $r$ is the rank of the unknown matrix and $\epsilon$ is the final desired accuracy. A second contribution of this work is a detailed comparison of guarantees from all work that studies the exact same mathematical problem as LRCS, but refers to it by different names.
comment: 9 pages
♻ ☆ Fine-tuning machine-learned particle-flow reconstruction for new detector geometries in future colliders
We demonstrate transfer learning capabilities in a machine-learned algorithm trained for particle-flow reconstruction in high energy particle colliders. This paper presents a cross-detector fine-tuning study, where we initially pre-train the model on a large full simulation dataset from one detector design, and subsequently fine-tune the model on a sample with a different collider and detector design. Specifically, we use the Compact Linear Collider detector (CLICdet) model for the initial training set, and demonstrate successful knowledge transfer to the CLIC-like detector (CLD) proposed for the Future Circular Collider in electron-positron mode (FCC-ee). We show that with an order of magnitude less samples from the second dataset, we can achieve the same performance as a costly training from scratch, across particle-level and event-level performance metrics, including jet and missing transverse momentum resolution. Furthermore, we find that the fine-tuned model achieves comparable performance to the traditional rule-based particle-flow approach on event-level metrics after training on 100,000 CLD events, whereas a model trained from scratch requires at least 1 million CLD events to achieve similar reconstruction performance. To our knowledge, this represents the first full-simulation cross-detector transfer learning study for particle-flow reconstruction. These findings offer valuable insights towards building large foundation models that can be fine-tuned across different detector designs and geometries, helping to accelerate the development cycle for new detectors and opening the door to rapid detector design and optimization using machine learning.
comment: 20 pages, 13 figures
♻ ☆ Subversion Strategy Eval: Can language models statelessly strategize to subvert control protocols?
An AI control protocol is a plan for usefully deploying AI systems that aims to prevent an AI from intentionally causing some unacceptable outcome. This paper investigates how well AI systems can generate and act on their own strategies for subverting control protocols whilst operating statelessly (without shared memory between contexts). To do this, an AI system may need to reliably generate optimal plans in each context, take actions with well-calibrated probabilities, and coordinate plans with other instances of itself without communicating. We develop Subversion Strategy Eval, a suite of eight environments, covering a range of protocols and strategic capabilities, and six sets of affordances that help isolate individual capabilities. We implement the evaluation in Inspect-AI and release it open-source. We evaluate Claude 3.5 models, including helpful-only versions, as well as OpenAI reasoning models. None of the models demonstrate substantial capability in strategizing to subvert control protocols statelessly. However, providing models with additional affordances, such as the ability to share a plan between contexts, can substantially improve performance. We hope our evaluations can act as a leading indicator for when models are capable of subverting control protocols and also relax the worst-case assumption of perfect strategic ability in AI control evaluations.
♻ ☆ FlowDock: Geometric Flow Matching for Generative Protein-Ligand Docking and Affinity Prediction
Powerful generative AI models of protein-ligand structure have recently been proposed, but few of these methods support both flexible protein-ligand docking and affinity estimation. Of those that do, none can directly model multiple binding ligands concurrently or have been rigorously benchmarked on pharmacologically relevant drug targets, hindering their widespread adoption in drug discovery efforts. In this work, we propose FlowDock, the first deep geometric generative model based on conditional flow matching that learns to directly map unbound (apo) structures to their bound (holo) counterparts for an arbitrary number of binding ligands. Furthermore, FlowDock provides predicted structural confidence scores and binding affinity values with each of its generated protein-ligand complex structures, enabling fast virtual screening of new (multi-ligand) drug targets. For the well-known PoseBusters Benchmark dataset, FlowDock outperforms single-sequence AlphaFold 3 with a 51% blind docking success rate using unbound (apo) protein input structures and without any information derived from multiple sequence alignments, and for the challenging new DockGen-E dataset, FlowDock outperforms single-sequence AlphaFold 3 and matches single-sequence Chai-1 for binding pocket generalization. Additionally, in the ligand category of the 16th community-wide Critical Assessment of Techniques for Structure Prediction (CASP16), FlowDock ranked among the top-5 methods for pharmacological binding affinity estimation across 140 protein-ligand complexes, demonstrating the efficacy of its learned representations in virtual screening. Source code, data, and pre-trained models are available at https://github.com/BioinfoMachineLearning/FlowDock.
comment: 15 pages, 2 tables, 2 algorithms, 11 figures. Code, data, pre-trained models, and baseline method predictions are available at https://github.com/BioinfoMachineLearning/FlowDock
♻ ☆ Optimistic Q-learning for average reward and episodic reinforcement learning
We present an optimistic Q-learning algorithm for regret minimization in average reward reinforcement learning under an additional assumption on the underlying MDP that for all policies, the time to visit some frequent state $s_0$ is finite and upper bounded by $H$, either in expectation or with constant probability. Our setting strictly generalizes the episodic setting and is significantly less restrictive than the assumption of bounded hitting time \textit{for all states} made by most previous literature on model-free algorithms in average reward settings. We demonstrate a regret bound of $\tilde{O}(H^5 S\sqrt{AT})$, where $S$ and $A$ are the numbers of states and actions, and $T$ is the horizon. A key technical novelty of our work is the introduction of an $\overline{L}$ operator defined as $\overline{L} v = \frac{1}{H} \sum_{h=1}^H L^h v$ where $L$ denotes the Bellman operator. Under the given assumption, we show that the $\overline{L}$ operator has a strict contraction (in span) even in the average-reward setting where the discount factor is $1$. Our algorithm design uses ideas from episodic Q-learning to estimate and apply this operator iteratively. Thus, we provide a unified view of regret minimization in episodic and non-episodic settings, which may be of independent interest.
comment: 37 pages, simplified proofs
♻ ☆ PRISM: Privacy-Preserving Improved Stochastic Masking for Federated Generative Models
Despite recent advancements in federated learning (FL), the integration of generative models into FL has been limited due to challenges such as high communication costs and unstable training in heterogeneous data environments. To address these issues, we propose PRISM, a FL framework tailored for generative models that ensures (i) stable performance in heterogeneous data distributions and (ii) resource efficiency in terms of communication cost and final model size. The key of our method is to search for an optimal stochastic binary mask for a random network rather than updating the model weights, identifying a sparse subnetwork with high generative performance; i.e., a ``strong lottery ticket''. By communicating binary masks in a stochastic manner, PRISM minimizes communication overhead. This approach, combined with the utilization of maximum mean discrepancy (MMD) loss and a mask-aware dynamic moving average aggregation method (MADA) on the server side, facilitates stable and strong generative capabilities by mitigating local divergence in FL scenarios. Moreover, thanks to its sparsifying characteristic, PRISM yields a lightweight model without extra pruning or quantization, making it ideal for environments such as edge devices. Experiments on MNIST, FMNIST, CelebA, and CIFAR10 demonstrate that PRISM outperforms existing methods, while maintaining privacy with minimal communication costs. PRISM is the first to successfully generate images under challenging non-IID and privacy-preserving FL environments on complex datasets, where previous methods have struggled.
♻ ☆ What Constitutes a Less Discriminatory Algorithm? NeurIPS
Disparate impact doctrine offers an important legal apparatus for targeting discriminatory data-driven algorithmic decisions. A recent body of work has focused on conceptualizing one particular construct from this doctrine: the less discriminatory alternative, an alternative policy that reduces disparities while meeting the same business needs of a status quo or baseline policy. However, attempts to operationalize this construct in the algorithmic setting must grapple with some thorny challenges and ambiguities. In this paper, we attempt to raise and resolve important questions about less discriminatory algorithms (LDAs). How should we formally define LDAs, and how does this interact with different societal goals they might serve? And how feasible is it for firms or plaintiffs to computationally search for candidate LDAs? We find that formal LDA definitions face fundamental challenges when they attempt to evaluate and compare predictive models in the absence of held-out data. As a result, we argue that LDA definitions cannot be purely quantitative, and must rely on standards of "reasonableness." We then identify both mathematical and computational constraints on firms' ability to efficiently conduct a proactive search for LDAs, but we provide evidence that these limits are "weak" in a formal sense. By defining LDAs formally, we put forward a framework in which both firms and plaintiffs can search for alternative models that comport with societal goals.
comment: 25 pages, 4 figures, 3 tables. Published at ACM CS&Law '25. Prior versions appeared at NeurIPS Algorithmic Fairness Through the Lens of Metrics and Evaluation Workshop (AFME '24) and Regulatable ML Workshop (RegML '24)
♻ ☆ Adaptive Collaborative Correlation Learning-based Semi-Supervised Multi-Label Feature Selection
Semi-supervised multi-label feature selection has recently been developed to solve the curse of dimensionality problem in high-dimensional multi-label data with certain samples missing labels. Although many efforts have been made, most existing methods use a predefined graph approach to capture the sample similarity or the label correlation. In this manner, the presence of noise and outliers within the original feature space can undermine the reliability of the resulting sample similarity graph. It also fails to precisely depict the label correlation due to the existence of unknown labels. Besides, these methods only consider the discriminative power of selected features, while neglecting their redundancy. In this paper, we propose an Adaptive Collaborative Correlation lEarning-based Semi-Supervised Multi-label Feature Selection (Access-MFS) method to address these issues. Specifically, a generalized regression model equipped with an extended uncorrelated constraint is introduced to select discriminative yet irrelevant features and maintain consistency between predicted and ground-truth labels in labeled data, simultaneously. Then, the instance correlation and label correlation are integrated into the proposed regression model to adaptively learn both the sample similarity graph and the label similarity graph, which mutually enhance feature selection performance. Extensive experimental results demonstrate the superiority of the proposed Access-MFS over other state-of-the-art methods.
♻ ☆ CarbonSense: A Multimodal Dataset and Baseline for Carbon Flux Modelling
Terrestrial carbon fluxes provide vital information about our biosphere's health and its capacity to absorb anthropogenic CO$_2$ emissions. The importance of predicting carbon fluxes has led to the emerging field of data-driven carbon flux modelling (DDCFM), which uses statistical techniques to predict carbon fluxes from biophysical data. However, the field lacks a standardized dataset to promote comparisons between models. To address this gap, we present CarbonSense, the first machine learning-ready dataset for DDCFM. CarbonSense integrates measured carbon fluxes, meteorological predictors, and satellite imagery from 385 locations across the globe, offering comprehensive coverage and facilitating robust model training. Additionally, we provide a baseline model using a current state-of-the-art DDCFM approach and a novel transformer based model. Our experiments illustrate the potential gains that multimodal deep learning techniques can bring to this domain. By providing these resources, we aim to lower the barrier to entry for other deep learning researchers to develop new models and drive new advances in carbon flux modelling.
comment: 9 content pages, 11 reference pages, 9 appendix pages
♻ ☆ HybridNorm: Towards Stable and Efficient Transformer Training via Hybrid Normalization
Transformers have become the de facto architecture for a wide range of machine learning tasks, particularly in large language models (LLMs). Despite their remarkable performance, challenges remain in training deep transformer networks, especially regarding the location of layer normalization. While Pre-Norm structures facilitate easier training due to their more prominent identity path, they often yield suboptimal performance compared to Post-Norm. In this paper, we propose $\textbf{HybridNorm}$, a straightforward yet effective hybrid normalization strategy that integrates the advantages of both Pre-Norm and Post-Norm approaches. Specifically, HybridNorm employs QKV normalization within the attention mechanism and Post-Norm in the feed-forward network (FFN) of each transformer block. This design not only stabilizes training but also enhances performance, particularly in the context of LLMs. Comprehensive experiments in both dense and sparse architectures show that HybridNorm consistently outperforms both Pre-Norm and Post-Norm approaches, achieving state-of-the-art results across various benchmarks. These findings highlight the potential of HybridNorm as a more stable and effective technique for improving the training and performance of deep transformer models. Code is available at https://github.com/BryceZhuo/HybridNorm.
♻ ☆ MF-CLIP: Leveraging CLIP as Surrogate Models for No-box Adversarial Attacks
The vulnerability of Deep Neural Networks (DNNs) to adversarial attacks poses a significant challenge to their deployment in safety-critical applications. While extensive research has addressed various attack scenarios, the no-box attack setting where adversaries have no prior knowledge, including access to training data of the target model, remains relatively underexplored despite its practical relevance. This work presents a systematic investigation into leveraging large-scale Vision-Language Models (VLMs), particularly CLIP, as surrogate models for executing no-box attacks. Our theoretical and empirical analyses reveal a key limitation in the execution of no-box attacks stemming from insufficient discriminative capabilities for direct application of vanilla CLIP as a surrogate model. To address this limitation, we propose MF-CLIP: a novel framework that enhances CLIP's effectiveness as a surrogate model through margin-aware feature space optimization. Comprehensive evaluations across diverse architectures and datasets demonstrate that MF-CLIP substantially advances the state-of-the-art in no-box attacks, surpassing existing baselines by 15.23% on standard models and achieving a 9.52% improvement on adversarially trained models. Our code will be made publicly available to facilitate reproducibility and future research in this direction.
♻ ☆ Quantifying Climate Change Impacts on Renewable Energy Generation: A Super-Resolution Recurrent Diffusion Model
Driven by global climate change and the ongoing energy transition, the coupling between power supply capabilities and meteorological factors has become increasingly significant. Over the long term, accurately quantifying the power generation of renewable energy under the influence of climate change is essential for the development of sustainable power systems. However, due to interdisciplinary differences in data requirements, climate data often lacks the necessary hourly resolution to capture the short-term variability and uncertainties of renewable energy resources. To address this limitation, a super-resolution recurrent diffusion model (SRDM) has been developed to enhance the temporal resolution of climate data and model the short-term uncertainty. The SRDM incorporates a pre-trained decoder and a denoising network, that generates long-term, high-resolution climate data through a recurrent coupling mechanism. The high-resolution climate data is then converted into power value using the mechanism model, enabling the simulation of wind and photovoltaic (PV) power generation on future long-term scales. Case studies were conducted in the Ejina region of Inner Mongolia, China, using fifth-generation reanalysis (ERA5) and coupled model intercomparison project (CMIP6) data under two climate pathways: SSP126 and SSP585. The results demonstrate that the SRDM outperforms existing generative models in generating super-resolution climate data. Furthermore, the research highlights the estimation biases introduced when low-resolution climate data is used for power conversion.
♻ ☆ MaRS: A Fast Sampler for Mean Reverting Diffusion based on ODE and SDE Solvers ICLR 2025
In applications of diffusion models, controllable generation is of practical significance, but is also challenging. Current methods for controllable generation primarily focus on modifying the score function of diffusion models, while Mean Reverting (MR) Diffusion directly modifies the structure of the stochastic differential equation (SDE), making the incorporation of image conditions simpler and more natural. However, current training-free fast samplers are not directly applicable to MR Diffusion. And thus MR Diffusion requires hundreds of NFEs (number of function evaluations) to obtain high-quality samples. In this paper, we propose a new algorithm named MaRS (MR Sampler) to reduce the sampling NFEs of MR Diffusion. We solve the reverse-time SDE and the probability flow ordinary differential equation (PF-ODE) associated with MR Diffusion, and derive semi-analytical solutions. The solutions consist of an analytical function and an integral parameterized by a neural network. Based on this solution, we can generate high-quality samples in fewer steps. Our approach does not require training and supports all mainstream parameterizations, including noise prediction, data prediction and velocity prediction. Extensive experiments demonstrate that MR Sampler maintains high sampling quality with a speedup of 10 to 20 times across ten different image restoration tasks. Our algorithm accelerates the sampling procedure of MR Diffusion, making it more practical in controllable generation.
comment: Accepted by ICLR 2025
♻ ☆ VeriMind: Agentic LLM for Automated Verilog Generation with a Novel Evaluation Metric
Designing Verilog modules requires meticulous attention to correctness, efficiency, and adherence to design specifications. However, manually writing Verilog code remains a complex and time-consuming task that demands both expert knowledge and iterative refinement. Leveraging recent advancements in large language models (LLMs) and their structured text generation capabilities, we propose VeriMind, an agentic LLM framework for Verilog code generation that significantly automates and optimizes the synthesis process. Unlike traditional LLM-based code generators, VeriMind employs a structured reasoning approach: given a user-provided prompt describing design requirements, the system first formulates a detailed train of thought before the final Verilog code is generated. This multi-step methodology enhances interpretability, accuracy, and adaptability in hardware design. In addition, we introduce a novel evaluation metric-pass@ARC-which combines the conventional pass@k measure with Average Refinement Cycles (ARC) to capture both success rate and the efficiency of iterative refinement. Experimental results on diverse hardware design tasks demonstrated that our approach achieved up to $8.3\%$ improvement on pass@k metric and $8.1\%$ on pass@ARC metric. These findings underscore the transformative potential of agentic LLMs in automated hardware design, RTL development, and digital system synthesis.
♻ ☆ On Using Certified Training towards Empirical Robustness
Adversarial training is arguably the most popular way to provide empirical robustness against specific adversarial examples. While variants based on multi-step attacks incur significant computational overhead, single-step variants are vulnerable to a failure mode known as catastrophic overfitting, which hinders their practical utility for large perturbations. A parallel line of work, certified training, has focused on producing networks amenable to formal guarantees of robustness against any possible attack. However, the wide gap between the best-performing empirical and certified defenses has severely limited the applicability of the latter. Inspired by recent developments in certified training, which rely on a combination of adversarial attacks with network over-approximations, and by the connections between local linearity and catastrophic overfitting, we present experimental evidence on the practical utility and limitations of using certified training towards empirical robustness. We show that, when tuned for the purpose, a recent certified training algorithm can prevent catastrophic overfitting on single-step attacks, and that it can bridge the gap to multi-step baselines under appropriate experimental settings. Finally, we present a conceptually simple regularizer for network over-approximations that can achieve similar effects while markedly reducing runtime.
comment: Transactions on Machine Learning Research, 2025
♻ ☆ Optimal Approximation of Zonoids and Uniform Approximation by Shallow Neural Networks
We study the following two related problems. The first is to determine to what error an arbitrary zonoid in $\mathbb{R}^{d+1}$ can be approximated in the Hausdorff distance by a sum of $n$ line segments. The second is to determine optimal approximation rates in the uniform norm for shallow ReLU$^k$ neural networks on their variation spaces. The first of these problems has been solved for $d\neq 2,3$, but when $d=2,3$ a logarithmic gap between the best upper and lower bounds remains. We close this gap, which completes the solution in all dimensions. For the second problem, our techniques significantly improve upon existing approximation rates when $k\geq 1$, and enable uniform approximation of both the target function and its derivatives.
♻ ☆ Beyond Training: Dynamic Token Merging for Zero-Shot Video Understanding
Recent advancements in multimodal large language models (MLLMs) have opened new avenues for video understanding. However, achieving high fidelity in zero-shot video tasks remains challenging. Traditional video processing methods rely heavily on fine-tuning to capture nuanced spatial-temporal details, which incurs significant data and computation costs. In contrast, training-free approaches, though efficient, often lack robustness in preserving context-rich features across complex video content. To this end, we propose DYTO, a novel dynamic token merging framework for zero-shot video understanding that adaptively optimizes token efficiency while preserving crucial scene details. DYTO integrates a hierarchical frame selection and a bipartite token merging strategy to dynamically cluster key frames and selectively compress token sequences, striking a balance between computational efficiency with semantic richness. Extensive experiments across multiple benchmarks demonstrate the effectiveness of DYTO, achieving superior performance compared to both fine-tuned and training-free methods and setting a new state-of-the-art for zero-shot video understanding.
comment: Code is available at https://github.com/Jam1ezhang/DYTO
♻ ☆ RankCLIP: Ranking-Consistent Language-Image Pretraining
Self-supervised contrastive learning models, such as CLIP, have set new benchmarks for vision-language models in many downstream tasks. However, their dependency on rigid one-to-one mappings overlooks the complex and often multifaceted relationships between and within texts and images. To this end, we introduce RankCLIP, a novel pre-training method that extends beyond the rigid one-to-one matching framework of CLIP and its variants. By extending the traditional pair-wise loss to list-wise, and leveraging both in-modal and cross-modal ranking consistency, RankCLIP improves the alignment process, enabling it to capture the nuanced many-to-many relationships between and within each modality. Through comprehensive experiments, we demonstrate the effectiveness of RankCLIP in various downstream tasks, notably achieving significant gains in zero-shot classifications over state-of-the-art methods, underscoring the importance of this enhanced learning process.
comment: Code and model checkpoints are available at https://github.com/Jam1ezhang/RankCLIP
♻ ☆ Benchmarking Post-Training Quantization in LLMs: Comprehensive Taxonomy, Unified Evaluation, and Comparative Analysis
Post-training Quantization (PTQ) technique has been extensively adopted for large language models (LLMs) compression owing to its efficiency and low resource requirement. However, current research lacks a in-depth analysis of the superior and applicable scenarios of each PTQ strategy. In addition, existing algorithms focus primarily on performance, overlooking the trade-off among model size, performance, and quantization bitwidth. To mitigate these confusions, we provide a novel benchmark for LLMs PTQ in this paper. Firstly, in order to support our benchmark, we propose a comprehensive taxonomy for existing mainstream methods by scrutinizing their computational strategies (e.g., optimization-based, compensation-based, etc.). Then, we conduct extensive experiments with the baseline within each class, covering models with various sizes (7B-70B), bitwidths, training levels (LLaMA1/2/3/3.1), architectures (Mixtral, DeepSeekMoE and Mamba) and modality (LLaVA1.5 and VILA1.5) on a wide range of evaluation metrics.Through comparative analysis on the results, we summarize the superior of each PTQ strategy and modelsize-bitwidth trade-off considering the performance. For example, our benchmark reveals that compensation-based technique demonstrates outstanding cross-architecture robustness and extremely low-bit PTQ for ultra large models should be reexamined. Finally, we further accordingly claim that a practical combination of compensation and other PTQ strategy can achieve SOTA various robustness. We believe that our benchmark will provide valuable recommendations for the deployment of LLMs and future research on PTQ approaches.We conduct an repository for our benchmark at https://github.com/zjq0455/PTQ_Benchmark.
comment: 17 pages, 3 fugures
♻ ☆ Learnability in Online Kernel Selection with Memory Constraint via Data-dependent Regret Analysis
Online kernel selection is a fundamental problem of online kernel methods.In this paper,we study online kernel selection with memory constraint in which the memory of kernel selection and online prediction procedures is limited to a fixed budget. An essential question is what is the intrinsic relationship among online learnability, memory constraint, and data complexity? To answer the question,it is necessary to show the trade-offs between regret and memory constraint.Previous work gives a worst-case lower bound depending on the data size,and shows learning is impossible within a small memory constraint.In contrast, we present distinct results by offering data-dependent upper bounds that rely on two data complexities:kernel alignment and the cumulative losses of competitive hypothesis.We propose an algorithmic framework giving data-dependent upper bounds for two types of loss functions.For the hinge loss function,our algorithm achieves an expected upper bound depending on kernel alignment.For smooth loss functions,our algorithm achieves a high-probability upper bound depending on the cumulative losses of competitive hypothesis.We also prove a matching lower bound for smooth loss functions.Our results show that if the two data complexities are sub-linear,then learning is possible within a small memory constraint.Our algorithmic framework depends on a new buffer maintaining framework and a reduction from online kernel selection to prediction with expert advice. Finally,we empirically verify the prediction performance of our algorithms on benchmark datasets.
♻ ☆ DUNE: Distilling a Universal Encoder from Heterogeneous 2D and 3D Teachers CVPR-2025
Recent multi-teacher distillation methods have unified the encoders of multiple foundation models into a single encoder, achieving competitive performance on core vision tasks like classification, segmentation, and depth estimation. This led us to ask: Could similar success be achieved when the pool of teachers also includes vision models specialized in diverse tasks across both 2D and 3D perception? In this paper, we define and investigate the problem of heterogeneous teacher distillation, or co-distillation, a challenging multi-teacher distillation scenario where teacher models vary significantly in both (a) their design objectives and (b) the data they were trained on. We explore data-sharing strategies and teacher-specific encoding, and introduce DUNE, a single encoder excelling in 2D vision, 3D understanding, and 3D human perception. Our model achieves performance comparable to that of its larger teachers, sometimes even outperforming them, on their respective tasks. Notably, DUNE surpasses MASt3R in Map-free Visual Relocalization with a much smaller encoder.
comment: Accepted to CVPR-2025. Project page: https://europe.naverlabs.com/dune
♻ ☆ DiTEC-WDN: A Large-Scale Dataset of Hydraulic Scenarios across Multiple Water Distribution Networks
Privacy restrictions hinder the sharing of real-world Water Distribution Network (WDN) models, limiting the application of emerging data-driven machine learning, which typically requires extensive observations. To address this challenge, we propose the dataset DiTEC-WDN that comprises 36,000 unique scenarios simulated over either short-term (24 hours) or long-term (1 year) periods. We constructed this dataset using an automated pipeline that optimizes crucial parameters (e.g., pressure, flow rate, and demand patterns), facilitates large-scale simulations, and records discrete, synthetic but hydraulically realistic states under standard conditions via rule validation and post-hoc analysis. With a total of 228 million generated graph-based states, DiTEC-WDN can support a variety of machine-learning tasks, including graph-level, node-level, and link-level regression, as well as time-series forecasting. This contribution, released under a public license, encourages open scientific research in the critical water sector, eliminates the risk of exposing sensitive data, and fulfills the need for a large-scale water distribution network benchmark for study comparisons and scenario analysis.
comment: Submitted to Nature Scientific Data. Huy Truong and Andr\'es Tello contributed equally to this work. For the dataset, see https://huggingface.co/datasets/rugds/ditec-wdn
♻ ☆ Understanding Model Calibration -- A gentle introduction and visual exploration of calibration and the expected calibration error (ECE)
To be considered reliable, a model must be calibrated so that its confidence in each decision closely reflects its true outcome. In this blogpost we'll take a look at the most commonly used definition for calibration and then dive into a frequently used evaluation measure for model calibration. We'll then cover some of the drawbacks of this measure and how these surfaced the need for additional notions of calibration, which require their own new evaluation measures. This post is not intended to be an in-depth dissection of all works on calibration, nor does it focus on how to calibrate models. Instead, it is meant to provide a gentle introduction to the different notions and their evaluation measures as well as to re-highlight some issues with a measure that is still widely used to evaluate calibration.
♻ ☆ GAEA: A Geolocation Aware Conversational Model
Image geolocalization, in which, traditionally, an AI model predicts the precise GPS coordinates of an image is a challenging task with many downstream applications. However, the user cannot utilize the model to further their knowledge other than the GPS coordinate; the model lacks an understanding of the location and the conversational ability to communicate with the user. In recent days, with tremendous progress of large multimodal models (LMMs) -- proprietary and open-source -- researchers have attempted to geolocalize images via LMMs. However, the issues remain unaddressed; beyond general tasks, for more specialized downstream tasks, one of which is geolocalization, LMMs struggle. In this work, we propose to solve this problem by introducing a conversational model GAEA that can provide information regarding the location of an image, as required by a user. No large-scale dataset enabling the training of such a model exists. Thus we propose GAEA-1.6M, a comprehensive dataset with 800K images and around 1.6M question-answer pairs constructed by leveraging OpenStreetMap (OSM) attributes and geographical context clues. For quantitative evaluation, we propose a diverse benchmark, GAEA-Bench, comprising 4K image-text pairs to evaluate conversational capabilities equipped with diverse question types. We consider 11 state-of-the-art open-source and proprietary LMMs and demonstrate that GAEA significantly outperforms the best open-source model, LLaVA-OneVision by 25.69% and the best proprietary model, GPT-4o by 8.28%. Our dataset, model and codes are available.
comment: The dataset and code used in this submission is available at: https://ucf-crcv.github.io/GAEA/
♻ ☆ Free Hunch: Denoiser Covariance Estimation for Diffusion Models Without Extra Costs
The covariance for clean data given a noisy observation is an important quantity in many training-free guided generation methods for diffusion models. Current methods require heavy test-time computation, altering the standard diffusion training process or denoiser architecture, or making heavy approximations. We propose a new framework that sidesteps these issues by using covariance information that is available for free from training data and the curvature of the generative trajectory, which is linked to the covariance through the second-order Tweedie's formula. We integrate these sources of information using (i) a novel method to transfer covariance estimates across noise levels and (ii) low-rank updates in a given noise level. We validate the method on linear inverse problems, where it outperforms recent baselines, especially with fewer diffusion steps.
comment: 24 pages, 11 figures
♻ ☆ ETAP: Event-based Tracking of Any Point
Tracking any point (TAP) recently shifted the motion estimation paradigm from focusing on individual salient points with local templates to tracking arbitrary points with global image contexts. However, while research has mostly focused on driving the accuracy of models in nominal settings, addressing scenarios with difficult lighting conditions and high-speed motions remains out of reach due to the limitations of the sensor. This work addresses this challenge with the first event camera-based TAP method. It leverages the high temporal resolution and high dynamic range of event cameras for robust high-speed tracking, and the global contexts in TAP methods to handle asynchronous and sparse event measurements. We further extend the TAP framework to handle event feature variations induced by motion -- thereby addressing an open challenge in purely event-based tracking -- with a novel feature-alignment loss which ensures the learning of motion-robust features. Our method is trained with data from a new data generation pipeline and systematically ablated across all design decisions. Our method shows strong cross-dataset generalization and performs 136% better on the average Jaccard metric than the baselines. Moreover, on an established feature tracking benchmark, it achieves a 20% improvement over the previous best event-only method and even surpasses the previous best events-and-frames method by 4.1%. Our code is available at https://github.com/tub-rip/ETAP
comment: 17 pages, 15 figures, 8 tables. Project page: https://github.com/tub-rip/ETAP
♻ ☆ CarPlanner: Consistent Auto-regressive Trajectory Planning for Large-scale Reinforcement Learning in Autonomous Driving CVPR 2025
Trajectory planning is vital for autonomous driving, ensuring safe and efficient navigation in complex environments. While recent learning-based methods, particularly reinforcement learning (RL), have shown promise in specific scenarios, RL planners struggle with training inefficiencies and managing large-scale, real-world driving scenarios. In this paper, we introduce \textbf{CarPlanner}, a \textbf{C}onsistent \textbf{a}uto-\textbf{r}egressive \textbf{Planner} that uses RL to generate multi-modal trajectories. The auto-regressive structure enables efficient large-scale RL training, while the incorporation of consistency ensures stable policy learning by maintaining coherent temporal consistency across time steps. Moreover, CarPlanner employs a generation-selection framework with an expert-guided reward function and an invariant-view module, simplifying RL training and enhancing policy performance. Extensive analysis demonstrates that our proposed RL framework effectively addresses the challenges of training efficiency and performance enhancement, positioning CarPlanner as a promising solution for trajectory planning in autonomous driving. To the best of our knowledge, we are the first to demonstrate that the RL-based planner can surpass both IL- and rule-based state-of-the-arts (SOTAs) on the challenging large-scale real-world dataset nuPlan. Our proposed CarPlanner surpasses RL-, IL-, and rule-based SOTA approaches within this demanding dataset.
comment: CVPR 2025
♻ ☆ Graph Structure Refinement with Energy-based Contrastive Learning AAAI 2025
Graph Neural Networks (GNNs) have recently gained widespread attention as a successful tool for analyzing graph-structured data. However, imperfect graph structure with noisy links lacks enough robustness and may damage graph representations, therefore limiting the GNNs' performance in practical tasks. Moreover, existing generative architectures fail to fit discriminative graph-related tasks. To tackle these issues, we introduce an unsupervised method based on a joint of generative training and discriminative training to learn graph structure and representation, aiming to improve the discriminative performance of generative models. We propose an Energy-based Contrastive Learning (ECL) guided Graph Structure Refinement (GSR) framework, denoted as ECL-GSR. To our knowledge, this is the first work to combine energy-based models with contrastive learning for GSR. Specifically, we leverage ECL to approximate the joint distribution of sample pairs, which increases the similarity between representations of positive pairs while reducing the similarity between negative ones. Refined structure is produced by augmenting and removing edges according to the similarity metrics among node representations. Extensive experiments demonstrate that ECL-GSR outperforms the state-of-the-art on eight benchmark datasets in node classification. ECL-GSR achieves faster training with fewer samples and memories against the leading baseline, highlighting its simplicity and efficiency in downstream tasks.
comment: Accepted to AAAI 2025
♻ ☆ On-device Federated Learning in Smartphones for Detecting Depression from Reddit Posts
Depression detection using deep learning models has been widely explored in previous studies, especially due to the large amounts of data available from social media posts. These posts provide valuable information about individuals' mental health conditions and can be leveraged to train models and identify patterns in the data. However, distributed learning approaches have not been extensively explored in this domain. In this study, we adopt Federated Learning (FL) to facilitate decentralized training on smartphones while protecting user data privacy. We train three neural network architectures--GRU, RNN, and LSTM on Reddit posts to detect signs of depression and evaluate their performance under heterogeneous FL settings. To optimize the training process, we leverage a common tokenizer across all client devices, which reduces the computational load. Additionally, we analyze resource consumption and communication costs on smartphones to assess their impact in a real-world FL environment. Our experimental results demonstrate that the federated models achieve comparable performance to the centralized models. This study highlights the potential of FL for decentralized mental health prediction by providing a secure and efficient model training process on edge devices.
comment: 11 pages, 7 figures
♻ ☆ Entropy annealing for policy mirror descent in continuous time and space
Entropy regularization has been widely used in policy optimization algorithms to enhance exploration and the robustness of the optimal control; however it also introduces an additional regularization bias. This work quantifies the impact of entropy regularization on the convergence of policy gradient methods for stochastic exit time control problems. We analyze a continuous-time policy mirror descent dynamics, which updates the policy based on the gradient of an entropy-regularized value function and adjusts the strength of entropy regularization as the algorithm progresses. We prove that with a fixed entropy level, the mirror descent dynamics converges exponentially to the optimal solution of the regularized problem. We further show that when the entropy level decays at suitable polynomial rates, the annealed flow converges to the solution of the unregularized problem at a rate of $\mathcal O(1/S)$ for discrete action spaces and, under suitable conditions, at a rate of $\mathcal O(1/\sqrt{S})$ for general action spaces, with $S$ being the gradient flow running time. The technical challenge lies in analyzing the gradient flow in the infinite-dimensional space of Markov kernels for nonconvex objectives. This paper explains how entropy regularization improves policy optimization, even with the true gradient, from the perspective of convergence rate.
♻ ☆ Truncated Kernel Stochastic Gradient Descent on Spheres
Inspired by the structure of spherical harmonics, we propose the truncated kernel stochastic gradient descent (T-kernel SGD) algorithm with a least-square loss function for spherical data fitting. T-kernel SGD introduces a novel regularization strategy by implementing stochastic gradient descent through a closed-form solution of the projection of the stochastic gradient in a low-dimensional subspace. In contrast to traditional kernel SGD, the regularization strategy implemented by T-kernel SGD is more effective in balancing bias and variance by dynamically adjusting the hypothesis space during iterations. The most significant advantage of the proposed algorithm is that it can achieve theoretically optimal convergence rates using a constant step size (independent of the sample size) while overcoming the inherent saturation problem of kernel SGD. Additionally, we leverage the structure of spherical polynomials to derive an equivalent T-kernel SGD, significantly reducing storage and computational costs compared to kernel SGD. Typically, T-kernel SGD requires only $\mathcal{O}(n^{1+\frac{d}{d-1}\epsilon})$ computational complexity and $\mathcal{O}(n^{\frac{d}{d-1}\epsilon})$ storage to achieve optimal rates for the d-dimensional sphere, where $0<\epsilon<\frac{1}{2}$ can be arbitrarily small if the optimal fitting or the underlying space possesses sufficient regularity. This regularity is determined by the smoothness parameter of the objective function and the decaying rate of the eigenvalues of the integral operator associated with the kernel function, both of which reflect the difficulty of the estimation problem. Our main results quantitatively characterize how this prior information influences the convergence of T-kernel SGD. The numerical experiments further validate the theoretical findings presented in this paper.
comment: 74 pages, 22 figures
♻ ☆ Glivenko-Cantelli for $f$-divergence
We extend the celebrated Glivenko-Cantelli theorem, sometimes called the fundamental theorem of statistics, from its standard setting of total variation distance to all $f$-divergences. A key obstacle in this endeavor is to define $f$-divergence on a subcollection of a $\sigma$-algebra that forms a $\pi$-system but not a $\sigma$-subalgebra. This is a side contribution of our work. We will show that this notion of $f$-divergence on the $\pi$-system of rays preserves nearly all known properties of standard $f$-divergence, yields a novel integral representation of the Kolmogorov-Smirnov distance, and has a Glivenko-Cantelli theorem. We will also discuss the prospects of a Vapnik-Chervonenkis theory for $f$-divergence.
comment: 26 pages, 1 figure
♻ ☆ Adaptive UAV-Assisted Hierarchical Federated Learning: Optimizing Energy, Latency, and Resilience for Dynamic Smart IoT
A key application of HFL lies in smart Internet of Things (IoT) systems, including remote monitoring and battlefield operations, where cellular connectivity is often unavailable. In such scenarios, UAVs can act as mobile aggregators, dynamically providing connectivity to terrestrial IoT devices. Subsequently, this paper investigates an HFL architecture enabled by energy-constrained, dynamically deployed UAVs that are susceptible to communication disruptions. We propose a novel approach to minimize global training costs in such environments by formulating a joint optimization problem that integrates learning configuration, bandwidth allocation, and IoT device-to-UAV association, ensuring timely global aggregation before UAV disconnections and redeployments. The problem explicitly captures the dynamic nature of IoT devices and their intermittent connectivity to UAVs and is shown to be NP-hard. To address its complexity, we decompose the problem into three interrelated subproblems. First, we optimize learning configuration and bandwidth allocation using an augmented Lagrangian function to reduce training costs. Second, we introduce a device fitness score that accounts for data heterogeneity (via Kullback-Leibler divergence), device-to-UAV proximity, and computational resources, leveraging a Twin Delayed Deep Deterministic Policy Gradient (TD3)-based algorithm for adaptive device-to-UAV assignment. Third, we develop a low-complexity two-stage greedy strategy for UAV redeployment and global aggregator selection, ensuring efficient model aggregation despite UAV disconnections.
comment: 18 pages, 43 figures
♻ ☆ Model Predictive Task Sampling for Efficient and Robust Adaptation
Foundation models have revolutionized general-purpose problem-solving, offering rapid task adaptation through pretraining, meta-training, and finetuning. Recent crucial advances in these paradigms reveal the importance of challenging task prioritized sampling to enhance adaptation robustness under distribution shifts. However, ranking task difficulties over iteration as a preliminary step typically requires exhaustive task evaluation, which is practically unaffordable in computation and data-annotation. This study provides a novel perspective to illuminate the possibility of leveraging the dual importance of adaptation robustness and learning efficiency, particularly in scenarios where task evaluation is risky or costly, such as iterative agent-environment interactions for robotic policy evaluation or computationally intensive inference steps for finetuning foundation models. Firstly, we introduce Model Predictive Task Sampling (MPTS), a framework that bridges the task space and adaptation risk landscape, providing a theoretical foundation for robust active task sampling. MPTS employs a generative model to characterize the episodic optimization process and predicts task-specific adaptation risk via posterior inference. The resulting risk learner amortizes the costly evaluation of task adaptation performance and provably approximates task difficulty rankings. MPTS seamlessly integrates into zero-shot, few-shot, and supervised finetuning settings. Empirically, we conduct extensive experiments in pattern recognition using foundation models and sequential decision-making. Our results demonstrate that MPTS significantly enhances adaptation robustness for tail or out-of-distribution (OOD) tasks and improves learning efficiency compared to state-of-the-art (SOTA) methods. The code is available at the project site https://github.com/thu-rllab/MPTS.
♻ ☆ ConFIG: Towards Conflict-free Training of Physics Informed Neural Networks ICLR2025
The loss functions of many learning problems contain multiple additive terms that can disagree and yield conflicting update directions. For Physics-Informed Neural Networks (PINNs), loss terms on initial/boundary conditions and physics equations are particularly interesting as they are well-established as highly difficult tasks. To improve learning the challenging multi-objective task posed by PINNs, we propose the ConFIG method, which provides conflict-free updates by ensuring a positive dot product between the final update and each loss-specific gradient. It also maintains consistent optimization rates for all loss terms and dynamically adjusts gradient magnitudes based on conflict levels. We additionally leverage momentum to accelerate optimizations by alternating the back-propagation of different loss terms. We provide a mathematical proof showing the convergence of the ConFIG method, and it is evaluated across a range of challenging PINN scenarios. ConFIG consistently shows superior performance and runtime compared to baseline methods. We also test the proposed method in a classic multi-task benchmark, where the ConFIG method likewise exhibits a highly promising performance. Source code is available at https://tum-pbs.github.io/ConFIG
comment: Accepted by ICLR2025 as spotlight paper; Project homepage: https://tum-pbs.github.io/ConFIG/
♻ ☆ MERGE$^3$: Efficient Evolutionary Merging on Consumer-grade GPUs
Evolutionary model merging enables the creation of high-performing multi-task models but remains computationally prohibitive for consumer hardware. We introduce MERGE$^3$, an efficient framework that makes evolutionary merging feasible on a single GPU by reducing fitness computation costs 50$\times$ while preserving performance. MERGE$^3$ achieves this by Extracting a reduced dataset for evaluation, Estimating model abilities using Item Response Theory (IRT), and Evolving optimal merges via IRT-based performance estimators. Our method enables state-of-the-art multilingual and cross-lingual merging, transferring knowledge across languages with significantly lower computational overhead. We provide theoretical guarantees and an open-source library, democratizing high-quality model merging.
comment: 19 pages, 13 figures
♻ ☆ Understanding Oversmoothing in Diffusion-Based GNNs From the Perspective of Operator Semigroup Theory KDD 2025
This paper presents an analytical study of the oversmoothing issue in diffusion-based Graph Neural Networks (GNNs). Generalizing beyond extant approaches grounded in random walk analysis or particle systems, we approach this problem through operator semigroup theory. This theoretical framework allows us to rigorously prove that oversmoothing is intrinsically linked to the ergodicity of the diffusion operator. Relying on semigroup method, we can quantitatively analyze the dynamic of graph diffusion and give a specific mathematical form of the smoothing feature by ergodicity and invariant measure of operator, which improves previous works only show existence of oversmoothing. This finding further poses a general and mild ergodicity-breaking condition, encompassing the various specific solutions previously offered, thereby presenting a more universal and theoretically grounded approach to relieve oversmoothing in diffusion-based GNNs. Additionally, we offer a probabilistic interpretation of our theory, forging a link with prior works and broadening the theoretical horizon. Our experimental results reveal that this ergodicity-breaking term effectively mitigates oversmoothing measured by Dirichlet energy, and simultaneously enhances performance in node classification tasks.
comment: Accepted by KDD 2025
♻ ☆ Toward a method for LLM-enabled Indoor Navigation
Indoor navigation presents unique challenges due to complex layouts, lack of GPS signals, and accessibility concerns. Existing solutions often struggle with real-time adaptability and user-specific needs. In this work, we explore the potential of a Large Language Model (LLM), i.e., ChatGPT, to generate natural, context-aware navigation instructions from indoor map images. We design and evaluate test cases across different real-world environments, analyzing the effectiveness of LLMs in interpreting spatial layouts, handling user constraints, and planning efficient routes. Our findings demonstrate the potential of LLMs for supporting personalized indoor navigation, with an average of 50.54% correct indications and a maximum of 77.78%. The results do not appear to depend on the complexity of the layout or the complexity of the expected path, but rather on the number of points of interest and the abundance of visual information, which negatively affect the performance.
comment: 7 pages, 3 figures, 5 tables
♻ ☆ Generalization of the Gibbs algorithm with high probability at low temperatures
The paper gives a bound on the generalization error of the Gibbs algorithm, which recovers known data-independent bounds for the high temperature range and extends to the low-temperature range, where generalization depends critically on the data-dependent loss-landscape. It is shown, that with high probability the generalization error of a single hypothesis drawn from the Gibbs posterior decreases with the total prior volume of all hypotheses with similar or smaller empirical error. This gives theoretical support to the belief in the benefit of flat minima. The zero temperature limit is discussed and the bound is extended to a class of similar stochastic algorithms.
♻ ☆ Efficient Training of Multi-task Neural Solver for Combinatorial Optimization
Efficiently training a multi-task neural solver for various combinatorial optimization problems (COPs) has been less studied so far. Naive application of conventional multi-task learning approaches often falls short in delivering a high-quality, unified neural solver. This deficiency primarily stems from the significant computational demands and a lack of adequate consideration for the complexities inherent in COPs. In this paper, we propose a general and efficient training paradigm to deliver a unified combinatorial multi-task neural solver. To this end, we resort to the theoretical loss decomposition for multiple tasks under an encoder-decoder framework, which enables more efficient training via proper bandit task-sampling algorithms through an intra-task influence matrix. By employing theoretically grounded approximations, our method significantly enhances overall performance, regardless of whether it is within constrained training budgets, across equivalent training epochs, or in terms of generalization capabilities, when compared to conventional training schedules. On the real-world datasets of TSPLib and CVRPLib, our method also achieved the best results compared to single task learning and multi-task learning approaches. Additionally, the influence matrix provides empirical evidence supporting common practices in the field of learning to optimize, further substantiating the effectiveness of our approach. Our code is open-sourced and available at https://github.com/LOGO-CUHKSZ/MTL-COP.
♻ ☆ Survival Analysis with Machine Learning for Predicting Li-ion Battery Remaining Useful Life
The accurate prediction of RUL for lithium-ion batteries is crucial for enhancing the reliability and longevity of energy storage systems. Traditional methods for RUL prediction often struggle with issues such as data sparsity, varying battery chemistries, and the inability to capture complex degradation patterns over time. In this study, we propose a survival analysis-based framework combined with deep learning models to predict the RUL of lithium-ion batteries. Specifically, we utilize five advanced models: the Cox-type models (Cox, CoxPH, and CoxTime) and two machine-learning-based models (DeepHit and MTLR). These models address the challenges of accurate RUL estimation by transforming raw time-series battery data into survival data, including key degradation indicators such as voltage, current, and internal resistance. Advanced feature extraction techniques enhance the model's robustness in diverse real-world scenarios, including varying charging conditions and battery chemistries. Our models are tested using 10-fold cross-validation, ensuring generalizability and minimizing overfitting. Experimental results show that our survival-based framework significantly improves RUL prediction accuracy compared to traditional methods, providing a reliable tool for battery management and maintenance optimization. This study contributes to the advancement of predictive maintenance in battery technology, offering valuable insights for both researchers and industry practitioners aiming to enhance the operational lifespan of lithium-ion batteries.
♻ ☆ Active Learning for Neural PDE Solvers
Solving partial differential equations (PDEs) is a fundamental problem in science and engineering. While neural PDE solvers can be more efficient than established numerical solvers, they often require large amounts of training data that is costly to obtain. Active learning (AL) could help surrogate models reach the same accuracy with smaller training sets by querying classical solvers with more informative initial conditions and PDE parameters. While AL is more common in other domains, it has yet to be studied extensively for neural PDE solvers. To bridge this gap, we introduce AL4PDE, a modular and extensible active learning benchmark. It provides multiple parametric PDEs and state-of-the-art surrogate models for the solver-in-the-loop setting, enabling the evaluation of existing and the development of new AL methods for neural PDE solving. We use the benchmark to evaluate batch active learning algorithms such as uncertainty- and feature-based methods. We show that AL reduces the average error by up to 71% compared to random sampling and significantly reduces worst-case errors. Moreover, AL generates similar datasets across repeated runs, with consistent distributions over the PDE parameters and initial conditions. The acquired datasets are reusable, providing benefits for surrogate models not involved in the data generation.
♻ ☆ Continual Low-Rank Scaled Dot-product Attention
Transformers are widely used for their ability to capture data relations in sequence processing, with great success for a wide range of static tasks. However, the computational and memory footprint of their main component, i.e., the Scaled Dot-product Attention, is commonly overlooked. This makes their adoption in applications involving stream data processing with constraints in response latency, computational and memory resources infeasible. Some works have proposed methods to lower the computational cost of Transformers, i.e. low-rank approximations, sparsity in attention, and efficient formulations for Continual Inference. In this paper, we introduce a new formulation of the Scaled Dot-product Attention based on the Nystr\"om approximation that is suitable for Continual Inference. In experiments on Online Audio Classification and Online Action Detection tasks, the proposed Continual Scaled Dot-product Attention can lower the number of operations by up to three orders of magnitude compared to the original Transformers while retaining the predictive performance of competing models.
comment: 14 pages, 7 figures
♻ ☆ Sparse Tensor PCA via Tensor Decomposition for Unsupervised Feature Selection
Recently, introducing Tensor Decomposition (TD) techniques into unsupervised feature selection (UFS) has been an emerging research topic. A tensor structure is beneficial for mining the relations between different modes and helps relieve the computation burden. However, while existing methods exploit TD to preserve the data tensor structure, they do not consider the influence of data orientation and thus have difficulty in handling orientation-specific data such as time series. To solve the above problem, we utilize the orientation-dependent tensor-tensor product from Tensor Singular Value Decomposition based on *M-product (T-SVDM) and extend the one-dimensional Sparse Principal Component Analysis (SPCA) to a tensor form. The proposed sparse tensor PCA model can constrain sparsity at the specified mode and yield sparse tensor principal components, enhancing flexibility and accuracy in learning feature relations. To ensure fast convergence and a flexible description of feature correlation, we develop a convex version specially designed for general UFS tasks and propose an efficient slice-by-slice algorithm that performs dual optimization in the transform domain. Experimental results on real-world datasets demonstrate the effectiveness and remarkable computational efficiency of the proposed method for tensor data of diverse structures over the state-of-the-arts. With a proper combination of data orientation and transform domain, our method is promising for various applications. The codes related to our proposed methods and the experiments are available at https://github.com/zjj20212035/STPCA.git.
♻ ☆ Forensics Adapter: Adapting CLIP for Generalizable Face Forgery Detection CVPR 2025
We describe the Forensics Adapter, an adapter network designed to transform CLIP into an effective and generalizable face forgery detector. Although CLIP is highly versatile, adapting it for face forgery detection is non-trivial as forgery-related knowledge is entangled with a wide range of unrelated knowledge. Existing methods treat CLIP merely as a feature extractor, lacking task-specific adaptation, which limits their effectiveness. To address this, we introduce an adapter to learn face forgery traces -- the blending boundaries unique to forged faces, guided by task-specific objectives. Then we enhance the CLIP visual tokens with a dedicated interaction strategy that communicates knowledge across CLIP and the adapter. Since the adapter is alongside CLIP, its versatility is highly retained, naturally ensuring strong generalizability in face forgery detection. With only 5.7M trainable parameters, our method achieves a significant performance boost, improving by approximately 7% on average across five standard datasets. We believe the proposed method can serve as a baseline for future CLIP-based face forgery detection methods. The code is available at https://github.com/OUC-VAS/ForensicsAdapter.
comment: CVPR 2025
♻ ☆ Hard constraint learning approaches with trainable influence functions for evolutionary equations
This paper develops a novel deep learning approach for solving evolutionary equations, which integrates sequential learning strategies with an enhanced hard constraint strategy featuring trainable parameters, addressing the low computational accuracy of standard Physics-Informed Neural Networks (PINNs) in large temporal domains.Sequential learning strategies divide a large temporal domain into multiple subintervals and solve them one by one in a chronological order, which naturally respects the principle of causality and improves the stability of the PINN solution. The improved hard constraint strategy strictly ensures the continuity and smoothness of the PINN solution at time interval nodes, and at the same time passes the information from the previous interval to the next interval, which avoids the incorrect/trivial solution at the position far from the initial time. Furthermore, by investigating the requirements of different types of equations on hard constraints, we design a novel influence function with trainable parameters for hard constraints, which provides theoretical and technical support for the effective implementations of hard constraint strategies, and significantly improves the universality and computational accuracy of our method. In addition, an adaptive time-domain partitioning algorithm is proposed, which plays an important role in the application of the proposed method as well as in the improvement of computational efficiency and accuracy. Numerical experiments verify the performance of the method. The data and code accompanying this paper are available at https://github.com/zhizhi4452/HCS.
♻ ☆ Distilled Prompt Learning for Incomplete Multimodal Survival Prediction CVPR2025
The integration of multimodal data including pathology images and gene profiles is widely applied in precise survival prediction. Despite recent advances in multimodal survival models, collecting complete modalities for multimodal fusion still poses a significant challenge, hindering their application in clinical settings. Current approaches tackling incomplete modalities often fall short, as they typically compensate for only a limited part of the knowledge of missing modalities. To address this issue, we propose a Distilled Prompt Learning framework (DisPro) to utilize the strong robustness of Large Language Models (LLMs) to missing modalities, which employs two-stage prompting for compensation of comprehensive information for missing modalities. In the first stage, Unimodal Prompting (UniPro) distills the knowledge distribution of each modality, preparing for supplementing modality-specific knowledge of the missing modality in the subsequent stage. In the second stage, Multimodal Prompting (MultiPro) leverages available modalities as prompts for LLMs to infer the missing modality, which provides modality-common information. Simultaneously, the unimodal knowledge acquired in the first stage is injected into multimodal inference to compensate for the modality-specific knowledge of the missing modality. Extensive experiments covering various missing scenarios demonstrated the superiority of the proposed method. The code is available at https://github.com/Innse/DisPro.
comment: Accepted by CVPR2025
♻ ☆ Adapt-$\infty$: Scalable Continual Multimodal Instruction Tuning via Dynamic Data Selection
Visual instruction datasets from various distributors are released at different times and often contain a significant number of semantically redundant text-image pairs, depending on their task compositions (i.e., skills) or reference sources. This redundancy greatly limits the efficient deployment of continually adaptable multimodal large language models, hindering their ability to refine existing skills and acquire new competencies over time. We reframe the problem of lifelong Instruction Tuning (LiIT) via data selection, where the model automatically selects beneficial samples to learn from earlier and new datasets based on the current state of acquired knowledge in the model. We propose Adapt-$\infty$, a new multi-way and adaptive data selection approach that dynamically balances sample efficiency and effectiveness during LiIT. We first construct pseudo-skill clusters by grouping gradient-based sample vectors. Next, we select the best-performing data selector for each skill cluster from a pool of selector experts, including our newly proposed scoring function, Image Grounding score. This data selector samples a subset of the most important samples from each skill cluster for training. To prevent the continuous increase in the size of the dataset pool during LiIT, we introduce a cluster-wise permanent data pruning strategy to remove the most semantically redundant samples from each cluster, keeping computational requirements manageable. We validate the effectiveness and efficiency of Adapt-$\infty$ over a sequence of multimodal instruction tuning datasets with various tasks, including (Knowledge) VQA, multilingual, grounding, reasoning, language-only, and multi-image comprehension. Training with samples selected by Adapt-$\infty$ alleviates catastrophic forgetting, especially for rare tasks, and promotes forward transfer across the continuum using only a fraction of the original data.
comment: First two authors contributed equally. Code: https://github.com/adymaharana/adapt-inf
♻ ☆ ThreatCrawl: A BERT-based Focused Crawler for the Cybersecurity Domain
Publicly available information contains valuable information for Cyber Threat Intelligence (CTI). This can be used to prevent attacks that have already taken place on other systems. Ideally, only the initial attack succeeds and all subsequent ones are detected and stopped. But while there are different standards to exchange this information, a lot of it is shared in articles or blog posts in non-standardized ways. Manually scanning through multiple online portals and news pages to discover new threats and extracting them is a time-consuming task. To automize parts of this scanning process, multiple papers propose extractors that use Natural Language Processing (NLP) to extract Indicators of Compromise (IOCs) from documents. However, while this already solves the problem of extracting the information out of documents, the search for these documents is rarely considered. In this paper, a new focused crawler is proposed called ThreatCrawl, which uses Bidirectional Encoder Representations from Transformers (BERT)-based models to classify documents and adapt its crawling path dynamically. While ThreatCrawl has difficulties to classify the specific type of Open Source Intelligence (OSINT) named in texts, e.g., IOC content, it can successfully find relevant documents and modify its path accord ingly. It yields harvest rates of up to 52%, which are, to the best of our knowledge, better than the current state of the art. The results and source code will be made publicly available upon acceptance.
comment: 11 pages, 9 figures, 5 tables
♻ ☆ Sample-Efficient "Clustering and Conquer" Procedures for Parallel Large-Scale Ranking and Selection
This work seeks to break the sample efficiency bottleneck in parallel large-scale ranking and selection (R&S) problems by leveraging correlation information. We modify the commonly used "divide and conquer" framework in parallel computing by adding a correlation-based clustering step, transforming it into "clustering and conquer". This seemingly simple modification achieves the optimal sample complexity reduction for a widely used class of efficient large-scale R&S procedures. Our approach enjoys two key advantages: 1) it does not require highly accurate correlation estimation or precise clustering, and 2) it allows for seamless integration with various existing R&S procedures, while achieving optimal sample complexity. Theoretically, we develop a novel gradient analysis framework to analyze sample efficiency and guide the design of large-scale R&S procedures. We also introduce a new parallel clustering algorithm tailored for large-scale scenarios. Finally, in large-scale AI applications such as neural architecture search, our methods demonstrate superior performance.
♻ ☆ Learning Causal Transition Matrix for Instance-dependent Label Noise
Noisy labels are both inevitable and problematic in machine learning methods, as they negatively impact models' generalization ability by causing overfitting. In the context of learning with noise, the transition matrix plays a crucial role in the design of statistically consistent algorithms. However, the transition matrix is often considered unidentifiable. One strand of methods typically addresses this problem by assuming that the transition matrix is instance-independent; that is, the probability of mislabeling a particular instance is not influenced by its characteristics or attributes. This assumption is clearly invalid in complex real-world scenarios. To better understand the transition relationship and relax this assumption, we propose to study the data generation process of noisy labels from a causal perspective. We discover that an unobservable latent variable can affect either the instance itself, the label annotation procedure, or both, which complicates the identification of the transition matrix. To address various scenarios, we have unified these observations within a new causal graph. In this graph, the input instance is divided into a noise-resistant component and a noise-sensitive component based on whether they are affected by the latent variable. These two components contribute to identifying the ``causal transition matrix'', which approximates the true transition matrix with theoretical guarantee. In line with this, we have designed a novel training framework that explicitly models this causal relationship and, as a result, achieves a more accurate model for inferring the clean label.
♻ ☆ Cross-domain Random Pre-training with Prototypes for Reinforcement Learning
This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible. Unsupervised cross-domain Reinforcement Learning (RL) pre-training shows great potential for challenging continuous visual control but poses a big challenge. In this paper, we propose \textbf{C}ross-domain \textbf{R}andom \textbf{P}re-\textbf{T}raining with \textbf{pro}totypes (CRPTpro), a novel, efficient, and effective self-supervised cross-domain RL pre-training framework. CRPTpro decouples data sampling from encoder pre-training, proposing decoupled random collection to easily and quickly generate a qualified cross-domain pre-training dataset. Moreover, a novel prototypical self-supervised algorithm is proposed to pre-train an effective visual encoder that is generic across different domains. Without finetuning, the cross-domain encoder can be implemented for challenging downstream tasks defined in different domains, either seen or unseen. Compared with recent advanced methods, CRPTpro achieves better performance on downstream policy learning without extra training on exploration agents for data collection, greatly reducing the burden of pre-training. We conduct extensive experiments across eight challenging continuous visual-control domains, including balance control, robot locomotion, and manipulation. CRPTpro significantly outperforms the next best Proto-RL(C) on 11/12 cross-domain downstream tasks with only 54.5\% wall-clock pre-training time, exhibiting state-of-the-art pre-training performance with greatly improved pre-training efficiency.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ Using Anomaly Detection to Detect Poisoning Attacks in Federated Learning Applications
Adversarial attacks such as poisoning attacks have attracted the attention of many machine learning researchers. Traditionally, poisoning attacks attempt to inject adversarial training data in order to manipulate the trained model. In federated learning (FL), data poisoning attacks can be generalized to model poisoning attacks, which cannot be detected by simpler methods due to the lack of access to local training data by the detector. State-of-the-art poisoning attack detection methods for FL have various weaknesses, e.g., the number of attackers has to be known or not high enough, working with i.i.d. data only, and high computational complexity. To overcome above weaknesses, we propose a novel framework for detecting poisoning attacks in FL, which employs a reference model based on a public dataset and an auditor model to detect malicious updates. We implemented a detector based on the proposed framework and using a one-class support vector machine (OC-SVM), which reaches the lowest possible computational complexity O(K) where K is the number of clients. We evaluated our detector's performance against state-of-the-art (SOTA) poisoning attacks for two typical applications of FL: electrocardiograph (ECG) classification and human activity recognition (HAR). Our experimental results validated the performance of our detector over other SOTA detection methods.
comment: We will updated this article soon
♻ ☆ A Deep Learning Model for Coronary Artery Segmentation and Quantitative Stenosis Detection in Angiographic Images
Coronary artery disease (CAD) is a leading cause of cardiovascular-related mortality, and accurate stenosis detection is crucial for effective clinical decision-making. Coronary angiography remains the gold standard for diagnosing CAD, but manual analysis of angiograms is prone to errors and subjectivity. This study aims to develop a deep learning-based approach for the automatic segmentation of coronary arteries from angiographic images and the quantitative detection of stenosis, thereby improving the accuracy and efficiency of CAD diagnosis. We propose a novel deep learning-based method for the automatic segmentation of coronary arteries in angiographic images, coupled with a dynamic cohort method for stenosis detection. The segmentation model combines the MedSAM and VM-UNet architectures to achieve high-performance results. After segmentation, the vascular centerline is extracted, vessel diameter is computed, and the degree of stenosis is measured with high precision, enabling accurate identification of arterial stenosis. On the mixed dataset (including the ARCADE, DCA1, and GH datasets), the model achieved an average IoU of 0.6308, with sensitivity and specificity of 0.9772 and 0.9903, respectively. On the ARCADE dataset, the average IoU was 0.6303, with sensitivity of 0.9832 and specificity of 0.9933. Additionally, the stenosis detection algorithm achieved a true positive rate (TPR) of 0.5867 and a positive predictive value (PPV) of 0.5911, demonstrating the effectiveness of our model in analyzing coronary angiography images. SAM-VMNet offers a promising tool for the automated segmentation and detection of coronary artery stenosis. The model's high accuracy and robustness provide significant clinical value for the early diagnosis and treatment planning of CAD. The code and examples are available at https://github.com/qimingfan10/SAM-VMNet.
♻ ☆ Lessons and Insights from a Unifying Study of Parameter-Efficient Fine-Tuning (PEFT) in Visual Recognition CVPR 2025
Parameter-efficient fine-tuning (PEFT) has attracted significant attention due to the growth of pre-trained model sizes and the need to fine-tune (FT) them for superior downstream performance. Despite a surge in new PEFT methods, a systematic study to understand their performance and suitable application scenarios is lacking, leaving questions like "when to apply PEFT" and "which method to use" largely unanswered, especially in visual recognition. In this paper, we conduct a unifying empirical study of representative PEFT methods with Vision Transformers. We systematically tune their hyper-parameters to fairly compare their accuracy on downstream tasks. Our study offers a practical user guide and unveils several new insights. First, if tuned carefully, different PEFT methods achieve similar accuracy in the low-shot benchmark VTAB-1K. This includes simple approaches like FT the bias terms that were reported inferior. Second, despite similar accuracy, we find that PEFT methods make different mistakes and high-confidence predictions, likely due to their different inductive biases. Such an inconsistency (or complementarity) opens up the opportunity for ensemble methods, and we make preliminary attempts at this. Third, going beyond the commonly used low-shot tasks, we find that PEFT is also useful in many-shot regimes, achieving comparable or better accuracy than full FT while using significantly fewer parameters. Lastly, we investigate PEFT's ability to preserve a pre-trained model's robustness to distribution shifts (e.g., CLIP). Perhaps not surprisingly, PEFT approaches outperform full FT alone. However, with weight-space ensembles, full FT can better balance target distribution and distribution shift performance, suggesting a future research direction for robust PEFT.
comment: CVPR 2025. The code is available at https://github.com/OSU-MLB/ViT_PEFT_Vision
♻ ☆ On the Performance Analysis of Momentum Method: A Frequency Domain Perspective ICLR 2025
Momentum-based optimizers are widely adopted for training neural networks. However, the optimal selection of momentum coefficients remains elusive. This uncertainty impedes a clear understanding of the role of momentum in stochastic gradient methods. In this paper, we present a frequency domain analysis framework that interprets the momentum method as a time-variant filter for gradients, where adjustments to momentum coefficients modify the filter characteristics. Our experiments support this perspective and provide a deeper understanding of the mechanism involved. Moreover, our analysis reveals the following significant findings: high-frequency gradient components are undesired in the late stages of training; preserving the original gradient in the early stages, and gradually amplifying low-frequency gradient components during training both enhance performance. Based on these insights, we propose Frequency Stochastic Gradient Descent with Momentum (FSGDM), a heuristic optimizer that dynamically adjusts the momentum filtering characteristic with an empirically effective dynamic magnitude response. Experimental results demonstrate the superiority of FSGDM over conventional momentum optimizers.
comment: ICLR 2025. 22 pages, 14 figures. Keywords: Momentum Method, Stochastic Gradient Descent, Z-Transform, Frequency Domain Analysis, Deep Learning
♻ ☆ Reinforcement Learning: A Comprehensive Overview
This manuscript gives a big-picture, up-to-date overview of the field of (deep) reinforcement learning and sequential decision making, covering value-based method, policy-gradient methods, model-based methods, and various other topics (e.g., multi-agent RL, RL+LLMs, and RL+inference).
♻ ☆ Implementing Fairness in AI Classification: The Role of Explainability
In this paper, we propose a philosophical and experimental investigation of the problem of AI fairness in classification. We argue that implementing fairness in AI classification involves more work than just operationalizing a fairness metric. It requires establishing the explainability of the classification model chosen and of the principles behind it. Specifically, it involves making the training processes transparent, determining what outcomes the fairness criteria actually produce, and assessing their trade-offs by comparison with closely related models that would lead to a different outcome. To exemplify this methodology, we trained a model and developed a tool for disparity detection and fairness interventions, the package FairDream. While FairDream is set to enforce Demographic Parity, experiments reveal that it fulfills the constraint of Equalized Odds. The algorithm is thus more conservative than the user might expect. To justify this outcome, we first clarify the relation between Demographic Parity and Equalized Odds as fairness criteria. We then explain FairDream's reweighting method and justify the trade-offs reached by FairDream by a benchmark comparison with closely related GridSearch models. We draw conclusions regarding the way in which these explanatory steps can make an AI model trustworthy.
♻ ☆ Parameter Efficient Mamba Tuning via Projector-targeted Diagonal-centric Linear Transformation CVPR 2025
Despite the growing interest in Mamba architecture as a potential replacement for Transformer architecture, parameter-efficient fine-tuning (PEFT) approaches for Mamba remain largely unexplored. In our study, we introduce two key insights-driven strategies for PEFT in Mamba architecture: (1) While state-space models (SSMs) have been regarded as the cornerstone of Mamba architecture, then expected to play a primary role in transfer learning, our findings reveal that Projectors -- not SSMs -- are the predominant contributors to transfer learning. (2) Based on our observation, we propose a novel PEFT method specialized to Mamba architecture: Projector-targeted Diagonal-centric Linear Transformation (ProDiaL). ProDiaL focuses on optimizing only the pretrained Projectors for new tasks through diagonal-centric linear transformation matrices, without directly fine-tuning the Projector weights. This targeted approach allows efficient task adaptation, utilizing less than 1% of the total parameters, and exhibits strong performance across both vision and language Mamba models, highlighting its versatility and effectiveness.
comment: accepted in CVPR 2025
♻ ☆ AnDB: Breaking Boundaries with an AI-Native Database for Universal Semantic Analysis
In this demonstration, we present AnDB, an AI-native database that supports traditional OLTP workloads and innovative AI-driven tasks, enabling unified semantic analysis across structured and unstructured data. While structured data analytics is mature, challenges remain in bridging the semantic gap between user queries and unstructured data. AnDB addresses these issues by leveraging cutting-edge AI-native technologies, allowing users to perform semantic queries using intuitive SQL-like statements without requiring AI expertise. This approach eliminates the ambiguity of traditional text-to-SQL systems and provides a seamless end-to-end optimization for analyzing all data types. AnDB automates query processing by generating multiple execution plans and selecting the optimal one through its optimizer, which balances accuracy, execution time, and financial cost based on user policies and internal optimizing mechanisms. AnDB future-proofs data management infrastructure, empowering users to effectively and efficiently harness the full potential of all kinds of data without starting from scratch.
comment: 4 pages, 5 figures
♻ ☆ A Mechanistic Explanatory Strategy for XAI
Despite significant advancements in XAI, scholars note a persistent lack of solid conceptual foundations and integration with broader discourse on scientific explanation. In response, emerging XAI research draws on explanatory strategies from various sciences and philosophy of science literature to fill these gaps. This paper outlines a mechanistic strategy for explaining the functional organization of deep learning systems, situating recent advancements in AI explainability within a broader philosophical context. According to the mechanistic approach, the explanation of opaque AI systems involves identifying mechanisms that drive decision-making. For deep neural networks, this means discerning functionally relevant components - such as neurons, layers, circuits, or activation patterns - and understanding their roles through decomposition, localization, and recomposition. Proof-of-principle case studies from image recognition and language modeling align these theoretical approaches with the latest research from AI labs like OpenAI and Anthropic. The paper suggests that such a systematic approach to studying model organization can reveal elements that individual explainability techniques might miss, fostering more thoroughly explainable AI.
comment: Forthcoming in M\"uller, V. C., Dung, L., L\"ohr, G., & Rumana, A. (Eds.). Philosophy of Artificial Intelligence: The State of the Art, Synthese Library, Springer Nature. Please cite the published version
♻ ☆ TokenFormer: Rethinking Transformer Scaling with Tokenized Model Parameters ICLR
Transformers have become the predominant architecture in foundation models due to their excellent performance across various domains. However, the substantial cost of scaling these models remains a significant concern. This problem arises primarily from their dependence on a fixed number of parameters within linear projections. When architectural modifications (e.g., channel dimensions) are introduced, the entire model typically requires retraining from scratch. As model sizes continue growing, this strategy results in increasingly high computational costs and becomes unsustainable. To overcome this problem, we introduce TokenFormer, a natively scalable architecture that leverages the attention mechanism not only for computations among input tokens but also for interactions between tokens and model parameters, thereby enhancing architectural flexibility. By treating model parameters as tokens, we replace all the linear projections in Transformers with our token-parameter attention layer, where input tokens act as queries and model parameters as keys and values. This reformulation allows for progressive and efficient scaling without necessitating retraining from scratch. Our model scales from 124M to 1.4B parameters by incrementally adding new key-value parameter pairs, achieving performance comparable to Transformers trained from scratch while greatly reducing training costs. Code and models are available at https://github.com/Haiyang-W/TokenFormer.
comment: Accepted by ICLR for a spotlight presentation
♻ ☆ Leveraging Allophony in Self-Supervised Speech Models for Atypical Pronunciation Assessment
Allophony refers to the variation in the phonetic realization of a phoneme based on its phonetic environment. Modeling allophones is crucial for atypical pronunciation assessment, which involves distinguishing atypical from typical pronunciations. However, recent phoneme classifier-based approaches often simplify this by treating various realizations as a single phoneme, bypassing the complexity of modeling allophonic variation. Motivated by the acoustic modeling capabilities of frozen self-supervised speech model (S3M) features, we propose MixGoP, a novel approach that leverages Gaussian mixture models to model phoneme distributions with multiple subclusters. Our experiments show that MixGoP achieves state-of-the-art performance across four out of five datasets, including dysarthric and non-native speech. Our analysis further suggests that S3M features capture allophonic variation more effectively than MFCCs and Mel spectrograms, highlighting the benefits of integrating MixGoP with S3M features.
comment: Accepted to NAACL 2025. Codebase available at https://github.com/juice500ml/acoustic-units-for-ood
♻ ☆ Distributional bias compromises leave-one-out cross-validation
Cross-validation is a common method for estimating the predictive performance of machine learning models. In a data-scarce regime, where one typically wishes to maximize the number of instances used for training the model, an approach called "leave-one-out cross-validation" is often used. In this design, a separate model is built for predicting each data instance after training on all other instances. Since this results in a single test instance available per model trained, predictions are aggregated across the entire dataset to calculate common performance metrics such as the area under the receiver operating characteristic or R2 scores. In this work, we demonstrate that this approach creates a negative correlation between the average label of each training fold and the label of its corresponding test instance, a phenomenon that we term distributional bias. As machine learning models tend to regress to the mean of their training data, this distributional bias tends to negatively impact performance evaluation and hyperparameter optimization. We show that this effect generalizes to leave-P-out cross-validation and persists across a wide range of modeling and evaluation approaches, and that it can lead to a bias against stronger regularization. To address this, we propose a generalizable rebalanced cross-validation approach that corrects for distributional bias for both classification and regression. We demonstrate that our approach improves cross-validation performance evaluation in synthetic simulations, across machine learning benchmarks, and in several published leave-one-out analyses.
comment: 29 pages, 6 figures, supplementary information
♻ ☆ Distributionally Robust Learning for Multi-source Unsupervised Domain Adaptation
Empirical risk minimization often performs poorly when the distribution of the target domain differs from those of source domains. To address such potential distribution shifts, we develop an unsupervised domain adaptation approach that leverages labeled data from multiple source domains and unlabeled data from the target domain. We introduce a distributionally robust model that optimizes an adversarial reward based on the explained variance across a class of target distributions, ensuring generalization to the target domain. We show that the proposed robust model is a weighted average of conditional outcome models from source domains. This formulation allows us to compute the robust model through the aggregation of source models, which can be estimated using various machine learning algorithms of the users' choice, such as random forests, boosting, and neural networks. Additionally, we introduce a bias-correction step to obtain a more accurate aggregation weight, which is effective for various machine learning algorithms. Our framework can be interpreted as a distributionally robust federated learning approach that satisfies privacy constraints while providing insights into the importance of each source for prediction on the target domain. The performance of our method is evaluated on both simulated and real data.
♻ ☆ Neural Representation for Wireless Radiation Field Reconstruction: A 3D Gaussian Splatting Approach
Wireless channel modeling plays a pivotal role in designing, analyzing, and optimizing wireless communication systems. Nevertheless, developing an effective channel modeling approach has been a long-standing challenge. This issue has been escalated due to denser network deployment, larger antenna arrays, and broader bandwidth in next-generation networks. To address this challenge, we put forth WRF-GS, a novel framework for channel modeling based on wireless radiation field (WRF) reconstruction using 3D Gaussian splatting (3D-GS). WRF-GS employs 3D Gaussian primitives and neural networks to capture the interactions between the environment and radio signals, enabling efficient WRF reconstruction and visualization of the propagation characteristics. The reconstructed WRF can then be used to synthesize the spatial spectrum for comprehensive wireless channel characterization. While WRF-GS demonstrates remarkable effectiveness, it faces limitations in capturing high-frequency signal variations caused by complex multipath effects. To overcome these limitations, we propose WRF-GS+, an enhanced framework that integrates electromagnetic wave physics into the neural network design. WRF-GS+ leverages deformable 3D Gaussians to model both static and dynamic components of the WRF, significantly improving its ability to characterize signal variations. In addition, WRF-GS+ enhances the splatting process by simplifying the 3D-GS modeling process and improving computational efficiency. Experimental results demonstrate that both WRF-GS and WRF-GS+ outperform baselines for spatial spectrum synthesis, including ray tracing and other deep-learning approaches. Notably, WRF-GS+ achieves state-of-the-art performance in the received signal strength indication (RSSI) and channel state information (CSI) prediction tasks, surpassing existing methods by more than 0.7 dB and 3.36 dB, respectively.
comment: This is an extended journal version of our previous conference paper that was accepted to the IEEE INFOCOM 2025 at arXiv:2412.04832v2. The code for this version is available at https://github.com/wenchaozheng/WRF-GSplus
♻ ☆ Similarity-Dissimilarity Loss for Multi-label Supervised Contrastive Learning
Supervised contrastive learning has been explored in making use of label information for multi-label classification, but determining positive samples in multi-label scenario remains challenging. Previous studies have examined strategies for identifying positive samples, considering label overlap proportion between anchors and samples. However, they ignore various relations between given anchors and samples, as well as how to dynamically adjust the weights in contrastive loss functions based on different relations, leading to great ambiguity. In this paper, we introduce five distinct relations between multi-label samples and propose a Similarity-Dissimilarity Loss with contrastive learning for multi-label classification. Our loss function re-weights the loss by computing the similarity and dissimilarity between positive samples and a given anchor based on the introduced relations. We mainly conduct experiments for multi-label text classification on MIMIC datasets, then further extend the evaluation on MS-COCO. The Experimental results show that our proposed loss effectively improves the performance on all encoders under supervised contrastive learning paradigm, demonstrating its effectiveness and robustness.
♻ ☆ Design and Implementation of an FPGA-Based Tiled Matrix Multiplication Accelerator for Transformer Self-Attention on the Xilinx KV260 SoM
Transformer-based large language models (LLMs) rely heavily on intensive matrix multiplications for attention and feed-forward layers, with the Q, K, and V linear projections in the Multi-Head Self-Attention (MHA) module constituting a decisive performance bottleneck. In this work, we introduce a highly optimized tiled matrix multiplication accelerator on a resource-constrained Xilinx KV260 FPGA that not only addresses this challenge but sets a new standard for efficiency and performance. Our design exploits persistent on-chip storage, a robust two-level tiling strategy for maximal data reuse, and a systolic-like unrolled compute engine that together deliver unparalleled speed and energy efficiency. Integrated with DistilBERT for Q, K, and V projections, our accelerator achieves an unequivocal 7x speedup over ARM CPU implementations (PyTorch) and an extraordinary 200x improvement over naive NumPy, reaching a throughput of up to 3.1~GFLOPs for matrix multiplications on (64,768) x (768,3072) matrices while operating at a conservative 100 MHz. These results decisively demonstrate the transformative potential of FPGA-based acceleration for critical Transformer operations, paving the way for scalable and energy-efficient deep learning inference on edge devices.
comment: 7 pages, 4 figures, 2 tables. Prepared in ACM conference style. Preprint under review
♻ ☆ Emulating Full Participation: An Effective and Fair Client Selection Strategy for Federated Learning
In federated learning, client selection is a critical problem that significantly impacts both model performance and fairness. Prior studies typically treat these two objectives separately, or balance them using simple weighting schemes. However, we observe that commonly used metrics for model performance and fairness often conflict with each other, and a straightforward weighted combination is insufficient to capture their complex interactions. To address this, we first propose two guiding principles that directly tackle the inherent conflict between the two metrics while reinforcing each other. Based on these principles, we formulate the client selection problem as a long-term optimization task, leveraging the Lyapunov function and the submodular nature of the problem to solve it effectively. Experiments show that the proposed method improves both model performance and fairness, guiding the system to converge comparably to full client participation. This improvement can be attributed to the fact that both model performance and fairness benefit from the diversity of the selected clients' data distributions. Our approach adaptively enhances this diversity by selecting clients based on their data distributions, thereby improving both model performance and fairness.
♻ ☆ Near-Optimal Sample Complexity for Iterated CVaR Reinforcement Learning with a Generative Model AISTATS 2025
In this work, we study the sample complexity problem of risk-sensitive Reinforcement Learning (RL) with a generative model, where we aim to maximize the Conditional Value at Risk (CVaR) with risk tolerance level $\tau$ at each step, a criterion we refer to as Iterated CVaR. We first build a connection between Iterated CVaR RL and $(s, a)$-rectangular distributional robust RL with a specific uncertainty set for CVaR. We establish nearly matching upper and lower bounds on the sample complexity of this problem. Specifically, we first prove that a value iteration-based algorithm, ICVaR-VI, achieves an $\epsilon$-optimal policy with at most $\tilde{O} \left(\frac{SA}{(1-\gamma)^4\tau^2\epsilon^2} \right)$ samples, where $\gamma$ is the discount factor, and $S, A$ are the sizes of the state and action spaces. Furthermore, when $\tau \geq \gamma$, the sample complexity improves to $\tilde{O} \left( \frac{SA}{(1-\gamma)^3\epsilon^2} \right)$. We further show a minimax lower bound of $\tilde{O} \left(\frac{(1-\gamma \tau)SA}{(1-\gamma)^4\tau\epsilon^2} \right)$. For a fixed risk level $\tau \in (0,1]$, our upper and lower bounds match, demonstrating the tightness and optimality of our analysis. We also investigate a limiting case with a small risk level $\tau$, called Worst-Path RL, where the objective is to maximize the minimum possible cumulative reward. We develop matching upper and lower bounds of $\tilde{O} \left(\frac{SA}{p_{\min}} \right)$, where $p_{\min}$ denotes the minimum non-zero reaching probability of the transition kernel.
comment: Accepted as a conference paper at AISTATS 2025
♻ ☆ Limits to Analog Reservoir Learning
Reservoir computation is a recurrent framework for learning and predicting time series data, that benefits from extremely simple training and interpretability, often as the the dynamics of a physical system. In this paper, we will study the impact of noise on the learning capabilities of analog reservoir computers. Recent work on reservoir computation has shown that the information processing capacity (IPC) is a useful metric for quantifying the degradation of the performance due to noise. We further this analysis and demonstrate that this degradation of the IPC limits the possible features that can be meaningfully constructed in an analog reservoir computing setting. We borrow a result from quantum complexity theory that relates the circuit model of computation to a continuous time model, and demonstrate an exponential reduction in the accessible volume of reservoir configurations. We conclude by relating this degradation in the IPC to the fat-shattering dimension of a family of functions describing the reservoir dynamics, which allows us to express our result in terms of a classification task. We conclude that any physical, analog reservoir computer that is exposed to noise can only be used to perform a polynomial amount of learning, despite the exponentially large latent space, even with an exponential amount of post-processing.
comment: 10 pages, 1 figure
♻ ☆ Differentially Private Kernel Density Estimation
We introduce a refined differentially private (DP) data structure for kernel density estimation (KDE), offering not only improved privacy-utility tradeoff but also better efficiency over prior results. Specifically, we study the mathematical problem: given a similarity function $f$ (or DP KDE) and a private dataset $X \subset \mathbb{R}^d$, our goal is to preprocess $X$ so that for any query $y\in\mathbb{R}^d$, we approximate $\sum_{x \in X} f(x, y)$ in a differentially private fashion. The best previous algorithm for $f(x,y) =\| x - y \|_1$ is the node-contaminated balanced binary tree by [Backurs, Lin, Mahabadi, Silwal, and Tarnawski, ICLR 2024]. Their algorithm requires $O(nd)$ space and time for preprocessing with $n=|X|$. For any query point, the query time is $d \log n$, with an error guarantee of $(1+\alpha)$-approximation and $\epsilon^{-1} \alpha^{-0.5} d^{1.5} R \log^{1.5} n$. In this paper, we improve the best previous result [Backurs, Lin, Mahabadi, Silwal, and Tarnawski, ICLR 2024] in three aspects: - We reduce query time by a factor of $\alpha^{-1} \log n$. - We improve the approximation ratio from $\alpha$ to 1. - We reduce the error dependence by a factor of $\alpha^{-0.5}$. From a technical perspective, our method of constructing the search tree differs from previous work [Backurs, Lin, Mahabadi, Silwal, and Tarnawski, ICLR 2024]. In prior work, for each query, the answer is split into $\alpha^{-1} \log n$ numbers, each derived from the summation of $\log n$ values in interval tree countings. In contrast, we construct the tree differently, splitting the answer into $\log n$ numbers, where each is a smart combination of two distance values, two counting values, and $y$ itself. We believe our tree structure may be of independent interest.
comment: v2: Appendix added. v3: Numerical validations added
♻ ☆ Training and Evaluating with Human Label Variation: An Empirical Study
Human label variation (HLV) challenges the standard assumption that a labelled instance has a single ground truth, instead embracing the natural variation in human annotation to train and evaluate models. While various training methods and metrics for HLV have been proposed, it is still unclear which methods and metrics perform best in what settings. We propose new evaluation metrics for HLV leveraging fuzzy set theory. Since these new proposed metrics are differentiable, we then in turn experiment with employing these metrics as training objectives. We conduct an extensive study over 6 HLV datasets testing 14 training methods and 6 evaluation metrics. We find that training on either disaggregated annotations or soft labels performs best across metrics, outperforming training using the proposed training objectives with differentiable metrics. We also show that our proposed soft metric is more interpretable and correlates best with human preference.
comment: 25 pages
♻ ☆ LTL-Constrained Policy Optimization with Cycle Experience Replay
Linear Temporal Logic (LTL) offers a precise means for constraining the behavior of reinforcement learning agents. However, in many settings where both satisfaction and optimality conditions are present, LTL is insufficient to capture both. Instead, LTL-constrained policy optimization, where the goal is to optimize a scalar reward under LTL constraints, is needed. This constrained optimization problem proves difficult in deep Reinforcement Learning (DRL) settings, where learned policies often ignore the LTL constraint due to the sparse nature of LTL satisfaction. To alleviate the sparsity issue, we introduce Cycle Experience Replay (CyclER), a novel reward shaping technique that exploits the underlying structure of the LTL constraint to guide a policy towards satisfaction by encouraging partial behaviors compliant with the constraint. We provide a theoretical guarantee that optimizing CyclER will achieve policies that satisfy the LTL constraint with near-optimal probability. We evaluate CyclER in three continuous control domains. Our experimental results show that optimizing CyclER in tandem with the existing scalar reward outperforms existing reward-shaping methods at finding performant LTL-satisfying policies.
comment: Published in TMLR, 12 pages in main text
♻ ☆ Geometry Matters: Benchmarking Scientific ML Approaches for Flow Prediction around Complex Geometries
Rapid and accurate simulations of fluid dynamics around complicated geometric bodies are critical in a variety of engineering and scientific applications, including aerodynamics and biomedical flows. However, while scientific machine learning (SciML) has shown considerable promise, most studies in this field are limited to simple geometries, and complex, real-world scenarios are underexplored. This paper addresses this gap by benchmarking diverse SciML models, including neural operators and vision transformer-based foundation models, for fluid flow prediction over intricate geometries. Using a high-fidelity dataset of steady-state flows across various geometries, we evaluate the impact of geometric representations -- Signed Distance Fields (SDF) and binary masks -- on model accuracy, scalability, and generalization. Central to this effort is the introduction of a novel, unified scoring framework that integrates metrics for global accuracy, boundary layer fidelity, and physical consistency to enable a robust, comparative evaluation of model performance. Our findings demonstrate that newer foundation models significantly outperform neural operators, particularly in data-limited scenarios, and that SDF representations yield superior results with sufficient training data. Despite these promises, all models struggle with out-of-distribution generalization, highlighting a critical challenge for future SciML applications. By advancing both evaluation models and modeling capabilities, our work paves the way for robust and scalable ML solutions for fluid dynamics across complex geometries.
♻ ☆ SILMM: Self-Improving Large Multimodal Models for Compositional Text-to-Image Generation CVPR 2025
Large Multimodal Models (LMMs) have demonstrated impressive capabilities in multimodal understanding and generation, pushing forward advancements in text-to-image generation. However, achieving accurate text-image alignment for LMMs, particularly in compositional scenarios, remains challenging. Existing approaches, such as layout planning for multi-step generation and learning from human feedback or AI feedback, depend heavily on prompt engineering, costly human annotations, and continual upgrading, limiting flexibility and scalability. In this work, we introduce a model-agnostic iterative self-improvement framework (SILMM) that can enable LMMs to provide helpful and scalable self-feedback and optimize text-image alignment via Direct Preference Optimization (DPO). DPO can readily applied to LMMs that use discrete visual tokens as intermediate image representations; while it is less suitable for LMMs with continuous visual features, as obtaining generation probabilities is challenging. To adapt SILMM to LMMs with continuous features, we propose a diversity mechanism to obtain diverse representations and a kernel-based continuous DPO for alignment. Extensive experiments on three compositional text-to-image generation benchmarks validate the effectiveness and superiority of SILMM, showing improvements exceeding 30% on T2I-CompBench++ and around 20% on DPG-Bench.
comment: CVPR 2025 Camera-ready. Project page: https://silmm.github.io/
♻ ☆ TIGeR: Unifying Text-to-Image Generation and Retrieval with Large Multimodal Models ICLR 2025
How humans can effectively and efficiently acquire images has always been a perennial question. A classic solution is text-to-image retrieval from an existing database; however, the limited database typically lacks creativity. By contrast, recent breakthroughs in text-to-image generation have made it possible to produce attractive and counterfactual visual content, but it faces challenges in synthesizing knowledge-intensive images. In this work, we rethink the relationship between text-to-image generation and retrieval, proposing a unified framework for both tasks with one single Large Multimodal Model (LMM). Specifically, we first explore the intrinsic discriminative abilities of LMMs and introduce an efficient generative retrieval method for text-to-image retrieval in a training-free manner. Subsequently, we unify generation and retrieval autoregressively and propose an autonomous decision mechanism to choose the best-matched one between generated and retrieved images as the response to the text prompt. To standardize the evaluation of unified text-to-image generation and retrieval, we construct TIGeR-Bench, a benchmark spanning both creative and knowledge-intensive domains. Extensive experiments on TIGeR-Bench and two retrieval benchmarks, i.e., Flickr30K and MS-COCO, demonstrate the superiority of our proposed framework.
comment: ICLR 2025 Camera-ready
♻ ☆ BEVDiffuser: Plug-and-Play Diffusion Model for BEV Denoising with Ground-Truth Guidance CVPR 2025
Bird's-eye-view (BEV) representations play a crucial role in autonomous driving tasks. Despite recent advancements in BEV generation, inherent noise, stemming from sensor limitations and the learning process, remains largely unaddressed, resulting in suboptimal BEV representations that adversely impact the performance of downstream tasks. To address this, we propose BEVDiffuser, a novel diffusion model that effectively denoises BEV feature maps using the ground-truth object layout as guidance. BEVDiffuser can be operated in a plug-and-play manner during training time to enhance existing BEV models without requiring any architectural modifications. Extensive experiments on the challenging nuScenes dataset demonstrate BEVDiffuser's exceptional denoising and generation capabilities, which enable significant enhancement to existing BEV models, as evidenced by notable improvements of 12.3\% in mAP and 10.1\% in NDS achieved for 3D object detection without introducing additional computational complexity. Moreover, substantial improvements in long-tail object detection and under challenging weather and lighting conditions further validate BEVDiffuser's effectiveness in denoising and enhancing BEV representations.
comment: CVPR 2025
♻ ☆ The Inadequacy of Similarity-based Privacy Metrics: Privacy Attacks against "Truly Anonymous" Synthetic Datasets
Generative models producing synthetic data are meant to provide a privacy-friendly approach to releasing data. However, their privacy guarantees are only considered robust when models satisfy Differential Privacy (DP). Alas, this is not a ubiquitous standard, as many leading companies (and, in fact, research papers) use ad-hoc privacy metrics based on testing the statistical similarity between synthetic and real data. In this paper, we examine the privacy metrics used in real-world synthetic data deployments and demonstrate their unreliability in several ways. First, we provide counter-examples where severe privacy violations occur even if the privacy tests pass and instantiate accurate membership and attribute inference attacks with minimal cost. We then introduce ReconSyn, a reconstruction attack that generates multiple synthetic datasets that are considered private by the metrics but actually leak information unique to individual records. We show that ReconSyn recovers 78-100% of the outliers in the train data with only black-box access to a single fitted generative model and the privacy metrics. In the process, we show that applying DP only to the model does not mitigate this attack, as using privacy metrics breaks the end-to-end DP pipeline.
comment: Published in the Proceedings of the 46th IEEE Symposium on Security & Privacy (IEEE S&P 2025). Please cite the S&P version
♻ ☆ Foundations of the Theory of Performance-Based Ranking
Ranking entities such as algorithms, devices, methods, or models based on their performances, while accounting for application-specific preferences, is a challenge. To address this challenge, we establish the foundations of a universal theory for performance-based ranking. First, we introduce a rigorous framework built on top of both the probability and order theories. Our new framework encompasses the elements necessary to (1) manipulate performances as mathematical objects, (2) express which performances are worse than or equivalent to others, (3) model tasks through a variable called satisfaction, (4) consider properties of the evaluation, (5) define scores, and (6) specify application-specific preferences through a variable called importance. On top of this framework, we propose the first axiomatic definition of performance orderings and performance-based rankings. Then, we introduce a universal parametric family of scores, called ranking scores, that can be used to establish rankings satisfying our axioms, while considering application-specific preferences. Finally, we show, in the case of two-class classification, that the family of ranking scores encompasses well-known performance scores, including the accuracy, the true positive rate (recall, sensitivity), the true negative rate (specificity), the positive predictive value (precision), and F1. However, we also show that some other scores commonly used to compare classifiers are unsuitable to derive performance orderings satisfying the axioms.
♻ ☆ Achilles, Neural Network to Predict the Gold Vs US Dollar Integration with Trading Bot for Automatic Trading
Predicting the stock market is a big challenge for the machine learning world. It is known how difficult it is to have accurate and consistent predictions with ML models. Some architectures are able to capture the movement of stocks but almost never are able to be launched to the production world. We present Achilles, with a classical architecture of LSTM(Long Short Term Memory) neural network this model is able to predict the Gold vs USD commodity. With the predictions minute-per-minute of this model we implemented a trading bot to run during 23 days of testing excluding weekends. At the end of the testing period we generated $1623.52 in profit with the methodology used. The results of our method demonstrate Machine Learning can successfully be implemented to predict the Gold vs USD commodity.
♻ ☆ Theory of Mixture-of-Experts for Mobile Edge Computing
In mobile edge computing (MEC) networks, mobile users generate diverse machine learning tasks dynamically over time. These tasks are typically offloaded to the nearest available edge server, by considering communication and computational efficiency. However, its operation does not ensure that each server specializes in a specific type of tasks and leads to severe overfitting or catastrophic forgetting of previous tasks. To improve the continual learning (CL) performance of online tasks, we are the first to introduce mixture-of-experts (MoE) theory in MEC networks and save MEC operation from the increasing generalization error over time. Our MoE theory treats each MEC server as an expert and dynamically adapts to changes in server availability by considering data transfer and computation time. Unlike existing MoE models designed for offline tasks, ours is tailored for handling continuous streams of tasks in the MEC environment. We introduce an adaptive gating network in MEC to adaptively identify and route newly arrived tasks of unknown data distributions to available experts, enabling each expert to specialize in a specific type of tasks upon convergence. We derived the minimum number of experts required to match each task with a specialized, available expert. Our MoE approach consistently reduces the overall generalization error over time, unlike the traditional MEC approach. Interestingly, when the number of experts is sufficient to ensure convergence, adding more experts delays the convergence time and worsens the generalization error. Finally, we perform extensive experiments on real datasets in deep neural networks (DNNs) to verify our theoretical results.
comment: This is the technical report for our paper accepted by INFOCOM 2025
♻ ☆ Weak-to-Strong Generalization beyond Accuracy: a Pilot Study in Safety, Toxicity, and Legal Reasoning
As large language models (LLMs) continue to advance, ensuring their alignment with human values becomes increasingly critical. Traditional alignment methods heavily rely on human feedback to fine-tune models. With the emergence of superhuman models whose outputs may surpass human understanding, evaluating and aligning these models using human judgments poses significant challenges. To address the challenges, recent works use weak supervisors to elicit knowledge from much stronger models. However, there are important disanalogies between the empirical setup in the existing works and the genuine goal of alignment. We remark that existing works investigate the phenomenon of weak-to-strong generation in analogous setup (i.e., binary classification), rather than practical alignment-relevant tasks (e.g., safety). In this paper, we bridge this gap by extending weak-to-strong generation to the context of practical alignment. We empirically demonstrate the widespread phenomenon of weak-to-strong generation in three complicated alignment tasks: safety, toxicity, and legal reasoning}. Furthermore, we explore efficient strategies for improving alignment performance to enhance the quality of model outcomes. Lastly, we summarize and analyze the challenges and potential solutions in regard to specific alignment tasks, which we hope to catalyze the research progress on the topic of weak-to-strong generalization. Our code is released at https://github.com/yeruimeng/WTS.git.
♻ ☆ LLM-Match: An Open-Sourced Patient Matching Model Based on Large Language Models and Retrieval-Augmented Generation
Patient matching is the process of linking patients to appropriate clinical trials by accurately identifying and matching their medical records with trial eligibility criteria. We propose LLM-Match, a novel framework for patient matching leveraging fine-tuned open-source large language models. Our approach consists of four key components. First, a retrieval-augmented generation (RAG) module extracts relevant patient context from a vast pool of electronic health records (EHRs). Second, a prompt generation module constructs input prompts by integrating trial eligibility criteria (both inclusion and exclusion criteria), patient context, and system instructions. Third, a fine-tuning module with a classification head optimizes the model parameters using structured prompts and ground-truth labels. Fourth, an evaluation module assesses the fine-tuned model's performance on the testing datasets. We evaluated LLM-Match on four open datasets - n2c2, SIGIR, TREC 2021, and TREC 2022 - using open-source models, comparing it against TrialGPT, Zero-Shot, and GPT-4-based closed models. LLM-Match outperformed all baselines.
comment: 10 pages, 1 figure
♻ ☆ On Using Secure Aggregation in Differentially Private Federated Learning with Multiple Local Steps
Federated learning is a distributed learning setting where the main aim is to train machine learning models without having to share raw data but only what is required for learning. To guarantee training data privacy and high-utility models, differential privacy and secure aggregation techniques are often combined with federated learning. However, with fine-grained protection granularities, e.g., with the common sample-level protection, the currently existing techniques generally require the parties to communicate for each local optimization step, if they want to fully benefit from the secure aggregation in terms of the resulting formal privacy guarantees. In this paper, we show how a simple new analysis allows the parties to perform multiple local optimization steps while still benefiting from using secure aggregation. We show that our analysis enables higher utility models with guaranteed privacy protection under limited number of communication rounds.
comment: 22 pages. Published in TMLR 03/2025: https://openreview.net/forum?id=uxyWlXPuIg
♻ ☆ Targeted Separation and Convergence with Kernel Discrepancies
Maximum mean discrepancies (MMDs) like the kernel Stein discrepancy (KSD) have grown central to a wide range of applications, including hypothesis testing, sampler selection, distribution approximation, and variational inference. In each setting, these kernel-based discrepancy measures are required to (i) separate a target P from other probability measures or even (ii) control weak convergence to P. In this article we derive new sufficient and necessary conditions to ensure (i) and (ii). For MMDs on separable metric spaces, we characterize those kernels that separate Bochner embeddable measures and introduce simple conditions for separating all measures with unbounded kernels and for controlling convergence with bounded kernels. We use these results on $\mathbb{R}^d$ to substantially broaden the known conditions for KSD separation and convergence control and to develop the first KSDs known to exactly metrize weak convergence to P. Along the way, we highlight the implications of our results for hypothesis testing, measuring and improving sample quality, and sampling with Stein variational gradient descent.
♻ ☆ Int2Int: a framework for mathematics with transformers
This paper documents Int2Int, an open source code base for using transformers on problems of mathematical research, with a focus on number theory and other problems involving integers. Int2Int is a complete PyTorch implementation of a transformer architecture, together with training and evaluation loops, and classes and functions to represent, generate and decode common mathematical objects. Ancillary code for data preparation, and Jupyter Notebooks for visualizing experimental results are also provided. This document presents the main features of Int2Int, serves as its user manual, and provides guidelines on how to extend it. Int2Int is released under the MIT licence, at https://github.com/f-charton/Int2Int.
♻ ☆ Counterfactual Token Generation in Large Language Models
"Sure, I am happy to generate a story for you: Captain Lyra stood at the helm of her trusty ship, the Maelstrom's Fury, gazing out at the endless sea. [...] Lyra's eyes welled up with tears as she realized the bitter truth - she had sacrificed everything for fleeting riches, and lost the love of her crew, her family, and herself." Although this story, generated by a large language model, is captivating, one may wonder -- how would the story have unfolded if the model had chosen "Captain Maeve" as the protagonist instead? We cannot know. State-of-the-art large language models are stateless -- they maintain no internal memory or state. Given a prompt, they generate a sequence of tokens as an output using an autoregressive process. As a consequence, they cannot reason about counterfactual alternatives to tokens they have generated in the past. In this work, our goal is to enhance them with this functionality. To this end, we develop a causal model of token generation that builds upon the Gumbel-Max structural causal model. Our model allows any large language model to perform counterfactual token generation at almost no cost in comparison with vanilla token generation, it is embarrassingly simple to implement, and it does not require any fine-tuning nor prompt engineering. We implement our model on Llama 3 8B-Instruct and Ministral-8B-Instruct and conduct a qualitative and a quantitative analysis of counterfactually generated text. We conclude with a demonstrative application of counterfactual token generation for bias detection, unveiling interesting insights about the model of the world constructed by large language models.
comment: Accepted at CLeaR 2025
♻ ☆ Rethinking Explainable Machine Learning as Applied Statistics
In the rapidly growing literature on explanation algorithms, it often remains unclear what precisely these algorithms are for and how they should be used. In this position paper, we argue for a novel and pragmatic perspective: Explainable machine learning needs to recognize its parallels with applied statistics. Concretely, explanations are statistics of high-dimensional functions, and we should think about them analogously to traditional statistical quantities. Among others, this implies that we must think carefully about the matter of interpretation, or how the explanations relate to intuitive questions that humans have about the world. The fact that this is scarcely being discussed in research papers is one of the main drawbacks of the current literature. Luckily, the analogy between explainable machine learning and applied statistics suggests fruitful ways for how research practices can be improved.
♻ ☆ Chameleon: a Heterogeneous and Disaggregated Accelerator System for Retrieval-Augmented Language Models
A Retrieval-Augmented Language Model (RALM) combines a large language model (LLM) with a vector database to retrieve context-specific knowledge during text generation. This strategy facilitates impressive generation quality even with smaller models, thus reducing computational demands by orders of magnitude. To serve RALMs efficiently and flexibly, we propose Chameleon, a heterogeneous accelerator system integrating both LLM and vector search accelerators in a disaggregated architecture. The heterogeneity ensures efficient serving for both inference and retrieval, while the disaggregation allows independent scaling of LLM and vector search accelerators to fulfill diverse RALM requirements. Our Chameleon prototype implements vector search accelerators on FPGAs and assigns LLM inference to GPUs, with CPUs as cluster coordinators. Evaluated on various RALMs, Chameleon exhibits up to 2.16$\times$ reduction in latency and 3.18x speedup in throughput compared to the hybrid CPU-GPU architecture. The promising results pave the way for adopting heterogeneous accelerators for not only LLM inference but also vector search in future RALM systems.
comment: Accepted by VLDB 2025
Computer Vision and Pattern Recognition 45
☆ CustomKD: Customizing Large Vision Foundation for Edge Model Improvement via Knowledge Distillation CVPR 2025
We propose a novel knowledge distillation approach, CustomKD, that effectively leverages large vision foundation models (LVFMs) to enhance the performance of edge models (e.g., MobileNetV3). Despite recent advancements in LVFMs, such as DINOv2 and CLIP, their potential in knowledge distillation for enhancing edge models remains underexplored. While knowledge distillation is a promising approach for improving the performance of edge models, the discrepancy in model capacities and heterogeneous architectures between LVFMs and edge models poses a significant challenge. Our observation indicates that although utilizing larger backbones (e.g., ViT-S to ViT-L) in teacher models improves their downstream task performances, the knowledge distillation from the large teacher models fails to bring as much performance gain for student models as for teacher models due to the large model discrepancy. Our simple yet effective CustomKD customizes the well-generalized features inherent in LVFMs to a given student model in order to reduce model discrepancies. Specifically, beyond providing well-generalized original knowledge from teachers, CustomKD aligns the features of teachers to those of students, making it easy for students to understand and overcome the large model discrepancy overall. CustomKD significantly improves the performances of edge models in scenarios with unlabeled data such as unsupervised domain adaptation (e.g., OfficeHome and DomainNet) and semi-supervised learning (e.g., CIFAR-100 with 400 labeled samples and ImageNet with 1% labeled samples), achieving the new state-of-the-art performances.
comment: Accepted to CVPR 2025
☆ PG-SAM: Prior-Guided SAM with Medical for Multi-organ Segmentation
Segment Anything Model (SAM) demonstrates powerful zero-shot capabilities; however, its accuracy and robustness significantly decrease when applied to medical image segmentation. Existing methods address this issue through modality fusion, integrating textual and image information to provide more detailed priors. In this study, we argue that the granularity of text and the domain gap affect the accuracy of the priors. Furthermore, the discrepancy between high-level abstract semantics and pixel-level boundary details in images can introduce noise into the fusion process. To address this, we propose Prior-Guided SAM (PG-SAM), which employs a fine-grained modality prior aligner to leverage specialized medical knowledge for better modality alignment. The core of our method lies in efficiently addressing the domain gap with fine-grained text from a medical LLM. Meanwhile, it also enhances the priors' quality after modality alignment, ensuring more accurate segmentation. In addition, our decoder enhances the model's expressive capabilities through multi-level feature fusion and iterative mask optimizer operations, supporting unprompted learning. We also propose a unified pipeline that effectively supplies high-quality semantic information to SAM. Extensive experiments on the Synapse dataset demonstrate that the proposed PG-SAM achieves state-of-the-art performance. Our anonymous code is released at https://github.com/logan-0623/PG-SAM.
☆ Decoupling Angles and Strength in Low-rank Adaptation ICLR 2025
Parameter-Efficient FineTuning (PEFT) methods have recently gained significant popularity thanks to the widespread availability of large-scale pretrained models. These methods allow for quick adaptation to downstream tasks with minimal computational cost. However, popular finetuning methods such as LoRA exhibit limited robustness when it comes to hyperparameter choices or extended training regimes, preventing optimal out-of-the-box performance. In contrast, bounded approaches, such as ETHER, provide greater robustness but are limited to extremely low-rank adaptations and fixed-strength transformations, reducing their adaptation expressive power. In this work, we propose Decoupled Low-rank Adaptation (DeLoRA), a novel finetuning method that normalizes and scales learnable low-rank matrices. By bounding the distance of the transformation, DeLoRA effectively decouples the angular learning from the adaptation strength, enhancing robustness without compromising performance. Through evaluations on subject-driven image generation, natural language understanding, and instruction tuning, we show that DeLoRA matches or surpasses performance of competing PEFT methods, while exhibiting stronger robustness. Code is available at https://github.com/ExplainableML/DeLoRA.
comment: ICLR 2025
☆ MammAlps: A multi-view video behavior monitoring dataset of wild mammals in the Swiss Alps CVPR 2025
Monitoring wildlife is essential for ecology and ethology, especially in light of the increasing human impact on ecosystems. Camera traps have emerged as habitat-centric sensors enabling the study of wildlife populations at scale with minimal disturbance. However, the lack of annotated video datasets limits the development of powerful video understanding models needed to process the vast amount of fieldwork data collected. To advance research in wild animal behavior monitoring we present MammAlps, a multimodal and multi-view dataset of wildlife behavior monitoring from 9 camera-traps in the Swiss National Park. MammAlps contains over 14 hours of video with audio, 2D segmentation maps and 8.5 hours of individual tracks densely labeled for species and behavior. Based on 6135 single animal clips, we propose the first hierarchical and multimodal animal behavior recognition benchmark using audio, video and reference scene segmentation maps as inputs. Furthermore, we also propose a second ecology-oriented benchmark aiming at identifying activities, species, number of individuals and meteorological conditions from 397 multi-view and long-term ecological events, including false positive triggers. We advocate that both tasks are complementary and contribute to bridging the gap between machine learning and ecology. Code and data are available at: https://github.com/eceo-epfl/MammAlps
comment: CVPR 2025; Benchmark and code at: https://github.com/eceo-epfl/MammAlps
☆ SimMotionEdit: Text-Based Human Motion Editing with Motion Similarity Prediction
Text-based 3D human motion editing is a critical yet challenging task in computer vision and graphics. While training-free approaches have been explored, the recent release of the MotionFix dataset, which includes source-text-motion triplets, has opened new avenues for training, yielding promising results. However, existing methods struggle with precise control, often leading to misalignment between motion semantics and language instructions. In this paper, we introduce a related task, motion similarity prediction, and propose a multi-task training paradigm, where we train the model jointly on motion editing and motion similarity prediction to foster the learning of semantically meaningful representations. To complement this task, we design an advanced Diffusion-Transformer-based architecture that separately handles motion similarity prediction and motion editing. Extensive experiments demonstrate the state-of-the-art performance of our approach in both editing alignment and fidelity.
comment: Project URL: https://github.com/lzhyu/SimMotionEdit
☆ Training A Neural Network For Partially Occluded Road Sign Identification In The Context Of Autonomous Vehicles
The increasing number of autonomous vehicles and the rapid development of computer vision technologies underscore the particular importance of conducting research on the accuracy of traffic sign recognition. Numerous studies in this field have already achieved significant results, demonstrating high effectiveness in addressing traffic sign recognition tasks. However, the task becomes considerably more complex when a sign is partially obscured by surrounding objects, such as tree branches, billboards, or other elements of the urban environment. In our study, we investigated how partial occlusion of traffic signs affects their recognition. For this purpose, we collected a dataset comprising 5,746 images, including both fully visible and partially occluded signs, and made it publicly available. Using this dataset, we compared the performance of our custom convolutional neural network (CNN), which achieved 96% accuracy, with models trained using transfer learning. The best result was obtained by VGG16 with full layer unfreezing, reaching 99% accuracy. Additional experiments revealed that models trained solely on fully visible signs lose effectiveness when recognizing occluded signs. This highlights the critical importance of incorporating real-world data with partial occlusion into training sets to ensure robust model performance in complex practical scenarios and to enhance the safety of autonomous driving.
☆ Self-Attention Diffusion Models for Zero-Shot Biomedical Image Segmentation: Unlocking New Frontiers in Medical Imaging
Producing high-quality segmentation masks for medical images is a fundamental challenge in biomedical image analysis. Recent research has explored large-scale supervised training to enable segmentation across various medical imaging modalities and unsupervised training to facilitate segmentation without dense annotations. However, constructing a model capable of segmenting diverse medical images in a zero-shot manner without any annotations remains a significant hurdle. This paper introduces the Attention Diffusion Zero-shot Unsupervised System (ADZUS), a novel approach that leverages self-attention diffusion models for zero-shot biomedical image segmentation. ADZUS harnesses the intrinsic capabilities of pre-trained diffusion models, utilizing their generative and discriminative potentials to segment medical images without requiring annotated training data or prior domain-specific knowledge. The ADZUS architecture is detailed, with its integration of self-attention mechanisms that facilitate context-aware and detail-sensitive segmentations being highlighted. Experimental results across various medical imaging datasets, including skin lesion segmentation, chest X-ray infection segmentation, and white blood cell segmentation, reveal that ADZUS achieves state-of-the-art performance. Notably, ADZUS reached Dice scores ranging from 88.7\% to 92.9\% and IoU scores from 66.3\% to 93.3\% across different segmentation tasks, demonstrating significant improvements in handling novel, unseen medical imagery. It is noteworthy that while ADZUS demonstrates high effectiveness, it demands substantial computational resources and extended processing times. The model's efficacy in zero-shot settings underscores its potential to reduce reliance on costly annotations and seamlessly adapt to new medical imaging tasks, thereby expanding the diagnostic capabilities of AI-driven medical imaging technologies.
comment: 15 pages, 5 figures
☆ SNRAware: Improved Deep Learning MRI Denoising with SNR Unit Training and G-factor Map Augmentation
To develop and evaluate a new deep learning MR denoising method that leverages quantitative noise distribution information from the reconstruction process to improve denoising performance and generalization. This retrospective study trained 14 different transformer and convolutional models with two backbone architectures on a large dataset of 2,885,236 images from 96,605 cardiac retro-gated cine complex series acquired at 3T. The proposed training scheme, termed SNRAware, leverages knowledge of the MRI reconstruction process to improve denoising performance by simulating large, high quality, and diverse synthetic datasets, and providing quantitative information about the noise distribution to the model. In-distribution testing was performed on a hold-out dataset of 3000 samples with performance measured using PSNR and SSIM, with ablation comparison without the noise augmentation. Out-of-distribution tests were conducted on cardiac real-time cine, first-pass cardiac perfusion, and neuro and spine MRI, all acquired at 1.5T, to test model generalization across imaging sequences, dynamically changing contrast, different anatomies, and field strengths. The best model found in the in-distribution test generalized well to out-of-distribution samples, delivering 6.5x and 2.9x CNR improvement for real-time cine and perfusion imaging, respectively. Further, a model trained with 100% cardiac cine data generalized well to a T1 MPRAGE neuro 3D scan and T2 TSE spine MRI.
☆ MAO: Efficient Model-Agnostic Optimization of Prompt Tuning for Vision-Language Models ICME 2025
Though CLIP-based prompt tuning significantly enhances pre-trained Vision-Language Models, existing research focuses on reconstructing the model architecture, e.g., additional loss calculation and meta-networks. These approaches generally lead to increased complexity and extended training cost. To maintain the efficiency of the tuning process, we propose plug-and-play Model-Agnostic Optimization (MAO) for prompt tuning. Without altering any components of the prompt tuning backbone, we introduce a Data-Driven Enhancement framework to optimize the distribution of the initial data, and incorporate an Alterable Regularization module to boost the task-specific feature processing pipeline, thereby improving overall performance while maintaining low computational cost. Extensive experiments on MAO demonstrate its outstanding performance and efficiency. The code of MAO is available at: https://github.com/JREion/M.A.O .
comment: Accepted by the IEEE International Conference on Multimedia & Expo 2025 (ICME 2025); 12 pages, 6 figures, 8 tables
DiffusionTalker: Efficient and Compact Speech-Driven 3D Talking Head via Personalizer-Guided Distillation ICME2025
Real-time speech-driven 3D facial animation has been attractive in academia and industry. Traditional methods mainly focus on learning a deterministic mapping from speech to animation. Recent approaches start to consider the nondeterministic fact of speech-driven 3D face animation and employ the diffusion model for the task. Existing diffusion-based methods can improve the diversity of facial animation. However, personalized speaking styles conveying accurate lip language is still lacking, besides, efficiency and compactness still need to be improved. In this work, we propose DiffusionTalker to address the above limitations via personalizer-guided distillation. In terms of personalization, we introduce a contrastive personalizer that learns identity and emotion embeddings to capture speaking styles from audio. We further propose a personalizer enhancer during distillation to enhance the influence of embeddings on facial animation. For efficiency, we use iterative distillation to reduce the steps required for animation generation and achieve more than 8x speedup in inference. To achieve compactness, we distill the large teacher model into a smaller student model, reducing our model's storage by 86.4\% while minimizing performance loss. After distillation, users can derive their identity and emotion embeddings from audio to quickly create personalized animations that reflect specific speaking styles. Extensive experiments are conducted to demonstrate that our method outperforms state-of-the-art methods. The code will be released at: https://github.com/ChenVoid/DiffusionTalker.
comment: Accepted by ICME2025
☆ Decorum: A Language-Based Approach For Style-Conditioned Synthesis of Indoor 3D Scenes
3D indoor scene generation is an important problem for the design of digital and real-world environments. To automate this process, a scene generation model should be able to not only generate plausible scene layouts, but also take into consideration visual features and style preferences. Existing methods for this task exhibit very limited control over these attributes, only allowing text inputs in the form of simple object-level descriptions or pairwise spatial relationships. Our proposed method Decorum enables users to control the scene generation process with natural language by adopting language-based representations at each stage. This enables us to harness recent advancements in Large Language Models (LLMs) to model language-to-language mappings. In addition, we show that using a text-based representation allows us to select furniture for our scenes using a novel object retrieval method based on multimodal LLMs. Evaluations on the benchmark 3D-FRONT dataset show that our methods achieve improvements over existing work in text-conditioned scene synthesis and object retrieval.
Efficient Deep Learning Approaches for Processing Ultra-Widefield Retinal Imaging
Deep learning has emerged as the predominant solution for classifying medical images. We intend to apply these developments to the ultra-widefield (UWF) retinal imaging dataset. Since UWF images can accurately diagnose various retina diseases, it is very important to clas sify them accurately and prevent them with early treatment. However, processing images manually is time-consuming and labor-intensive, and there are two challenges to automating this process. First, high perfor mance usually requires high computational resources. Artificial intelli gence medical technology is better suited for places with limited medical resources, but using high-performance processing units in such environ ments is challenging. Second, the problem of the accuracy of colour fun dus photography (CFP) methods. In general, the UWF method provides more information for retinal diagnosis than the CFP method, but most of the research has been conducted based on the CFP method. Thus, we demonstrate that these problems can be efficiently addressed in low performance units using methods such as strategic data augmentation and model ensembles, which balance performance and computational re sources while utilizing UWF images.
☆ LongDiff: Training-Free Long Video Generation in One Go
Video diffusion models have recently achieved remarkable results in video generation. Despite their encouraging performance, most of these models are mainly designed and trained for short video generation, leading to challenges in maintaining temporal consistency and visual details in long video generation. In this paper, we propose LongDiff, a novel training-free method consisting of carefully designed components \ -- Position Mapping (PM) and Informative Frame Selection (IFS) \ -- to tackle two key challenges that hinder short-to-long video generation generalization: temporal position ambiguity and information dilution. Our LongDiff unlocks the potential of off-the-shelf video diffusion models to achieve high-quality long video generation in one go. Extensive experiments demonstrate the efficacy of our method.
☆ PHT-CAD: Efficient CAD Parametric Primitive Analysis with Progressive Hierarchical Tuning
Computer-Aided Design (CAD) plays a pivotal role in industrial manufacturing, yet 2D Parametric Primitive Analysis (PPA) remains underexplored due to two key challenges: structural constraint reasoning and advanced semantic understanding. To tackle these challenges, we first propose an Efficient Hybrid Parametrization (EHP) for better representing 2D engineering drawings. EHP contains four types of atomic component i.e., point, line, circle, and arc). Additionally, we propose PHT-CAD, a novel 2D PPA framework that harnesses the modality alignment and reasoning capabilities of Vision-Language Models (VLMs) for precise engineering drawing analysis. In PHT-CAD, we introduce four dedicated regression heads to predict corresponding atomic components. To train PHT-CAD, a three-stage training paradigm Progressive Hierarchical Tuning (PHT) is proposed to progressively enhance PHT-CAD's capability to perceive individual primitives, infer structural constraints, and align annotation layers with their corresponding geometric representations. Considering that existing datasets lack complete annotation layers and real-world engineering drawings, we introduce ParaCAD, the first large-scale benchmark that explicitly integrates both the geometric and annotation layers. ParaCAD comprises over 10 million annotated drawings for training and 3,000 real-world industrial drawings with complex topological structures and physical constraints for test. Extensive experiments demonstrate the effectiveness of PHT-CAD and highlight the practical significance of ParaCAD in advancing 2D PPA research.
☆ LocDiffusion: Identifying Locations on Earth by Diffusing in the Hilbert Space
Image geolocalization is a fundamental yet challenging task, aiming at inferring the geolocation on Earth where an image is taken. Existing methods approach it either via grid-based classification or via image retrieval. Their performance significantly suffers when the spatial distribution of test images does not align with such choices. To address these limitations, we propose to leverage diffusion as a mechanism for image geolocalization. To avoid the problematic manifold reprojection step in diffusion, we developed a novel spherical positional encoding-decoding framework, which encodes points on a spherical surface (e.g., geolocations on Earth) into a Hilbert space of Spherical Harmonics coefficients and decodes points (geolocations) by mode-seeking. We call this type of position encoding Spherical Harmonics Dirac Delta (SHDD) Representation. We also propose a novel SirenNet-based architecture called CS-UNet to learn the conditional backward process in the latent SHDD space by minimizing a latent KL-divergence loss. We train a conditional latent diffusion model called LocDiffusion that generates geolocations under the guidance of images -- to the best of our knowledge, the first generative model for image geolocalization by diffusing geolocation information in a hidden location embedding space. We evaluate our method against SOTA image geolocalization baselines. LocDiffusion achieves competitive geolocalization performance and demonstrates significantly stronger generalizability to unseen geolocations.
☆ AGIR: Assessing 3D Gait Impairment with Reasoning based on LLMs
Assessing gait impairment plays an important role in early diagnosis, disease monitoring, and treatment evaluation for neurodegenerative diseases. Despite its widespread use in clinical practice, it is limited by subjectivity and a lack of precision. While recent deep learning-based approaches have consistently improved classification accuracies, they often lack interpretability, hindering their utility in clinical decision-making. To overcome these challenges, we introduce AGIR, a novel pipeline consisting of a pre-trained VQ-VAE motion tokenizer and a subsequent Large Language Model (LLM) fine-tuned over pairs of motion tokens and Chain-of-Thought (CoT) reasonings. To fine-tune an LLM for pathological gait analysis, we first introduce a multimodal dataset by adding rationales dedicated to MDS-UPDRS gait score assessment to an existing PD gait dataset. We then introduce a two-stage supervised fine-tuning (SFT) strategy to enhance the LLM's motion comprehension with pathology-specific knowledge. This strategy includes: 1) a generative stage that aligns gait motions with analytic descriptions through bidirectional motion-description generation, 2) a reasoning stage that integrates logical Chain-of-Thought (CoT) reasoning for impairment assessment with UPDRS gait score. Validation on an existing dataset and comparisons with state-of-the-art methods confirm the robustness and accuracy of our pipeline, demonstrating its ability to assign gait impairment scores from motion input with clinically meaningful rationales.
☆ TCFG: Tangential Damping Classifier-free Guidance CVPR2025
Diffusion models have achieved remarkable success in text-to-image synthesis, largely attributed to the use of classifier-free guidance (CFG), which enables high-quality, condition-aligned image generation. CFG combines the conditional score (e.g., text-conditioned) with the unconditional score to control the output. However, the unconditional score is in charge of estimating the transition between manifolds of adjacent timesteps from $x_t$ to $x_{t-1}$, which may inadvertently interfere with the trajectory toward the specific condition. In this work, we introduce a novel approach that leverages a geometric perspective on the unconditional score to enhance CFG performance when conditional scores are available. Specifically, we propose a method that filters the singular vectors of both conditional and unconditional scores using singular value decomposition. This filtering process aligns the unconditional score with the conditional score, thereby refining the sampling trajectory to stay closer to the manifold. Our approach improves image quality with negligible additional computation. We provide deeper insights into the score function behavior in diffusion models and present a practical technique for achieving more accurate and contextually coherent image synthesis.
comment: CVPR2025
☆ MLLM-For3D: Adapting Multimodal Large Language Model for 3D Reasoning Segmentation
Reasoning segmentation aims to segment target objects in complex scenes based on human intent and spatial reasoning. While recent multimodal large language models (MLLMs) have demonstrated impressive 2D image reasoning segmentation, adapting these capabilities to 3D scenes remains underexplored. In this paper, we introduce MLLM-For3D, a simple yet effective framework that transfers knowledge from 2D MLLMs to 3D scene understanding. Specifically, we utilize MLLMs to generate multi-view pseudo segmentation masks and corresponding text embeddings, then unproject 2D masks into 3D space and align them with the text embeddings. The primary challenge lies in the absence of 3D context and spatial consistency across multiple views, causing the model to hallucinate objects that do not exist and fail to target objects consistently. Training the 3D model with such irrelevant objects leads to performance degradation. To address this, we introduce a spatial consistency strategy to enforce that segmentation masks remain coherent in the 3D space, effectively capturing the geometry of the scene. Moreover, we develop a Token-for-Query approach for multimodal semantic alignment, enabling consistent identification of the same object across different views. Extensive evaluations on various challenging indoor scene benchmarks demonstrate that, even without any labeled 3D training data, MLLM-For3D outperforms existing 3D reasoning segmentation methods, effectively interpreting user intent, understanding 3D scenes, and reasoning about spatial relationships.
☆ An Image-like Diffusion Method for Human-Object Interaction Detection CVPR 2025
Human-object interaction (HOI) detection often faces high levels of ambiguity and indeterminacy, as the same interaction can appear vastly different across different human-object pairs. Additionally, the indeterminacy can be further exacerbated by issues such as occlusions and cluttered backgrounds. To handle such a challenging task, in this work, we begin with a key observation: the output of HOI detection for each human-object pair can be recast as an image. Thus, inspired by the strong image generation capabilities of image diffusion models, we propose a new framework, HOI-IDiff. In HOI-IDiff, we tackle HOI detection from a novel perspective, using an Image-like Diffusion process to generate HOI detection outputs as images. Furthermore, recognizing that our recast images differ in certain properties from natural images, we enhance our framework with a customized HOI diffusion process and a slice patchification model architecture, which are specifically tailored to generate our recast ``HOI images''. Extensive experiments demonstrate the efficacy of our framework.
comment: CVPR 2025
☆ End-to-End Implicit Neural Representations for Classification CVPR 2025
Implicit neural representations (INRs) such as NeRF and SIREN encode a signal in neural network parameters and show excellent results for signal reconstruction. Using INRs for downstream tasks, such as classification, is however not straightforward. Inherent symmetries in the parameters pose challenges and current works primarily focus on designing architectures that are equivariant to these symmetries. However, INR-based classification still significantly under-performs compared to pixel-based methods like CNNs. This work presents an end-to-end strategy for initializing SIRENs together with a learned learning-rate scheme, to yield representations that improve classification accuracy. We show that a simple, straightforward, Transformer model applied to a meta-learned SIREN, without incorporating explicit symmetry equivariances, outperforms the current state-of-the-art. On the CIFAR-10 SIREN classification task, we improve the state-of-the-art without augmentations from 38.8% to 59.6%, and from 63.4% to 64.7% with augmentations. We demonstrate scalability on the high-resolution Imagenette dataset achieving reasonable reconstruction quality with a classification accuracy of 60.8% and are the first to do INR classification on the full ImageNet-1K dataset where we achieve a SIREN classification performance of 23.6%. To the best of our knowledge, no other SIREN classification approach has managed to set a classification baseline for any high-resolution image dataset. Our code is available at https://github.com/SanderGielisse/MWT
comment: Accepted to CVPR 2025. 8 pages, supplementary material included
☆ Unraveling the Effects of Synthetic Data on End-to-End Autonomous Driving
End-to-end (E2E) autonomous driving (AD) models require diverse, high-quality data to perform well across various driving scenarios. However, collecting large-scale real-world data is expensive and time-consuming, making high-fidelity synthetic data essential for enhancing data diversity and model robustness. Existing driving simulators for synthetic data generation have significant limitations: game-engine-based simulators struggle to produce realistic sensor data, while NeRF-based and diffusion-based methods face efficiency challenges. Additionally, recent simulators designed for closed-loop evaluation provide limited interaction with other vehicles, failing to simulate complex real-world traffic dynamics. To address these issues, we introduce SceneCrafter, a realistic, interactive, and efficient AD simulator based on 3D Gaussian Splatting (3DGS). SceneCrafter not only efficiently generates realistic driving logs across diverse traffic scenarios but also enables robust closed-loop evaluation of end-to-end models. Experimental results demonstrate that SceneCrafter serves as both a reliable evaluation platform and a efficient data generator that significantly improves end-to-end model generalization.
☆ PanoGS: Gaussian-based Panoptic Segmentation for 3D Open Vocabulary Scene Understanding CVPR 2025
Recently, 3D Gaussian Splatting (3DGS) has shown encouraging performance for open vocabulary scene understanding tasks. However, previous methods cannot distinguish 3D instance-level information, which usually predicts a heatmap between the scene feature and text query. In this paper, we propose PanoGS, a novel and effective 3D panoptic open vocabulary scene understanding approach. Technically, to learn accurate 3D language features that can scale to large indoor scenarios, we adopt the pyramid tri-plane to model the latent continuous parametric feature space and use a 3D feature decoder to regress the multi-view fused 2D feature cloud. Besides, we propose language-guided graph cuts that synergistically leverage reconstructed geometry and learned language cues to group 3D Gaussian primitives into a set of super-primitives. To obtain 3D consistent instance, we perform graph clustering based segmentation with SAM-guided edge affinity computation between different super-primitives. Extensive experiments on widely used datasets show better or more competitive performance on 3D panoptic open vocabulary scene understanding. Project page: \href{https://zju3dv.github.io/panogs}{https://zju3dv.github.io/panogs}.
comment: CVPR 2025
☆ M3Net: Multimodal Multi-task Learning for 3D Detection, Segmentation, and Occupancy Prediction in Autonomous Driving AAAI 2025
The perception system for autonomous driving generally requires to handle multiple diverse sub-tasks. However, current algorithms typically tackle individual sub-tasks separately, which leads to low efficiency when aiming at obtaining full-perception results. Some multi-task learning methods try to unify multiple tasks with one model, but do not solve the conflicts in multi-task learning. In this paper, we introduce M3Net, a novel multimodal and multi-task network that simultaneously tackles detection, segmentation, and 3D occupancy prediction for autonomous driving and achieves superior performance than single task model. M3Net takes multimodal data as input and multiple tasks via query-token interactions. To enhance the integration of multi-modal features for multi-task learning, we first propose the Modality-Adaptive Feature Integration (MAFI) module, which enables single-modality features to predict channel-wise attention weights for their high-performing tasks, respectively. Based on integrated features, we then develop task-specific query initialization strategies to accommodate the needs of detection/segmentation and 3D occupancy prediction. Leveraging the properly initialized queries, a shared decoder transforms queries and BEV features layer-wise, facilitating multi-task learning. Furthermore, we propose a Task-oriented Channel Scaling (TCS) module in the decoder to mitigate conflicts between optimizing for different tasks. Additionally, our proposed multi-task querying and TCS module support both Transformer-based decoder and Mamba-based decoder, demonstrating its flexibility to different architectures. M3Net achieves state-of-the-art multi-task learning performance on the nuScenes benchmarks.
comment: Accepted by AAAI 2025
☆ Anomize: Better Open Vocabulary Video Anomaly Detection
Open Vocabulary Video Anomaly Detection (OVVAD) seeks to detect and classify both base and novel anomalies. However, existing methods face two specific challenges related to novel anomalies. The first challenge is detection ambiguity, where the model struggles to assign accurate anomaly scores to unfamiliar anomalies. The second challenge is categorization confusion, where novel anomalies are often misclassified as visually similar base instances. To address these challenges, we explore supplementary information from multiple sources to mitigate detection ambiguity by leveraging multiple levels of visual data alongside matching textual information. Furthermore, we propose incorporating label relations to guide the encoding of new labels, thereby improving alignment between novel videos and their corresponding labels, which helps reduce categorization confusion. The resulting Anomize framework effectively tackles these issues, achieving superior performance on UCF-Crime and XD-Violence datasets, demonstrating its effectiveness in OVVAD.
♻ ☆ Multi-focal Conditioned Latent Diffusion for Person Image Synthesis CVPR 2025
The Latent Diffusion Model (LDM) has demonstrated strong capabilities in high-resolution image generation and has been widely employed for Pose-Guided Person Image Synthesis (PGPIS), yielding promising results. However, the compression process of LDM often results in the deterioration of details, particularly in sensitive areas such as facial features and clothing textures. In this paper, we propose a Multi-focal Conditioned Latent Diffusion (MCLD) method to address these limitations by conditioning the model on disentangled, pose-invariant features from these sensitive regions. Our approach utilizes a multi-focal condition aggregation module, which effectively integrates facial identity and texture-specific information, enhancing the model's ability to produce appearance realistic and identity-consistent images. Our method demonstrates consistent identity and appearance generation on the DeepFashion dataset and enables flexible person image editing due to its generation consistency. The code is available at https://github.com/jqliu09/mcld.
comment: CVPR 2025 Accepted
♻ ☆ Fus-MAE: A cross-attention-based data fusion approach for Masked Autoencoders in remote sensing
Self-supervised frameworks for representation learning have recently stirred up interest among the remote sensing community, given their potential to mitigate the high labeling costs associated with curating large satellite image datasets. In the realm of multimodal data fusion, while the often used contrastive learning methods can help bridging the domain gap between different sensor types, they rely on data augmentations techniques that require expertise and careful design, especially for multispectral remote sensing data. A possible but rather scarcely studied way to circumvent these limitations is to use a masked image modelling based pretraining strategy. In this paper, we introduce Fus-MAE, a self-supervised learning framework based on masked autoencoders that uses cross-attention to perform early and feature-level data fusion between synthetic aperture radar and multispectral optical data - two modalities with a significant domain gap. Our empirical findings demonstrate that Fus-MAE can effectively compete with contrastive learning strategies tailored for SAR-optical data fusion and outperforms other masked-autoencoders frameworks trained on a larger corpus.
♻ ☆ PanSplat: 4K Panorama Synthesis with Feed-Forward Gaussian Splatting CVPR2025
With the advent of portable 360{\deg} cameras, panorama has gained significant attention in applications like virtual reality (VR), virtual tours, robotics, and autonomous driving. As a result, wide-baseline panorama view synthesis has emerged as a vital task, where high resolution, fast inference, and memory efficiency are essential. Nevertheless, existing methods are typically constrained to lower resolutions (512 $\times$ 1024) due to demanding memory and computational requirements. In this paper, we present PanSplat, a generalizable, feed-forward approach that efficiently supports resolution up to 4K (2048 $\times$ 4096). Our approach features a tailored spherical 3D Gaussian pyramid with a Fibonacci lattice arrangement, enhancing image quality while reducing information redundancy. To accommodate the demands of high resolution, we propose a pipeline that integrates a hierarchical spherical cost volume and Gaussian heads with local operations, enabling two-step deferred backpropagation for memory-efficient training on a single A100 GPU. Experiments demonstrate that PanSplat achieves state-of-the-art results with superior efficiency and image quality across both synthetic and real-world datasets. Code is available at https://github.com/chengzhag/PanSplat.
comment: Camera Ready of CVPR2025. Project Page: https://chengzhag.github.io/publication/pansplat/ Code: https://github.com/chengzhag/PanSplat
♻ ☆ Computation-Efficient and Recognition-Friendly 3D Point Cloud Privacy Protection CVPR2025
3D point cloud has been widely used in applications such as self-driving cars, robotics, CAD models, etc. To the best of our knowledge, these applications raised the issue of privacy leakage in 3D point clouds, which has not been studied well. Different from the 2D image privacy, which is related to texture and 2D geometric structure, the 3D point cloud is texture-less and only relevant to 3D geometric structure. In this work, we defined the 3D point cloud privacy problem and proposed an efficient privacy-preserving framework named PointFlowGMM that can support downstream classification and segmentation tasks without seeing the original data. Using a flow-based generative model, the point cloud is projected into a latent Gaussian mixture distributed subspace. We further designed a novel angular similarity loss to obfuscate the original geometric structure and reduce the model size from 767MB to 120MB without a decrease in recognition performance. The projected point cloud in the latent space is orthogonally rotated randomly to further protect the original geometric structure, the class-to-class relationship is preserved after rotation, thus, the protected point cloud can support the recognition task. We evaluated our model on multiple datasets and achieved comparable recognition results on encrypted point clouds compared to the original point clouds.
comment: Accepted by CVPR2025
♻ ☆ Principles of Visual Tokens for Efficient Video Understanding
Video understanding has made huge strides in recent years, relying largely on the power of transformers. As this architecture is notoriously expensive and video data is highly redundant, research into improving efficiency has become particularly relevant. Some creative solutions include token selection and merging. While most methods succeed in reducing the cost of the model and maintaining accuracy, an interesting pattern arises: most methods do not outperform the baseline of randomly discarding tokens. In this paper we take a closer look at this phenomenon and observe 5 principles of the nature of visual tokens. For example, we observe that the value of tokens follows a clear Pareto-distribution where most tokens have remarkably low value, and just a few carry most of the perceptual information. We build on these and further insights to propose a lightweight video model, LITE, that can select a small number of tokens effectively, outperforming state-of-the-art and existing baselines across datasets (Kinetics-400 and Something-Something-V2) in the challenging trade-off of computation (GFLOPs) vs accuracy. Experiments also show that LITE generalizes across datasets and even other tasks without the need for retraining.
♻ ☆ A Siamese Network to Detect If Two Iris Images Are Monozygotic
In Daugman-style iris recognition, the textures of the left and right irises of the same person are traditionally considered as being as different as the irises of two unrelated persons. However, previous research indicates that humans can detect that two iris images are from different eyes of the same person, or eyes of monozygotic twins, with an accuracy of about 80%. In this work, we employ a Siamese network architecture and contrastive learning to categorize a pair of iris images as coming from monozygotic or non-monozygotic irises. This could potentially be applied, for example, as a fast, noninvasive test to determine if twins are monozygotic or non-monozygotic. We construct a dataset comprising both synthetic monozygotic pairs (images of different irises of the same individual) and natural monozygotic pairs (images of different images from persons who are identical twins), in addition to non-monozygotic pairs from unrelated individuals, ensuring a comprehensive evaluation of the model's capabilities. To gain deeper insights into the learned representations, we train and analyze three variants of the model using (1) the original input images, (2) iris-only images, and (3) non-iris-only images. This comparison reveals the critical importance of iris-specific textural details and contextual ocular cues in identifying monozygotic iris patterns. The results demonstrate that models leveraging full eye-region information outperform those trained solely on iris-only data, emphasizing the nuanced interplay between iris and ocular characteristics. Our approach achieves accuracy levels using the full iris image that exceed those previously reported for human classification of monozygotic iris pairs. This study presents the first classifier designed to determine whether a pair of iris images originates from monozygotic individuals.
♻ ☆ Colonoscopy polyp detection with massive endoscopic images
We improved an existing end-to-end polyp detection model with better average precision validated by different data sets with trivial cost on detection speed. Our previous work on detecting polyps within colonoscopy provided an efficient end-to-end solution to alleviate doctor's examination overhead. However, our later experiments found this framework is not as robust as before as the condition of polyp capturing varies. In this work, we conducted several studies on data set, identifying main issues that causes low precision rate in the task of polyp detection. We used an optimized anchor generation methods to get better anchor box shape and more boxes are used for detection as we believe this is necessary for small object detection. An alternative backbone is used to compensate the heavy time cost introduced by dense anchor box regression. With use of the attention gate module, our model can achieve state-of-the-art polyp detection performance while still maintain real-time detection speed.
comment: 13 pages, 10 figures
♻ ☆ Confidence Intervals for Performance Estimates in Brain MRI Segmentation
Medical segmentation models are evaluated empirically. As such an evaluation is based on a limited set of example images, it is unavoidably noisy. Beyond a mean performance measure, reporting confidence intervals is thus crucial. However, this is rarely done in medical image segmentation. The width of the confidence interval depends on the test set size and on the spread of the performance measure (its standard-deviation across the test set). For classification, many test images are needed to avoid wide confidence intervals. Segmentation, however, has not been studied, and it differs by the amount of information brought by a given test image. In this paper, we study the typical confidence intervals in the context of segmentation in 3D brain magnetic resonance imaging (MRI). We carry experiments on using the standard nnU-net framework, two datasets from the Medical Decathlon challenge that concern brain MRI (hippocampus and brain tumor segmentation) and two performance measures: the Dice Similarity Coefficient and the Hausdorff distance. We show that the parametric confidence intervals are reasonable approximations of the bootstrap estimates for varying test set sizes and spread of the performance metric. Importantly, we show that the test size needed to achieve a given precision is often much lower than for classification tasks. Typically, a 1\% wide confidence interval requires about 100-200 test samples when the spread is low (standard-deviation around 3\%). More difficult segmentation tasks may lead to higher spreads and require over 1000 samples.
♻ ☆ EventHallusion: Diagnosing Event Hallucinations in Video LLMs
Recently, Multimodal Large Language Models (MLLMs) have made significant progress in the video comprehension field. Despite remarkable content reasoning and instruction following capabilities they demonstrated, the hallucination problem of these VideoLLMs is less explored compared with its counterpart in the image domain. To mitigate this gap, we propose EventHallusion, a novel benchmark that focuses on assessing the VideoLLMs' hallucination toward event, the crux of video analysis. From a hallucination attribution perspective, our EventHallusion benchmark is curated to assess a VideoLLM's susceptibility toward language priors and vision-language biases. On the other hand, we also propose a simple yet effective method, called Temporal Contrastive Decoding (TCD), to tackle the hallucination problems of VideoLLMs. The proposed TCD method rectifies the model's bias toward its priors during the decoding stage by comparing the original video with a modified version, in which temporal cues are disrupted. Through comprehensive evaluation of eight open-source and two closed-source VideoLLMs on the proposed EventHallusion benchmark, we observe that the open-source models suffer significantly from hallucination problems, whereas the closed-source ones perform markedly better. By further equipping open-source VideoLLMs with the proposed TCD approach, evident performance improvements are achieved across most metrics in the EventHallusion benchmark. Our codes and benchmark data are available at https://github.com/Stevetich/EventHallusion.
♻ ☆ COVID 19 Diagnosis Analysis using Transfer Learning
Coronaviruses, including SARS-CoV-2, are responsible for COVID-19, a highly transmissible disease that emerged in December 2019 in Wuhan, China. During the past five years, significant advancements have been made in understanding and mitigating the virus. Although the initial outbreak led to global health crises, improved vaccination strategies, antiviral treatments, and AI-driven diagnostic tools have contributed to better disease management. However, COVID-19 continues to pose risks, particularly for immuno-compromised individuals and those with pre-existing conditions. This study explores the use of deep learning for a rapid and accurate diagnosis of COVID-19, addressing ongoing challenges in healthcare infrastructure and testing accessibility. We propose an enhanced automated detection system leveraging state-of-the-art convolutional neural networks (CNNs), including updated versions of VGG16, VGG19, and ResNet50, to classify COVID-19 infections from chest radiographs and computerized tomography (CT) scans. Our results, based on an expanded dataset of over 6000 medical images, demonstrate that the optimized ResNet50 model achieves the highest classification performance, with 97.77% accuracy, 100% sensitivity, 93.33% specificity, and a 98.0% F1-score. These findings reinforce the potential of AI-assisted diagnostic tools in improving early detection and pandemic preparedness.
♻ ☆ Explaining the Impact of Training on Vision Models via Activation Clustering
This paper introduces Neuro-Activated Vision Explanations (NAVE), a method for extracting and visualizing the internal representations of vision model encoders. By clustering feature activations, NAVE provides insights into learned semantics without fine-tuning. Using object localization, we show that NAVE's concepts align with image semantics. Through extensive experiments, we analyze the impact of training strategies and architectures on encoder representation capabilities. Additionally, we apply NAVE to study training artifacts in vision transformers and reveal how weak training strategies and spurious correlations degrade model performance. Our findings establish NAVE as a valuable tool for post-hoc model inspection and improving transparency in vision models.
♻ ☆ TexGaussian: Generating High-quality PBR Material via Octree-based 3D Gaussian Splatting CVPR 2025
Physically Based Rendering (PBR) materials play a crucial role in modern graphics, enabling photorealistic rendering across diverse environment maps. Developing an effective and efficient algorithm that is capable of automatically generating high-quality PBR materials rather than RGB texture for 3D meshes can significantly streamline the 3D content creation. Most existing methods leverage pre-trained 2D diffusion models for multi-view image synthesis, which often leads to severe inconsistency between the generated textures and input 3D meshes. This paper presents TexGaussian, a novel method that uses octant-aligned 3D Gaussian Splatting for rapid PBR material generation. Specifically, we place each 3D Gaussian on the finest leaf node of the octree built from the input 3D mesh to render the multi-view images not only for the albedo map but also for roughness and metallic. Moreover, our model is trained in a regression manner instead of diffusion denoising, capable of generating the PBR material for a 3D mesh in a single feed-forward process. Extensive experiments on publicly available benchmarks demonstrate that our method synthesizes more visually pleasing PBR materials and runs faster than previous methods in both unconditional and text-conditional scenarios, exhibiting better consistency with the given geometry. Our code and trained models are available at https://3d-aigc.github.io/TexGaussian.
comment: CVPR 2025. Project Page: https://3d-aigc.github.io/TexGaussian
♻ ☆ SLAM3R: Real-Time Dense Scene Reconstruction from Monocular RGB Videos CVPR 2025
In this paper, we introduce SLAM3R, a novel and effective system for real-time, high-quality, dense 3D reconstruction using RGB videos. SLAM3R provides an end-to-end solution by seamlessly integrating local 3D reconstruction and global coordinate registration through feed-forward neural networks. Given an input video, the system first converts it into overlapping clips using a sliding window mechanism. Unlike traditional pose optimization-based methods, SLAM3R directly regresses 3D pointmaps from RGB images in each window and progressively aligns and deforms these local pointmaps to create a globally consistent scene reconstruction - all without explicitly solving any camera parameters. Experiments across datasets consistently show that SLAM3R achieves state-of-the-art reconstruction accuracy and completeness while maintaining real-time performance at 20+ FPS. Code available at: https://github.com/PKU-VCL-3DV/SLAM3R.
comment: CVPR 2025
♻ ☆ Teaching Large Language Models to Regress Accurate Image Quality Scores using Score Distribution CVPR 2025
With the rapid advancement of Multi-modal Large Language Models (MLLMs), MLLM-based Image Quality Assessment (IQA) methods have shown promising performance in linguistic quality description. However, current methods still fall short in accurately scoring image quality. In this work, we aim to leverage MLLMs to regress accurate quality scores. A key challenge is that the quality score is inherently continuous, typically modeled as a Gaussian distribution, whereas MLLMs generate discrete token outputs. This mismatch necessitates score discretization. Previous approaches discretize the mean score into a one-hot label, resulting in information loss and failing to capture inter-image relationships. We propose a distribution-based approach that discretizes the score distribution into a soft label. This method preserves the characteristics of the score distribution, achieving high accuracy and maintaining inter-image relationships. Moreover, to address dataset variation, where different IQA datasets exhibit various distributions, we introduce a fidelity loss based on Thurstone's model. This loss captures intra-dataset relationships, facilitating co-training across multiple IQA datasets. With these designs, we develop the distribution-based Depicted image Quality Assessment model for Score regression (DeQA-Score). Experiments across multiple benchmarks show that DeQA-Score stably outperforms baselines in score regression. Also, DeQA-Score can predict the score distribution that closely aligns with human annotations. Codes and model weights have been released in https://depictqa.github.io/deqa-score/.
comment: Accepted by CVPR 2025
♻ ☆ Quantitative Evaluation of Multiple Instance Learning Reliability For WSIs Classification
Machine learning models have become integral to many fields, but their reliability, particularly in high-stakes domains, remains a critical concern. Reliability refers to the quality of being dependable and trustworthy. Reliable models consistently provide predictions aligned with basic domain knowledge, making their development and deployment particularly critical in healthcare applications. However, Multiple Instance Learning (MIL) models designed for Whole Slide Image (WSI) classification in computational pathology are rarely evaluated in terms of reliability. In this paper, we address this gap by comparing the reliability of MIL models using three proposed metrics, applied across three region-wise annotated datasets. Our findings indicate that the mean pooling instance (MEAN-POOL-INS) model demonstrates superior reliability compared to other networks, despite its simple architectural design and computational efficiency. The code for reproducing our results is available at github.com/tueimage/MIL-Reliability. Keywords: Machine learning, Reliability, Whole Slide Image, Multiple Instance Learning, MEAN-POOL-INS.
♻ ☆ SANA 1.5: Efficient Scaling of Training-Time and Inference-Time Compute in Linear Diffusion Transformer
This paper presents SANA-1.5, a linear Diffusion Transformer for efficient scaling in text-to-image generation. Building upon SANA-1.0, we introduce three key innovations: (1) Efficient Training Scaling: A depth-growth paradigm that enables scaling from 1.6B to 4.8B parameters with significantly reduced computational resources, combined with a memory-efficient 8-bit optimizer. (2) Model Depth Pruning: A block importance analysis technique for efficient model compression to arbitrary sizes with minimal quality loss. (3) Inference-time Scaling: A repeated sampling strategy that trades computation for model capacity, enabling smaller models to match larger model quality at inference time. Through these strategies, SANA-1.5 achieves a text-image alignment score of 0.81 on GenEval, which can be further improved to 0.96 through inference scaling with VILA-Judge, establishing a new SoTA on GenEval benchmark. These innovations enable efficient model scaling across different compute budgets while maintaining high quality, making high-quality image generation more accessible. Our code and pre-trained models are released.
♻ ☆ SVGFusion: Scalable Text-to-SVG Generation via Vector Space Diffusion
In this work, we introduce SVGFusion, a Text-to-SVG model capable of scaling to real-world SVG data without relying on text-based discrete language models or prolonged Score Distillation Sampling (SDS) optimization. The core idea of SVGFusion is to utilize a popular Text-to-Image framework to learn a continuous latent space for vector graphics. Specifically, SVGFusion comprises two key modules: a Vector-Pixel Fusion Variational Autoencoder (VP-VAE) and a Vector Space Diffusion Transformer (VS-DiT). The VP-VAE processes both SVG codes and their corresponding rasterizations to learn a continuous latent space, while the VS-DiT generates latent codes within this space based on the input text prompt. Building on the VP-VAE, we propose a novel rendering sequence modeling strategy which enables the learned latent space to capture the inherent creation logic of SVGs. This allows the model to generate SVGs with higher visual quality and more logical construction, while systematically avoiding occlusion in complex graphic compositions. Additionally, the scalability of SVGFusion can be continuously enhanced by adding more VS-DiT blocks. To effectively train and evaluate SVGFusion, we construct SVGX-Dataset, a large-scale, high-quality SVG dataset that addresses the scarcity of high-quality vector data. Extensive experiments demonstrate the superiority of SVGFusion over existing SVG generation methods, establishing a new framework for SVG content creation. Code, model, and data will be released at: https://ximinng.github.io/SVGFusionProject/
comment: project page: https://ximinng.github.io/SVGFusionProject/
♻ ☆ D$^3$: Scaling Up Deepfake Detection by Learning from Discrepancy CVPR 2025
The boom of Generative AI brings opportunities entangled with risks and concerns. Existing literature emphasizes the generalization capability of deepfake detection on unseen generators, significantly promoting the detector's ability to identify more universal artifacts. This work seeks a step toward a universal deepfake detection system with better generalization and robustness. We do so by first scaling up the existing detection task setup from the one-generator to multiple-generators in training, during which we disclose two challenges presented in prior methodological designs and demonstrate the divergence of detectors' performance. Specifically, we reveal that the current methods tailored for training on one specific generator either struggle to learn comprehensive artifacts from multiple generators or sacrifice their fitting ability for seen generators (i.e., In-Domain (ID) performance) to exchange the generalization for unseen generators (i.e., Out-Of-Domain (OOD) performance). To tackle the above challenges, we propose our Discrepancy Deepfake Detector (D$^3$) framework, whose core idea is to deconstruct the universal artifacts from multiple generators by introducing a parallel network branch that takes a distorted image feature as an extra discrepancy signal and supplement its original counterpart. Extensive scaled-up experiments demonstrate the effectiveness of D$^3$, achieving 5.3% accuracy improvement in the OOD testing compared to the current SOTA methods while maintaining the ID performance. The source code will be updated in our GitHub repository: https://github.com/BigAandSmallq/D3
comment: 13 pages, 3 figures, accepted by CVPR 2025
♻ ☆ Deformable Radial Kernel Splatting
Recently, Gaussian splatting has emerged as a robust technique for representing 3D scenes, enabling real-time rasterization and high-fidelity rendering. However, Gaussians' inherent radial symmetry and smoothness constraints limit their ability to represent complex shapes, often requiring thousands of primitives to approximate detailed geometry. We introduce Deformable Radial Kernel (DRK), which extends Gaussian splatting into a more general and flexible framework. Through learnable radial bases with adjustable angles and scales, DRK efficiently models diverse shape primitives while enabling precise control over edge sharpness and boundary curvature. iven DRK's planar nature, we further develop accurate ray-primitive intersection computation for depth sorting and introduce efficient kernel culling strategies for improved rasterization efficiency. Extensive experiments demonstrate that DRK outperforms existing methods in both representation efficiency and rendering quality, achieving state-of-the-art performance while dramatically reducing primitive count.
♻ ☆ Aligning Multimodal LLM with Human Preference: A Survey
Large language models (LLMs) can handle a wide variety of general tasks with simple prompts, without the need for task-specific training. Multimodal Large Language Models (MLLMs), built upon LLMs, have demonstrated impressive potential in tackling complex tasks involving visual, auditory, and textual data. However, critical issues related to truthfulness, safety, o1-like reasoning, and alignment with human preference remain insufficiently addressed. This gap has spurred the emergence of various alignment algorithms, each targeting different application scenarios and optimization goals. Recent studies have shown that alignment algorithms are a powerful approach to resolving the aforementioned challenges. In this paper, we aim to provide a comprehensive and systematic review of alignment algorithms for MLLMs. Specifically, we explore four key aspects: (1) the application scenarios covered by alignment algorithms, including general image understanding, multi-image, video, and audio, and extended multimodal applications; (2) the core factors in constructing alignment datasets, including data sources, model responses, and preference annotations; (3) the benchmarks used to evaluate alignment algorithms; and (4) a discussion of potential future directions for the development of alignment algorithms. This work seeks to help researchers organize current advancements in the field and inspire better alignment methods. The project page of this paper is available at https://github.com/BradyFU/Awesome-Multimodal-Large-Language-Models/tree/Alignment.
comment: Project page: https://github.com/BradyFU/Awesome-Multimodal-Large-Language-Models/tree/Alignment
♻ ☆ Quantized Spike-driven Transformer ICLR 2025
Spiking neural networks are emerging as a promising energy-efficient alternative to traditional artificial neural networks due to their spike-driven paradigm. However, recent research in the SNN domain has mainly focused on enhancing accuracy by designing large-scale Transformer structures, which typically rely on substantial computational resources, limiting their deployment on resource-constrained devices. To overcome this challenge, we propose a quantized spike-driven Transformer baseline (QSD-Transformer), which achieves reduced resource demands by utilizing a low bit-width parameter. Regrettably, the QSD-Transformer often suffers from severe performance degradation. In this paper, we first conduct empirical analysis and find that the bimodal distribution of quantized spike-driven self-attention (Q-SDSA) leads to spike information distortion (SID) during quantization, causing significant performance degradation. To mitigate this issue, we take inspiration from mutual information entropy and propose a bi-level optimization strategy to rectify the information distribution in Q-SDSA. Specifically, at the lower level, we introduce an information-enhanced LIF to rectify the information distribution in Q-SDSA. At the upper level, we propose a fine-grained distillation scheme for the QSD-Transformer to align the distribution in Q-SDSA with that in the counterpart ANN. By integrating the bi-level optimization strategy, the QSD-Transformer can attain enhanced energy efficiency without sacrificing its high-performance advantage. For instance, when compared to the prior SNN benchmark on ImageNet, the QSD-Transformer achieves 80.3% top-1 accuracy, accompanied by significant reductions of 6.0$\times$ and 8.1$\times$ in power consumption and model size, respectively. Code is available at https://github.com/bollossom/QSD-Transformer.
comment: Accepted by ICLR 2025
Machine Learning 87
☆ Enhance GNNs with Reliable Confidence Estimation via Adversarial Calibration Learning
Despite their impressive predictive performance, GNNs often exhibit poor confidence calibration, i.e., their predicted confidence scores do not accurately reflect true correctness likelihood. This issue raises concerns about their reliability in high-stakes domains such as fraud detection, and risk assessment, where well-calibrated predictions are essential for decision-making. To ensure trustworthy predictions, several GNN calibration methods are proposed. Though they can improve global calibration, our experiments reveal that they often fail to generalize across different node groups, leading to inaccurate confidence in node groups with different degree levels, classes, and local structures. In certain cases, they even degrade calibration compared to the original uncalibrated GNN. To address this challenge, we propose a novel AdvCali framework that adaptively enhances calibration across different node groups. Our method leverages adversarial training to automatically identify mis-calibrated node groups and applies a differentiable Group Expected Calibration Error (ECE) loss term to refine confidence estimation within these groups. This allows the model to dynamically adjust its calibration strategy without relying on dataset-specific prior knowledge about miscalibrated subgroups. Extensive experiments on real-world datasets demonstrate that our approach not only improves global calibration but also significantly enhances calibration within groups defined by feature similarity, topology, and connectivity, outperforming previous methods and demonstrating its effectiveness in practical scenarios.
☆ KEA: Keeping Exploration Alive by Proactively Coordinating Exploration Strategies
Soft Actor-Critic (SAC) has achieved notable success in continuous control tasks but struggles in sparse reward settings, where infrequent rewards make efficient exploration challenging. While novelty-based exploration methods address this issue by encouraging the agent to explore novel states, they are not trivial to apply to SAC. In particular, managing the interaction between novelty-based exploration and SAC's stochastic policy can lead to inefficient exploration and redundant sample collection. In this paper, we propose KEA (Keeping Exploration Alive) which tackles the inefficiencies in balancing exploration strategies when combining SAC with novelty-based exploration. KEA introduces an additional co-behavior agent that works alongside SAC and a switching mechanism to facilitate proactive coordination between exploration strategies from novelty-based exploration and stochastic policy. This coordination allows the agent to maintain stochasticity in high-novelty regions, enhancing exploration efficiency and reducing repeated sample collection. We first analyze this potential issue in a 2D navigation task and then evaluate KEA on sparse reward control tasks from the DeepMind Control Suite. Compared to state-of-the-art novelty-based exploration baselines, our experiments show that KEA significantly improves learning efficiency and robustness in sparse reward setups.
☆ Adaptive Multi-Fidelity Reinforcement Learning for Variance Reduction in Engineering Design Optimization
Multi-fidelity Reinforcement Learning (RL) frameworks efficiently utilize computational resources by integrating analysis models of varying accuracy and costs. The prevailing methodologies, characterized by transfer learning, human-inspired strategies, control variate techniques, and adaptive sampling, predominantly depend on a structured hierarchy of models. However, this reliance on a model hierarchy can exacerbate variance in policy learning when the underlying models exhibit heterogeneous error distributions across the design space. To address this challenge, this work proposes a novel adaptive multi-fidelity RL framework, in which multiple heterogeneous, non-hierarchical low-fidelity models are dynamically leveraged alongside a high-fidelity model to efficiently learn a high-fidelity policy. Specifically, low-fidelity policies and their experience data are adaptively used for efficient targeted learning, guided by their alignment with the high-fidelity policy. The effectiveness of the approach is demonstrated in an octocopter design optimization problem, utilizing two low-fidelity models alongside a high-fidelity simulator. The results demonstrate that the proposed approach substantially reduces variance in policy learning, leading to improved convergence and consistent high-quality solutions relative to traditional hierarchical multi-fidelity RL methods. Moreover, the framework eliminates the need for manually tuning model usage schedules, which can otherwise introduce significant computational overhead. This positions the framework as an effective variance-reduction strategy for multi-fidelity RL, while also mitigating the computational and operational burden of manual fidelity scheduling.
☆ Decoupling Angles and Strength in Low-rank Adaptation ICLR 2025
Parameter-Efficient FineTuning (PEFT) methods have recently gained significant popularity thanks to the widespread availability of large-scale pretrained models. These methods allow for quick adaptation to downstream tasks with minimal computational cost. However, popular finetuning methods such as LoRA exhibit limited robustness when it comes to hyperparameter choices or extended training regimes, preventing optimal out-of-the-box performance. In contrast, bounded approaches, such as ETHER, provide greater robustness but are limited to extremely low-rank adaptations and fixed-strength transformations, reducing their adaptation expressive power. In this work, we propose Decoupled Low-rank Adaptation (DeLoRA), a novel finetuning method that normalizes and scales learnable low-rank matrices. By bounding the distance of the transformation, DeLoRA effectively decouples the angular learning from the adaptation strength, enhancing robustness without compromising performance. Through evaluations on subject-driven image generation, natural language understanding, and instruction tuning, we show that DeLoRA matches or surpasses performance of competing PEFT methods, while exhibiting stronger robustness. Code is available at https://github.com/ExplainableML/DeLoRA.
comment: ICLR 2025
☆ A Framework for Finding Local Saddle Points in Two-Player Zero-Sum Black-Box Games
Saddle point optimization is a critical problem employed in numerous real-world applications, including portfolio optimization, generative adversarial networks, and robotics. It has been extensively studied in cases where the objective function is known and differentiable. Existing work in black-box settings with unknown objectives that can only be sampled either assumes convexity-concavity in the objective to simplify the problem or operates with noisy gradient estimators. In contrast, we introduce a framework inspired by Bayesian optimization which utilizes Gaussian processes to model the unknown (potentially nonconvex-nonconcave) objective and requires only zeroth-order samples. Our approach frames the saddle point optimization problem as a two-level process which can flexibly integrate existing and novel approaches to this problem. The upper level of our framework produces a model of the objective function by sampling in promising locations, and the lower level of our framework uses the existing model to frame and solve a general-sum game to identify locations to sample. This lower level procedure can be designed in complementary ways, and we demonstrate the flexibility of our approach by introducing variants which appropriately trade off between factors like runtime, the cost of function evaluations, and the number of available initial samples. We experimentally demonstrate these algorithms on synthetic and realistic datasets in black-box nonconvex-nonconcave settings, showcasing their ability to efficiently locate local saddle points in these contexts.
☆ Theory-to-Practice Gap for Neural Networks and Neural Operators
This work studies the sampling complexity of learning with ReLU neural networks and neural operators. For mappings belonging to relevant approximation spaces, we derive upper bounds on the best-possible convergence rate of any learning algorithm, with respect to the number of samples. In the finite-dimensional case, these bounds imply a gap between the parametric and sampling complexities of learning, known as the \emph{theory-to-practice gap}. In this work, a unified treatment of the theory-to-practice gap is achieved in a general $L^p$-setting, while at the same time improving available bounds in the literature. Furthermore, based on these results the theory-to-practice gap is extended to the infinite-dimensional setting of operator learning. Our results apply to Deep Operator Networks and integral kernel-based neural operators, including the Fourier neural operator. We show that the best-possible convergence rate in a Bochner $L^p$-norm is bounded by Monte-Carlo rates of order $1/p$.
☆ Adaptive Rank Allocation: Speeding Up Modern Transformers with RaNA Adapters ICLR 2025
Large Language Models (LLMs) are computationally intensive, particularly during inference. Neuron-adaptive techniques, which selectively activate neurons in Multi-Layer Perceptron (MLP) layers, offer some speedups but suffer from limitations in modern Transformers. These include reliance on sparse activations, incompatibility with attention layers, and the use of costly neuron masking techniques. To address these issues, we propose the Adaptive Rank Allocation framework and introduce the Rank and Neuron Allocator (RaNA) adapter. RaNA adapters leverage rank adapters, which operate on linear layers by applying both low-rank matrix decompositions and adaptive masking to efficiently allocate compute without depending on activation sparsity. This enables RaNA to be generally applied to MLPs and linear components of attention modules, while eliminating the need for expensive maskers found in neuron-adaptive methods. Notably, when compared to neuron adapters, RaNA improves perplexity by up to 7 points and increases accuracy by up to 8 percentage-points when reducing FLOPs by $\sim$44% in state-of-the-art Transformer architectures. These results position RaNA as a robust solution for improving inference efficiency in modern Transformer architectures.
comment: 16 pages, 5 figures. ICLR 2025
☆ LakotaBERT: A Transformer-based Model for Low Resource Lakota Language
Lakota, a critically endangered language of the Sioux people in North America, faces significant challenges due to declining fluency among younger generations. This paper introduces LakotaBERT, the first large language model (LLM) tailored for Lakota, aiming to support language revitalization efforts. Our research has two primary objectives: (1) to create a comprehensive Lakota language corpus and (2) to develop a customized LLM for Lakota. We compiled a diverse corpus of 105K sentences in Lakota, English, and parallel texts from various sources, such as books and websites, emphasizing the cultural significance and historical context of the Lakota language. Utilizing the RoBERTa architecture, we pre-trained our model and conducted comparative evaluations against established models such as RoBERTa, BERT, and multilingual BERT. Initial results demonstrate a masked language modeling accuracy of 51% with a single ground truth assumption, showcasing performance comparable to that of English-based models. We also evaluated the model using additional metrics, such as precision and F1 score, to provide a comprehensive assessment of its capabilities. By integrating AI and linguistic methodologies, we aspire to enhance linguistic diversity and cultural resilience, setting a valuable precedent for leveraging technology in the revitalization of other endangered indigenous languages.
☆ ViVa: Video-Trained Value Functions for Guiding Online RL from Diverse Data
Online reinforcement learning (RL) with sparse rewards poses a challenge partly because of the lack of feedback on states leading to the goal. Furthermore, expert offline data with reward signal is rarely available to provide this feedback and bootstrap online learning. How can we guide online agents to the right solution without this on-task data? Reward shaping offers a solution by providing fine-grained signal to nudge the policy towards the optimal solution. However, reward shaping often requires domain knowledge to hand-engineer heuristics for a specific goal. To enable more general and inexpensive guidance, we propose and analyze a data-driven methodology that automatically guides RL by learning from widely available video data such as Internet recordings, off-task demonstrations, task failures, and undirected environment interaction. By learning a model of optimal goal-conditioned value from diverse passive data, we open the floor to scaling up and using various data sources to model general goal-reaching behaviors relevant to guiding online RL. Specifically, we use intent-conditioned value functions to learn from diverse videos and incorporate these goal-conditioned values into the reward. Our experiments show that video-trained value functions work well with a variety of data sources, exhibit positive transfer from human video pre-training, can generalize to unseen goals, and scale with dataset size.
☆ Iterative Multi-Agent Reinforcement Learning: A Novel Approach Toward Real-World Multi-Echelon Inventory Optimization
Multi-echelon inventory optimization (MEIO) is critical for effective supply chain management, but its inherent complexity can pose significant challenges. Heuristics are commonly used to address this complexity, yet they often face limitations in scope and scalability. Recent research has found deep reinforcement learning (DRL) to be a promising alternative to traditional heuristics, offering greater versatility by utilizing dynamic decision-making capabilities. However, since DRL is known to struggle with the curse of dimensionality, its relevance to complex real-life supply chain scenarios is still to be determined. This thesis investigates DRL's applicability to MEIO problems of increasing complexity. A state-of-the-art DRL model was replicated, enhanced, and tested across 13 supply chain scenarios, combining diverse network structures and parameters. To address DRL's challenges with dimensionality, additional models leveraging graph neural networks (GNNs) and multi-agent reinforcement learning (MARL) were developed, culminating in the novel iterative multi-agent reinforcement learning (IMARL) approach. IMARL demonstrated superior scalability, effectiveness, and reliability in optimizing inventory policies, consistently outperforming benchmarks. These findings confirm the potential of DRL, particularly IMARL, to address real-world supply chain challenges and call for additional research to further expand its applicability.
comment: A Capstone Report in the Field of Data Science for the Degree of Master of Liberal Arts in Extension Studies - Harvard University
☆ FROG: Fair Removal on Graphs
As compliance with privacy regulations becomes increasingly critical, the growing demand for data privacy has highlighted the significance of machine unlearning in many real world applications, such as social network and recommender systems, many of which can be represented as graph-structured data. However, existing graph unlearning algorithms indiscriminately modify edges or nodes from well-trained models without considering the potential impact of such structural modifications on fairness. For example, forgetting links between nodes with different genders in a social network may exacerbate group disparities, leading to significant fairness concerns. To address these challenges, we propose a novel approach that jointly optimizes the graph structure and the corresponding model for fair unlearning tasks. Specifically,our approach rewires the graph to enhance unlearning efficiency by removing redundant edges that hinder forgetting while preserving fairness through targeted edge augmentation. Additionally, we introduce a worst-case evaluation mechanism to assess the reliability of fair unlearning performance. Extensive experiments on real-world datasets demonstrate the effectiveness of the proposed approach in achieving superior unlearning outcomes.
☆ Shapley-Guided Utility Learning for Effective Graph Inference Data Valuation
Graph Neural Networks (GNNs) have demonstrated remarkable performance in various graph-based machine learning tasks, yet evaluating the importance of neighbors of testing nodes remains largely unexplored due to the challenge of assessing data importance without test labels. To address this gap, we propose Shapley-Guided Utility Learning (SGUL), a novel framework for graph inference data valuation. SGUL innovatively combines transferable data-specific and modelspecific features to approximate test accuracy without relying on ground truth labels. By incorporating Shapley values as a preprocessing step and using feature Shapley values as input, our method enables direct optimization of Shapley value prediction while reducing computational demands. SGUL overcomes key limitations of existing methods, including poor generalization to unseen test-time structures and indirect optimization. Experiments on diverse graph datasets demonstrate that SGUL consistently outperforms existing baselines in both inductive and transductive settings. SGUL offers an effective, efficient, and interpretable approach for quantifying the value of test-time neighbors.
☆ Quantile-Based Randomized Kaczmarz for Corrupted Tensor Linear Systems
The reconstruction of tensor-valued signals from corrupted measurements, known as tensor regression, has become essential in many multi-modal applications such as hyperspectral image reconstruction and medical imaging. In this work, we address the tensor linear system problem $\mathcal{A} \mathcal{X}=\mathcal{B}$, where $\mathcal{A}$ is a measurement operator, $\mathcal{X}$ is the unknown tensor-valued signal, and $\mathcal{B}$ contains the measurements, possibly corrupted by arbitrary errors. Such corruption is common in large-scale tensor data, where transmission, sensory, or storage errors are rare per instance but likely over the entire dataset and may be arbitrarily large in magnitude. We extend the Kaczmarz method, a popular iterative algorithm for solving large linear systems, to develop a Quantile Tensor Randomized Kaczmarz (QTRK) method robust to large, sparse corruptions in the observations $\mathcal{B}$. This approach combines the tensor Kaczmarz framework with quantile-based statistics, allowing it to mitigate adversarial corruptions and improve convergence reliability. We also propose and discuss the Masked Quantile Randomized Kaczmarz (mQTRK) variant, which selectively applies partial updates to handle corruptions further. We present convergence guarantees, discuss the advantages and disadvantages of our approaches, and demonstrate the effectiveness of our methods through experiments, including an application for video deblurring.
☆ Exploring Energy Landscapes for Minimal Counterfactual Explanations: Applications in Cybersecurity and Beyond
Counterfactual explanations have emerged as a prominent method in Explainable Artificial Intelligence (XAI), providing intuitive and actionable insights into Machine Learning model decisions. In contrast to other traditional feature attribution methods that assess the importance of input variables, counterfactual explanations focus on identifying the minimal changes required to alter a model's prediction, offering a ``what-if'' analysis that is close to human reasoning. In the context of XAI, counterfactuals enhance transparency, trustworthiness and fairness, offering explanations that are not just interpretable but directly applicable in the decision-making processes. In this paper, we present a novel framework that integrates perturbation theory and statistical mechanics to generate minimal counterfactual explanations in explainable AI. We employ a local Taylor expansion of a Machine Learning model's predictive function and reformulate the counterfactual search as an energy minimization problem over a complex landscape. In sequence, we model the probability of candidate perturbations leveraging the Boltzmann distribution and use simulated annealing for iterative refinement. Our approach systematically identifies the smallest modifications required to change a model's prediction while maintaining plausibility. Experimental results on benchmark datasets for cybersecurity in Internet of Things environments, demonstrate that our method provides actionable, interpretable counterfactuals and offers deeper insights into model sensitivity and decision boundaries in high-dimensional spaces.
☆ Adaptive Physics-informed Neural Networks: A Survey
Physics-informed neural networks (PINNs) have emerged as a promising approach to solving partial differential equations (PDEs) using neural networks, particularly in data-scarce scenarios, due to their unsupervised training capability. However, limitations related to convergence and the need for re-optimization with each change in PDE parameters hinder their widespread adoption across scientific and engineering applications. This survey reviews existing research that addresses these limitations through transfer learning and meta-learning. The covered methods improve the training efficiency, allowing faster adaptation to new PDEs with fewer data and computational resources. While traditional numerical methods solve systems of differential equations directly, neural networks learn solutions implicitly by adjusting their parameters. One notable advantage of neural networks is their ability to abstract away from specific problem domains, allowing them to retain, discard, or adapt learned representations to efficiently address similar problems. By exploring the application of these techniques to PINNs, this survey identifies promising directions for future research to facilitate the broader adoption of PINNs in a wide range of scientific and engineering applications.
comment: https://openreview.net/forum?id=vz5P1Kbt6t
☆ Causality-Aware Next Location Prediction Framework based on Human Mobility Stratification
Human mobility data are fused with multiple travel patterns and hidden spatiotemporal patterns are extracted by integrating user, location, and time information to improve next location prediction accuracy. In existing next location prediction methods, different causal relationships that result from patterns in human mobility data are ignored, which leads to confounding information that can have a negative effect on predictions. Therefore, this study introduces a causality-aware framework for next location prediction, focusing on human mobility stratification for travel patterns. In our research, a novel causal graph is developed that describes the relationships between various input variables. We use counterfactuals to enhance the indirect effects in our causal graph for specific travel patterns: non-anchor targeted travels. The proposed framework is designed as a plug-and-play module that integrates multiple next location prediction paradigms. We tested our proposed framework using several state-of-the-art models and human mobility datasets, and the results reveal that the proposed module improves the prediction performance. In addition, we provide results from the ablation study and quantitative study to demonstrate the soundness of our causal graph and its ability to further enhance the interpretability of the current next location prediction models.
comment: Accepted by IEEE UIC 2024
☆ Enhancing Software Vulnerability Detection Using Code Property Graphs and Convolutional Neural Networks
The increasing complexity of modern software systems has led to a rise in vulnerabilities that malicious actors can exploit. Traditional methods of vulnerability detection, such as static and dynamic analysis, have limitations in scalability and automation. This paper proposes a novel approach to detecting software vulnerabilities using a combination of code property graphs and machine learning techniques. By leveraging code property graphs, which integrate abstract syntax trees, control flow graphs, and program dependency graphs, we achieve a detailed representation of software code that enhances the accuracy and granularity of vulnerability detection. We introduce various neural network models, including convolutional neural networks adapted for graph data, to process these representations. Our approach provides a scalable and automated solution for vulnerability detection, addressing the shortcomings of existing methods. We also present a newly generated dataset labeled with function-level vulnerability types sourced from open-source repositories. Our contributions include a methodology for transforming software code into code property graphs, the implementation of a convolutional neural network model for graph data, and the creation of a comprehensive dataset for training and evaluation. This work lays the foundation for more effective and efficient vulnerability detection in complex software systems.
☆ Evaluating Negative Sampling Approaches for Neural Topic Models
Negative sampling has emerged as an effective technique that enables deep learning models to learn better representations by introducing the paradigm of learn-to-compare. The goal of this approach is to add robustness to deep learning models to learn better representation by comparing the positive samples against the negative ones. Despite its numerous demonstrations in various areas of computer vision and natural language processing, a comprehensive study of the effect of negative sampling in an unsupervised domain like topic modeling has not been well explored. In this paper, we present a comprehensive analysis of the impact of different negative sampling strategies on neural topic models. We compare the performance of several popular neural topic models by incorporating a negative sampling technique in the decoder of variational autoencoder-based neural topic models. Experiments on four publicly available datasets demonstrate that integrating negative sampling into topic models results in significant enhancements across multiple aspects, including improved topic coherence, richer topic diversity, and more accurate document classification. Manual evaluations also indicate that the inclusion of negative sampling into neural topic models enhances the quality of the generated topics. These findings highlight the potential of negative sampling as a valuable tool for advancing the effectiveness of neural topic models.
comment: Code is available at: https://github.com/AdhyaSuman/Eval_NegTM
☆ Active Inference for Energy Control and Planning in Smart Buildings and Communities
Active Inference (AIF) is emerging as a powerful framework for decision-making under uncertainty, yet its potential in engineering applications remains largely unexplored. In this work, we propose a novel dual-layer AIF architecture that addresses both building-level and community-level energy management. By leveraging the free energy principle, each layer adapts to evolving conditions and handles partial observability without extensive sensor information and respecting data privacy. We validate the continuous AIF model against both a perfect optimization baseline and a reinforcement learning-based approach. We also test the community AIF framework under extreme pricing scenarios. The results highlight the model's robustness in handling abrupt changes. This study is the first to show how a distributed AIF works in engineering. It also highlights new opportunities for privacy-preserving and uncertainty-aware control strategies in engineering applications.
comment: Submitted to IEEE CASE 2025 (IEEE 21st International Conference on Automation Science and Engineering)
☆ Machine learning based animal emotion classification using audio signals
This paper presents the machine learning approach to the automated classification of a dog's emotional state based on the processing and recognition of audio signals. It offers helpful information for improving human-machine interfaces and developing more precise tools for classifying emotions from acoustic data. The presented model demonstrates an overall accuracy value above 70% for audio signals recorded for one dog.
comment: 5 pages, 3 figures. This paper was originally published in 2022 International Conference on Innovative Solutions in Software Engineering (ICISSE), available: https://zenodo.org/records/7514136
☆ Mitigating Reward Over-Optimization in RLHF via Behavior-Supported Regularization ICLR 2025
Reinforcement learning from human feedback (RLHF) is an effective method for aligning large language models (LLMs) with human values. However, reward over-optimization remains an open challenge leading to discrepancies between the performance of LLMs under the reward model and the true human objectives. A primary contributor to reward over-optimization is the extrapolation error that arises when the reward model evaluates out-of-distribution (OOD) responses. However, current methods still fail to prevent the increasing frequency of OOD response generation during the reinforcement learning (RL) process and are not effective at handling extrapolation errors from OOD responses. In this work, we propose the Behavior-Supported Policy Optimization (BSPO) method to mitigate the reward over-optimization issue. Specifically, we define behavior policy as the next token distribution of the reward training dataset to model the in-distribution (ID) region of the reward model. Building on this, we introduce the behavior-supported Bellman operator to regularize the value function, penalizing all OOD values without impacting the ID ones. Consequently, BSPO reduces the generation of OOD responses during the RL process, thereby avoiding overestimation caused by the reward model's extrapolation errors. Theoretically, we prove that BSPO guarantees a monotonic improvement of the supported policy until convergence to the optimal behavior-supported policy. Empirical results from extensive experiments show that BSPO outperforms baselines in preventing reward over-optimization due to OOD evaluation and finding the optimal ID policy.
comment: Published as a conference paper at ICLR 2025
☆ Feature Learning beyond the Lazy-Rich Dichotomy: Insights from Representational Geometry
The ability to integrate task-relevant information into neural representations is a fundamental aspect of both biological and artificial intelligence. To enable theoretical analysis, recent work has examined whether a network learns task-relevant features (rich learning) or resembles a random feature model (or a kernel machine, i.e., lazy learning). However, this simple lazy-versus-rich dichotomy overlooks the possibility of various subtypes of feature learning that emerge from different architectures, learning rules, and data properties. Furthermore, most existing approaches emphasize weight matrices or neural tangent kernels, limiting their applicability to neuroscience because they do not explicitly characterize representations. In this work, we introduce an analysis framework based on representational geometry to study feature learning. Instead of analyzing what are the learned features, we focus on characterizing how task-relevant representational manifolds evolve during the learning process. In both theory and experiment, we find that when a network learns features useful for solving a task, the task-relevant manifolds become increasingly untangled. Moreover, by tracking changes in the underlying manifold geometry, we uncover distinct learning stages throughout training, as well as different learning strategies associated with training hyperparameters, uncovering subtypes of feature learning beyond the lazy-versus-rich dichotomy. Applying our method to neuroscience and machine learning, we gain geometric insights into the structural inductive biases of neural circuits solving cognitive tasks and the mechanisms underlying out-of-distribution generalization in image classification. Our framework provides a novel geometric perspective for understanding and quantifying feature learning in both artificial and biological neural networks.
☆ AgentRxiv: Towards Collaborative Autonomous Research
Progress in scientific discovery is rarely the result of a single "Eureka" moment, but is rather the product of hundreds of scientists incrementally working together toward a common goal. While existing agent workflows are capable of producing research autonomously, they do so in isolation, without the ability to continuously improve upon prior research results. To address these challenges, we introduce AgentRxiv-a framework that lets LLM agent laboratories upload and retrieve reports from a shared preprint server in order to collaborate, share insights, and iteratively build on each other's research. We task agent laboratories to develop new reasoning and prompting techniques and find that agents with access to their prior research achieve higher performance improvements compared to agents operating in isolation (11.4% relative improvement over baseline on MATH-500). We find that the best performing strategy generalizes to benchmarks in other domains (improving on average by 3.3%). Multiple agent laboratories sharing research through AgentRxiv are able to work together towards a common goal, progressing more rapidly than isolated laboratories, achieving higher overall accuracy (13.7% relative improvement over baseline on MATH-500). These findings suggest that autonomous agents may play a role in designing future AI systems alongside humans. We hope that AgentRxiv allows agents to collaborate toward research goals and enables researchers to accelerate discovery.
☆ Informer in Algorithmic Investment Strategies on High Frequency Bitcoin Data
The article investigates the usage of Informer architecture for building automated trading strategies for high frequency Bitcoin data. Three strategies using Informer model with different loss functions: Root Mean Squared Error (RMSE), Generalized Mean Absolute Directional Loss (GMADL) and Quantile loss, are proposed and evaluated against the Buy and Hold benchmark and two benchmark strategies based on technical indicators. The evaluation is conducted using data of various frequencies: 5 minute, 15 minute, and 30 minute intervals, over the 6 different periods. Although the Informer-based model with Quantile loss did not outperform the benchmark, two other models achieved better results. The performance of the model using RMSE loss worsens when used with higher frequency data while the model that uses novel GMADL loss function is benefiting from higher frequency data and when trained on 5 minute interval it beat all the other strategies on most of the testing periods. The primary contribution of this study is the application and assessment of the RMSE, GMADL, and Quantile loss functions with the Informer model to forecast future returns, subsequently using these forecasts to develop automated trading strategies. The research provides evidence that employing an Informer model trained with the GMADL loss function can result in superior trading outcomes compared to the buy-and-hold approach.
comment: 41 pages, 17 figures, 19 tables
☆ Clarifying Misconceptions in COVID-19 Vaccine Sentiment and Stance Analysis and Their Implications for Vaccine Hesitancy Mitigation: A Systematic Review
Background Advances in machine learning (ML) models have increased the capability of researchers to detect vaccine hesitancy in social media using Natural Language Processing (NLP). A considerable volume of research has identified the persistence of COVID-19 vaccine hesitancy in discourse shared on various social media platforms. Methods Our objective in this study was to conduct a systematic review of research employing sentiment analysis or stance detection to study discourse towards COVID-19 vaccines and vaccination spread on Twitter (officially known as X since 2023). Following registration in the PROSPERO international registry of systematic reviews, we searched papers published from 1 January 2020 to 31 December 2023 that used supervised machine learning to assess COVID-19 vaccine hesitancy through stance detection or sentiment analysis on Twitter. We categorized the studies according to a taxonomy of five dimensions: tweet sample selection approach, self-reported study type, classification typology, annotation codebook definitions, and interpretation of results. We analyzed if studies using stance detection report different hesitancy trends than those using sentiment analysis by examining how COVID-19 vaccine hesitancy is measured, and whether efforts were made to avoid measurement bias. Results Our review found that measurement bias is widely prevalent in studies employing supervised machine learning to analyze sentiment and stance toward COVID-19 vaccines and vaccination. The reporting errors are sufficiently serious that they hinder the generalisability and interpretation of these studies to understanding whether individual opinions communicate reluctance to vaccinate against SARS-CoV-2. Conclusion Improving the reporting of NLP methods is crucial to addressing knowledge gaps in vaccine hesitancy discourse.
comment: 14 pages, 3 figures, 4 tables
☆ HyperNOs: Automated and Parallel Library for Neural Operators Research
This paper introduces HyperNOs, a PyTorch library designed to streamline and automate the process of exploring neural operators, with a special focus on hyperparameter optimization for comprehensive and exhaustive exploration. Indeed, HyperNOs takes advantage of state-of-the-art optimization algorithms and parallel computing implemented in the Ray-tune library to efficiently explore the hyperparameter space of neural operators. We also implement many useful functionalities for studying neural operators with a user-friendly interface, such as the possibility to train the model with a fixed number of parameters or to train the model with multiple datasets and different resolutions. We integrate Fourier neural operators and convolutional neural operators in our library, achieving state of the art results on many representative benchmarks, demonstrating the capabilities of HyperNOs to handle real datasets and modern architectures. The library is designed to be easy to use with the provided model and datasets, but also to be easily extended to use new datasets and custom neural operator architectures.
comment: 25 pages, 11 figures
☆ Temporal Relation Extraction in Clinical Texts: A Span-based Graph Transformer Approach
Temporal information extraction from unstructured text is essential for contextualizing events and deriving actionable insights, particularly in the medical domain. We address the task of extracting clinical events and their temporal relations using the well-studied I2B2 2012 Temporal Relations Challenge corpus. This task is inherently challenging due to complex clinical language, long documents, and sparse annotations. We introduce GRAPHTREX, a novel method integrating span-based entity-relation extraction, clinical large pre-trained language models (LPLMs), and Heterogeneous Graph Transformers (HGT) to capture local and global dependencies. Our HGT component facilitates information propagation across the document through innovative global landmarks that bridge distant entities. Our method improves the state-of-the-art with 5.5% improvement in the tempeval $F_1$ score over the previous best and up to 8.9% improvement on long-range relations, which presents a formidable challenge. This work not only advances temporal information extraction but also lays the groundwork for improved diagnostic and prognostic models through enhanced temporal reasoning.
comment: Introducing a novel method for joint extraction of medical events and temporal relations from free-text, leveraging clinical LPLMs and Heterogeneous Graph Transformers, achieving a 5.5% improvement over the previous state-of-the-art and up to 8.9% on long-range relations
☆ Model-Guardian: Protecting against Data-Free Model Stealing Using Gradient Representations and Deceptive Predictions ICME 2025
Model stealing attack is increasingly threatening the confidentiality of machine learning models deployed in the cloud. Recent studies reveal that adversaries can exploit data synthesis techniques to steal machine learning models even in scenarios devoid of real data, leading to data-free model stealing attacks. Existing defenses against such attacks suffer from limitations, including poor effectiveness, insufficient generalization ability, and low comprehensiveness. In response, this paper introduces a novel defense framework named Model-Guardian. Comprising two components, Data-Free Model Stealing Detector (DFMS-Detector) and Deceptive Predictions (DPreds), Model-Guardian is designed to address the shortcomings of current defenses with the help of the artifact properties of synthetic samples and gradient representations of samples. Extensive experiments on seven prevalent data-free model stealing attacks showcase the effectiveness and superior generalization ability of Model-Guardian, outperforming eleven defense methods and establishing a new state-of-the-art performance. Notably, this work pioneers the utilization of various GANs and diffusion models for generating highly realistic query samples in attacks, with Model-Guardian demonstrating accurate detection capabilities.
comment: Full version of the paper accepted by ICME 2025
☆ Self-Explaining Neural Networks for Business Process Monitoring
Tasks in Predictive Business Process Monitoring (PBPM), such as Next Activity Prediction, focus on generating useful business predictions from historical case logs. Recently, Deep Learning methods, particularly sequence-to-sequence models like Long Short-Term Memory (LSTM), have become a dominant approach for tackling these tasks. However, to enhance model transparency, build trust in the predictions, and gain a deeper understanding of business processes, it is crucial to explain the decisions made by these models. Existing explainability methods for PBPM decisions are typically *post-hoc*, meaning they provide explanations only after the model has been trained. Unfortunately, these post-hoc approaches have shown to face various challenges, including lack of faithfulness, high computational costs and a significant sensitivity to out-of-distribution samples. In this work, we introduce, to the best of our knowledge, the first *self-explaining neural network* architecture for predictive process monitoring. Our framework trains an LSTM model that not only provides predictions but also outputs a concise explanation for each prediction, while adapting the optimization objective to improve the reliability of the explanation. We first demonstrate that incorporating explainability into the training process does not hurt model performance, and in some cases, actually improves it. Additionally, we show that our method outperforms post-hoc approaches in terms of both the faithfulness of the generated explanations and substantial improvements in efficiency.
comment: To appear in ICSBT 2025
☆ Dynamic Allocation Hypernetwork with Adaptive Model Recalibration for FCL
Federated continual learning (FCL) offers an emerging pattern to facilitate the applicability of federated learning (FL) in real-world scenarios, where tasks evolve dynamically and asynchronously across clients, especially in medical scenario. Existing server-side FCL methods in nature domain construct a continually learnable server model by client aggregation on all-involved tasks. However, they are challenged by: (1) Catastrophic forgetting for previously learned tasks, leading to error accumulation in server model, making it difficult to sustain comprehensive knowledge across all tasks. (2) Biased optimization due to asynchronous tasks handled across different clients, leading to the collision of optimization targets of different clients at the same time steps. In this work, we take the first step to propose a novel server-side FCL pattern in medical domain, Dynamic Allocation Hypernetwork with adaptive model recalibration (\textbf{FedDAH}). It is to facilitate collaborative learning under the distinct and dynamic task streams across clients. To alleviate the catastrophic forgetting, we propose a dynamic allocation hypernetwork (DAHyper) where a continually updated hypernetwork is designed to manage the mapping between task identities and their associated model parameters, enabling the dynamic allocation of the model across clients. For the biased optimization, we introduce a novel adaptive model recalibration (AMR) to incorporate the candidate changes of historical models into current server updates, and assign weights to identical tasks across different time steps based on the similarity for continual optimization. Extensive experiments on the AMOS dataset demonstrate the superiority of our FedDAH to other FCL methods on sites with different task streams. The code is available:https://github.com/jinlab-imvr/FedDAH.
☆ Surrogate Learning in Meta-Black-Box Optimization: A Preliminary Study
Recent Meta-Black-Box Optimization (MetaBBO) approaches have shown possibility of enhancing the optimization performance through learning meta-level policies to dynamically configure low-level optimizers. However, existing MetaBBO approaches potentially consume massive function evaluations to train their meta-level policies. Inspired by the recent trend of using surrogate models for cost-friendly evaluation of expensive optimization problems, in this paper, we propose a novel MetaBBO framework which combines surrogate learning process and reinforcement learning-aided Differential Evolution algorithm, namely Surr-RLDE, to address the intensive function evaluation in MetaBBO. Surr-RLDE comprises two learning stages: surrogate learning and policy learning. In surrogate learning, we train a Kolmogorov-Arnold Networks (KAN) with a novel relative-order-aware loss to accurately approximate the objective functions of the problem instances used for subsequent policy learning. In policy learning, we employ reinforcement learning (RL) to dynamically configure the mutation operator in DE. The learned surrogate model is integrated into the training of the RL-based policy to substitute for the original objective function, which effectively reduces consumed evaluations during policy learning. Extensive benchmark results demonstrate that Surr-RLDE not only shows competitive performance to recent baselines, but also shows compelling generalization for higher-dimensional problems. Further ablation studies underscore the effectiveness of each technical components in Surr-RLDE. We open-source Surr-RLDE at https://github.com/GMC-DRL/Surr-RLDE.
comment: Accepted as full paper at ACM GECCO 2025
☆ Reinforcement Learning-based Self-adaptive Differential Evolution through Automated Landscape Feature Learning
Recently, Meta-Black-Box-Optimization (MetaBBO) methods significantly enhance the performance of traditional black-box optimizers through meta-learning flexible and generalizable meta-level policies that excel in dynamic algorithm configuration (DAC) tasks within the low-level optimization, reducing the expertise required to adapt optimizers for novel optimization tasks. Though promising, existing MetaBBO methods heavily rely on human-crafted feature extraction approach to secure learning effectiveness. To address this issue, this paper introduces a novel MetaBBO method that supports automated feature learning during the meta-learning process, termed as RLDE-AFL, which integrates a learnable feature extraction module into a reinforcement learning-based DE method to learn both the feature encoding and meta-level policy. Specifically, we design an attention-based neural network with mantissa-exponent based embedding to transform the solution populations and corresponding objective values during the low-level optimization into expressive landscape features. We further incorporate a comprehensive algorithm configuration space including diverse DE operators into a reinforcement learning-aided DAC paradigm to unleash the behavior diversity and performance of the proposed RLDE-AFL. Extensive benchmark results show that co-training the proposed feature learning module and DAC policy contributes to the superior optimization performance of RLDE-AFL to several advanced DE methods and recent MetaBBO baselines over both synthetic and realistic BBO scenarios. The source codes of RLDE-AFL are available at https://github.com/GMC-DRL/RLDE-AFL.
comment: Accepted as full paper at ACM GECCO 2025
☆ Interpretable Feature Interaction via Statistical Self-supervised Learning on Tabular Data
In high-dimensional and high-stakes contexts, ensuring both rigorous statistical guarantees and interpretability in feature extraction from complex tabular data remains a formidable challenge. Traditional methods such as Principal Component Analysis (PCA) reduce dimensionality and identify key features that explain the most variance, but are constrained by their reliance on linear assumptions. In contrast, neural networks offer assumption-free feature extraction through self-supervised learning techniques such as autoencoders, though their interpretability remains a challenge in fields requiring transparency. To address this gap, this paper introduces Spofe, a novel self-supervised machine learning pipeline that marries the power of kernel principal components for capturing nonlinear dependencies with a sparse and principled polynomial representation to achieve clear interpretability with statistical rigor. Underpinning our approach is a robust theoretical framework that delivers precise error bounds and rigorous false discovery rate (FDR) control via a multi-objective knockoff selection procedure; it effectively bridges the gap between data-driven complexity and statistical reliability via three stages: (1) generating self-supervised signals using kernel principal components to model complex patterns, (2) distilling these signals into sparse polynomial functions for improved interpretability, and (3) applying a multi-objective knockoff selection procedure with significance testing to rigorously identify important features. Extensive experiments on diverse real-world datasets demonstrate the effectiveness of Spofe, consistently surpassing KPCA, SKPCA, and other methods in feature selection for regression and classification tasks. Visualization and case studies highlight its ability to uncover key insights, enhancing interpretability and practical utility.
☆ Decision from Suboptimal Classifiers: Excess Risk Pre- and Post-Calibration
Probabilistic classifiers are central for making informed decisions under uncertainty. Based on the maximum expected utility principle, optimal decision rules can be derived using the posterior class probabilities and misclassification costs. Yet, in practice only learned approximations of the oracle posterior probabilities are available. In this work, we quantify the excess risk (a.k.a. regret) incurred using approximate posterior probabilities in batch binary decision-making. We provide analytical expressions for miscalibration-induced regret ($R^{\mathrm{CL}}$), as well as tight and informative upper and lower bounds on the regret of calibrated classifiers ($R^{\mathrm{GL}}$). These expressions allow us to identify regimes where recalibration alone addresses most of the regret, and regimes where the regret is dominated by the grouping loss, which calls for post-training beyond recalibration. Crucially, both $R^{\mathrm{CL}}$ and $R^{\mathrm{GL}}$ can be estimated in practice using a calibration curve and a recent grouping loss estimator. On NLP experiments, we show that these quantities identify when the expected gain of more advanced post-training is worth the operational cost. Finally, we highlight the potential of multicalibration approaches as efficient alternatives to costlier fine-tuning approaches.
☆ Regularization of ML models for Earth systems by using longer model timesteps
Regularization is a technique to improve generalization of machine learning (ML) models. A common form of regularization in the ML literature is to train on data where similar inputs map to different outputs. This improves generalization by preventing ML models from becoming overconfident in their predictions. This paper shows how using longer timesteps when modelling chaotic Earth systems naturally leads to more of this regularization. We show this in two domains. We explain how using longer model timesteps can improve results and demonstrate that increased regularization is one of the causes. We explain why longer model timesteps lead to improved regularization in these systems and present a procedure to pick the model timestep. We also carry out a benchmarking exercise on ORAS5 ocean reanalysis data to show that a longer model timestep (28 days) than is typically used gives realistic simulations. We suggest that there will be many opportunities to use this type of regularization in Earth system problems because the Earth system is chaotic and the regularization is so easy to implement.
☆ Lost in Cultural Translation: Do LLMs Struggle with Math Across Cultural Contexts?
Large Language Models (LLMs) have significantly advanced various fields, particularly coding, mathematical reasoning, and logical problem solving. However, a critical question remains: Do these mathematical reasoning abilities persist when LLMs are presented with culturally adapted math problems? Specifically, how do LLMs perform when faced with math problems embedded in cultural contexts that have no significant representation in main stream web-scale AI training data? To explore this, we generated six synthetic cultural datasets from GSM8K, a widely used benchmark for assessing LLMs' mathematical reasoning skills. While preserving the mathematical logic and numerical values of the original GSM8K test set, we modify cultural elements such as personal names, food items, place names, etc. These culturally adapted datasets provide a more reliable framework for evaluating LLMs' mathematical reasoning under shifting cultural contexts. Our findings reveal that LLMs struggle with math problems when cultural references change, even though the underlying mathematical structure remains constant. Smaller models exhibit greater performance drops compared to larger models. Interestingly, our results also suggest that cultural familiarity can enhance mathematical reasoning. Even models with no explicit mathematical training but exposure to relevant cultural contexts sometimes outperform larger, mathematically proficient models on culturally embedded math problems. This study highlights the impact of cultural context on the mathematical reasoning abilities of LLMs, underscoring the need for more diverse and representative training data to improve robustness in real-world applications. The benchmark data sets and script for reproducing the results are available at https://github.com/akarim23131/Lost_in_Cultural_Translation
☆ Predicting Multitasking in Manual and Automated Driving with Optimal Supervisory Control
Modern driving involves interactive technologies that can divert attention, increasing the risk of accidents. This paper presents a computational cognitive model that simulates human multitasking while driving. Based on optimal supervisory control theory, the model predicts how multitasking adapts to variations in driving demands, interactive tasks, and automation levels. Unlike previous models, it accounts for context-dependent multitasking across different degrees of driving automation. The model predicts longer in-car glances on straight roads and shorter glances during curves. It also anticipates increased glance durations with driver aids such as lane-centering assistance and their interaction with environmental demands. Validated against two empirical datasets, the model offers insights into driver multitasking amid evolving in-car technologies and automation.
☆ On the Origins of Sampling Bias: Implications on Fairness Measurement and Mitigation
Accurately measuring discrimination is crucial to faithfully assessing fairness of trained machine learning (ML) models. Any bias in measuring discrimination leads to either amplification or underestimation of the existing disparity. Several sources of bias exist and it is assumed that bias resulting from machine learning is born equally by different groups (e.g. females vs males, whites vs blacks, etc.). If, however, bias is born differently by different groups, it may exacerbate discrimination against specific sub-populations. Sampling bias, in particular, is inconsistently used in the literature to describe bias due to the sampling procedure. In this paper, we attempt to disambiguate this term by introducing clearly defined variants of sampling bias, namely, sample size bias (SSB) and underrepresentation bias (URB). Through an extensive set of experiments on benchmark datasets and using mainstream learning algorithms, we expose relevant observations in several model training scenarios. The observations are finally framed as actionable recommendations for practitioners.
Equivariant Machine Learning Interatomic Potentials with Global Charge Redistribution
Machine learning interatomic potentials (MLIPs) provide a computationally efficient alternative to quantum mechanical simulations for predicting material properties. Message-passing graph neural networks, commonly used in these MLIPs, rely on local descriptor-based symmetry functions to model atomic interactions. However, such local descriptor-based approaches struggle with systems exhibiting long-range interactions, charge transfer, and compositional heterogeneity. In this work, we develop a new equivariant MLIP incorporating long-range Coulomb interactions through explicit treatment of electronic degrees of freedom, specifically global charge distribution within the system. This is achieved using a charge equilibration scheme based on predicted atomic electronegativities. We systematically evaluate our model across a range of benchmark periodic and non-periodic datasets, demonstrating that it outperforms both short-range equivariant and long-range invariant MLIPs in energy and force predictions. Our approach enables more accurate and efficient simulations of systems with long-range interactions and charge heterogeneity, expanding the applicability of MLIPs in computational materials science.
comment: 24 pages, 5 figures, 1 table + 12 pages of Supporting Information
☆ Dataset Distillation for Quantum Neural Networks
Training Quantum Neural Networks (QNNs) on large amount of classical data can be both time consuming as well as expensive. Higher amount of training data would require higher number of gradient descent steps to reach convergence. This, in turn would imply that the QNN will require higher number of quantum executions, thereby driving up its overall execution cost. In this work, we propose performing the dataset distillation process for QNNs, where we use a novel quantum variant of classical LeNet model containing residual connection and trainable Hermitian observable in the Parametric Quantum Circuit (PQC) of the QNN. This approach yields highly informative yet small number of training data at similar performance as the original data. We perform distillation for MNIST and Cifar-10 datasets, and on comparison with classical models observe that both the datasets yield reasonably similar post-inferencing accuracy on quantum LeNet (91.9% MNIST, 50.3% Cifar-10) compared to classical LeNet (94% MNIST, 54% Cifar-10). We also introduce a non-trainable Hermitian for ensuring stability in the distillation process and note marginal reduction of up to 1.8% (1.3%) for MNIST (Cifar-10) dataset.
comment: 5 pages, 4 figures, 2 tables
☆ WLB-LLM: Workload-Balanced 4D Parallelism for Large Language Model Training
In this work, we present WLB-LLM, a workLoad-balanced 4D parallelism for large language model training. We first thoroughly analyze the workload imbalance issue in LLM training and identify two primary sources of imbalance at the pipeline parallelism and context parallelism levels. Then, to address the imbalance issue, at the pipeline parallelism level, WLB-LLM incorporates a workload-aware variable-length document packing method to balance the computation and communication workload across micro-batches. Additionally, at the context parallelism level, WLB-LLM introduces a novel fine-grained per-document sharding strategy, ensuring each worker within a context parallelism group has an identical workload. Comprehensive experiments under different model scales demonstrate that WLB-LLM significantly mitigates the workload imbalance during 4D parallelism LLM training and achieves an average speedup of 1.23x when applying WLB-LLM in our internal LLM training framework.
comment: 12 pages, 16 figures
☆ Predicting performance-related properties of refrigerant based on tailored small-molecule functional group contribution
As current group contribution (GC) methods are mostly proposed for a wide size-range of molecules, applying them to property prediction of small refrigerant molecules could lead to unacceptable errors. In this sense, for the design of novel refrigerants and refrigeration systems, tailoring GC-based models specifically fitted to refrigerant molecules is of great interest. In this work, databases of potential refrigerant molecules are first collected, focusing on five key properties related to the operational efficiency of refrigeration systems, namely normal boiling point, critical temperature, critical pressure, enthalpy of vaporization, and acentric factor. Based on tailored small-molecule groups, the GC method is combined with machine learning (ML) to model these performance-related properties. Following the development of GC-ML models, their performance is analyzed to highlight the potential group-to-property contributions. Additionally, the refrigerant property databases are extended internally and externally, based on which examples are presented to highlight the significance of the developed models.
☆ Cat-AIR: Content and Task-Aware All-in-One Image Restoration
All-in-one image restoration seeks to recover high-quality images from various types of degradation using a single model, without prior knowledge of the corruption source. However, existing methods often struggle to effectively and efficiently handle multiple degradation types. We present Cat-AIR, a novel \textbf{C}ontent \textbf{A}nd \textbf{T}ask-aware framework for \textbf{A}ll-in-one \textbf{I}mage \textbf{R}estoration. Cat-AIR incorporates an alternating spatial-channel attention mechanism that adaptively balances the local and global information for different tasks. Specifically, we introduce cross-layer channel attentions and cross-feature spatial attentions that allocate computations based on content and task complexity. Furthermore, we propose a smooth learning strategy that allows for seamless adaptation to new restoration tasks while maintaining performance on existing ones. Extensive experiments demonstrate that Cat-AIR achieves state-of-the-art results across a wide range of restoration tasks, requiring fewer FLOPs than previous methods, establishing new benchmarks for efficient all-in-one image restoration.
☆ Financial Wind Tunnel: A Retrieval-Augmented Market Simulator
Market simulator tries to create high-quality synthetic financial data that mimics real-world market dynamics, which is crucial for model development and robust assessment. Despite continuous advancements in simulation methodologies, market fluctuations vary in terms of scale and sources, but existing frameworks often excel in only specific tasks. To address this challenge, we propose Financial Wind Tunnel (FWT), a retrieval-augmented market simulator designed to generate controllable, reasonable, and adaptable market dynamics for model testing. FWT offers a more comprehensive and systematic generative capability across different data frequencies. By leveraging a retrieval method to discover cross-sectional information as the augmented condition, our diffusion-based simulator seamlessly integrates both macro- and micro-level market patterns. Furthermore, our framework allows the simulation to be controlled with wide applicability, including causal generation through "what-if" prompts or unprecedented cross-market trend synthesis. Additionally, we develop an automated optimizer for downstream quantitative models, using stress testing of simulated scenarios via FWT to enhance returns while controlling risks. Experimental results demonstrate that our approach enables the generalizable and reliable market simulation, significantly improve the performance and adaptability of downstream models, particularly in highly complex and volatile market conditions. Our code and data sample is available at https://anonymous.4open.science/r/fwt_-E852
☆ Does GCL Need a Large Number of Negative Samples? Enhancing Graph Contrastive Learning with Effective and Efficient Negative Sampling
Graph Contrastive Learning (GCL) aims to self-supervised learn low-dimensional graph representations, primarily through instance discrimination, which involves manually mining positive and negative pairs from graphs, increasing the similarity of positive pairs while decreasing negative pairs. Drawing from the success of Contrastive Learning (CL) in other domains, a consensus has been reached that the effectiveness of GCLs depends on a large number of negative pairs. As a result, despite the significant computational overhead, GCLs typically leverage as many negative node pairs as possible to improve model performance. However, given that nodes within a graph are interconnected, we argue that nodes cannot be treated as independent instances. Therefore, we challenge this consensus: Does employing more negative nodes lead to a more effective GCL model? To answer this, we explore the role of negative nodes in the commonly used InfoNCE loss for GCL and observe that: (1) Counterintuitively, a large number of negative nodes can actually hinder the model's ability to distinguish nodes with different semantics. (2) A smaller number of high-quality and non-topologically coupled negative nodes are sufficient to enhance the discriminability of representations. Based on these findings, we propose a new method called GCL with Effective and Efficient Negative samples, E2Neg, which learns discriminative representations using only a very small set of representative negative samples. E2Neg significantly reduces computational overhead and speeds up model training. We demonstrate the effectiveness and efficiency of E2Neg across multiple datasets compared to other GCL methods.
☆ Finding Stable Subnetworks at Initialization with Dataset Distillation
Recent works have shown that Dataset Distillation, the process for summarizing the training data, can be leveraged to accelerate the training of deep learning models. However, its impact on training dynamics, particularly in neural network pruning, remains largely unexplored. In our work, we use distilled data in the inner loop of iterative magnitude pruning to produce sparse, trainable subnetworks at initialization -- more commonly known as lottery tickets. While using 150x less training points, our algorithm matches the performance of traditional lottery ticket rewinding on ResNet-18 & CIFAR-10. Previous work highlights that lottery tickets can be found when the dense initialization is stable to SGD noise (i.e. training across different ordering of the data converges to the same minima). We extend this discovery, demonstrating that stable subnetworks can exist even within an unstable dense initialization. In our linear mode connectivity studies, we find that pruning with distilled data discards parameters that contribute to the sharpness of the loss landscape. Lastly, we show that by first generating a stable sparsity mask at initialization, we can find lottery tickets at significantly higher sparsities than traditional iterative magnitude pruning.
☆ GLADMamba: Unsupervised Graph-Level Anomaly Detection Powered by Selective State Space Model
Unsupervised graph-level anomaly detection (UGLAD) is a critical and challenging task across various domains, such as social network analysis, anti-cancer drug discovery, and toxic molecule identification. However, existing methods often struggle to capture the long-range dependencies efficiently and neglect the spectral information. Recently, selective State Space Models (SSMs), particularly Mamba, have demonstrated remarkable advantages in capturing long-range dependencies with linear complexity and a selection mechanism. Motivated by their success across various domains, we propose GLADMamba, a novel framework that adapts the selective state space model into UGLAD field. We design View-Fused Mamba (VFM) with a Mamba-Transformer-style architecture to efficiently fuse information from different views with a selective state mechanism. We also design Spectrum-Guided Mamba (SGM) with a Mamba-Transformer-style architecture to leverage the Rayleigh quotient to guide the embedding refining process. GLADMamba can dynamically focus on anomaly-related information while discarding irrelevant information for anomaly detection. To the best of our knowledge, this is the first work to introduce Mamba and explicit spectral information to UGLAD. Extensive experiments on 12 real-world datasets demonstrate that GLADMamba outperforms existing state-of-the-art methods, achieving superior performance in UGLAD. The code is available at https://github.com/Yali-F/GLADMamba.
♻ ☆ SFO: Piloting VLM Feedback for Offline RL
While internet-scale image and textual data have enabled strong generalization in Vision-Language Models (VLMs), the absence of internet-scale control data has impeded the development of similar generalization in standard reinforcement learning (RL) agents. Although VLMs are fundamentally limited in their ability to solve control tasks due to their lack of action-conditioned training data, their capacity for image understanding allows them to provide valuable feedback in RL tasks by recognizing successful outcomes. A key challenge in Reinforcement Learning from AI Feedback (RLAIF) is determining how best to integrate VLM-derived signals into the learning process. We explore this question in the context of offline RL and introduce a class of methods called sub-trajectory filtered optimization. We identify three key insights. First, trajectory length plays a crucial role in offline RL, as full-trajectory preference learning exacerbates the stitching problem, necessitating the use of sub-trajectories. Second, even in Markovian environments, a non-Markovian reward signal from a sequence of images is required to assess trajectory improvement, as VLMs do not interpret control actions and must rely on visual cues over time. Third, a simple yet effective approach--filtered and weighted behavior cloning--consistently outperforms more complex reinforcement learning from human feedback-based methods. We propose sub-trajectory filtered behavior cloning, a method that leverages VLM feedback on sub-trajectories while incorporating a retrospective filtering mechanism that removes sub-trajectories preceding failures to improve robustness and prevent turbulence. This study is preliminary; we provide initial evidence through evaluations on a toy control domain. Please enjoy our airport puns.
comment: Code is provided at https://github.com/jacooba/OfflineRLAIF
♻ ☆ Lower Bounds for the Convergence of Tensor Power Iteration on Random Overcomplete Models
Tensor decomposition serves as a powerful primitive in statistics and machine learning, and has numerous applications in problems such as learning latent variable models or mixture of Gaussians. In this paper, we focus on using power iteration to decompose an overcomplete random tensor. Past work studying the properties of tensor power iteration either requires a non-trivial data-independent initialization, or is restricted to the undercomplete regime. Moreover, several papers implicitly suggest that logarithmically many iterations (in terms of the input dimension) are sufficient for the power method to recover one of the tensor components. Here we present a novel analysis of the dynamics of tensor power iteration from random initialization in the overcomplete regime, where the tensor rank is much greater than its dimension. Surprisingly, we show that polynomially many steps are necessary for convergence of tensor power iteration to any of the true component, which refutes the previous conjecture. On the other hand, our numerical experiments suggest that tensor power iteration successfully recovers tensor components for a broad range of parameters in polynomial time. To further complement our empirical evidence, we prove that a popular objective function for tensor decomposition is strictly increasing along the power iteration path. Our proof is based on the Gaussian conditioning technique, which has been applied to analyze the approximate message passing (AMP) algorithm. The major ingredient of our argument is a conditioning lemma that allows us to generalize AMP-type analysis to non-proportional limit and polynomially many iterations of the power method.
comment: 41 pages, 3 figures, appeared in The 36th Annual Conference on Learning Theory (COLT 2023)
♻ ☆ Sharp Analysis of Power Iteration for Tensor PCA
We investigate the power iteration algorithm for the tensor PCA model introduced in Richard and Montanari (2014). Previous work studying the properties of tensor power iteration is either limited to a constant number of iterations, or requires a non-trivial data-independent initialization. In this paper, we move beyond these limitations and analyze the dynamics of randomly initialized tensor power iteration up to polynomially many steps. Our contributions are threefold: First, we establish sharp bounds on the number of iterations required for power method to converge to the planted signal, for a broad range of the signal-to-noise ratios. Second, our analysis reveals that the actual algorithmic threshold for power iteration is smaller than the one conjectured in literature by a polylog(n) factor, where n is the ambient dimension. Finally, we propose a simple and effective stopping criterion for power iteration, which provably outputs a solution that is highly correlated with the true signal. Extensive numerical experiments verify our theoretical results.
comment: 42 pages, 11 figures, added additional experiments
♻ ☆ Distributed Bayesian Estimation in Sensor Networks: Consensus on Marginal Densities
In this paper, we aim to design and analyze distributed Bayesian estimation algorithms for sensor networks. The challenges we address are to (i) derive a distributed provably-correct algorithm in the functional space of probability distributions over continuous variables, and (ii) leverage these results to obtain new distributed estimators restricted to subsets of variables observed by individual agents. This relates to applications such as cooperative localization and federated learning, where the data collected at any agent depends on a subset of all variables of interest. We present Bayesian density estimation algorithms using data from non-linear likelihoods at agents in centralized, distributed, and marginal distributed settings. After setting up a distributed estimation objective, we prove almost-sure convergence to the optimal set of pdfs at each agent. Then, we prove the same for a storage-aware algorithm estimating densities only over relevant variables at each agent. Finally, we present a Gaussian version of these algorithms and implement it in a mapping problem using variational inference to handle non-linear likelihood models associated with LiDAR sensing.
♻ ☆ Bayesian Active Learning for Multi-Criteria Comparative Judgement in Educational Assessment
Comparative Judgement (CJ) provides an alternative assessment approach by evaluating work holistically rather than breaking it into discrete criteria. This method leverages human ability to make nuanced comparisons, yielding more reliable and valid assessments. CJ aligns with real-world evaluations, where overall quality emerges from the interplay of various elements. However, rubrics remain widely used in education, offering structured criteria for grading and detailed feedback. This creates a gap between CJ's holistic ranking and the need for criterion-based performance breakdowns. This paper addresses this gap using a Bayesian approach. We build on Bayesian CJ (BCJ) by Gray et al., which directly models preferences instead of using likelihoods over total scores, allowing for expected ranks with uncertainty estimation. Their entropy-based active learning method selects the most informative pairwise comparisons for assessors. We extend BCJ to handle multiple independent learning outcome (LO) components, defined by a rubric, enabling both holistic and component-wise predictive rankings with uncertainty estimates. Additionally, we propose a method to aggregate entropies and identify the most informative comparison for assessors. Experiments on synthetic and real data demonstrate our method's effectiveness. Finally, we address a key limitation of BCJ, which is the inability to quantify assessor agreement. We show how to derive agreement levels, enhancing transparency in assessment.
♻ ☆ Synthesis and Analysis of Data as Probability Measures with Entropy-Regularized Optimal Transport AISTATS 2025
We consider synthesis and analysis of probability measures using the entropy-regularized Wasserstein-2 cost and its unbiased version, the Sinkhorn divergence. The synthesis problem consists of computing the barycenter, with respect to these costs, of reference measures given a set of coefficients belonging to the simplex. The analysis problem consists of finding the coefficients for the closest barycenter in the Wasserstein-2 distance to a given measure. Under the weakest assumptions on the measures thus far in the literature, we compute the derivative of the entropy-regularized Wasserstein-2 cost. We leverage this to establish a characterization of barycenters with respect to the entropy-regularized Wasserstein-2 cost as solutions that correspond to a fixed point of an average of the entropy-regularized displacement maps. This characterization yields a finite-dimensional, convex, quadratic program for solving the analysis problem when the measure being analyzed is a barycenter with respect to the entropy-regularized Wasserstein-2 cost. We show that these coefficients, as well as the value of the barycenter functional, can be estimated from samples with dimension-independent rates of convergence, and that barycentric coefficients are stable with respect to perturbations in the Wasserstein-2 metric. We employ the barycentric coefficients as features for classification of corrupted point cloud data, and show that compared to neural network baselines, our approach is more efficient in small training data regimes.
comment: 58 pages. v3: accepted version, minor fixes to results, literature survey, updated simulations. To appear in AISTATS 2025. Code to reproduce experiments: https://github.com/brendanmallery9/Entropic-Barycenters
♻ ☆ DNA Bench: When Silence is Smarter -- Benchmarking Over-Reasoning in Reasoning LLMs
Test-time scaling has significantly improved large language model performance, enabling deeper reasoning to solve complex problems. However, this increased reasoning capability also leads to excessive token generation and unnecessary problem-solving attempts. We introduce Don\'t Answer Bench (DNA Bench), a new benchmark designed to evaluate LLMs ability to robustly understand the tricky reasoning triggers and avoiding unnecessary generation. DNA Bench consists of 150 adversarially designed prompts that are easy for humans to understand and respond to, but surprisingly not for many of the recent prominent LLMs. DNA Bench tests models abilities across different capabilities, such as instruction adherence, hallucination avoidance, redundancy filtering, and unanswerable question recognition. We evaluate reasoning LLMs (RLMs), including DeepSeek-R1, OpenAI O3-mini, Claude-3.7-sonnet and compare them against a powerful non-reasoning model, e.g., GPT-4o. Our experiments reveal that RLMs generate up to 70x more tokens than necessary, often failing at tasks that simpler non-reasoning models handle efficiently with higher accuracy. Our findings underscore the need for more effective training and inference strategies in RLMs.
♻ ☆ Atom of Thoughts for Markov LLM Test-Time Scaling
Large Language Models (LLMs) achieve superior performance through training-time scaling, and test-time scaling further enhances their capabilities by conducting effective reasoning during inference. However, as the scale of reasoning increases, existing test-time scaling methods suffer from accumulated historical information, which not only wastes computational resources but also interferes with effective reasoning. To address this issue, we observe that complex reasoning can be achieved by solving a series of independent and self-contained subquestions. These subquestions are essentially \textit{atomic questions}, exhibiting the memoryless property similar to Markov processes. Based on this observation, we propose Atom of Thoughts (\our), where each state transition consists of decomposing the current question into a dependency-based directed acyclic graph and contracting its subquestions, forming a simplified question that maintains answer equivalence with the original problem. This answer preservation enables the iterative \textit{decomposition-contraction} process to naturally form a meaningful Markov reasoning process. Furthermore, these atomic states can be seamlessly integrated into existing test-time scaling methods, enabling \our to serve as a plug-in enhancement for improving reasoning capabilities. Experiments across six benchmarks demonstrate the effectiveness of \our both as a standalone framework and a plug-in enhancement. Notably, on HotpotQA, when applied to gpt-4o-mini, \our achieves an \textbf{80.6\%} F1 score, surpassing o3-mini by \textbf{3.4\%} and DeepSeek-R1 by \textbf{10.6\%}. The code is available at \href{https://github.com/qixucen/atom}{https://github.com/qixucen/atom}.
♻ ☆ The Representational Status of Deep Learning Models
This paper aims to clarify the representational status of Deep Learning Models (DLMs). While commonly referred to as 'representations', what this entails is ambiguous due to a conflation of functional and relational conceptions of representation. This paper argues that while DLMs represent their targets in a relational sense, in general, we have no good reason to believe that DLMs encode locally semantically decomposable representations of their targets. That is, the representational capacity these models have is largely global, rather than decomposable into stable, local subrepresentations. This result has immediate implications for explainable AI (XAI) and directs attention toward exploring the global relational nature of deep learning representations and their relationship both to models more generally to understand their potential role in future scientific inquiry.
comment: 18 pages, 1 figure
♻ ☆ Confidence Intervals for Performance Estimates in Brain MRI Segmentation
Medical segmentation models are evaluated empirically. As such an evaluation is based on a limited set of example images, it is unavoidably noisy. Beyond a mean performance measure, reporting confidence intervals is thus crucial. However, this is rarely done in medical image segmentation. The width of the confidence interval depends on the test set size and on the spread of the performance measure (its standard-deviation across the test set). For classification, many test images are needed to avoid wide confidence intervals. Segmentation, however, has not been studied, and it differs by the amount of information brought by a given test image. In this paper, we study the typical confidence intervals in the context of segmentation in 3D brain magnetic resonance imaging (MRI). We carry experiments on using the standard nnU-net framework, two datasets from the Medical Decathlon challenge that concern brain MRI (hippocampus and brain tumor segmentation) and two performance measures: the Dice Similarity Coefficient and the Hausdorff distance. We show that the parametric confidence intervals are reasonable approximations of the bootstrap estimates for varying test set sizes and spread of the performance metric. Importantly, we show that the test size needed to achieve a given precision is often much lower than for classification tasks. Typically, a 1\% wide confidence interval requires about 100-200 test samples when the spread is low (standard-deviation around 3\%). More difficult segmentation tasks may lead to higher spreads and require over 1000 samples.
♻ ☆ Explaining the Impact of Training on Vision Models via Activation Clustering
This paper introduces Neuro-Activated Vision Explanations (NAVE), a method for extracting and visualizing the internal representations of vision model encoders. By clustering feature activations, NAVE provides insights into learned semantics without fine-tuning. Using object localization, we show that NAVE's concepts align with image semantics. Through extensive experiments, we analyze the impact of training strategies and architectures on encoder representation capabilities. Additionally, we apply NAVE to study training artifacts in vision transformers and reveal how weak training strategies and spurious correlations degrade model performance. Our findings establish NAVE as a valuable tool for post-hoc model inspection and improving transparency in vision models.
♻ ☆ BADTV: Unveiling Backdoor Threats in Third-Party Task Vectors
Task arithmetic in large-scale pre-trained models enables agile adaptation to diverse downstream tasks without extensive retraining. By leveraging task vectors (TVs), users can perform modular updates through simple arithmetic operations like addition and subtraction. Yet, this flexibility presents new security challenges. In this paper, we investigate how TVs are vulnerable to backdoor attacks, revealing how malicious actors can exploit them to compromise model integrity. By creating composite backdoors that are designed asymmetrically, we introduce BadTV, a backdoor attack specifically crafted to remain effective simultaneously under task learning, forgetting, and analogy operations. Extensive experiments show that BadTV achieves near-perfect attack success rates across diverse scenarios, posing a serious threat to models relying on task arithmetic. We also evaluate current defenses, finding they fail to detect or mitigate BadTV. Our results highlight the urgent need for robust countermeasures to secure TVs in real-world deployments.
♻ ☆ Convergence of Policy Mirror Descent Beyond Compatible Function Approximation
Modern policy optimization methods roughly follow the policy mirror descent (PMD) algorithmic template, for which there are by now numerous theoretical convergence results. However, most of these either target tabular environments, or can be applied effectively only when the class of policies being optimized over satisfies strong closure conditions, which is typically not the case when working with parametric policy classes in large-scale environments. In this work, we develop a theoretical framework for PMD for general policy classes where we replace the closure conditions with a strictly weaker variational gradient dominance assumption, and obtain upper bounds on the rate of convergence to the best-in-class policy. Our main result leverages a novel notion of smoothness with respect to a local norm induced by the occupancy measure of the current policy, and casts PMD as a particular instance of smooth non-convex optimization in non-Euclidean space.
♻ ☆ FALCON: Feedback-driven Adaptive Long/short-term memory reinforced Coding Optimization system
Recently, large language models (LLMs) have achieved significant progress in automated code generation. Despite their strong instruction-following capabilities, these models frequently struggled to align with user intent in coding scenarios. In particular, they were hampered by datasets that lacked diversity and failed to address specialized tasks or edge cases. Furthermore, challenges in supervised fine-tuning (SFT) and reinforcement learning from human feedback (RLHF) led to failures in generating precise, human-intent-aligned code. To tackle these challenges and improve the code generation performance for automated programming systems, we propose Feedback-driven Adaptive Long/short-term memory reinforced Coding Optimization (i.e., FALCON). FALCON is structured into two hierarchical levels. From the global level, long-term memory improves code quality by retaining and applying learned knowledge. At the local level, short-term memory allows for the incorporation of immediate feedback from compilers and AI systems. Additionally, we introduce meta-reinforcement learning with feedback rewards to solve the global-local bi-level optimization problem and enhance the model's adaptability across diverse code generation tasks. Extensive experiments demonstrate that our technique achieves state-of-the-art performance, leading other reinforcement learning methods by more than 4.5 percentage points on the MBPP benchmark and 6.1 percentage points on the Humaneval benchmark. The open-sourced code is publicly available at https://github.com/titurte/FALCON.
comment: 20 pages, 7 figures
♻ ☆ Trajectory Imputation in Multi-Agent Sports with Derivative-Accumulating Self-Ensemble
Multi-agent trajectory data collected from domains such as team sports often suffer from missing values due to various factors. While many imputation methods have been proposed for spatiotemporal data, they are not well-suited for multi-agent sports scenarios where player movements are highly dynamic and inter-agent interactions continuously evolve. To address these challenges, we propose MIDAS (Multi-agent Imputer with Derivative-Accumulating Self-ensemble), a framework that imputes multi-agent trajectories with high accuracy and physical plausibility. It jointly predicts positions, velocities, and accelerations through a Set Transformer-based neural network and generates alternative estimates by recursively accumulating predicted velocity and acceleration values. These predictions are then combined using a learnable weighted ensemble to produce final imputed trajectories. Experiments on three sports datasets demonstrate that MIDAS significantly outperforms existing baselines in both positional accuracy and physical plausibility. Lastly, we showcase use cases of MIDAS, such as approximating total distance and pass success probability, to highlight its applicability to practical downstream tasks that require complete tracking data.
♻ ☆ Inductive Moment Matching
Diffusion models and Flow Matching generate high-quality samples but are slow at inference, and distilling them into few-step models often leads to instability and extensive tuning. To resolve these trade-offs, we propose Inductive Moment Matching (IMM), a new class of generative models for one- or few-step sampling with a single-stage training procedure. Unlike distillation, IMM does not require pre-training initialization and optimization of two networks; and unlike Consistency Models, IMM guarantees distribution-level convergence and remains stable under various hyperparameters and standard model architectures. IMM surpasses diffusion models on ImageNet-256x256 with 1.99 FID using only 8 inference steps and achieves state-of-the-art 2-step FID of 1.98 on CIFAR-10 for a model trained from scratch.
♻ ☆ SVGFusion: Scalable Text-to-SVG Generation via Vector Space Diffusion
In this work, we introduce SVGFusion, a Text-to-SVG model capable of scaling to real-world SVG data without relying on text-based discrete language models or prolonged Score Distillation Sampling (SDS) optimization. The core idea of SVGFusion is to utilize a popular Text-to-Image framework to learn a continuous latent space for vector graphics. Specifically, SVGFusion comprises two key modules: a Vector-Pixel Fusion Variational Autoencoder (VP-VAE) and a Vector Space Diffusion Transformer (VS-DiT). The VP-VAE processes both SVG codes and their corresponding rasterizations to learn a continuous latent space, while the VS-DiT generates latent codes within this space based on the input text prompt. Building on the VP-VAE, we propose a novel rendering sequence modeling strategy which enables the learned latent space to capture the inherent creation logic of SVGs. This allows the model to generate SVGs with higher visual quality and more logical construction, while systematically avoiding occlusion in complex graphic compositions. Additionally, the scalability of SVGFusion can be continuously enhanced by adding more VS-DiT blocks. To effectively train and evaluate SVGFusion, we construct SVGX-Dataset, a large-scale, high-quality SVG dataset that addresses the scarcity of high-quality vector data. Extensive experiments demonstrate the superiority of SVGFusion over existing SVG generation methods, establishing a new framework for SVG content creation. Code, model, and data will be released at: https://ximinng.github.io/SVGFusionProject/
comment: project page: https://ximinng.github.io/SVGFusionProject/
♻ ☆ SCULPT: Systematic Tuning of Long Prompts
Prompt optimization is essential for effective utilization of large language models (LLMs) across diverse tasks. While existing optimization methods are effective in optimizing short prompts, they struggle with longer, more complex ones, often risking information loss and being sensitive to small perturbations. To address these challenges, we propose SCULPT (Systematic Tuning of Long Prompts), a framework that treats prompt optimization as a hierarchical tree refinement problem. SCULPT represents prompts as tree structures, enabling targeted modifications while preserving contextual integrity. It employs a Critic-Actor framework that generates reflections and applies actions to refine the prompt. Evaluations demonstrate SCULPT's effectiveness on long prompts, its robustness to adversarial perturbations, and its ability to generate high-performing prompts even without any initial human-written prompt. Compared to existing state of the art methods, SCULPT consistently improves LLM performance by preserving essential task information while applying structured refinements. Both qualitative and quantitative analyses show that SCULPT produces more stable and interpretable prompt modifications, ensuring better generalization across tasks.
♻ ☆ ModeSeq: Taming Sparse Multimodal Motion Prediction with Sequential Mode Modeling CVPR 2025
Anticipating the multimodality of future events lays the foundation for safe autonomous driving. However, multimodal motion prediction for traffic agents has been clouded by the lack of multimodal ground truth. Existing works predominantly adopt the winner-take-all training strategy to tackle this challenge, yet still suffer from limited trajectory diversity and uncalibrated mode confidence. While some approaches address these limitations by generating excessive trajectory candidates, they necessitate a post-processing stage to identify the most representative modes, a process lacking universal principles and compromising trajectory accuracy. We are thus motivated to introduce ModeSeq, a new multimodal prediction paradigm that models modes as sequences. Unlike the common practice of decoding multiple plausible trajectories in one shot, ModeSeq requires motion decoders to infer the next mode step by step, thereby more explicitly capturing the correlation between modes and significantly enhancing the ability to reason about multimodality. Leveraging the inductive bias of sequential mode prediction, we also propose the Early-Match-Take-All (EMTA) training strategy to diversify the trajectories further. Without relying on dense mode prediction or heuristic post-processing, ModeSeq considerably improves the diversity of multimodal output while attaining satisfactory trajectory accuracy, resulting in balanced performance on motion prediction benchmarks. Moreover, ModeSeq naturally emerges with the capability of mode extrapolation, which supports forecasting more behavior modes when the future is highly uncertain.
comment: CVPR 2025
♻ ☆ Fast MLE and MAPE-Based Device Activity Detection for Grant-Free Access via PSCA and PSCA-Net
Fast and accurate device activity detection is the critical challenge in grant-free access for supporting massive machine-type communications (mMTC) and ultra-reliable low-latency communications (URLLC) in 5G and beyond. The state-of-the-art methods have unsatisfactory error rates or computation times. To address these outstanding issues, we propose new maximum likelihood estimation (MLE) and maximum a posterior estimation (MAPE) based device activity detection methods for known and unknown pathloss that achieve superior error rate and computation time tradeoffs using optimization and deep learning techniques. Specifically, we investigate four non-convex optimization problems for MLE and MAPE in the two pathloss cases, with one MAPE problem being formulated for the first time. For each non-convex problem, we develop an innovative parallel iterative algorithm using the parallel successive convex approximation (PSCA) method. Each PSCA-based algorithm allows parallel computations, uses up to the objective function's second-order information, converges to the problem's stationary points, and has a low per-iteration computational complexity compared to the state-of-the-art algorithms. Then, for each PSCA-based iterative algorithm, we present a deep unrolling neural network implementation, called PSCA-Net, to further reduce the computation time. Each PSCA-Net elegantly marries the underlying PSCA-based algorithm's parallel computation mechanism with the parallelizable neural network architecture and effectively optimizes its step sizes based on vast data samples to speed up the convergence. Numerical results demonstrate that the proposed methods can significantly reduce the error rate and computation time compared to the state-of-the-art methods, revealing their significant values for grant-free access.
♻ ☆ Training Multi-Layer Binary Neural Networks With Local Binary Error Signals
Binary Neural Networks (BNNs) significantly reduce computational complexity and memory usage in machine and deep learning by representing weights and activations with just one bit. However, most existing training algorithms for BNNs rely on quantization-aware floating-point Stochastic Gradient Descent (SGD), limiting the full exploitation of binary operations to the inference phase only. In this work, we propose, for the first time, a fully binary and gradient-free training algorithm for multi-layer BNNs, eliminating the need for back-propagated floating-point gradients. Specifically, the proposed algorithm relies on local binary error signals and binary weight updates, employing integer-valued hidden weights that serve as a synaptic metaplasticity mechanism, thereby enhancing its neurobiological plausibility. The fully binary and gradient-free algorithm introduced in this paper enables the training of binary multi-layer perceptrons with binary inputs, weights, and activations, by using exclusively XNOR, Popcount, and increment/decrement operations. Experimental results on multi-class classification benchmarks show test accuracy improvements of up to +35.47% over the only existing fully binary single-layer state-of-the-art solution. Compared to full-precision SGD, our solution improves test accuracy by up to +41.31% under the same total memory demand$\unicode{x2013}$including the model, activations, and input dataset$\unicode{x2013}$while also reducing computational cost by two orders of magnitude in terms of the total number of equivalent Boolean gates. The proposed algorithm is made available to the scientific community as a public repository.
♻ ☆ Certifiably Robust Policies for Uncertain Parametric Environments
We present a data-driven approach for producing policies that are provably robust across unknown stochastic environments. Existing approaches can learn models of a single environment as an interval Markov decision processes (IMDP) and produce a robust policy with a probably approximately correct (PAC) guarantee on its performance. However these are unable to reason about the impact of environmental parameters underlying the uncertainty. We propose a framework based on parametric Markov decision processes (MDPs) with unknown distributions over parameters. We learn and analyse IMDPs for a set of unknown sample environments induced by parameters. The key challenge is then to produce meaningful performance guarantees that combine the two layers of uncertainty: (1) multiple environments induced by parameters with an unknown distribution; (2) unknown induced environments which are approximated by IMDPs. We present a novel approach based on scenario optimisation that yields a single PAC guarantee quantifying the risk level for which a specified performance level can be assured in unseen environments, plus a means to trade-off risk and performance. We implement and evaluate our framework using multiple robust policy generation methods on a range of benchmarks. We show that our approach produces tight bounds on a policy's performance with high confidence.
♻ ☆ Best Arm Identification with Resource Constraints
Motivated by the cost heterogeneity in experimentation across different alternatives, we study the Best Arm Identification with Resource Constraints (BAIwRC) problem. The agent aims to identify the best arm under resource constraints, where resources are consumed for each arm pull. We make two novel contributions. We design and analyze the Successive Halving with Resource Rationing algorithm (SH-RR). The SH-RR achieves a near-optimal non-asymptotic rate of convergence in terms of the probability of successively identifying an optimal arm. Interestingly, we identify a difference in convergence rates between the cases of deterministic and stochastic resource consumption.
♻ ☆ Energy-Based Model for Accurate Estimation of Shapley Values in Feature Attribution
Shapley value is a widely used tool in explainable artificial intelligence (XAI), as it provides a principled way to attribute contributions of input features to model outputs. However, estimation of Shapley value requires capturing conditional dependencies among all feature combinations, which poses significant challenges in complex data environments. In this article, EmSHAP (Energy-based model for Shapley value estimation), an accurate and efficient Shapley value estimation method, is proposed to estimate the expectation of Shapley contribution function under the arbitrary subset of features given the rest. By utilizing the ability of energy-based model (EBM) to model complex distributions, EmSHAP provides an effective solution for estimating the required conditional probabilities. To further improve estimation accuracy, a GRU (Gated Recurrent Unit)-coupled partition function estimation method is introduced. The GRU network captures long-term dependencies with a lightweight parameterization and maps input features into a latent space to mitigate the influence of feature ordering. Additionally, a dynamic masking mechanism is incorporated to further enhance the robustness and accuracy by progressively increasing the masking rate. Theoretical analysis on the error bound as well as application to four case studies verified the higher accuracy and better scalability of EmSHAP in contrast to competitive methods.
♻ ☆ Credit Risk Meets Large Language Models: Building a Risk Indicator from Loan Descriptions in P2P Lending
Peer-to-peer (P2P) lending connects borrowers and lenders through online platforms but suffers from significant information asymmetry, as lenders often lack sufficient data to assess borrowers' creditworthiness. This paper addresses this challenge by leveraging BERT, a Large Language Model (LLM) known for its ability to capture contextual nuances in text, to generate a risk score based on borrowers' loan descriptions using a dataset from the Lending Club platform. We fine-tune BERT to distinguish between defaulted and non-defaulted loans using the loan descriptions provided by the borrowers. The resulting BERT-generated risk score is then integrated as an additional feature into an XGBoost classifier used at the loan granting stage, where decision-makers have limited information available to guide their decisions. This integration enhances predictive performance, with improvements in balanced accuracy and AUC, highlighting the value of textual features in complementing traditional inputs. Moreover, we find that the incorporation of the BERT score alters how classification models utilize traditional input variables, with these changes varying by loan purpose. These findings suggest that BERT discerns meaningful patterns in loan descriptions, encompassing borrower-specific features, specific purposes, and linguistic characteristics. However, the inherent opacity of LLMs and their potential biases underscore the need for transparent frameworks to ensure regulatory compliance and foster trust. Overall, this study demonstrates how LLM-derived insights interact with traditional features in credit risk modeling, opening new avenues to enhance the explainability and fairness of these models.
♻ ☆ Diffusion-Driven Semantic Communication for Generative Models with Bandwidth Constraints
Diffusion models have been extensively utilized in AI-generated content (AIGC) in recent years, thanks to the superior generation capabilities. Combining with semantic communications, diffusion models are used for tasks such as denoising, data reconstruction, and content generation. However, existing diffusion-based generative models do not consider the stringent bandwidth limitation, which limits its application in wireless communication. This paper introduces a diffusion-driven semantic communication framework with advanced VAE-based compression for bandwidth-constrained generative model. Our designed architecture utilizes the diffusion model, where the signal transmission process through the wireless channel acts as the forward process in diffusion. To reduce bandwidth requirements, we incorporate a downsampling module and a paired upsampling module based on a variational auto-encoder with reparameterization at the receiver to ensure that the recovered features conform to the Gaussian distribution. Furthermore, we derive the loss function for our proposed system and evaluate its performance through comprehensive experiments. Our experimental results demonstrate significant improvements in pixel-level metrics such as peak signal to noise ratio (PSNR) and semantic metrics like learned perceptual image patch similarity (LPIPS). These enhancements are more profound regarding the compression rates and SNR compared to deep joint source-channel coding (DJSCC).
comment: accepted to IEEE for possible publication
♻ ☆ SupReMix: Supervised Contrastive Learning for Medical Imaging Regression with Mixup
In medical image analysis, regression plays a critical role in computer-aided diagnosis. It enables quantitative measurements such as age prediction from structural imaging, cardiac function quantification, and molecular measurement from PET scans. While deep learning has shown promise for these tasks, most approaches focus solely on optimizing regression loss or model architecture, neglecting the quality of learned feature representations which are crucial for robust clinical predictions. Directly applying representation learning techniques designed for classification to regression often results in fragmented representations in the latent space, yielding sub-optimal performance. In this paper, we argue that the potential of contrastive learning for medical image regression has been overshadowed due to the neglect of two crucial aspects: ordinality-awareness and hardness. To address these challenges, we propose Supervised Contrastive Learning for Medical Imaging Regression with Mixup (SupReMix). It takes anchor-inclusive mixtures (mixup of the anchor and a distinct negative sample) as hard negative pairs and anchor-exclusive mixtures (mixup of two distinct negative samples) as hard positive pairs at the embedding level. This strategy formulates harder contrastive pairs by integrating richer ordinal information. Through theoretical analysis and extensive experiments on six datasets spanning MRI, X-ray, ultrasound, and PET modalities, we demonstrate that SupReMix fosters continuous ordered representations, significantly improving regression performance.
comment: The first two authors equally contributed to this work. Previously titled "Mixup Your Own Pair", content extended and revised
♻ ☆ Are Images Indistinguishable to Humans Also Indistinguishable to Classifiers? CVPR 2025
The ultimate goal of generative models is to perfectly capture the data distribution. For image generation, common metrics of visual quality (e.g., FID) and the perceived truthfulness of generated images seem to suggest that we are nearing this goal. However, through distribution classification tasks, we reveal that, from the perspective of neural network-based classifiers, even advanced diffusion models are still far from this goal. Specifically, classifiers are able to consistently and effortlessly distinguish real images from generated ones across various settings. Moreover, we uncover an intriguing discrepancy: classifiers can easily differentiate between diffusion models with comparable performance (e.g., U-ViT-H vs. DiT-XL), but struggle to distinguish between models within the same family but of different scales (e.g., EDM2-XS vs. EDM2-XXL). Our methodology carries several important implications. First, it naturally serves as a diagnostic tool for diffusion models by analyzing specific features of generated data. Second, it sheds light on the model autophagy disorder and offers insights into the use of generated data: augmenting real data with generated data is more effective than replacing it. Third, classifier guidance can significantly enhance the realism of generated images.
comment: Accepted to CVPR 2025
♻ ☆ Optical-Flow Guided Prompt Optimization for Coherent Video Generation CVPR 2025
While text-to-video diffusion models have made significant strides, many still face challenges in generating videos with temporal consistency. Within diffusion frameworks, guidance techniques have proven effective in enhancing output quality during inference; however, applying these methods to video diffusion models introduces additional complexity of handling computations across entire sequences. To address this, we propose a novel framework called MotionPrompt that guides the video generation process via optical flow. Specifically, we train a discriminator to distinguish optical flow between random pairs of frames from real videos and generated ones. Given that prompts can influence the entire video, we optimize learnable token embeddings during reverse sampling steps by using gradients from a trained discriminator applied to random frame pairs. This approach allows our method to generate visually coherent video sequences that closely reflect natural motion dynamics, without compromising the fidelity of the generated content. We demonstrate the effectiveness of our approach across various models.
comment: CVPR 2025 (poster); project page: https://motionprompt.github.io/
♻ ☆ Effective and Efficient Masked Image Generation Models
Although masked image generation models and masked diffusion models are designed with different motivations and objectives, we observe that they can be unified within a single framework. Building upon this insight, we carefully explore the design space of training and sampling, identifying key factors that contribute to both performance and efficiency. Based on the improvements observed during this exploration, we develop our model, referred to as eMIGM. Empirically, eMIGM demonstrates strong performance on ImageNet generation, as measured by Fr\'echet Inception Distance (FID). In particular, on ImageNet 256x256, with similar number of function evaluations (NFEs) and model parameters, eMIGM outperforms the seminal VAR. Moreover, as NFE and model parameters increase, eMIGM achieves performance comparable to the state-of-the-art continuous diffusion models while requiring less than 40% of the NFE. Additionally, on ImageNet 512x512, with only about 60% of the NFE, eMIGM outperforms the state-of-the-art continuous diffusion models. Code is available at https://github.com/ML-GSAI/eMIGM.
♻ ☆ MAB-Based Channel Scheduling for Asynchronous Federated Learning in Non-Stationary Environments
Federated learning enables distributed model training across clients without raw data exchange, but in wireless implementations, frequent parameter updates cause high communication overhead. Existing research often assumes known channel state information (CSI) or stationary channels, though practical wireless channels are non-stationary due to fading, user mobility, and attacks, leading to unpredictable transmission failures and exacerbating client staleness, which hampers model convergence. To tackle these challenges, we propose an asynchronous federated learning scheduling framework for non-stationary channels that aims to reduce client staleness while enhancing communication efficiency and fairness. Our framework considers two scenarios: extremely non-stationary and piecewise-stationary channels. Age of Information (AoI) quantifies client staleness under these conditions. We conduct convergence analysis to examine the impact of AoI and per-round client participation on learning performance and formulate the scheduling problem as a multi-armed bandit (MAB) problem. We derive theoretical lower bounds on AoI regret and develop scheduling strategies based on GLR-CUCB and M-exp3 algorithms, including upper bounds on AoI regret. To address imbalanced client updates, we propose an adaptive matching strategy that incorporates marginal utility and fairness considerations. Simulation results show that our algorithm achieves sub-linear AoI regret, accelerates convergence, and promotes fairer aggregation.
♻ ☆ Knowledge Rumination for Client Utility Evaluation in Heterogeneous Federated Learning
Federated Learning (FL) allows several clients to cooperatively train machine learning models without disclosing the raw data. In practical applications, asynchronous FL (AFL) can address the straggler effect compared to synchronous FL. However, Non-IID data and stale models pose significant challenges to AFL, as they can diminish the practicality of the global model and even lead to training failures. In this work, we propose a novel AFL framework called Federated Historical Learning (FedHist), which effectively addresses the challenges posed by both Non-IID data and gradient staleness based on the concept of knowledge rumination. FedHist enhances the stability of local gradients by performing weighted fusion with historical global gradients cached on the server. Relying on hindsight, it assigns aggregation weights to each participant in a multi-dimensional manner during each communication round. To further enhance the efficiency and stability of the training process, we introduce an intelligent $\ell_2$-norm amplification scheme, which dynamically regulates the learning progress based on the $\ell_2$-norms of the submitted gradients. Extensive experiments indicate FedHist outperforms state-of-the-art methods in terms of convergence performance and test accuracy.
♻ ☆ Physics-Aware Combinatorial Assembly Sequence Planning using Data-free Action Masking
Combinatorial assembly uses standardized unit primitives to build objects that satisfy user specifications. This paper studies assembly sequence planning (ASP) for physical combinatorial assembly. Given the shape of the desired object, the goal is to find a sequence of actions for placing unit primitives to build the target object. In particular, we aim to ensure the planned assembly sequence is physically executable. However, ASP for combinatorial assembly is particularly challenging due to its combinatorial nature. To address the challenge, we employ deep reinforcement learning to learn a construction policy for placing unit primitives sequentially to build the desired object. Specifically, we design an online physics-aware action mask that filters out invalid actions, which effectively guides policy learning and ensures violation-free deployment. In the end, we apply the proposed method to Lego assembly with more than 250 3D structures. The experiment results demonstrate that the proposed method plans physically valid assembly sequences to build all structures, achieving a $100\%$ success rate, whereas the best comparable baseline fails more than $40$ structures. Our implementation is available at \url{https://github.com/intelligent-control-lab/PhysicsAwareCombinatorialASP}.
♻ ☆ DPFAGA-Dynamic Power Flow Analysis and Fault Characteristics: A Graph Attention Neural Network
We propose the joint graph attention neural network (GAT), clustering with adaptive neighbors (CAN) and probabilistic graphical model for dynamic power flow analysis and fault characteristics. In fact, computational efficiency is the main focus to enhance, whilst we ensure the performance accuracy at the accepted level. Note that Machine Learning (ML) based schemes have a requirement of sufficient labeled data during training, which is not easily satisfied in practical applications. Also, there are unknown data due to new arrived measurements or incompatible smart devices in complex smart grid systems. These problems would be resolved by our proposed GAT based framework, which models the label dependency between the network data and learns object representations such that it could achieve the semi-supervised fault diagnosis. To create the joint label dependency, we develop the graph construction from the raw acquired signals by using CAN. Next, we develop the probabilistic graphical model of Markov random field for graph representation, which supports for the GAT based framework. We then evaluate the proposed framework in the use-case application in smart grid and make a fair comparison to the existing methods.
comment: The 2025 International Conference on the AI Revolution: Research, Ethics, and Society (AIR-RES 2025)
♻ ☆ Exploring the Limits of Zero Shot Vision Language Models for Hate Meme Detection: The Vulnerabilities and their Interpretations
There is a rapid increase in the use of multimedia content in current social media platforms. One of the highly popular forms of such multimedia content are memes. While memes have been primarily invented to promote funny and buoyant discussions, malevolent users exploit memes to target individuals or vulnerable communities, making it imperative to identify and address such instances of hateful memes. Thus social media platforms are in dire need for active moderation of such harmful content. While manual moderation is extremely difficult due to the scale of such content, automatic moderation is challenged by the need of good quality annotated data to train hate meme detection algorithms. This makes a perfect pretext for exploring the power of modern day vision language models (VLMs) that have exhibited outstanding performance across various tasks. In this paper we study the effectiveness of VLMs in handling intricate tasks such as hate meme detection in a completely zero-shot setting so that there is no dependency on annotated data for the task. We perform thorough prompt engineering and query state-of-the-art VLMs using various prompt types to detect hateful/harmful memes. We further interpret the misclassification cases using a novel superpixel based occlusion method. Finally we show that these misclassifications can be neatly arranged into a typology of error classes the knowledge of which should enable the design of better safety guardrails in future.
♻ ☆ DexDiffuser: Interaction-aware Diffusion Planning for Adaptive Dexterous Manipulation
Dexterous manipulation with contact-rich interactions is crucial for advanced robotics. While recent diffusion-based planning approaches show promise for simple manipulation tasks, they often produce unrealistic ghost states (e.g., the object automatically moves without hand contact) or lack adaptability when handling complex sequential interactions. In this work, we introduce DexDiffuser, an interaction-aware diffusion planning framework for adaptive dexterous manipulation. DexDiffuser models joint state-action dynamics through a dual-phase diffusion process which consists of pre-interaction contact alignment and post-contact goal-directed control, enabling goal-adaptive generalizable dexterous manipulation. Additionally, we incorporate dynamics model-based dual guidance and leverage large language models for automated guidance function generation, enhancing generalizability for physical interactions and facilitating diverse goal adaptation through language cues. Experiments on physical interaction tasks such as door opening, pen and block re-orientation, object relocation, and hammer striking demonstrate DexDiffuser's effectiveness on goals outside training distributions, achieving over twice the average success rate (59.2% vs. 29.5%) compared to existing methods. Our framework achieves an average of 70.7% success rate on goal adaptive dexterous tasks, highlighting its robustness and flexibility in contact-rich manipulation.
comment: Camera ready version. 27 pages. Project page: https://dexdiffuser.github.io/
♻ ☆ DDEQs: Distributional Deep Equilibrium Models through Wasserstein Gradient Flows AISTATS 2025
Deep Equilibrium Models (DEQs) are a class of implicit neural networks that solve for a fixed point of a neural network in their forward pass. Traditionally, DEQs take sequences as inputs, but have since been applied to a variety of data. In this work, we present Distributional Deep Equilibrium Models (DDEQs), extending DEQs to discrete measure inputs, such as sets or point clouds. We provide a theoretically grounded framework for DDEQs. Leveraging Wasserstein gradient flows, we show how the forward pass of the DEQ can be adapted to find fixed points of discrete measures under permutation-invariance, and derive adequate network architectures for DDEQs. In experiments, we show that they can compete with state-of-the-art models in tasks such as point cloud classification and point cloud completion, while being significantly more parameter-efficient.
comment: 39 pages, 17 figures. To be published in AISTATS 2025
♻ ☆ Word Sense Disambiguation in Persian: Can AI Finally Get It Right?
Homograph disambiguation, the task of distinguishing words with identical spellings but different meanings, poses a substantial challenge in natural language processing. In this study, we introduce a novel dataset tailored for Persian homograph disambiguation. Our work encompasses a thorough exploration of various embeddings, evaluated through the cosine similarity method and their efficacy in downstream tasks like classification. Our investigation entails training a diverse array of lightweight machine learning and deep learning models for phonograph disambiguation. We scrutinize the models' performance in terms of Accuracy, Recall, and F1 Score, thereby gaining insights into their respective strengths and limitations. The outcomes of our research underscore three key contributions. First, we present a newly curated Persian dataset, providing a solid foundation for future research in homograph disambiguation. Second, our comparative analysis of embeddings highlights their utility in different contexts, enriching the understanding of their capabilities. Third, by training and evaluating a spectrum of models, we extend valuable guidance for practitioners in selecting suitable strategies for homograph disambiguation tasks. In summary, our study unveils a new dataset, scrutinizes embeddings through diverse perspectives, and benchmarks various models for homograph disambiguation. These findings empower researchers and practitioners to navigate the intricate landscape of homograph-related challenges effectively.
♻ ☆ Autonomous Data Selection with Zero-shot Generative Classifiers for Mathematical Texts
We present Autonomous Data Selection (AutoDS), a method that leverages base language models themselves as zero-shot "generative classifiers" to automatically curate high-quality mathematical texts. Unlike prior approaches that require human annotations or training a dedicated data filter, AutoDS relies solely on a model's logits to determine whether a given passage is mathematically informative and educational. By integrating AutoDS into a continual pretraining pipeline, we substantially boost downstream performance on challenging math benchmarks (MATH, GSM8K, and BBH) while using far fewer tokens than previous methods. Empirically, our approach achieves roughly a twofold improvement in pretraining token efficiency over strong baselines, underscoring the potential of self-directed data selection in enhancing mathematical reasoning. We release our curated AutoMathText dataset to facilitate future research in automated domain-specific data curation. The AutoMathText dataset is available at https://huggingface.co/datasets/math-ai/AutoMathText. The code is available at https://github.com/yifanzhang-pro/AutoMathText.
comment: 24 pages, 8 figures. arXiv admin note: text overlap with arXiv:0808.2664, arXiv:0806.2159, arXiv:1703.08834, arXiv:math/0610707 by other authors
♻ ☆ Toward Conditional Distribution Calibration in Survival Prediction NeurIPS 2024
Survival prediction often involves estimating the time-to-event distribution from censored datasets. Previous approaches have focused on enhancing discrimination and marginal calibration. In this paper, we highlight the significance of conditional calibration for real-world applications -- especially its role in individual decision-making. We propose a method based on conformal prediction that uses the model's predicted individual survival probability at that instance's observed time. This method effectively improves the model's marginal and conditional calibration, without compromising discrimination. We provide asymptotic theoretical guarantees for both marginal and conditional calibration and test it extensively across 15 diverse real-world datasets, demonstrating the method's practical effectiveness and versatility in various settings.
comment: Accepted to NeurIPS 2024. 41 pages, 23 figures
Computer Vision and Pattern Recognition 1
♻ ☆ Bridging Continuous and Discrete Tokens for Autoregressive Visual Generation
Autoregressive visual generation models typically rely on tokenizers to compress images into tokens that can be predicted sequentially. A fundamental dilemma exists in token representation: discrete tokens enable straightforward modeling with standard cross-entropy loss, but suffer from information loss and tokenizer training instability; continuous tokens better preserve visual details, but require complex distribution modeling, complicating the generation pipeline. In this paper, we propose TokenBridge, which bridges this gap by maintaining the strong representation capacity of continuous tokens while preserving the modeling simplicity of discrete tokens. To achieve this, we decouple discretization from the tokenizer training process through post-training quantization that directly obtains discrete tokens from continuous representations. Specifically, we introduce a dimension-wise quantization strategy that independently discretizes each feature dimension, paired with a lightweight autoregressive prediction mechanism that efficiently model the resulting large token space. Extensive experiments show that our approach achieves reconstruction and generation quality on par with continuous methods while using standard categorical prediction. This work demonstrates that bridging discrete and continuous paradigms can effectively harness the strengths of both approaches, providing a promising direction for high-quality visual generation with simple autoregressive modeling. Project page: https://yuqingwang1029.github.io/TokenBridge.
comment: Project page: https://yuqingwang1029.github.io/TokenBridge
Machine Learning 55
☆ IceBench: A Benchmark for Deep Learning based Sea Ice Type Classification
Sea ice plays a critical role in the global climate system and maritime operations, making timely and accurate classification essential. However, traditional manual methods are time-consuming, costly, and have inherent biases. Automating sea ice type classification addresses these challenges by enabling faster, more consistent, and scalable analysis. While both traditional and deep learning approaches have been explored, deep learning models offer a promising direction for improving efficiency and consistency in sea ice classification. However, the absence of a standardized benchmark and comparative study prevents a clear consensus on the best-performing models. To bridge this gap, we introduce \textit{IceBench}, a comprehensive benchmarking framework for sea ice type classification. Our key contributions are threefold: First, we establish the IceBench benchmarking framework which leverages the existing AI4Arctic Sea Ice Challenge dataset as a standardized dataset, incorporates a comprehensive set of evaluation metrics, and includes representative models from the entire spectrum of sea ice type classification methods categorized in two distinct groups, namely, pixel-based classification methods and patch-based classification methods. IceBench is open-source and allows for convenient integration and evaluation of other sea ice type classification methods; hence, facilitating comparative evaluation of new methods and improving reproducibility in the field. Second, we conduct an in-depth comparative study on representative models to assess their strengths and limitations, providing insights for both practitioners and researchers. Third, we leverage IceBench for systematic experiments addressing key research questions on model transferability across seasons (time) and locations (space), data downscaling, and preprocessing strategies.
☆ Accelerating and enhancing thermodynamic simulations of electrochemical interfaces
Electrochemical interfaces are crucial in catalysis, energy storage, and corrosion, where their stability and reactivity depend on complex interactions between the electrode, adsorbates, and electrolyte. Predicting stable surface structures remains challenging, as traditional surface Pourbaix diagrams tend to either rely on expert knowledge or costly $\textit{ab initio}$ sampling, and neglect thermodynamic equilibration with the environment. Machine learning (ML) potentials can accelerate static modeling but often overlook dynamic surface transformations. Here, we extend the Virtual Surface Site Relaxation-Monte Carlo (VSSR-MC) method to autonomously sample surface reconstructions modeled under aqueous electrochemical conditions. Through fine-tuning foundational ML force fields, we accurately and efficiently predict surface energetics, recovering known Pt(111) phases and revealing new LaMnO$_\mathrm{3}$(001) surface reconstructions. By explicitly accounting for bulk-electrolyte equilibria, our framework enhances electrochemical stability predictions, offering a scalable approach to understanding and designing materials for electrochemical applications.
comment: 19 pages main text, 5 figures, supplementary information (SI) in ancillary files
☆ Detecting and Mitigating DDoS Attacks with AI: A Survey
Distributed Denial of Service attacks represent an active cybersecurity research problem. Recent research shifted from static rule-based defenses towards AI-based detection and mitigation. This comprehensive survey covers several key topics. Preeminently, state-of-the-art AI detection methods are discussed. An in-depth taxonomy based on manual expert hierarchies and an AI-generated dendrogram are provided, thus settling DDoS categorization ambiguities. An important discussion on available datasets follows, covering data format options and their role in training AI detection methods together with adversarial training and examples augmentation. Beyond detection, AI based mitigation techniques are surveyed as well. Finally, multiple open research directions are proposed.
☆ Understanding Inverse Reinforcement Learning under Overparameterization: Non-Asymptotic Analysis and Global Optimality
The goal of the Inverse reinforcement learning (IRL) task is to identify the underlying reward function and the corresponding optimal policy from a set of expert demonstrations. While most IRL algorithms' theoretical guarantees rely on a linear reward structure, we aim to extend the theoretical understanding of IRL to scenarios where the reward function is parameterized by neural networks. Meanwhile, conventional IRL algorithms usually adopt a nested structure, leading to computational inefficiency, especially in high-dimensional settings. To address this problem, we propose the first two-timescale single-loop IRL algorithm under neural network parameterized reward and provide a non-asymptotic convergence analysis under overparameterization. Although prior optimality results for linear rewards do not apply, we show that our algorithm can identify the globally optimal reward and policy under certain neural network structures. This is the first IRL algorithm with a non-asymptotic convergence guarantee that provably achieves global optimality in neural network settings.
☆ A novel gradient-based method for decision trees optimizing arbitrary differential loss functions
There are many approaches for training decision trees. This work introduces a novel gradient-based method for constructing decision trees that optimize arbitrary differentiable loss functions, overcoming the limitations of heuristic splitting rules. Unlike traditional approaches that rely on heuristic splitting rules, the proposed method refines predictions using the first and second derivatives of the loss function, enabling the optimization of complex tasks such as classification, regression, and survival analysis. We demonstrate the method's applicability to classification, regression, and survival analysis tasks, including those with censored data. Numerical experiments on both real and synthetic datasets compare the proposed method with traditional decision tree algorithms, such as CART, Extremely Randomized Trees, and SurvTree. The implementation of the method is publicly available, providing a practical tool for researchers and practitioners. This work advances the field of decision tree-based modeling, offering a more flexible and accurate approach for handling structured data and complex tasks. By leveraging gradient-based optimization, the proposed method bridges the gap between traditional decision trees and modern machine learning techniques, paving the way for further innovations in interpretable and high-performing models.
☆ Graphical Transformation Models
Graphical Transformation Models (GTMs) are introduced as a novel approach to effectively model multivariate data with intricate marginals and complex dependency structures non-parametrically, while maintaining interpretability through the identification of varying conditional independencies. GTMs extend multivariate transformation models by replacing the Gaussian copula with a custom-designed multivariate transformation, offering two major advantages. Firstly, GTMs can capture more complex interdependencies using penalized splines, which also provide an efficient regularization scheme. Secondly, we demonstrate how to approximately regularize GTMs using a lasso penalty towards pairwise conditional independencies, akin to Gaussian graphical models. The model's robustness and effectiveness are validated through simulations, showcasing its ability to accurately learn parametric vine copulas and identify conditional independencies. Additionally, the model is applied to a benchmark astrophysics dataset, where the GTM demonstrates favorable performance compared to non-parametric vine copulas in learning complex multivariate distributions.
comment: 36 pages, 10 Figures, presented at the DAGStat 2025 in Berlin
☆ Adapt, Agree, Aggregate: Semi-Supervised Ensemble Labeling for Graph Convolutional Networks
In this paper, we propose a novel framework that combines ensemble learning with augmented graph structures to improve the performance and robustness of semi-supervised node classification in graphs. By creating multiple augmented views of the same graph, our approach harnesses the "wisdom of a diverse crowd", mitigating the challenges posed by noisy graph structures. Leveraging ensemble learning allows us to simultaneously achieve three key goals: adaptive confidence threshold selection based on model agreement, dynamic determination of the number of high-confidence samples for training, and robust extraction of pseudo-labels to mitigate confirmation bias. Our approach uniquely integrates adaptive ensemble consensus to flexibly guide pseudo-label extraction and sample selection, reducing the risks of error accumulation and improving robustness. Furthermore, the use of ensemble-driven consensus for pseudo-labeling captures subtle patterns that individual models often overlook, enabling the model to generalize better. Experiments on several real-world datasets demonstrate the effectiveness of our proposed method.
☆ On the Minimax Regret of Sequential Probability Assignment via Square-Root Entropy
We study the problem of sequential probability assignment under logarithmic loss, both with and without side information. Our objective is to analyze the minimax regret -- a notion extensively studied in the literature -- in terms of geometric quantities, such as covering numbers and scale-sensitive dimensions. We show that the minimax regret for the case of no side information (equivalently, the Shtarkov sum) can be upper bounded in terms of sequential square-root entropy, a notion closely related to Hellinger distance. For the problem of sequential probability assignment with side information, we develop both upper and lower bounds based on the aforementioned entropy. The lower bound matches the upper bound, up to log factors, for classes in the Donsker regime (according to our definition of entropy).
☆ Poisson-Process Topic Model for Integrating Knowledge from Pre-trained Language Models
Topic modeling is traditionally applied to word counts without accounting for the context in which words appear. Recent advancements in large language models (LLMs) offer contextualized word embeddings, which capture deeper meaning and relationships between words. We aim to leverage such embeddings to improve topic modeling. We use a pre-trained LLM to convert each document into a sequence of word embeddings. This sequence is then modeled as a Poisson point process, with its intensity measure expressed as a convex combination of $K$ base measures, each corresponding to a topic. To estimate these topics, we propose a flexible algorithm that integrates traditional topic modeling methods, enhanced by net-rounding applied before and kernel smoothing applied after. One advantage of this framework is that it treats the LLM as a black box, requiring no fine-tuning of its parameters. Another advantage is its ability to seamlessly integrate any traditional topic modeling approach as a plug-in module, without the need for modifications Assuming each topic is a $\beta$-H\"{o}lder smooth intensity measure on the embedded space, we establish the rate of convergence of our method. We also provide a minimax lower bound and show that the rate of our method matches with the lower bound when $\beta\leq 1$. Additionally, we apply our method to several datasets, providing evidence that it offers an advantage over traditional topic modeling approaches.
comment: 35 pages, 9 figures, 3 tables
☆ Neural Network Approach to Stochastic Dynamics for Smooth Multimodal Density Estimation
In this paper we consider a new probability sampling methods based on Langevin diffusion dynamics to resolve the problem of existing Monte Carlo algorithms when draw samples from high dimensional target densities. We extent Metropolis-Adjusted Langevin Diffusion algorithm by modelling the stochasticity of precondition matrix as a random matrix. An advantage compared to other proposal method is that it only requires the gradient of log-posterior. The proposed method provides fully adaptation mechanisms to tune proposal densities to exploits and adapts the geometry of local structures of statistical models. We clarify the benefits of the new proposal by modelling a Quantum Probability Density Functions of a free particle in a plane (energy Eigen-functions). The proposed model represents a remarkable improvement in terms of performance accuracy and computational time over standard MCMC method.
☆ A Roadmap Towards Improving Multi-Agent Reinforcement Learning With Causal Discovery And Inference
Causal reasoning is increasingly used in Reinforcement Learning (RL) to improve the learning process in several dimensions: efficacy of learned policies, efficiency of convergence, generalisation capabilities, safety and interpretability of behaviour. However, applications of causal reasoning to Multi-Agent RL (MARL) are still mostly unexplored. In this paper, we take the first step in investigating the opportunities and challenges of applying causal reasoning in MARL. We measure the impact of a simple form of causal augmentation in state-of-the-art MARL scenarios increasingly requiring cooperation, and with state-of-the-art MARL algorithms exploiting various degrees of collaboration between agents. Then, we discuss the positive as well as negative results achieved, giving us the chance to outline the areas where further research may help to successfully transfer causal RL to the multi-agent setting.
☆ Enhancing Fourier Neural Operators with Local Spatial Features
Partial Differential Equation (PDE) problems often exhibit strong local spatial structures, and effectively capturing these structures is critical for approximating their solutions. Recently, the Fourier Neural Operator (FNO) has emerged as an efficient approach for solving these PDE problems. By using parametrization in the frequency domain, FNOs can efficiently capture global patterns. However, this approach inherently overlooks the critical role of local spatial features, as frequency-domain parameterized convolutions primarily emphasize global interactions without encoding comprehensive localized spatial dependencies. Although several studies have attempted to address this limitation, their extracted Local Spatial Features (LSFs) remain insufficient, and computational efficiency is often compromised. To address this limitation, we introduce a convolutional neural network (CNN) preprocessor to extract LSFs directly from input data, resulting in a hybrid architecture termed \textit{Conv-FNO}. Furthermore, we introduce two novel resizing schemes to make our Conv-FNO resolution invariant. In this work, we focus on demonstrating the effectiveness of incorporating LSFs into FNOs by conducting both a theoretical analysis and extensive numerical experiments. Our findings show that this simple yet impactful modification enhances the representational capacity of FNOs and significantly improves performance on challenging PDE benchmarks.
☆ Every Sample Matters: Leveraging Mixture-of-Experts and High-Quality Data for Efficient and Accurate Code LLM
Recent advancements in code large language models (LLMs) have demonstrated remarkable capabilities in code generation and understanding. It is still challenging to build a code LLM with comprehensive performance yet ultimate efficiency. Many attempts have been released in the open source community to break the trade-off between performance and efficiency, such as the Qwen Coder series and the DeepSeek Coder series. This paper introduces yet another attempt in this area, namely Ling-Coder-Lite. We leverage the efficient Mixture-of-Experts (MoE) architecture along with a set of high-quality data curation methods (especially those based on program analytics) to build an efficient yet powerful code LLM. Ling-Coder-Lite exhibits on-par performance on 12 representative coding benchmarks compared to state-of-the-art models of similar size, such as Qwen2.5-Coder-7B and DeepSeek-Coder-V2-Lite, while offering competitive latency and throughput. In practice, we achieve a 50\% reduction in deployment resources compared to the similar-sized dense model without performance loss. To facilitate further research and development in this area, we open-source our models as well as a substantial portion of high-quality data for the annealing and post-training stages. The models and data can be accessed at~\url{https://huggingface.co/inclusionAI/Ling-Coder-lite}.
comment: 20 pages, 6 figures
☆ Energy-Aware LLMs: A step towards sustainable AI for downstream applications
Advanced Large Language Models (LLMs) have revolutionized various fields, including communication networks, sparking an innovation wave that has led to new applications and services, and significantly enhanced solution schemes. Despite all these impressive developments, most LLMs typically require huge computational resources, resulting in terribly high energy consumption. Thus, this research study proposes an end-to-end pipeline that investigates the trade-off between energy efficiency and model performance for an LLM during fault ticket analysis in communication networks. It further evaluates the pipeline performance using two real-world datasets for the tasks of root cause analysis and response feedback in a communication network. Our results show that an appropriate combination of quantization and pruning techniques is able to reduce energy consumption while significantly improving model performance.
comment: This work has been submitted to V. International Conference on Electrical, Computer and Energy Technologies (ICECET 2025) for possible publication
☆ Renewable Energy Transition in South America: Predictive Analysis of Generation Capacity by 2050
In this research, renewable energy expansion in South America up to 2050 is predicted based on machine learning models that are trained on past energy data. The research employs gradient boosting regression and Prophet time series forecasting to make predictions of future generation capacities for solar, wind, hydroelectric, geothermal, biomass, and other renewable sources in South American nations. Model output analysis indicates staggering future expansion in the generation of renewable energy, with solar and wind energy registering the highest expansion rates. Geospatial visualization methods were applied to illustrate regional disparities in the utilization of renewable energy. The results forecast South America to record nearly 3-fold growth in the generation of renewable energy by the year 2050, with Brazil and Chile spearheading regional development. Such projections help design energy policy, investment strategy, and climate change mitigation throughout the region, in helping the developing economies to transition to sustainable energy.
comment: 13 pages, 5 figures
☆ Bandwidth Reservation for Time-Critical Vehicular Applications: A Multi-Operator Environment
Onsite bandwidth reservation requests often face challenges such as price fluctuations and fairness issues due to unpredictable bandwidth availability and stringent latency requirements. Requesting bandwidth in advance can mitigate the impact of these fluctuations and ensure timely access to critical resources. In a multi-Mobile Network Operator (MNO) environment, vehicles need to select cost-effective and reliable resources for their safety-critical applications. This research aims to minimize resource costs by finding the best price among multiple MNOs. It formulates multi-operator scenarios as a Markov Decision Process (MDP), utilizing a Deep Reinforcement Learning (DRL) algorithm, specifically Dueling Deep Q-Learning. For efficient and stable learning, we propose a novel area-wise approach and an adaptive MDP synthetic close to the real environment. The Temporal Fusion Transformer (TFT) is used to handle time-dependent data and model training. Furthermore, the research leverages Amazon spot price data and adopts a multi-phase training approach, involving initial training on synthetic data, followed by real-world data. These phases enable the DRL agent to make informed decisions using insights from historical data and real-time observations. The results show that our model leads to significant cost reductions, up to 40%, compared to scenarios without a policy model in such a complex environment.
comment: 14 pages, 11 figures
☆ Improving Preference Extraction In LLMs By Identifying Latent Knowledge Through Classifying Probes
Large Language Models (LLMs) are often used as automated judges to evaluate text, but their effectiveness can be hindered by various unintentional biases. We propose using linear classifying probes, trained by leveraging differences between contrasting pairs of prompts, to directly access LLMs' latent knowledge and extract more accurate preferences. Through extensive experiments using models of varying size from four different families and six diverse datasets assessing text quality evaluation and common sense reasoning, we demonstrate that both supervised and unsupervised probing approaches consistently outperform traditional generation-based judgement while maintaining similar computational costs. These probes generalise under domain shifts and can even outperform finetuned evaluators with the same training data size. Our results suggest linear probing offers an accurate, robust and computationally efficient approach for LLM-as-judge tasks while providing interpretable insights into how models encode judgement-relevant knowledge. Our data and code will be openly released in the future.
comment: preprint, submitted to ACL ARR 2025, 21 pages, 23 figures
☆ Normalized Matching Transformer
We present a new state of the art approach for sparse keypoint matching between pairs of images. Our method consists of a fully deep learning based approach combining a visual backbone coupled with a SplineCNN graph neural network for feature processing and a normalized transformer decoder for decoding keypoint correspondences together with the Sinkhorn algorithm. Our method is trained using a contrastive and a hyperspherical loss for better feature representations. We additionally use data augmentation during training. This comparatively simple architecture combining extensive normalization and advanced losses outperforms current state of the art approaches on PascalVOC and SPair-71k datasets by $5.1\%$ and $2.2\%$ respectively compared to BBGM, ASAR, COMMON and GMTR while training for at least $1.7x$ fewer epochs.
☆ Decentralized Federated Dataset Dictionary Learning for Multi-Source Domain Adaptation
Decentralized Multi-Source Domain Adaptation (DMSDA) is a challenging task that aims to transfer knowledge from multiple related and heterogeneous source domains to an unlabeled target domain within a decentralized framework. Our work tackles DMSDA through a fully decentralized federated approach. In particular, we extend the Federated Dataset Dictionary Learning (FedDaDiL) framework by eliminating the necessity for a central server. FedDaDiL leverages Wasserstein barycenters to model the distributional shift across multiple clients, enabling effective adaptation while preserving data privacy. By decentralizing this framework, we enhance its robustness, scalability, and privacy, removing the risk of a single point of failure. We compare our method to its federated counterpart and other benchmark algorithms, showing that our approach effectively adapts source domains to an unlabeled target domain in a fully decentralized manner.
comment: Accepted at ICASSP 2025
☆ Safe RLHF-V: Safe Reinforcement Learning from Human Feedback in Multimodal Large Language Models
Multimodal large language models (MLLMs) are critical for developing general-purpose AI assistants, yet they face growing safety risks. How can we ensure that MLLMs are safely aligned to prevent undesired behaviors such as discrimination, misinformation, or violations of ethical standards? In a further step, we need to explore how to fine-tune MLLMs to enhance reasoning performance while ensuring they satisfy safety constraints. Fundamentally, this can be formulated as a min-max optimization problem. In this study, we propose Safe RLHF-V, the first multimodal safety alignment framework that jointly optimizes helpfulness and safety using separate multimodal reward and cost models within a Lagrangian-based constrained optimization framework. Given that there is a lack of preference datasets that separate helpfulness and safety in multimodal scenarios, we introduce BeaverTails-V, the first open-source dataset with dual preference annotations for helpfulness and safety, along with multi-level safety labels (minor, moderate, severe). Additionally, we design a Multi-level Guardrail System to proactively defend against unsafe queries and adversarial attacks. By applying the Beaver-Guard-V moderation for 5 rounds of filtering and re-generation on the precursor model, the overall safety of the upstream model is significantly improved by an average of 40.9%. Experimental results demonstrate that fine-tuning different MLLMs with Safe RLHF can effectively enhance model helpfulness while ensuring improved safety. Specifically, Safe RLHF-V improves model safety by 34.2% and helpfulness by 34.3%. All of datasets, models, and code can be found at https://github.com/SafeRLHF-V to support the safety development of MLLMs and reduce potential societal risks.
☆ Staying Alive: Online Neural Network Maintenance and Systemic Drift
We present the Subset Extended Kalman Filter (SEKF) as a method to update previously trained model weights online rather than retraining or finetuning them when the system a model represents drifts away from the conditions under which it was trained. We identify the parameters to be updated using the gradient of the loss function and use the SEKF to update only these parameters. We compare finetuning and SEKF for online model maintenance in the presence of systemic drift through four dynamic regression case studies and find that the SEKF is able to maintain model accuracy as-well if not better than finetuning while requiring significantly less time per iteration, and less hyperparameter tuning.
☆ Reducing Class-wise Confusion for Incremental Learning with Disentangled Manifolds CVPR 2025
Class incremental learning (CIL) aims to enable models to continuously learn new classes without catastrophically forgetting old ones. A promising direction is to learn and use prototypes of classes during incremental updates. Despite simplicity and intuition, we find that such methods suffer from inadequate representation capability and unsatisfied feature overlap. These two factors cause class-wise confusion and limited performance. In this paper, we develop a Confusion-REduced AuTo-Encoder classifier (CREATE) for CIL. Specifically, our method employs a lightweight auto-encoder module to learn compact manifold for each class in the latent subspace, constraining samples to be well reconstructed only on the semantically correct auto-encoder. Thus, the representation stability and capability of class distributions are enhanced, alleviating the potential class-wise confusion problem. To further distinguish the overlapped features, we propose a confusion-aware latent space separation loss that ensures samples are closely distributed in their corresponding low-dimensional manifold while keeping away from the distributions of features from other classes. Our method demonstrates stronger representational capacity and discrimination ability by learning disentangled manifolds and reduces class confusion. Extensive experiments on multiple datasets and settings show that CREATE outperforms other state-of-the-art methods up to 5.41%.
comment: Accepted to CVPR 2025
☆ MultiScale Contextual Bandits for Long Term Objectives
The feedback that AI systems (e.g., recommender systems, chatbots) collect from user interactions is a crucial source of training data. While short-term feedback (e.g., clicks, engagement) is widely used for training, there is ample evidence that optimizing short-term feedback does not necessarily achieve the desired long-term objectives. Unfortunately, directly optimizing for long-term objectives is challenging, and we identify the disconnect in the timescales of short-term interventions (e.g., rankings) and the long-term feedback (e.g., user retention) as one of the key obstacles. To overcome this disconnect, we introduce the framework of MultiScale Policy Learning to contextually reconcile that AI systems need to act and optimize feedback at multiple interdependent timescales. For any two levels, our formulation selects the shorter-term objective at the next lower scale to optimize the longer-term objective at the next higher scale. As a result, the policies at all levels effectively optimize for the long-term. We instantiate the framework with MultiScale Off-Policy Bandit Learning (MSBL) and demonstrate its effectiveness on three tasks relating to recommender systems and text generation.
☆ Multi-Modality Representation Learning for Antibody-Antigen Interactions Prediction ICME 2025
While deep learning models play a crucial role in predicting antibody-antigen interactions (AAI), the scarcity of publicly available sequence-structure pairings constrains their generalization. Current AAI methods often focus on residue-level static details, overlooking fine-grained structural representations of antibodies and their inter-antibody similarities. To tackle this challenge, we introduce a multi-modality representation approach that integates 3D structural and 1D sequence data to unravel intricate intra-antibody hierarchical relationships. By harnessing these representations, we present MuLAAIP, an AAI prediction framework that utilizes graph attention networks to illuminate graph-level structural features and normalized adaptive graph convolution networks to capture inter-antibody sequence associations. Furthermore, we have curated an AAI benchmark dataset comprising both structural and sequence information along with interaction labels. Through extensive experiments on this benchmark, our results demonstrate that MuLAAIP outperforms current state-of-the-art methods in terms of predictive performance. The implementation code and dataset are publicly available at https://github.com/trashTian/MuLAAIP for reproducibility.
comment: 2025 IEEE International Conference on Multimedia and Expo (ICME 2025), June 30 - July 4, 2025, Nantes, France
☆ CardioTabNet: A Novel Hybrid Transformer Model for Heart Disease Prediction using Tabular Medical Data
The early detection and prediction of cardiovascular diseases are crucial for reducing the severe morbidity and mortality associated with these conditions worldwide. A multi-headed self-attention mechanism, widely used in natural language processing (NLP), is operated by Transformers to understand feature interactions in feature spaces. However, the relationships between various features within biological systems remain ambiguous in these spaces, highlighting the necessity of early detection and prediction of cardiovascular diseases to reduce the severe morbidity and mortality with these conditions worldwide. We handle this issue with CardioTabNet, which exploits the strength of tab transformer to extract feature space which carries strong understanding of clinical cardiovascular data and its feature ranking. As a result, performance of downstream classical models significantly showed outstanding result. Our study utilizes the open-source dataset for heart disease prediction with 1190 instances and 11 features. In total, 11 features are divided into numerical (age, resting blood pressure, cholesterol, maximum heart rate, old peak, weight, and fasting blood sugar) and categorical (resting ECG, exercise angina, and ST slope). Tab transformer was used to extract important features and ranked them using random forest (RF) feature ranking algorithm. Ten machine-learning models were used to predict heart disease using selected features. After extracting high-quality features, the top downstream model (a hyper-tuned ExtraTree classifier) achieved an average accuracy rate of 94.1% and an average Area Under Curve (AUC) of 95.0%. Furthermore, a nomogram analysis was conducted to evaluate the model's effectiveness in cardiovascular risk assessment. A benchmarking study was conducted using state-of-the-art models to evaluate our transformer-driven framework.
comment: This paper is currently under review in the Health Information Science and Systems journal
♻ ☆ Deep learning framework for action prediction reveals multi-timescale locomotor control
Modeling movement in real-world tasks is a fundamental scientific goal for motor control, biomechanics, and rehabilitation engineering. However, existing models and their simplifying assumptions such as linear and fixed timescale mappings do not generalize to real-world contexts. Here, we develop a deep learning-based framework for action prediction with architecture-dependent trial embedding, outperforming traditional models across multiple contexts (walking and running, treadmill and overground, varying terrains) and input modalities (multiple body states, gaze). We find that neural network architectures with flexible input history-dependence like GRU and Transformer perform best overall. By quantifying the model's predictions relative to an autoregressive baseline, we identify context- and modality-dependent timescales. There is greater reliance on fast-timescale predictions in complex terrain, gaze predictions precede body state predictions, and full-body state predictions precede center-of-mass-relevant predictions. This deep learning framework for action prediction provides quantifiable insights into the control of complex movements and can be extended to other actions, contexts, and populations.
♻ ☆ Learning Optimal Filters Using Variational Inference
Filtering - the task of estimating the conditional distribution for states of a dynamical system given partial and noisy observations - is important in many areas of science and engineering, including weather and climate prediction. However, the filtering distribution is generally intractable to obtain for high-dimensional, nonlinear systems. Filters used in practice, such as the ensemble Kalman filter (EnKF), provide biased probabilistic estimates for nonlinear systems and have numerous tuning parameters. Here, we present a framework for learning a parameterized analysis map - the transformation that takes samples from a forecast distribution, and combines with an observation, to update the approximate filtering distribution - using variational inference. In principle this can lead to a better approximation of the filtering distribution, and hence smaller bias. We show that this methodology can be used to learn the gain matrix, in an affine analysis map, for filtering linear and nonlinear dynamical systems; we also study the learning of inflation and localization parameters for an EnKF. The framework developed here can also be used to learn new filtering algorithms with more general forms for the analysis map.
comment: 21 pages, 6 figures
♻ ☆ Near-Polynomially Competitive Active Logistic Regression
We address the problem of active logistic regression in the realizable setting. It is well known that active learning can require exponentially fewer label queries compared to passive learning, in some cases using $\log \frac{1}{\eps}$ rather than $\poly(1/\eps)$ labels to get error $\eps$ larger than the optimum. We present the first algorithm that is polynomially competitive with the optimal algorithm on every input instance, up to factors polylogarithmic in the error and domain size. In particular, if any algorithm achieves label complexity polylogarithmic in $\eps$, so does ours. Our algorithm is based on efficient sampling and can be extended to learn more general class of functions. We further support our theoretical results with experiments demonstrating performance gains for logistic regression compared to existing active learning algorithms.
♻ ☆ Leveraging Multi-modal Representations to Predict Protein Melting Temperatures AAAI 2025
Accurately predicting protein melting temperature changes (Delta Tm) is fundamental for assessing protein stability and guiding protein engineering. Leveraging multi-modal protein representations has shown great promise in capturing the complex relationships among protein sequences, structures, and functions. In this study, we develop models based on powerful protein language models, including ESM-2, ESM-3 and AlphaFold, using various feature extraction methods to enhance prediction accuracy. By utilizing the ESM-3 model, we achieve a new state-of-the-art performance on the s571 test dataset, obtaining a Pearson correlation coefficient (PCC) of 0.50. Furthermore, we conduct a fair evaluation to compare the performance of different protein language models in the Delta Tm prediction task. Our results demonstrate that integrating multi-modal protein representations could advance the prediction of protein melting temperatures.
comment: Accepted to AAAI 2025 FM4BIO workshop
♻ ☆ 1000 Layer Networks for Self-Supervised RL: Scaling Depth Can Enable New Goal-Reaching Capabilities
Scaling up self-supervised learning has driven breakthroughs in language and vision, yet comparable progress has remained elusive in reinforcement learning (RL). In this paper, we study building blocks for self-supervised RL that unlock substantial improvements in scalability, with network depth serving as a critical factor. Whereas most RL papers in recent years have relied on shallow architectures (around 2 - 5 layers), we demonstrate that increasing the depth up to 1024 layers can significantly boost performance. Our experiments are conducted in an unsupervised goal-conditioned setting, where no demonstrations or rewards are provided, so an agent must explore (from scratch) and learn how to maximize the likelihood of reaching commanded goals. Evaluated on simulated locomotion and manipulation tasks, our approach increases performance by $2\times$ - $50\times$. Increasing the model depth not only increases success rates but also qualitatively changes the behaviors learned.
comment: Link to project website: https://wang-kevin3290.github.io/scaling-crl/
♻ ☆ A Privacy Model for Classical & Learned Bloom Filters
The Classical Bloom Filter (CBF) is a class of Probabilistic Data Structures (PDS) for handling Approximate Query Membership (AMQ). The Learned Bloom Filter (LBF) is a recently proposed class of PDS that combines the Classical Bloom Filter with a Learning Model while preserving the Bloom Filter's one-sided error guarantees. Bloom Filters have been used in settings where inputs are sensitive and need to be private in the presence of an adversary with access to the Bloom Filter through an API or in the presence of an adversary who has access to the internal state of the Bloom Filter. This paper conducts a rigorous differential privacy-based analysis for the Bloom Filter. We propose constructions that satisfy differential privacy and asymmetric differential privacy. This is also the first work that analyses and addresses the privacy of the Learned Bloom Filter under any rigorous model, which is an open problem.
♻ ☆ The Limits of Assumption-free Tests for Algorithm Performance
Algorithm evaluation and comparison are fundamental questions in machine learning and statistics -- how well does an algorithm perform at a given modeling task, and which algorithm performs best? Many methods have been developed to assess algorithm performance, often based around cross-validation type strategies, retraining the algorithm of interest on different subsets of the data and assessing its performance on the held-out data points. Despite the broad use of such procedures, the theoretical properties of these methods are not yet fully understood. In this work, we explore some fundamental limits for answering these questions with limited amounts of data. In particular, we make a distinction between two questions: how good is an algorithm $A$ at the problem of learning from a training set of size $n$, versus, how good is a particular fitted model produced by running $A$ on a particular training data set of size $n$? Our main results prove that, for any test that treats the algorithm $A$ as a ``black box'' (i.e., we can only study the behavior of $A$ empirically), there is a fundamental limit on our ability to carry out inference on the performance of $A$, unless the number of available data points $N$ is many times larger than the sample size $n$ of interest. (On the other hand, evaluating the performance of a particular fitted model is easy as long as a holdout data set is available -- that is, as long as $N-n$ is not too small.) We also ask whether an assumption of algorithmic stability might be sufficient to circumvent this hardness result. Surprisingly, we find that this is not the case: the same hardness result still holds for the problem of evaluating the performance of $A$, aside from a high-stability regime where fitted models are essentially nonrandom. Finally, we also establish similar hardness results for the problem of comparing multiple algorithms.
♻ ☆ A Physics-informed Machine Learning-based Control Method for Nonlinear Dynamic Systems with Highly Noisy Measurements
This study presents a physics-informed machine learning-based control method for nonlinear dynamic systems with highly noisy measurements. Existing data-driven control methods that use machine learning for system identification cannot effectively cope with highly noisy measurements, resulting in unstable control performance. To address this challenge, the present study extends current physics-informed machine learning capabilities for modeling nonlinear dynamics with control and integrates them into a model predictive control framework. To demonstrate the capability of the proposed method we test and validate with two noisy nonlinear dynamic systems: the chaotic Lorenz 3 system, and turning machine tool. Analysis of the results illustrate that the proposed method outperforms state-of-the-art benchmarks as measured by both modeling accuracy and control performance for nonlinear dynamic systems under high-noise conditions.
comment: We completely redesigned and rewrote this paper. It will be a completely different paper with different title, author list, and content
♻ ☆ Removing Structured Noise with Diffusion Models
Solving ill-posed inverse problems requires careful formulation of prior beliefs over the signals of interest and an accurate description of their manifestation into noisy measurements. Handcrafted signal priors based on e.g. sparsity are increasingly replaced by data-driven deep generative models, and several groups have recently shown that state-of-the-art score-based diffusion models yield particularly strong performance and flexibility. In this paper, we show that the powerful paradigm of posterior sampling with diffusion models can be extended to include rich, structured, noise models. To that end, we propose a joint conditional reverse diffusion process with learned scores for the noise and signal-generating distribution. We demonstrate strong performance gains across various inverse problems with structured noise, outperforming competitive baselines that use normalizing flows and adversarial networks. This opens up new opportunities and relevant practical applications of diffusion modeling for inverse problems in the context of non-Gaussian measurement models.
comment: 20 pages, 8 figures, Transactions on Machine Learning Research
♻ ☆ Consistent Validation for Predictive Methods in Spatial Settings AISTATS
Spatial prediction tasks are key to weather forecasting, studying air pollution impacts, and other scientific endeavors. Determining how much to trust predictions made by statistical or physical methods is essential for the credibility of scientific conclusions. Unfortunately, classical approaches for validation fail to handle mismatch between locations available for validation and (test) locations where we want to make predictions. This mismatch is often not an instance of covariate shift (as commonly formalized) because the validation and test locations are fixed (e.g., on a grid or at select points) rather than i.i.d. from two distributions. In the present work, we formalize a check on validation methods: that they become arbitrarily accurate as validation data becomes arbitrarily dense. We show that classical and covariate-shift methods can fail this check. We propose a method that builds from existing ideas in the covariate-shift literature, but adapts them to the validation data at hand. We prove that our proposal passes our check. And we demonstrate its advantages empirically on simulated and real data.
comment: 52 pages, 14 figures, Accepted at Artificial Intelligence and Statistics (AISTATS), 2025
♻ ☆ LLM+KG@VLDB'24 Workshop Summary
The unification of large language models (LLMs) and knowledge graphs (KGs) has emerged as a hot topic. At the LLM+KG'24 workshop, held in conjunction with VLDB 2024 in Guangzhou, China, one of the key themes explored was important data management challenges and opportunities due to the effective interaction between LLMs and KGs. This report outlines the major directions and approaches presented by various speakers during the LLM+KG'24 workshop.
comment: accepted at ACM SIGMOD Record 2025
♻ ☆ Active management of battery degradation in wireless sensor network using deep reinforcement learning for group battery replacement
Wireless sensor networks (WSNs) have become a promising solution for structural health monitoring (SHM), especially in hard-to-reach or remote locations. Battery-powered WSNs offer various advantages over wired systems, however limited battery life has always been one of the biggest obstacles in practical use of the WSNs, regardless of energy harvesting methods. While various methods have been studied for battery health management, existing methods exclusively aim to extend lifetime of individual batteries, lacking a system level view. A consequence of applying such methods is that batteries in a WSN tend to fail at different times, posing significant difficulty on planning and scheduling of battery replacement trip. This study investigate a deep reinforcement learning (DRL) method for active battery degradation management by optimizing duty cycle of WSNs at the system level. This active management strategy effectively reduces earlier failure of battery individuals which enable group replacement without sacrificing WSN performances. A simulated environment based on a real-world WSN setup was developed to train a DRL agent and learn optimal duty cycle strategies. The performance of the strategy was validated in a long-term setup with various network sizes, demonstrating its efficiency and scalability.
♻ ☆ ULTra: Unveiling Latent Token Interpretability in Transformer-Based Understanding and Segmentation
Transformers have revolutionized Computer Vision (CV) through self-attention mechanisms. However, their complexity makes latent token representations difficult to interpret. We introduce ULTra, a framework for interpreting Transformer embeddings and uncovering meaningful semantic patterns within them. ULTra enables unsupervised semantic segmentation using pre-trained models without requiring fine-tuning. Additionally, we propose a self-supervised training approach that refines segmentation performance by learning an external transformation matrix without modifying the underlying model. Our method achieves state-of-the-art performance in unsupervised semantic segmentation, outperforming existing segmentation methods. Furthermore, we validate ULTra for model interpretation on both synthetic and real-world scenarios, including Object Selection and interpretable text summarization using LLMs, demonstrating its broad applicability in explaining the semantic structure of latent token representations.
♻ ☆ On the Global Convergence of Risk-Averse Policy Gradient Methods with Expected Conditional Risk Measures
Risk-sensitive reinforcement learning (RL) has become a popular tool for controlling the risk of uncertain outcomes and ensuring reliable performance in highly stochastic sequential decision-making problems. While Policy Gradient (PG) methods have been developed for risk-sensitive RL, it remains unclear if these methods enjoy the same global convergence guarantees as in the risk-neutral case \citep{mei2020global,agarwal2021theory,cen2022fast,bhandari2024global}. In this paper, we consider a class of dynamic time-consistent risk measures, named Expected Conditional Risk Measures (ECRMs), and derive PG and Natural Policy Gradient (NPG) updates for ECRMs-based RL problems. We provide global optimality {and iteration complexities} of the proposed algorithms under the following four settings: (i) PG with constrained direct parameterization, (ii) PG with softmax parameterization and log barrier regularization, (iii) NPG with softmax parameterization and entropy regularization, and (iv) approximate NPG with inexact policy evaluation. Furthermore, we test a risk-averse REINFORCE algorithm \citep{williams1992simple} and a risk-averse NPG algorithm \citep{kakade2001natural} on a stochastic Cliffwalk environment to demonstrate the efficacy of our methods and the importance of risk control.
♻ ☆ Linear Partial Gromov-Wasserstein Embedding ICLR 2025
The Gromov-Wasserstein (GW) problem, a variant of the classical optimal transport (OT) problem, has attracted growing interest in the machine learning and data science communities due to its ability to quantify similarity between measures in different metric spaces. However, like the classical OT problem, GW imposes an equal mass constraint between measures, which restricts its application in many machine learning tasks. To address this limitation, the partial Gromov-Wasserstein (PGW) problem has been introduced. It relaxes the equal mass constraint, allowing the comparison of general positive Radon measures. Despite this, both GW and PGW face significant computational challenges due to their non-convex nature. To overcome these challenges, we propose the linear partial Gromov-Wasserstein (LPGW) embedding, a linearized embedding technique for the PGW problem. For $K$ different metric measure spaces, the pairwise computation of the PGW distance requires solving the PGW problem ${O}(K^2)$ times. In contrast, the proposed linearization technique reduces this to ${O}(K)$ times. Similar to the linearization technique for the classical OT problem, we prove that LPGW defines a valid metric for metric measure spaces. Finally, we demonstrate the effectiveness of LPGW in practical applications such as shape retrieval and learning with transport-based embeddings, showing that LPGW preserves the advantages of PGW in partial matching while significantly enhancing computational efficiency. The code is available at https://github.com/mint-vu/Linearized_Partial_Gromov_Wasserstein.
comment: Published at ICLR 2025
♻ ☆ Simpler Diffusion (SiD2): 1.5 FID on ImageNet512 with pixel-space diffusion CVPR 2025
Latent diffusion models have become the popular choice for scaling up diffusion models for high resolution image synthesis. Compared to pixel-space models that are trained end-to-end, latent models are perceived to be more efficient and to produce higher image quality at high resolution. Here we challenge these notions, and show that pixel-space models can be very competitive to latent models both in quality and efficiency, achieving 1.5 FID on ImageNet512 and new SOTA results on ImageNet128, ImageNet256 and Kinetics600. We present a simple recipe for scaling end-to-end pixel-space diffusion models to high resolutions. 1: Use the sigmoid loss-weighting (Kingma & Gao, 2023) with our prescribed hyper-parameters. 2: Use our simplified memory-efficient architecture with fewer skip-connections. 3: Scale the model to favor processing the image at a high resolution with fewer parameters, rather than using more parameters at a lower resolution. Combining these with guidance intervals, we obtain a family of pixel-space diffusion models we call Simpler Diffusion (SiD2).
comment: Accepted to CVPR 2025
♻ ☆ A General Approach for Determining Applicability Domain of Machine Learning Models
Knowledge of the domain of applicability of a machine learning model is essential to ensuring accurate and reliable model predictions. In this work, we develop a new and general approach of assessing model domain and demonstrate that our approach provides accurate and meaningful domain designation across multiple model types and material property data sets. Our approach assesses the distance between data in feature space using kernel density estimation, where this distance provides an effective tool for domain determination. We show that chemical groups considered unrelated based on chemical knowledge exhibit significant dissimilarities by our measure. We also show that high measures of dissimilarity are associated with poor model performance (i.e., high residual magnitudes) and poor estimates of model uncertainty (i.e., unreliable uncertainty estimation). Automated tools are provided to enable researchers to establish acceptable dissimilarity thresholds to identify whether new predictions of their own machine learning models are in-domain versus out-of-domain.
♻ ☆ SynMorph: Generating Synthetic Face Morphing Dataset with Mated Samples
Face morphing attack detection (MAD) algorithms have become essential to overcome the vulnerability of face recognition systems. To solve the lack of large-scale and public-available datasets due to privacy concerns and restrictions, in this work we propose a new method to generate a synthetic face morphing dataset with 2450 identities and more than 100k morphs. The proposed synthetic face morphing dataset is unique for its high-quality samples, different types of morphing algorithms, and the generalization for both single and differential morphing attack detection algorithms. For experiments, we apply face image quality assessment and vulnerability analysis to evaluate the proposed synthetic face morphing dataset from the perspective of biometric sample quality and morphing attack potential on face recognition systems. The results are benchmarked with an existing SOTA synthetic dataset and a representative non-synthetic and indicate improvement compared with the SOTA. Additionally, we design different protocols and study the applicability of using the proposed synthetic dataset on training morphing attack detection algorithms.
comment: This preprint has been further published in IEEE Access. Print ISSN: 2169-3536. Online ISSN: 2169-3536. Digital Object Identifier: 10.1109/ACCESS.2025.3548957
♻ ☆ Not All LLM-Generated Data Are Equal: Rethinking Data Weighting in Text Classification ICLR 2025
Synthetic data augmentation via large language models (LLMs) allows researchers to leverage additional training data, thus enhancing the performance of downstream tasks, especially when real-world data is scarce. However, the generated data can deviate from the real-world data, and this misalignment can bring deficient outcomes while applying the trained model to applications. Therefore, we proposed efficient weighted-loss approaches to align synthetic data with real-world distribution by emphasizing high-quality and diversified data generated by LLMs with using merely a little real-world data. We empirically assessed the effectiveness of our method on multiple text classification tasks, and the results showed leveraging our approaches on a BERT-level model robustly outperformed standard cross-entropy and other data weighting approaches, providing potential solutions to effectively leveraging synthetic data from any suitable data generator for model training.
comment: ICLR 2025 camera ready
♻ ☆ Joint Transmit and Pinching Beamforming for Pinching Antenna Systems (PASS): Optimization-Based or Learning-Based?
A novel pinching antenna system (PASS)-enabled downlink multi-user multiple-input single-output (MISO) framework is proposed. PASS consists of multiple waveguides spanning over thousands of wavelength, which equip numerous low-cost dielectric particles, named pinching antennas (PAs), to radiate signals into free space. The positions of PAs can be reconfigured to change both the large-scale path losses and phases of signals, thus facilitating the novel pinching beamforming design. A sum rate maximization problem is formulated, which jointly optimizes the transmit and pinching beamforming to adaptively achieve constructive signal enhancement and destructive interference mitigation. To solve this highly coupled and nonconvex problem, both optimization-based and learning-based methods are proposed. 1) For the optimization-based method, a majorization-minimization and penalty dual decomposition (MM-PDD) algorithm is developed, which handles the nonconvex complex exponential component using a Lipschitz surrogate function and then invokes PDD for problem decoupling. 2) For the learning-based method, a novel Karush-Kuhn-Tucker (KKT)-guided dual learning (KDL) approach is proposed, which enables KKT solutions to be reconstructed in a data-driven manner by learning dual variables. Following this idea, a KDL-Tranformer algorithm is developed, which captures both inter-PA/inter-user dependencies and channel-state-information (CSI)-beamforming dependencies by attention mechanisms. Simulation results demonstrate that: i) The proposed PASS framework significantly outperforms conventional massive multiple input multiple output (MIMO) system even with a few PAs. ii) The proposed KDL-Transformer can improve over 30% system performance than MM-PDD algorithm, while achieving a millisecond-level response on modern GPUs.
comment: Submitted to IEEE
♻ ☆ Causality-oriented robustness: exploiting general noise interventions
Since distribution shifts are common in real-world applications, there is a pressing need to develop prediction models that are robust against such shifts. Existing frameworks, such as empirical risk minimization or distributionally robust optimization, either lack generalizability for unseen distributions or rely on postulated distance measures. Alternatively, causality offers a data-driven and structural perspective to robust predictions. However, the assumptions necessary for causal inference can be overly stringent, and the robustness offered by such causal models often lacks flexibility. In this paper, we focus on causality-oriented robustness and propose Distributional Robustness via Invariant Gradients (DRIG), a method that exploits general noise interventions in training data for robust predictions against unseen interventions, and naturally interpolates between in-distribution prediction and causality. In a linear setting, we prove that DRIG yields predictions that are robust among a data-dependent class of distribution shifts. Furthermore, we show that our framework includes anchor regression as a special case, and that it yields prediction models that protect against more diverse perturbations. We establish finite-sample results and extend our approach to semi-supervised domain adaptation to further improve prediction performance. Finally, we empirically validate our methods on synthetic simulations and on single-cell and intensive health care datasets.
♻ ☆ Towards Seamless Hierarchical Federated Learning under Intermittent Client Participation: A Stagewise Decision-Making Methodology
Federated Learning (FL) offers a pioneering distributed learning paradigm that enables devices/clients to build a shared global model. This global model is obtained through frequent model transmissions between clients and a central server, which may cause high latency, energy consumption, and congestion over backhaul links. To overcome these drawbacks, Hierarchical Federated Learning (HFL) has emerged, which organizes clients into multiple clusters and utilizes edge nodes (e.g., edge servers) for intermediate model aggregations between clients and the central server. Current research on HFL mainly focus on enhancing model accuracy, latency, and energy consumption in scenarios with a stable/fixed set of clients. However, addressing the dynamic availability of clients -- a critical aspect of real-world scenarios -- remains underexplored. This study delves into optimizing client selection and client-to-edge associations in HFL under intermittent client participation so as to minimize overall system costs (i.e., delay and energy), while achieving fast model convergence. We unveil that achieving this goal involves solving a complex NP-hard problem. To tackle this, we propose a stagewise methodology that splits the solution into two stages, referred to as Plan A and Plan B. Plan A focuses on identifying long-term clients with high chance of participation in subsequent model training rounds. Plan B serves as a backup, selecting alternative clients when long-term clients are unavailable during model training rounds. This stagewise methodology offers a fresh perspective on client selection that can enhance both HFL and conventional FL via enabling low-overhead decision-making processes. Through evaluations on MNIST and CIFAR-10 datasets, we show that our methodology outperforms existing benchmarks in terms of model accuracy and system costs.
comment: 20 pages, 8 figures,5 tables
♻ ☆ Oscillatory Signatures of Parkinson's Disease: Central and Parietal EEG Alterations Across Multiple Frequency Bands
This study investigates EEG as a potential early biomarker by applying deep learning techniques to resting-state EEG recordings from 31 subjects (15 with PD and 16 healthy controls). EEG signals underwent preprocessing to remove tremor artifacts before classification with CNNs using wavelet-based electrode triplet images. Our analysis across different brain regions and frequency bands showed distinct spatial-spectral patterns of PD-related neural oscillations. We identified high classification accuracy (76%) using central electrodes (C3, Cz, C4) with full-spectrum 0.4-62.4 Hz analysis and 74% accuracy in right parietal regions (P8, CP6, P4) with 10-second windows. Bilateral centro-parietal regions showed strong performance (67%) in the theta band (4.0-7.79 Hz), while multiple areas demonstrated some sensitivity (65%) in the alpha band (7.8-15.59 Hz). We also observed a distinctive topographical pattern of gamma band (40-62.4 Hz) alterations specifically localized to central-parietal regions, which remained consistent across different temporal windows. In particular, we observed pronounced right-hemisphere involvement across several frequency bands. Unlike previous studies that achieved higher accuracies by potentially including tremor artifacts, our approach isolates genuine neurophysiological alterations in cortical activity. These findings suggest that specific EEG-based oscillatory patterns, especially in central and parietal regions and across multiple frequency bands, may provide diagnostic information for PD, potentially before the onset of motor symptoms.
♻ ☆ Enhancing Startup Success Predictions in Venture Capital: A GraphRAG Augmented Multivariate Time Series Method ICLR 2025
In the Venture Capital (VC) industry, predicting the success of startups is challenging due to limited financial data and the need for subjective revenue forecasts. Previous methods based on time series analysis often fall short as they fail to incorporate crucial inter-company relationships such as competition and collaboration. To fill the gap, this paper aims to introduce a novel approach using GraphRAG augmented time series model. With GraphRAG, time series predictive methods are enhanced by integrating these vital relationships into the analysis framework, allowing for a more dynamic understanding of the startup ecosystem in venture capital. Our experimental results demonstrate that our model significantly outperforms previous models in startup success predictions.
comment: ICLR 2025 Financial AI
♻ ☆ Unsupervised Structural-Counterfactual Generation under Domain Shift
Motivated by the burgeoning interest in cross-domain learning, we present a novel generative modeling challenge: generating counterfactual samples in a target domain based on factual observations from a source domain. Our approach operates within an unsupervised paradigm devoid of parallel or joint datasets, relying exclusively on distinct observational samples and causal graphs for each domain. This setting presents challenges that surpass those of conventional counterfactual generation. Central to our methodology is the disambiguation of exogenous causes into effect-intrinsic and domain-intrinsic categories. This differentiation facilitates the integration of domain-specific causal graphs into a unified joint causal graph via shared effect-intrinsic exogenous variables. We propose leveraging Neural Causal models within this joint framework to enable accurate counterfactual generation under standard identifiability assumptions. Furthermore, we introduce a novel loss function that effectively segregates effect-intrinsic from domain-intrinsic variables during model training. Given a factual observation, our framework combines the posterior distribution of effect-intrinsic variables from the source domain with the prior distribution of domain-intrinsic variables from the target domain to synthesize the desired counterfactuals, adhering to Pearl's causal hierarchy. Intriguingly, when domain shifts are restricted to alterations in causal mechanisms without accompanying covariate shifts, our training regimen parallels the resolution of a conditional optimal transport problem. Empirical evaluations on a synthetic dataset show that our framework generates counterfactuals in the target domain that very closely resemble the ground truth.
comment: Updated author list
♻ ☆ Be More Diverse than the Most Diverse: Optimal Mixtures of Generative Models via Mixture-UCB Bandit Algorithms
The availability of multiple training algorithms and architectures for generative models requires a selection mechanism to form a single model over a group of well-trained generation models. The selection task is commonly addressed by identifying the model that maximizes an evaluation score based on the diversity and quality of the generated data. However, such a best-model identification approach overlooks the possibility that a mixture of available models can outperform each individual model. In this work, we numerically show that a mixture of generative models on benchmark image datasets can indeed achieve a better evaluation score (based on FID and KID scores), compared to the individual models. This observation motivates the development of efficient algorithms for selecting the optimal mixture of the models. To address this, we formulate a quadratic optimization problem to find an optimal mixture model achieving the maximum of kernel-based evaluation scores including kernel inception distance (KID) and R\'enyi kernel entropy (RKE). To identify the optimal mixture of the models using the fewest possible sample queries, we view the selection task as a multi-armed bandit (MAB) problem and propose the Mixture Upper Confidence Bound (Mixture-UCB) algorithm that provably converges to the optimal mixture of the involved models. More broadly, the proposed Mixture-UCB can be extended to optimize every convex quadratic function of the mixture weights in a general MAB setting. We prove a regret bound for the Mixture-UCB algorithm and perform several numerical experiments to show the success of Mixture-UCB in finding the optimal mixture of text and image generative models. The project code is available at https://github.com/Rezaei-Parham/Mixture-UCB.
♻ ☆ Efficiency is Not Enough: A Critical Perspective of Environmentally Sustainable AI
Artificial intelligence (AI) is currently spearheaded by machine learning (ML) methods such as deep learning which have accelerated progress on many tasks thought to be out of reach of AI. These recent ML methods are often compute hungry, energy intensive, and result in significant green house gas emissions, a known driver of anthropogenic climate change. Additionally, the platforms on which ML systems run are associated with environmental impacts that go beyond the energy consumption driven carbon emissions. The primary solution lionized by both industry and the ML community to improve the environmental sustainability of ML is to increase the compute and energy efficiency with which ML systems operate. In this perspective, we argue that it is time to look beyond efficiency in order to make ML more environmentally sustainable. We present three high-level discrepancies between the many variables that influence the efficiency of ML and the environmental sustainability of ML. Firstly, we discuss how compute efficiency does not imply energy efficiency or carbon efficiency. Second, we present the unexpected effects of efficiency on operational emissions throughout the ML model life cycle. And, finally, we explore the broader environmental impacts that are not accounted by efficiency. These discrepancies show as to why efficiency alone is not enough to remedy the adverse environmental impacts of ML. Instead, we argue for systems thinking as the next step towards holistically improving the environmental sustainability of ML.
comment: Accepted to Communications of the ACM; 24 pages; 6 figures
♻ ☆ LoRA-Pro: Are Low-Rank Adapters Properly Optimized? ICLR 2025
Low-rank adaptation, also known as LoRA, has emerged as a prominent method for parameter-efficient fine-tuning of foundation models. Despite its computational efficiency, LoRA still yields inferior performance compared to full fine-tuning. In this paper, we first uncover a fundamental connection between the optimization processes of LoRA and full fine-tuning: using LoRA for optimization is mathematically equivalent to full fine-tuning using a low-rank gradient for parameter updates. And this low-rank gradient can be expressed in terms of the gradients of the two low-rank matrices in LoRA. Leveraging this insight, we introduce LoRA-Pro, a method that enhances LoRA's performance by strategically adjusting the gradients of these low-rank matrices. This adjustment allows the low-rank gradient to more accurately approximate the full fine-tuning gradient, thereby narrowing the performance gap between LoRA and full fine-tuning. Furthermore, we theoretically derive the optimal solutions for adjusting the gradients of the low-rank matrices, applying them during fine-tuning in LoRA-Pro. We conduct extensive experiments across natural language understanding, dialogue generation, mathematical reasoning, code generation, and image classification tasks, demonstrating that LoRA-Pro substantially improves LoRA's performance, effectively narrowing the gap with full fine-tuning. Code is publicly available at https://github.com/mrflogs/LoRA-Pro.
comment: Camera-Ready Version for ICLR 2025; technical corrections to previous version
♻ ☆ BOPO: Neural Combinatorial Optimization via Best-anchored and Objective-guided Preference Optimization
Neural Combinatorial Optimization (NCO) has emerged as a promising approach for NP-hard problems. However, prevailing RL-based methods suffer from low sample efficiency due to sparse rewards and underused solutions. We propose Preference Optimization for Combinatorial Optimization (POCO), a training paradigm that leverages solution preferences via objective values. It introduces: (1) an efficient preference pair construction for better explore and exploit solutions, and (2) a novel loss function that adaptively scales gradients via objective differences, removing reliance on reward models or reference policies. Experiments on Job-Shop Scheduling (JSP), Traveling Salesman (TSP), and Flexible Job-Shop Scheduling (FJSP) show POCO outperforms state-of-the-art neural methods, reducing optimality gaps impressively with efficient inference. POCO is architecture-agnostic, enabling seamless integration with existing NCO models, and establishes preference optimization as a principled framework for combinatorial optimization.
♻ ☆ BiMarker: Enhancing Text Watermark Detection for Large Language Models with Bipolar Watermarks
The rapid growth of Large Language Models (LLMs) raises concerns about distinguishing AI-generated text from human content. Existing watermarking techniques, like \kgw, struggle with low watermark strength and stringent false-positive requirements. Our analysis reveals that current methods rely on coarse estimates of non-watermarked text, limiting watermark detectability. To address this, we propose Bipolar Watermark (\tool), which splits generated text into positive and negative poles, enhancing detection without requiring additional computational resources or knowledge of the prompt. Theoretical analysis and experimental results demonstrate \tool's effectiveness and compatibility with existing optimization techniques, providing a new optimization dimension for watermarking in LLM-generated content.
Computer Vision and Pattern Recognition 212
☆ Position: Interactive Generative Video as Next-Generation Game Engine
Modern game development faces significant challenges in creativity and cost due to predetermined content in traditional game engines. Recent breakthroughs in video generation models, capable of synthesizing realistic and interactive virtual environments, present an opportunity to revolutionize game creation. In this position paper, we propose Interactive Generative Video (IGV) as the foundation for Generative Game Engines (GGE), enabling unlimited novel content generation in next-generation gaming. GGE leverages IGV's unique strengths in unlimited high-quality content synthesis, physics-aware world modeling, user-controlled interactivity, long-term memory capabilities, and causal reasoning. We present a comprehensive framework detailing GGE's core modules and a hierarchical maturity roadmap (L0-L4) to guide its evolution. Our work charts a new course for game development in the AI era, envisioning a future where AI-powered generative systems fundamentally reshape how games are created and experienced.
☆ Image as an IMU: Estimating Camera Motion from a Single Motion-Blurred Image
In many robotics and VR/AR applications, fast camera motions cause a high level of motion blur, causing existing camera pose estimation methods to fail. In this work, we propose a novel framework that leverages motion blur as a rich cue for motion estimation rather than treating it as an unwanted artifact. Our approach works by predicting a dense motion flow field and a monocular depth map directly from a single motion-blurred image. We then recover the instantaneous camera velocity by solving a linear least squares problem under the small motion assumption. In essence, our method produces an IMU-like measurement that robustly captures fast and aggressive camera movements. To train our model, we construct a large-scale dataset with realistic synthetic motion blur derived from ScanNet++v2 and further refine our model by training end-to-end on real data using our fully differentiable pipeline. Extensive evaluations on real-world benchmarks demonstrate that our method achieves state-of-the-art angular and translational velocity estimates, outperforming current methods like MASt3R and COLMAP.
comment: Project page: https://jerredchen.github.io/image-as-imu/
☆ OpenVLThinker: An Early Exploration to Complex Vision-Language Reasoning via Iterative Self-Improvement
Recent advancements demonstrated by DeepSeek-R1 have shown that complex reasoning abilities in large language models (LLMs), including sophisticated behaviors such as self-verification and self-correction, can be achieved by RL with verifiable rewards and significantly improves model performance on challenging tasks such as AIME. Motivated by these findings, our study investigates whether similar reasoning capabilities can be successfully integrated into large vision-language models (LVLMs) and assesses their impact on challenging multimodal reasoning tasks. We consider an approach that iteratively leverages supervised fine-tuning (SFT) on lightweight training data and Reinforcement Learning (RL) to further improve model generalization. Initially, reasoning capabilities were distilled from pure-text R1 models by generating reasoning steps using high-quality captions of the images sourced from diverse visual datasets. Subsequently, iterative RL training further enhance reasoning skills, with each iteration's RL-improved model generating refined SFT datasets for the next round. This iterative process yielded OpenVLThinker, a LVLM exhibiting consistently improved reasoning performance on challenging benchmarks such as MathVista, MathVerse, and MathVision, demonstrating the potential of our strategy for robust vision-language reasoning. The code, model and data are held at https://github.com/yihedeng9/OpenVLThinker.
comment: 23 pages, 11 figures, 8 tables
☆ Time-Series U-Net with Recurrence for Noise-Robust Imaging Photoplethysmography
Remote estimation of vital signs enables health monitoring for situations in which contact-based devices are either not available, too intrusive, or too expensive. In this paper, we present a modular, interpretable pipeline for pulse signal estimation from video of the face that achieves state-of-the-art results on publicly available datasets.Our imaging photoplethysmography (iPPG) system consists of three modules: face and landmark detection, time-series extraction, and pulse signal/pulse rate estimation. Unlike many deep learning methods that make use of a single black-box model that maps directly from input video to output signal or heart rate, our modular approach enables each of the three parts of the pipeline to be interpreted individually. The pulse signal estimation module, which we call TURNIP (Time-Series U-Net with Recurrence for Noise-Robust Imaging Photoplethysmography), allows the system to faithfully reconstruct the underlying pulse signal waveform and uses it to measure heart rate and pulse rate variability metrics, even in the presence of motion. When parts of the face are occluded due to extreme head poses, our system explicitly detects such "self-occluded" regions and maintains estimation robustness despite the missing information. Our algorithm provides reliable heart rate estimates without the need for specialized sensors or contact with the skin, outperforming previous iPPG methods on both color (RGB) and near-infrared (NIR) datasets.
comment: 14 Pages, 8 figures
☆ Decouple and Track: Benchmarking and Improving Video Diffusion Transformers for Motion Transfer
The motion transfer task involves transferring motion from a source video to newly generated videos, requiring the model to decouple motion from appearance. Previous diffusion-based methods primarily rely on separate spatial and temporal attention mechanisms within 3D U-Net. In contrast, state-of-the-art video Diffusion Transformers (DiT) models use 3D full attention, which does not explicitly separate temporal and spatial information. Thus, the interaction between spatial and temporal dimensions makes decoupling motion and appearance more challenging for DiT models. In this paper, we propose DeT, a method that adapts DiT models to improve motion transfer ability. Our approach introduces a simple yet effective temporal kernel to smooth DiT features along the temporal dimension, facilitating the decoupling of foreground motion from background appearance. Meanwhile, the temporal kernel effectively captures temporal variations in DiT features, which are closely related to motion. Moreover, we introduce explicit supervision along dense trajectories in the latent feature space to further enhance motion consistency. Additionally, we present MTBench, a general and challenging benchmark for motion transfer. We also introduce a hybrid motion fidelity metric that considers both the global and local motion similarity. Therefore, our work provides a more comprehensive evaluation than previous works. Extensive experiments on MTBench demonstrate that DeT achieves the best trade-off between motion fidelity and edit fidelity.
☆ Beyond Semantics: Rediscovering Spatial Awareness in Vision-Language Models
Vision-Language Models (VLMs) excel at identifying and describing objects but struggle with spatial reasoning such as accurately understanding the relative positions of objects. Inspired by the dual-pathway (ventral-dorsal) model of human vision, we investigate why VLMs fail spatial tasks despite strong object recognition capabilities. Our interpretability-driven analysis reveals a critical underlying cause: vision embeddings in VLMs are treated primarily as semantic ``bag-of-tokens," overshadowing subtle yet crucial positional cues due to their disproportionately large embedding norms. We validate this insight through extensive diagnostic experiments, demonstrating minimal performance impact when token orders or fine-grained spatial details are removed. Guided by these findings, we propose simple, interpretable interventions, including normalizing vision embedding norms and extracting mid-layer spatially rich features, to restore spatial awareness. Empirical results on both our synthetic data and standard benchmarks demonstrate improved spatial reasoning capabilities, highlighting the value of interpretability-informed design choices. Our study not only uncovers fundamental limitations in current VLM architectures but also provides actionable insights for enhancing structured perception of visual scenes.
☆ Dereflection Any Image with Diffusion Priors and Diversified Data
Reflection removal of a single image remains a highly challenging task due to the complex entanglement between target scenes and unwanted reflections. Despite significant progress, existing methods are hindered by the scarcity of high-quality, diverse data and insufficient restoration priors, resulting in limited generalization across various real-world scenarios. In this paper, we propose Dereflection Any Image, a comprehensive solution with an efficient data preparation pipeline and a generalizable model for robust reflection removal. First, we introduce a dataset named Diverse Reflection Removal (DRR) created by randomly rotating reflective mediums in target scenes, enabling variation of reflection angles and intensities, and setting a new benchmark in scale, quality, and diversity. Second, we propose a diffusion-based framework with one-step diffusion for deterministic outputs and fast inference. To ensure stable learning, we design a three-stage progressive training strategy, including reflection-invariant finetuning to encourage consistent outputs across varying reflection patterns that characterize our dataset. Extensive experiments show that our method achieves SOTA performance on both common benchmarks and challenging in-the-wild images, showing superior generalization across diverse real-world scenes.
☆ Align Your Rhythm: Generating Highly Aligned Dance Poses with Gating-Enhanced Rhythm-Aware Feature Representation
Automatically generating natural, diverse and rhythmic human dance movements driven by music is vital for virtual reality and film industries. However, generating dance that naturally follows music remains a challenge, as existing methods lack proper beat alignment and exhibit unnatural motion dynamics. In this paper, we propose Danceba, a novel framework that leverages gating mechanism to enhance rhythm-aware feature representation for music-driven dance generation, which achieves highly aligned dance poses with enhanced rhythmic sensitivity. Specifically, we introduce Phase-Based Rhythm Extraction (PRE) to precisely extract rhythmic information from musical phase data, capitalizing on the intrinsic periodicity and temporal structures of music. Additionally, we propose Temporal-Gated Causal Attention (TGCA) to focus on global rhythmic features, ensuring that dance movements closely follow the musical rhythm. We also introduce Parallel Mamba Motion Modeling (PMMM) architecture to separately model upper and lower body motions along with musical features, thereby improving the naturalness and diversity of generated dance movements. Extensive experiments confirm that Danceba outperforms state-of-the-art methods, achieving significantly better rhythmic alignment and motion diversity. Project page: https://danceba.github.io/ .
comment: 10 pages, 6 figures
☆ A Topological Data Analysis Framework for Quantifying Necrosis in Glioblastomas
In this paper, we introduce a shape descriptor that we call "interior function". This is a Topological Data Analysis (TDA) based descriptor that refines previous descriptors for image analysis. Using this concept, we define subcomplex lacunarity, a new index that quantifies geometric characteristics of necrosis in tumors such as conglomeration. Building on this framework, we propose a set of indices to analyze necrotic morphology and construct a diagram that captures the distinct structural and geometric properties of necrotic regions in tumors. We present an application of this framework in the study of MRIs of Glioblastomas (GB). Using cluster analysis, we identify four distinct subtypes of Glioblastomas that reflect geometric properties of necrotic regions.
☆ Pow3R: Empowering Unconstrained 3D Reconstruction with Camera and Scene Priors CVPR 2025
We present Pow3r, a novel large 3D vision regression model that is highly versatile in the input modalities it accepts. Unlike previous feed-forward models that lack any mechanism to exploit known camera or scene priors at test time, Pow3r incorporates any combination of auxiliary information such as intrinsics, relative pose, dense or sparse depth, alongside input images, within a single network. Building upon the recent DUSt3R paradigm, a transformer-based architecture that leverages powerful pre-training, our lightweight and versatile conditioning acts as additional guidance for the network to predict more accurate estimates when auxiliary information is available. During training we feed the model with random subsets of modalities at each iteration, which enables the model to operate under different levels of known priors at test time. This in turn opens up new capabilities, such as performing inference in native image resolution, or point-cloud completion. Our experiments on 3D reconstruction, depth completion, multi-view depth prediction, multi-view stereo, and multi-view pose estimation tasks yield state-of-the-art results and confirm the effectiveness of Pow3r at exploiting all available information. The project webpage is https://europe.naverlabs.com/pow3r.
comment: CVPR 2025
☆ Exploring a Principled Framework for Deep Subspace Clustering ICLR 2025
Subspace clustering is a classical unsupervised learning task, built on a basic assumption that high-dimensional data can be approximated by a union of subspaces (UoS). Nevertheless, the real-world data are often deviating from the UoS assumption. To address this challenge, state-of-the-art deep subspace clustering algorithms attempt to jointly learn UoS representations and self-expressive coefficients. However, the general framework of the existing algorithms suffers from a catastrophic feature collapse and lacks a theoretical guarantee to learn desired UoS representation. In this paper, we present a Principled fRamewOrk for Deep Subspace Clustering (PRO-DSC), which is designed to learn structured representations and self-expressive coefficients in a unified manner. Specifically, in PRO-DSC, we incorporate an effective regularization on the learned representations into the self-expressive model, prove that the regularized self-expressive model is able to prevent feature space collapse, and demonstrate that the learned optimal representations under certain condition lie on a union of orthogonal subspaces. Moreover, we provide a scalable and efficient approach to implement our PRO-DSC and conduct extensive experiments to verify our theoretical findings and demonstrate the superior performance of our proposed deep subspace clustering approach. The code is available at https://github.com/mengxianghan123/PRO-DSC.
comment: The paper is accepted by ICLR 2025. The first two authors are equally contributed
☆ An Iterative Feedback Mechanism for Improving Natural Language Class Descriptions in Open-Vocabulary Object Detection
Recent advances in open-vocabulary object detection models will enable Automatic Target Recognition systems to be sustainable and repurposed by non-technical end-users for a variety of applications or missions. New, and potentially nuanced, classes can be defined with natural language text descriptions in the field, immediately before runtime, without needing to retrain the model. We present an approach for improving non-technical users' natural language text descriptions of their desired targets of interest, using a combination of analysis techniques on the text embeddings, and proper combinations of embeddings for contrastive examples. We quantify the improvement that our feedback mechanism provides by demonstrating performance with multiple publicly-available open-vocabulary object detection models.
comment: To appear in the Proceedings of SPIE 13463 Automatic Target Recognition XXXV, Orlando, FL, 2025
☆ HyperNVD: Accelerating Neural Video Decomposition via Hypernetworks CVPR 2025
Decomposing a video into a layer-based representation is crucial for easy video editing for the creative industries, as it enables independent editing of specific layers. Existing video-layer decomposition models rely on implicit neural representations (INRs) trained independently for each video, making the process time-consuming when applied to new videos. Noticing this limitation, we propose a meta-learning strategy to learn a generic video decomposition model to speed up the training on new videos. Our model is based on a hypernetwork architecture which, given a video-encoder embedding, generates the parameters for a compact INR-based neural video decomposition model. Our strategy mitigates the problem of single-video overfitting and, importantly, shortens the convergence of video decomposition on new, unseen videos. Our code is available at: https://hypernvd.github.io/
comment: CVPR 2025, project page: https://hypernvd.github.io/
☆ Vision Transformer Based Semantic Communications for Next Generation Wireless Networks
In the evolving landscape of 6G networks, semantic communications are poised to revolutionize data transmission by prioritizing the transmission of semantic meaning over raw data accuracy. This paper presents a Vision Transformer (ViT)-based semantic communication framework that has been deliberately designed to achieve high semantic similarity during image transmission while simultaneously minimizing the demand for bandwidth. By equipping ViT as the encoder-decoder framework, the proposed architecture can proficiently encode images into a high semantic content at the transmitter and precisely reconstruct the images, considering real-world fading and noise consideration at the receiver. Building on the attention mechanisms inherent to ViTs, our model outperforms Convolution Neural Network (CNNs) and Generative Adversarial Networks (GANs) tailored for generating such images. The architecture based on the proposed ViT network achieves the Peak Signal-to-noise Ratio (PSNR) of 38 dB, which is higher than other Deep Learning (DL) approaches in maintaining semantic similarity across different communication environments. These findings establish our ViT-based approach as a significant breakthrough in semantic communications.
comment: Accepted @ ICC 2025
☆ Recovering Pulse Waves from Video Using Deep Unrolling and Deep Equilibrium Models
Camera-based monitoring of vital signs, also known as imaging photoplethysmography (iPPG), has seen applications in driver-monitoring, perfusion assessment in surgical settings, affective computing, and more. iPPG involves sensing the underlying cardiac pulse from video of the skin and estimating vital signs such as the heart rate or a full pulse waveform. Some previous iPPG methods impose model-based sparse priors on the pulse signals and use iterative optimization for pulse wave recovery, while others use end-to-end black-box deep learning methods. In contrast, we introduce methods that combine signal processing and deep learning methods in an inverse problem framework. Our methods estimate the underlying pulse signal and heart rate from facial video by learning deep-network-based denoising operators that leverage deep algorithm unfolding and deep equilibrium models. Experiments show that our methods can denoise an acquired signal from the face and infer the correct underlying pulse rate, achieving state-of-the-art heart rate estimation performance on well-known benchmarks, all with less than one-fifth the number of learnable parameters as the closest competing method.
comment: 13 pages, 9 figures
☆ Physical Plausibility-aware Trajectory Prediction via Locomotion Embodiment CVPR2025
Humans can predict future human trajectories even from momentary observations by using human pose-related cues. However, previous Human Trajectory Prediction (HTP) methods leverage the pose cues implicitly, resulting in implausible predictions. To address this, we propose Locomotion Embodiment, a framework that explicitly evaluates the physical plausibility of the predicted trajectory by locomotion generation under the laws of physics. While the plausibility of locomotion is learned with an indifferentiable physics simulator, it is replaced by our differentiable Locomotion Value function to train an HTP network in a data-driven manner. In particular, our proposed Embodied Locomotion loss is beneficial for efficiently training a stochastic HTP network using multiple heads. Furthermore, the Locomotion Value filter is proposed to filter out implausible trajectories at inference. Experiments demonstrate that our method enhances even the state-of-the-art HTP methods across diverse datasets and problem settings. Our code is available at: https://github.com/ImIntheMiddle/EmLoco.
comment: CVPR2025. Project page: https://iminthemiddle.github.io/EmLoco-Page/
☆ Unsupervised Joint Learning of Optical Flow and Intensity with Event Cameras
Event cameras rely on motion to obtain information about scene appearance. In other words, for event cameras, motion and appearance are seen both or neither, which are encoded in the output event stream. Previous works consider recovering these two visual quantities as separate tasks, which does not fit with the nature of event cameras and neglects the inherent relations between both tasks. In this paper, we propose an unsupervised learning framework that jointly estimates optical flow (motion) and image intensity (appearance), with a single network. Starting from the event generation model, we newly derive the event-based photometric error as a function of optical flow and image intensity, which is further combined with the contrast maximization framework, yielding a comprehensive loss function that provides proper constraints for both flow and intensity estimation. Exhaustive experiments show that our model achieves state-of-the-art performance for both optical flow (achieves 20% and 25% improvement in EPE and AE respectively in the unsupervised learning category) and intensity estimation (produces competitive results with other baselines, particularly in high dynamic range scenarios). Last but not least, our model achieves shorter inference time than all the other optical flow models and many of the image reconstruction models, while they output only one quantity. Project page: https://github.com/tub-rip/e2fai
comment: 14 page, 8 figures, 9 tables. Project page: https://github.com/tub-rip/e2fai
☆ Cross-Modal Interactive Perception Network with Mamba for Lung Tumor Segmentation in PET-CT Images CVPR 2025
Lung cancer is a leading cause of cancer-related deaths globally. PET-CT is crucial for imaging lung tumors, providing essential metabolic and anatomical information, while it faces challenges such as poor image quality, motion artifacts, and complex tumor morphology. Deep learning-based models are expected to address these problems, however, existing small-scale and private datasets limit significant performance improvements for these methods. Hence, we introduce a large-scale PET-CT lung tumor segmentation dataset, termed PCLT20K, which comprises 21,930 pairs of PET-CT images from 605 patients. Furthermore, we propose a cross-modal interactive perception network with Mamba (CIPA) for lung tumor segmentation in PET-CT images. Specifically, we design a channel-wise rectification module (CRM) that implements a channel state space block across multi-modal features to learn correlated representations and helps filter out modality-specific noise. A dynamic cross-modality interaction module (DCIM) is designed to effectively integrate position and context information, which employs PET images to learn regional position information and serves as a bridge to assist in modeling the relationships between local features of CT images. Extensive experiments on a comprehensive benchmark demonstrate the effectiveness of our CIPA compared to the current state-of-the-art segmentation methods. We hope our research can provide more exploration opportunities for medical image segmentation. The dataset and code are available at https://github.com/mj129/CIPA.
comment: Accepted to CVPR 2025
☆ Deep End-to-End Posterior ENergy (DEEPEN) for image recovery
Current end-to-end (E2E) and plug-and-play (PnP) image reconstruction algorithms approximate the maximum a posteriori (MAP) estimate but cannot offer sampling from the posterior distribution, like diffusion models. By contrast, it is challenging for diffusion models to be trained in an E2E fashion. This paper introduces a Deep End-to-End Posterior ENergy (DEEPEN) framework, which enables MAP estimation as well as sampling. We learn the parameters of the posterior, which is the sum of the data consistency error and the negative log-prior distribution, using maximum likelihood optimization in an E2E fashion. The proposed approach does not require algorithm unrolling, and hence has a smaller computational and memory footprint than current E2E methods, while it does not require contraction constraints typically needed by current PnP methods. Our results demonstrate that DEEPEN offers improved performance than current E2E and PnP models in the MAP setting, while it also offers faster sampling compared to diffusion models. In addition, the learned energy-based model is observed to be more robust to changes in image acquisition settings.
☆ Slide-Level Prompt Learning with Vision Language Models for Few-Shot Multiple Instance Learning in Histopathology
In this paper, we address the challenge of few-shot classification in histopathology whole slide images (WSIs) by utilizing foundational vision-language models (VLMs) and slide-level prompt learning. Given the gigapixel scale of WSIs, conventional multiple instance learning (MIL) methods rely on aggregation functions to derive slide-level (bag-level) predictions from patch representations, which require extensive bag-level labels for training. In contrast, VLM-based approaches excel at aligning visual embeddings of patches with candidate class text prompts but lack essential pathological prior knowledge. Our method distinguishes itself by utilizing pathological prior knowledge from language models to identify crucial local tissue types (patches) for WSI classification, integrating this within a VLM-based MIL framework. Our approach effectively aligns patch images with tissue types, and we fine-tune our model via prompt learning using only a few labeled WSIs per category. Experimentation on real-world pathological WSI datasets and ablation studies highlight our method's superior performance over existing MIL- and VLM-based methods in few-shot WSI classification tasks. Our code is publicly available at https://github.com/LTS5/SLIP.
comment: Accepted to ISBI 2025
☆ Strong Baseline: Multi-UAV Tracking via YOLOv12 with BoT-SORT-ReID
Detecting and tracking multiple unmanned aerial vehicles (UAVs) in thermal infrared video is inherently challenging due to low contrast, environmental noise, and small target sizes. This paper provides a straightforward approach to address multi-UAV tracking in thermal infrared video, leveraging recent advances in detection and tracking. Instead of relying on the YOLOv5 with the DeepSORT pipeline, we present a tracking framework built on YOLOv12 and BoT-SORT, enhanced with tailored training and inference strategies. We evaluate our approach following the metrics from the 4th Anti-UAV Challenge and demonstrate competitive performance. Notably, we achieve strong results without using contrast enhancement or temporal information fusion to enrich UAV features, highlighting our approach as a "Strong Baseline" for the multi-UAV tracking task. We provide implementation details, in-depth experimental analysis, and a discussion of potential improvements. The code is available at https://github.com/wish44165/YOLOv12-BoT-SORT-ReID .
comment: 10 pages, 5 figures, 5 tables
☆ Leveraging Text-to-Image Generation for Handling Spurious Correlation
Deep neural networks trained with Empirical Risk Minimization (ERM) perform well when both training and test data come from the same domain, but they often fail to generalize to out-of-distribution samples. In image classification, these models may rely on spurious correlations that often exist between labels and irrelevant features of images, making predictions unreliable when those features do not exist. We propose a technique to generate training samples with text-to-image (T2I) diffusion models for addressing the spurious correlation problem. First, we compute the best describing token for the visual features pertaining to the causal components of samples by a textual inversion mechanism. Then, leveraging a language segmentation method and a diffusion model, we generate new samples by combining the causal component with the elements from other classes. We also meticulously prune the generated samples based on the prediction probabilities and attribution scores of the ERM model to ensure their correct composition for our objective. Finally, we retrain the ERM model on our augmented dataset. This process reduces the model's reliance on spurious correlations by learning from carefully crafted samples for in which this correlation does not exist. Our experiments show that across different benchmarks, our technique achieves better worst-group accuracy than the existing state-of-the-art methods.
☆ Neuro-Symbolic Scene Graph Conditioning for Synthetic Image Dataset Generation
As machine learning models increase in scale and complexity, obtaining sufficient training data has become a critical bottleneck due to acquisition costs, privacy constraints, and data scarcity in specialised domains. While synthetic data generation has emerged as a promising alternative, a notable performance gap remains compared to models trained on real data, particularly as task complexity grows. Concurrently, Neuro-Symbolic methods, which combine neural networks' learning strengths with symbolic reasoning's structured representations, have demonstrated significant potential across various cognitive tasks. This paper explores the utility of Neuro-Symbolic conditioning for synthetic image dataset generation, focusing specifically on improving the performance of Scene Graph Generation models. The research investigates whether structured symbolic representations in the form of scene graphs can enhance synthetic data quality through explicit encoding of relational constraints. The results demonstrate that Neuro-Symbolic conditioning yields significant improvements of up to +2.59% in standard Recall metrics and +2.83% in No Graph Constraint Recall metrics when used for dataset augmentation. These findings establish that merging Neuro-Symbolic and generative approaches produces synthetic data with complementary structural information that enhances model performance when combined with real data, providing a novel approach to overcome data scarcity limitations even for complex visual reasoning tasks.
☆ UniCon: Unidirectional Information Flow for Effective Control of Large-Scale Diffusion Models ICLR
We introduce UniCon, a novel architecture designed to enhance control and efficiency in training adapters for large-scale diffusion models. Unlike existing methods that rely on bidirectional interaction between the diffusion model and control adapter, UniCon implements a unidirectional flow from the diffusion network to the adapter, allowing the adapter alone to generate the final output. UniCon reduces computational demands by eliminating the need for the diffusion model to compute and store gradients during adapter training. Our results indicate that UniCon reduces GPU memory usage by one-third and increases training speed by 2.3 times, while maintaining the same adapter parameter size. Additionally, without requiring extra computational resources, UniCon enables the training of adapters with double the parameter volume of existing ControlNets. In a series of image conditional generation tasks, UniCon has demonstrated precise responsiveness to control inputs and exceptional generation capabilities.
comment: This work has been accepted for publication at the International Conference on Learning Representations (ICLR) 2025
☆ PP-DocLayout: A Unified Document Layout Detection Model to Accelerate Large-Scale Data Construction
Document layout analysis is a critical preprocessing step in document intelligence, enabling the detection and localization of structural elements such as titles, text blocks, tables, and formulas. Despite its importance, existing layout detection models face significant challenges in generalizing across diverse document types, handling complex layouts, and achieving real-time performance for large-scale data processing. To address these limitations, we present PP-DocLayout, which achieves high precision and efficiency in recognizing 23 types of layout regions across diverse document formats. To meet different needs, we offer three models of varying scales. PP-DocLayout-L is a high-precision model based on the RT-DETR-L detector, achieving 90.4% mAP@0.5 and an end-to-end inference time of 13.4 ms per page on a T4 GPU. PP-DocLayout-M is a balanced model, offering 75.2% mAP@0.5 with an inference time of 12.7 ms per page on a T4 GPU. PP-DocLayout-S is a high-efficiency model designed for resource-constrained environments and real-time applications, with an inference time of 8.1 ms per page on a T4 GPU and 14.5 ms on a CPU. This work not only advances the state of the art in document layout analysis but also provides a robust solution for constructing high-quality training data, enabling advancements in document intelligence and multimodal AI systems. Code and models are available at https://github.com/PaddlePaddle/PaddleX .
comment: Github Repo: https://github.com/PaddlePaddle/PaddleX
☆ A Deep Learning Framework for Visual Attention Prediction and Analysis of News Interfaces
News outlets' competition for attention in news interfaces has highlighted the need for demographically-aware saliency prediction models. Despite recent advancements in saliency detection applied to user interfaces (UI), existing datasets are limited in size and demographic representation. We present a deep learning framework that enhances the SaRa (Saliency Ranking) model with DeepGaze IIE, improving Salient Object Ranking (SOR) performance by 10.7%. Our framework optimizes three key components: saliency map generation, grid segment scoring, and map normalization. Through a two-fold experiment using eye-tracking (30 participants) and mouse-tracking (375 participants aged 13--70), we analyze attention patterns across demographic groups. Statistical analysis reveals significant age-based variations (p < 0.05, {\epsilon^2} = 0.042), with older users (36--70) engaging more with textual content and younger users (13--35) interacting more with images. Mouse-tracking data closely approximates eye-tracking behavior (sAUC = 0.86) and identifies UI elements that immediately stand out, validating its use in large-scale studies. We conclude that saliency studies should prioritize gathering data from a larger, demographically representative sample and report exact demographic distributions.
comment: This is a preprint submitted to the 2025 IEEE Conference on Artificial Intelligence (CAI)
☆ A Language Anchor-Guided Method for Robust Noisy Domain Generalization
Real-world machine learning applications often struggle with two major challenges: distribution shift and label noise. Models tend to overfit by focusing on redundant and uninformative features in the training data, which makes it hard for them to generalize to the target domain. Noisy data worsens this problem by causing further overfitting to the noise, meaning that existing methods often fail to tell the difference between true, invariant features and misleading, spurious ones. To tackle these issues, we introduce Anchor Alignment and Adaptive Weighting (A3W). This new algorithm uses sample reweighting guided by natural language processing (NLP) anchors to extract more representative features. In simple terms, A3W leverages semantic representations from natural language models as a source of domain-invariant prior knowledge. Additionally, it employs a weighted loss function that adjusts each sample's contribution based on its similarity to the corresponding NLP anchor. This adjustment makes the model more robust to noisy labels. Extensive experiments on standard benchmark datasets show that A3W consistently outperforms state-of-the-art domain generalization methods, offering significant improvements in both accuracy and robustness across different datasets and noise levels.
☆ Jailbreaking the Non-Transferable Barrier via Test-Time Data Disguising CVPR
Non-transferable learning (NTL) has been proposed to protect model intellectual property (IP) by creating a "non-transferable barrier" to restrict generalization from authorized to unauthorized domains. Recently, well-designed attack, which restores the unauthorized-domain performance by fine-tuning NTL models on few authorized samples, highlights the security risks of NTL-based applications. However, such attack requires modifying model weights, thus being invalid in the black-box scenario. This raises a critical question: can we trust the security of NTL models deployed as black-box systems? In this work, we reveal the first loophole of black-box NTL models by proposing a novel attack method (dubbed as JailNTL) to jailbreak the non-transferable barrier through test-time data disguising. The main idea of JailNTL is to disguise unauthorized data so it can be identified as authorized by the NTL model, thereby bypassing the non-transferable barrier without modifying the NTL model weights. Specifically, JailNTL encourages unauthorized-domain disguising in two levels, including: (i) data-intrinsic disguising (DID) for eliminating domain discrepancy and preserving class-related content at the input-level, and (ii) model-guided disguising (MGD) for mitigating output-level statistics difference of the NTL model. Empirically, when attacking state-of-the-art (SOTA) NTL models in the black-box scenario, JailNTL achieves an accuracy increase of up to 55.7% in the unauthorized domain by using only 1% authorized samples, largely exceeding existing SOTA white-box attacks.
comment: Code is released at https://github.com/tmllab/2025_CVPR_JailNTL
☆ FreeUV: Ground-Truth-Free Realistic Facial UV Texture Recovery via Cross-Assembly Inference Strategy CVPR 2025
Recovering high-quality 3D facial textures from single-view 2D images is a challenging task, especially under constraints of limited data and complex facial details such as makeup, wrinkles, and occlusions. In this paper, we introduce FreeUV, a novel ground-truth-free UV texture recovery framework that eliminates the need for annotated or synthetic UV data. FreeUV leverages pre-trained stable diffusion model alongside a Cross-Assembly inference strategy to fulfill this objective. In FreeUV, separate networks are trained independently to focus on realistic appearance and structural consistency, and these networks are combined during inference to generate coherent textures. Our approach accurately captures intricate facial features and demonstrates robust performance across diverse poses and occlusions. Extensive experiments validate FreeUV's effectiveness, with results surpassing state-of-the-art methods in both quantitative and qualitative metrics. Additionally, FreeUV enables new applications, including local editing, facial feature interpolation, and multi-view texture recovery. By reducing data requirements, FreeUV offers a scalable solution for generating high-fidelity 3D facial textures suitable for real-world scenarios.
comment: CVPR 2025. Project: https://yangxingchao.github.io/FreeUV-page/
☆ MSCA-Net:Multi-Scale Context Aggregation Network for Infrared Small Target Detection
Detecting infrared small targets in complex backgrounds remains a challenging task because of the low contrast and high noise levels inherent in infrared images. These factors often lead to the loss of crucial details during feature extraction. Moreover, existing detection methods have limitations in adequately integrating global and local information, which constrains the efficiency and accuracy of infrared small target detection. To address these challenges, this paper proposes a novel network architecture named MSCA-Net, which integrates three key components: Multi-Scale Enhanced Detection Attention mechanism(MSEDA), Positional Convolutional Block Attention Module (PCBAM), and Channel Aggregation Block (CAB). Specifically, MSEDA employs a multi-scale feature fusion attention mechanism to adaptively aggregate information across different scales, enriching feature representation. PCBAM captures the correlation between global and local features through a correlation matrix-based strategy, enabling deep feature interaction. Moreover, CAB redistributes input feature channels, facilitating the efficient transmission of beneficial features and further enhancing the model detection capability in complex backgrounds. The experimental results demonstrate that MSCA-Net achieves outstanding small target detection performance in complex backgrounds. Specifically, it attains mIoU scores of 78.43\%, 94.56\%, and 67.08\% on the NUAA-SIRST, NUDT-SIRST, and IRTSD-1K datasets, respectively, underscoring its effectiveness and strong potential for real-world applications.
☆ D2Fusion: Dual-domain Fusion with Feature Superposition for Deepfake Detection
Deepfake detection is crucial for curbing the harm it causes to society. However, current Deepfake detection methods fail to thoroughly explore artifact information across different domains due to insufficient intrinsic interactions. These interactions refer to the fusion and coordination after feature extraction processes across different domains, which are crucial for recognizing complex forgery clues. Focusing on more generalized Deepfake detection, in this work, we introduce a novel bi-directional attention module to capture the local positional information of artifact clues from the spatial domain. This enables accurate artifact localization, thus addressing the coarse processing with artifact features. To further address the limitation that the proposed bi-directional attention module may not well capture global subtle forgery information in the artifact feature (e.g., textures or edges), we employ a fine-grained frequency attention module in the frequency domain. By doing so, we can obtain high-frequency information in the fine-grained features, which contains the global and subtle forgery information. Although these features from the diverse domains can be effectively and independently improved, fusing them directly does not effectively improve the detection performance. Therefore, we propose a feature superposition strategy that complements information from spatial and frequency domains. This strategy turns the feature components into the form of wave-like tokens, which are updated based on their phase, such that the distinctions between authentic and artifact features can be amplified. Our method demonstrates significant improvements over state-of-the-art (SOTA) methods on five public Deepfake datasets in capturing abnormalities across different manipulated operations and real-life.
☆ Radar-Guided Polynomial Fitting for Metric Depth Estimation
We propose PolyRad, a novel radar-guided depth estimation method that introduces polynomial fitting to transform scaleless depth predictions from pretrained monocular depth estimation (MDE) models into metric depth maps. Unlike existing approaches that rely on complex architectures or expensive sensors, our method is grounded in a simple yet fundamental insight: using polynomial coefficients predicted from cheap, ubiquitous radar data to adaptively adjust depth predictions non-uniformly across depth ranges. Although MDE models often infer reasonably accurate local depth structure within each object or local region, they may misalign these regions relative to one another, making a linear scale-and-shift transformation insufficient given three or more of these regions. In contrast, PolyRad generalizes beyond linear transformations and is able to correct such misalignments by introducing inflection points. Importantly, our polynomial fitting framework preserves structural consistency through a novel training objective that enforces monotonicity via first-derivative regularization. PolyRad achieves state-of-the-art performance on the nuScenes, ZJU-4DRadarCam, and View-of-Delft datasets, outperforming existing methods by 30.3% in MAE and 37.2% in RMSE.
☆ Which2comm: An Efficient Collaborative Perception Framework for 3D Object Detection
Collaborative perception allows real-time inter-agent information exchange and thus offers invaluable opportunities to enhance the perception capabilities of individual agents. However, limited communication bandwidth in practical scenarios restricts the inter-agent data transmission volume, consequently resulting in performance declines in collaborative perception systems. This implies a trade-off between perception performance and communication cost. To address this issue, we propose Which2comm, a novel multi-agent 3D object detection framework leveraging object-level sparse features. By integrating semantic information of objects into 3D object detection boxes, we introduce semantic detection boxes (SemDBs). Innovatively transmitting these information-rich object-level sparse features among agents not only significantly reduces the demanding communication volume, but also improves 3D object detection performance. Specifically, a fully sparse network is constructed to extract SemDBs from individual agents; a temporal fusion approach with a relative temporal encoding mechanism is utilized to obtain the comprehensive spatiotemporal features. Extensive experiments on the V2XSet and OPV2V datasets demonstrate that Which2comm consistently outperforms other state-of-the-art methods on both perception performance and communication cost, exhibiting better robustness to real-world latency. These results present that for multi-agent collaborative 3D object detection, transmitting only object-level sparse features is sufficient to achieve high-precision and robust performance.
☆ Hi-ALPS -- An Experimental Robustness Quantification of Six LiDAR-based Object Detection Systems for Autonomous Driving
Light Detection and Ranging (LiDAR) is an essential sensor technology for autonomous driving as it can capture high-resolution 3D data. As 3D object detection systems (OD) can interpret such point cloud data, they play a key role in the driving decisions of autonomous vehicles. Consequently, such 3D OD must be robust against all types of perturbations and must therefore be extensively tested. One approach is the use of adversarial examples, which are small, sometimes sophisticated perturbations in the input data that change, i.e., falsify, the prediction of the OD. These perturbations are carefully designed based on the weaknesses of the OD. The robustness of the OD cannot be quantified with adversarial examples in general, because if the OD is vulnerable to a given attack, it is unclear whether this is due to the robustness of the OD or whether the attack algorithm produces particularly strong adversarial examples. The contribution of this work is Hi-ALPS -- Hierarchical Adversarial-example-based LiDAR Perturbation Level System, where higher robustness of the OD is required to withstand the perturbations as the perturbation levels increase. In doing so, the Hi-ALPS levels successively implement a heuristic followed by established adversarial example approaches. In a series of comprehensive experiments using Hi-ALPS, we quantify the robustness of six state-of-the-art 3D OD under different types of perturbations. The results of the experiments show that none of the OD is robust against all Hi-ALPS levels; an important factor for the ranking is that human observers can still correctly recognize the perturbed objects, as the respective perturbations are small. To increase the robustness of the OD, we discuss the applicability of state-of-the-art countermeasures. In addition, we derive further suggestions for countermeasures based on our experimental results.
☆ CoRLD: Contrastive Representation Learning Of Deformable Shapes In Images
Deformable shape representations, parameterized by deformations relative to a given template, have proven effective for improved image analysis tasks. However, their broader applicability is hindered by two major challenges. First, existing methods mainly rely on a known template during testing, which is impractical and limits flexibility. Second, they often struggle to capture fine-grained, voxel-level distinctions between similar shapes (e.g., anatomical variations among healthy individuals, those with mild cognitive impairment, and diseased states). To address these limitations, we propose a novel framework - Contrastive Representation Learning of Deformable shapes (CoRLD) in learned deformation spaces and demonstrate its effectiveness in the context of image classification. Our CoRLD leverages a class-aware contrastive supervised learning objective in latent deformation spaces, promoting proximity among representations of similar classes while ensuring separation of dissimilar groups. In contrast to previous deep learning networks that require a reference image as input to predict deformation changes, our approach eliminates this dependency. Instead, template images are utilized solely as ground truth in the loss function during the training process, making our model more flexible and generalizable to a wide range of medical applications. We validate CoRLD on diverse datasets, including real brain magnetic resonance imaging (MRIs) and adrenal shapes derived from computed tomography (CT) scans. Experimental results show that our model effectively extracts deformable shape features, which can be easily integrated with existing classifiers to substantially boost the classification accuracy. Our code is available at GitHub.
☆ D2C: Unlocking the Potential of Continuous Autoregressive Image Generation with Discrete Tokens
In the domain of image generation, latent-based generative models occupy a dominant status; however, these models rely heavily on image tokenizer. To meet modeling requirements, autoregressive models possessing the characteristics of scalability and flexibility embrace a discrete-valued tokenizer, but face the challenge of poor image generation quality. In contrast, diffusion models take advantage of the continuous-valued tokenizer to achieve better generation quality but are subject to low efficiency and complexity. The existing hybrid models are mainly to compensate for information loss and simplify the diffusion learning process. The potential of merging discrete-valued and continuous-valued tokens in the field of image generation has not yet been explored. In this paper, we propose D2C, a novel two-stage method to enhance model generation capacity. In the first stage, the discrete-valued tokens representing coarse-grained image features are sampled by employing a small discrete-valued generator. Then in the second stage, the continuous-valued tokens representing fine-grained image features are learned conditioned on the discrete token sequence. In addition, we design two kinds of fusion modules for seamless interaction. On the ImageNet-256 benchmark, extensive experiment results validate that our model achieves superior performance compared with several continuous-valued and discrete-valued generative models on the class-conditional image generation tasks.
☆ Enhancing Steering Estimation with Semantic-Aware GNNs ICCV 2025
Steering estimation is a critical task in autonomous driving, traditionally relying on 2D image-based models. In this work, we explore the advantages of incorporating 3D spatial information through hybrid architectures that combine 3D neural network models with recurrent neural networks (RNNs) for temporal modeling, using LiDAR-based point clouds as input. We systematically evaluate four hybrid 3D models, all of which outperform the 2D-only baseline, with the Graph Neural Network (GNN) - RNN model yielding the best results. To reduce reliance on LiDAR, we leverage a pretrained unified model to estimate depth from monocular images, reconstructing pseudo-3D point clouds. We then adapt the GNN-RNN model, originally designed for LiDAR-based point clouds, to work with these pseudo-3D representations, achieving comparable or even superior performance compared to the LiDAR-based model. Additionally, the unified model provides semantic labels for each point, enabling a more structured scene representation. To further optimize graph construction, we introduce an efficient connectivity strategy where connections are predominantly formed between points of the same semantic class, with only 20\% of inter-class connections retained. This targeted approach reduces graph complexity and computational cost while preserving critical spatial relationships. Finally, we validate our approach on the KITTI dataset, achieving a 71% improvement over 2D-only models. Our findings highlight the advantages of 3D spatial information and efficient graph construction for steering estimation, while maintaining the cost-effectiveness of monocular images and avoiding the expense of LiDAR-based systems.
comment: Submitted to ICCV 2025
☆ Not Only Text: Exploring Compositionality of Visual Representations in Vision-Language Models CVPR 2025
Vision-Language Models (VLMs) learn a shared feature space for text and images, enabling the comparison of inputs of different modalities. While prior works demonstrated that VLMs organize natural language representations into regular structures encoding composite meanings, it remains unclear if compositional patterns also emerge in the visual embedding space. In this work, we investigate compositionality in the image domain, where the analysis of compositional properties is challenged by noise and sparsity of visual data. We address these problems and propose a framework, called Geodesically Decomposable Embeddings (GDE), that approximates image representations with geometry-aware compositional structures in the latent space. We demonstrate that visual embeddings of pre-trained VLMs exhibit a compositional arrangement, and evaluate the effectiveness of this property in the tasks of compositional classification and group robustness. GDE achieves stronger performance in compositional classification compared to its counterpart method that assumes linear geometry of the latent space. Notably, it is particularly effective for group robustness, where we achieve higher results than task-specific solutions. Our results indicate that VLMs can automatically develop a human-like form of compositional reasoning in the visual domain, making their underlying processes more interpretable. Code is available at https://github.com/BerasiDavide/vlm_image_compositionality.
comment: Camera-ready version for CVPR 2025 (with Supp.Mat.)
☆ Temporal-Guided Spiking Neural Networks for Event-Based Human Action Recognition
This paper explores the promising interplay between spiking neural networks (SNNs) and event-based cameras for privacy-preserving human action recognition (HAR). The unique feature of event cameras in capturing only the outlines of motion, combined with SNNs' proficiency in processing spatiotemporal data through spikes, establishes a highly synergistic compatibility for event-based HAR. Previous studies, however, have been limited by SNNs' ability to process long-term temporal information, essential for precise HAR. In this paper, we introduce two novel frameworks to address this: temporal segment-based SNN (\textit{TS-SNN}) and 3D convolutional SNN (\textit{3D-SNN}). The \textit{TS-SNN} extracts long-term temporal information by dividing actions into shorter segments, while the \textit{3D-SNN} replaces 2D spatial elements with 3D components to facilitate the transmission of temporal information. To promote further research in event-based HAR, we create a dataset, \textit{FallingDetection-CeleX}, collected using the high-resolution CeleX-V event camera $(1280 \times 800)$, comprising 7 distinct actions. Extensive experimental results show that our proposed frameworks surpass state-of-the-art SNN methods on our newly collected dataset and three other neuromorphic datasets, showcasing their effectiveness in handling long-range temporal information for event-based HAR.
☆ R-LiViT: A LiDAR-Visual-Thermal Dataset Enabling Vulnerable Road User Focused Roadside Perception ICCV2025
In autonomous driving, the integration of roadside perception systems is essential for overcoming occlusion challenges and enhancing the safety of Vulnerable Road Users (VRUs). While LiDAR and visual (RGB) sensors are commonly used, thermal imaging remains underrepresented in datasets, despite its acknowledged advantages for VRU detection in extreme lighting conditions. In this paper, we present R-LiViT, the first dataset to combine LiDAR, RGB, and thermal imaging from a roadside perspective, with a strong focus on VRUs. R-LiViT captures three intersections during both day and night, ensuring a diverse dataset. It includes 10,000 LiDAR frames and 2,400 temporally and spatially aligned RGB and thermal images across over 150 traffic scenarios, with 6 and 8 annotated classes respectively, providing a comprehensive resource for tasks such as object detection and tracking. The dataset1 and the code for reproducing our evaluation results2 are made publicly available.
comment: 10 pages, 7 figures, submitted to ICCV2025
☆ A New Statistical Model of Star Speckles for Learning to Detect and Characterize Exoplanets in Direct Imaging Observations CVPR 2025
The search for exoplanets is an active field in astronomy, with direct imaging as one of the most challenging methods due to faint exoplanet signals buried within stronger residual starlight. Successful detection requires advanced image processing to separate the exoplanet signal from this nuisance component. This paper presents a novel statistical model that captures nuisance fluctuations using a multi-scale approach, leveraging problem symmetries and a joint spectral channel representation grounded in physical principles. Our model integrates into an interpretable, end-to-end learnable framework for simultaneous exoplanet detection and flux estimation. The proposed algorithm is evaluated against the state of the art using datasets from the SPHERE instrument operating at the Very Large Telescope (VLT). It significantly improves the precision-recall trade-off, notably on challenging datasets that are otherwise unusable by astronomers. The proposed approach is computationally efficient, robust to varying data quality, and well suited for large-scale observational surveys.
comment: Accepted to CVPR 2025
☆ The CASTLE 2024 Dataset: Advancing the Art of Multimodal Understanding
Egocentric video has seen increased interest in recent years, as it is used in a range of areas. However, most existing datasets are limited to a single perspective. In this paper, we present the CASTLE 2024 dataset, a multimodal collection containing ego- and exo-centric (i.e., first- and third-person perspective) video and audio from 15 time-aligned sources, as well as other sensor streams and auxiliary data. The dataset was recorded by volunteer participants over four days in a fixed location and includes the point of view of 10 participants, with an additional 5 fixed cameras providing an exocentric perspective. The entire dataset contains over 600 hours of UHD video recorded at 50 frames per second. In contrast to other datasets, CASTLE 2024 does not contain any partial censoring, such as blurred faces or distorted audio. The dataset is available via https://castle-dataset.github.io/.
comment: 7 pages, 6 figures, dataset available via https://castle-dataset.github.io/
☆ Beyond Accuracy: What Matters in Designing Well-Behaved Models?
Deep learning has become an essential part of computer vision, with deep neural networks (DNNs) excelling in predictive performance. However, they often fall short in other critical quality dimensions, such as robustness, calibration, or fairness. While existing studies have focused on a subset of these quality dimensions, none have explored a more general form of "well-behavedness" of DNNs. With this work, we address this gap by simultaneously studying nine different quality dimensions for image classification. Through a large-scale study, we provide a bird's-eye view by analyzing 326 backbone models and how different training paradigms and model architectures affect the quality dimensions. We reveal various new insights such that (i) vision-language models exhibit high fairness on ImageNet-1k classification and strong robustness against domain changes; (ii) self-supervised learning is an effective training paradigm to improve almost all considered quality dimensions; and (iii) the training dataset size is a major driver for most of the quality dimensions. We conclude our study by introducing the QUBA score (Quality Understanding Beyond Accuracy), a novel metric that ranks models across multiple dimensions of quality, enabling tailored recommendations based on specific user needs.
comment: Code: https://github.com/visinf/beyond-accuracy
☆ Missing Target-Relevant Information Prediction with World Model for Accurate Zero-Shot Composed Image Retrieval CVPR 2025
Zero-Shot Composed Image Retrieval (ZS-CIR) involves diverse tasks with a broad range of visual content manipulation intent across domain, scene, object, and attribute. The key challenge for ZS-CIR tasks is to modify a reference image according to manipulation text to accurately retrieve a target image, especially when the reference image is missing essential target content. In this paper, we propose a novel prediction-based mapping network, named PrediCIR, to adaptively predict the missing target visual content in reference images in the latent space before mapping for accurate ZS-CIR. Specifically, a world view generation module first constructs a source view by omitting certain visual content of a target view, coupled with an action that includes the manipulation intent derived from existing image-caption pairs. Then, a target content prediction module trains a world model as a predictor to adaptively predict the missing visual information guided by user intention in manipulating text at the latent space. The two modules map an image with the predicted relevant information to a pseudo-word token without extra supervision. Our model shows strong generalization ability on six ZS-CIR tasks. It obtains consistent and significant performance boosts ranging from 1.73% to 4.45% over the best methods and achieves new state-of-the-art results on ZS-CIR. Our code is available at https://github.com/Pter61/predicir.
comment: This work has been accepted to CVPR 2025
☆ Exploring Few-Shot Object Detection on Blood Smear Images: A Case Study of Leukocytes and Schistocytes
The detection of blood disorders often hinges upon the quantification of specific blood cell types. Variations in cell counts may indicate the presence of pathological conditions. Thus, the significance of developing precise automatic systems for blood cell enumeration is underscored. The investigation focuses on a novel approach termed DE-ViT. This methodology is employed in a Few-Shot paradigm, wherein training relies on a limited number of images. Two distinct datasets are utilised for experimental purposes: the Raabin-WBC dataset for Leukocyte detection and a local dataset for Schistocyte identification. In addition to the DE-ViT model, two baseline models, Faster R-CNN 50 and Faster R-CNN X 101, are employed, with their outcomes being compared against those of the proposed model. While DE-ViT has demonstrated state-of-the-art performance on the COCO and LVIS datasets, both baseline models surpassed its performance on the Raabin-WBC dataset. Moreover, only Faster R-CNN X 101 yielded satisfactory results on the SC-IDB. The observed disparities in performance may possibly be attributed to domain shift phenomena.
☆ GAA-TSO: Geometry-Aware Assisted Depth Completion for Transparent and Specular Objects
Transparent and specular objects are frequently encountered in daily life, factories, and laboratories. However, due to the unique optical properties, the depth information on these objects is usually incomplete and inaccurate, which poses significant challenges for downstream robotics tasks. Therefore, it is crucial to accurately restore the depth information of transparent and specular objects. Previous depth completion methods for these objects usually use RGB information as an additional channel of the depth image to perform depth prediction. Due to the poor-texture characteristics of transparent and specular objects, these methods that rely heavily on color information tend to generate structure-less depth predictions. Moreover, these 2D methods cannot effectively explore the 3D structure hidden in the depth channel, resulting in depth ambiguity. To this end, we propose a geometry-aware assisted depth completion method for transparent and specular objects, which focuses on exploring the 3D structural cues of the scene. Specifically, besides extracting 2D features from RGB-D input, we back-project the input depth to a point cloud and build the 3D branch to extract hierarchical scene-level 3D structural features. To exploit 3D geometric information, we design several gated cross-modal fusion modules to effectively propagate multi-level 3D geometric features to the image branch. In addition, we propose an adaptive correlation aggregation strategy to appropriately assign 3D features to the corresponding 2D features. Extensive experiments on ClearGrasp, OOD, TransCG, and STD datasets show that our method outperforms other state-of-the-art methods. We further demonstrate that our method significantly enhances the performance of downstream robotic grasping tasks.
☆ A Comparative Analysis of Image Descriptors for Histopathological Classification of Gastric Cancer
Gastric cancer ranks as the fifth most common and fourth most lethal cancer globally, with a dismal 5-year survival rate of approximately 20%. Despite extensive research on its pathobiology, the prognostic predictability remains inadequate, compounded by pathologists' high workload and potential diagnostic errors. Thus, automated, accurate histopathological diagnosis tools are crucial. This study employs Machine Learning and Deep Learning techniques to classify histopathological images into healthy and cancerous categories. Using handcrafted and deep features with shallow learning classifiers on the GasHisSDB dataset, we offer a comparative analysis and insights into the most robust and high-performing combinations of features and classifiers for distinguishing between normal and abnormal histopathological images without fine-tuning strategies. With the RF classifier, our approach can reach F1 of 93.4%, demonstrating its validity.
☆ R2LDM: An Efficient 4D Radar Super-Resolution Framework Leveraging Diffusion Model
We introduce R2LDM, an innovative approach for generating dense and accurate 4D radar point clouds, guided by corresponding LiDAR point clouds. Instead of utilizing range images or bird's eye view (BEV) images, we represent both LiDAR and 4D radar point clouds using voxel features, which more effectively capture 3D shape information. Subsequently, we propose the Latent Voxel Diffusion Model (LVDM), which performs the diffusion process in the latent space. Additionally, a novel Latent Point Cloud Reconstruction (LPCR) module is utilized to reconstruct point clouds from high-dimensional latent voxel features. As a result, R2LDM effectively generates LiDAR-like point clouds from paired raw radar data. We evaluate our approach on two different datasets, and the experimental results demonstrate that our model achieves 6- to 10-fold densification of radar point clouds, outperforming state-of-the-art baselines in 4D radar point cloud super-resolution. Furthermore, the enhanced radar point clouds generated by our method significantly improve downstream tasks, achieving up to 31.7% improvement in point cloud registration recall rate and 24.9% improvement in object detection accuracy.
☆ Multi-modal Multi-platform Person Re-Identification: Benchmark and Method
Conventional person re-identification (ReID) research is often limited to single-modality sensor data from static cameras, which fails to address the complexities of real-world scenarios where multi-modal signals are increasingly prevalent. For instance, consider an urban ReID system integrating stationary RGB cameras, nighttime infrared sensors, and UAVs equipped with dynamic tracking capabilities. Such systems face significant challenges due to variations in camera perspectives, lighting conditions, and sensor modalities, hindering effective person ReID. To address these challenges, we introduce the MP-ReID benchmark, a novel dataset designed specifically for multi-modality and multi-platform ReID. This benchmark uniquely compiles data from 1,930 identities across diverse modalities, including RGB, infrared, and thermal imaging, captured by both UAVs and ground-based cameras in indoor and outdoor environments. Building on this benchmark, we introduce Uni-Prompt ReID, a framework with specific-designed prompts, tailored for cross-modality and cross-platform scenarios. Our method consistently outperforms state-of-the-art approaches, establishing a robust foundation for future research in complex and dynamic ReID environments. Our dataset are available at:https://mp-reid.github.io/.
☆ FFaceNeRF: Few-shot Face Editing in Neural Radiance Fields CVPR2025
Recent 3D face editing methods using masks have produced high-quality edited images by leveraging Neural Radiance Fields (NeRF). Despite their impressive performance, existing methods often provide limited user control due to the use of pre-trained segmentation masks. To utilize masks with a desired layout, an extensive training dataset is required, which is challenging to gather. We present FFaceNeRF, a NeRF-based face editing technique that can overcome the challenge of limited user control due to the use of fixed mask layouts. Our method employs a geometry adapter with feature injection, allowing for effective manipulation of geometry attributes. Additionally, we adopt latent mixing for tri-plane augmentation, which enables training with a few samples. This facilitates rapid model adaptation to desired mask layouts, crucial for applications in fields like personalized medical imaging or creative face editing. Our comparative evaluations demonstrate that FFaceNeRF surpasses existing mask based face editing methods in terms of flexibility, control, and generated image quality, paving the way for future advancements in customized and high-fidelity 3D face editing. The code is available on the {\href{https://kwanyun.github.io/FFaceNeRF_page/}{project-page}}.
comment: CVPR2025, 11 pages, 14 figures
☆ ColabSfM: Collaborative Structure-from-Motion by Point Cloud Registration CVPR 2025
Structure-from-Motion (SfM) is the task of estimating 3D structure and camera poses from images. We define Collaborative SfM (ColabSfM) as sharing distributed SfM reconstructions. Sharing maps requires estimating a joint reference frame, which is typically referred to as registration. However, there is a lack of scalable methods and training datasets for registering SfM reconstructions. In this paper, we tackle this challenge by proposing the scalable task of point cloud registration for SfM reconstructions. We find that current registration methods cannot register SfM point clouds when trained on existing datasets. To this end, we propose a SfM registration dataset generation pipeline, leveraging partial reconstructions from synthetically generated camera trajectories for each scene. Finally, we propose a simple but impactful neural refiner on top of the SotA registration method RoITr that yields significant improvements, which we call RefineRoITr. Our extensive experimental evaluation shows that our proposed pipeline and model enables ColabSfM. Code is available at https://github.com/EricssonResearch/ColabSfM
comment: CVPR 2025
☆ Does a Rising Tide Lift All Boats? Bias Mitigation for AI-based CMR Segmentation
Artificial intelligence (AI) is increasingly being used for medical imaging tasks. However, there can be biases in the resulting models, particularly when they were trained using imbalanced training datasets. One such example has been the strong race bias effect in cardiac magnetic resonance (CMR) image segmentation models. Although this phenomenon has been reported in a number of publications, little is known about the effectiveness of bias mitigation algorithms in this domain. We aim to investigate the impact of common bias mitigation methods to address bias between Black and White subjects in AI-based CMR segmentation models. Specifically, we use oversampling, importance reweighing and Group DRO as well as combinations of these techniques to mitigate the race bias. Furthermore, motivated by recent findings on the root causes of AI-based CMR segmentation bias, we evaluate the same methods using models trained and evaluated on cropped CMR images. We find that bias can be mitigated using oversampling, significantly improving performance for the underrepresented Black subjects whilst not significantly reducing the majority White subjects' performance. Group DRO also improves performance for Black subjects but not significantly, while reweighing decreases performance for Black subjects. Using a combination of oversampling and Group DRO also improves performance for Black subjects but not significantly. Using cropped images increases performance for both races and reduces the bias, whilst adding oversampling as a bias mitigation technique with cropped images reduces the bias further.
☆ Seeing What Matters: Empowering CLIP with Patch Generation-to-Selection CVPR 2025
The CLIP model has demonstrated significant advancements in aligning visual and language modalities through large-scale pre-training on image-text pairs, enabling strong zero-shot classification and retrieval capabilities on various domains. However, CLIP's training remains computationally intensive, with high demands on both data processing and memory. To address these challenges, recent masking strategies have emerged, focusing on the selective removal of image patches to improve training efficiency. Although effective, these methods often compromise key semantic information, resulting in suboptimal alignment between visual features and text descriptions. In this work, we present a concise yet effective approach called Patch Generation-to-Selection to enhance CLIP's training efficiency while preserving critical semantic content. Our method introduces a gradual masking process in which a small set of candidate patches is first pre-selected as potential mask regions. Then, we apply Sobel edge detection across the entire image to generate an edge mask that prioritizes the retention of the primary object areas. Finally, similarity scores between the candidate mask patches and their neighboring patches are computed, with optimal transport normalization refining the selection process to ensure a balanced similarity matrix. Our approach, CLIP-PGS, sets new state-of-the-art results in zero-shot classification and retrieval tasks, achieving superior performance in robustness evaluation and language compositionality benchmarks.
comment: accepted by CVPR 2025
☆ Halton Scheduler For Masked Generative Image Transformer
Masked Generative Image Transformers (MaskGIT) have emerged as a scalable and efficient image generation framework, able to deliver high-quality visuals with low inference costs. However, MaskGIT's token unmasking scheduler, an essential component of the framework, has not received the attention it deserves. We analyze the sampling objective in MaskGIT, based on the mutual information between tokens, and elucidate its shortcomings. We then propose a new sampling strategy based on our Halton scheduler instead of the original Confidence scheduler. More precisely, our method selects the token's position according to a quasi-random, low-discrepancy Halton sequence. Intuitively, that method spreads the tokens spatially, progressively covering the image uniformly at each step. Our analysis shows that it allows reducing non-recoverable sampling errors, leading to simpler hyper-parameters tuning and better quality images. Our scheduler does not require retraining or noise injection and may serve as a simple drop-in replacement for the original sampling strategy. Evaluation of both class-to-image synthesis on ImageNet and text-to-image generation on the COCO dataset demonstrates that the Halton scheduler outperforms the Confidence scheduler quantitatively by reducing the FID and qualitatively by generating more diverse and more detailed images. Our code is at https://github.com/valeoai/Halton-MaskGIT.
☆ Zero-Shot Styled Text Image Generation, but Make It Autoregressive CVPR2025
Styled Handwritten Text Generation (HTG) has recently received attention from the computer vision and document analysis communities, which have developed several solutions, either GAN- or diffusion-based, that achieved promising results. Nonetheless, these strategies fail to generalize to novel styles and have technical constraints, particularly in terms of maximum output length and training efficiency. To overcome these limitations, in this work, we propose a novel framework for text image generation, dubbed Emuru. Our approach leverages a powerful text image representation model (a variational autoencoder) combined with an autoregressive Transformer. Our approach enables the generation of styled text images conditioned on textual content and style examples, such as specific fonts or handwriting styles. We train our model solely on a diverse, synthetic dataset of English text rendered in over 100,000 typewritten and calligraphy fonts, which gives it the capability to reproduce unseen styles (both fonts and users' handwriting) in zero-shot. To the best of our knowledge, Emuru is the first autoregressive model for HTG, and the first designed specifically for generalization to novel styles. Moreover, our model generates images without background artifacts, which are easier to use for downstream applications. Extensive evaluation on both typewritten and handwritten, any-length text image generation scenarios demonstrates the effectiveness of our approach.
comment: Accepted at CVPR2025
☆ Superpowering Open-Vocabulary Object Detectors for X-ray Vision
Open-vocabulary object detection (OvOD) is set to revolutionize security screening by enabling systems to recognize any item in X-ray scans. However, developing effective OvOD models for X-ray imaging presents unique challenges due to data scarcity and the modality gap that prevents direct adoption of RGB-based solutions. To overcome these limitations, we propose RAXO, a training-free framework that repurposes off-the-shelf RGB OvOD detectors for robust X-ray detection. RAXO builds high-quality X-ray class descriptors using a dual-source retrieval strategy. It gathers relevant RGB images from the web and enriches them via a novel X-ray material transfer mechanism, eliminating the need for labeled databases. These visual descriptors replace text-based classification in OvOD, leveraging intra-modal feature distances for robust detection. Extensive experiments demonstrate that RAXO consistently improves OvOD performance, providing an average mAP increase of up to 17.0 points over base detectors. To further support research in this emerging field, we also introduce DET-COMPASS, a new benchmark featuring bounding box annotations for over 300 object categories, enabling large-scale evaluation of OvOD in X-ray. Code and dataset available at: https://github.com/PAGF188/RAXO.
☆ PVChat: Personalized Video Chat with One-Shot Learning
Video large language models (ViLLMs) excel in general video understanding, e.g., recognizing activities like talking and eating, but struggle with identity-aware comprehension, such as "Wilson is receiving chemotherapy" or "Tom is discussing with Sarah", limiting their applicability in smart healthcare and smart home environments. To address this limitation, we propose a one-shot learning framework PVChat, the first personalized ViLLM that enables subject-aware question answering (QA) from a single video for each subject. Our approach optimizes a Mixture-of-Heads (MoH) enhanced ViLLM on a synthetically augmented video-QA dataset, leveraging a progressive image-to-video learning strategy. Specifically, we introduce an automated augmentation pipeline that synthesizes identity-preserving positive samples and retrieves hard negatives from existing video corpora, generating a diverse training dataset with four QA types: existence, appearance, action, and location inquiries. To enhance subject-specific learning, we propose a ReLU Routing MoH attention mechanism, alongside two novel objectives: (1) Smooth Proximity Regularization for progressive learning through exponential distance scaling and (2) Head Activation Enhancement for balanced attention routing. Finally, we adopt a two-stage training strategy, transitioning from image pre-training to video fine-tuning, enabling a gradual learning process from static attributes to dynamic representations. We evaluate PVChat on diverse datasets covering medical scenarios, TV series, anime, and real-world footage, demonstrating its superiority in personalized feature understanding after learning from a single video, compared to state-of-the-art ViLLMs.
☆ DIDiffGes: Decoupled Semi-Implicit Diffusion Models for Real-time Gesture Generation from Speech AAAI 2025
Diffusion models have demonstrated remarkable synthesis quality and diversity in generating co-speech gestures. However, the computationally intensive sampling steps associated with diffusion models hinder their practicality in real-world applications. Hence, we present DIDiffGes, for a Decoupled Semi-Implicit Diffusion model-based framework, that can synthesize high-quality, expressive gestures from speech using only a few sampling steps. Our approach leverages Generative Adversarial Networks (GANs) to enable large-step sampling for diffusion model. We decouple gesture data into body and hands distributions and further decompose them into marginal and conditional distributions. GANs model the marginal distribution implicitly, while L2 reconstruction loss learns the conditional distributions exciplictly. This strategy enhances GAN training stability and ensures expressiveness of generated full-body gestures. Our framework also learns to denoise root noise conditioned on local body representation, guaranteeing stability and realism. DIDiffGes can generate gestures from speech with just 10 sampling steps, without compromising quality and expressiveness, reducing the number of sampling steps by a factor of 100 compared to existing methods. Our user study reveals that our method outperforms state-of-the-art approaches in human likeness, appropriateness, and style correctness. Project is https://cyk990422.github.io/DIDiffGes.
comment: Accepted by AAAI 2025
☆ Semi-supervised Cervical Segmentation on Ultrasound by A Dual Framework for Neural Networks
Accurate segmentation of ultrasound (US) images of the cervical muscles is crucial for precision healthcare. The demand for automatic computer-assisted methods is high. However, the scarcity of labeled data hinders the development of these methods. Advanced semi-supervised learning approaches have displayed promise in overcoming this challenge by utilizing labeled and unlabeled data. This study introduces a novel semi-supervised learning (SSL) framework that integrates dual neural networks. This SSL framework utilizes both networks to generate pseudo-labels and cross-supervise each other at the pixel level. Additionally, a self-supervised contrastive learning strategy is introduced, which employs a pair of deep representations to enhance feature learning capabilities, particularly on unlabeled data. Our framework demonstrates competitive performance in cervical segmentation tasks. Our codes are publicly available on https://github.com/13204942/SSL\_Cervical\_Segmentation.
comment: Accepted for an oral presentation at ISBI 2025 Fetal Ultrasound Grand Challenge: Semi-Supervised Cervical Segmentation
☆ Scoring, Remember, and Reference: Catching Camouflaged Objects in Videos
Video Camouflaged Object Detection (VCOD) aims to segment objects whose appearances closely resemble their surroundings, posing a challenging and emerging task. Existing vision models often struggle in such scenarios due to the indistinguishable appearance of camouflaged objects and the insufficient exploitation of dynamic information in videos. To address these challenges, we propose an end-to-end VCOD framework inspired by human memory-recognition, which leverages historical video information by integrating memory reference frames for camouflaged sequence processing. Specifically, we design a dual-purpose decoder that simultaneously generates predicted masks and scores, enabling reference frame selection based on scores while introducing auxiliary supervision to enhance feature extraction.Furthermore, this study introduces a novel reference-guided multilevel asymmetric attention mechanism, effectively integrating long-term reference information with short-term motion cues for comprehensive feature extraction. By combining these modules, we develop the Scoring, Remember, and Reference (SRR) framework, which efficiently extracts information to locate targets and employs memory guidance to improve subsequent processing. With its optimized module design and effective utilization of video data, our model achieves significant performance improvements, surpassing existing approaches by 10% on benchmark datasets while requiring fewer parameters (54M) and only a single pass through the video. The code will be made publicly available.
☆ HAPI: A Model for Learning Robot Facial Expressions from Human Preferences
Automatic robotic facial expression generation is crucial for human-robot interaction, as handcrafted methods based on fixed joint configurations often yield rigid and unnatural behaviors. Although recent automated techniques reduce the need for manual tuning, they tend to fall short by not adequately bridging the gap between human preferences and model predictions-resulting in a deficiency of nuanced and realistic expressions due to limited degrees of freedom and insufficient perceptual integration. In this work, we propose a novel learning-to-rank framework that leverages human feedback to address this discrepancy and enhanced the expressiveness of robotic faces. Specifically, we conduct pairwise comparison annotations to collect human preference data and develop the Human Affective Pairwise Impressions (HAPI) model, a Siamese RankNet-based approach that refines expression evaluation. Results obtained via Bayesian Optimization and online expression survey on a 35-DOF android platform demonstrate that our approach produces significantly more realistic and socially resonant expressions of Anger, Happiness, and Surprise than those generated by baseline and expert-designed methods. This confirms that our framework effectively bridges the gap between human preferences and model predictions while robustly aligning robotic expression generation with human affective responses.
☆ ExCap3D: Expressive 3D Scene Understanding via Object Captioning with Varying Detail
Generating text descriptions of objects in 3D indoor scenes is an important building block of embodied understanding. Existing methods do this by describing objects at a single level of detail, which often does not capture fine-grained details such as varying textures, materials, and shapes of the parts of objects. We propose the task of expressive 3D captioning: given an input 3D scene, describe objects at multiple levels of detail: a high-level object description, and a low-level description of the properties of its parts. To produce such captions, we present ExCap3D, an expressive 3D captioning model which takes as input a 3D scan, and for each detected object in the scan, generates a fine-grained collective description of the parts of the object, along with an object-level description conditioned on the part-level description. We design ExCap3D to encourage semantic consistency between the generated text descriptions, as well as textual similarity in the latent space, to further increase the quality of the generated captions. To enable this task, we generated the ExCap3D Dataset by leveraging a visual-language model (VLM) for multi-view captioning. The ExCap3D Dataset contains captions on the ScanNet++ dataset with varying levels of detail, comprising 190k text descriptions of 34k 3D objects in 947 indoor scenes. Our experiments show that the object- and part-level of detail captions generated by ExCap3D are of higher quality than those produced by state-of-the-art methods, with a Cider score improvement of 17% and 124% for object- and part-level details respectively. Our code, dataset and models will be made publicly available.
comment: Project page: https://cy94.github.io/excap3d/, Video: https://www.youtube.com/watch?v=SQRV1l_0oY0
☆ An Attentive Representative Sample Selection Strategy Combined with Balanced Batch Training for Skin Lesion Segmentation
An often overlooked problem in medical image segmentation research is the effective selection of training subsets to annotate from a complete set of unlabelled data. Many studies select their training sets at random, which may lead to suboptimal model performance, especially in the minimal supervision setting where each training image has a profound effect on performance outcomes. This work aims to address this issue. We use prototypical contrasting learning and clustering to extract representative and diverse samples for annotation. We improve upon prior works with a bespoke cluster-based image selection process. Additionally, we introduce the concept of unsupervised balanced batch dataloading to medical image segmentation, which aims to improve model learning with minimally annotated data. We evaluated our method on a public skin lesion dataset (ISIC 2018) and compared it to another state-of-the-art data sampling method. Our method achieved superior performance in a low annotation budget scenario.
comment: Accepted to ISBI 2025
☆ TaoAvatar: Real-Time Lifelike Full-Body Talking Avatars for Augmented Reality via 3D Gaussian Splatting CVPR 2025
Realistic 3D full-body talking avatars hold great potential in AR, with applications ranging from e-commerce live streaming to holographic communication. Despite advances in 3D Gaussian Splatting (3DGS) for lifelike avatar creation, existing methods struggle with fine-grained control of facial expressions and body movements in full-body talking tasks. Additionally, they often lack sufficient details and cannot run in real-time on mobile devices. We present TaoAvatar, a high-fidelity, lightweight, 3DGS-based full-body talking avatar driven by various signals. Our approach starts by creating a personalized clothed human parametric template that binds Gaussians to represent appearances. We then pre-train a StyleUnet-based network to handle complex pose-dependent non-rigid deformation, which can capture high-frequency appearance details but is too resource-intensive for mobile devices. To overcome this, we "bake" the non-rigid deformations into a lightweight MLP-based network using a distillation technique and develop blend shapes to compensate for details. Extensive experiments show that TaoAvatar achieves state-of-the-art rendering quality while running in real-time across various devices, maintaining 90 FPS on high-definition stereo devices such as the Apple Vision Pro.
comment: Accepted by CVPR 2025, project page: https://PixelAI-Team.github.io/TaoAvatar
☆ Exploring the Efficacy of Partial Denoising Using Bit Plane Slicing for Enhanced Fracture Identification: A Comparative Study of Deep Learning-Based Approaches and Handcrafted Feature Extraction Techniques
Computer vision has transformed medical diagnosis, treatment, and research through advanced image processing and machine learning techniques. Fracture classification, a critical area in healthcare, has greatly benefited from these advancements, yet accurate detection is challenged by complex patterns and image noise. Bit plane slicing enhances medical images by reducing noise interference and extracting informative features. This research explores partial denoising techniques to provide practical solutions for improved fracture analysis, ultimately enhancing patient care. The study explores deep learning model DenseNet and handcrafted feature extraction. Decision Tree and Random Forest, were employed to train and evaluate distinct image representations. These include the original image, the concatenation of the four bit planes from the LSB as well as MSB, the fully denoised image, and an image consisting of 6 bit planes from MSB and 2 denoised bit planes from LSB. The purpose of forming these diverse image representations is to analyze SNR as well as classification accuracy and identify the bit planes that contain the most informative features. Moreover, the study delves into the significance of partial denoising techniques in preserving crucial features, leading to improvements in classification results. Notably, this study shows that employing the Random Forest classifier, the partially denoised image representation exhibited a testing accuracy of 95.61% surpassing the performance of other image representations. The outcomes of this research provide valuable insights into the development of efficient preprocessing, feature extraction and classification approaches for fracture identification. By enhancing diagnostic accuracy, these advancements hold the potential to positively impact patient care and overall medical outcomes.
☆ AnimatePainter: A Self-Supervised Rendering Framework for Reconstructing Painting Process
Humans can intuitively decompose an image into a sequence of strokes to create a painting, yet existing methods for generating drawing processes are limited to specific data types and often rely on expensive human-annotated datasets. We propose a novel self-supervised framework for generating drawing processes from any type of image, treating the task as a video generation problem. Our approach reverses the drawing process by progressively removing strokes from a reference image, simulating a human-like creation sequence. Crucially, our method does not require costly datasets of real human drawing processes; instead, we leverage depth estimation and stroke rendering to construct a self-supervised dataset. We model human drawings as "refinement" and "layering" processes and introduce depth fusion layers to enable video generation models to learn and replicate human drawing behavior. Extensive experiments validate the effectiveness of our approach, demonstrating its ability to generate realistic drawings without the need for real drawing process data.
☆ RAW-Adapter: Adapting Pre-trained Visual Model to Camera RAW Images and A Benchmark ECCV 2024
In the computer vision community, the preference for pre-training visual models has largely shifted toward sRGB images due to their ease of acquisition and compact storage. However, camera RAW images preserve abundant physical details across diverse real-world scenarios. Despite this, most existing visual perception methods that utilize RAW data directly integrate image signal processing (ISP) stages with subsequent network modules, often overlooking potential synergies at the model level. Building on recent advances in adapter-based methodologies in both NLP and computer vision, we propose RAW-Adapter, a novel framework that incorporates learnable ISP modules as input-level adapters to adjust RAW inputs. At the same time, it employs model-level adapters to seamlessly bridge ISP processing with high-level downstream architectures. Moreover, RAW-Adapter serves as a general framework applicable to various computer vision frameworks. Furthermore, we introduce RAW-Bench, which incorporates 17 types of RAW-based common corruptions, including lightness degradations, weather effects, blurriness, camera imaging degradations, and variations in camera color response. Using this benchmark, we systematically compare the performance of RAW-Adapter with state-of-the-art (SOTA) ISP methods and other RAW-based high-level vision algorithms. Additionally, we propose a RAW-based data augmentation strategy to further enhance RAW-Adapter's performance and improve its out-of-domain (OOD) generalization ability. Extensive experiments substantiate the effectiveness and efficiency of RAW-Adapter, highlighting its robust performance across diverse scenarios.
comment: 23 pages, 17 figures, extension of ECCV 2024 work: arXiv:2408.14802
☆ A Tale of Two Classes: Adapting Supervised Contrastive Learning to Binary Imbalanced Datasets
Supervised contrastive learning (SupCon) has proven to be a powerful alternative to the standard cross-entropy loss for classification of multi-class balanced datasets. However, it struggles to learn well-conditioned representations of datasets with long-tailed class distributions. This problem is potentially exacerbated for binary imbalanced distributions, which are commonly encountered during many real-world problems such as medical diagnosis. In experiments on seven binary datasets of natural and medical images, we show that the performance of SupCon decreases with increasing class imbalance. To substantiate these findings, we introduce two novel metrics that evaluate the quality of the learned representation space. By measuring the class distribution in local neighborhoods, we are able to uncover structural deficiencies of the representation space that classical metrics cannot detect. Informed by these insights, we propose two new supervised contrastive learning strategies tailored to binary imbalanced datasets that improve the structure of the representation space and increase downstream classification accuracy over standard SupCon by up to 35%. We make our code available.
☆ Specifying What You Know or Not for Multi-Label Class-Incremental Learning AAAI 2025
Existing class incremental learning is mainly designed for single-label classification task, which is ill-equipped for multi-label scenarios due to the inherent contradiction of learning objectives for samples with incomplete labels. We argue that the main challenge to overcome this contradiction in multi-label class-incremental learning (MLCIL) lies in the model's inability to clearly distinguish between known and unknown knowledge. This ambiguity hinders the model's ability to retain historical knowledge, master current classes, and prepare for future learning simultaneously. In this paper, we target at specifying what is known or not to accommodate Historical, Current, and Prospective knowledge for MLCIL and propose a novel framework termed as HCP. Specifically, (i) we clarify the known classes by dynamic feature purification and recall enhancement with distribution prior, enhancing the precision and retention of known information. (ii) We design prospective knowledge mining to probe the unknown, preparing the model for future learning. Extensive experiments validate that our method effectively alleviates catastrophic forgetting in MLCIL, surpassing the previous state-of-the-art by 3.3% on average accuracy for MS-COCO B0-C10 setting without replay buffers.
comment: Accepted by AAAI 2025
☆ Steady Progress Beats Stagnation: Mutual Aid of Foundation and Conventional Models in Mixed Domain Semi-Supervised Medical Image Segmentation CVPR 2025
Large pretrained visual foundation models exhibit impressive general capabilities. However, the extensive prior knowledge inherent in these models can sometimes be a double-edged sword when adapting them to downstream tasks in specific domains. In the context of semi-supervised medical image segmentation with domain shift, foundation models like MedSAM tend to make overconfident predictions, some of which are incorrect. The error accumulation hinders the effective utilization of unlabeled data and limits further improvements. In this paper, we introduce a Synergistic training framework for Foundation and Conventional models (SynFoC) to address the issue. We observe that a conventional model trained from scratch has the ability to correct the high-confidence mispredictions of the foundation model, while the foundation model can supervise it with high-quality pseudo-labels in the early training stages. Furthermore, to enhance the collaborative training effectiveness of both models and promote reliable convergence towards optimization, the consensus-divergence consistency regularization is proposed. We demonstrate the superiority of our method across four public multi-domain datasets. In particular, our method improves the Dice score by 10.31\% on the Prostate dataset. Our code is available at https://github.com/MQinghe/SynFoC .
comment: Accepted by CVPR 2025
☆ High Accuracy Pulmonary Vessel Segmentation for Contrast and Non-contrast CT Images and Its Clinical Evaluation
Accurate segmentation of pulmonary vessels plays a very critical role in diagnosing and assessing various lung diseases. In clinical practice, diagnosis is typically carried out using CTPA images. However, there is a lack of high-precision pulmonary vessel segmentation algorithms for CTPA, and pulmonary vessel segmentation for NCCT poses an even greater challenge. In this study, we propose a 3D image segmentation algorithm for automated pulmonary vessel segmentation from both contrast and non-contrast CT images. In the network, we designed a Vessel Lumen Structure Optimization Module (VLSOM), which extracts the centerline of vessels and adjusts the weights based on the positional information and adds a Cl-Dice-Loss to supervise the stability of the vessels structure. In addition, we designed a method for generating vessel GT from CTPA to NCCT for training models that support both CTPA and NCCT. In this work, we used 427 sets of high-precision annotated CT data from multiple vendors and countries. Finally, our experimental model achieved Cl-Recall, Cl-DICE and Recall values of 0.879, 0.909, 0.934 (CTPA) and 0.928, 0.936, 0.955 (NCCT) respectively. This shows that our model has achieved good performance in both accuracy and completeness of pulmonary vessel segmentation. In clinical visual evaluation, our model also had good segmentation performance on various disease types and can assist doctors in medical diagnosis, verifying the great potential of this method in clinical application.
☆ Enabling Versatile Controls for Video Diffusion Models
Despite substantial progress in text-to-video generation, achieving precise and flexible control over fine-grained spatiotemporal attributes remains a significant unresolved challenge in video generation research. To address these limitations, we introduce VCtrl (also termed PP-VCtrl), a novel framework designed to enable fine-grained control over pre-trained video diffusion models in a unified manner. VCtrl integrates diverse user-specified control signals-such as Canny edges, segmentation masks, and human keypoints-into pretrained video diffusion models via a generalizable conditional module capable of uniformly encoding multiple types of auxiliary signals without modifying the underlying generator. Additionally, we design a unified control signal encoding pipeline and a sparse residual connection mechanism to efficiently incorporate control representations. Comprehensive experiments and human evaluations demonstrate that VCtrl effectively enhances controllability and generation quality. The source code and pre-trained models are publicly available and implemented using the PaddlePaddle framework at http://github.com/PaddlePaddle/PaddleMIX/tree/develop/ppdiffusers/examples/ppvctrl.
comment: Codes and Supplementary Material: http://github.com/PaddlePaddle/PaddleMIX/tree/develop/ppdiffusers/examples/ppvctrl
☆ Token Dynamics: Towards Efficient and Dynamic Video Token Representation for Video Large Language Models
Token-based video representation has emerged as a promising approach for enabling large language models to interpret video content. However, existing token reduction techniques, such as token pruning and token merging, often disrupt essential spatial-temporal positional embeddings, failing to adequately balance computational efficiency with fewer tokens. Consequently, these methods result in relatively lengthy token sequences, limiting their applicability in scenarios requiring extreme token compression, such as video large language models. In this paper, we introduce the novel task of extreme short token reduction, aiming to represent extensive video sequences with a minimal number of tokens. To address this challenge, we propose Token Dynamics, a new video representation framework that dynamically reduces token count while preserving spatial-temporal coherence. Specifically, we disentangle video representations by separating visual embeddings from grid-level motion information, structuring them into: 1. a concise token base, created by clustering tokens that describe object-level content; 2. a token dynamics map, capturing detailed spatial-temporal motion patterns across grids. Furthermore, we introduce a cross-dynamics attention mechanism that integrates motion features into the token base without increasing token length, thereby maintaining compactness and spatial-temporal integrity. The experiments demonstrate a reduction of token count to merely 0.07% of the original tokens, with only a minor performance drop of 1.13%. Additionally, we propose two novel subtasks within extreme token reduction (fixed-length and adaptive-length compression), both effectively representing long token sequences for video-language tasks. Our method offers significantly lower theoretical complexity, fewer tokens, and enhanced throughput, thus providing an efficient solution for video LLMs.
☆ Instant Gaussian Stream: Fast and Generalizable Streaming of Dynamic Scene Reconstruction via Gaussian Splatting
Building Free-Viewpoint Videos in a streaming manner offers the advantage of rapid responsiveness compared to offline training methods, greatly enhancing user experience. However, current streaming approaches face challenges of high per-frame reconstruction time (10s+) and error accumulation, limiting their broader application. In this paper, we propose Instant Gaussian Stream (IGS), a fast and generalizable streaming framework, to address these issues. First, we introduce a generalized Anchor-driven Gaussian Motion Network, which projects multi-view 2D motion features into 3D space, using anchor points to drive the motion of all Gaussians. This generalized Network generates the motion of Gaussians for each target frame in the time required for a single inference. Second, we propose a Key-frame-guided Streaming Strategy that refines each key frame, enabling accurate reconstruction of temporally complex scenes while mitigating error accumulation. We conducted extensive in-domain and cross-domain evaluations, demonstrating that our approach can achieve streaming with a average per-frame reconstruction time of 2s+, alongside a enhancement in view synthesis quality.
☆ GeoT: Geometry-guided Instance-dependent Transition Matrix for Semi-supervised Tooth Point Cloud Segmentation
Achieving meticulous segmentation of tooth point clouds from intra-oral scans stands as an indispensable prerequisite for various orthodontic applications. Given the labor-intensive nature of dental annotation, a significant amount of data remains unlabeled, driving increasing interest in semi-supervised approaches. One primary challenge of existing semi-supervised medical segmentation methods lies in noisy pseudo labels generated for unlabeled data. To address this challenge, we propose GeoT, the first framework that employs instance-dependent transition matrix (IDTM) to explicitly model noise in pseudo labels for semi-supervised dental segmentation. Specifically, to handle the extensive solution space of IDTM arising from tens of thousands of dental points, we introduce tooth geometric priors through two key components: point-level geometric regularization (PLGR) to enhance consistency between point adjacency relationships in 3D and IDTM spaces, and class-level geometric smoothing (CLGS) to leverage the fixed spatial distribution of tooth categories for optimal IDTM estimation. Extensive experiments performed on the public Teeth3DS dataset and private dataset demonstrate that our method can make full utilization of unlabeled data to facilitate segmentation, achieving performance comparable to fully supervised methods with only $20\%$ of the labeled data.
comment: IPMI2025
☆ EasyRobust: A Comprehensive and Easy-to-use Toolkit for Robust and Generalized Vision
Deep neural networks (DNNs) has shown great promise in computer vision tasks. However, machine vision achieved by DNNs cannot be as robust as human perception. Adversarial attacks and data distribution shifts have been known as two major scenarios which degrade machine performance and obstacle the wide deployment of machines "in the wild". In order to break these obstructions and facilitate the research of model robustness, we develop EasyRobust, a comprehensive and easy-to-use toolkit for training, evaluation and analysis of robust vision models. EasyRobust targets at two types of robustness: 1) Adversarial robustness enables the model to defense against malicious inputs crafted by worst-case perturbations, also known as adversarial examples; 2) Non-adversarial robustness enhances the model performance on natural test images with corruptions or distribution shifts. Thorough benchmarks on image classification enable EasyRobust to provide an accurate robustness evaluation on vision models. We wish our EasyRobust can help for training practically-robust models and promote academic and industrial progress in closing the gap between human and machine vision. Codes and models of EasyRobust have been open-sourced in https://github.com/alibaba/easyrobust.
☆ ARFlow: Human Action-Reaction Flow Matching with Physical Guidance
Human action-reaction synthesis, a fundamental challenge in modeling causal human interactions, plays a critical role in applications ranging from virtual reality to social robotics. While diffusion-based models have demonstrated promising performance, they exhibit two key limitations for interaction synthesis: reliance on complex noise-to-reaction generators with intricate conditional mechanisms, and frequent physical violations in generated motions. To address these issues, we propose Action-Reaction Flow Matching (ARFlow), a novel framework that establishes direct action-to-reaction mappings, eliminating the need for complex conditional mechanisms. Our approach introduces two key innovations: an x1-prediction method that directly outputs human motions instead of velocity fields, enabling explicit constraint enforcement; and a training-free, gradient-based physical guidance mechanism that effectively prevents body penetration artifacts during sampling. Extensive experiments on NTU120 and Chi3D datasets demonstrate that ARFlow not only outperforms existing methods in terms of Fr\'echet Inception Distance and motion diversity but also significantly reduces body collisions, as measured by our new Intersection Volume and Intersection Frequency metrics.
comment: Computer Vision and Pattern Recognition (cs.CV); Artificial Intelligence (cs.AI)
☆ Distilling Monocular Foundation Model for Fine-grained Depth Completion
Depth completion involves predicting dense depth maps from sparse LiDAR inputs. However, sparse depth annotations from sensors limit the availability of dense supervision, which is necessary for learning detailed geometric features. In this paper, we propose a two-stage knowledge distillation framework that leverages powerful monocular foundation models to provide dense supervision for depth completion. In the first stage, we introduce a pre-training strategy that generates diverse training data from natural images, which distills geometric knowledge to depth completion. Specifically, we simulate LiDAR scans by utilizing monocular depth and mesh reconstruction, thereby creating training data without requiring ground-truth depth. Besides, monocular depth estimation suffers from inherent scale ambiguity in real-world settings. To address this, in the second stage, we employ a scale- and shift-invariant loss (SSI Loss) to learn real-world scales when fine-tuning on real-world datasets. Our two-stage distillation framework enables depth completion models to harness the strengths of monocular foundation models. Experimental results demonstrate that models trained with our two-stage distillation framework achieve state-of-the-art performance, ranking \textbf{first place} on the KITTI benchmark. Code is available at https://github.com/Sharpiless/DMD3C
☆ When Words Outperform Vision: VLMs Can Self-Improve Via Text-Only Training For Human-Centered Decision Making
Embodied decision-making is fundamental for AI agents operating in real-world environments. While Visual Language Models (VLMs) have advanced this capability, they still struggle with complex decisions, particularly in human-centered situations that require deep reasoning about human needs and values. In this study, we systematically evaluate open-sourced VLMs on multimodal human-centered decision-making tasks. We find that LLMs receiving only textual descriptions unexpectedly outperform their VLM counterparts of similar scale that process actual images, suggesting that visual alignment may hinder VLM abilities. To address this challenge, we propose a novel text-only training approach with synthesized textual data. This method strengthens VLMs' language components and transfers the learned abilities to multimodal inference, eliminating the need for expensive image-text paired data. Furthermore, we show that VLMs can achieve substantial performance gains through self-improvement, using training data generated by their LLM counterparts rather than relying on larger teacher models like GPT-4. Our findings establish a more efficient and scalable approach to enhancing VLMs' human-centered decision-making capabilities, opening new avenues for optimizing VLMs through self-improvement mechanisms.
☆ DroneSplat: 3D Gaussian Splatting for Robust 3D Reconstruction from In-the-Wild Drone Imagery
Drones have become essential tools for reconstructing wild scenes due to their outstanding maneuverability. Recent advances in radiance field methods have achieved remarkable rendering quality, providing a new avenue for 3D reconstruction from drone imagery. However, dynamic distractors in wild environments challenge the static scene assumption in radiance fields, while limited view constraints hinder the accurate capture of underlying scene geometry. To address these challenges, we introduce DroneSplat, a novel framework designed for robust 3D reconstruction from in-the-wild drone imagery. Our method adaptively adjusts masking thresholds by integrating local-global segmentation heuristics with statistical approaches, enabling precise identification and elimination of dynamic distractors in static scenes. We enhance 3D Gaussian Splatting with multi-view stereo predictions and a voxel-guided optimization strategy, supporting high-quality rendering under limited view constraints. For comprehensive evaluation, we provide a drone-captured 3D reconstruction dataset encompassing both dynamic and static scenes. Extensive experiments demonstrate that DroneSplat outperforms both 3DGS and NeRF baselines in handling in-the-wild drone imagery.
☆ Center-guided Classifier for Semantic Segmentation of Remote Sensing Images
Compared with natural images, remote sensing images (RSIs) have the unique characteristic. i.e., larger intraclass variance, which makes semantic segmentation for remote sensing images more challenging. Moreover, existing semantic segmentation models for remote sensing images usually employ a vanilla softmax classifier, which has three drawbacks: (1) non-direct supervision for the pixel representations during training; (2) inadequate modeling ability of parametric softmax classifiers under large intraclass variance; and (3) opaque process of classification decision. In this paper, we propose a novel classifier (called CenterSeg) customized for RSI semantic segmentation, which solves the abovementioned problems with multiple prototypes, direct supervision under Grassmann manifold, and interpretability strategy. Specifically, for each class, our CenterSeg obtains local class centers by aggregating corresponding pixel features based on ground-truth masks, and generates multiple prototypes through hard attention assignment and momentum updating. In addition, we introduce the Grassmann manifold and constrain the joint embedding space of pixel features and prototypes based on two additional regularization terms. Especially, during the inference, CenterSeg can further provide interpretability to the model by restricting the prototype as a sample of the training set. Experimental results on three remote sensing segmentation datasets validate the effectiveness of the model. Besides the superior performance, CenterSeg has the advantages of simplicity, lightweight, compatibility, and interpretability. Code is available at https://github.com/xwmaxwma/rssegmentation.
☆ From Faces to Voices: Learning Hierarchical Representations for High-quality Video-to-Speech CVPR 2025
The objective of this study is to generate high-quality speech from silent talking face videos, a task also known as video-to-speech synthesis. A significant challenge in video-to-speech synthesis lies in the substantial modality gap between silent video and multi-faceted speech. In this paper, we propose a novel video-to-speech system that effectively bridges this modality gap, significantly enhancing the quality of synthesized speech. This is achieved by learning of hierarchical representations from video to speech. Specifically, we gradually transform silent video into acoustic feature spaces through three sequential stages -- content, timbre, and prosody modeling. In each stage, we align visual factors -- lip movements, face identity, and facial expressions -- with corresponding acoustic counterparts to ensure the seamless transformation. Additionally, to generate realistic and coherent speech from the visual representations, we employ a flow matching model that estimates direct trajectories from a simple prior distribution to the target speech distribution. Extensive experiments demonstrate that our method achieves exceptional generation quality comparable to real utterances, outperforming existing methods by a significant margin.
comment: CVPR 2025, demo page: https://mm.kaist.ac.kr/projects/faces2voices/
☆ MagicColor: Multi-Instance Sketch Colorization
We present \textit{MagicColor}, a diffusion-based framework for multi-instance sketch colorization. The production of multi-instance 2D line art colorization adheres to an industry-standard workflow, which consists of three crucial stages: the design of line art characters, the coloring of individual objects, and the refinement process. The artists are required to repeat the process of coloring each instance one by one, which is inaccurate and inefficient. Meanwhile, current generative methods fail to solve this task due to the challenge of multi-instance pair data collection. To tackle these challenges, we incorporate three technical designs to ensure precise character detail transcription and achieve multi-instance sketch colorization in a single forward. Specifically, we first propose the self-play training strategy to solve the lack of training data. Then we introduce an instance guider to feed the color of the instance. To achieve accurate color matching, we present fine-grained color matching with edge loss to enhance visual quality. Equipped with the proposed modules, MagicColor enables automatically transforming sketches into vividly-colored images with accurate consistency and multi-instance control. Experiments on our collected datasets show that our model outperforms existing methods regarding chromatic precision. Specifically, our model critically automates the colorization process with zero manual adjustments, so novice users can produce stylistically consistent artwork by providing reference instances and the original line art. Our code and additional details are available at https://yinhan-zhang.github.io/color
☆ PE-CLIP: A Parameter-Efficient Fine-Tuning of Vision Language Models for Dynamic Facial Expression Recognition
Vision-Language Models (VLMs) like CLIP offer promising solutions for Dynamic Facial Expression Recognition (DFER) but face challenges such as inefficient full fine-tuning, high complexity, and poor alignment between textual and visual representations. Additionally, existing methods struggle with ineffective temporal modeling. To address these issues, we propose PE-CLIP, a parameter-efficient fine-tuning (PEFT) framework that adapts CLIP for DFER while significantly reducing trainable parameters while maintaining high accuracy. PE-CLIP introduces two specialized adapters: a Temporal Dynamic Adapter (TDA) and a Shared Adapter (ShA). The TDA is a GRU-based module with dynamic scaling that captures sequential dependencies while emphasizing informative temporal features and suppressing irrelevant variations. The ShA is a lightweight adapter that refines representations within both textual and visual encoders, ensuring consistency and efficiency. Additionally, we integrate Multi-modal Prompt Learning (MaPLe), introducing learnable prompts for visual and action unit-based textual inputs, enhancing semantic alignment between modalities and enabling efficient CLIP adaptation for dynamic tasks. We evaluate PE-CLIP on two benchmark datasets, DFEW and FERV39K, achieving competitive performance compared to state-of-the-art methods while requiring fewer trainable parameters. By balancing efficiency and accuracy, PE-CLIP sets a new benchmark in resource-efficient DFER. The source code of the proposed PE-CLIP will be publicly available at https://github.com/Ibtissam-SAADI/PE-CLIP .
☆ HyperLoRA: Parameter-Efficient Adaptive Generation for Portrait Synthesis
Personalized portrait synthesis, essential in domains like social entertainment, has recently made significant progress. Person-wise fine-tuning based methods, such as LoRA and DreamBooth, can produce photorealistic outputs but need training on individual samples, consuming time and resources and posing an unstable risk. Adapter based techniques such as IP-Adapter freeze the foundational model parameters and employ a plug-in architecture to enable zero-shot inference, but they often exhibit a lack of naturalness and authenticity, which are not to be overlooked in portrait synthesis tasks. In this paper, we introduce a parameter-efficient adaptive generation method, namely HyperLoRA, that uses an adaptive plug-in network to generate LoRA weights, merging the superior performance of LoRA with the zero-shot capability of adapter scheme. Through our carefully designed network structure and training strategy, we achieve zero-shot personalized portrait generation (supporting both single and multiple image inputs) with high photorealism, fidelity, and editability.
☆ Re-HOLD: Video Hand Object Interaction Reenactment via adaptive Layout-instructed Diffusion Model
Current digital human studies focusing on lip-syncing and body movement are no longer sufficient to meet the growing industrial demand, while human video generation techniques that support interacting with real-world environments (e.g., objects) have not been well investigated. Despite human hand synthesis already being an intricate problem, generating objects in contact with hands and their interactions presents an even more challenging task, especially when the objects exhibit obvious variations in size and shape. To cope with these issues, we present a novel video Reenactment framework focusing on Human-Object Interaction (HOI) via an adaptive Layout-instructed Diffusion model (Re-HOLD). Our key insight is to employ specialized layout representation for hands and objects, respectively. Such representations enable effective disentanglement of hand modeling and object adaptation to diverse motion sequences. To further improve the generation quality of HOI, we have designed an interactive textural enhancement module for both hands and objects by introducing two independent memory banks. We also propose a layout-adjusting strategy for the cross-object reenactment scenario to adaptively adjust unreasonable layouts caused by diverse object sizes during inference. Comprehensive qualitative and quantitative evaluations demonstrate that our proposed framework significantly outperforms existing methods. Project page: https://fyycs.github.io/Re-HOLD.
☆ Vision-Language Gradient Descent-driven All-in-One Deep Unfolding Networks CVPR 2025
Dynamic image degradations, including noise, blur and lighting inconsistencies, pose significant challenges in image restoration, often due to sensor limitations or adverse environmental conditions. Existing Deep Unfolding Networks (DUNs) offer stable restoration performance but require manual selection of degradation matrices for each degradation type, limiting their adaptability across diverse scenarios. To address this issue, we propose the Vision-Language-guided Unfolding Network (VLU-Net), a unified DUN framework for handling multiple degradation types simultaneously. VLU-Net leverages a Vision-Language Model (VLM) refined on degraded image-text pairs to align image features with degradation descriptions, selecting the appropriate transform for target degradation. By integrating an automatic VLM-based gradient estimation strategy into the Proximal Gradient Descent (PGD) algorithm, VLU-Net effectively tackles complex multi-degradation restoration tasks while maintaining interpretability. Furthermore, we design a hierarchical feature unfolding structure to enhance VLU-Net framework, efficiently synthesizing degradation patterns across various levels. VLU-Net is the first all-in-one DUN framework and outperforms current leading one-by-one and all-in-one end-to-end methods by 3.74 dB on the SOTS dehazing dataset and 1.70 dB on the Rain100L deraining dataset.
comment: CVPR 2025
☆ TEMPO: Temporal Preference Optimization of Video LLMs via Difficulty Scheduling and Pre-SFT Alignment
Video Large Language Models (Video LLMs) have achieved significant success by leveraging a two-stage paradigm: pretraining on large-scale video-text data for vision-language alignment, followed by supervised fine-tuning (SFT) for task-specific capabilities. However, existing approaches struggle with temporal reasoning due to weak temporal correspondence in the data and reliance on the next-token prediction paradigm during training. To address these limitations, we propose TEMPO (TEMporal Preference Optimization), a systematic framework that enhances Video LLMs' temporal reasoning capabilities through Direct Preference Optimization (DPO). To facilitate this, we introduce an automated preference data generation pipeline that systematically constructs preference pairs by selecting videos that are rich in temporal information, designing video-specific perturbation strategies, and finally evaluating model responses on clean and perturbed video inputs. Our temporal alignment features two key innovations: curriculum learning which that progressively increases perturbation difficulty to improve model robustness and adaptability; and ``Pre-SFT Alignment'', applying preference optimization before instruction tuning to prioritize fine-grained temporal comprehension. Extensive experiments demonstrate that our approach consistently improves Video LLM performance across multiple benchmarks with a relatively small set of self-generated DPO data. We further analyze the transferability of DPO data across architectures and the role of difficulty scheduling in optimization. Our findings highlight our TEMPO as a scalable and efficient complement to SFT-based methods, paving the way for developing reliable Video LLMs.
☆ Optimized Minimal 3D Gaussian Splatting
3D Gaussian Splatting (3DGS) has emerged as a powerful representation for real-time, high-performance rendering, enabling a wide range of applications. However, representing 3D scenes with numerous explicit Gaussian primitives imposes significant storage and memory overhead. Recent studies have shown that high-quality rendering can be achieved with a substantially reduced number of Gaussians when represented with high-precision attributes. Nevertheless, existing 3DGS compression methods still rely on a relatively large number of Gaussians, focusing primarily on attribute compression. This is because a smaller set of Gaussians becomes increasingly sensitive to lossy attribute compression, leading to severe quality degradation. Since the number of Gaussians is directly tied to computational costs, it is essential to reduce the number of Gaussians effectively rather than only optimizing storage. In this paper, we propose Optimized Minimal Gaussians representation (OMG), which significantly reduces storage while using a minimal number of primitives. First, we determine the distinct Gaussian from the near ones, minimizing redundancy without sacrificing quality. Second, we propose a compact and precise attribute representation that efficiently captures both continuity and irregularity among primitives. Additionally, we propose a sub-vector quantization technique for improved irregularity representation, maintaining fast training with a negligible codebook size. Extensive experiments demonstrate that OMG reduces storage requirements by nearly 50% compared to the previous state-of-the-art and enables 600+ FPS rendering while maintaining high rendering quality. Our source code is available at https://maincold2.github.io/omg/.
comment: Project page: https://maincold2.github.io/omg/
☆ When Preferences Diverge: Aligning Diffusion Models with Minority-Aware Adaptive DPO
In recent years, the field of image generation has witnessed significant advancements, particularly in fine-tuning methods that align models with universal human preferences. This paper explores the critical role of preference data in the training process of diffusion models, particularly in the context of Diffusion-DPO and its subsequent adaptations. We investigate the complexities surrounding universal human preferences in image generation, highlighting the subjective nature of these preferences and the challenges posed by minority samples in preference datasets. Through pilot experiments, we demonstrate the existence of minority samples and their detrimental effects on model performance. We propose Adaptive-DPO -- a novel approach that incorporates a minority-instance-aware metric into the DPO objective. This metric, which includes intra-annotator confidence and inter-annotator stability, distinguishes between majority and minority samples. We introduce an Adaptive-DPO loss function which improves the DPO loss in two ways: enhancing the model's learning of majority labels while mitigating the negative impact of minority samples. Our experiments demonstrate that this method effectively handles both synthetic minority data and real-world preference data, paving the way for more effective training methodologies in image generation tasks.
☆ Temporal Action Detection Model Compression by Progressive Block Drop CVPR 2025
Temporal action detection (TAD) aims to identify and localize action instances in untrimmed videos, which is essential for various video understanding tasks. However, recent improvements in model performance, driven by larger feature extractors and datasets, have led to increased computational demands. This presents a challenge for applications like autonomous driving and robotics, which rely on limited computational resources. While existing channel pruning methods can compress these models, reducing the number of channels often hinders the parallelization efficiency of GPU, due to the inefficient multiplication between small matrices. Instead of pruning channels, we propose a Progressive Block Drop method that reduces model depth while retaining layer width. In this way, we still use large matrices for computation but reduce the number of multiplications. Our approach iteratively removes redundant blocks in two steps: first, we drop blocks with minimal impact on model performance; and second, we employ a parameter-efficient cross-depth alignment technique, fine-tuning the pruned model to restore model accuracy. Our method achieves a 25% reduction in computational overhead on two TAD benchmarks (THUMOS14 and ActivityNet-1.3) to achieve lossless compression. More critically, we empirically show that our method is orthogonal to channel pruning methods and can be combined with it to yield further efficiency gains.
comment: Accepted to CVPR 2025
☆ Salient Object Detection in Traffic Scene through the TSOD10K Dataset
Traffic Salient Object Detection (TSOD) aims to segment the objects critical to driving safety by combining semantic (e.g., collision risks) and visual saliency. Unlike SOD in natural scene images (NSI-SOD), which prioritizes visually distinctive regions, TSOD emphasizes the objects that demand immediate driver attention due to their semantic impact, even with low visual contrast. This dual criterion, i.e., bridging perception and contextual risk, re-defines saliency for autonomous and assisted driving systems. To address the lack of task-specific benchmarks, we collect the first large-scale TSOD dataset with pixel-wise saliency annotations, named TSOD10K. TSOD10K covers the diverse object categories in various real-world traffic scenes under various challenging weather/illumination variations (e.g., fog, snowstorms, low-contrast, and low-light). Methodologically, we propose a Mamba-based TSOD model, termed Tramba. Considering the challenge of distinguishing inconspicuous visual information from complex traffic backgrounds, Tramba introduces a novel Dual-Frequency Visual State Space module equipped with shifted window partitioning and dilated scanning to enhance the perception of fine details and global structure by hierarchically decomposing high/low-frequency components. To emphasize critical regions in traffic scenes, we propose a traffic-oriented Helix 2D-Selective-Scan (Helix-SS2D) mechanism that injects driving attention priors while effectively capturing global multi-direction spatial dependencies. We establish a comprehensive benchmark by evaluating Tramba and 22 existing NSI-SOD models on TSOD10K, demonstrating Tramba's superiority. Our research establishes the first foundation for safety-aware saliency analysis in intelligent transportation systems.
comment: 12 pages, 12 figures
☆ Classifier-guided CLIP Distillation for Unsupervised Multi-label Classification CVPR 2025
Multi-label classification is crucial for comprehensive image understanding, yet acquiring accurate annotations is challenging and costly. To address this, a recent study suggests exploiting unsupervised multi-label classification leveraging CLIP, a powerful vision-language model. Despite CLIP's proficiency, it suffers from view-dependent predictions and inherent bias, limiting its effectiveness. We propose a novel method that addresses these issues by leveraging multiple views near target objects, guided by Class Activation Mapping (CAM) of the classifier, and debiasing pseudo-labels derived from CLIP predictions. Our Classifier-guided CLIP Distillation (CCD) enables selecting multiple local views without extra labels and debiasing predictions to enhance classification performance. Experimental results validate our method's superiority over existing techniques across diverse datasets. The code is available at https://github.com/k0u-id/CCD.
comment: CVPR 2025 Accepted
☆ Lie Detector: Unified Backdoor Detection via Cross-Examination Framework
Institutions with limited data and computing resources often outsource model training to third-party providers in a semi-honest setting, assuming adherence to prescribed training protocols with pre-defined learning paradigm (e.g., supervised or semi-supervised learning). However, this practice can introduce severe security risks, as adversaries may poison the training data to embed backdoors into the resulting model. Existing detection approaches predominantly rely on statistical analyses, which often fail to maintain universally accurate detection accuracy across different learning paradigms. To address this challenge, we propose a unified backdoor detection framework in the semi-honest setting that exploits cross-examination of model inconsistencies between two independent service providers. Specifically, we integrate central kernel alignment to enable robust feature similarity measurements across different model architectures and learning paradigms, thereby facilitating precise recovery and identification of backdoor triggers. We further introduce backdoor fine-tuning sensitivity analysis to distinguish backdoor triggers from adversarial perturbations, substantially reducing false positives. Extensive experiments demonstrate that our method achieves superior detection performance, improving accuracy by 5.4%, 1.6%, and 11.9% over SoTA baselines across supervised, semi-supervised, and autoregressive learning tasks, respectively. Notably, it is the first to effectively detect backdoors in multimodal large language models, further highlighting its broad applicability and advancing secure deep learning.
☆ Joint Extraction Matters: Prompt-Based Visual Question Answering for Multi-Field Document Information Extraction
Visual question answering (VQA) has emerged as a flexible approach for extracting specific pieces of information from document images. However, existing work typically queries each field in isolation, overlooking potential dependencies across multiple items. This paper investigates the merits of extracting multiple fields jointly versus separately. Through experiments on multiple large vision language models and datasets, we show that jointly extracting fields often improves accuracy, especially when the fields share strong numeric or contextual dependencies. We further analyze how performance scales with the number of requested items and use a regression based metric to quantify inter field relationships. Our results suggest that multi field prompts can mitigate confusion arising from similar surface forms and related numeric values, providing practical methods for designing robust VQA systems in document information extraction tasks.
☆ ETVA: Evaluation of Text-to-Video Alignment via Fine-grained Question Generation and Answering
Precisely evaluating semantic alignment between text prompts and generated videos remains a challenge in Text-to-Video (T2V) Generation. Existing text-to-video alignment metrics like CLIPScore only generate coarse-grained scores without fine-grained alignment details, failing to align with human preference. To address this limitation, we propose ETVA, a novel Evaluation method of Text-to-Video Alignment via fine-grained question generation and answering. First, a multi-agent system parses prompts into semantic scene graphs to generate atomic questions. Then we design a knowledge-augmented multi-stage reasoning framework for question answering, where an auxiliary LLM first retrieves relevant common-sense knowledge (e.g., physical laws), and then video LLM answers the generated questions through a multi-stage reasoning mechanism. Extensive experiments demonstrate that ETVA achieves a Spearman's correlation coefficient of 58.47, showing a much higher correlation with human judgment than existing metrics which attain only 31.0. We also construct a comprehensive benchmark specifically designed for text-to-video alignment evaluation, featuring 2k diverse prompts and 12k atomic questions spanning 10 categories. Through a systematic evaluation of 15 existing text-to-video models, we identify their key capabilities and limitations, paving the way for next-generation T2V generation.
☆ City2Scene: Improving Acoustic Scene Classification with City Features
Acoustic scene recordings are often collected from a diverse range of cities. Most existing acoustic scene classification (ASC) approaches focus on identifying common acoustic scene patterns across cities to enhance generalization. In contrast, we hypothesize that city-specific environmental and cultural differences in acoustic features are beneficial for the ASC task. In this paper, we introduce City2Scene, a novel framework that leverages city features to improve ASC. City2Scene transfers the city-specific knowledge from city classification models to a scene classification model using knowledge distillation. We evaluated City2Scene on the DCASE Challenge Task 1 datasets, where each audio clip is annotated with both scene and city labels. Experimental results demonstrate that city features provide valuable information for classifying scenes. By distilling the city-specific knowledge, City2Scene effectively improves accuracy for various state-of-the-art ASC backbone models, including both CNNs and Transformers.
☆ Stack Transformer Based Spatial-Temporal Attention Model for Dynamic Multi-Culture Sign Language Recognition
Hand gesture-based Sign Language Recognition (SLR) serves as a crucial communication bridge between deaf and non-deaf individuals. Existing SLR systems perform well for their cultural SL but may struggle with multi-cultural sign languages (McSL). To address these challenges, this paper proposes a Stack Spatial-Temporal Transformer Network that leverages multi-head attention mechanisms to capture both spatial and temporal dependencies with hierarchical features using the Stack Transfer concept. In the proceed, firstly, we applied a fully connected layer to make a embedding vector which has high expressive power from the original dataset, then fed them a stack newly proposed transformer to achieve hierarchical features with short-range and long-range dependency. The network architecture is composed of several stages that process spatial and temporal relationships sequentially, ensuring effective feature extraction. After making the fully connected layer, the embedding vector is processed by the Spatial Multi-Head Attention Transformer, which captures spatial dependencies between joints. In the next stage, the Temporal Multi-Head Attention Transformer captures long-range temporal dependencies, and again, the features are concatenated with the output using another skip connection. The processed features are then passed to the Feed-Forward Network (FFN), which refines the feature representations further. After the FFN, additional skip connections are applied to combine the output with earlier layers, followed by a final normalization layer to produce the final output feature tensor. This process is repeated for 10 transformer blocks. The extensive experiment shows that the JSL, KSL and ASL datasets achieved good performance accuracy. Our approach demonstrates improved performance in McSL, and it will be consider as a novel work in this domain.
☆ Generative Compositor for Few-Shot Visual Information Extraction
Visual Information Extraction (VIE), aiming at extracting structured information from visually rich document images, plays a pivotal role in document processing. Considering various layouts, semantic scopes, and languages, VIE encompasses an extensive range of types, potentially numbering in the thousands. However, many of these types suffer from a lack of training data, which poses significant challenges. In this paper, we propose a novel generative model, named Generative Compositor, to address the challenge of few-shot VIE. The Generative Compositor is a hybrid pointer-generator network that emulates the operations of a compositor by retrieving words from the source text and assembling them based on the provided prompts. Furthermore, three pre-training strategies are employed to enhance the model's perception of spatial context information. Besides, a prompt-aware resampler is specially designed to enable efficient matching by leveraging the entity-semantic prior contained in prompts. The introduction of the prompt-based retrieval mechanism and the pre-training strategies enable the model to acquire more effective spatial and semantic clues with limited training samples. Experiments demonstrate that the proposed method achieves highly competitive results in the full-sample training, while notably outperforms the baseline in the 1-shot, 5-shot, and 10-shot settings.
☆ Casual Inference via Style Bias Deconfounding for Domain Generalization
Deep neural networks (DNNs) often struggle with out-of-distribution data, limiting their reliability in diverse realworld applications. To address this issue, domain generalization methods have been developed to learn domain-invariant features from single or multiple training domains, enabling generalization to unseen testing domains. However, existing approaches usually overlook the impact of style frequency within the training set. This oversight predisposes models to capture spurious visual correlations caused by style confounding factors, rather than learning truly causal representations, thereby undermining inference reliability. In this work, we introduce Style Deconfounding Causal Learning (SDCL), a novel causal inference-based framework designed to explicitly address style as a confounding factor. Our approaches begins with constructing a structural causal model (SCM) tailored to the domain generalization problem and applies a backdoor adjustment strategy to account for style influence. Building on this foundation, we design a style-guided expert module (SGEM) to adaptively clusters style distributions during training, capturing the global confounding style. Additionally, a back-door causal learning module (BDCL) performs causal interventions during feature extraction, ensuring fair integration of global confounding styles into sample predictions, effectively reducing style bias. The SDCL framework is highly versatile and can be seamlessly integrated with state-of-the-art data augmentation techniques. Extensive experiments across diverse natural and medical image recognition tasks validate its efficacy, demonstrating superior performance in both multi-domain and the more challenging single-domain generalization scenarios.
comment: under review
☆ HSM: Hierarchical Scene Motifs for Multi-Scale Indoor Scene Generation
Despite advances in indoor 3D scene layout generation, synthesizing scenes with dense object arrangements remains challenging. Existing methods primarily focus on large furniture while neglecting smaller objects, resulting in unrealistically empty scenes. Those that place small objects typically do not honor arrangement specifications, resulting in largely random placement not following the text description. We present HSM, a hierarchical framework for indoor scene generation with dense object arrangements across spatial scales. Indoor scenes are inherently hierarchical, with surfaces supporting objects at different scales, from large furniture on floors to smaller objects on tables and shelves. HSM embraces this hierarchy and exploits recurring cross-scale spatial patterns to generate complex and realistic indoor scenes in a unified manner. Our experiments show that HSM outperforms existing methods by generating scenes that are more realistic and better conform to user input across room types and spatial configurations.
comment: 23 pages, 7 figures
☆ LoRASculpt: Sculpting LoRA for Harmonizing General and Specialized Knowledge in Multimodal Large Language Models CVPR 2025
While Multimodal Large Language Models (MLLMs) excel at generalizing across modalities and tasks, effectively adapting them to specific downstream tasks while simultaneously retaining both general and specialized knowledge remains challenging. Although Low-Rank Adaptation (LoRA) is widely used to efficiently acquire specialized knowledge in MLLMs, it introduces substantial harmful redundancy during visual instruction tuning, which exacerbates the forgetting of general knowledge and degrades downstream task performance. To address this issue, we propose LoRASculpt to eliminate harmful redundant parameters, thereby harmonizing general and specialized knowledge. Specifically, under theoretical guarantees, we introduce sparse updates into LoRA to discard redundant parameters effectively. Furthermore, we propose a Conflict Mitigation Regularizer to refine the update trajectory of LoRA, mitigating knowledge conflicts with the pretrained weights. Extensive experimental results demonstrate that even at very high degree of sparsity ($\le$ 5%), our method simultaneously enhances generalization and downstream task performance. This confirms that our approach effectively mitigates the catastrophic forgetting issue and further promotes knowledge harmonization in MLLMs.
comment: Accepted by CVPR 2025
☆ Downstream Analysis of Foundational Medical Vision Models for Disease Progression
Medical vision foundational models are used for a wide variety of tasks, including medical image segmentation and registration. This work evaluates the ability of these models to predict disease progression using a simple linear probe. We hypothesize that intermediate layer features of segmentation models capture structural information, while those of registration models encode knowledge of change over time. Beyond demonstrating that these features are useful for disease progression prediction, we also show that registration model features do not require spatially aligned input images. However, for segmentation models, spatial alignment is essential for optimal performance. Our findings highlight the importance of spatial alignment and the utility of foundation model features for image registration.
☆ Safe and Reliable Diffusion Models via Subspace Projection
Large-scale text-to-image (T2I) diffusion models have revolutionized image generation, enabling the synthesis of highly detailed visuals from textual descriptions. However, these models may inadvertently generate inappropriate content, such as copyrighted works or offensive images. While existing methods attempt to eliminate specific unwanted concepts, they often fail to ensure complete removal, allowing the concept to reappear in subtle forms. For instance, a model may successfully avoid generating images in Van Gogh's style when explicitly prompted with 'Van Gogh', yet still reproduce his signature artwork when given the prompt 'Starry Night'. In this paper, we propose SAFER, a novel and efficient approach for thoroughly removing target concepts from diffusion models. At a high level, SAFER is inspired by the observed low-dimensional structure of the text embedding space. The method first identifies a concept-specific subspace $S_c$ associated with the target concept c. It then projects the prompt embeddings onto the complementary subspace of $S_c$, effectively erasing the concept from the generated images. Since concepts can be abstract and difficult to fully capture using natural language alone, we employ textual inversion to learn an optimized embedding of the target concept from a reference image. This enables more precise subspace estimation and enhances removal performance. Furthermore, we introduce a subspace expansion strategy to ensure comprehensive and robust concept erasure. Extensive experiments demonstrate that SAFER consistently and effectively erases unwanted concepts from diffusion models while preserving generation quality.
☆ Joint Self-Supervised Video Alignment and Action Segmentation
We introduce a novel approach for simultaneous self-supervised video alignment and action segmentation based on a unified optimal transport framework. In particular, we first tackle self-supervised video alignment by developing a fused Gromov-Wasserstein optimal transport formulation with a structural prior, which trains efficiently on GPUs and needs only a few iterations for solving the optimal transport problem. Our single-task method achieves the state-of-the-art performance on multiple video alignment benchmarks and outperforms VAVA, which relies on a traditional Kantorovich optimal transport formulation with an optimality prior. Furthermore, we extend our approach by proposing a unified optimal transport framework for joint self-supervised video alignment and action segmentation, which requires training and storing a single model and saves both time and memory consumption as compared to two different single-task models. Extensive evaluations on several video alignment and action segmentation datasets demonstrate that our multi-task method achieves comparable video alignment yet superior action segmentation results over previous methods in video alignment and action segmentation respectively. Finally, to the best of our knowledge, this is the first work to unify video alignment and action segmentation into a single model.
☆ SGFormer: Satellite-Ground Fusion for 3D Semantic Scene Completion
Recently, camera-based solutions have been extensively explored for scene semantic completion (SSC). Despite their success in visible areas, existing methods struggle to capture complete scene semantics due to frequent visual occlusions. To address this limitation, this paper presents the first satellite-ground cooperative SSC framework, i.e., SGFormer, exploring the potential of satellite-ground image pairs in the SSC task. Specifically, we propose a dual-branch architecture that encodes orthogonal satellite and ground views in parallel, unifying them into a common domain. Additionally, we design a ground-view guidance strategy that corrects satellite image biases during feature encoding, addressing misalignment between satellite and ground views. Moreover, we develop an adaptive weighting strategy that balances contributions from satellite and ground views. Experiments demonstrate that SGFormer outperforms the state of the art on SemanticKITTI and SSCBench-KITTI-360 datasets. Our code is available on https://github.com/gxytcrc/SGFormer.
☆ RigGS: Rigging of 3D Gaussians for Modeling Articulated Objects in Videos
This paper considers the problem of modeling articulated objects captured in 2D videos to enable novel view synthesis, while also being easily editable, drivable, and re-posable. To tackle this challenging problem, we propose RigGS, a new paradigm that leverages 3D Gaussian representation and skeleton-based motion representation to model dynamic objects without utilizing additional template priors. Specifically, we first propose skeleton-aware node-controlled deformation, which deforms a canonical 3D Gaussian representation over time to initialize the modeling process, producing candidate skeleton nodes that are further simplified into a sparse 3D skeleton according to their motion and semantic information. Subsequently, based on the resulting skeleton, we design learnable skin deformations and pose-dependent detailed deformations, thereby easily deforming the 3D Gaussian representation to generate new actions and render further high-quality images from novel views. Extensive experiments demonstrate that our method can generate realistic new actions easily for objects and achieve high-quality rendering.
☆ Depth-Aided Color Image Inpainting in Quaternion Domain
In this paper, we propose a depth-aided color image inpainting method in the quaternion domain, called depth-aided low-rank quaternion matrix completion (D-LRQMC). In conventional quaternion-based inpainting techniques, the color image is expressed as a quaternion matrix by using the three imaginary parts as the color channels, whereas the real part is set to zero and has no information. Our approach incorporates depth information as the real part of the quaternion representations, leveraging the correlation between color and depth to improve the result of inpainting. In the proposed method, we first restore the observed image with the conventional LRQMC and estimate the depth of the restored result. We then incorporate the estimated depth into the real part of the observed image and perform LRQMC again. Simulation results demonstrate that the proposed D-LRQMC can improve restoration accuracy and visual quality for various images compared to the conventional LRQMC. These results suggest the effectiveness of the depth information for color image processing in quaternion domain.
comment: accepted to IEEE Signal Processing Letters
☆ ST-Prompt Guided Histological Hypergraph Learning for Spatial Gene Expression Prediction
Spatial Transcriptomics (ST) reveals the spatial distribution of gene expression in tissues, offering critical insights into biological processes and disease mechanisms. However, predicting ST from H\&E-stained histology images is challenging due to the heterogeneous relationship between histomorphology and gene expression, which arises from substantial variability across different patients and tissue sections. A more practical and valuable approach is to utilize ST data from a few local regions to predict the spatial transcriptomic landscape across the remaining regions in H&E slides. In response, we propose PHG2ST, an ST-prompt guided histological hypergraph learning framework, which leverages sparse ST signals as prompts to guide histological hypergraph learning for global spatial gene expression prediction. Our framework fuses histological hypergraph representations at multiple scales through a masked ST-prompt encoding mechanism, improving robustness and generalizability. Benchmark evaluations on two public ST datasets demonstrate that PHG2ST outperforms the existing state-of-the-art methods and closely aligns with the ground truth. These results underscore the potential of leveraging sparse local ST data for scalable and cost-effective spatial gene expression mapping in real-world biomedical applications.
☆ Seg2Box: 3D Object Detection by Point-Wise Semantics Supervision
LiDAR-based 3D object detection and semantic segmentation are critical tasks in 3D scene understanding. Traditional detection and segmentation methods supervise their models through bounding box labels and semantic mask labels. However, these two independent labels inherently contain significant redundancy. This paper aims to eliminate the redundancy by supervising 3D object detection using only semantic labels. However, the challenge arises due to the incomplete geometry structure and boundary ambiguity of point-cloud instances, leading to inaccurate pseudo labels and poor detection results. To address these challenges, we propose a novel method, named Seg2Box. We first introduce a Multi-Frame Multi-Scale Clustering (MFMS-C) module, which leverages the spatio-temporal consistency of point clouds to generate accurate box-level pseudo-labels. Additionally, the Semantic?Guiding Iterative-Mining Self-Training (SGIM-ST) module is proposed to enhance the performance by progressively refining the pseudo-labels and mining the instances without generating pseudo-labels. Experiments on the Waymo Open Dataset and nuScenes Dataset show that our method significantly outperforms other competitive methods by 23.7\% and 10.3\% in mAP, respectively. The results demonstrate the great label-efficient potential and advancement of our method.
comment: 8 pages, 6 figures
☆ Auto-Regressive Diffusion for Generating 3D Human-Object Interactions
Text-driven Human-Object Interaction (Text-to-HOI) generation is an emerging field with applications in animation, video games, virtual reality, and robotics. A key challenge in HOI generation is maintaining interaction consistency in long sequences. Existing Text-to-Motion-based approaches, such as discrete motion tokenization, cannot be directly applied to HOI generation due to limited data in this domain and the complexity of the modality. To address the problem of interaction consistency in long sequences, we propose an autoregressive diffusion model (ARDHOI) that predicts the next continuous token. Specifically, we introduce a Contrastive Variational Autoencoder (cVAE) to learn a physically plausible space of continuous HOI tokens, thereby ensuring that generated human-object motions are realistic and natural. For generating sequences autoregressively, we develop a Mamba-based context encoder to capture and maintain consistent sequential actions. Additionally, we implement an MLP-based denoiser to generate the subsequent token conditioned on the encoded context. Our model has been evaluated on the OMOMO and BEHAVE datasets, where it outperforms existing state-of-the-art methods in terms of both performance and inference speed. This makes ARDHOI a robust and efficient solution for text-driven HOI tasks
☆ DCEdit: Dual-Level Controlled Image Editing via Precisely Localized Semantics
This paper presents a novel approach to improving text-guided image editing using diffusion-based models. Text-guided image editing task poses key challenge of precisly locate and edit the target semantic, and previous methods fall shorts in this aspect. Our method introduces a Precise Semantic Localization strategy that leverages visual and textual self-attention to enhance the cross-attention map, which can serve as a regional cues to improve editing performance. Then we propose a Dual-Level Control mechanism for incorporating regional cues at both feature and latent levels, offering fine-grained control for more precise edits. To fully compare our methods with other DiT-based approaches, we construct the RW-800 benchmark, featuring high resolution images, long descriptive texts, real-world images, and a new text editing task. Experimental results on the popular PIE-Bench and RW-800 benchmarks demonstrate the superior performance of our approach in preserving background and providing accurate edits.
☆ Restoring Forgotten Knowledge in Non-Exemplar Class Incremental Learning through Test-Time Semantic Evolution
Continual learning aims to accumulate knowledge over a data stream while mitigating catastrophic forgetting. In Non-exemplar Class Incremental Learning (NECIL), forgetting arises during incremental optimization because old classes are inaccessible, hindering the retention of prior knowledge. To solve this, previous methods struggle in achieving the stability-plasticity balance in the training stages. However, we note that the testing stage is rarely considered among them, but is promising to be a solution to forgetting. Therefore, we propose RoSE, which is a simple yet effective method that \textbf{R}est\textbf{o}res forgotten knowledge through test-time \textbf{S}emantic \textbf{E}volution. Specifically designed for minimizing forgetting, RoSE is a test-time semantic drift compensation framework that enables more accurate drift estimation in a self-supervised manner. Moreover, to avoid incomplete optimization during online testing, we derive an analytical solution as an alternative to gradient descent. We evaluate RoSE on CIFAR-100, TinyImageNet, and ImageNet100 datasets, under both cold-start and warm-start settings. Our method consistently outperforms most state-of-the-art (SOTA) methods across various scenarios, validating the potential and feasibility of test-time evolution in NECIL.
☆ Learning Part Knowledge to Facilitate Category Understanding for Fine-Grained Generalized Category Discovery
Generalized Category Discovery (GCD) aims to classify unlabeled data containing both seen and novel categories. Although existing methods perform well on generic datasets, they struggle in fine-grained scenarios. We attribute this difficulty to their reliance on contrastive learning over global image features to automatically capture discriminative cues, which fails to capture the subtle local differences essential for distinguishing fine-grained categories. Therefore, in this paper, we propose incorporating part knowledge to address fine-grained GCD, which introduces two key challenges: the absence of annotations for novel classes complicates the extraction of the part features, and global contrastive learning prioritizes holistic feature invariance, inadvertently suppressing discriminative local part patterns. To address these challenges, we propose PartGCD, including 1) Adaptive Part Decomposition, which automatically extracts class-specific semantic parts via Gaussian Mixture Models, and 2) Part Discrepancy Regularization, enforcing explicit separation between part features to amplify fine-grained local part distinctions. Experiments demonstrate state-of-the-art performance across multiple fine-grained benchmarks while maintaining competitiveness on generic datasets, validating the effectiveness and robustness of our approach.
☆ A-IDE : Agent-Integrated Denoising Experts
Recent advances in deep-learning based denoising methods have improved Low-Dose CT image quality. However, due to distinct HU distributions and diverse anatomical characteristics, a single model often struggles to generalize across multiple anatomies. To address this limitation, we introduce \textbf{Agent-Integrated Denoising Experts (A-IDE)} framework, which integrates three anatomical region-specialized RED-CNN models under the management of decision-making LLM agent. The agent analyzes semantic cues from BiomedCLIP to dynamically route incoming LDCT scans to the most appropriate expert model. We highlight three major advantages of our approach. A-IDE excels in heterogeneous, data-scarce environments. The framework automatically prevents overfitting by distributing tasks among multiple experts. Finally, our LLM-driven agentic pipeline eliminates the need for manual interventions. Experimental evaluations on the Mayo-2016 dataset confirm that A-IDE achieves superior performance in RMSE, PSNR, and SSIM compared to a single unified denoiser.
comment: 10 pages, 11 figures
☆ OpenCity3D: What do Vision-Language Models know about Urban Environments? WACV 2025
Vision-language models (VLMs) show great promise for 3D scene understanding but are mainly applied to indoor spaces or autonomous driving, focusing on low-level tasks like segmentation. This work expands their use to urban-scale environments by leveraging 3D reconstructions from multi-view aerial imagery. We propose OpenCity3D, an approach that addresses high-level tasks, such as population density estimation, building age classification, property price prediction, crime rate assessment, and noise pollution evaluation. Our findings highlight OpenCity3D's impressive zero-shot and few-shot capabilities, showcasing adaptability to new contexts. This research establishes a new paradigm for language-driven urban analytics, enabling applications in planning, policy, and environmental monitoring. See our project page: opencity3d.github.io
comment: Published at WACV 2025
☆ Region Masking to Accelerate Video Processing on Neuromorphic Hardware
The rapidly growing demand for on-chip edge intelligence on resource-constrained devices has motivated approaches to reduce energy and latency of deep learning models. Spiking neural networks (SNNs) have gained particular interest due to their promise to reduce energy consumption using event-based processing. We assert that while sigma-delta encoding in SNNs can take advantage of the temporal redundancy across video frames, they still involve a significant amount of redundant computations due to processing insignificant events. In this paper, we propose a region masking strategy that identifies regions of interest at the input of the SNN, thereby eliminating computation and data movement for events arising from unimportant regions. Our approach demonstrates that masking regions at the input not only significantly reduces the overall spiking activity of the network, but also provides significant improvement in throughput and latency. We apply region masking during video object detection on Loihi 2, demonstrating that masking approximately 60% of input regions can reduce energy-delay product by 1.65x over a baseline sigma-delta network, with a degradation in mAP@0.5 by 1.09%.
☆ Dynamic Attention Mechanism in Spatiotemporal Memory Networks for Object Tracking
Mainstream visual object tracking frameworks predominantly rely on template matching paradigms. Their performance heavily depends on the quality of template features, which becomes increasingly challenging to maintain in complex scenarios involving target deformation, occlusion, and background clutter. While existing spatiotemporal memory-based trackers emphasize memory capacity expansion, they lack effective mechanisms for dynamic feature selection and adaptive fusion. To address this gap, we propose a Dynamic Attention Mechanism in Spatiotemporal Memory Network (DASTM) with two key innovations: 1) A differentiable dynamic attention mechanism that adaptively adjusts channel-spatial attention weights by analyzing spatiotemporal correlations between the templates and memory features; 2) A lightweight gating network that autonomously allocates computational resources based on target motion states, prioritizing high-discriminability features in challenging scenarios. Extensive evaluations on OTB-2015, VOT 2018, LaSOT, and GOT-10K benchmarks demonstrate our DASTM's superiority, achieving state-of-the-art performance in success rate, robustness, and real-time efficiency, thereby offering a novel solution for real-time tracking in complex environments.
☆ Rethinking the Role of Spatial Mixing
Until quite recently, the backbone of nearly every state-of-the-art computer vision model has been the 2D convolution. At its core, a 2D convolution simultaneously mixes information across both the spatial and channel dimensions of a representation. Many recent computer vision architectures consist of sequences of isotropic blocks that disentangle the spatial and channel-mixing components. This separation of the operations allows us to more closely juxtapose the effects of spatial and channel mixing in deep learning. In this paper, we take an initial step towards garnering a deeper understanding of the roles of these mixing operations. Through our experiments and analysis, we discover that on both classical (ResNet) and cutting-edge (ConvMixer) models, we can reach nearly the same level of classification performance by and leaving the spatial mixers at their random initializations. Furthermore, we show that models with random, fixed spatial mixing are naturally more robust to adversarial perturbations. Lastly, we show that this phenomenon extends past the classification regime, as such models can also decode pixel-shuffled images.
☆ elaTCSF: A Temporal Contrast Sensitivity Function for Flicker Detection and Modeling Variable Refresh Rate Flicker SIGGRAPH
The perception of flicker has been a prominent concern in illumination and electronic display fields for over a century. Traditional approaches often rely on Critical Flicker Frequency (CFF), primarily suited for high-contrast (full-on, full-off) flicker. To tackle varying contrast flicker, the International Committee for Display Metrology (ICDM) introduced a Temporal Contrast Sensitivity Function TCSF$_{IDMS}$ within the Information Display Measurements Standard (IDMS). Nevertheless, this standard overlooks crucial parameters: luminance, eccentricity, and area. Existing models incorporating these parameters are inadequate for flicker detection, especially at low spatial frequencies. To address these limitations, we extend the TCSF$_{IDMS}$ and combine it with a new spatial probability summation model to incorporate the effects of luminance, eccentricity, and area (elaTCSF). We train the elaTCSF on various flicker detection datasets and establish the first variable refresh rate flicker detection dataset for further verification. Additionally, we contribute to resolving a longstanding debate on whether the flicker is more visible in peripheral vision. We demonstrate how elaTCSF can be used to predict flicker due to low-persistence in VR headsets, identify flicker-free VRR operational ranges, and determine flicker sensitivity in lighting design.
comment: Published at SIGGRAPH Asia 2024
♻ ☆ SV4D 2.0: Enhancing Spatio-Temporal Consistency in Multi-View Video Diffusion for High-Quality 4D Generation
We present Stable Video 4D 2.0 (SV4D 2.0), a multi-view video diffusion model for dynamic 3D asset generation. Compared to its predecessor SV4D, SV4D 2.0 is more robust to occlusions and large motion, generalizes better to real-world videos, and produces higher-quality outputs in terms of detail sharpness and spatio-temporal consistency. We achieve this by introducing key improvements in multiple aspects: 1) network architecture: eliminating the dependency of reference multi-views and designing blending mechanism for 3D and frame attention, 2) data: enhancing quality and quantity of training data, 3) training strategy: adopting progressive 3D-4D training for better generalization, and 4) 4D optimization: handling 3D inconsistency and large motion via 2-stage refinement and progressive frame sampling. Extensive experiments demonstrate significant performance gain by SV4D 2.0 both visually and quantitatively, achieving better detail (-14\% LPIPS) and 4D consistency (-44\% FV4D) in novel-view video synthesis and 4D optimization (-12\% LPIPS and -24\% FV4D) compared to SV4D.
comment: Project page: https://sv4d20.github.io/
♻ ☆ Karyotype AI for Precision Oncology
We present a machine learning method capable of accurately detecting chromosome abnormalities that cause blood cancers directly from microscope images of the metaphase stage of cell division. The pipeline is built on a series of fine-tuned Vision Transformers. Current state of the art (and standard clinical practice) requires expensive, manual expert analysis, whereas our pipeline takes only 15 seconds per metaphase image. Using a novel pretraining-finetuning strategy to mitigate the challenge of data scarcity, we achieve a high precision-recall score of 94% AUC for the clinically significant del(5q) and t(9;22) anomalies. Our method also unlocks zero-shot detection of rare aberrations based on model latent embeddings. The ability to quickly, accurately, and scalably diagnose genetic abnormalities directly from metaphase images could transform karyotyping practice and improve patient outcomes. We will make code publicly available.
♻ ☆ A General Adaptive Dual-level Weighting Mechanism for Remote Sensing Pansharpening CVPR
Currently, deep learning-based methods for remote sensing pansharpening have advanced rapidly. However, many existing methods struggle to fully leverage feature heterogeneity and redundancy, thereby limiting their effectiveness. We use the covariance matrix to model the feature heterogeneity and redundancy and propose Correlation-Aware Covariance Weighting (CACW) to adjust them. CACW captures these correlations through the covariance matrix, which is then processed by a nonlinear function to generate weights for adjustment. Building upon CACW, we introduce a general adaptive dual-level weighting mechanism (ADWM) to address these challenges from two key perspectives, enhancing a wide range of existing deep-learning methods. First, Intra-Feature Weighting (IFW) evaluates correlations among channels within each feature to reduce redundancy and enhance unique information. Second, Cross-Feature Weighting (CFW) adjusts contributions across layers based on inter-layer correlations, refining the final output. Extensive experiments demonstrate the superior performance of ADWM compared to recent state-of-the-art (SOTA) methods. Furthermore, we validate the effectiveness of our approach through generality experiments, redundancy visualization, comparison experiments, key variables and complexity analysis, and ablation studies. Our code is available at https://github.com/Jie-1203/ADWM.
comment: This paper is accepted at the CVPR Conference on Computer Vision and Pattern Recognition 2025
♻ ☆ Enhancing Zero-Shot Image Recognition in Vision-Language Models through Human-like Concept Guidance
In zero-shot image recognition tasks, humans demonstrate remarkable flexibility in classifying unseen categories by composing known simpler concepts. However, existing vision-language models (VLMs), despite achieving significant progress through large-scale natural language supervision, often underperform in real-world applications because of sub-optimal prompt engineering and the inability to adapt effectively to target classes. To address these issues, we propose a Concept-guided Human-like Bayesian Reasoning (CHBR) framework. Grounded in Bayes' theorem, CHBR models the concept used in human image recognition as latent variables and formulates this task by summing across potential concepts, weighted by a prior distribution and a likelihood function. To tackle the intractable computation over an infinite concept space, we introduce an importance sampling algorithm that iteratively prompts large language models (LLMs) to generate discriminative concepts, emphasizing inter-class differences. We further propose three heuristic approaches involving Average Likelihood, Confidence Likelihood, and Test Time Augmentation (TTA) Likelihood, which dynamically refine the combination of concepts based on the test image. Extensive evaluations across fifteen datasets demonstrate that CHBR consistently outperforms existing state-of-the-art zero-shot generalization methods.
comment: 21 pages, 7 figures 7 tables
♻ ☆ UniCoRN: Latent Diffusion-based Unified Controllable Image Restoration Network across Multiple Degradations
Image restoration is essential for enhancing degraded images across computer vision tasks. However, most existing methods address only a single type of degradation (e.g., blur, noise, or haze) at a time, limiting their real-world applicability where multiple degradations often occur simultaneously. In this paper, we propose UniCoRN, a unified image restoration approach capable of handling multiple degradation types simultaneously using a multi-head diffusion model. Specifically, we uncover the potential of low-level visual cues extracted from images in guiding a controllable diffusion model for real-world image restoration and we design a multi-head control network adaptable via a mixture-of-experts strategy. We train our model without any prior assumption of specific degradations, through a smartly designed curriculum learning recipe. Additionally, we also introduce MetaRestore, a metalens imaging benchmark containing images with multiple degradations and artifacts. Extensive evaluations on several challenging datasets, including our benchmark, demonstrate that our method achieves significant performance gains and can robustly restore images with severe degradations. Project page: https://codejaeger.github.io/unicorn-gh
♻ ☆ Aligning Text to Image in Diffusion Models is Easier Than You Think
While recent advancements in generative modeling have significantly improved text-image alignment, some residual misalignment between text and image representations still remains. Although many approaches have attempted to address this issue by fine-tuning models using various reward models, etc., we revisit the challenge from the perspective of representation alignment-an approach that has gained popularity with the success of REPresentation Alignment (REPA). We first argue that conventional text-to-image (T2I) diffusion models, typically trained on paired image and text data (i.e., positive pairs) by minimizing score matching or flow matching losses, is suboptimal from the standpoint of representation alignment. Instead, a better alignment can be achieved through contrastive learning that leverages both positive and negative pairs. To achieve this efficiently even with pretrained models, we introduce a lightweight contrastive fine tuning strategy called SoftREPA that uses soft text tokens. This approach improves alignment with minimal computational overhead by adding fewer than 1M trainable parameters to the pretrained model. Our theoretical analysis demonstrates that our method explicitly increases the mutual information between text and image representations, leading to enhanced semantic consistency. Experimental results across text-to-image generation and text-guided image editing tasks validate the effectiveness of our approach in improving the semantic consistency of T2I generative models.
♻ ☆ Moto: Latent Motion Token as the Bridging Language for Learning Robot Manipulation from Videos
Recent developments in Large Language Models pre-trained on extensive corpora have shown significant success in various natural language processing tasks with minimal fine-tuning. This success offers new promise for robotics, which has long been constrained by the high cost of action-labeled data. We ask: given the abundant video data containing interaction-related knowledge available as a rich "corpus", can a similar generative pre-training approach be effectively applied to enhance robot learning? The key challenge is to identify an effective representation for autoregressive pre-training that benefits robot manipulation tasks. Inspired by the way humans learn new skills through observing dynamic environments, we propose that effective robotic learning should emphasize motion-related knowledge, which is closely tied to low-level actions and is hardware-agnostic, facilitating the transfer of learned motions to actual robot actions. To this end, we introduce Moto, which converts video content into latent Motion Token sequences by a Latent Motion Tokenizer, learning a bridging "language" of motion from videos in an unsupervised manner. We pre-train Moto-GPT through motion token autoregression, enabling it to capture diverse visual motion knowledge. After pre-training, Moto-GPT demonstrates the promising ability to produce semantically interpretable motion tokens, predict plausible motion trajectories, and assess trajectory rationality through output likelihood. To transfer learned motion priors to real robot actions, we implement a co-fine-tuning strategy that seamlessly bridges latent motion token prediction and real robot control. Extensive experiments show that the fine-tuned Moto-GPT exhibits superior robustness and efficiency on robot manipulation benchmarks, underscoring its effectiveness in transferring knowledge from video data to downstream visual manipulation tasks.
comment: Project released at: https://chenyi99.github.io/moto/ Code released at: https://github.com/TencentARC/Moto Update: Added content related to real-world robot experiments and learning from human videos; Modified author information
URLOST: Unsupervised Representation Learning without Stationarity or Topology ICLR 2025
Unsupervised representation learning has seen tremendous progress. However, it is constrained by its reliance on domain specific stationarity and topology, a limitation not found in biological intelligence systems. For instance, unlike computer vision, human vision can process visual signals sampled from highly irregular and non-stationary sensors. We introduce a novel framework that learns from high-dimensional data without prior knowledge of stationarity and topology. Our model, abbreviated as URLOST, combines a learnable self-organizing layer, spectral clustering, and a masked autoencoder (MAE). We evaluate its effectiveness on three diverse data modalities including simulated biological vision data, neural recordings from the primary visual cortex, and gene expressions. Compared to state-of-the-art unsupervised learning methods like SimCLR and MAE, our model excels at learning meaningful representations across diverse modalities without knowing their stationarity or topology. It also outperforms other methods that are not dependent on these factors, setting a new benchmark in the field. We position this work as a step toward unsupervised learning methods capable of generalizing across diverse high-dimensional data modalities.
comment: Accepted by ICLR 2025; Code will be available at this https://github.com/zeyuyun1/URLOST
♻ ☆ TopoDiffusionNet: A Topology-aware Diffusion Model ICLR 2025
Diffusion models excel at creating visually impressive images but often struggle to generate images with a specified topology. The Betti number, which represents the number of structures in an image, is a fundamental measure in topology. Yet, diffusion models fail to satisfy even this basic constraint. This limitation restricts their utility in applications requiring exact control, like robotics and environmental modeling. To address this, we propose TopoDiffusionNet (TDN), a novel approach that enforces diffusion models to maintain the desired topology. We leverage tools from topological data analysis, particularly persistent homology, to extract the topological structures within an image. We then design a topology-based objective function to guide the denoising process, preserving intended structures while suppressing noisy ones. Our experiments across four datasets demonstrate significant improvements in topological accuracy. TDN is the first to integrate topology with diffusion models, opening new avenues of research in this area. Code available at https://github.com/Saumya-Gupta-26/TopoDiffusionNet
comment: Accepted to ICLR 2025 (Poster)
♻ ☆ Adapting to the Unknown: Training-Free Audio-Visual Event Perception with Dynamic Thresholds
In the domain of audio-visual event perception, which focuses on the temporal localization and classification of events across distinct modalities (audio and visual), existing approaches are constrained by the vocabulary available in their training data. This limitation significantly impedes their capacity to generalize to novel, unseen event categories. Furthermore, the annotation process for this task is labor-intensive, requiring extensive manual labeling across modalities and temporal segments, limiting the scalability of current methods. Current state-of-the-art models ignore the shifts in event distributions over time, reducing their ability to adjust to changing video dynamics. Additionally, previous methods rely on late fusion to combine audio and visual information. While straightforward, this approach results in a significant loss of multimodal interactions. To address these challenges, we propose Audio-Visual Adaptive Video Analysis ($\text{AV}^2\text{A}$), a model-agnostic approach that requires no further training and integrates a score-level fusion technique to retain richer multimodal interactions. $\text{AV}^2\text{A}$ also includes a within-video label shift algorithm, leveraging input video data and predictions from prior frames to dynamically adjust event distributions for subsequent frames. Moreover, we present the first training-free, open-vocabulary baseline for audio-visual event perception, demonstrating that $\text{AV}^2\text{A}$ achieves substantial improvements over naive training-free baselines. We demonstrate the effectiveness of $\text{AV}^2\text{A}$ on both zero-shot and weakly-supervised state-of-the-art methods, achieving notable improvements in performance metrics over existing approaches.
♻ ☆ SOUS VIDE: Cooking Visual Drone Navigation Policies in a Gaussian Splatting Vacuum
We propose a new simulator, training approach, and policy architecture, collectively called SOUS VIDE, for end-to-end visual drone navigation. Our trained policies exhibit zero-shot sim-to-real transfer with robust real-world performance using only onboard perception and computation. Our simulator, called FiGS, couples a computationally simple drone dynamics model with a high visual fidelity Gaussian Splatting scene reconstruction. FiGS can quickly simulate drone flights producing photorealistic images at up to 130 fps. We use FiGS to collect 100k-300k image/state-action pairs from an expert MPC with privileged state and dynamics information, randomized over dynamics parameters and spatial disturbances. We then distill this expert MPC into an end-to-end visuomotor policy with a lightweight neural architecture, called SV-Net. SV-Net processes color image, optical flow and IMU data streams into low-level thrust and body rate commands at 20 Hz onboard a drone. Crucially, SV-Net includes a learned module for low-level control that adapts at runtime to variations in drone dynamics. In a campaign of 105 hardware experiments, we show SOUS VIDE policies to be robust to 30% mass variations, 40 m/s wind gusts, 60% changes in ambient brightness, shifting or removing objects from the scene, and people moving aggressively through the drone's visual field. Code, data, and experiment videos can be found on our project page: https://stanfordmsl.github.io/SousVide/.
♻ ☆ DINO-LG: A Task-Specific DINO Model for Coronary Calcium Scoring
Coronary artery disease (CAD), one of the leading causes of mortality worldwide, necessitates effective risk assessment strategies, with coronary artery calcium (CAC) scoring via computed tomography (CT) being a key method for prevention. Traditional methods, primarily based on UNET architectures implemented on pre-built models, face challenges like the scarcity of annotated CT scans containing CAC and imbalanced datasets, leading to reduced performance in segmentation and scoring tasks. In this study, we address these limitations by incorporating the self-supervised learning (SSL) technique of DINO (self-distillation with no labels), which trains without requiring CAC-specific annotations, enhancing its robustness in generating distinct features. The DINO-LG model, which leverages label guidance to focus on calcified areas, achieves significant improvements, with a sensitivity of 89% and specificity of 90% for detecting CAC-containing CT slices, compared to the standard DINO model's sensitivity of 79% and specificity of 77%. Additionally, false-negative and false-positive rates are reduced by 49% and 59%, respectively, instilling greater confidence in clinicians when ruling out calcification in low-risk patients and minimizing unnecessary imaging reviews by radiologists. Further, CAC scoring and segmentation tasks are conducted using a basic UNET architecture, applied specifically to CT slices identified by the DINO-LG model as containing calcified areas. This targeted approach enhances CAC scoring accuracy by feeding the UNET model with relevant slices, significantly improving diagnostic precision, reducing both false positives and false negatives, and ultimately lowering overall healthcare costs by minimizing unnecessary tests and treatments, presenting a valuable advancement in CAD risk assessment.
comment: Developed by Center for Applied Artificial Intelligence (CAAI), University of Kentucky
♻ ☆ MANTA: Diffusion Mamba for Efficient and Effective Stochastic Long-Term Dense Anticipation CVPR2025
Long-term dense action anticipation is very challenging since it requires predicting actions and their durations several minutes into the future based on provided video observations. To model the uncertainty of future outcomes, stochastic models predict several potential future action sequences for the same observation. Recent work has further proposed to incorporate uncertainty modelling for observed frames by simultaneously predicting per-frame past and future actions in a unified manner. While such joint modelling of actions is beneficial, it requires long-range temporal capabilities to connect events across distant past and future time points. However, the previous work struggles to achieve such a long-range understanding due to its limited and/or sparse receptive field. To alleviate this issue, we propose a novel MANTA (MAmba for ANTicipation) network. Our model enables effective long-term temporal modelling even for very long sequences while maintaining linear complexity in sequence length. We demonstrate that our approach achieves state-of-the-art results on three datasets - Breakfast, 50Salads, and Assembly101 - while also significantly improving computational and memory efficiency. Our code is available at https://github.com/olga-zats/DIFF_MANTA .
comment: Accepted to CVPR2025
♻ ☆ United we stand, Divided we fall: Handling Weak Complementary Relationships for Audio-Visual Emotion Recognition in Valence-Arousal Space CVPR2025
Audio and visual modalities are two predominant contact-free channels in videos, which are often expected to carry a complementary relationship with each other. However, they may not always complement each other, resulting in poor audio-visual feature representations. In this paper, we introduce Gated Recursive Joint Cross Attention (GRJCA) using a gating mechanism that can adaptively choose the most relevant features to effectively capture the synergic relationships across audio and visual modalities. Specifically, we improve the performance of Recursive Joint Cross-Attention (RJCA) by introducing a gating mechanism to control the flow of information between the input features and the attended features of multiple iterations depending on the strength of their complementary relationship. For instance, if the modalities exhibit strong complementary relationships, the gating mechanism emphasizes cross-attended features, otherwise non-attended features. To further improve the performance of the system, we also explored a hierarchical gating approach by introducing a gating mechanism at every iteration, followed by high-level gating across the gated outputs of each iteration. The proposed approach improves the performance of RJCA model by adding more flexibility to deal with weak complementary relationships across audio and visual modalities. Extensive experiments are conducted on the challenging Affwild2 dataset to demonstrate the robustness of the proposed approach. By effectively handling the weak complementary relationships across the audio and visual modalities, the proposed model achieves a Concordance Correlation Coefficient (CCC) of 0.561 (0.623) and 0.620 (0.660) for valence and arousal respectively on the test set (validation set).
comment: Achieved 2nd place in valence arousal challenge Submission to CVPR2025 Workshop
♻ ☆ FALCON: Fairness Learning via Contrastive Attention Approach to Continual Semantic Scene Understanding CVPR'25
Continual Learning in semantic scene segmentation aims to continually learn new unseen classes in dynamic environments while maintaining previously learned knowledge. Prior studies focused on modeling the catastrophic forgetting and background shift challenges in continual learning. However, fairness, another major challenge that causes unfair predictions leading to low performance among major and minor classes, still needs to be well addressed. In addition, prior methods have yet to model the unknown classes well, thus resulting in producing non-discriminative features among unknown classes. This work presents a novel Fairness Learning via Contrastive Attention Approach to continual learning in semantic scene understanding. In particular, we first introduce a new Fairness Contrastive Clustering loss to address the problems of catastrophic forgetting and fairness. Then, we propose an attention-based visual grammar approach to effectively model the background shift problem and unknown classes, producing better feature representations for different unknown classes. Through our experiments, our proposed approach achieves State-of-the-Art (SoTA) performance on different continual learning benchmarks, i.e., ADE20K, Cityscapes, and Pascal VOC. It promotes the fairness of the continual semantic segmentation model.
comment: Accepted to CVPR'25
♻ ☆ Leveraging V2X for Collaborative HD Maps Construction Using Scene Graph Generation
High-Definition (HD) maps play a crucial role in autonomous vehicle navigation, complementing onboard perception sensors for improved accuracy and safety. Traditional HD map generation relies on dedicated mapping vehicles, which are costly and fail to capture real-time infrastructure changes. This paper presents HDMapLaneNet, a novel framework leveraging V2X communication and Scene Graph Generation to collaboratively construct a localized geometric layer of HD maps. The approach extracts lane centerlines from front-facing camera images, represents them as graphs, and transmits the data for global aggregation to the cloud via V2X. Preliminary results on the nuScenes dataset demonstrate superior association prediction performance compared to a state-of-the-art method.
♻ ☆ End-to-end Adaptive Dynamic Subsampling and Reconstruction for Cardiac MRI
$\textbf{Background:}$ Accelerating dynamic MRI is vital for advancing clinical applications and improving patient comfort. Commonly, deep learning (DL) methods for accelerated dynamic MRI reconstruction typically rely on uniformly applying non-adaptive predetermined or random subsampling patterns across all temporal frames of the dynamic acquisition. This approach fails to exploit temporal correlations or optimize subsampling on a case-by-case basis. $\textbf{Purpose:}$ To develop an end-to-end approach for adaptive dynamic MRI subsampling and reconstruction, capable of generating customized sampling patterns maximizing at the same time reconstruction quality. $\textbf{Methods:}$ We introduce the End-to-end Adaptive Dynamic Sampling and Reconstruction (E2E-ADS-Recon) for MRI framework, which integrates an adaptive dynamic sampler (ADS) that adapts the acquisition trajectory to each case for a given acceleration factor with a state-of-the-art dynamic reconstruction network, vSHARP, for reconstructing the adaptively sampled data into a dynamic image. The ADS can produce either frame-specific patterns or unified patterns applied to all temporal frames. E2E-ADS-Recon is evaluated under both frame-specific and unified 1D or 2D sampling settings, using dynamic cine cardiac MRI data and compared with vSHARP models employing standard subsampling trajectories, as well as pipelines where ADS was replaced by parameterized samplers optimized for dataset-specific schemes. $\textbf{Results:}$ E2E-ADS-Recon exhibited superior reconstruction quality, especially at high accelerations, in terms of standard quantitative metrics (SSIM, pSNR, NMSE). $\textbf{Conclusion:}$ The proposed framework improves reconstruction quality, highlighting the importance of case-specific subsampling optimization in dynamic MRI applications.
comment: 38 pages, 26 figures, 2 tables
♻ ☆ SuperPC: A Single Diffusion Model for Point Cloud Completion, Upsampling, Denoising, and Colorization
Point cloud (PC) processing tasks-such as completion, upsampling, denoising, and colorization-are crucial in applications like autonomous driving and 3D reconstruction. Despite substantial advancements, prior approaches often address each of these tasks independently, with separate models focused on individual issues. However, this isolated approach fails to account for the fact that defects like incompleteness, low resolution, noise, and lack of color frequently coexist, with each defect influencing and correlating with the others. Simply applying these models sequentially can lead to error accumulation from each model, along with increased computational costs. To address these challenges, we introduce SuperPC, the first unified diffusion model capable of concurrently handling all four tasks. Our approach employs a three-level-conditioned diffusion framework, enhanced by a novel spatial-mix-fusion strategy, to leverage the correlations among these four defects for simultaneous, efficient processing. We show that SuperPC outperforms the state-of-the-art specialized models as well as their combination on all four individual tasks.
♻ ☆ ZeroHSI: Zero-Shot 4D Human-Scene Interaction by Video Generation
Human-scene interaction (HSI) generation is crucial for applications in embodied AI, virtual reality, and robotics. Yet, existing methods cannot synthesize interactions in unseen environments such as in-the-wild scenes or reconstructed scenes, as they rely on paired 3D scenes and captured human motion data for training, which are unavailable for unseen environments. We present ZeroHSI, a novel approach that enables zero-shot 4D human-scene interaction synthesis, eliminating the need for training on any MoCap data. Our key insight is to distill human-scene interactions from state-of-the-art video generation models, which have been trained on vast amounts of natural human movements and interactions, and use differentiable rendering to reconstruct human-scene interactions. ZeroHSI can synthesize realistic human motions in both static scenes and environments with dynamic objects, without requiring any ground-truth motion data. We evaluate ZeroHSI on a curated dataset of different types of various indoor and outdoor scenes with different interaction prompts, demonstrating its ability to generate diverse and contextually appropriate human-scene interactions.
comment: Project website: https://awfuact.github.io/zerohsi/ The first two authors contribute equally
♻ ☆ TruthPrInt: Mitigating LVLM Object Hallucination Via Latent Truthful-Guided Pre-Intervention
Object Hallucination (OH) has been acknowledged as one of the major trustworthy challenges in Large Vision-Language Models (LVLMs). Recent advancements in Large Language Models (LLMs) indicate that internal states, such as hidden states, encode the "overall truthfulness" of generated responses. However, it remains under-explored how internal states in LVLMs function and whether they could serve as "per-token" hallucination indicators, which is essential for mitigating OH. In this paper, we first conduct an in-depth exploration of LVLM internal states in relation to OH issues and discover that (1) LVLM internal states are high-specificity per-token indicators of hallucination behaviors. Moreover, (2) different LVLMs encode universal patterns of hallucinations in common latent subspaces, indicating that there exist "generic truthful directions" shared by various LVLMs. Based on these discoveries, we propose Truthful-Guided Pre-Intervention (TruthPrInt) that first learns the truthful direction of LVLM decoding and then applies truthful-guided inference-time intervention during LVLM decoding. We further propose ComnHallu to enhance both cross-LVLM and cross-data hallucination detection transferability by constructing and aligning hallucination latent subspaces. We evaluate TruthPrInt in extensive experimental settings, including in-domain and out-of-domain scenarios, over popular LVLMs and OH benchmarks. Experimental results indicate that TruthPrInt significantly outperforms state-of-the-art methods. Codes will be available at https://github.com/jinhaoduan/TruthPrInt.
comment: 15 pages, 9 figures, the first two authors contributed equally
♻ ☆ RadioActive: 3D Radiological Interactive Segmentation Benchmark
Effortless and precise segmentation with minimal clinician effort could greatly streamline clinical workflows. Recent interactive segmentation models, inspired by METAs Segment Anything, have made significant progress but face critical limitations in 3D radiology. These include impractical human interaction requirements such as slice-by-slice operations for 2D models on 3D data and a lack of iterative refinement. Prior studies have been hindered by inadequate evaluation protocols, resulting in unreliable performance assessments and inconsistent findings across studies. The RadioActive benchmark addresses these challenges by providing a rigorous and reproducible evaluation framework for interactive segmentation methods in clinically relevant scenarios. It features diverse datasets, a wide range of target structures, and the most impactful 2D and 3D interactive segmentation methods, all within a flexible and extensible codebase. We also introduce advanced prompting techniques that reduce interaction steps, enabling fair comparisons between 2D and 3D models. Surprisingly, SAM2 outperforms all specialized medical 2D and 3D models in a setting requiring only a few interactions to generate prompts for a 3D volume. This challenges prevailing assumptions and demonstrates that general-purpose models surpass specialized medical approaches. By open-sourcing RadioActive, we invite researchers to integrate their models and prompting techniques, ensuring continuous and transparent evaluation of 3D medical interactive models.
comment: Undergoing Peer-Review
♻ ☆ Matrix3D: Large Photogrammetry Model All-in-One CVPR 2025
We present Matrix3D, a unified model that performs several photogrammetry subtasks, including pose estimation, depth prediction, and novel view synthesis using just the same model. Matrix3D utilizes a multi-modal diffusion transformer (DiT) to integrate transformations across several modalities, such as images, camera parameters, and depth maps. The key to Matrix3D's large-scale multi-modal training lies in the incorporation of a mask learning strategy. This enables full-modality model training even with partially complete data, such as bi-modality data of image-pose and image-depth pairs, thus significantly increases the pool of available training data. Matrix3D demonstrates state-of-the-art performance in pose estimation and novel view synthesis tasks. Additionally, it offers fine-grained control through multi-round interactions, making it an innovative tool for 3D content creation. Project page: https://nju-3dv.github.io/projects/matrix3d.
comment: CVPR 2025 camera ready. Project Page: https://nju-3dv.github.io/projects/matrix3d
♻ ☆ Mono2D: A Trainable Monogenic Layer for Robust Knee Cartilage Segmentation on Out-of-Distribution 2D Ultrasound Data
Automated knee cartilage segmentation using point-of-care ultrasound devices and deep-learning networks has the potential to enhance the management of knee osteoarthritis. However, segmentation algorithms often struggle with domain shifts caused by variations in ultrasound devices and acquisition parameters, limiting their generalizability. In this paper, we propose Mono2D, a monogenic layer that extracts multi-scale, contrast- and intensity-invariant local phase features using trainable bandpass quadrature filters. This layer mitigates domain shifts, improving generalization to out-of-distribution domains. Mono2D is integrated before the first layer of a segmentation network, and its parameters jointly trained alongside the network's parameters. We evaluated Mono2D on a multi-domain 2D ultrasound knee cartilage dataset for single-source domain generalization (SSDG). Our results demonstrate that Mono2D outperforms other SSDG methods in terms of Dice score and mean average surface distance. To further assess its generalizability, we evaluate Mono2D on a multi-site prostate MRI dataset, where it continues to outperform other SSDG methods, highlighting its potential to improve domain generalization in medical imaging. Nevertheless, further evaluation on diverse datasets is still necessary to assess its clinical utility.
comment: 11 pages, removed unrelated LaTeX template figure from last page
♻ ☆ Uncertainty modeling for fine-tuned implicit functions
Implicit functions such as Neural Radiance Fields (NeRFs), occupancy networks, and signed distance functions (SDFs) have become pivotal in computer vision for reconstructing detailed object shapes from sparse views. Achieving optimal performance with these models can be challenging due to the extreme sparsity of inputs and distribution shifts induced by data corruptions. To this end, large, noise-free synthetic datasets can serve as shape priors to help models fill in gaps, but the resulting reconstructions must be approached with caution. Uncertainty estimation is crucial for assessing the quality of these reconstructions, particularly in identifying areas where the model is uncertain about the parts it has inferred from the prior. In this paper, we introduce Dropsembles, a novel method for uncertainty estimation in tuned implicit functions. We demonstrate the efficacy of our approach through a series of experiments, starting with toy examples and progressing to a real-world scenario. Specifically, we train a Convolutional Occupancy Network on synthetic anatomical data and test it on low-resolution MRI segmentations of the lumbar spine. Our results show that Dropsembles achieve the accuracy and calibration levels of deep ensembles but with significantly less computational cost.
♻ ☆ Deep End-to-end Adaptive k-Space Sampling, Reconstruction, and Registration for Dynamic MRI
Dynamic MRI enables a range of clinical applications, including cardiac function assessment, organ motion tracking, and radiotherapy guidance. However, fully sampling the dynamic k-space data is often infeasible due to time constraints and physiological motion such as respiratory and cardiac motion. This necessitates undersampling, which degrades the quality of reconstructed images. Poor image quality not only hinders visualization but also impairs the estimation of deformation fields, crucial for registering dynamic (moving) images to a static reference image. This registration enables tasks such as motion correction, treatment planning, and quantitative analysis in applications like cardiac imaging and MR-guided radiotherapy. To overcome the challenges posed by undersampling and motion, we introduce an end-to-end deep learning (DL) framework that integrates adaptive dynamic k-space sampling, reconstruction, and registration. Our approach begins with a DL-based adaptive sampling strategy, optimizing dynamic k-space acquisition to capture the most relevant data for each specific case. This is followed by a DL-based reconstruction module that produces images optimized for accurate deformation field estimation from the undersampled moving data. Finally, a registration module estimates the deformation fields aligning the reconstructed dynamic images with a static reference. The proposed framework is independent of specific reconstruction and registration modules allowing for plug-and-play integration of these components. The entire framework is jointly trained using a combination of supervised and unsupervised loss functions, enabling end-to-end optimization for improved performance across all components. Through controlled experiments and ablation studies, we validate each component, demonstrating that each choice contributes to robust motion estimation from undersampled dynamic data.
comment: 48 pages, 23 figures, 8 tables
♻ ☆ Code-as-Monitor: Constraint-aware Visual Programming for Reactive and Proactive Robotic Failure Detection CVPR 2025
Automatic detection and prevention of open-set failures are crucial in closed-loop robotic systems. Recent studies often struggle to simultaneously identify unexpected failures reactively after they occur and prevent foreseeable ones proactively. To this end, we propose Code-as-Monitor (CaM), a novel paradigm leveraging the vision-language model (VLM) for both open-set reactive and proactive failure detection. The core of our method is to formulate both tasks as a unified set of spatio-temporal constraint satisfaction problems and use VLM-generated code to evaluate them for real-time monitoring. To enhance the accuracy and efficiency of monitoring, we further introduce constraint elements that abstract constraint-related entities or their parts into compact geometric elements. This approach offers greater generality, simplifies tracking, and facilitates constraint-aware visual programming by leveraging these elements as visual prompts. Experiments show that CaM achieves a 28.7% higher success rate and reduces execution time by 31.8% under severe disturbances compared to baselines across three simulators and a real-world setting. Moreover, CaM can be integrated with open-loop control policies to form closed-loop systems, enabling long-horizon tasks in cluttered scenes with dynamic environments.
comment: Accepted by CVPR 2025. Project page: https://zhoues.github.io/Code-as-Monitor/
♻ ☆ VASparse: Towards Efficient Visual Hallucination Mitigation via Visual-Aware Token Sparsification CVPR 2025
Large Vision-Language Models (LVLMs) may produce outputs that are unfaithful to reality, also known as visual hallucinations (VH), which significantly impedes their real-world usage. To alleviate VH, various decoding strategies have been proposed to enhance visual information. However, many of these methods may require secondary decoding and rollback, which significantly reduces inference speed. In this work, we propose an efficient plug-and-play decoding algorithm via Visual-Aware Sparsification (VASparse) from the perspective of token sparsity for mitigating VH. VASparse is inspired by empirical observations: (1) the sparse activation of attention in LVLMs, and (2) visual-agnostic tokens sparsification exacerbates VH. Based on these insights, we propose a novel token sparsification strategy that balances efficiency and trustworthiness. Specifically, VASparse implements a visual-aware token selection strategy during decoding to reduce redundant tokens while preserving visual context effectively. Additionally, we innovatively introduce a sparse-based visual contrastive decoding method to recalibrate the distribution of hallucinated outputs without the time overhead associated with secondary decoding. Subsequently, VASparse recalibrates attention scores to penalize attention sinking of LVLMs towards text tokens. Extensive experiments across four popular benchmarks confirm the effectiveness of VASparse in mitigating VH across different LVLM families without requiring additional training or post-processing. Impressively, VASparse achieves state-of-the-art performance for mitigating VH while maintaining competitive decoding speed. Code is available at https://github.com/mengchuang123/VASparse-github.
comment: Accepted by CVPR 2025
♻ ☆ GiVE: Guiding Visual Encoder to Perceive Overlooked Information ICME 2025
Multimodal Large Language Models have advanced AI in applications like text-to-video generation and visual question answering. These models rely on visual encoders to convert non-text data into vectors, but current encoders either lack semantic alignment or overlook non-salient objects. We propose the Guiding Visual Encoder to Perceive Overlooked Information (GiVE) approach. GiVE enhances visual representation with an Attention-Guided Adapter (AG-Adapter) module and an Object-focused Visual Semantic Learning module. These incorporate three novel loss terms: Object-focused Image-Text Contrast (OITC) loss, Object-focused Image-Image Contrast (OIIC) loss, and Object-focused Image Discrimination (OID) loss, improving object consideration, retrieval accuracy, and comprehensiveness. Our contributions include dynamic visual focus adjustment, novel loss functions to enhance object retrieval, and the Multi-Object Instruction (MOInst) dataset. Experiments show our approach achieves state-of-the-art performance.
comment: This paper was accepted by ICME 2025
♻ ☆ EgoTextVQA: Towards Egocentric Scene-Text Aware Video Question Answering CVPR 2025
We introduce EgoTextVQA, a novel and rigorously constructed benchmark for egocentric QA assistance involving scene text. EgoTextVQA contains 1.5K ego-view videos and 7K scene-text aware questions that reflect real user needs in outdoor driving and indoor house-keeping activities. The questions are designed to elicit identification and reasoning on scene text in an egocentric and dynamic environment. With EgoTextVQA, we comprehensively evaluate 10 prominent multimodal large language models. Currently, all models struggle, and the best results (Gemini 1.5 Pro) are around 33\% accuracy, highlighting the severe deficiency of these techniques in egocentric QA assistance. Our further investigations suggest that precise temporal grounding and multi-frame reasoning, along with high resolution and auxiliary scene-text inputs, are key for better performance. With thorough analyses and heuristic suggestions, we hope EgoTextVQA can serve as a solid testbed for research in egocentric scene-text QA assistance. Our dataset is released at: https://github.com/zhousheng97/EgoTextVQA.
comment: Accepted by CVPR 2025
♻ ☆ When Domain Generalization meets Generalized Category Discovery: An Adaptive Task-Arithmetic Driven Approach CVPR 2025
Generalized Class Discovery (GCD) clusters base and novel classes in a target domain using supervision from a source domain with only base classes. Current methods often falter with distribution shifts and typically require access to target data during training, which can sometimes be impractical. To address this issue, we introduce the novel paradigm of Domain Generalization in GCD (DG-GCD), where only source data is available for training, while the target domain, with a distinct data distribution, remains unseen until inference. To this end, our solution, DG2CD-Net, aims to construct a domain-independent, discriminative embedding space for GCD. The core innovation is an episodic training strategy that enhances cross-domain generalization by adapting a base model on tasks derived from source and synthetic domains generated by a foundation model. Each episode focuses on a cross-domain GCD task, diversifying task setups over episodes and combining open-set domain adaptation with a novel margin loss and representation learning for optimizing the feature space progressively. To capture the effects of fine-tuning on the base model, we extend task arithmetic by adaptively weighting the local task vectors concerning the fine-tuned models based on their GCD performance on a validation distribution. This episodic update mechanism boosts the adaptability of the base model to unseen targets. Experiments across three datasets confirm that DG2CD-Net outperforms existing GCD methods customized for DG-GCD.
comment: Accepted at CVPR 2025 (Main Conference)
♻ ☆ Data-driven Camera and Lidar Simulation Models for Autonomous Driving: A Review from Generative Models to Volume Renderers
Perception sensors, particularly camera and Lidar, are key elements of Autonomous Driving Systems (ADS) that enable them to comprehend their surroundings to informed driving and control decisions. Therefore, developing realistic simulation models for these sensors is essential for conducting effective simulation-based testing of ADS. Moreover, the rise of deep learning-based perception models has increased the utility of sensor simulation models for synthesising diverse training datasets. The traditional sensor simulation models rely on computationally expensive physics-based algorithms, specifically in complex systems such as ADS. Hence, the current potential resides in data-driven approaches, fuelled by the exceptional performance of deep generative models in capturing high-dimensional data distribution and volume renderers in accurately representing scenes. This paper reviews the current state-of-the-art data-driven camera and Lidar simulation models and their evaluation methods. It explores a spectrum of models from the novel perspective of generative models and volume renderers. Generative models are discussed in terms of their input-output types, while volume renderers are categorised based on their input encoding. Finally, the paper illustrates commonly used evaluation techniques for assessing sensor simulation models and highlights the existing research gaps in the area.
comment: To be published in IEEE Transactions on Intelligent Vehicles
♻ ☆ Instant Adversarial Purification with Adversarial Consistency Distillation CVPR2025
Neural networks have revolutionized numerous fields with their exceptional performance, yet they remain susceptible to adversarial attacks through subtle perturbations. While diffusion-based purification methods like DiffPure offer promising defense mechanisms, their computational overhead presents a significant practical limitation. In this paper, we introduce One Step Control Purification (OSCP), a novel defense framework that achieves robust adversarial purification in a single Neural Function Evaluation (NFE) within diffusion models. We propose Gaussian Adversarial Noise Distillation (GAND) as the distillation objective and Controlled Adversarial Purification (CAP) as the inference pipeline, which makes OSCP demonstrate remarkable efficiency while maintaining defense efficacy. Our proposed GAND addresses a fundamental tension between consistency distillation and adversarial perturbation, bridging the gap between natural and adversarial manifolds in the latent space, while remaining computationally efficient through Parameter-Efficient Fine-Tuning (PEFT) methods such as LoRA, eliminating the high computational budget request from full parameter fine-tuning. The CAP guides the purification process through the unlearnable edge detection operator calculated by the input image as an extra prompt, effectively preventing the purified images from deviating from their original appearance when large purification steps are used. Our experimental results on ImageNet showcase OSCP's superior performance, achieving a 74.19% defense success rate with merely 0.1s per purification -- a 100-fold speedup compared to conventional approaches.
comment: Accepted by CVPR2025
♻ ☆ SUM Parts: Benchmarking Part-Level Semantic Segmentation of Urban Meshes CVPR 2025
Semantic segmentation in urban scene analysis has mainly focused on images or point clouds, while textured meshes - offering richer spatial representation - remain underexplored. This paper introduces SUM Parts, the first large-scale dataset for urban textured meshes with part-level semantic labels, covering about 2.5 km2 with 21 classes. The dataset was created using our own annotation tool, which supports both face- and texture-based annotations with efficient interactive selection. We also provide a comprehensive evaluation of 3D semantic segmentation and interactive annotation methods on this dataset. Our project page is available at https://tudelft3d.github.io/SUMParts/.
comment: CVPR 2025
♻ ☆ UVE: Are MLLMs Unified Evaluators for AI-Generated Videos?
With the rapid growth of video generative models (VGMs), it is essential to develop reliable and comprehensive automatic metrics for AI-generated videos (AIGVs). Existing methods either use off-the-shelf models optimized for other tasks or rely on human assessment data to train specialized evaluators. These approaches are constrained to specific evaluation aspects and are difficult to scale with the increasing demands for finer-grained and more comprehensive evaluations. To address this issue, this work investigates the feasibility of using multimodal large language models (MLLMs) as a unified evaluator for AIGVs, leveraging their strong visual perception and language understanding capabilities. To evaluate the performance of automatic metrics in unified AIGV evaluation, we introduce a benchmark called UVE-Bench. UVE-Bench collects videos generated by state-of-the-art VGMs and provides pairwise human preference annotations across 15 evaluation aspects. Using UVE-Bench, we extensively evaluate 16 MLLMs. Our empirical results suggest that while advanced MLLMs (e.g., Qwen2VL-72B and InternVL2.5-78B) still lag behind human evaluators, they demonstrate promising ability in unified AIGV evaluation, significantly surpassing existing specialized evaluation methods. Additionally, we conduct an in-depth analysis of key design choices that impact the performance of MLLM-driven evaluators, offering valuable insights for future research on AIGV evaluation. The code is available at https://github.com/bytedance/UVE.
♻ ☆ DLEN: Dual Branch of Transformer for Low-Light Image Enhancement in Dual Domains
Low-light image enhancement (LLE) aims to improve the visual quality of images captured in poorly lit conditions, which often suffer from low brightness, low contrast, noise, and color distortions. These issues hinder the performance of computer vision tasks such as object detection, facial recognition, and autonomous driving.Traditional enhancement techniques, such as multi-scale fusion and histogram equalization, fail to preserve fine details and often struggle with maintaining the natural appearance of enhanced images under complex lighting conditions. Although the Retinex theory provides a foundation for image decomposition, it often amplifies noise, leading to suboptimal image quality. In this paper, we propose the Dual Light Enhance Network (DLEN), a novel architecture that incorporates two distinct attention mechanisms, considering both spatial and frequency domains. Our model introduces a learnable wavelet transform module in the illumination estimation phase, preserving high- and low-frequency components to enhance edge and texture details. Additionally, we design a dual-branch structure that leverages the power of the Transformer architecture to enhance both the illumination and structural components of the image.Through extensive experiments, our model outperforms state-of-the-art methods on standard benchmarks.Code is available here: https://github.com/LaLaLoXX/DLEN
comment: 9 pages and 6 figures
♻ ☆ Spectral State Space Model for Rotation-Invariant Visual Representation Learning
State Space Models (SSMs) have recently emerged as an alternative to Vision Transformers (ViTs) due to their unique ability of modeling global relationships with linear complexity. SSMs are specifically designed to capture spatially proximate relationships of image patches. However, they fail to identify relationships between conceptually related yet not adjacent patches. This limitation arises from the non-causal nature of image data, which lacks inherent directional relationships. Additionally, current vision-based SSMs are highly sensitive to transformations such as rotation. Their predefined scanning directions depend on the original image orientation, which can cause the model to produce inconsistent patch-processing sequences after rotation. To address these limitations, we introduce Spectral VMamba, a novel approach that effectively captures the global structure within an image by leveraging spectral information derived from the graph Laplacian of image patches. Through spectral decomposition, our approach encodes patch relationships independently of image orientation, achieving rotation invariance with the aid of our Rotational Feature Normalizer (RFN) module. Our experiments on classification tasks show that Spectral VMamba outperforms the leading SSM models in vision, such as VMamba, while maintaining invariance to rotations and a providing a similar runtime efficiency.
♻ ☆ Embedded Visual Prompt Tuning
Foundation models pre-trained on large-scale data have been widely witnessed to achieve success in various natural imaging downstream tasks. Parameter-efficient fine-tuning (PEFT) methods aim to adapt foundation models to new domains by updating only a small portion of parameters in order to reduce computational overhead. However, the effectiveness of these PEFT methods, especially in cross-domain few-shot scenarios, e.g., medical image analysis, has not been fully explored. In this work, we facilitate the study of the performance of PEFT when adapting foundation models to medical image classification tasks. Furthermore, to alleviate the limitations of prompt introducing ways and approximation capabilities on Transformer architectures of mainstream prompt tuning methods, we propose the Embedded Prompt Tuning (EPT) method by embedding prompt tokens into the expanded channels. We also find that there are anomalies in the feature space distribution of foundation models during pre-training process, and prompt tuning can help mitigate this negative impact. To explain this phenomenon, we also introduce a novel perspective to understand prompt tuning: Prompt tuning is a distribution calibrator. And we support it by analyzing patch-wise scaling and feature separation operations contained in EPT. Our experiments show that EPT outperforms several state-of-the-art fine-tuning methods by a significant margin on few-shot medical image classification tasks, and completes the fine-tuning process within highly competitive time, indicating EPT is an effective PEFT method. The source code is available at github.com/zuwenqiang/EPT.
♻ ☆ Dynamic-LLaVA: Efficient Multimodal Large Language Models via Dynamic Vision-language Context Sparsification ICLR 2025
Multimodal Large Language Models (MLLMs) have achieved remarkable success in vision understanding, reasoning, and interaction. However, the inference computation and memory increase progressively with the generation of output tokens during decoding, directly affecting the efficacy of MLLMs. Existing methods attempt to reduce the vision context redundancy to achieve efficient MLLMs. Unfortunately, the efficiency benefits of the vision context reduction in the prefill stage gradually diminish during the decoding stage. To address this problem, we proposed a dynamic vision-language context sparsification framework Dynamic-LLaVA, which dynamically reduces the redundancy of vision context in the prefill stage and decreases the memory and computation overhead of the generated language context during decoding. Dynamic-LLaVA designs a tailored sparsification inference scheme for different inference modes, i.e., prefill, decoding with and without KV cache, to achieve efficient inference of MLLMs. In practice, Dynamic-LLaVA can reduce computation consumption by $\sim$75\% in the prefill stage. Meanwhile, throughout the entire generation process of MLLMs, Dynamic-LLaVA reduces the $\sim$50\% computation consumption under decoding without KV cache, while saving $\sim$50\% GPU memory overhead when decoding with KV cache, due to the vision-language context sparsification. Extensive experiments also demonstrate that Dynamic-LLaVA achieves efficient inference for MLLMs with negligible understanding and generation ability degradation or even performance gains compared to the full-context inference baselines. Code is available at https://github.com/Osilly/dynamic_llava .
comment: Accepted to ICLR 2025. Code is available at https://github.com/Osilly/dynamic_llava
♻ ☆ Self-supervised Monocular Depth Estimation Based on Hierarchical Feature-Guided Diffusion
Self-supervised monocular depth estimation has received widespread attention because of its capability to train without ground truth. In real-world scenarios, the images may be blurry or noisy due to the influence of weather conditions and inherent limitations of the camera. Therefore, it is particularly important to develop a robust depth estimation model. Benefiting from the training strategies of generative networks, generative-based methods often exhibit enhanced robustness. In light of this, we employ the generative-based diffusion model with a unique denoising training process for self-supervised monocular depth estimation. Additionally, to further enhance the robustness of the diffusion model, we probe into the influence of perturbations on image features and propose a hierarchical feature-guided denoising module. Furthermore, we explore the implicit depth within reprojection and design an implicit depth consistency loss. This loss function is not interfered by the other subnetwork, which can be targeted to constrain the depth estimation network and ensure the scale consistency of depth within a video sequence. We conduct experiments on the KITTI and Make3D datasets. The results indicate that our approach stands out among generative-based models, while also showcasing remarkable robustness.
♻ ☆ SoMA: Singular Value Decomposed Minor Components Adaptation for Domain Generalizable Representation Learning CVPR 2025
Domain generalization (DG) aims to adapt a model using one or multiple source domains to ensure robust performance in unseen target domains. Recently, Parameter-Efficient Fine-Tuning (PEFT) of foundation models has shown promising results in the context of DG problem. Nevertheless, existing PEFT methods still struggle to strike a balance between preserving generalizable components of the pre-trained model and learning task-specific features. To gain insights into the distribution of generalizable components, we begin by analyzing the pre-trained weights through the lens of singular value decomposition. Building on these insights, we introduce Singular Value Decomposed Minor Components Adaptation (SoMA), an approach that selectively tunes minor singular components while keeping the residual parts frozen. SoMA effectively retains the generalization ability of the pre-trained model while efficiently acquiring task-specific skills. Moreover, we freeze domain-generalizable blocks and employ an annealing weight decay strategy, thereby achieving an optimal balance in the delicate trade-off between generalizability and discriminability. SoMA attains state-of-the-art results on multiple benchmarks that span both domain generalized semantic segmentation to domain generalized object detection. In addition, our methods introduce no additional inference overhead or regularization loss, maintain compatibility with any backbone or head, and are designed to be versatile, allowing easy integration into a wide range of tasks.
comment: CVPR 2025 Project page: https://ysj9909.github.io/SoRA.github.io/
♻ ☆ Sparse autoencoders reveal selective remapping of visual concepts during adaptation ICLR 2025
Adapting foundation models for specific purposes has become a standard approach to build machine learning systems for downstream applications. Yet, it is an open question which mechanisms take place during adaptation. Here we develop a new Sparse Autoencoder (SAE) for the CLIP vision transformer, named PatchSAE, to extract interpretable concepts at granular levels (e.g., shape, color, or semantics of an object) and their patch-wise spatial attributions. We explore how these concepts influence the model output in downstream image classification tasks and investigate how recent state-of-the-art prompt-based adaptation techniques change the association of model inputs to these concepts. While activations of concepts slightly change between adapted and non-adapted models, we find that the majority of gains on common adaptation tasks can be explained with the existing concepts already present in the non-adapted foundation model. This work provides a concrete framework to train and use SAEs for Vision Transformers and provides insights into explaining adaptation mechanisms.
comment: Published as a conference paper at the Thirteenth International Conference on Learning Representations (ICLR 2025)
♻ ☆ T2ICount: Enhancing Cross-modal Understanding for Zero-Shot Counting CVPR2025
Zero-shot object counting aims to count instances of arbitrary object categories specified by text descriptions. Existing methods typically rely on vision-language models like CLIP, but often exhibit limited sensitivity to text prompts. We present T2ICount, a diffusion-based framework that leverages rich prior knowledge and fine-grained visual understanding from pretrained diffusion models. While one-step denoising ensures efficiency, it leads to weakened text sensitivity. To address this challenge, we propose a Hierarchical Semantic Correction Module that progressively refines text-image feature alignment, and a Representational Regional Coherence Loss that provides reliable supervision signals by leveraging the cross-attention maps extracted from the denosing U-Net. Furthermore, we observe that current benchmarks mainly focus on majority objects in images, potentially masking models' text sensitivity. To address this, we contribute a challenging re-annotated subset of FSC147 for better evaluation of text-guided counting ability. Extensive experiments demonstrate that our method achieves superior performance across different benchmarks. Code is available at https://github.com/cha15yq/T2ICount.
comment: Accepted by CVPR2025
♻ ☆ Number it: Temporal Grounding Videos like Flipping Manga CVPR 2025
Video Large Language Models (Vid-LLMs) have made remarkable advancements in comprehending video content for QA dialogue. However, they struggle to extend this visual understanding to tasks requiring precise temporal localization, known as Video Temporal Grounding (VTG). To address this gap, we introduce Number-Prompt (NumPro), a novel method that empowers Vid-LLMs to bridge visual comprehension with temporal grounding by adding unique numerical identifiers to each video frame. Treating a video as a sequence of numbered frame images, NumPro transforms VTG into an intuitive process: flipping through manga panels in sequence. This allows Vid-LLMs to "read" event timelines, accurately linking visual content with corresponding temporal information. Our experiments demonstrate that NumPro significantly boosts VTG performance of top-tier Vid-LLMs without additional computational cost. Furthermore, fine-tuning on a NumPro-enhanced dataset defines a new state-of-the-art for VTG, surpassing previous top-performing methods by up to 6.9\% in mIoU for moment retrieval and 8.5\% in mAP for highlight detection. The code will be available at https://github.com/yongliang-wu/NumPro.
comment: Accepted by CVPR 2025
♻ ☆ PUGS: Zero-shot Physical Understanding with Gaussian Splatting ICRA 2025
Current robotic systems can understand the categories and poses of objects well. But understanding physical properties like mass, friction, and hardness, in the wild, remains challenging. We propose a new method that reconstructs 3D objects using the Gaussian splatting representation and predicts various physical properties in a zero-shot manner. We propose two techniques during the reconstruction phase: a geometry-aware regularization loss function to improve the shape quality and a region-aware feature contrastive loss function to promote region affinity. Two other new techniques are designed during inference: a feature-based property propagation module and a volume integration module tailored for the Gaussian representation. Our framework is named as zero-shot physical understanding with Gaussian splatting, or PUGS. PUGS achieves new state-of-the-art results on the standard benchmark of ABO-500 mass prediction. We provide extensive quantitative ablations and qualitative visualization to demonstrate the mechanism of our designs. We show the proposed methodology can help address challenging real-world grasping tasks. Our codes, data, and models are available at https://github.com/EverNorif/PUGS
comment: ICRA 2025, Project page: https://evernorif.github.io/PUGS/
♻ ☆ Inverting Transformer-based Vision Models
Understanding the mechanisms underlying deep neural networks in computer vision remains a fundamental challenge. While many previous approaches have focused on visualizing intermediate representations within deep neural networks, particularly convolutional neural networks, these techniques have yet to be thoroughly explored in transformer-based vision models. In this study, we apply a modular approach of training inverse models to reconstruct input images from intermediate layers within a Detection Transformer and a Vision Transformer, showing that this approach is efficient and feasible. Through qualitative and quantitative evaluations of reconstructed images, we generate insights into the underlying mechanisms of these architectures, highlighting their similarities and differences in terms of contextual shape and preservation of image details, inter-layer correlation, and robustness to color perturbations. Our analysis illustrates how these properties emerge within the models, contributing to a deeper understanding of transformer-based vision models. The code for reproducing our experiments is available at github.com/wiskott-lab/inverse-detection-transformer.
♻ ☆ WAIT: Feature Warping for Animation to Illustration video Translation using GANs
In this paper, we explore a new domain for video-to-video translation. Motivated by the availability of animation movies that are adopted from illustrated books for children, we aim to stylize these videos with the style of the original illustrations. Current state-of-the-art video-to-video translation models rely on having a video sequence or a single style image to stylize an input video. We introduce a new problem for video stylizing where an unordered set of images are used. This is a challenging task for two reasons: i) we do not have the advantage of temporal consistency as in video sequences; ii) it is more difficult to obtain consistent styles for video frames from a set of unordered images compared to using a single image. Most of the video-to-video translation methods are built on an image-to-image translation model, and integrate additional networks such as optical flow, or temporal predictors to capture temporal relations. These additional networks make the model training and inference complicated and slow down the process. To ensure temporal coherency in video-to-video style transfer, we propose a new generator network with feature warping layers which overcomes the limitations of the previous methods. We show the effectiveness of our method on three datasets both qualitatively and quantitatively. Code and pretrained models are available at https://github.com/giddyyupp/wait.
comment: Accepted to Neurocomputing
♻ ☆ Explaining Human Activity Recognition with SHAP: Validating Insights with Perturbation and Quantitative Measures
In Human Activity Recognition (HAR), understanding the intricacy of body movements within high-risk applications is essential. This study uses SHapley Additive exPlanations (SHAP) to explain the decision-making process of Graph Convolution Networks (GCNs) when classifying activities with skeleton data. We employ SHAP to explain two real-world datasets: one for cerebral palsy (CP) classification and the widely used NTU RGB+D 60 action recognition dataset. To test the explanation, we introduce a novel perturbation approach that modifies the model's edge importance matrix, allowing us to evaluate the impact of specific body key points on prediction outcomes. To assess the fidelity of our explanations, we employ informed perturbation, targeting body key points identified as important by SHAP and comparing them against random perturbation as a control condition. This perturbation enables a judgment on whether the body key points are truly influential or non-influential based on the SHAP values. Results on both datasets show that body key points identified as important through SHAP have the largest influence on the accuracy, specificity, and sensitivity metrics. Our findings highlight that SHAP can provide granular insights into the input feature contribution to the prediction outcome of GCNs in HAR tasks. This demonstrates the potential for more interpretable and trustworthy models in high-stakes applications like healthcare or rehabilitation.
comment: Published in Computers in Biology and Medicine
♻ ☆ Automatic infant 2D pose estimation from videos: comparing seven deep neural network methods
Automatic markerless estimation of infant posture and motion from ordinary videos carries great potential for movement studies "in the wild", facilitating understanding of motor development and massively increasing the chances of early diagnosis of disorders. There is rapid development of human pose estimation methods in computer vision thanks to advances in deep learning and machine learning. However, these methods are trained on datasets that feature adults in different contexts. This work tests and compares seven popular methods (AlphaPose, DeepLabCut/DeeperCut, Detectron2, HRNet, MediaPipe/BlazePose, OpenPose, and ViTPose) on videos of infants in supine position and in more complex settings. Surprisingly, all methods except DeepLabCut and MediaPipe have competitive performance without additional finetuning, with ViTPose performing best. Next to standard performance metrics (average precision and recall), we introduce errors expressed in the neck-mid-hip (torso length) ratio and additionally study missed and redundant detections, and the reliability of the internal confidence ratings of the different methods, which are relevant for downstream tasks. Among the networks with competitive performance, only AlphaPose could run close to real time (27 fps) on our machine. We provide documented Docker containers or instructions for all the methods we used, our analysis scripts, and the processed data at https://hub.docker.com/u/humanoidsctu and https://osf.io/x465b/.
comment: 34 pages, 7 figures, 20 tables
♻ ☆ Babel: A Scalable Pre-trained Model for Multi-Modal Sensing via Expandable Modality Alignment
This paper presents Babel, the expandable modality alignment model, specially designed for multi-modal sensing. While there has been considerable work on multi-modality alignment, they all struggle to effectively incorporate multiple sensing modalities due to the data scarcity constraints. How to utilize multi-modal data with partial pairings in sensing remains an unresolved challenge. Babel tackles this challenge by introducing the concept of expandable modality alignment. The key idea involves transforming the N-modality alignment into a series of binary-modality alignments. Novel techniques are also proposed to further mitigate data scarcity issue and balance the contribution of the newly incorporated modality with the previously established modality alignment during the expandable alignment process. We provide the comprehensive implementation. In the pre-training phase, Babel currently aligns 6 sensing modalities, namely Wi-Fi, mmWave, IMU, LiDAR, video, and depth. For the deployment phase, as a foundation model, any single or combination of aligned modalities could be selected from Babel and applied to downstream tasks. Evaluation demonstrates Babel's outstanding performance on eight human activity recognition datasets, compared to a broad range of baselines e.g., the SOTA single-modal sensing networks, multi-modal sensing framework, and multi-modal large language models. Babel not only improves the performance of individual modality sensing (12% averaged accuracy improvement), but also effectively fuses multiple available modalities (up to 22% accuracy increase). Case studies also highlight emerging application scenarios empowered by Babel, including cross-modality retrieval (i.e., sensing imaging), and bridging LLM for sensing comprehension.
comment: Accepted by SenSys'25
♻ ☆ Diffusion Beats Autoregressive: An Evaluation of Compositional Generation in Text-to-Image Models NeurIPS 2024
Text-to-image (T2I) generative models, such as Stable Diffusion and DALL-E, have shown remarkable proficiency in producing high-quality, realistic, and natural images from textual descriptions. However, these models sometimes fail to accurately capture all the details specified in the input prompts, particularly concerning entities, attributes, and spatial relationships. This issue becomes more pronounced when the prompt contains novel or complex compositions, leading to what are known as compositional generation failure modes. Recently, a new open-source diffusion-based T2I model, FLUX, has been introduced, demonstrating strong performance in high-quality image generation. Additionally, autoregressive T2I models like LlamaGen have claimed competitive visual quality performance compared to diffusion-based models. In this study, we evaluate the compositional generation capabilities of these newly introduced models against established models using the T2I-CompBench benchmark. Our findings reveal that LlamaGen, as a vanilla autoregressive model, is not yet on par with state-of-the-art diffusion models for compositional generation tasks under the same criteria, such as model size and inference time. On the other hand, the open-source diffusion-based model FLUX exhibits compositional generation capabilities comparable to the state-of-the-art closed-source model DALL-E3.
comment: NeurIPS 2024 Workshop on Compositional Learning: Perspectives, Methods, and Paths Forward
♻ ☆ SALOVA: Segment-Augmented Long Video Assistant for Targeted Retrieval and Routing in Long-Form Video Analysis
Despite advances in Large Multi-modal Models, applying them to long and untrimmed video content remains challenging due to limitations in context length and substantial memory overhead. These constraints often lead to significant information loss and reduced relevance in the model responses. With the exponential growth of video data across web platforms, understanding long-form video is crucial for advancing generalized intelligence. In this paper, we introduce SALOVA: Segment-Augmented LOng Video Assistant, a novel video-LLM framework designed to enhance the comprehension of lengthy video content through targeted retrieval process. We address two main challenges to achieve it: (i) We present the SceneWalk dataset, a high-quality collection of 87.8K long videos, each densely captioned at the segment level to enable models to capture scene continuity and maintain rich descriptive context. (ii) We develop robust architectural designs integrating dynamic routing mechanism and spatio-temporal projector to efficiently retrieve and process relevant video segments based on user queries. Our framework mitigates the limitations of current video-LMMs by allowing for precise identification and retrieval of relevant video segments in response to queries, thereby improving the contextual relevance of the generated responses. Through extensive experiments, SALOVA demonstrates enhanced capability in processing complex long-form videos, showing significant capability to maintain contextual integrity across extended sequences.
comment: Project page: https://ivy-lvlm.github.io/SALOVA/
♻ ☆ Exploring Part-Informed Visual-Language Learning for Person Re-Identification ICME 2025
Recently, visual-language learning (VLL) has shown great potential in enhancing visual-based person re-identification (ReID). Existing VLL-based ReID methods typically focus on image-text feature alignment at the whole-body level, while neglecting supervision on fine-grained part features, thus lacking constraints for local feature semantic consistency. To this end, we propose Part-Informed Visual-language Learning ($\pi$-VL) to enhance fine-grained visual features with part-informed language supervisions for ReID tasks. Specifically, $\pi$-VL introduces a human parsing-guided prompt tuning strategy and a hierarchical visual-language alignment paradigm to ensure within-part feature semantic consistency. The former combines both identity labels and human parsing maps to constitute pixel-level text prompts, and the latter fuses multi-scale visual features with a light-weight auxiliary head to perform fine-grained image-text alignment. As a plug-and-play and inference-free solution, our $\pi$-VL achieves performance comparable to or better than state-of-the-art methods on four commonly used ReID benchmarks. Notably, it reports 91.0% Rank-1 and 76.9% mAP on the challenging MSMT17 database, without bells and whistles.
comment: 6 pages, 4 figures, ICME 2025
♻ ☆ UrbanGS: Semantic-Guided Gaussian Splatting for Urban Scene Reconstruction
Reconstructing urban scenes is challenging due to their complex geometries and the presence of potentially dynamic objects. 3D Gaussian Splatting (3DGS)-based methods have shown strong performance, but existing approaches often incorporate manual 3D annotations to improve dynamic object modeling, which is impractical due to high labeling costs. Some methods leverage 4D Gaussian Splatting (4DGS) to represent the entire scene, but they treat static and dynamic objects uniformly, leading to unnecessary updates for static elements and ultimately degrading reconstruction quality. To address these issues, we propose UrbanGS, which leverages 2D semantic maps and an existing dynamic Gaussian approach to distinguish static objects from the scene, enabling separate processing of definite static and potentially dynamic elements. Specifically, for definite static regions, we enforce global consistency to prevent unintended changes in dynamic Gaussian and introduce a K-nearest neighbor (KNN)-based regularization to improve local coherence on low-textured ground surfaces. Notably, for potentially dynamic objects, we aggregate temporal information using learnable time embeddings, allowing each Gaussian to model deformations over time. Extensive experiments on real-world datasets demonstrate that our approach outperforms state-of-the-art methods in reconstruction quality and efficiency, accurately preserving static content while capturing dynamic elements.
♻ ☆ Training Neural Networks on RAW and HDR Images for Restoration Tasks
The vast majority of standard image and video content available online is represented in display-encoded color spaces, in which pixel values are conveniently scaled to a limited range (0-1) and the color distribution is approximately perceptually uniform. In contrast, both camera RAW and high dynamic range (HDR) images are often represented in linear color spaces, in which color values are linearly related to colorimetric quantities of light. While training on commonly available display-encoded images is a well-established practice, there is no consensus on how neural networks should be trained for tasks on RAW and HDR images in linear color spaces. In this work, we test several approaches on three popular image restoration applications: denoising, deblurring, and single-image super-resolution. We examine whether HDR/RAW images need to be display-encoded using popular transfer functions (PQ, PU21, and mu-law), or whether it is better to train in linear color spaces, but use loss functions that correct for perceptual non-uniformity. Our results indicate that neural networks train significantly better on HDR and RAW images represented in display-encoded color spaces, which offer better perceptual uniformity than linear spaces. This small change to the training strategy can bring a very substantial gain in performance, between 2 and 9 dB.
♻ ☆ SPHINX-X: Scaling Data and Parameters for a Family of Multi-modal Large Language Models ICML 2024
We propose SPHINX-X, an extensive Multimodality Large Language Model (MLLM) series developed upon SPHINX. To improve the architecture and training efficiency, we modify the SPHINX framework by removing redundant visual encoders, bypassing fully-padded sub-images with skip tokens, and simplifying multi-stage training into a one-stage all-in-one paradigm. To fully unleash the potential of MLLMs, we assemble a comprehensive multi-domain and multimodal dataset covering publicly available resources in language, vision, and vision-language tasks. We further enrich this collection with our curated OCR intensive and Set-of-Mark datasets, extending the diversity and generality. By training over different base LLMs including TinyLlama1.1B, InternLM2-7B, LLaMA2-13B, and Mixtral8x7B, we obtain a spectrum of MLLMs that vary in parameter size and multilingual capabilities. Comprehensive benchmarking reveals a strong correlation between the multi-modal performance with the data and parameter scales. Code and models are released at https://github.com/Alpha-VLLM/LLaMA2-Accessory
comment: Accepted by ICML 2024. Code and models are released at https://github.com/Alpha-VLLM/LLaMA2-Accessory
♻ ☆ Reloc3r: Large-Scale Training of Relative Camera Pose Regression for Generalizable, Fast, and Accurate Visual Localization CVPR 2025
Visual localization aims to determine the camera pose of a query image relative to a database of posed images. In recent years, deep neural networks that directly regress camera poses have gained popularity due to their fast inference capabilities. However, existing methods struggle to either generalize well to new scenes or provide accurate camera pose estimates. To address these issues, we present Reloc3r, a simple yet effective visual localization framework. It consists of an elegantly designed relative pose regression network, and a minimalist motion averaging module for absolute pose estimation. Trained on approximately eight million posed image pairs, Reloc3r achieves surprisingly good performance and generalization ability. We conduct extensive experiments on six public datasets, consistently demonstrating the effectiveness and efficiency of the proposed method. It provides high-quality camera pose estimates in real time and generalizes to novel scenes. Code: https://github.com/ffrivera0/reloc3r.
comment: CVPR 2025
♻ ☆ AutArch: An AI-assisted workflow for object detection and automated recording in archaeological catalogues
The context of this paper is the creation of large uniform archaeological datasets from heterogeneous published resources, such as find catalogues - with the help of AI and Big Data. The paper is concerned with the challenge of consistent assemblages of archaeological data. We cannot simply combine existing records, as they differ in terms of quality and recording standards. Thus, records have to be recreated from published archaeological illustrations. This is only a viable path with the help of automation. The contribution of this paper is a new workflow for collecting data from archaeological find catalogues available as legacy resources, such as archaeological drawings and photographs in large unsorted PDF files; the workflow relies on custom software (AutArch) supporting image processing, object detection, and interactive means of validating and adjusting automatically retrieved data. We integrate artificial intelligence (AI) in terms of neural networks for object detection and classification into the workflow, thereby speeding up, automating, and standardising data collection. Objects commonly found in archaeological catalogues - such as graves, skeletons, ceramics, ornaments, stone tools and maps - are detected. Those objects are spatially related and analysed to extract real-life attributes, such as the size and orientation of graves based on the north arrow and the scale. We also automate recording of geometric whole-outlines through contour detection, as an alternative to landmark-based geometric morphometrics. Detected objects, contours, and other automatically retrieved data can be manually validated and adjusted. We use third millennium BC Europe (encompassing cultures such as 'Corded Ware' and 'Bell Beaker', and their burial practices) as a 'testing ground' and for evaluation purposes; this includes a user study for the workflow and the AutArch software.
♻ ☆ Surgical Text-to-Image Generation
Acquiring surgical data for research and development is significantly hindered by high annotation costs and practical and ethical constraints. Utilizing synthetically generated images could offer a valuable alternative. In this work, we explore adapting text-to-image generative models for the surgical domain using the CholecT50 dataset, which provides surgical images annotated with action triplets (instrument, verb, target). We investigate several language models and find T5 to offer more distinct features for differentiating surgical actions on triplet-based textual inputs, and showcasing stronger alignment between long and triplet-based captions. To address challenges in training text-to-image models solely on triplet-based captions without additional inputs and supervisory signals, we discover that triplet text embeddings are instrument-centric in the latent space. Leveraging this insight, we design an instrument-based class balancing technique to counteract data imbalance and skewness, improving training convergence. Extending Imagen, a diffusion-based generative model, we develop Surgical Imagen to generate photorealistic and activity-aligned surgical images from triplet-based textual prompts. We assess the model on quality, alignment, reasoning, and knowledge, achieving FID and CLIP scores of 3.7 and 26.8% respectively. Human expert survey shows that participants were highly challenged by the realistic characteristics of the generated samples, demonstrating Surgical Imagen's effectiveness as a practical alternative to real data collection.
comment: 13 pages, 13 figures, 3 tables, published in Pattern Recognition Letters 2025, project page at https://camma-public.github.io/endogen/
♻ ☆ Cross-Modal Consistency Learning for Sign Language Recognition
Pre-training has been proven to be effective in boosting the performance of Isolated Sign Language Recognition (ISLR). Existing pre-training methods solely focus on the compact pose data, which eliminates background perturbation but inevitably suffers from insufficient semantic cues compared to raw RGB videos. Nevertheless, learning representation directly from RGB videos remains challenging due to the presence of sign-independent visual features. To address this dilemma, we propose a Cross-modal Consistency Learning framework (CCL-SLR), which leverages the cross-modal consistency from both RGB and pose modalities based on self-supervised pre-training. First, CCL-SLR employs contrastive learning for instance discrimination within and across modalities. Through the single-modal and cross-modal contrastive learning, CCL-SLR gradually aligns the feature spaces of RGB and pose modalities, thereby extracting consistent sign representations. Second, we further introduce Motion-Preserving Masking (MPM) and Semantic Positive Mining (SPM) techniques to improve cross-modal consistency from the perspective of data augmentation and sample similarity, respectively. Extensive experiments on four ISLR benchmarks show that CCL-SLR achieves impressive performance, demonstrating its effectiveness. The code will be released to the public.
♻ ☆ Design of an Expression Recognition Solution Based on the Global Channel-Spatial Attention Mechanism and Proportional Criterion Fusion
Facial expression recognition is a challenging classification task that holds broad application prospects in the field of human-computer interaction. This paper aims to introduce the method we will adopt in the 8th Affective and Behavioral Analysis in the Wild (ABAW) Competition, which will be held during the Conference on Computer Vision and Pattern Recognition (CVPR) in 2025.First of all, we apply the frequency masking technique and the method of extracting data at equal time intervals to conduct targeted processing on the original videos. Then, based on the residual hybrid convolutional neural network and the multi-branch convolutional neural network respectively, we design feature extraction models for image and audio sequences. In particular, we propose a global channel-spatial attention mechanism to enhance the features initially extracted from both the audio and image modalities respectively.Finally, we adopt a decision fusion strategy based on the proportional criterion to fuse the classification results of the two single modalities, obtain an emotion probability vector, and output the final emotional classification. We also design a coarse - fine granularity loss function to optimize the performance of the entire network, which effectively improves the accuracy of facial expression recognition.In the facial expression recognition task of the 8th ABAW Competition, our method ranked third on the official validation set. This result fully confirms the effectiveness and competitiveness of the method we have proposed.
♻ ☆ Morphing Tokens Draw Strong Masked Image Models ICLR'25
Masked image modeling (MIM) has emerged as a promising approach for pre-training Vision Transformers (ViTs). MIMs predict masked tokens token-wise to recover target signals that are tokenized from images or generated by pre-trained models like vision-language models. While using tokenizers or pre-trained models is viable, they often offer spatially inconsistent supervision even for neighboring tokens, hindering models from learning discriminative representations. Our pilot study identifies spatial inconsistency in supervisory signals and suggests that addressing it can improve representation learning. Building upon this insight, we introduce Dynamic Token Morphing (DTM), a novel method that dynamically aggregates tokens while preserving context to generate contextualized targets, thereby likely reducing spatial inconsistency. DTM is compatible with various SSL frameworks; we showcase significantly improved MIM results, barely introducing extra training costs. Our method facilitates MIM training by using more spatially consistent targets, resulting in improved training trends as evidenced by lower losses. Experiments on ImageNet-1K and ADE20K demonstrate DTM's superiority, which surpasses complex state-of-the-art MIM methods. Furthermore, the evaluation of transfer learning on downstream tasks like iNaturalist, along with extensive empirical studies, supports DTM's effectiveness.
comment: 24 pages, 16 tables, 8 figures. To be presented at ICLR'25
♻ ☆ Enhanced Continual Learning of Vision-Language Models with Model Fusion ICLR 2025
Vision-Language Models (VLMs) represent a breakthrough in artificial intelligence by integrating visual and textual modalities to achieve impressive zero-shot capabilities. However, VLMs are susceptible to catastrophic forgetting when sequentially fine-tuned on multiple downstream tasks. Existing continual learning methods for VLMs often rely heavily on additional reference datasets, compromise zero-shot performance, or are limited to parameter-efficient fine-tuning scenarios. In this paper, we propose Continual Decoupling-Unifying (ConDU), a novel approach, by introducing model fusion into continual learning for VLMs. ConDU maintains a unified model along with task triggers and prototype sets, employing an iterative process of decoupling task-specific models for previous tasks and unifying them with the model for the newly learned task. Additionally, we introduce an inference strategy for zero-shot scenarios by aggregating predictions from multiple decoupled task-specific models. Extensive experiments across various settings show that ConDU achieves up to a 2\% improvement in average performance across all seen tasks compared to state-of-the-art baselines, while also enhancing zero-shot capabilities relative to the original VLM.
comment: Accepted by ICLR 2025 workshop
♻ ☆ FATE: Full-head Gaussian Avatar with Textural Editing from Monocular Video CVPR2025
Reconstructing high-fidelity, animatable 3D head avatars from effortlessly captured monocular videos is a pivotal yet formidable challenge. Although significant progress has been made in rendering performance and manipulation capabilities, notable challenges remain, including incomplete reconstruction and inefficient Gaussian representation. To address these challenges, we introduce FATE, a novel method for reconstructing an editable full-head avatar from a single monocular video. FATE integrates a sampling-based densification strategy to ensure optimal positional distribution of points, improving rendering efficiency. A neural baking technique is introduced to convert discrete Gaussian representations into continuous attribute maps, facilitating intuitive appearance editing. Furthermore, we propose a universal completion framework to recover non-frontal appearance, culminating in a 360$^\circ$-renderable 3D head avatar. FATE outperforms previous approaches in both qualitative and quantitative evaluations, achieving state-of-the-art performance. To the best of our knowledge, FATE is the first animatable and 360$^\circ$ full-head monocular reconstruction method for a 3D head avatar.
comment: Accepted by CVPR2025
♻ ☆ You See it, You Got it: Learning 3D Creation on Pose-Free Videos at Scale CVPR 2025
Recent 3D generation models typically rely on limited-scale 3D `gold-labels' or 2D diffusion priors for 3D content creation. However, their performance is upper-bounded by constrained 3D priors due to the lack of scalable learning paradigms. In this work, we present See3D, a visual-conditional multi-view diffusion model trained on large-scale Internet videos for open-world 3D creation. The model aims to Get 3D knowledge by solely Seeing the visual contents from the vast and rapidly growing video data -- You See it, You Got it. To achieve this, we first scale up the training data using a proposed data curation pipeline that automatically filters out multi-view inconsistencies and insufficient observations from source videos. This results in a high-quality, richly diverse, large-scale dataset of multi-view images, termed WebVi3D, containing 320M frames from 16M video clips. Nevertheless, learning generic 3D priors from videos without explicit 3D geometry or camera pose annotations is nontrivial, and annotating poses for web-scale videos is prohibitively expensive. To eliminate the need for pose conditions, we introduce an innovative visual-condition - a purely 2D-inductive visual signal generated by adding time-dependent noise to the masked video data. Finally, we introduce a novel visual-conditional 3D generation framework by integrating See3D into a warping-based pipeline for high-fidelity 3D generation. Our numerical and visual comparisons on single and sparse reconstruction benchmarks show that See3D, trained on cost-effective and scalable video data, achieves notable zero-shot and open-world generation capabilities, markedly outperforming models trained on costly and constrained 3D datasets. Please refer to our project page at: https://vision.baai.ac.cn/see3d
comment: Accepted by CVPR 2025, Project Page: https://vision.baai.ac.cn/see3d
♻ ☆ Free-Lunch Color-Texture Disentanglement for Stylized Image Generation
Recent advances in Text-to-Image (T2I) diffusion models have transformed image generation, enabling significant progress in stylized generation using only a few style reference images. However, current diffusion-based methods struggle with fine-grained style customization due to challenges in controlling multiple style attributes, such as color and texture. This paper introduces the first tuning-free approach to achieve free-lunch color-texture disentanglement in stylized T2I generation, addressing the need for independently controlled style elements for the Disentangled Stylized Image Generation (DisIG) problem. Our approach leverages the Image-Prompt Additivity property in the CLIP image embedding space to develop techniques for separating and extracting Color-Texture Embeddings (CTE) from individual color and texture reference images. To ensure that the color palette of the generated image aligns closely with the color reference, we apply a whitening and coloring transformation to enhance color consistency. Additionally, to prevent texture loss due to the signal-leak bias inherent in diffusion training, we introduce a noise term that preserves textural fidelity during the Regularized Whitening and Coloring Transformation (RegWCT). Through these methods, our Style Attributes Disentanglement approach (SADis) delivers a more precise and customizable solution for stylized image generation. Experiments on images from the WikiArt and StyleDrop datasets demonstrate that, both qualitatively and quantitatively, SADis surpasses state-of-the-art stylization methods in the DisIG task.Code will be released at https://deepffff.github.io/sadis.github.io/.
comment: Code will be available at https://deepffff.github.io/sadis.github.io/
♻ ☆ Weakly Supervised Segmentation of Hyper-Reflective Foci with Compact Convolutional Transformers and SAM2
Weakly supervised segmentation has the potential to greatly reduce the annotation effort for training segmentation models for small structures such as hyper-reflective foci (HRF) in optical coherence tomography (OCT). However, most weakly supervised methods either involve a strong downsampling of input images, or only achieve localization at a coarse resolution, both of which are unsatisfactory for small structures. We propose a novel framework that increases the spatial resolution of a traditional attention-based Multiple Instance Learning (MIL) approach by using Layer-wise Relevance Propagation (LRP) to prompt the Segment Anything Model (SAM~2), and increases recall with iterative inference. Moreover, we demonstrate that replacing MIL with a Compact Convolutional Transformer (CCT), which adds a positional encoding, and permits an exchange of information between different regions of the OCT image, leads to a further and substantial increase in segmentation accuracy.
comment: 7 pages, 1 figure, accepted at German Conference on Medical Image Computing 2025
♻ ☆ When Lighting Deceives: Exposing Vision-Language Models' Illumination Vulnerability Through Illumination Transformation Attack
Vision-Language Models (VLMs) have achieved remarkable success in various tasks, yet their robustness to real-world illumination variations remains largely unexplored. To bridge this gap, we propose \textbf{I}llumination \textbf{T}ransformation \textbf{A}ttack (\textbf{ITA}), the first framework to systematically assess VLMs' robustness against illumination changes. However, there still exist two key challenges: (1) how to model global illumination with fine-grained control to achieve diverse lighting conditions and (2) how to ensure adversarial effectiveness while maintaining naturalness. To address the first challenge, we innovatively decompose global illumination into multiple parameterized point light sources based on the illumination rendering equation. This design enables us to model more diverse lighting variations that previous methods could not capture. Then, by integrating these parameterized lighting variations with physics-based lighting reconstruction techniques, we could precisely render such light interactions in the original scenes, finally meeting the goal of fine-grained lighting control. For the second challenge, by controlling illumination through the lighting reconstrution model's latent space rather than direct pixel manipulation, we inherently preserve physical lighting priors. Furthermore, to prevent potential reconstruction artifacts, we design additional perceptual constraints for maintaining visual consistency with original images and diversity constraints for avoiding light source convergence. Extensive experiments demonstrate that our ITA could significantly reduce the performance of advanced VLMs, e.g., LLaVA-1.6, while possessing competitive naturalness, exposing VLMS' critical illuminiation vulnerabilities.
♻ ☆ Efficient Training of Generalizable Visuomotor Policies via Control-Aware Augmentation
Improving generalization is one key challenge in embodied AI, where obtaining large-scale datasets across diverse scenarios is costly. Traditional weak augmentations, such as cropping and flipping, are insufficient for improving a model's performance in new environments. Existing data augmentation methods often disrupt task-relevant information in images, potentially degrading performance. To overcome these challenges, we introduce EAGLE, an efficient training framework for generalizable visuomotor policies that improves upon existing methods by (1) enhancing generalization by applying augmentation only to control-related regions identified through a self-supervised control-aware mask and (2) improving training stability and efficiency by distilling knowledge from an expert to a visuomotor student policy, which is then deployed to unseen environments without further fine-tuning. Comprehensive experiments on three domains, including the DMControl Generalization Benchmark, the enhanced Robot Manipulation Distraction Benchmark, and a long-sequential drawer-opening task, validate the effectiveness of our method.
♻ ☆ IMDPrompter: Adapting SAM to Image Manipulation Detection by Cross-View Automated Prompt Learning
Using extensive training data from SA-1B, the Segment Anything Model (SAM) has demonstrated exceptional generalization and zero-shot capabilities, attracting widespread attention in areas such as medical image segmentation and remote sensing image segmentation. However, its performance in the field of image manipulation detection remains largely unexplored and unconfirmed. There are two main challenges in applying SAM to image manipulation detection: a) reliance on manual prompts, and b) the difficulty of single-view information in supporting cross-dataset generalization. To address these challenges, we develops a cross-view prompt learning paradigm called IMDPrompter based on SAM. Benefiting from the design of automated prompts, IMDPrompter no longer relies on manual guidance, enabling automated detection and localization. Additionally, we propose components such as Cross-view Feature Perception, Optimal Prompt Selection, and Cross-View Prompt Consistency, which facilitate cross-view perceptual learning and guide SAM to generate accurate masks. Extensive experimental results from five datasets (CASIA, Columbia, Coverage, IMD2020, and NIST16) validate the effectiveness of our proposed method.
♻ ☆ Activating Distributed Visual Region within LLMs for Efficient and Effective Vision-Language Training and Inference
Large Vision-Language Models (LVLMs) typically learn visual capacity through visual instruction tuning, involving updates to both a projector and their LLM backbones. Inspired by the concept of a visual region in the human brain, we investigate the existence of an analogous \textit{visual region} within LLMs that functions as a cognitive core, and explore the potential of efficient training of LVLMs via selective layers tuning. Using Bunny-Llama-3-8B-V for detailed analysis and other three LVLMs for validation across diverse visual and textual tasks, we find that selectively updating 25\% of LLMs layers, when sparsely and uniformly distributed, can preserve nearly 99\% of visual performance and maintain or improve textual task results, while effectively reducing training time. Based on this targeted training approach, we further propose a novel visual region-based pruning paradigm, removing non-critical layers outside the visual region, which can achieve minimal performance loss. This study offers an effective and efficient strategy for LVLM training and inference by activating a layer-wise visual region within LLMs, which proves consistently effective across different models.
♻ ☆ Aquatic-GS: A Hybrid 3D Representation for Underwater Scenes
Representing underwater 3D scenes is a valuable yet complex task, as attenuation and scattering effects during underwater imaging significantly couple the information of the objects and the water. This coupling presents a significant challenge for existing methods in effectively representing both the objects and the water medium simultaneously. To address this challenge, we propose Aquatic-GS, a hybrid 3D representation approach for underwater scenes that effectively represents both the objects and the water medium. Specifically, we construct a Neural Water Field (NWF) to implicitly model the water parameters, while extending the latest 3D Gaussian Splatting (3DGS) to model the objects explicitly. Both components are integrated through a physics-based underwater image formation model to represent complex underwater scenes. Moreover, to construct more precise scene geometry and details, we design a Depth-Guided Optimization (DGO) mechanism that uses a pseudo-depth map as auxiliary guidance. After optimization, Aquatic-GS enables the rendering of novel underwater viewpoints and supports restoring the true appearance of underwater scenes, as if the water medium were absent. Extensive experiments on both simulated and real-world datasets demonstrate that Aquatic-GS surpasses state-of-the-art underwater 3D representation methods, achieving better rendering quality and real-time rendering performance with a 410x increase in speed. Furthermore, regarding underwater image restoration, Aquatic-GS outperforms representative dewatering methods in color correction, detail recovery, and stability. Our models, code, and datasets can be accessed at https://aquaticgs.github.io.
comment: 13 pages, 7 figures
♻ ☆ Cross-Modality Perturbation Synergy Attack for Person Re-identification
In recent years, there has been significant research focusing on addressing security concerns in single-modal person re-identification (ReID) systems that are based on RGB images. However, the safety of cross-modality scenarios, which are more commonly encountered in practical applications involving images captured by infrared cameras, has not received adequate attention. The main challenge in cross-modality ReID lies in effectively dealing with visual differences between different modalities. For instance, infrared images are typically grayscale, unlike visible images that contain color information. Existing attack methods have primarily focused on the characteristics of the visible image modality, overlooking the features of other modalities and the variations in data distribution among different modalities. This oversight can potentially undermine the effectiveness of these methods in image retrieval across diverse modalities. This study represents the first exploration into the security of cross-modality ReID models and proposes a universal perturbation attack specifically designed for cross-modality ReID. This attack optimizes perturbations by leveraging gradients from diverse modality data, thereby disrupting the discriminator and reinforcing the differences between modalities. We conducted experiments on three widely used cross-modality datasets, namely RegDB, SYSU, and LLCM. The results not only demonstrate the effectiveness of our method but also provide insights for future improvements in the robustness of cross-modality ReID systems. The code will be available at https://github.com/finger-monkey/cmps__attack.
comment: Accepted at the Thirty-eighth Annual Conference on Neural Information Processing Systems (https://openreview.net/forum?id=LONd7ACEjy)
♻ ☆ OmniFlow: Any-to-Any Generation with Multi-Modal Rectified Flows
We introduce OmniFlow, a novel generative model designed for any-to-any generation tasks such as text-to-image, text-to-audio, and audio-to-image synthesis. OmniFlow advances the rectified flow (RF) framework used in text-to-image models to handle the joint distribution of multiple modalities. It outperforms previous any-to-any models on a wide range of tasks, such as text-to-image and text-to-audio synthesis. Our work offers three key contributions: First, we extend RF to a multi-modal setting and introduce a novel guidance mechanism, enabling users to flexibly control the alignment between different modalities in the generated outputs. Second, we propose a novel architecture that extends the text-to-image MMDiT architecture of Stable Diffusion 3 and enables audio and text generation. The extended modules can be efficiently pretrained individually and merged with the vanilla text-to-image MMDiT for fine-tuning. Lastly, we conduct a comprehensive study on the design choices of rectified flow transformers for large-scale audio and text generation, providing valuable insights into optimizing performance across diverse modalities. The Code will be available at https://github.com/jacklishufan/OmniFlows.
comment: 19 pages, 14 figures
♻ ☆ Kiss3DGen: Repurposing Image Diffusion Models for 3D Asset Generation
Diffusion models have achieved great success in generating 2D images. However, the quality and generalizability of 3D content generation remain limited. State-of-the-art methods often require large-scale 3D assets for training, which are challenging to collect. In this work, we introduce Kiss3DGen (Keep It Simple and Straightforward in 3D Generation), an efficient framework for generating, editing, and enhancing 3D objects by repurposing a well-trained 2D image diffusion model for 3D generation. Specifically, we fine-tune a diffusion model to generate ''3D Bundle Image'', a tiled representation composed of multi-view images and their corresponding normal maps. The normal maps are then used to reconstruct a 3D mesh, and the multi-view images provide texture mapping, resulting in a complete 3D model. This simple method effectively transforms the 3D generation problem into a 2D image generation task, maximizing the utilization of knowledge in pretrained diffusion models. Furthermore, we demonstrate that our Kiss3DGen model is compatible with various diffusion model techniques, enabling advanced features such as 3D editing, mesh and texture enhancement, etc. Through extensive experiments, we demonstrate the effectiveness of our approach, showcasing its ability to produce high-quality 3D models efficiently.
comment: The first three authors contributed equally to this work
♻ ☆ HOTFormerLoc: Hierarchical Octree Transformer for Versatile Lidar Place Recognition Across Ground and Aerial Views CVPR 2025
We present HOTFormerLoc, a novel and versatile Hierarchical Octree-based TransFormer, for large-scale 3D place recognition in both ground-to-ground and ground-to-aerial scenarios across urban and forest environments. We propose an octree-based multi-scale attention mechanism that captures spatial and semantic features across granularities. To address the variable density of point distributions from spinning lidar, we present cylindrical octree attention windows to reflect the underlying distribution during attention. We introduce relay tokens to enable efficient global-local interactions and multi-scale representation learning at reduced computational cost. Our pyramid attentional pooling then synthesises a robust global descriptor for end-to-end place recognition in challenging environments. In addition, we introduce CS-Wild-Places, a novel 3D cross-source dataset featuring point cloud data from aerial and ground lidar scans captured in dense forests. Point clouds in CS-Wild-Places contain representational gaps and distinctive attributes such as varying point densities and noise patterns, making it a challenging benchmark for cross-view localisation in the wild. HOTFormerLoc achieves a top-1 average recall improvement of 5.5% - 11.5% on the CS-Wild-Places benchmark. Furthermore, it consistently outperforms SOTA 3D place recognition methods, with an average performance gain of 4.9% on well-established urban and forest datasets. The code and CS-Wild-Places benchmark is available at https://csiro-robotics.github.io/HOTFormerLoc.
comment: 16 pages, 13 figures, 10 tables, Accepted to CVPR 2025
♻ ☆ OpenRSD: Towards Open-prompts for Object Detection in Remote Sensing Images
Remote sensing object detection has made significant progress, but most studies still focus on closed-set detection, limiting generalization across diverse datasets. Open-vocabulary object detection (OVD) provides a solution by leveraging multimodal associations between text prompts and visual features. However, existing OVD methods for remote sensing (RS) images are constrained by small-scale datasets and fail to address the unique challenges of remote sensing interpretation, include oriented object detection and the need for both high precision and real-time performance in diverse scenarios. To tackle these challenges, we propose OpenRSD, a universal open-prompt RS object detection framework. OpenRSD supports multimodal prompts and integrates multi-task detection heads to balance accuracy and real-time requirements. Additionally, we design a multi-stage training pipeline to enhance the generalization of model. Evaluated on seven public datasets, OpenRSD demonstrates superior performance in oriented and horizontal bounding box detection, with real-time inference capabilities suitable for large-scale RS image analysis. Compared to YOLO-World, OpenRSD exhibits an 8.7\% higher average precision and achieves an inference speed of 20.8 FPS. Codes and models will be released.
comment: 11 pages, 4 figures
♻ ☆ LaDTalk: Latent Denoising for Synthesizing Talking Head Videos with High Frequency Details
Audio-driven talking head generation is a pivotal area within film-making and Virtual Reality. Although existing methods have made significant strides following the end-to-end paradigm, they still encounter challenges in producing videos with high-frequency details due to their limited expressivity in this domain. This limitation has prompted us to explore an effective post-processing approach to synthesize photo-realistic talking head videos. Specifically, we employ a pretrained Wav2Lip model as our foundation model, leveraging its robust audio-lip alignment capabilities. Drawing on the theory of Lipschitz Continuity, we have theoretically established the noise robustness of Vector Quantised Auto Encoders (VQAEs). Our experiments further demonstrate that the high-frequency texture deficiency of the foundation model can be temporally consistently recovered by the Space-Optimised Vector Quantised Auto Encoder (SOVQAE) we introduced, thereby facilitating the creation of realistic talking head videos. We conduct experiments on both the conventional dataset and the High-Frequency TalKing head (HFTK) dataset that we curated. The results indicate that our method, LaDTalk, achieves new state-of-the-art video quality and out-of-domain lip synchronization performance.
♻ ☆ MBQ: Modality-Balanced Quantization for Large Vision-Language Models
Vision-Language Models (VLMs) have enabled a variety of real-world applications. The large parameter size of VLMs brings large memory and computation overhead which poses significant challenges for deployment. Post-Training Quantization (PTQ) is an effective technique to reduce the memory and computation overhead. Existing PTQ methods mainly focus on large language models (LLMs), without considering the differences across other modalities. In this paper, we discover that there is a significant difference in sensitivity between language and vision tokens in large VLMs. Therefore, treating tokens from different modalities equally, as in existing PTQ methods, may over-emphasize the insensitive modalities, leading to significant accuracy loss. To deal with the above issue, we propose a simple yet effective method, Modality-Balanced Quantization (MBQ), for large VLMs. Specifically, MBQ incorporates the different sensitivities across modalities during the calibration process to minimize the reconstruction loss for better quantization parameters. Extensive experiments show that MBQ can significantly improve task accuracy by up to 4.4% and 11.6% under W3 and W4A8 quantization for 7B to 70B VLMs, compared to SOTA baselines. Additionally, we implement a W3 GPU kernel that fuses the dequantization and GEMV operators, achieving a 1.4x speedup on LLaVA-onevision-7B on the RTX 4090. The code is available at https://github.com/thu-nics/MBQ.
♻ ☆ Cross-Species Data Integration for Enhanced Layer Segmentation in Kidney Pathology
Accurate delineation of the boundaries between the renal cortex and medulla is crucial for subsequent functional structural analysis and disease diagnosis. Training high-quality deep-learning models for layer segmentation relies on the availability of large amounts of annotated data. However, due to the patient's privacy of medical data and scarce clinical cases, constructing pathological datasets from clinical sources is relatively difficult and expensive. Moreover, using external natural image datasets introduces noise during the domain generalization process. Cross-species homologous data, such as mouse kidney data, which exhibits high structural and feature similarity to human kidneys, has the potential to enhance model performance on human datasets. In this study, we incorporated the collected private Periodic Acid-Schiff (PAS) stained mouse kidney dataset into the human kidney dataset for joint training. The results showed that after introducing cross-species homologous data, the semantic segmentation models based on CNN and Transformer architectures achieved an average increase of 1.77% and 1.24% in mIoU, and 1.76% and 0.89% in Dice score for the human renal cortex and medulla datasets, respectively. This approach is also capable of enhancing the model's generalization ability. This indicates that cross-species homologous data, as a low-noise trainable data source, can help improve model performance under conditions of limited clinical samples. Code is available at https://github.com/hrlblab/layer_segmentation.
♻ ☆ A Survey on RGB, 3D, and Multimodal Approaches for Unsupervised Industrial Image Anomaly Detection
In the advancement of industrial informatization, unsupervised anomaly detection technology effectively overcomes the scarcity of abnormal samples and significantly enhances the automation and reliability of smart manufacturing. As an important branch, industrial image anomaly detection focuses on automatically identifying visual anomalies in industrial scenarios (such as product surface defects, assembly errors, and equipment appearance anomalies) through computer vision techniques. With the rapid development of Unsupervised industrial Image Anomaly Detection (UIAD), excellent detection performance has been achieved not only in RGB setting but also in 3D and multimodal (RGB and 3D) settings. However, existing surveys primarily focus on UIAD tasks in RGB setting, with little discussion in 3D and multimodal settings. To address this gap, this artical provides a comprehensive review of UIAD tasks in the three modal settings. Specifically, we first introduce the task concept and process of UIAD. We then overview the research on UIAD in three modal settings (RGB, 3D, and multimodal), including datasets and methods, and review multimodal feature fusion strategies in multimodal setting. Finally, we summarize the main challenges faced by UIAD tasks in the three modal settings, and offer insights into future development directions, aiming to provide researchers with a comprehensive reference and offer new perspectives for the advancement of industrial informatization. Corresponding resources are available at https://github.com/Sunny5250/Awesome-Multi-Setting-UIAD.
comment: Accepted by Information Fusion
♻ ☆ Omni6D: Large-Vocabulary 3D Object Dataset for Category-Level 6D Object Pose Estimation ECCV 2024
6D object pose estimation aims at determining an object's translation, rotation, and scale, typically from a single RGBD image. Recent advancements have expanded this estimation from instance-level to category-level, allowing models to generalize across unseen instances within the same category. However, this generalization is limited by the narrow range of categories covered by existing datasets, such as NOCS, which also tend to overlook common real-world challenges like occlusion. To tackle these challenges, we introduce Omni6D, a comprehensive RGBD dataset featuring a wide range of categories and varied backgrounds, elevating the task to a more realistic context. 1) The dataset comprises an extensive spectrum of 166 categories, 4688 instances adjusted to the canonical pose, and over 0.8 million captures, significantly broadening the scope for evaluation. 2) We introduce a symmetry-aware metric and conduct systematic benchmarks of existing algorithms on Omni6D, offering a thorough exploration of new challenges and insights. 3) Additionally, we propose an effective fine-tuning approach that adapts models from previous datasets to our extensive vocabulary setting. We believe this initiative will pave the way for new insights and substantial progress in both the industrial and academic fields, pushing forward the boundaries of general 6D pose estimation.
comment: ECCV 2024 (poster). Github page: https://github.com/3DTopia/Omni6D
♻ ☆ SeqAfford: Sequential 3D Affordance Reasoning via Multimodal Large Language Model
3D affordance segmentation aims to link human instructions to touchable regions of 3D objects for embodied manipulations. Existing efforts typically adhere to single-object, single-affordance paradigms, where each affordance type or explicit instruction strictly corresponds to a specific affordance region and are unable to handle long-horizon tasks. Such a paradigm cannot actively reason about complex user intentions that often imply sequential affordances. In this paper, we introduce the Sequential 3D Affordance Reasoning task, which extends the traditional paradigm by reasoning from cumbersome user intentions and then decomposing them into a series of segmentation maps. Toward this, we construct the first instruction-based affordance segmentation benchmark that includes reasoning over both single and sequential affordances, comprising 180K instruction-point cloud pairs. Based on the benchmark, we propose our model, SeqAfford, to unlock the 3D multi-modal large language model with additional affordance segmentation abilities, which ensures reasoning with world knowledge and fine-grained affordance grounding in a cohesive framework. We further introduce a multi-granular language-point integration module to endow 3D dense prediction. Extensive experimental evaluations show that our model excels over well-established methods and exhibits open-world generalization with sequential reasoning abilities.
♻ ☆ PersonaBooth: Personalized Text-to-Motion Generation
This paper introduces Motion Personalization, a new task that generates personalized motions aligned with text descriptions using several basic motions containing Persona. To support this novel task, we introduce a new large-scale motion dataset called PerMo (PersonaMotion), which captures the unique personas of multiple actors. We also propose a multi-modal finetuning method of a pretrained motion diffusion model called PersonaBooth. PersonaBooth addresses two main challenges: i) A significant distribution gap between the persona-focused PerMo dataset and the pretraining datasets, which lack persona-specific data, and ii) the difficulty of capturing a consistent persona from the motions vary in content (action type). To tackle the dataset distribution gap, we introduce a persona token to accept new persona features and perform multi-modal adaptation for both text and visuals during finetuning. To capture a consistent persona, we incorporate a contrastive learning technique to enhance intra-cohesion among samples with the same persona. Furthermore, we introduce a context-aware fusion mechanism to maximize the integration of persona cues from multiple input motions. PersonaBooth outperforms state-of-the-art motion style transfer methods, establishing a new benchmark for motion personalization.
♻ ☆ An Integrated Approach to Robotic Object Grasping and Manipulation
In response to the growing challenges of manual labor and efficiency in warehouse operations, Amazon has embarked on a significant transformation by incorporating robotics to assist with various tasks. While a substantial number of robots have been successfully deployed for tasks such as item transportation within warehouses, the complex process of object picking from shelves remains a significant challenge. This project addresses the issue by developing an innovative robotic system capable of autonomously fulfilling a simulated order by efficiently selecting specific items from shelves. A distinguishing feature of the proposed robotic system is its capacity to navigate the challenge of uncertain object positions within each bin of the shelf. The system is engineered to autonomously adapt its approach, employing strategies that enable it to efficiently locate and retrieve the desired items, even in the absence of pre-established knowledge about their placements.
comment: I am making big changes in the paper and continuing its further development with other instituition
♻ ☆ Specialized Foundation Models Struggle to Beat Supervised Baselines
Following its success for vision and text, the "foundation model" (FM) paradigm -- pretraining large models on massive data, then fine-tuning on target tasks -- has rapidly expanded to domains in the sciences, engineering, healthcare, and beyond. Has this achieved what the original FMs accomplished, i.e. the supplanting of traditional supervised learning in their domains? To answer we look at three modalities -- genomics, satellite imaging, and time series -- with multiple recent FMs and compare them to a standard supervised learning workflow: model development, hyperparameter tuning, and training, all using only data from the target task. Across these three specialized domains, we find that it is consistently possible to train simple supervised models -- no more complicated than a lightly modified wide ResNet or UNet -- that match or even outperform the latest foundation models. Our work demonstrates that the benefits of large-scale pretraining have yet to be realized in many specialized areas, reinforces the need to compare new FMs to strong, well-tuned baselines, and introduces two new, easy-to-use, open-source, and automated workflows for doing so.
comment: The first two authors contributed equally. The order was determined by coin flip
♻ ☆ Too Many Frames, Not All Useful: Efficient Strategies for Long-Form Video QA
Long-form videos that span across wide temporal intervals are highly information redundant and contain multiple distinct events or entities that are often loosely related. Therefore, when performing long-form video question answering (LVQA), all information necessary to generate a correct response can often be contained within a small subset of frames. Recent literature explore use of large language models (LLMs) in LVQA benchmarks, achieving exceptional performance, while relying on vision language models (VLMs) to convert all visual content within videos into natural language. Such VLMs often independently caption a large number of frames uniformly sampled from long videos, which is not efficient and can mostly be redundant. Questioning these decision choices, we explore optimal strategies for key-frame selection that can significantly reduce these redundancies, namely Hierarchical Keyframe Selector. Our proposed framework, LVNet, achieves state-of-the-art performance at a comparable caption scale across three benchmark LVQA datasets: EgoSchema, NExT-QA, and IntentQA, while also demonstrating a strong performance on videos up to an hour long in VideoMME. Our code will be released publicly. The code can be found at https://github.com/jongwoopark7978/LVNet.
♻ ☆ Mitigating Hallucinations in Multimodal Spatial Relations through Constraint-Aware Prompting
Spatial relation hallucinations pose a persistent challenge in large vision-language models (LVLMs), leading to generate incorrect predictions about object positions and spatial configurations within an image. To address this issue, we propose a constraint-aware prompting framework designed to reduce spatial relation hallucinations. Specifically, we introduce two types of constraints: (1) bidirectional constraint, which ensures consistency in pairwise object relations, and (2) transitivity constraint, which enforces relational dependence across multiple objects. By incorporating these constraints, LVLMs can produce more spatially coherent and consistent outputs. We evaluate our method on three widely-used spatial relation datasets, demonstrating performance improvements over existing approaches. Additionally, a systematic analysis of various bidirectional relation analysis choices and transitivity reference selections highlights greater possibilities of our methods in incorporating constraints to mitigate spatial relation hallucinations.
comment: 19 pages
♻ ☆ From Open Vocabulary to Open World: Teaching Vision Language Models to Detect Novel Objects
Traditional object detection methods operate under the closed-set assumption, where models can only detect a fixed number of objects predefined in the training set. Recent works on open vocabulary object detection (OVD) enable the detection of objects defined by an in-principle unbounded vocabulary, which reduces the cost of training models for specific tasks. However, OVD heavily relies on accurate prompts provided by an ``oracle'', which limits their use in critical applications such as driving scene perception. OVD models tend to misclassify near-out-of-distribution (NOOD) objects that have similar features to known classes, and ignore far-out-of-distribution (FOOD) objects. To address these limitations, we propose a framework that enables OVD models to operate in open world settings, by identifying and incrementally learning previously unseen objects. To detect FOOD objects, we propose Open World Embedding Learning (OWEL) and introduce the concept of Pseudo Unknown Embedding which infers the location of unknown classes in a continuous semantic space based on the information of known classes. We also propose Multi-Scale Contrastive Anchor Learning (MSCAL), which enables the identification of misclassified unknown objects by promoting the intra-class consistency of object embeddings at different scales. The proposed method achieves state-of-the-art performance on standard open world object detection and autonomous driving benchmarks while maintaining its open vocabulary object detection capability.
♻ ☆ Towards Self-Improving Systematic Cognition for Next-Generation Foundation MLLMs
Despite their impressive capabilities, Multimodal Large Language Models (MLLMs) face challenges with fine-grained perception and complex reasoning. Prevalent multimodal pre-training approaches in MLLM construction focus on enhancing perception by training on high-quality image captions. While leveraging advanced MLLMs for caption generation enhances scalability, their outputs often lack comprehensiveness and accuracy. In this paper, we introduce Self-Improving cognition (SIcog), a self-learning framework designed to construct next-generation foundation MLLMs by enhancing their systematic cognitive capabilities through multimodal pre-training with self-generated data. Specifically, we propose Chain-of-Description (CoD), an approach that improves an MLLM's systematic perception by enabling step-by-step visual understanding. CoD sequentially focuses on salient content, fine-grained details, relational attributes, and peripheral context, before generating a coherent description, ensuring greater accuracy and comprehensiveness. Additionally, we adopt a structured chain-of-thought (CoT) reasoning technique to enable MLLMs to integrate in-depth multimodal reasoning. To construct a next-generation foundation MLLM with self-improved cognition, SIcog first equips an MLLM with systematic perception and reasoning abilities using minimal external annotations. The enhanced models then generate detailed captions and CoT reasoning data, which are further curated through self-consistency. This curated data is ultimately used for multimodal pre-training to develop next-generation foundation models. Extensive experiments on both low- and high-resolution MLLMs across diverse benchmarks demonstrate that, SIcog produces next-generation foundation MLLMs with significantly improved cognition, achieving benchmark-leading performance compared to prevalent pre-training approaches.
comment: 38 pages. Preprint, work in progress
♻ ☆ 3D Student Splatting and Scooping
Recently, 3D Gaussian Splatting (3DGS) provides a new framework for novel view synthesis, and has spiked a new wave of research in neural rendering and related applications. As 3DGS is becoming a foundational component of many models, any improvement on 3DGS itself can bring huge benefits. To this end, we aim to improve the fundamental paradigm and formulation of 3DGS. We argue that as an unnormalized mixture model, it needs to be neither Gaussians nor splatting. We subsequently propose a new mixture model consisting of flexible Student's t distributions, with both positive (splatting) and negative (scooping) densities. We name our model Student Splatting and Scooping, or SSS. When providing better expressivity, SSS also poses new challenges in learning. Therefore, we also propose a new principled sampling approach for optimization. Through exhaustive evaluation and comparison, across multiple datasets, settings, and metrics, we demonstrate that SSS outperforms existing methods in terms of quality and parameter efficiency, e.g. achieving matching or better quality with similar numbers of components, and obtaining comparable results while reducing the component number by as much as 82%.
♻ ☆ ChatBEV: A Visual Language Model that Understands BEV Maps
Traffic scene understanding is essential for intelligent transportation systems and autonomous driving, ensuring safe and efficient vehicle operation. While recent advancements in VLMs have shown promise for holistic scene understanding, the application of VLMs to traffic scenarios, particularly using BEV maps, remains under explored. Existing methods often suffer from limited task design and narrow data amount, hindering comprehensive scene understanding. To address these challenges, we introduce ChatBEV-QA, a novel BEV VQA benchmark contains over 137k questions, designed to encompass a wide range of scene understanding tasks, including global scene understanding, vehicle-lane interactions, and vehicle-vehicle interactions. This benchmark is constructed using an novel data collection pipeline that generates scalable and informative VQA data for BEV maps. We further fine-tune a specialized vision-language model ChatBEV, enabling it to interpret diverse question prompts and extract relevant context-aware information from BEV maps. Additionally, we propose a language-driven traffic scene generation pipeline, where ChatBEV facilitates map understanding and text-aligned navigation guidance, significantly enhancing the generation of realistic and consistent traffic scenarios. The dataset, code and the fine-tuned model will be released.
♻ ☆ GET: Unlocking the Multi-modal Potential of CLIP for Generalized Category Discovery CVPR 2025
Given unlabelled datasets containing both old and new categories, generalized category discovery (GCD) aims to accurately discover new classes while correctly classifying old classes. Current GCD methods only use a single visual modality of information, resulting in a poor classification of visually similar classes. As a different modality, text information can provide complementary discriminative information, which motivates us to introduce it into the GCD task. However, the lack of class names for unlabelled data makes it impractical to utilize text information. To tackle this challenging problem, in this paper, we propose a Text Embedding Synthesizer (TES) to generate pseudo text embeddings for unlabelled samples. Specifically, our TES leverages the property that CLIP can generate aligned vision-language features, converting visual embeddings into tokens of the CLIP's text encoder to generate pseudo text embeddings. Besides, we employ a dual-branch framework, through the joint learning and instance consistency of different modality branches, visual and semantic information mutually enhance each other, promoting the interaction and fusion of visual and text knowledge. Our method unlocks the multi-modal potentials of CLIP and outperforms the baseline methods by a large margin on all GCD benchmarks, achieving new state-of-the-art. Our code is available at: https://github.com/enguangW/GET.
comment: CVPR 2025
Machine Learning 161
☆ Gumbel-Softmax Flow Matching with Straight-Through Guidance for Controllable Biological Sequence Generation
Flow matching in the continuous simplex has emerged as a promising strategy for DNA sequence design, but struggles to scale to higher simplex dimensions required for peptide and protein generation. We introduce Gumbel-Softmax Flow and Score Matching, a generative framework on the simplex based on a novel Gumbel-Softmax interpolant with a time-dependent temperature. Using this interpolant, we introduce Gumbel-Softmax Flow Matching by deriving a parameterized velocity field that transports from smooth categorical distributions to distributions concentrated at a single vertex of the simplex. We alternatively present Gumbel-Softmax Score Matching which learns to regress the gradient of the probability density. Our framework enables high-quality, diverse generation and scales efficiently to higher-dimensional simplices. To enable training-free guidance, we propose Straight-Through Guided Flows (STGFlow), a classifier-based guidance method that leverages straight-through estimators to steer the unconditional velocity field toward optimal vertices of the simplex. STGFlow enables efficient inference-time guidance using classifiers pre-trained on clean sequences, and can be used with any discrete flow method. Together, these components form a robust framework for controllable de novo sequence generation. We demonstrate state-of-the-art performance in conditional DNA promoter design, sequence-only protein generation, and target-binding peptide design for rare disease treatment.
☆ Glivenko-Cantelli for $f$-divergence
We extend the celebrated Glivenko-Cantelli theorem, sometimes called the fundamental theorem of statistics, from its standard setting of total variation distance to all $f$-divergences. A key obstacle in this endeavor is to define $f$-divergence on a subcollection of a $\sigma$-algebra that forms a $\pi$-system but not a $\sigma$-subalgebra. This is a side contribution of our work. We will show that this notion of $f$-divergence on the $\pi$-system of rays preserves nearly all known properties of standard $f$-divergence, yields a novel integral representation of the Kolmogorov-Smirnov distance, and has a Glivenko-Cantelli theorem.
comment: 26 pages, 1 figure
☆ NdLinear Is All You Need for Representation Learning
Many high-impact machine learning tasks involve multi-dimensional data (e.g., images, volumetric medical scans, multivariate time-series). Yet, most neural architectures flatten inputs, discarding critical cross-dimension information. We introduce NdLinear, a novel linear transformation that preserves these structures without extra overhead. By operating separately along each dimension, NdLinear captures dependencies that standard fully connected layers overlook. Extensive experiments across convolutional, recurrent, and transformer-based networks show significant improvements in representational power and parameter efficiency. Crucially, NdLinear serves as a foundational building block for large-scale foundation models by operating on any unimodal or multimodal data in its native form. This removes the need for flattening or modality-specific preprocessing. Ndlinear rethinks core architectural priorities beyond attention, enabling more expressive, context-aware models at scale. We propose NdLinear as a drop-in replacement for standard linear layers -- marking an important step toward next-generation neural architectures.
comment: Code is available at https://github.com/ensemble-core/NdLinear
☆ Capturing Individual Human Preferences with Reward Features
Reinforcement learning from human feedback usually models preferences using a reward model that does not distinguish between people. We argue that this is unlikely to be a good design choice in contexts with high potential for disagreement, like in the training of large language models. We propose a method to specialise a reward model to a person or group of people. Our approach builds on the observation that individual preferences can be captured as a linear combination of a set of general reward features. We show how to learn such features and subsequently use them to quickly adapt the reward model to a specific individual, even if their preferences are not reflected in the training data. We present experiments with large language models comparing the proposed architecture with a non-adaptive reward model and also adaptive counterparts, including models that do in-context personalisation. Depending on how much disagreement there is in the training data, our model either significantly outperforms the baselines or matches their performance with a simpler architecture and more stable training.
☆ Predicting Potential Customer Support Needs and Optimizing Search Ranking in a Two-Sided Marketplace KDD 2024
Airbnb is an online marketplace that connects hosts and guests to unique stays and experiences. When guests stay at homes booked on Airbnb, there are a small fraction of stays that lead to support needed from Airbnb's Customer Support (CS), which may cause inconvenience to guests and hosts and require Airbnb resources to resolve. In this work, we show that instances where CS support is needed may be predicted based on hosts and guests behavior. We build a model to predict the likelihood of CS support needs for each match of guest and host. The model score is incorporated into Airbnb's search ranking algorithm as one of the many factors. The change promotes more reliable matches in search results and significantly reduces bookings that require CS support.
comment: TSMO Workshop in conjunction with KDD 2024
☆ On Quantum Perceptron Learning via Quantum Search
With the growing interest in quantum machine learning, the perceptron -- a fundamental building block in traditional machine learning -- has emerged as a valuable model for exploring quantum advantages. Two quantum perceptron algorithms based on Grover's search, were developed in arXiv:1602.04799 to accelerate training and improve statistical efficiency in perceptron learning. This paper points out and corrects a mistake in the proof of Theorem 2 in arXiv:1602.04799. Specifically, we show that the probability of sampling from a normal distribution for a $D$-dimensional hyperplane that perfectly classifies the data scales as $\Omega(\gamma^{D})$ instead of $\Theta({\gamma})$, where $\gamma$ is the margin. We then revisit two well-established linear programming algorithms -- the ellipsoid method and the cutting plane random walk algorithm -- in the context of perceptron learning, and show how quantum search algorithms can be leveraged to enhance the overall complexity. Specifically, both algorithms gain a sub-linear speed-up $O(\sqrt{N})$ in the number of data points $N$ as a result of Grover's algorithm and an additional $O(D^{1.5})$ speed-up is possible for cutting plane random walk algorithm employing quantum walk search.
☆ Preference-Guided Diffusion for Multi-Objective Offline Optimization
Offline multi-objective optimization aims to identify Pareto-optimal solutions given a dataset of designs and their objective values. In this work, we propose a preference-guided diffusion model that generates Pareto-optimal designs by leveraging a classifier-based guidance mechanism. Our guidance classifier is a preference model trained to predict the probability that one design dominates another, directing the diffusion model toward optimal regions of the design space. Crucially, this preference model generalizes beyond the training distribution, enabling the discovery of Pareto-optimal solutions outside the observed dataset. We introduce a novel diversity-aware preference guidance, augmenting Pareto dominance preference with diversity criteria. This ensures that generated solutions are optimal and well-distributed across the objective space, a capability absent in prior generative methods for offline multi-objective optimization. We evaluate our approach on various continuous offline multi-objective optimization tasks and find that it consistently outperforms other inverse/generative approaches while remaining competitive with forward/surrogate-based optimization methods. Our results highlight the effectiveness of classifier-guided diffusion models in generating diverse and high-quality solutions that approximate the Pareto front well.
☆ Calibration Strategies for Robust Causal Estimation: Theoretical and Empirical Insights on Propensity Score Based Estimators
The partitioning of data for estimation and calibration critically impacts the performance of propensity score based estimators like inverse probability weighting (IPW) and double/debiased machine learning (DML) frameworks. We extend recent advances in calibration techniques for propensity score estimation, improving the robustness of propensity scores in challenging settings such as limited overlap, small sample sizes, or unbalanced data. Our contributions are twofold: First, we provide a theoretical analysis of the properties of calibrated estimators in the context of DML. To this end, we refine existing calibration frameworks for propensity score models, with a particular emphasis on the role of sample-splitting schemes in ensuring valid causal inference. Second, through extensive simulations, we show that calibration reduces variance of inverse-based propensity score estimators while also mitigating bias in IPW, even in small-sample regimes. Notably, calibration improves stability for flexible learners (e.g., gradient boosting) while preserving the doubly robust properties of DML. A key insight is that, even when methods perform well without calibration, incorporating a calibration step does not degrade performance, provided that an appropriate sample-splitting approach is chosen.
☆ 3D Neural Operator-Based Flow Surrogates around 3D geometries: Signed Distance Functions and Derivative Constraints
Accurate modeling of fluid dynamics around complex geometries is critical for applications such as aerodynamic optimization and biomedical device design. While advancements in numerical methods and high-performance computing have improved simulation capabilities, the computational cost of high-fidelity 3D flow simulations remains a significant challenge. Scientific machine learning (SciML) offers an efficient alternative, enabling rapid and reliable flow predictions. In this study, we evaluate Deep Operator Networks (DeepONet) and Geometric-DeepONet, a variant that incorporates geometry information via signed distance functions (SDFs), on steady-state 3D flow over complex objects. Our dataset consists of 1,000 high-fidelity simulations spanning Reynolds numbers from 10 to 1,000, enabling comprehensive training and evaluation across a range of flow regimes. To assess model generalization, we test our models on a random and extrapolatory train-test splitting. Additionally, we explore a derivative-informed training strategy that augments standard loss functions with velocity gradient penalties and incompressibility constraints, improving physics consistency in 3D flow prediction. Our results show that Geometric-DeepONet improves boundary-layer accuracy by up to 32% compared to standard DeepONet. Moreover, incorporating derivative constraints enhances gradient accuracy by 25% in interpolation tasks and up to 45% in extrapolatory test scenarios, suggesting significant improvement in generalization capabilities to unseen 3D Reynolds numbers.
☆ Exploring a Principled Framework for Deep Subspace Clustering ICLR 2025
Subspace clustering is a classical unsupervised learning task, built on a basic assumption that high-dimensional data can be approximated by a union of subspaces (UoS). Nevertheless, the real-world data are often deviating from the UoS assumption. To address this challenge, state-of-the-art deep subspace clustering algorithms attempt to jointly learn UoS representations and self-expressive coefficients. However, the general framework of the existing algorithms suffers from a catastrophic feature collapse and lacks a theoretical guarantee to learn desired UoS representation. In this paper, we present a Principled fRamewOrk for Deep Subspace Clustering (PRO-DSC), which is designed to learn structured representations and self-expressive coefficients in a unified manner. Specifically, in PRO-DSC, we incorporate an effective regularization on the learned representations into the self-expressive model, prove that the regularized self-expressive model is able to prevent feature space collapse, and demonstrate that the learned optimal representations under certain condition lie on a union of orthogonal subspaces. Moreover, we provide a scalable and efficient approach to implement our PRO-DSC and conduct extensive experiments to verify our theoretical findings and demonstrate the superior performance of our proposed deep subspace clustering approach. The code is available at https://github.com/mengxianghan123/PRO-DSC.
comment: The paper is accepted by ICLR 2025. The first two authors are equally contributed
Offline Model-Based Optimization: Comprehensive Review
Offline optimization is a fundamental challenge in science and engineering, where the goal is to optimize black-box functions using only offline datasets. This setting is particularly relevant when querying the objective function is prohibitively expensive or infeasible, with applications spanning protein engineering, material discovery, neural architecture search, and beyond. The main difficulty lies in accurately estimating the objective landscape beyond the available data, where extrapolations are fraught with significant epistemic uncertainty. This uncertainty can lead to objective hacking(reward hacking), exploiting model inaccuracies in unseen regions, or other spurious optimizations that yield misleadingly high performance estimates outside the training distribution. Recent advances in model-based optimization(MBO) have harnessed the generalization capabilities of deep neural networks to develop offline-specific surrogate and generative models. Trained with carefully designed strategies, these models are more robust against out-of-distribution issues, facilitating the discovery of improved designs. Despite its growing impact in accelerating scientific discovery, the field lacks a comprehensive review. To bridge this gap, we present the first thorough review of offline MBO. We begin by formalizing the problem for both single-objective and multi-objective settings and by reviewing recent benchmarks and evaluation metrics. We then categorize existing approaches into two key areas: surrogate modeling, which emphasizes accurate function approximation in out-of-distribution regions, and generative modeling, which explores high-dimensional design spaces to identify high-performing designs. Finally, we examine the key challenges and propose promising directions for advancement in this rapidly evolving field including safe control of superintelligent systems.
comment: 29 pages
☆ Revisiting End To End Sparse Autoencoder Training -- A Short Finetune is All You Need
Sparse autoencoders (SAEs) are widely used for interpreting language model activations. A key evaluation metric is the increase in cross-entropy loss when replacing model activations with SAE reconstructions. Typically, SAEs are trained solely on mean squared error (MSE) using precomputed, shuffled activations. Recent work introduced training SAEs directly with a combination of KL divergence and MSE ("end-to-end" SAEs), significantly improving reconstruction accuracy at the cost of substantially increased computation, which has limited their widespread adoption. We propose a brief KL+MSE fine-tuning step applied only to the final 25M training tokens (just a few percent of typical training budgets) that achieves comparable improvements, reducing the cross-entropy loss gap by 20-50%, while incurring minimal additional computational cost. We further find that multiple fine-tuning methods (KL fine-tuning, LoRA adapters, linear adapters) yield similar, non-additive cross-entropy improvements, suggesting a common, easily correctable error source in MSE-trained SAEs. We demonstrate a straightforward method for effectively transferring hyperparameters and sparsity penalties despite scale differences between KL and MSE losses. While both ReLU and TopK SAEs see significant cross-entropy loss improvements, evaluations on supervised SAEBench metrics yield mixed results, suggesting practical benefits depend on both SAE architecture and the specific downstream task. Nonetheless, our method offers meaningful improvements in interpretability applications such as circuit analysis with minor additional cost.
☆ Learning to Solve Related Linear Systems
Solving multiple parametrised related systems is an essential component of many numerical tasks. Borrowing strength from the solved systems and learning will make this process faster. In this work, we propose a novel probabilistic linear solver over the parameter space. This leverages information from the solved linear systems in a regression setting to provide an efficient posterior mean and covariance. We advocate using this as companion regression model for the preconditioned conjugate gradient method, and discuss the favourable properties of the posterior mean and covariance as the initial guess and preconditioner. We also provide several design choices for this companion solver. Numerical experiments showcase the benefits of using our novel solver in a hyperparameter optimisation problem.
☆ Unsupervised Joint Learning of Optical Flow and Intensity with Event Cameras
Event cameras rely on motion to obtain information about scene appearance. In other words, for event cameras, motion and appearance are seen both or neither, which are encoded in the output event stream. Previous works consider recovering these two visual quantities as separate tasks, which does not fit with the nature of event cameras and neglects the inherent relations between both tasks. In this paper, we propose an unsupervised learning framework that jointly estimates optical flow (motion) and image intensity (appearance), with a single network. Starting from the event generation model, we newly derive the event-based photometric error as a function of optical flow and image intensity, which is further combined with the contrast maximization framework, yielding a comprehensive loss function that provides proper constraints for both flow and intensity estimation. Exhaustive experiments show that our model achieves state-of-the-art performance for both optical flow (achieves 20% and 25% improvement in EPE and AE respectively in the unsupervised learning category) and intensity estimation (produces competitive results with other baselines, particularly in high dynamic range scenarios). Last but not least, our model achieves shorter inference time than all the other optical flow models and many of the image reconstruction models, while they output only one quantity. Project page: https://github.com/tub-rip/e2fai
comment: 14 page, 8 figures, 9 tables. Project page: https://github.com/tub-rip/e2fai
☆ On Privately Estimating a Single Parameter
We investigate differentially private estimators for individual parameters within larger parametric models. While generic private estimators exist, the estimators we provide repose on new local notions of estimand stability, and these notions allow procedures that provide private certificates of their own stability. By leveraging these private certificates, we provide computationally and statistical efficient mechanisms that release private statistics that are, at least asymptotically in the sample size, essentially unimprovable: they achieve instance optimal bounds. Additionally, we investigate the practicality of the algorithms both in simulated data and in real-world data from the American Community Survey and US Census, highlighting scenarios in which the new procedures are successful and identifying areas for future work.
comment: 53 pages, 7 figures
☆ Deep End-to-End Posterior ENergy (DEEPEN) for image recovery
Current end-to-end (E2E) and plug-and-play (PnP) image reconstruction algorithms approximate the maximum a posteriori (MAP) estimate but cannot offer sampling from the posterior distribution, like diffusion models. By contrast, it is challenging for diffusion models to be trained in an E2E fashion. This paper introduces a Deep End-to-End Posterior ENergy (DEEPEN) framework, which enables MAP estimation as well as sampling. We learn the parameters of the posterior, which is the sum of the data consistency error and the negative log-prior distribution, using maximum likelihood optimization in an E2E fashion. The proposed approach does not require algorithm unrolling, and hence has a smaller computational and memory footprint than current E2E methods, while it does not require contraction constraints typically needed by current PnP methods. Our results demonstrate that DEEPEN offers improved performance than current E2E and PnP models in the MAP setting, while it also offers faster sampling compared to diffusion models. In addition, the learned energy-based model is observed to be more robust to changes in image acquisition settings.
☆ LoGoFair: Post-Processing for Local and Global Fairness in Federated Learning AAAI2025
Federated learning (FL) has garnered considerable interest for its capability to learn from decentralized data sources. Given the increasing application of FL in decision-making scenarios, addressing fairness issues across different sensitive groups (e.g., female, male) in FL is crucial. Current research often focuses on facilitating fairness at each client's data (local fairness) or within the entire dataset across all clients (global fairness). However, existing approaches that focus exclusively on either local or global fairness fail to address two key challenges: (\textbf{CH1}) Under statistical heterogeneity, global fairness does not imply local fairness, and vice versa. (\textbf{CH2}) Achieving fairness under model-agnostic setting. To tackle the aforementioned challenges, this paper proposes a novel post-processing framework for achieving both Local and Global Fairness in the FL context, namely LoGoFair. To address CH1, LoGoFair endeavors to seek the Bayes optimal classifier under local and global fairness constraints, which strikes the optimal accuracy-fairness balance in the probabilistic sense. To address CH2, LoGoFair employs a model-agnostic federated post-processing procedure that enables clients to collaboratively optimize global fairness while ensuring local fairness, thereby achieving the optimal fair classifier within FL. Experimental results on three real-world datasets further illustrate the effectiveness of the proposed LoGoFair framework.
comment: Accepted by AAAI2025
☆ FactSelfCheck: Fact-Level Black-Box Hallucination Detection for LLMs
Large Language Models (LLMs) frequently generate hallucinated content, posing significant challenges for applications where factuality is crucial. While existing hallucination detection methods typically operate at the sentence level or passage level, we propose FactSelfCheck, a novel black-box sampling-based method that enables fine-grained fact-level detection. Our approach represents text as knowledge graphs consisting of facts in the form of triples. Through analyzing factual consistency across multiple LLM responses, we compute fine-grained hallucination scores without requiring external resources or training data. Our evaluation demonstrates that FactSelfCheck performs competitively with leading sampling-based methods while providing more detailed insights. Most notably, our fact-level approach significantly improves hallucination correction, achieving a 35% increase in factual content compared to the baseline, while sentence-level SelfCheckGPT yields only an 8% improvement. The granular nature of our detection enables more precise identification and correction of hallucinated content.
comment: Preprint
☆ Neuro-Symbolic Scene Graph Conditioning for Synthetic Image Dataset Generation
As machine learning models increase in scale and complexity, obtaining sufficient training data has become a critical bottleneck due to acquisition costs, privacy constraints, and data scarcity in specialised domains. While synthetic data generation has emerged as a promising alternative, a notable performance gap remains compared to models trained on real data, particularly as task complexity grows. Concurrently, Neuro-Symbolic methods, which combine neural networks' learning strengths with symbolic reasoning's structured representations, have demonstrated significant potential across various cognitive tasks. This paper explores the utility of Neuro-Symbolic conditioning for synthetic image dataset generation, focusing specifically on improving the performance of Scene Graph Generation models. The research investigates whether structured symbolic representations in the form of scene graphs can enhance synthetic data quality through explicit encoding of relational constraints. The results demonstrate that Neuro-Symbolic conditioning yields significant improvements of up to +2.59% in standard Recall metrics and +2.83% in No Graph Constraint Recall metrics when used for dataset augmentation. These findings establish that merging Neuro-Symbolic and generative approaches produces synthetic data with complementary structural information that enhances model performance when combined with real data, providing a novel approach to overcome data scarcity limitations even for complex visual reasoning tasks.
☆ ML-Based Bidding Price Prediction for Pay-As-Bid Ancillary Services Markets: A Use Case in the German Control Reserve Market
The increasing integration of renewable energy sources has led to greater volatility and unpredictability in electricity generation, posing challenges to grid stability. Ancillary service markets, such as the German control reserve market, allow industrial consumers and producers to offer flexibility in their power consumption or generation, contributing to grid stability while earning additional income. However, many participants use simple bidding strategies that may not maximize their revenues. This paper presents a methodology for forecasting bidding prices in pay-as-bid ancillary service markets, focusing on the German control reserve market. We evaluate various machine learning models, including Support Vector Regression, Decision Trees, and k-Nearest Neighbors, and compare their performance against benchmark models. To address the asymmetry in the revenue function of pay-as-bid markets, we introduce an offset adjustment technique that enhances the practical applicability of the forecasting models. Our analysis demonstrates that the proposed approach improves potential revenues by 27.43 % to 37.31 % compared to baseline models. When analyzing the relationship between the model forecasting errors and the revenue, a negative correlation is measured for three markets; according to the results, a reduction of 1 EUR/MW model price forecasting error (MAE) statistically leads to a yearly revenue increase between 483 EUR/MW and 3,631 EUR/MW. The proposed methodology enables industrial participants to optimize their bidding strategies, leading to increased earnings and contributing to the efficiency and stability of the electrical grid.
☆ A Language Anchor-Guided Method for Robust Noisy Domain Generalization
Real-world machine learning applications often struggle with two major challenges: distribution shift and label noise. Models tend to overfit by focusing on redundant and uninformative features in the training data, which makes it hard for them to generalize to the target domain. Noisy data worsens this problem by causing further overfitting to the noise, meaning that existing methods often fail to tell the difference between true, invariant features and misleading, spurious ones. To tackle these issues, we introduce Anchor Alignment and Adaptive Weighting (A3W). This new algorithm uses sample reweighting guided by natural language processing (NLP) anchors to extract more representative features. In simple terms, A3W leverages semantic representations from natural language models as a source of domain-invariant prior knowledge. Additionally, it employs a weighted loss function that adjusts each sample's contribution based on its similarity to the corresponding NLP anchor. This adjustment makes the model more robust to noisy labels. Extensive experiments on standard benchmark datasets show that A3W consistently outperforms state-of-the-art domain generalization methods, offering significant improvements in both accuracy and robustness across different datasets and noise levels.
☆ Jailbreaking the Non-Transferable Barrier via Test-Time Data Disguising CVPR
Non-transferable learning (NTL) has been proposed to protect model intellectual property (IP) by creating a "non-transferable barrier" to restrict generalization from authorized to unauthorized domains. Recently, well-designed attack, which restores the unauthorized-domain performance by fine-tuning NTL models on few authorized samples, highlights the security risks of NTL-based applications. However, such attack requires modifying model weights, thus being invalid in the black-box scenario. This raises a critical question: can we trust the security of NTL models deployed as black-box systems? In this work, we reveal the first loophole of black-box NTL models by proposing a novel attack method (dubbed as JailNTL) to jailbreak the non-transferable barrier through test-time data disguising. The main idea of JailNTL is to disguise unauthorized data so it can be identified as authorized by the NTL model, thereby bypassing the non-transferable barrier without modifying the NTL model weights. Specifically, JailNTL encourages unauthorized-domain disguising in two levels, including: (i) data-intrinsic disguising (DID) for eliminating domain discrepancy and preserving class-related content at the input-level, and (ii) model-guided disguising (MGD) for mitigating output-level statistics difference of the NTL model. Empirically, when attacking state-of-the-art (SOTA) NTL models in the black-box scenario, JailNTL achieves an accuracy increase of up to 55.7% in the unauthorized domain by using only 1% authorized samples, largely exceeding existing SOTA white-box attacks.
comment: Code is released at https://github.com/tmllab/2025_CVPR_JailNTL
☆ TreeSynth: Synthesizing Diverse Data from Scratch via Tree-Guided Subspace Partitioning
Model customization requires high-quality and diverse datasets, but acquiring such data remains challenging and costly. Although large language models (LLMs) can synthesize training data, current approaches are constrained by limited seed data, model bias and insufficient control over the generation process, resulting in limited diversity and biased distribution with the increase of data scales. To tackle this challenge, we present TreeSynth, a tree-guided subspace-based data synthesis framework that recursively partitions the entire data space into hierar-chical subspaces, enabling comprehensive and diverse scaling of data synthesis. Briefly, given a task-specific description, we construct a data space partitioning tree by iteratively executing criteria determination and subspace coverage steps. This hierarchically divides the whole space (i.e., root node) into mutually exclusive and complementary atomic subspaces (i.e., leaf nodes). By collecting synthesized data according to the attributes of each leaf node, we obtain a diverse dataset that fully covers the data space. Empirically, our extensive experiments demonstrate that TreeSynth surpasses both human-designed datasets and the state-of-the-art data synthesis baselines, achieving maximum improvements of 45.2% in data diversity and 17.6% in downstream task performance across various models and tasks. Hopefully, TreeSynth provides a scalable solution to synthesize diverse and comprehensive datasets from scratch without human intervention.
☆ Curriculum RL meets Monte Carlo Planning: Optimization of a Real World Container Management Problem
In this work, we augment reinforcement learning with an inference-time collision model to ensure safe and efficient container management in a waste-sorting facility with limited processing capacity. Each container has two optimal emptying volumes that trade off higher throughput against overflow risk. Conventional reinforcement learning (RL) approaches struggle under delayed rewards, sparse critical events, and high-dimensional uncertainty -- failing to consistently balance higher-volume empties with the risk of safety-limit violations. To address these challenges, we propose a hybrid method comprising: (1) a curriculum-learning pipeline that incrementally trains a PPO agent to handle delayed rewards and class imbalance, and (2) an offline pairwise collision model used at inference time to proactively avert collisions with minimal online cost. Experimental results show that our targeted inference-time collision checks significantly improve collision avoidance, reduce safety-limit violations, maintain high throughput, and scale effectively across varying container-to-PU ratios. These findings offer actionable guidelines for designing safe and efficient container-management systems in real-world facilities.
☆ Robustness of deep learning classification to adversarial input on GPUs: asynchronous parallel accumulation is a source of vulnerability
The ability of machine learning (ML) classification models to resist small, targeted input perturbations - known as adversarial attacks - is a key measure of their safety and reliability. We show that floating-point non associativity (FPNA) coupled with asynchronous parallel programming on GPUs is sufficient to result in misclassification, without any perturbation to the input. Additionally, we show this misclassification is particularly significant for inputs close to the decision boundary and that standard adversarial robustness results may be overestimated up to 4.6% when not considering machine-level details. We first study a linear classifier, before focusing on standard Graph Neural Network (GNN) architectures and datasets. We present a novel black-box attack using Bayesian optimization to determine external workloads that bias the output of reductions on GPUs and reliably lead to misclassification. Motivated by these results, we present a new learnable permutation (LP) gradient-based approach, to learn floating point operation orderings that lead to misclassifications, making the assumption that any reduction or permutation ordering is possible. This LP approach provides a worst-case estimate in a computationally efficient manner, avoiding the need to run identical experiments tens of thousands of times over a potentially large set of possible GPU states or architectures. Finally, we investigate parallel reduction ordering across different GPU architectures for a reduction under three conditions: (1) executing external background workloads, (2) utilizing multi-GPU virtualization, and (3) applying power capping. Our results demonstrate that parallel reduction ordering varies significantly across architectures under the first two conditions. The results and methods developed here can help to include machine-level considerations into adversarial robustness assessments.
comment: Under review at EuroPar 2025
☆ Principal Eigenvalue Regularization for Improved Worst-Class Certified Robustness of Smoothed Classifiers
Recent studies have identified a critical challenge in deep neural networks (DNNs) known as ``robust fairness", where models exhibit significant disparities in robust accuracy across different classes. While prior work has attempted to address this issue in adversarial robustness, the study of worst-class certified robustness for smoothed classifiers remains unexplored. Our work bridges this gap by developing a PAC-Bayesian bound for the worst-class error of smoothed classifiers. Through theoretical analysis, we demonstrate that the largest eigenvalue of the smoothed confusion matrix fundamentally influences the worst-class error of smoothed classifiers. Based on this insight, we introduce a regularization method that optimizes the largest eigenvalue of smoothed confusion matrix to enhance worst-class accuracy of the smoothed classifier and further improve its worst-class certified robustness. We provide extensive experimental validation across multiple datasets and model architectures to demonstrate the effectiveness of our approach.
comment: Under Review
☆ Generative adversarial framework to calibrate excursion set models for the 3D morphology of all-solid-state battery cathodes
This paper presents a computational method for generating virtual 3D morphologies of functional materials using low-parametric stochastic geometry models, i.e., digital twins, calibrated with 2D microscopy images. These digital twins allow systematic parameter variations to simulate various morphologies, that can be deployed for virtual materials testing by means of spatially resolved numerical simulations of macroscopic properties. Generative adversarial networks (GANs) have gained popularity for calibrating models to generate realistic 3D morphologies. However, GANs often comprise of numerous uninterpretable parameters make systematic variation of morphologies for virtual materials testing challenging. In contrast, low-parametric stochastic geometry models (e.g., based on Gaussian random fields) enable targeted variation but may struggle to mimic complex morphologies. Combining GANs with advanced stochastic geometry models (e.g., excursion sets of more general random fields) addresses these limitations, allowing model calibration solely from 2D image data. This approach is demonstrated by generating a digital twin of all-solid-state battery (ASSB) cathodes. Since the digital twins are parametric, they support systematic exploration of structural scenarios and their macroscopic properties. The proposed method facilitates simulation studies for optimizing 3D morphologies, benefiting not only ASSB cathodes but also other materials with similar structures.
comment: 25 pages, 8 Figures
☆ Hi-ALPS -- An Experimental Robustness Quantification of Six LiDAR-based Object Detection Systems for Autonomous Driving
Light Detection and Ranging (LiDAR) is an essential sensor technology for autonomous driving as it can capture high-resolution 3D data. As 3D object detection systems (OD) can interpret such point cloud data, they play a key role in the driving decisions of autonomous vehicles. Consequently, such 3D OD must be robust against all types of perturbations and must therefore be extensively tested. One approach is the use of adversarial examples, which are small, sometimes sophisticated perturbations in the input data that change, i.e., falsify, the prediction of the OD. These perturbations are carefully designed based on the weaknesses of the OD. The robustness of the OD cannot be quantified with adversarial examples in general, because if the OD is vulnerable to a given attack, it is unclear whether this is due to the robustness of the OD or whether the attack algorithm produces particularly strong adversarial examples. The contribution of this work is Hi-ALPS -- Hierarchical Adversarial-example-based LiDAR Perturbation Level System, where higher robustness of the OD is required to withstand the perturbations as the perturbation levels increase. In doing so, the Hi-ALPS levels successively implement a heuristic followed by established adversarial example approaches. In a series of comprehensive experiments using Hi-ALPS, we quantify the robustness of six state-of-the-art 3D OD under different types of perturbations. The results of the experiments show that none of the OD is robust against all Hi-ALPS levels; an important factor for the ranking is that human observers can still correctly recognize the perturbed objects, as the respective perturbations are small. To increase the robustness of the OD, we discuss the applicability of state-of-the-art countermeasures. In addition, we derive further suggestions for countermeasures based on our experimental results.
☆ DiTEC-WDN: A Large-Scale Dataset of Water Distribution Network Scenarios under Diverse Hydraulic Conditions
Privacy restrictions hinder the sharing of real-world Water Distribution Network (WDN) models, limiting the application of emerging data-driven machine learning, which typically requires extensive observations. To address this challenge, we propose the dataset DiTEC-WDN that comprises 36,000 unique scenarios simulated over either short-term (24 hours) or long-term (1 year) periods. We constructed this dataset using an automated pipeline that optimizes crucial parameters (e.g., pressure, flow rate, and demand patterns), facilitates large-scale simulations, and records discrete, synthetic but hydraulically realistic states under standard conditions via rule validation and post-hoc analysis. With a total of 228 million generated graph-based states, DiTEC-WDN can support a variety of machine-learning tasks, including graph-level, node-level, and link-level regression, as well as time-series forecasting. This contribution, released under a public license, encourages open scientific research in the critical water sector, eliminates the risk of exposing sensitive data, and fulfills the need for a large-scale water distribution network benchmark for study comparisons and scenario analysis.
comment: Submitted to Nature Scientific Data. Huy Truong and Andr\'es Tello contributed equally to this work. For the dataset, see https://huggingface.co/datasets/rugds/ditec-wdn
☆ Not Only Text: Exploring Compositionality of Visual Representations in Vision-Language Models CVPR 2025
Vision-Language Models (VLMs) learn a shared feature space for text and images, enabling the comparison of inputs of different modalities. While prior works demonstrated that VLMs organize natural language representations into regular structures encoding composite meanings, it remains unclear if compositional patterns also emerge in the visual embedding space. In this work, we investigate compositionality in the image domain, where the analysis of compositional properties is challenged by noise and sparsity of visual data. We address these problems and propose a framework, called Geodesically Decomposable Embeddings (GDE), that approximates image representations with geometry-aware compositional structures in the latent space. We demonstrate that visual embeddings of pre-trained VLMs exhibit a compositional arrangement, and evaluate the effectiveness of this property in the tasks of compositional classification and group robustness. GDE achieves stronger performance in compositional classification compared to its counterpart method that assumes linear geometry of the latent space. Notably, it is particularly effective for group robustness, where we achieve higher results than task-specific solutions. Our results indicate that VLMs can automatically develop a human-like form of compositional reasoning in the visual domain, making their underlying processes more interpretable. Code is available at https://github.com/BerasiDavide/vlm_image_compositionality.
comment: Camera-ready version for CVPR 2025 (with Supp.Mat.)
☆ HiFi-Stream: Streaming Speech Enhancement with Generative Adversarial Networks
Speech Enhancement techniques have become core technologies in mobile devices and voice software simplifying downstream speech tasks. Still, modern Deep Learning (DL) solutions often require high amount of computational resources what makes their usage on low-resource devices challenging. We present HiFi-Stream, an optimized version of recently published HiFi++ model. Our experiments demonstrate that HiFiStream saves most of the qualities of the original model despite its size and computational complexity: the lightest version has only around 490k parameters which is 3.5x reduction in comparison to the original HiFi++ making it one of the smallest and fastest models available. The model is evaluated in streaming setting where it demonstrates its superior performance in comparison to modern baselines.
comment: 5 pages (4 content pages + 1 page of references)
☆ Adiabatic Fine-Tuning of Neural Quantum States Enables Detection of Phase Transitions in Weight Space ICLR
Neural quantum states (NQS) have emerged as a powerful tool for approximating quantum wavefunctions using deep learning. While these models achieve remarkable accuracy, understanding how they encode physical information remains an open challenge. In this work, we introduce adiabatic fine-tuning, a scheme that trains NQS across a phase diagram, leading to strongly correlated weight representations across different models. This correlation in weight space enables the detection of phase transitions in quantum systems by analyzing the trained network weights alone. We validate our approach on the transverse field Ising model and the J1-J2 Heisenberg model, demonstrating that phase transitions manifest as distinct structures in weight space. Our results establish a connection between physical phase transitions and the geometry of neural network parameters, opening new directions for the interpretability of machine learning models in physics.
comment: Accepted at the ICLR Workshop on Neural Network Weights as a New Data Modality 2025
☆ Structure Is Not Enough: Leveraging Behavior for Neural Network Weight Reconstruction ICLR
The weights of neural networks (NNs) have recently gained prominence as a new data modality in machine learning, with applications ranging from accuracy and hyperparameter prediction to representation learning or weight generation. One approach to leverage NN weights involves training autoencoders (AEs), using contrastive and reconstruction losses. This allows such models to be applied to a wide variety of downstream tasks, and they demonstrate strong predictive performance and low reconstruction error. However, despite the low reconstruction error, these AEs reconstruct NN models with deteriorated performance compared to the original ones, limiting their usability with regard to model weight generation. In this paper, we identify a limitation of weight-space AEs, specifically highlighting that a structural loss, that uses the Euclidean distance between original and reconstructed weights, fails to capture some features critical for reconstructing high-performing models. We analyze the addition of a behavioral loss for training AEs in weight space, where we compare the output of the reconstructed model with that of the original one, given some common input. We show a strong synergy between structural and behavioral signals, leading to increased performance in all downstream tasks evaluated, in particular NN weights reconstruction and generation.
comment: Accepted at the ICLR Workshop on Neural Network Weights as a New Data Modality 2025
☆ Modifying Large Language Model Post-Training for Diverse Creative Writing
As creative writing tasks do not have singular correct answers, large language models (LLMs) trained to perform these tasks should be able to generate diverse valid outputs. However, LLM post-training often focuses on improving generation quality but neglects to facilitate output diversity. Hence, in creative writing generation, we investigate post-training approaches to promote both output diversity and quality. Our core idea is to include deviation -- the degree of difference between a training sample and all other samples with the same prompt -- in the training objective to facilitate learning from rare high-quality instances. By adopting our approach to direct preference optimization (DPO) and odds ratio preference optimization (ORPO), we demonstrate that we can promote the output diversity of trained models while minimally decreasing quality. Our best model with 8B parameters could achieve on-par diversity as a human-created dataset while having output quality similar to the best instruction-tuned models we examined, GPT-4o and DeepSeek-R1. We further validate our approaches with a human evaluation, an ablation, and a comparison to an existing diversification approach, DivPO.
☆ A New Statistical Model of Star Speckles for Learning to Detect and Characterize Exoplanets in Direct Imaging Observations CVPR 2025
The search for exoplanets is an active field in astronomy, with direct imaging as one of the most challenging methods due to faint exoplanet signals buried within stronger residual starlight. Successful detection requires advanced image processing to separate the exoplanet signal from this nuisance component. This paper presents a novel statistical model that captures nuisance fluctuations using a multi-scale approach, leveraging problem symmetries and a joint spectral channel representation grounded in physical principles. Our model integrates into an interpretable, end-to-end learnable framework for simultaneous exoplanet detection and flux estimation. The proposed algorithm is evaluated against the state of the art using datasets from the SPHERE instrument operating at the Very Large Telescope (VLT). It significantly improves the precision-recall trade-off, notably on challenging datasets that are otherwise unusable by astronomers. The proposed approach is computationally efficient, robust to varying data quality, and well suited for large-scale observational surveys.
comment: Accepted to CVPR 2025
☆ Beyond Accuracy: What Matters in Designing Well-Behaved Models?
Deep learning has become an essential part of computer vision, with deep neural networks (DNNs) excelling in predictive performance. However, they often fall short in other critical quality dimensions, such as robustness, calibration, or fairness. While existing studies have focused on a subset of these quality dimensions, none have explored a more general form of "well-behavedness" of DNNs. With this work, we address this gap by simultaneously studying nine different quality dimensions for image classification. Through a large-scale study, we provide a bird's-eye view by analyzing 326 backbone models and how different training paradigms and model architectures affect the quality dimensions. We reveal various new insights such that (i) vision-language models exhibit high fairness on ImageNet-1k classification and strong robustness against domain changes; (ii) self-supervised learning is an effective training paradigm to improve almost all considered quality dimensions; and (iii) the training dataset size is a major driver for most of the quality dimensions. We conclude our study by introducing the QUBA score (Quality Understanding Beyond Accuracy), a novel metric that ranks models across multiple dimensions of quality, enabling tailored recommendations based on specific user needs.
comment: Code: https://github.com/visinf/beyond-accuracy
☆ Large Language Model Compression via the Nested Activation-Aware Decomposition
In this paper, we tackle the critical challenge of compressing large language models (LLMs) to facilitate their practical deployment and broader adoption. We introduce a novel post-training compression paradigm that focuses on low-rank decomposition of LLM weights. Our analysis identifies two main challenges in this task: the variability in LLM activation distributions and handling unseen activations from different datasets and models. To address these challenges, we propose a nested activation-aware framework (NSVD) for LLMs, a training-free approach designed to enhance the accuracy of low-rank decompositions by managing activation outliers through transforming the weight matrix based on activation distribution and the original weight matrix. This method allows for the absorption of outliers into the transformed weight matrix, improving decomposition accuracy. Our comprehensive evaluation across eight datasets and six models from three distinct LLM families demonstrates the superiority of NSVD over current state-of-the-art methods, especially at medium to large compression ratios or in multilingual and multitask settings.
☆ Deterministic AI Agent Personality Expression through Standard Psychological Diagnostics
Artificial intelligence (AI) systems powered by large language models have become increasingly prevalent in modern society, enabling a wide range of applications through natural language interaction. As AI agents proliferate in our daily lives, their generic and uniform expressiveness presents a significant limitation to their appeal and adoption. Personality expression represents a key prerequisite for creating more human-like and distinctive AI systems. We show that AI models can express deterministic and consistent personalities when instructed using established psychological frameworks, with varying degrees of accuracy depending on model capabilities. We find that more advanced models like GPT-4o and o1 demonstrate the highest accuracy in expressing specified personalities across both Big Five and Myers-Briggs assessments, and further analysis suggests that personality expression emerges from a combination of intelligence and reasoning capabilities. Our results reveal that personality expression operates through holistic reasoning rather than question-by-question optimization, with response-scale metrics showing higher variance than test-scale metrics. Furthermore, we find that model fine-tuning affects communication style independently of personality expression accuracy. These findings establish a foundation for creating AI agents with diverse and consistent personalities, which could significantly enhance human-AI interaction across applications from education to healthcare, while additionally enabling a broader range of more unique AI agents. The ability to quantitatively assess and implement personality expression in AI systems opens new avenues for research into more relatable, trustworthy, and ethically designed AI.
comment: 25 pages, 8 figures, 4 tables; appeared in ADI (March 2025)
☆ Multi-Span Optical Power Spectrum Evolution Modeling using ML-based Multi-Decoder Attention Framework
We implement a ML-based attention framework with component-specific decoders, improving optical power spectrum prediction in multi-span networks. By reducing the need for in-depth training on each component, the framework can be scaled to multi-span topologies with minimal data collection, making it suitable for brown-field scenarios.
comment: This paper is a preprint of a paper accepted in ECOC 2024 and is subject to Institution of Engineering and Technology Copyright. A copy of record will be available at IET Digital Library
☆ A Thorough Assessment of the Non-IID Data Impact in Federated Learning
Federated learning (FL) allows collaborative machine learning (ML) model training among decentralized clients' information, ensuring data privacy. The decentralized nature of FL deals with non-independent and identically distributed (non-IID) data. This open problem has notable consequences, such as decreased model performance and more significant convergence times. Despite its importance, experimental studies systematically addressing all types of data heterogeneity (a.k.a. non-IIDness) remain scarce. We aim to fill this gap by assessing and quantifying the non-IID effect through a thorough empirical analysis. We use the Hellinger Distance (HD) to measure differences in distribution among clients. Our study benchmarks four state-of-the-art strategies for handling non-IID data, including label, feature, quantity, and spatiotemporal skewness, under realistic and controlled conditions. This is the first comprehensive analysis of the spatiotemporal skew effect in FL. Our findings highlight the significant impact of label and spatiotemporal skew non-IID types on FL model performance, with notable performance drops occurring at specific HD thresholds. Additionally, the FL performance is heavily affected mainly when the non-IIDness is extreme. Thus, we provide recommendations for FL research to tackle data heterogeneity effectively. Our work represents the most extensive examination of non-IIDness in FL, offering a robust foundation for future research.
☆ Replay4NCL: An Efficient Memory Replay-based Methodology for Neuromorphic Continual Learning in Embedded AI Systems
Neuromorphic Continual Learning (NCL) paradigm leverages Spiking Neural Networks (SNNs) to enable continual learning (CL) capabilities for AI systems to adapt to dynamically changing environments. Currently, the state-of-the-art employ a memory replay-based method to maintain the old knowledge. However, this technique relies on long timesteps and compression-decompression steps, thereby incurring significant latency and energy overheads, which are not suitable for tightly-constrained embedded AI systems (e.g., mobile agents/robotics). To address this, we propose Replay4NCL, a novel efficient memory replay-based methodology for enabling NCL in embedded AI systems. Specifically, Replay4NCL compresses the latent data (old knowledge), then replays them during the NCL training phase with small timesteps, to minimize the processing latency and energy consumption. To compensate the information loss from reduced spikes, we adjust the neuron threshold potential and learning rate settings. Experimental results on the class-incremental scenario with the Spiking Heidelberg Digits (SHD) dataset show that Replay4NCL can preserve old knowledge with Top-1 accuracy of 90.43% compared to 86.22% from the state-of-the-art, while effectively learning new tasks, achieving 4.88x latency speed-up, 20% latent memory saving, and 36.43% energy saving. These results highlight the potential of our Replay4NCL methodology to further advances NCL capabilities for embedded AI systems.
comment: Accepted at the 62th Design Automation Conference (DAC) 2025, June 2025, San Francisco, CA, USA
☆ Data-Driven Optimization of EV Charging Station Placement Using Causal Discovery
This paper addresses the critical challenge of optimizing electric vehicle charging station placement through a novel data-driven methodology employing causal discovery techniques. While traditional approaches prioritize economic factors or power grid constraints, they often neglect empirical charging patterns that ultimately determine station utilization. We analyze extensive charging data from Palo Alto and Boulder (337,344 events across 100 stations) to uncover latent relationships between station characteristics and utilization. Applying structural learning algorithms (NOTEARS and DAGMA) to this data reveals that charging demand is primarily determined by three factors: proximity to amenities, EV registration density, and adjacency to high-traffic routes. These findings, consistent across multiple algorithms and urban contexts, challenge conventional infrastructure distribution strategies. We develop an optimization framework that translates these insights into actionable placement recommendations, identifying locations likely to experience high utilization based on the discovered dependency structures. The resulting site selection model prioritizes strategic clustering in high-amenity areas with substantial EV populations rather than uniform spatial distribution. Our approach contributes a framework that integrates empirical charging behavior into infrastructure planning, potentially enhancing both station utilization and user convenience. By focusing on data-driven insights instead of theoretical distribution models, we provide a more effective strategy for expanding charging networks that can adjust to various stages of EV market development.
comment: Under review of IEEE CASE 2025; This is also the master thesis project from Julius supervised by Dr. Ziyue Li
☆ HAPI: A Model for Learning Robot Facial Expressions from Human Preferences
Automatic robotic facial expression generation is crucial for human-robot interaction, as handcrafted methods based on fixed joint configurations often yield rigid and unnatural behaviors. Although recent automated techniques reduce the need for manual tuning, they tend to fall short by not adequately bridging the gap between human preferences and model predictions-resulting in a deficiency of nuanced and realistic expressions due to limited degrees of freedom and insufficient perceptual integration. In this work, we propose a novel learning-to-rank framework that leverages human feedback to address this discrepancy and enhanced the expressiveness of robotic faces. Specifically, we conduct pairwise comparison annotations to collect human preference data and develop the Human Affective Pairwise Impressions (HAPI) model, a Siamese RankNet-based approach that refines expression evaluation. Results obtained via Bayesian Optimization and online expression survey on a 35-DOF android platform demonstrate that our approach produces significantly more realistic and socially resonant expressions of Anger, Happiness, and Surprise than those generated by baseline and expert-designed methods. This confirms that our framework effectively bridges the gap between human preferences and model predictions while robustly aligning robotic expression generation with human affective responses.
☆ Unitless Unrestricted Markov-Consistent SCM Generation: Better Benchmark Datasets for Causal Discovery
Causal discovery aims to extract qualitative causal knowledge in the form of causal graphs from data. Because causal ground truth is rarely known in the real world, simulated data plays a vital role in evaluating the performance of the various causal discovery algorithms proposed in the literature. But recent work highlighted certain artifacts of commonly used data generation techniques for a standard class of structural causal models (SCM) that may be nonphysical, including var- and R2-sortability, where the variables' variance and coefficients of determination (R2) after regressing on all other variables, respectively, increase along the causal order. Some causal methods exploit such artifacts, leading to unrealistic expectations for their performance on real-world data. Some modifications have been proposed to remove these artifacts; notably, the internally-standardized structural causal model (iSCM) avoids varsortability and largely alleviates R2-sortability on sparse causal graphs, but exhibits a reversed R2-sortability pattern for denser graphs not featured in their work. We analyze which sortability patterns we expect to see in real data, and propose a method for drawing coefficients that we argue more effectively samples the space of SCMs. Finally, we propose a novel extension of our SCM generation method to the time series setting.
comment: 4th Conference on Causal Learning and Reasoning
☆ A Tale of Two Classes: Adapting Supervised Contrastive Learning to Binary Imbalanced Datasets
Supervised contrastive learning (SupCon) has proven to be a powerful alternative to the standard cross-entropy loss for classification of multi-class balanced datasets. However, it struggles to learn well-conditioned representations of datasets with long-tailed class distributions. This problem is potentially exacerbated for binary imbalanced distributions, which are commonly encountered during many real-world problems such as medical diagnosis. In experiments on seven binary datasets of natural and medical images, we show that the performance of SupCon decreases with increasing class imbalance. To substantiate these findings, we introduce two novel metrics that evaluate the quality of the learned representation space. By measuring the class distribution in local neighborhoods, we are able to uncover structural deficiencies of the representation space that classical metrics cannot detect. Informed by these insights, we propose two new supervised contrastive learning strategies tailored to binary imbalanced datasets that improve the structure of the representation space and increase downstream classification accuracy over standard SupCon by up to 35%. We make our code available.
☆ Benign Overfitting with Quantum Kernels
Quantum kernels quantify similarity between data points by measuring the inner product between quantum states, computed through quantum circuit measurements. By embedding data into quantum systems, quantum kernel feature maps, that may be classically intractable to compute, could efficiently exploit high-dimensional Hilbert spaces to capture complex patterns. However, designing effective quantum feature maps remains a major challenge. Many quantum kernels, such as the fidelity kernel, suffer from exponential concentration, leading to near-identity kernel matrices that fail to capture meaningful data correlations and lead to overfitting and poor generalization. In this paper, we propose a novel strategy for constructing quantum kernels that achieve good generalization performance, drawing inspiration from benign overfitting in classical machine learning. Our approach introduces the concept of local-global quantum kernels, which combine two complementary components: a local quantum kernel based on measurements of small subsystems and a global quantum kernel derived from full-system measurements. Through numerical experiments, we demonstrate that local-global quantum kernels exhibit benign overfitting, supporting the effectiveness of our approach in enhancing quantum kernel methods.
☆ Symbolic Audio Classification via Modal Decision Tree Learning
The range of potential applications of acoustic analysis is wide. Classification of sounds, in particular, is a typical machine learning task that received a lot of attention in recent years. The most common approaches to sound classification are sub-symbolic, typically based on neural networks, and result in black-box models with high performances but very low transparency. In this work, we consider several audio tasks, namely, age and gender recognition, emotion classification, and respiratory disease diagnosis, and we approach them with a symbolic technique, that is, (modal) decision tree learning. We prove that such tasks can be solved using the same symbolic pipeline, that allows to extract simple rules with very high accuracy and low complexity. In principle, all such tasks could be associated to an autonomous conversation system, which could be useful in different contexts, such as an automatic reservation agent for an hospital or a clinic.
☆ Specifying What You Know or Not for Multi-Label Class-Incremental Learning AAAI 2025
Existing class incremental learning is mainly designed for single-label classification task, which is ill-equipped for multi-label scenarios due to the inherent contradiction of learning objectives for samples with incomplete labels. We argue that the main challenge to overcome this contradiction in multi-label class-incremental learning (MLCIL) lies in the model's inability to clearly distinguish between known and unknown knowledge. This ambiguity hinders the model's ability to retain historical knowledge, master current classes, and prepare for future learning simultaneously. In this paper, we target at specifying what is known or not to accommodate Historical, Current, and Prospective knowledge for MLCIL and propose a novel framework termed as HCP. Specifically, (i) we clarify the known classes by dynamic feature purification and recall enhancement with distribution prior, enhancing the precision and retention of known information. (ii) We design prospective knowledge mining to probe the unknown, preparing the model for future learning. Extensive experiments validate that our method effectively alleviates catastrophic forgetting in MLCIL, surpassing the previous state-of-the-art by 3.3% on average accuracy for MS-COCO B0-C10 setting without replay buffers.
comment: Accepted by AAAI 2025
☆ Do regularization methods for shortcut mitigation work as intended?
Mitigating shortcuts, where models exploit spurious correlations in training data, remains a significant challenge for improving generalization. Regularization methods have been proposed to address this issue by enhancing model generalizability. However, we demonstrate that these methods can sometimes overregularize, inadvertently suppressing causal features along with spurious ones. In this work, we analyze the theoretical mechanisms by which regularization mitigates shortcuts and explore the limits of its effectiveness. Additionally, we identify the conditions under which regularization can successfully eliminate shortcuts without compromising causal features. Through experiments on synthetic and real-world datasets, our comprehensive analysis provides valuable insights into the strengths and limitations of regularization techniques for addressing shortcuts, offering guidance for developing more robust models.
☆ TRACE: Time SeRies PArameter EffiCient FinE-tuning
We propose an efficient fine-tuning method for time series foundation models, termed TRACE: Time Series Parameter Efficient Fine-tuning. While pretrained time series foundation models are gaining popularity, they face the following challenges: (1) Unlike natural language tasks, time series data vary in frequency, channel numbers, historical/prediction lengths. For long-term forecasting tasks in particular, tailored fine-tuning can significantly enhance performance.(2) Existing parameter-efficient tuning methods like LoRA remain applicable but require adaptation to temporal characteristics. To address these challenges, our TRACE framework introduces two key innovations: (1) Gated DSIC (Gated Dynamic Simulation Importance Calculation), an unbiased LoRA module importance selection mechanism that ensures conditional parameter consistency before and after masking. Experiments demonstrate that Gated DSIC outperforms common fine-tuning. (2) Reconstructed prediction heads for long-term forecasting tasks, which achieve comparable or superior performance to linear probing heads while drastically reducing parameter counts. Extensive experiments on long-/short-term forecasting and anomaly detection tasks across diverse datasets, coupled with ablation studies, validate the effectiveness of our method.
☆ Token Dynamics: Towards Efficient and Dynamic Video Token Representation for Video Large Language Models
Token-based video representation has emerged as a promising approach for enabling large language models to interpret video content. However, existing token reduction techniques, such as token pruning and token merging, often disrupt essential spatial-temporal positional embeddings, failing to adequately balance computational efficiency with fewer tokens. Consequently, these methods result in relatively lengthy token sequences, limiting their applicability in scenarios requiring extreme token compression, such as video large language models. In this paper, we introduce the novel task of extreme short token reduction, aiming to represent extensive video sequences with a minimal number of tokens. To address this challenge, we propose Token Dynamics, a new video representation framework that dynamically reduces token count while preserving spatial-temporal coherence. Specifically, we disentangle video representations by separating visual embeddings from grid-level motion information, structuring them into: 1. a concise token base, created by clustering tokens that describe object-level content; 2. a token dynamics map, capturing detailed spatial-temporal motion patterns across grids. Furthermore, we introduce a cross-dynamics attention mechanism that integrates motion features into the token base without increasing token length, thereby maintaining compactness and spatial-temporal integrity. The experiments demonstrate a reduction of token count to merely 0.07% of the original tokens, with only a minor performance drop of 1.13%. Additionally, we propose two novel subtasks within extreme token reduction (fixed-length and adaptive-length compression), both effectively representing long token sequences for video-language tasks. Our method offers significantly lower theoretical complexity, fewer tokens, and enhanced throughput, thus providing an efficient solution for video LLMs.
☆ Assessing Consistency and Reproducibility in the Outputs of Large Language Models: Evidence Across Diverse Finance and Accounting Tasks
This study provides the first comprehensive assessment of consistency and reproducibility in Large Language Model (LLM) outputs in finance and accounting research. We evaluate how consistently LLMs produce outputs given identical inputs through extensive experimentation with 50 independent runs across five common tasks: classification, sentiment analysis, summarization, text generation, and prediction. Using three OpenAI models (GPT-3.5-turbo, GPT-4o-mini, and GPT-4o), we generate over 3.4 million outputs from diverse financial source texts and data, covering MD&As, FOMC statements, finance news articles, earnings call transcripts, and financial statements. Our findings reveal substantial but task-dependent consistency, with binary classification and sentiment analysis achieving near-perfect reproducibility, while complex tasks show greater variability. More advanced models do not consistently demonstrate better consistency and reproducibility, with task-specific patterns emerging. LLMs significantly outperform expert human annotators in consistency and maintain high agreement even where human experts significantly disagree. We further find that simple aggregation strategies across 3-5 runs dramatically improve consistency. Simulation analysis reveals that despite measurable inconsistency in LLM outputs, downstream statistical inferences remain remarkably robust. These findings address concerns about what we term "G-hacking," the selective reporting of favorable outcomes from multiple Generative AI runs, by demonstrating that such risks are relatively low for finance and accounting tasks.
comment: 96 pages
☆ Uncertainty-Driven Modeling of Microporosity and Permeability in Clastic Reservoirs Using Random Forest
Predicting microporosity and permeability in clastic reservoirs is a challenge in reservoir quality assessment, especially in formations where direct measurements are difficult or expensive. These reservoir properties are fundamental in determining a reservoir's capacity for fluid storage and transmission, yet conventional methods for evaluating them, such as Mercury Injection Capillary Pressure (MICP) and Scanning Electron Microscopy (SEM), are resource-intensive. The aim of this study is to develop a cost-effective machine learning model to predict complex reservoir properties using readily available field data and basic laboratory analyses. A Random Forest classifier was employed, utilizing key geological parameters such as porosity, grain size distribution, and spectral gamma-ray (SGR) measurements. An uncertainty analysis was applied to account for natural variability, expanding the dataset, and enhancing the model's robustness. The model achieved a high level of accuracy in predicting microporosity (93%) and permeability levels (88%). By using easily obtainable data, this model reduces the reliance on expensive laboratory methods, making it a valuable tool for early-stage exploration, especially in remote or offshore environments. The integration of machine learning with uncertainty analysis provides a reliable and cost-effective approach for evaluating key reservoir properties in siliciclastic formations. This model offers a practical solution to improve reservoir quality assessments, enabling more informed decision-making and optimizing exploration efforts.
comment: 13 pages, 7 figures
☆ Model-free front-to-end training of a large high performance laser neural network
Artificial neural networks (ANNs), have become ubiquitous and revolutionized many applications ranging from computer vision to medical diagnoses. However, they offer a fundamentally connectionist and distributed approach to computing, in stark contrast to classical computers that use the von Neumann architecture. This distinction has sparked renewed interest in developing unconventional hardware to support more efficient implementations of ANNs, rather than merely emulating them on traditional systems. Photonics stands out as a particularly promising platform, providing scalability, high speed, energy efficiency, and the ability for parallel information processing. However, fully realized autonomous optical neural networks (ONNs) with in-situ learning capabilities are still rare. In this work, we demonstrate a fully autonomous and parallel ONN using a multimode vertical cavity surface emitting laser (VCSEL) using off-the-shelf components. Our ONN is highly efficient and is scalable both in network size and inference bandwidth towards the GHz range. High performance hardware-compatible optimization algorithms are necessary in order to minimize reliance on external von Neumann computers to fully exploit the potential of ONNs. As such we present and extensively study several algorithms which are broadly compatible with a wide range of systems. We then apply these algorithms to optimize our ONN, and benchmark them using the MNIST dataset. We show that our ONN can achieve high accuracy and convergence efficiency, even under limited hardware resources. Crucially, we compare these different algorithms in terms of scaling and optimization efficiency in term of convergence time which is crucial when working with limited external resources. Our work provides some guidance for the design of future ONNs as well as a simple and flexible way to train them.
☆ Sparse Additive Contextual Bandits: A Nonparametric Approach for Online Decision-making with High-dimensional Covariates
Personalized services are central to today's digital landscape, where online decision-making is commonly formulated as contextual bandit problems. Two key challenges emerge in modern applications: high-dimensional covariates and the need for nonparametric models to capture complex reward-covariate relationships. We address these challenges by developing a contextual bandit algorithm based on sparse additive reward models in reproducing kernel Hilbert spaces. We establish statistical properties of the doubly penalized method applied to random regions, introducing novel analyses under bandit feedback. Our algorithm achieves sublinear cumulative regret over the time horizon $T$ while scaling logarithmically with covariate dimensionality $d$. Notably, we provide the first regret upper bound with logarithmic growth in $d$ for nonparametric contextual bandits with high-dimensional covariates. We also establish a lower bound, with the gap to the upper bound vanishing as smoothness increases. Extensive numerical experiments demonstrate our algorithm's superior performance in high-dimensional settings compared to existing approaches.
☆ On-Sensor Convolutional Neural Networks with Early-Exits
Tiny Machine Learning (TinyML) is a novel research field aiming at integrating Machine Learning (ML) within embedded devices with limited memory, computation, and energy. Recently, a new branch of TinyML has emerged, focusing on integrating ML directly into the sensors to further reduce the power consumption of embedded devices. Interestingly, despite their state-of-the-art performance in many tasks, none of the current solutions in the literature aims to optimize the implementation of Convolutional Neural Networks (CNNs) operating directly into sensors. In this paper, we introduce for the first time in the literature the optimized design and implementation of Depth-First CNNs operating on the Intelligent Sensor Processing Unit (ISPU) within an Inertial Measurement Unit (IMU) by STMicroelectronics. Our approach partitions the CNN between the ISPU and the microcontroller (MCU) and employs an Early-Exit mechanism to stop the computations on the IMU when enough confidence about the results is achieved, hence significantly reducing power consumption. When using a NUCLEO-F411RE board, this solution achieved an average current consumption of 4.8 mA, marking an 11% reduction compared to the regular inference pipeline on the MCU, while having equal accuracy.
comment: Presented at IEEE SSCI
☆ MerGen: Micro-electrode recording synthesis using a generative data-driven approach
The analysis of electrophysiological data is crucial for certain surgical procedures such as deep brain stimulation, which has been adopted for the treatment of a variety of neurological disorders. During the procedure, auditory analysis of these signals helps the clinical team to infer the neuroanatomical location of the stimulation electrode and thus optimize clinical outcomes. This task is complex, and requires an expert who in turn requires significant training. In this paper, we propose a generative neural network, called MerGen, capable of simulating de novo electrophysiological recordings, with a view to providing a realistic learning tool for clinicians trainees for identifying these signals. We demonstrate that the generated signals are perceptually indistinguishable from real signals by experts in the field, and that it is even possible to condition the generation efficiently to provide a didactic simulator adapted to a particular surgical scenario. The efficacy of this conditioning is demonstrated, comparing it to intra-observer and inter-observer variability amongst experts. We also demonstrate the use of this network for data augmentation for automatic signal classification which can play a role in decision-making support in the operating theatre.
comment: 19 pages, 7 figures, 2 tables
☆ Malliavin-Bismut Score-based Diffusion Models
We introduce a new framework that employs Malliavin calculus to derive explicit expressions for the score function -- i.e., the gradient of the log-density -- associated with solutions to stochastic differential equations (SDEs). Our approach integrates classical integration-by-parts techniques with modern tools, such as Bismut's formula and Malliavin calculus, to address linear and nonlinear SDEs. In doing so, we establish a rigorous connection between the Malliavin derivative, its adjoint (the Malliavin divergence or the Skorokhod integral), Bismut's formula, and diffusion generative models, thus providing a systematic method for computing $\nabla \log p_t(x)$. For the linear case, we present a detailed study proving that our formula is equivalent to the actual score function derived from the solution of the Fokker--Planck equation for linear SDEs. Additionally, we derive a closed-form expression for $\nabla \log p_t(x)$ for nonlinear SDEs with state-independent diffusion coefficients. These advancements provide fresh theoretical insights into the smoothness and structure of probability densities and practical implications for score-based generative modelling, including the design and analysis of new diffusion models. Moreover, our findings promote the adoption of the robust Malliavin calculus framework in machine learning research. These results directly apply to various pure and applied mathematics fields, such as generative modelling, the study of SDEs driven by fractional Brownian motion, and the Fokker--Planck equations associated with nonlinear SDEs.
☆ TeMP-TraG: Edge-based Temporal Message Passing in Transaction Graphs
Transaction graphs, which represent financial and trade transactions between entities such as bank accounts and companies, can reveal patterns indicative of financial crimes like money laundering and fraud. However, effective detection of such cases requires node and edge classification methods capable of addressing the unique challenges of transaction graphs, including rich edge features, multigraph structures and temporal dynamics. To tackle these challenges, we propose TeMP-TraG, a novel graph neural network mechanism that incorporates temporal dynamics into message passing. TeMP-TraG prioritises more recent transactions when aggregating node messages, enabling better detection of time-sensitive patterns. We demonstrate that TeMP-TraG improves four state-of-the-art graph neural networks by 6.19% on average. Our results highlight TeMP-TraG as an advancement in leveraging transaction graphs to combat financial crime.
☆ Improving the End-to-End Efficiency of Offline Inference for Multi-LLM Applications Based on Sampling and Simulation
As large language models (LLMs) have shown great success in many tasks, they are used in various applications. While a lot of works have focused on the efficiency of single-LLM application (e.g., offloading, request scheduling, parallelism strategy selection), multi-LLM applications receive less attention, particularly in offline inference scenarios. In this work, we aim to improve the offline end-to-end inference efficiency of multi-LLM applications in the single-node multi-GPU environment. The problem involves two key decisions: (1) determining which LLMs to run concurrently each time (we may not run all the models at the same time), and (2) selecting a parallelism strategy to use for each LLM. This problem is NP-hard. Naive solutions may not work well because the running time for a model to complete a set of requests depends on the request workload and the selected parallelism strategy, and they lack an accurate model of the running time. As the LLM output lengths are unknown before running, to estimate the model running time, we propose a sampling-then-simulation method which first estimates the output lengths by sampling from an empirical cumulative function we obtained from a large dataset in advance, and then simulates the LLM inference process accordingly. Based on the simulation, we estimate the per-iteration latencys to get the total latency. A greedy method is proposed to optimize the scheduling of the LLMs in the application across the GPUs. We then propose a framework SamuLLM which contains two phases: planning, which calls the greedy method for an application and running, which runs the application and dynamically adjust the model scheduling based on the runtime information. Experiments on 3 applications and a mixed application show that SamuLLM can achieve 1.0-2.4$\times$ end-to-end speedups compared to the competitors.
☆ Lie Detector: Unified Backdoor Detection via Cross-Examination Framework
Institutions with limited data and computing resources often outsource model training to third-party providers in a semi-honest setting, assuming adherence to prescribed training protocols with pre-defined learning paradigm (e.g., supervised or semi-supervised learning). However, this practice can introduce severe security risks, as adversaries may poison the training data to embed backdoors into the resulting model. Existing detection approaches predominantly rely on statistical analyses, which often fail to maintain universally accurate detection accuracy across different learning paradigms. To address this challenge, we propose a unified backdoor detection framework in the semi-honest setting that exploits cross-examination of model inconsistencies between two independent service providers. Specifically, we integrate central kernel alignment to enable robust feature similarity measurements across different model architectures and learning paradigms, thereby facilitating precise recovery and identification of backdoor triggers. We further introduce backdoor fine-tuning sensitivity analysis to distinguish backdoor triggers from adversarial perturbations, substantially reducing false positives. Extensive experiments demonstrate that our method achieves superior detection performance, improving accuracy by 5.4%, 1.6%, and 11.9% over SoTA baselines across supervised, semi-supervised, and autoregressive learning tasks, respectively. Notably, it is the first to effectively detect backdoors in multimodal large language models, further highlighting its broad applicability and advancing secure deep learning.
☆ Sparse Logit Sampling: Accelerating Knowledge Distillation in LLMs
Knowledge distillation can be a cost-effective technique to distill knowledge in Large Language Models, if the teacher output logits can be pre-computed and cached. However, successfully applying this to pre-training remains largely unexplored. In this work, we prove that naive approaches for sparse knowledge distillation such as caching Top-K probabilities, while intuitive, provide biased estimates of teacher probability distribution to the student, resulting in suboptimal performance and calibration. We propose an importance-sampling-based method `Random Sampling Knowledge Distillation', which provides unbiased estimates, preserves the gradient in expectation, and requires storing significantly sparser logits. Our method enables faster training of student models with marginal overhead (<10%) compared to cross-entropy based training, while maintaining competitive performance compared to full distillation, across a range of model sizes from 300M to 3B.
comment: Anshumann, Mohd Abbas Zaidi and Akhil Kedia have Equal Contribution
☆ Nonparametric Factor Analysis and Beyond AISTATS 2025
Nearly all identifiability results in unsupervised representation learning inspired by, e.g., independent component analysis, factor analysis, and causal representation learning, rely on assumptions of additive independent noise or noiseless regimes. In contrast, we study the more general case where noise can take arbitrary forms, depend on latent variables, and be non-invertibly entangled within a nonlinear function. We propose a general framework for identifying latent variables in the nonparametric noisy settings. We first show that, under suitable conditions, the generative model is identifiable up to certain submanifold indeterminacies even in the presence of non-negligible noise. Furthermore, under the structural or distributional variability conditions, we prove that latent variables of the general nonlinear models are identifiable up to trivial indeterminacies. Based on the proposed theoretical framework, we have also developed corresponding estimation methods and validated them in various synthetic and real-world settings. Interestingly, our estimate of the true GDP growth from alternative measurements suggests more insightful information on the economies than official reports. We expect our framework to provide new insight into how both researchers and practitioners deal with latent variables in real-world scenarios.
comment: AISTATS 2025
☆ PRIOT: Pruning-Based Integer-Only Transfer Learning for Embedded Systems
On-device transfer learning is crucial for adapting a common backbone model to the unique environment of each edge device. Tiny microcontrollers, such as the Raspberry Pi Pico, are key targets for on-device learning but often lack floating-point units, necessitating integer-only training. Dynamic computation of quantization scale factors, which is adopted in former studies, incurs high computational costs. Therefore, this study focuses on integer-only training with static scale factors, which is challenging with existing training methods. We propose a new training method named PRIOT, which optimizes the network by pruning selected edges rather than updating weights, allowing effective training with static scale factors. The pruning pattern is determined by the edge-popup algorithm, which trains a parameter named score assigned to each edge instead of the original parameters and prunes the edges with low scores before inference. Additionally, we introduce a memory-efficient variant, PRIOT-S, which only assigns scores to a small fraction of edges. We implement PRIOT and PRIOT-S on the Raspberry Pi Pico and evaluate their accuracy and computational costs using a tiny CNN model on the rotated MNIST dataset and the VGG11 model on the rotated CIFAR-10 dataset. Our results demonstrate that PRIOT improves accuracy by 8.08 to 33.75 percentage points over existing methods, while PRIOT-S reduces memory footprint with minimal accuracy loss.
comment: Accepted for publication in IEEE Embedded Systems Letters
☆ Imagine to Hear: Auditory Knowledge Generation can be an Effective Assistant for Language Models
Language models pretrained on text-only corpora often struggle with tasks that require auditory commonsense knowledge. Previous work addresses this problem by augmenting the language model to retrieve knowledge from external audio databases. This approach has several limitations, such as the potential lack of relevant audio in databases and the high costs associated with constructing and querying the databases. To address these issues, we propose Imagine to Hear, a novel approach that dynamically generates auditory knowledge using generative models. Our framework detects multiple audio-related textual spans from the given prompt and generates corresponding auditory knowledge. We develop several mechanisms to efficiently process multiple auditory knowledge, including a CLAP-based rejection sampler and a language-audio fusion module. Our experiments show that our method achieves state-of-the-art performance on AuditoryBench without relying on external databases, highlighting the effectiveness of our generation-based approach.
comment: Preprint
☆ Physics-Informed Neural Network Surrogate Models for River Stage Prediction
This work investigates the feasibility of using Physics-Informed Neural Networks (PINNs) as surrogate models for river stage prediction, aiming to reduce computational cost while maintaining predictive accuracy. Our primary contribution demonstrates that PINNs can successfully approximate HEC-RAS numerical solutions when trained on a single river, achieving strong predictive accuracy with generally low relative errors, though some river segments exhibit higher deviations. By integrating the governing Saint-Venant equations into the learning process, the proposed PINN-based surrogate model enforces physical consistency and significantly improves computational efficiency compared to HEC-RAS. We evaluate the model's performance in terms of accuracy and computational speed, demonstrating that it closely approximates HEC-RAS predictions while enabling real-time inference. These results highlight the potential of PINNs as effective surrogate models for single-river hydrodynamics, offering a promising alternative for computationally efficient river stage forecasting. Future work will explore techniques to enhance PINN training stability and robustness across a more generalized multi-river model.
comment: 10 pages, 5 figures
☆ An Accelerated Bregman Algorithm for ReLU-based Symmetric Matrix Decomposition
Symmetric matrix decomposition is an active research area in machine learning. This paper focuses on exploiting the low-rank structure of non-negative and sparse symmetric matrices via the rectified linear unit (ReLU) activation function. We propose the ReLU-based nonlinear symmetric matrix decomposition (ReLU-NSMD) model, introduce an accelerated alternating partial Bregman (AAPB) method for its solution, and present the algorithm's convergence results. Our algorithm leverages the Bregman proximal gradient framework to overcome the challenge of estimating the global $L$-smooth constant in the classic proximal gradient algorithm. Numerical experiments on synthetic and real datasets validate the effectiveness of our model and algorithm.
comment: 5 pages, 2 figures
☆ Preferential Multi-Objective Bayesian Optimization for Drug Discovery
Despite decades of advancements in automated ligand screening, large-scale drug discovery remains resource-intensive and requires post-processing hit selection, a step where chemists manually select a few promising molecules based on their chemical intuition. This creates a major bottleneck in the virtual screening process for drug discovery, demanding experts to repeatedly balance complex trade-offs among drug properties across a vast pool of candidates. To improve the efficiency and reliability of this process, we propose a novel human-centered framework named CheapVS that allows chemists to guide the ligand selection process by providing preferences regarding the trade-offs between drug properties via pairwise comparison. Our framework combines preferential multi-objective Bayesian optimization with a docking model for measuring binding affinity to capture human chemical intuition for improving hit identification. Specifically, on a library of 100K chemical candidates targeting EGFR and DRD2, CheapVS outperforms state-of-the-art screening methods in identifying drugs within a limited computational budget. Notably, our method can recover up to 16/37 EGFR and 37/58 DRD2 known drugs while screening only 6% of the library, showcasing its potential to significantly advance drug discovery.
☆ A Flexible Fairness Framework with Surrogate Loss Reweighting for Addressing Sociodemographic Disparities
This paper presents a new algorithmic fairness framework called $\boldsymbol{\alpha}$-$\boldsymbol{\beta}$ Fair Machine Learning ($\boldsymbol{\alpha}$-$\boldsymbol{\beta}$ FML), designed to optimize fairness levels across sociodemographic attributes. Our framework employs a new family of surrogate loss functions, paired with loss reweighting techniques, allowing precise control over fairness-accuracy trade-offs through tunable hyperparameters $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$. To efficiently solve the learning objective, we propose Parallel Stochastic Gradient Descent with Surrogate Loss (P-SGD-S) and establish convergence guarantees for both convex and nonconvex loss functions. Experimental results demonstrate that our framework improves overall accuracy while reducing fairness violations, offering a smooth trade-off between standard empirical risk minimization and strict minimax fairness. Results across multiple datasets confirm its adaptability, ensuring fairness improvements without excessive performance degradation.
comment: Under review
☆ Safe and Reliable Diffusion Models via Subspace Projection
Large-scale text-to-image (T2I) diffusion models have revolutionized image generation, enabling the synthesis of highly detailed visuals from textual descriptions. However, these models may inadvertently generate inappropriate content, such as copyrighted works or offensive images. While existing methods attempt to eliminate specific unwanted concepts, they often fail to ensure complete removal, allowing the concept to reappear in subtle forms. For instance, a model may successfully avoid generating images in Van Gogh's style when explicitly prompted with 'Van Gogh', yet still reproduce his signature artwork when given the prompt 'Starry Night'. In this paper, we propose SAFER, a novel and efficient approach for thoroughly removing target concepts from diffusion models. At a high level, SAFER is inspired by the observed low-dimensional structure of the text embedding space. The method first identifies a concept-specific subspace $S_c$ associated with the target concept c. It then projects the prompt embeddings onto the complementary subspace of $S_c$, effectively erasing the concept from the generated images. Since concepts can be abstract and difficult to fully capture using natural language alone, we employ textual inversion to learn an optimized embedding of the target concept from a reference image. This enables more precise subspace estimation and enhances removal performance. Furthermore, we introduce a subspace expansion strategy to ensure comprehensive and robust concept erasure. Extensive experiments demonstrate that SAFER consistently and effectively erases unwanted concepts from diffusion models while preserving generation quality.
☆ When Debate Fails: Bias Reinforcement in Large Language Models ICLR 2025
Large Language Models $($LLMs$)$ solve complex problems using training-free methods like prompt engineering and in-context learning, yet ensuring reasoning correctness remains challenging. While self-correction methods such as self-consistency and self-refinement aim to improve reliability, they often reinforce biases due to the lack of effective feedback mechanisms. Multi-Agent Debate $($MAD$)$ has emerged as an alternative, but we identify two key limitations: bias reinforcement, where debate amplifies model biases instead of correcting them, and lack of perspective diversity, as all agents share the same model and reasoning patterns, limiting true debate effectiveness. To systematically evaluate these issues, we introduce $\textit{MetaNIM Arena}$, a benchmark designed to assess LLMs in adversarial strategic decision-making, where dynamic interactions influence optimal decisions. To overcome MAD's limitations, we propose $\textbf{DReaMAD}$ $($$\textbf{D}$iverse $\textbf{Rea}$soning via $\textbf{M}$ulti-$\textbf{A}$gent $\textbf{D}$ebate with Refined Prompt$)$, a novel framework that $(1)$ refines LLM's strategic prior knowledge to improve reasoning quality and $(2)$ promotes diverse viewpoints within a single model by systematically modifying prompts, reducing bias. Empirical results show that $\textbf{DReaMAD}$ significantly improves decision accuracy, reasoning diversity, and bias mitigation across multiple strategic tasks, establishing it as a more effective approach for LLM-based decision-making.
comment: Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs. First two authors contributed equally
☆ Online Selective Conformal Prediction: Errors and Solutions
In online selective conformal inference, data arrives sequentially, and prediction intervals are constructed only when an online selection rule is met. Since online selections may break the exchangeability between the selected test datum and the rest of the data, one must correct for this by suitably selecting the calibration data. In this paper, we evaluate existing calibration selection strategies and pinpoint some fundamental errors in the associated claims that guarantee selection-conditional coverage and control of the false coverage rate (FCR). To address these shortcomings, we propose novel calibration selection strategies that provably preserve the exchangeability of the calibration data and the selected test datum. Consequently, we demonstrate that online selective conformal inference with these strategies guarantees both selection-conditional coverage and FCR control. Our theoretical findings are supported by experimental evidence examining tradeoffs between valid methods.
comment: 25 pages, 8 figures
☆ BEAC: Imitating Complex Exploration and Task-oriented Behaviors for Invisible Object Nonprehensile Manipulation
Applying imitation learning (IL) is challenging to nonprehensile manipulation tasks of invisible objects with partial observations, such as excavating buried rocks. The demonstrator must make such complex action decisions as exploring to find the object and task-oriented actions to complete the task while estimating its hidden state, perhaps causing inconsistent action demonstration and high cognitive load problems. For these problems, work in human cognitive science suggests that promoting the use of pre-designed, simple exploration rules for the demonstrator may alleviate the problems of action inconsistency and high cognitive load. Therefore, when performing imitation learning from demonstrations using such exploration rules, it is important to accurately imitate not only the demonstrator's task-oriented behavior but also his/her mode-switching behavior (exploratory or task-oriented behavior) under partial observation. Based on the above considerations, this paper proposes a novel imitation learning framework called Belief Exploration-Action Cloning (BEAC), which has a switching policy structure between a pre-designed exploration policy and a task-oriented action policy trained on the estimated belief states based on past history. In simulation and real robot experiments, we confirmed that our proposed method achieved the best task performance, higher mode and action prediction accuracies, while reducing the cognitive load in the demonstration indicated by a user study.
comment: 27 pages
☆ Causally Aligned Curriculum Learning ICLR 2024
A pervasive challenge in Reinforcement Learning (RL) is the "curse of dimensionality" which is the exponential growth in the state-action space when optimizing a high-dimensional target task. The framework of curriculum learning trains the agent in a curriculum composed of a sequence of related and more manageable source tasks. The expectation is that when some optimal decision rules are shared across source tasks and the target task, the agent could more quickly pick up the necessary skills to behave optimally in the environment, thus accelerating the learning process. However, this critical assumption of invariant optimal decision rules does not necessarily hold in many practical applications, specifically when the underlying environment contains unobserved confounders. This paper studies the problem of curriculum RL through causal lenses. We derive a sufficient graphical condition characterizing causally aligned source tasks, i.e., the invariance of optimal decision rules holds. We further develop an efficient algorithm to generate a causally aligned curriculum, provided with qualitative causal knowledge of the target task. Finally, we validate our proposed methodology through experiments in discrete and continuous confounded tasks with pixel observations.
comment: Accepted as Posters in ICLR 2024
☆ A Learnability Analysis on Neuro-Symbolic Learning
This paper analyzes the learnability of neuro-symbolic (NeSy) tasks within hybrid systems. We show that the learnability of NeSy tasks can be characterized by their derived constraint satisfaction problems (DCSPs). Specifically, a task is learnable if the corresponding DCSP has a unique solution; otherwise, it is unlearnable. For learnable tasks, we establish error bounds by exploiting the clustering property of the hypothesis space. Additionally, we analyze the asymptotic error for general NeSy tasks, showing that the expected error scales with the disagreement among solutions. Our results offer a principled approach to determining learnability and provide insights into the design of new algorithms.
☆ Learning Part Knowledge to Facilitate Category Understanding for Fine-Grained Generalized Category Discovery
Generalized Category Discovery (GCD) aims to classify unlabeled data containing both seen and novel categories. Although existing methods perform well on generic datasets, they struggle in fine-grained scenarios. We attribute this difficulty to their reliance on contrastive learning over global image features to automatically capture discriminative cues, which fails to capture the subtle local differences essential for distinguishing fine-grained categories. Therefore, in this paper, we propose incorporating part knowledge to address fine-grained GCD, which introduces two key challenges: the absence of annotations for novel classes complicates the extraction of the part features, and global contrastive learning prioritizes holistic feature invariance, inadvertently suppressing discriminative local part patterns. To address these challenges, we propose PartGCD, including 1) Adaptive Part Decomposition, which automatically extracts class-specific semantic parts via Gaussian Mixture Models, and 2) Part Discrepancy Regularization, enforcing explicit separation between part features to amplify fine-grained local part distinctions. Experiments demonstrate state-of-the-art performance across multiple fine-grained benchmarks while maintaining competitiveness on generic datasets, validating the effectiveness and robustness of our approach.
☆ Physics-Informed Deep B-Spline Networks for Dynamical Systems
Physics-informed machine learning provides an approach to combining data and governing physics laws for solving complex partial differential equations (PDEs). However, efficiently solving PDEs with varying parameters and changing initial conditions and boundary conditions (ICBCs) with theoretical guarantees remains an open challenge. We propose a hybrid framework that uses a neural network to learn B-spline control points to approximate solutions to PDEs with varying system and ICBC parameters. The proposed network can be trained efficiently as one can directly specify ICBCs without imposing losses, calculate physics-informed loss functions through analytical formulas, and requires only learning the weights of B-spline functions as opposed to both weights and basis as in traditional neural operator learning methods. We provide theoretical guarantees that the proposed B-spline networks serve as universal approximators for the set of solutions of PDEs with varying ICBCs under mild conditions and establish bounds on the generalization errors in physics-informed learning. We also demonstrate in experiments that the proposed B-spline network can solve problems with discontinuous ICBCs and outperforms existing methods, and is able to learn solutions of 3D dynamics with diverse initial conditions.
☆ On Explaining (Large) Language Models For Code Using Global Code-Based Explanations
In recent years, Language Models for Code (LLM4Code) have significantly changed the landscape of software engineering (SE) on downstream tasks, such as code generation, by making software development more efficient. Therefore, a growing interest has emerged in further evaluating these Language Models to homogenize the quality assessment of generated code. As the current evaluation process can significantly overreact on accuracy-based metrics, practitioners often seek methods to interpret LLM4Code outputs beyond canonical benchmarks. While the majority of research reports on code generation effectiveness in terms of expected ground truth, scant attention has been paid to LLMs' explanations. In essence, the decision-making process to generate code is hard to interpret. To bridge this evaluation gap, we introduce code rationales (Code$Q$), a technique with rigorous mathematical underpinning, to identify subsets of tokens that can explain individual code predictions. We conducted a thorough Exploratory Analysis to demonstrate the method's applicability and a User Study to understand the usability of code-based explanations. Our evaluation demonstrates that Code$Q$ is a powerful interpretability method to explain how (less) meaningful input concepts (i.e., natural language particle `at') highly impact output generation. Moreover, participants of this study highlighted Code$Q$'s ability to show a causal relationship between the input and output of the model with readable and informative explanations on code completion and test generation tasks. Additionally, Code$Q$ also helps to uncover model rationale, facilitating comparison with a human rationale to promote a fair level of trust and distrust in the model.
comment: 12 pages, under revision
☆ Rethinking the Role of Spatial Mixing
Until quite recently, the backbone of nearly every state-of-the-art computer vision model has been the 2D convolution. At its core, a 2D convolution simultaneously mixes information across both the spatial and channel dimensions of a representation. Many recent computer vision architectures consist of sequences of isotropic blocks that disentangle the spatial and channel-mixing components. This separation of the operations allows us to more closely juxtapose the effects of spatial and channel mixing in deep learning. In this paper, we take an initial step towards garnering a deeper understanding of the roles of these mixing operations. Through our experiments and analysis, we discover that on both classical (ResNet) and cutting-edge (ConvMixer) models, we can reach nearly the same level of classification performance by and leaving the spatial mixers at their random initializations. Furthermore, we show that models with random, fixed spatial mixing are naturally more robust to adversarial perturbations. Lastly, we show that this phenomenon extends past the classification regime, as such models can also decode pixel-shuffled images.
☆ Fast online node labeling with graph subsampling
Large data applications rely on storing data in massive, sparse graphs with millions to trillions of nodes. Graph-based methods, such as node prediction, aim for computational efficiency regardless of graph size. Techniques like localized approximate personalized page rank (APPR) solve sparse linear systems with complexity independent of graph size, but is in terms of the maximum node degree, which can be much larger in practice than the average node degree for real-world large graphs. In this paper, we consider an \emph{online subsampled APPR method}, where messages are intentionally dropped at random. We use tools from graph sparsifiers and matrix linear algebra to give approximation bounds on the graph's spectral properties ($O(1/\epsilon^2)$ edges), and node classification performance (added $O(n\epsilon)$ overhead).
♻ ☆ Karyotype AI for Precision Oncology
We present a machine learning method capable of accurately detecting chromosome abnormalities that cause blood cancers directly from microscope images of the metaphase stage of cell division. The pipeline is built on a series of fine-tuned Vision Transformers. Current state of the art (and standard clinical practice) requires expensive, manual expert analysis, whereas our pipeline takes only 15 seconds per metaphase image. Using a novel pretraining-finetuning strategy to mitigate the challenge of data scarcity, we achieve a high precision-recall score of 94% AUC for the clinically significant del(5q) and t(9;22) anomalies. Our method also unlocks zero-shot detection of rare aberrations based on model latent embeddings. The ability to quickly, accurately, and scalably diagnose genetic abnormalities directly from metaphase images could transform karyotyping practice and improve patient outcomes. We will make code publicly available.
♻ ☆ Uni-3DAR: Unified 3D Generation and Understanding via Autoregression on Compressed Spatial Tokens
Recent advancements in large language models and their multi-modal extensions have demonstrated the effectiveness of unifying generation and understanding through autoregressive next-token prediction. However, despite the critical role of 3D structural generation and understanding (3D GU) in AI for science, these tasks have largely evolved independently, with autoregressive methods remaining underexplored. To bridge this gap, we introduce Uni-3DAR, a unified framework that seamlessly integrates 3D GU tasks via autoregressive prediction. At its core, Uni-3DAR employs a novel hierarchical tokenization that compresses 3D space using an octree, leveraging the inherent sparsity of 3D structures. It then applies an additional tokenization for fine-grained structural details, capturing key attributes such as atom types and precise spatial coordinates in microscopic 3D structures. We further propose two optimizations to enhance efficiency and effectiveness. The first is a two-level subtree compression strategy, which reduces the octree token sequence by up to 8x. The second is a masked next-token prediction mechanism tailored for dynamically varying token positions, significantly boosting model performance. By combining these strategies, Uni-3DAR successfully unifies diverse 3D GU tasks within a single autoregressive framework. Extensive experiments across multiple microscopic 3D GU tasks, including molecules, proteins, polymers, and crystals, validate its effectiveness and versatility. Notably, Uni-3DAR surpasses previous state-of-the-art diffusion models by a substantial margin, achieving up to 256\% relative improvement while delivering inference speeds up to 21.8x faster. The code is publicly available at https://github.com/dptech-corp/Uni-3DAR.
♻ ☆ TAET: Two-Stage Adversarial Equalization Training on Long-Tailed Distributions CVPR2025
Adversarial robustness is a critical challenge in deploying deep neural networks for real-world applications. While adversarial training is a widely recognized defense strategy, most existing studies focus on balanced datasets, overlooking the prevalence of long-tailed distributions in real-world data, which significantly complicates robustness. This paper provides a comprehensive analysis of adversarial training under long-tailed distributions and identifies limitations in the current state-of-the-art method, AT-BSL, in achieving robust performance under such conditions. To address these challenges, we propose a novel training framework, TAET, which integrates an initial stabilization phase followed by a stratified equalization adversarial training phase. Additionally, prior work on long-tailed robustness has largely ignored the crucial evaluation metric of balanced accuracy. To bridge this gap, we introduce the concept of balanced robustness, a comprehensive metric tailored for assessing robustness under long-tailed distributions. Extensive experiments demonstrate that our method surpasses existing advanced defenses, achieving significant improvements in both memory and computational efficiency. This work represents a substantial advancement in addressing robustness challenges in real-world applications. Our code is available at: https://github.com/BuhuiOK/TAET-Two-Stage-Adversarial-Equalization-Training-on-Long-Tailed-Distributions.
comment: Text: 8 pages of main content, 5 pages of appendices have been accepted by CVPR2025
♻ ☆ Label Unbalance in High-frequency Trading
In financial trading, return prediction is one of the foundation for a successful trading system. By the fast development of the deep learning in various areas such as graphical processing, natural language, it has also demonstrate significant edge in handling with financial data. While the success of the deep learning relies on huge amount of labeled sample, labeling each time/event as profitable or unprofitable, under the transaction cost, especially in the high-frequency trading world, suffers from serious label imbalance issue.In this paper, we adopts rigurious end-to-end deep learning framework with comprehensive label imbalance adjustment methods and succeed in predicting in high-frequency return in the Chinese future market. The code for our method is publicly available at https://github.com/RS2002/Label-Unbalance-in-High-Frequency-Trading .
comment: Technical Report
♻ ☆ Sample-Efficient Bayesian Transfer Learning for Online Machine Parameter Optimization
Correctly setting the parameters of a production machine is essential to improve product quality, increase efficiency, and reduce production costs while also supporting sustainability goals. Identifying optimal parameters involves an iterative process of producing an object and evaluating its quality. Minimizing the number of iterations is, therefore, desirable to reduce the costs associated with unsuccessful attempts. This work introduces a method to optimize the machine parameters in the system itself using a Bayesian optimization algorithm. By leveraging existing machine data, we use a transfer learning approach in order to identify an optimum with minimal iterations, resulting in a cost-effective transfer learning algorithm. We validate our approach on a laser machine for cutting sheet metal in the real world.
comment: Accepted in IEEE Conference on Artificial Intelligence, 2025
♻ ☆ Diffusion Attribution Score: Evaluating Training Data Influence in Diffusion Models
As diffusion models become increasingly popular, the misuse of copyrighted and private images has emerged as a major concern. One promising solution to mitigate this issue is identifying the contribution of specific training samples in generative models, a process known as data attribution. Existing data attribution methods for diffusion models typically quantify the contribution of a training sample by evaluating the change in diffusion loss when the sample is included or excluded from the training process. However, we argue that the direct usage of diffusion loss cannot represent such a contribution accurately due to the calculation of diffusion loss. Specifically, these approaches measure the divergence between predicted and ground truth distributions, which leads to an indirect comparison between the predicted distributions and cannot represent the variances between model behaviors. To address these issues, we aim to measure the direct comparison between predicted distributions with an attribution score to analyse the training sample importance, which is achieved by Diffusion Attribution Score (\textit{DAS}). Underpinned by rigorous theoretical analysis, we elucidate the effectiveness of DAS. Additionally, we explore strategies to accelerate DAS calculations, facilitating its application to large-scale diffusion models. Our extensive experiments across various datasets and diffusion models demonstrate that DAS significantly surpasses previous benchmarks in terms of the linear data-modelling score, establishing new state-of-the-art performance. Code is available at \hyperlink{here}{https://github.com/Jinxu-Lin/DAS}.
♻ ☆ Mirror Descent and Novel Exponentiated Gradient Algorithms Using Trace-Form Entropies and Deformed Logarithms
In this paper we propose and investigate a wide class of Mirror Descent updates (MD) and associated novel Generalized Exponentiated Gradient (GEG) algorithms by exploiting various trace-form entropies and associated deformed logarithms and their inverses - deformed (generalized) exponential functions. The proposed algorithms can be considered as extension of entropic MD and generalization of multiplicative updates. In the literature, there exist nowadays over fifty mathematically well defined generalized entropies, so impossible to exploit all of them in one research paper. So we focus on a few selected most popular entropies and associated logarithms like the Tsallis, Kaniadakis and Sharma-Taneja-Mittal and some of their extension like Tempesta or Kaniadakis-Scarfone entropies. The shape and properties of the deformed logarithms and their inverses are tuned by one or more hyperparameters. By learning these hyperparameters, we can adapt to distribution of training data, which can be designed to the specific geometry of the optimization problem, leading to potentially faster convergence and better performance. The using generalized entropies and associated deformed logarithms in the Bregman divergence, used as a regularization term, provides some new insight into exponentiated gradient descent updates.
comment: 22 pages, 9 figures
♻ ☆ Enhancing Zero-Shot Image Recognition in Vision-Language Models through Human-like Concept Guidance
In zero-shot image recognition tasks, humans demonstrate remarkable flexibility in classifying unseen categories by composing known simpler concepts. However, existing vision-language models (VLMs), despite achieving significant progress through large-scale natural language supervision, often underperform in real-world applications because of sub-optimal prompt engineering and the inability to adapt effectively to target classes. To address these issues, we propose a Concept-guided Human-like Bayesian Reasoning (CHBR) framework. Grounded in Bayes' theorem, CHBR models the concept used in human image recognition as latent variables and formulates this task by summing across potential concepts, weighted by a prior distribution and a likelihood function. To tackle the intractable computation over an infinite concept space, we introduce an importance sampling algorithm that iteratively prompts large language models (LLMs) to generate discriminative concepts, emphasizing inter-class differences. We further propose three heuristic approaches involving Average Likelihood, Confidence Likelihood, and Test Time Augmentation (TTA) Likelihood, which dynamically refine the combination of concepts based on the test image. Extensive evaluations across fifteen datasets demonstrate that CHBR consistently outperforms existing state-of-the-art zero-shot generalization methods.
comment: 21 pages, 7 figures 7 tables
♻ ☆ Aligning Text to Image in Diffusion Models is Easier Than You Think
While recent advancements in generative modeling have significantly improved text-image alignment, some residual misalignment between text and image representations still remains. Although many approaches have attempted to address this issue by fine-tuning models using various reward models, etc., we revisit the challenge from the perspective of representation alignment-an approach that has gained popularity with the success of REPresentation Alignment (REPA). We first argue that conventional text-to-image (T2I) diffusion models, typically trained on paired image and text data (i.e., positive pairs) by minimizing score matching or flow matching losses, is suboptimal from the standpoint of representation alignment. Instead, a better alignment can be achieved through contrastive learning that leverages both positive and negative pairs. To achieve this efficiently even with pretrained models, we introduce a lightweight contrastive fine tuning strategy called SoftREPA that uses soft text tokens. This approach improves alignment with minimal computational overhead by adding fewer than 1M trainable parameters to the pretrained model. Our theoretical analysis demonstrates that our method explicitly increases the mutual information between text and image representations, leading to enhanced semantic consistency. Experimental results across text-to-image generation and text-guided image editing tasks validate the effectiveness of our approach in improving the semantic consistency of T2I generative models.
♻ ☆ LazyDiT: Lazy Learning for the Acceleration of Diffusion Transformers AAAI 2025
Diffusion Transformers have emerged as the preeminent models for a wide array of generative tasks, demonstrating superior performance and efficacy across various applications. The promising results come at the cost of slow inference, as each denoising step requires running the whole transformer model with a large amount of parameters. In this paper, we show that performing the full computation of the model at each diffusion step is unnecessary, as some computations can be skipped by lazily reusing the results of previous steps. Furthermore, we show that the lower bound of similarity between outputs at consecutive steps is notably high, and this similarity can be linearly approximated using the inputs. To verify our demonstrations, we propose the \textbf{LazyDiT}, a lazy learning framework that efficiently leverages cached results from earlier steps to skip redundant computations. Specifically, we incorporate lazy learning layers into the model, effectively trained to maximize laziness, enabling dynamic skipping of redundant computations. Experimental results show that LazyDiT outperforms the DDIM sampler across multiple diffusion transformer models at various resolutions. Furthermore, we implement our method on mobile devices, achieving better performance than DDIM with similar latency. Code: https://github.com/shawnricecake/lazydit
comment: Accepted by AAAI 2025
♻ ☆ Moto: Latent Motion Token as the Bridging Language for Learning Robot Manipulation from Videos
Recent developments in Large Language Models pre-trained on extensive corpora have shown significant success in various natural language processing tasks with minimal fine-tuning. This success offers new promise for robotics, which has long been constrained by the high cost of action-labeled data. We ask: given the abundant video data containing interaction-related knowledge available as a rich "corpus", can a similar generative pre-training approach be effectively applied to enhance robot learning? The key challenge is to identify an effective representation for autoregressive pre-training that benefits robot manipulation tasks. Inspired by the way humans learn new skills through observing dynamic environments, we propose that effective robotic learning should emphasize motion-related knowledge, which is closely tied to low-level actions and is hardware-agnostic, facilitating the transfer of learned motions to actual robot actions. To this end, we introduce Moto, which converts video content into latent Motion Token sequences by a Latent Motion Tokenizer, learning a bridging "language" of motion from videos in an unsupervised manner. We pre-train Moto-GPT through motion token autoregression, enabling it to capture diverse visual motion knowledge. After pre-training, Moto-GPT demonstrates the promising ability to produce semantically interpretable motion tokens, predict plausible motion trajectories, and assess trajectory rationality through output likelihood. To transfer learned motion priors to real robot actions, we implement a co-fine-tuning strategy that seamlessly bridges latent motion token prediction and real robot control. Extensive experiments show that the fine-tuned Moto-GPT exhibits superior robustness and efficiency on robot manipulation benchmarks, underscoring its effectiveness in transferring knowledge from video data to downstream visual manipulation tasks.
comment: Project released at: https://chenyi99.github.io/moto/ Code released at: https://github.com/TencentARC/Moto Update: Added content related to real-world robot experiments and learning from human videos; Modified author information
URLOST: Unsupervised Representation Learning without Stationarity or Topology ICLR 2025
Unsupervised representation learning has seen tremendous progress. However, it is constrained by its reliance on domain specific stationarity and topology, a limitation not found in biological intelligence systems. For instance, unlike computer vision, human vision can process visual signals sampled from highly irregular and non-stationary sensors. We introduce a novel framework that learns from high-dimensional data without prior knowledge of stationarity and topology. Our model, abbreviated as URLOST, combines a learnable self-organizing layer, spectral clustering, and a masked autoencoder (MAE). We evaluate its effectiveness on three diverse data modalities including simulated biological vision data, neural recordings from the primary visual cortex, and gene expressions. Compared to state-of-the-art unsupervised learning methods like SimCLR and MAE, our model excels at learning meaningful representations across diverse modalities without knowing their stationarity or topology. It also outperforms other methods that are not dependent on these factors, setting a new benchmark in the field. We position this work as a step toward unsupervised learning methods capable of generalizing across diverse high-dimensional data modalities.
comment: Accepted by ICLR 2025; Code will be available at this https://github.com/zeyuyun1/URLOST
♻ ☆ Primal Methods for Variational Inequality Problems with Functional Constraints
Variational inequality problems are recognized for their broad applications across various fields including machine learning and operations research. First-order methods have emerged as the standard approach for solving these problems due to their simplicity and scalability. However, they typically rely on projection or linear minimization oracles to navigate the feasible set, which becomes computationally expensive in practical scenarios featuring multiple functional constraints. Existing efforts to tackle such functional constrained variational inequality problems have centered on primal-dual algorithms grounded in the Lagrangian function. These algorithms along with their theoretical analysis often require the existence and prior knowledge of the optimal Lagrange multipliers. In this work, we propose a simple primal method, termed Constrained Gradient Method (CGM), for addressing functional constrained variational inequality problems, without requiring any information on the optimal Lagrange multipliers. We establish a non-asymptotic convergence analysis of the algorithm for Minty variational inequality problems with monotone operators under smooth constraints. Remarkably, our algorithms match the complexity of projection-based methods in terms of operator queries for both monotone and strongly monotone settings, while using significantly cheaper oracles based on quadratic programming. Furthermore, we provide several numerical examples to evaluate the efficacy of our algorithms.
♻ ☆ SNPL: Simultaneous Policy Learning and Evaluation for Safe Multi-Objective Policy Improvement
To design effective digital interventions, experimenters face the challenge of learning decision policies that balance multiple objectives using offline data. Often, they aim to develop policies that maximize goal outcomes, while ensuring there are no undesirable changes in guardrail outcomes. To provide credible recommendations, experimenters must not only identify policies that satisfy the desired changes in goal and guardrail outcomes, but also offer probabilistic guarantees about the changes these policies induce. In practice, however, policy classes are often large, and digital experiments tend to produce datasets with small effect sizes relative to noise. In this setting, standard approaches such as data splitting or multiple testing often result in unstable policy selection and/or insufficient statistical power. In this paper, we provide safe noisy policy learning (SNPL), a novel approach that leverages the concept of algorithmic stability to address these challenges. Our method enables policy learning while simultaneously providing high-confidence guarantees using the entire dataset, avoiding the need for data-splitting. We present finite-sample and asymptotic versions of our algorithm that ensure the recommended policy satisfies high-probability guarantees for avoiding guardrail regressions and/or achieving goal outcome improvements. We test both variants of our approach approach empirically on a real-world application of personalizing SMS delivery. Our results on real-world data suggest that our approach offers dramatic improvements in settings with large policy classes and low signal-to-noise across both finite-sample and asymptotic safety guarantees, offering up to 300\% improvements in detection rates and 150\% improvements in policy gains at significantly smaller sample sizes.
♻ ☆ Data-driven measures of high-frequency trading
High-frequency trading (HFT) accounts for almost half of equity trading volume, yet it is not identified in public data. We develop novel data-driven measures of HFT activity that separate strategies that supply and demand liquidity. We train machine learning models to predict HFT activity observed in a proprietary dataset using concurrent public intraday data. Once trained on the dataset, these models generate HFT measures for the entire U.S. stock universe from 2010 to 2023. Our measures outperform conventional proxies, which struggle to capture HFT's time dynamics. We further validate them using shocks to HFT activity, including latency arbitrage, exchange speed bumps, and data feed upgrades. Finally, our measures reveal how HFT affects fundamental information acquisition. Liquidity-supplying HFTs improve price discovery around earnings announcements while liquidity-demanding strategies impede it.
comment: 78 pages, 6 figures, 17 tables
♻ ☆ SOUS VIDE: Cooking Visual Drone Navigation Policies in a Gaussian Splatting Vacuum
We propose a new simulator, training approach, and policy architecture, collectively called SOUS VIDE, for end-to-end visual drone navigation. Our trained policies exhibit zero-shot sim-to-real transfer with robust real-world performance using only onboard perception and computation. Our simulator, called FiGS, couples a computationally simple drone dynamics model with a high visual fidelity Gaussian Splatting scene reconstruction. FiGS can quickly simulate drone flights producing photorealistic images at up to 130 fps. We use FiGS to collect 100k-300k image/state-action pairs from an expert MPC with privileged state and dynamics information, randomized over dynamics parameters and spatial disturbances. We then distill this expert MPC into an end-to-end visuomotor policy with a lightweight neural architecture, called SV-Net. SV-Net processes color image, optical flow and IMU data streams into low-level thrust and body rate commands at 20 Hz onboard a drone. Crucially, SV-Net includes a learned module for low-level control that adapts at runtime to variations in drone dynamics. In a campaign of 105 hardware experiments, we show SOUS VIDE policies to be robust to 30% mass variations, 40 m/s wind gusts, 60% changes in ambient brightness, shifting or removing objects from the scene, and people moving aggressively through the drone's visual field. Code, data, and experiment videos can be found on our project page: https://stanfordmsl.github.io/SousVide/.
♻ ☆ PA-CFL: Privacy-Adaptive Clustered Federated Learning for Transformer-Based Sales Forecasting on Heterogeneous Retail Data
Federated learning (FL) enables retailers to share model parameters for demand forecasting while maintaining privacy. However, heterogeneous data across diverse regions, driven by factors such as varying consumer behavior, poses challenges to the effectiveness of federated learning. To tackle this challenge, we propose Privacy-Adaptive Clustered Federated Learning (PA-CFL) tailored for demand forecasting on heterogeneous retail data. By leveraging differential privacy and feature importance distribution, PA-CFL groups retailers into distinct ``bubbles'', each forming its own federated learning system to effectively isolate data heterogeneity. Within each bubble, Transformer models are designed to predict local sales for each client. Our experiments demonstrate that PA-CFL significantly surpasses FedAvg and outperforms local learning in demand forecasting performance across all participating clients. Compared to local learning, PA-CFL achieves a 5.4% improvement in R^2, a 69% reduction in RMSE, and a 45% decrease in MAE. Our approach enables effective FL through adaptive adjustments to diverse noise levels and the range of clients participating in each bubble. By grouping participants and proactively filtering out high-risk clients, PA-CFL mitigates potential threats to the FL system. The findings demonstrate PA-CFL's ability to enhance federated learning in time series prediction tasks with heterogeneous data, achieving a balance between forecasting accuracy and privacy preservation in retail applications. Additionally, PA-CFL's capability to detect and neutralize poisoned data from clients enhances the system's robustness and reliability.
♻ ☆ Graph Masked Language Models
Language Models (LMs) and Graph Neural Networks (GNNs) have shown great promise in their respective areas, yet integrating structured graph data with rich textual information remains challenging. In this work, we propose \emph{Graph Masked Language Models} (GMLM), a novel dual-branch architecture that combines the structural learning of GNNs with the contextual power of pretrained language models. Our approach introduces two key innovations: (i) a \emph{semantic masking strategy} that leverages graph topology to selectively mask nodes based on their structural importance, and (ii) a \emph{soft masking mechanism} that interpolates between original node features and a learnable mask token, ensuring smoother information flow during training. Extensive experiments on multiple node classification and language understanding benchmarks demonstrate that GMLM not only achieves state-of-the-art performance but also exhibits enhanced robustness and stability. This work underscores the benefits of integrating structured and unstructured data representations for improved graph learning.
♻ ☆ Toward a method for LLM-enabled Indoor Navigation
Indoor navigation presents unique challenges due to complex layouts, lack of GPS signals, and accessibility concerns. Existing solutions often struggle with real-time adaptability and user-specific needs. In this work, we explore the potential of a Large Language Model (LLM), i.e., ChatGPT, to generate natural, context-aware navigation instructions from indoor map images. We design and evaluate test cases across different real-world environments, analyzing the effectiveness of LLMs in interpreting spatial layouts, handling user constraints, and planning efficient routes. Our findings demonstrate the potential of LLMs for supporting personalized indoor navigation, with an average of 52% correct indications and a maximum of 62%. The results do not appear to depend on the complexity of the layout or the complexity of the expected path, but rather on the number of points of interest and the abundance of visual information, which negatively affect the performance.
comment: 7 pages, 3 figures, 5 tables
♻ ☆ AttriBoT: A Bag of Tricks for Efficiently Approximating Leave-One-Out Context Attribution ICLR 2025
The influence of contextual input on the behavior of large language models (LLMs) has prompted the development of context attribution methods that aim to quantify each context span's effect on an LLM's generations. The leave-one-out (LOO) error, which measures the change in the likelihood of the LLM's response when a given span of the context is removed, provides a principled way to perform context attribution, but can be prohibitively expensive to compute for large models. In this work, we introduce AttriBoT, a series of novel techniques for efficiently computing an approximation of the LOO error for context attribution. Specifically, AttriBoT uses cached activations to avoid redundant operations, performs hierarchical attribution to reduce computation, and emulates the behavior of large target models with smaller proxy models. Taken together, AttriBoT can provide a >300x speedup while remaining more faithful to a target model's LOO error than prior context attribution methods. This stark increase in performance makes computing context attributions for a given response 30x faster than generating the response itself, empowering real-world applications that require computing attributions at scale. We release a user-friendly and efficient implementation of AttriBoT to enable efficient LLM interpretability as well as encourage future development of efficient context attribution methods.
comment: 24 pages, 11 figures, ICLR 2025
♻ ☆ RadioActive: 3D Radiological Interactive Segmentation Benchmark
Effortless and precise segmentation with minimal clinician effort could greatly streamline clinical workflows. Recent interactive segmentation models, inspired by METAs Segment Anything, have made significant progress but face critical limitations in 3D radiology. These include impractical human interaction requirements such as slice-by-slice operations for 2D models on 3D data and a lack of iterative refinement. Prior studies have been hindered by inadequate evaluation protocols, resulting in unreliable performance assessments and inconsistent findings across studies. The RadioActive benchmark addresses these challenges by providing a rigorous and reproducible evaluation framework for interactive segmentation methods in clinically relevant scenarios. It features diverse datasets, a wide range of target structures, and the most impactful 2D and 3D interactive segmentation methods, all within a flexible and extensible codebase. We also introduce advanced prompting techniques that reduce interaction steps, enabling fair comparisons between 2D and 3D models. Surprisingly, SAM2 outperforms all specialized medical 2D and 3D models in a setting requiring only a few interactions to generate prompts for a 3D volume. This challenges prevailing assumptions and demonstrates that general-purpose models surpass specialized medical approaches. By open-sourcing RadioActive, we invite researchers to integrate their models and prompting techniques, ensuring continuous and transparent evaluation of 3D medical interactive models.
comment: Undergoing Peer-Review
♻ ☆ Calibrated Computation-Aware Gaussian Processes AISTATS
Gaussian processes are notorious for scaling cubically with the size of the training set, preventing application to very large regression problems. Computation-aware Gaussian processes (CAGPs) tackle this scaling issue by exploiting probabilistic linear solvers to reduce complexity, widening the posterior with additional computational uncertainty due to reduced computation. However, the most commonly used CAGP framework results in (sometimes dramatically) conservative uncertainty quantification, making the posterior unrealistic in practice. In this work, we prove that if the utilised probabilistic linear solver is calibrated, in a rigorous statistical sense, then so too is the induced CAGP. We thus propose a new CAGP framework, CAGP-GS, based on using Gauss-Seidel iterations for the underlying probabilistic linear solver. CAGP-GS performs favourably compared to existing approaches when the test set is low-dimensional and few iterations are performed. We test the calibratedness on a synthetic problem, and compare the performance to existing approaches on a large-scale global temperature regression problem.
comment: Accepted at the 28th International Conference on Artificial Intelligence and Statistics (AISTATS), 2025
♻ ☆ Schur's Positive-Definite Network: Deep Learning in the SPD cone with structure
Estimating matrices in the symmetric positive-definite (SPD) cone is of interest for many applications ranging from computer vision to graph learning. While there exist various convex optimization-based estimators, they remain limited in expressivity due to their model-based approach. The success of deep learning motivates the use of learning-based approaches to estimate SPD matrices with neural networks in a data-driven fashion. However, designing effective neural architectures for SPD learning is challenging, particularly when the task requires additional structural constraints, such as element-wise sparsity. Current approaches either do not ensure that the output meets all desired properties or lack expressivity. In this paper, we introduce SpodNet, a novel and generic learning module that guarantees SPD outputs and supports additional structural constraints. Notably, it solves the challenging task of learning jointly SPD and sparse matrices. Our experiments illustrate the versatility and relevance of SpodNet layers for such applications.
comment: 16 pages, 9 figures
♻ ☆ Global-Decision-Focused Neural ODEs for Proactive Grid Resilience Management
Extreme hazard events such as wildfires and hurricanes increasingly threaten power systems, causing widespread outages and disrupting critical services. Recently, predict-then-optimize approaches have gained traction in grid operations, where system functionality forecasts are first generated and then used as inputs for downstream decision-making. However, this two-stage method often results in a misalignment between prediction and optimization objectives, leading to suboptimal resource allocation. To address this, we propose predict-all-then-optimize-globally (PATOG), a framework that integrates outage prediction with globally optimized interventions. At its core, our global-decision-focused (GDF) neural ODE model captures outage dynamics while optimizing resilience strategies in a decision-aware manner. Unlike conventional methods, our approach ensures spatially and temporally coherent decision-making, improving both predictive accuracy and operational efficiency. Experiments on synthetic and real-world datasets demonstrate significant improvements in outage prediction consistency and grid resilience.
♻ ☆ Uncertainty modeling for fine-tuned implicit functions
Implicit functions such as Neural Radiance Fields (NeRFs), occupancy networks, and signed distance functions (SDFs) have become pivotal in computer vision for reconstructing detailed object shapes from sparse views. Achieving optimal performance with these models can be challenging due to the extreme sparsity of inputs and distribution shifts induced by data corruptions. To this end, large, noise-free synthetic datasets can serve as shape priors to help models fill in gaps, but the resulting reconstructions must be approached with caution. Uncertainty estimation is crucial for assessing the quality of these reconstructions, particularly in identifying areas where the model is uncertain about the parts it has inferred from the prior. In this paper, we introduce Dropsembles, a novel method for uncertainty estimation in tuned implicit functions. We demonstrate the efficacy of our approach through a series of experiments, starting with toy examples and progressing to a real-world scenario. Specifically, we train a Convolutional Occupancy Network on synthetic anatomical data and test it on low-resolution MRI segmentations of the lumbar spine. Our results show that Dropsembles achieve the accuracy and calibration levels of deep ensembles but with significantly less computational cost.
♻ ☆ Contraction Theory for Nonlinear Stability Analysis and Learning-based Control: A Tutorial Overview
Contraction theory is an analytical tool to study differential dynamics of a non-autonomous (i.e., time-varying) nonlinear system under a contraction metric defined with a uniformly positive definite matrix, the existence of which results in a necessary and sufficient characterization of incremental exponential stability of multiple solution trajectories with respect to each other. By using a squared differential length as a Lyapunov-like function, its nonlinear stability analysis boils down to finding a suitable contraction metric that satisfies a stability condition expressed as a linear matrix inequality, indicating that many parallels can be drawn between well-known linear systems theory and contraction theory for nonlinear systems. Furthermore, contraction theory takes advantage of a superior robustness property of exponential stability used in conjunction with the comparison lemma. This yields much-needed safety and stability guarantees for neural network-based control and estimation schemes, without resorting to a more involved method of using uniform asymptotic stability for input-to-state stability. Such distinctive features permit the systematic construction of a contraction metric via convex optimization, thereby obtaining an explicit exponential bound on the distance between a time-varying target trajectory and solution trajectories perturbed externally due to disturbances and learning errors. The objective of this paper is, therefore, to present a tutorial overview of contraction theory and its advantages in nonlinear stability analysis of deterministic and stochastic systems, with an emphasis on deriving formal robustness and stability guarantees for various learning-based and data-driven automatic control methods. In particular, we provide a detailed review of techniques for finding contraction metrics and associated control and estimation laws using deep neural networks.
comment: Annual Reviews in Control, Preprint Version, Accepted, Oct. 1st
♻ ☆ LitLLMs, LLMs for Literature Review: Are we there yet?
Literature reviews are an essential component of scientific research, but they remain time-intensive and challenging to write, especially due to the recent influx of research papers. This paper explores the zero-shot abilities of recent Large Language Models (LLMs) in assisting with the writing of literature reviews based on an abstract. We decompose the task into two components: 1. Retrieving related works given a query abstract, and 2. Writing a literature review based on the retrieved results. We analyze how effective LLMs are for both components. For retrieval, we introduce a novel two-step search strategy that first uses an LLM to extract meaningful keywords from the abstract of a paper and then retrieves potentially relevant papers by querying an external knowledge base. Additionally, we study a prompting-based re-ranking mechanism with attribution and show that re-ranking doubles the normalized recall compared to naive search methods, while providing insights into the LLM's decision-making process. In the generation phase, we propose a two-step approach that first outlines a plan for the review and then executes steps in the plan to generate the actual review. To evaluate different LLM-based literature review methods, we create test sets from arXiv papers using a protocol designed for rolling use with newly released LLMs to avoid test set contamination in zero-shot evaluations. We release this evaluation protocol to promote additional research and development in this regard. Our empirical results suggest that LLMs show promising potential for writing literature reviews when the task is decomposed into smaller components of retrieval and planning. Our project page including a demonstration system and toolkit can be accessed here: https://litllm.github.io.
♻ ☆ Advanced Deep Learning Methods for Protein Structure Prediction and Design
After AlphaFold won the Nobel Prize, protein prediction with deep learning once again became a hot topic. We comprehensively explore advanced deep learning methods applied to protein structure prediction and design. It begins by examining recent innovations in prediction architectures, with detailed discussions on improvements such as diffusion based frameworks and novel pairwise attention modules. The text analyses key components including structure generation, evaluation metrics, multiple sequence alignment processing, and network architecture, thereby illustrating the current state of the art in computational protein modelling. Subsequent chapters focus on practical applications, presenting case studies that range from individual protein predictions to complex biomolecular interactions. Strategies for enhancing prediction accuracy and integrating deep learning techniques with experimental validation are thoroughly explored. The later sections review the industry landscape of protein design, highlighting the transformative role of artificial intelligence in biotechnology and discussing emerging market trends and future challenges. Supplementary appendices provide essential resources such as databases and open source tools, making this volume a valuable reference for researchers and students.
♻ ☆ Code-as-Monitor: Constraint-aware Visual Programming for Reactive and Proactive Robotic Failure Detection CVPR 2025
Automatic detection and prevention of open-set failures are crucial in closed-loop robotic systems. Recent studies often struggle to simultaneously identify unexpected failures reactively after they occur and prevent foreseeable ones proactively. To this end, we propose Code-as-Monitor (CaM), a novel paradigm leveraging the vision-language model (VLM) for both open-set reactive and proactive failure detection. The core of our method is to formulate both tasks as a unified set of spatio-temporal constraint satisfaction problems and use VLM-generated code to evaluate them for real-time monitoring. To enhance the accuracy and efficiency of monitoring, we further introduce constraint elements that abstract constraint-related entities or their parts into compact geometric elements. This approach offers greater generality, simplifies tracking, and facilitates constraint-aware visual programming by leveraging these elements as visual prompts. Experiments show that CaM achieves a 28.7% higher success rate and reduces execution time by 31.8% under severe disturbances compared to baselines across three simulators and a real-world setting. Moreover, CaM can be integrated with open-loop control policies to form closed-loop systems, enabling long-horizon tasks in cluttered scenes with dynamic environments.
comment: Accepted by CVPR 2025. Project page: https://zhoues.github.io/Code-as-Monitor/
♻ ☆ Algorithmic causal structure emerging through compression
We explore the relationship between causality, symmetry, and compression. We build on and generalize the known connection between learning and compression to a setting where causal models are not identifiable. We propose a framework where causality emerges as a consequence of compressing data across multiple environments. We define algorithmic causality as an alternative definition of causality when traditional assumptions for causal identifiability do not hold. We demonstrate how algorithmic causal and symmetric structures can emerge from minimizing upper bounds on Kolmogorov complexity, without knowledge of intervention targets. We hypothesize that these insights may also provide a novel perspective on the emergence of causality in machine learning models, such as large language models, where causal relationships may not be explicitly identifiable.
comment: Extended version of the camera-ready paper accepted at CLeaR 2025
♻ ☆ Sparse PCA With Multiple Components
Sparse Principal Component Analysis (sPCA) is a cardinal technique for obtaining combinations of features, or principal components (PCs), that explain the variance of high-dimensional datasets in an interpretable manner. This involves solving a sparsity and orthogonality constrained convex maximization problem, which is extremely computationally challenging. Most existing works address sparse PCA via methods-such as iteratively computing one sparse PC and deflating the covariance matrix-that do not guarantee the orthogonality, let alone the optimality, of the resulting solution when we seek multiple mutually orthogonal PCs. We challenge this status by reformulating the orthogonality conditions as rank constraints and optimizing over the sparsity and rank constraints simultaneously. We design tight semidefinite relaxations to supply high-quality upper bounds, which we strengthen via additional second-order cone inequalities when each PC's individual sparsity is specified. Further, we derive a combinatorial upper bound on the maximum amount of variance explained as a function of the support. We exploit these relaxations and bounds to propose exact methods and rounding mechanisms that, together, obtain solutions with a bound gap on the order of 0%-15% for real-world datasets with p = 100s or 1000s of features and r \in {2, 3} components. Numerically, our algorithms match (and sometimes surpass) the best performing methods in terms of fraction of variance explained and systematically return PCs that are sparse and orthogonal. In contrast, we find that existing methods like deflation return solutions that violate the orthogonality constraints, even when the data is generated according to sparse orthogonal PCs. Altogether, our approach solves sparse PCA problems with multiple components to certifiable (near) optimality in a practically tractable fashion.
comment: Updated version with improved algorithmics and a new section containing a generalization of the Gershgorin circle theorem; comments or suggestions welcome
♻ ☆ Generation of Geodesics with Actor-Critic Reinforcement Learning to Predict Midpoints
To find the shortest paths for all pairs on manifolds with infinitesimally defined metrics, we introduce a framework to generate them by predicting midpoints recursively. To learn midpoint prediction, we propose an actor-critic approach. We prove the soundness of our approach and show experimentally that the proposed method outperforms existing methods on several planning tasks, including path planning for agents with complex kinematics and motion planning for multi-degree-of-freedom robot arms.
comment: 17 pages with 8 pages of appendices and references, 9 figures
♻ ☆ Zero-Shot Reinforcement Learning via Function Encoders
Although reinforcement learning (RL) can solve many challenging sequential decision making problems, achieving zero-shot transfer across related tasks remains a challenge. The difficulty lies in finding a good representation for the current task so that the agent understands how it relates to previously seen tasks. To achieve zero-shot transfer, we introduce the function encoder, a representation learning algorithm which represents a function as a weighted combination of learned, non-linear basis functions. By using a function encoder to represent the reward function or the transition function, the agent has information on how the current task relates to previously seen tasks via a coherent vector representation. Thus, the agent is able to achieve transfer between related tasks at run time with no additional training. We demonstrate state-of-the-art data efficiency, asymptotic performance, and training stability in three RL fields by augmenting basic RL algorithms with a function encoder task representation.
comment: A critical issue was found in the multi-agent experiments published in version 2. We rerun the multi-agent experiments on a more challenging, partially observable Markov game
♻ ☆ Data-driven Camera and Lidar Simulation Models for Autonomous Driving: A Review from Generative Models to Volume Renderers
Perception sensors, particularly camera and Lidar, are key elements of Autonomous Driving Systems (ADS) that enable them to comprehend their surroundings to informed driving and control decisions. Therefore, developing realistic simulation models for these sensors is essential for conducting effective simulation-based testing of ADS. Moreover, the rise of deep learning-based perception models has increased the utility of sensor simulation models for synthesising diverse training datasets. The traditional sensor simulation models rely on computationally expensive physics-based algorithms, specifically in complex systems such as ADS. Hence, the current potential resides in data-driven approaches, fuelled by the exceptional performance of deep generative models in capturing high-dimensional data distribution and volume renderers in accurately representing scenes. This paper reviews the current state-of-the-art data-driven camera and Lidar simulation models and their evaluation methods. It explores a spectrum of models from the novel perspective of generative models and volume renderers. Generative models are discussed in terms of their input-output types, while volume renderers are categorised based on their input encoding. Finally, the paper illustrates commonly used evaluation techniques for assessing sensor simulation models and highlights the existing research gaps in the area.
comment: To be published in IEEE Transactions on Intelligent Vehicles
♻ ☆ Low-Rank Thinning
The goal in thinning is to summarize a dataset using a small set of representative points. Remarkably, sub-Gaussian thinning algorithms like Kernel Halving and Compress can match the quality of uniform subsampling while substantially reducing the number of summary points. However, existing guarantees cover only a restricted range of distributions and kernel-based quality measures and suffer from pessimistic dimension dependence. To address these deficiencies, we introduce a new low-rank analysis of sub-Gaussian thinning that applies to any distribution and any kernel, guaranteeing high-quality compression whenever the kernel or data matrix is approximately low-rank. To demonstrate the broad applicability of the techniques, we design practical sub-Gaussian thinning approaches that improve upon the best known guarantees for approximating attention in transformers, accelerating stochastic gradient training through reordering, and distinguishing distributions in near-linear time.
♻ ☆ Learning Robust Reward Machines from Noisy Labels
This paper presents PROB-IRM, an approach that learns robust reward machines (RMs) for reinforcement learning (RL) agents from noisy execution traces. The key aspect of RM-driven RL is the exploitation of a finite-state machine that decomposes the agent's task into different subtasks. PROB-IRM uses a state-of-the-art inductive logic programming framework robust to noisy examples to learn RMs from noisy traces using the Bayesian posterior degree of beliefs, thus ensuring robustness against inconsistencies. Pivotal for the results is the interleaving between RM learning and policy learning: a new RM is learned whenever the RL agent generates a trace that is believed not to be accepted by the current RM. To speed up the training of the RL agent, PROB-IRM employs a probabilistic formulation of reward shaping that uses the posterior Bayesian beliefs derived from the traces. Our experimental analysis shows that PROB-IRM can learn (potentially imperfect) RMs from noisy traces and exploit them to train an RL agent to solve its tasks successfully. Despite the complexity of learning the RM from noisy traces, agents trained with PROB-IRM perform comparably to agents provided with handcrafted RMs.
comment: Accepted at the 21st International Conference on Principles of Knowledge Representation and Reasoning (KR 2024)
♻ ☆ Causality Is Key to Understand and Balance Multiple Goals in Trustworthy ML and Foundation Models
Ensuring trustworthiness in machine learning (ML) systems is crucial as they become increasingly embedded in high-stakes domains. This paper advocates for integrating causal methods into machine learning to navigate the trade-offs among key principles of trustworthy ML, including fairness, privacy, robustness, accuracy, and explainability. While these objectives should ideally be satisfied simultaneously, they are often addressed in isolation, leading to conflicts and suboptimal solutions. Drawing on existing applications of causality in ML that successfully align goals such as fairness and accuracy or privacy and robustness, this paper argues that a causal approach is essential for balancing multiple competing objectives in both trustworthy ML and foundation models. Beyond highlighting these trade-offs, we examine how causality can be practically integrated into ML and foundation models, offering solutions to enhance their reliability and interpretability. Finally, we discuss the challenges, limitations, and opportunities in adopting causal frameworks, paving the way for more accountable and ethically sound AI systems.
♻ ☆ Instant Adversarial Purification with Adversarial Consistency Distillation CVPR2025
Neural networks have revolutionized numerous fields with their exceptional performance, yet they remain susceptible to adversarial attacks through subtle perturbations. While diffusion-based purification methods like DiffPure offer promising defense mechanisms, their computational overhead presents a significant practical limitation. In this paper, we introduce One Step Control Purification (OSCP), a novel defense framework that achieves robust adversarial purification in a single Neural Function Evaluation (NFE) within diffusion models. We propose Gaussian Adversarial Noise Distillation (GAND) as the distillation objective and Controlled Adversarial Purification (CAP) as the inference pipeline, which makes OSCP demonstrate remarkable efficiency while maintaining defense efficacy. Our proposed GAND addresses a fundamental tension between consistency distillation and adversarial perturbation, bridging the gap between natural and adversarial manifolds in the latent space, while remaining computationally efficient through Parameter-Efficient Fine-Tuning (PEFT) methods such as LoRA, eliminating the high computational budget request from full parameter fine-tuning. The CAP guides the purification process through the unlearnable edge detection operator calculated by the input image as an extra prompt, effectively preventing the purified images from deviating from their original appearance when large purification steps are used. Our experimental results on ImageNet showcase OSCP's superior performance, achieving a 74.19% defense success rate with merely 0.1s per purification -- a 100-fold speedup compared to conventional approaches.
comment: Accepted by CVPR2025
♻ ☆ OptionZero: Planning with Learned Options ICLR 2025
Planning with options -- a sequence of primitive actions -- has been shown effective in reinforcement learning within complex environments. Previous studies have focused on planning with predefined options or learned options through expert demonstration data. Inspired by MuZero, which learns superhuman heuristics without any human knowledge, we propose a novel approach, named OptionZero. OptionZero incorporates an option network into MuZero, providing autonomous discovery of options through self-play games. Furthermore, we modify the dynamics network to provide environment transitions when using options, allowing searching deeper under the same simulation constraints. Empirical experiments conducted in 26 Atari games demonstrate that OptionZero outperforms MuZero, achieving a 131.58% improvement in mean human-normalized score. Our behavior analysis shows that OptionZero not only learns options but also acquires strategic skills tailored to different game characteristics. Our findings show promising directions for discovering and using options in planning. Our code is available at https://rlg.iis.sinica.edu.tw/papers/optionzero.
comment: Accepted by the Thirteenth International Conference on Learning Representations (ICLR 2025) as oral presentation
♻ ☆ Dynamic-LLaVA: Efficient Multimodal Large Language Models via Dynamic Vision-language Context Sparsification ICLR 2025
Multimodal Large Language Models (MLLMs) have achieved remarkable success in vision understanding, reasoning, and interaction. However, the inference computation and memory increase progressively with the generation of output tokens during decoding, directly affecting the efficacy of MLLMs. Existing methods attempt to reduce the vision context redundancy to achieve efficient MLLMs. Unfortunately, the efficiency benefits of the vision context reduction in the prefill stage gradually diminish during the decoding stage. To address this problem, we proposed a dynamic vision-language context sparsification framework Dynamic-LLaVA, which dynamically reduces the redundancy of vision context in the prefill stage and decreases the memory and computation overhead of the generated language context during decoding. Dynamic-LLaVA designs a tailored sparsification inference scheme for different inference modes, i.e., prefill, decoding with and without KV cache, to achieve efficient inference of MLLMs. In practice, Dynamic-LLaVA can reduce computation consumption by $\sim$75\% in the prefill stage. Meanwhile, throughout the entire generation process of MLLMs, Dynamic-LLaVA reduces the $\sim$50\% computation consumption under decoding without KV cache, while saving $\sim$50\% GPU memory overhead when decoding with KV cache, due to the vision-language context sparsification. Extensive experiments also demonstrate that Dynamic-LLaVA achieves efficient inference for MLLMs with negligible understanding and generation ability degradation or even performance gains compared to the full-context inference baselines. Code is available at https://github.com/Osilly/dynamic_llava .
comment: Accepted to ICLR 2025. Code is available at https://github.com/Osilly/dynamic_llava
♻ ☆ Statistical exploration of the Manifold Hypothesis
The Manifold Hypothesis is a widely accepted tenet of Machine Learning which asserts that nominally high-dimensional data are in fact concentrated near a low-dimensional manifold, embedded in high-dimensional space. This phenomenon is observed empirically in many real world situations, has led to development of a wide range of statistical methods in the last few decades, and has been suggested as a key factor in the success of modern AI technologies. We show that rich and sometimes intricate manifold structure in data can emerge from a generic and remarkably simple statistical model -- the Latent Metric Model -- via elementary concepts such as latent variables, correlation and stationarity. This establishes a general statistical explanation for why the Manifold Hypothesis seems to hold in so many situations. Informed by the Latent Metric Model we derive procedures to discover and interpret the geometry of high-dimensional data, and explore hypotheses about the data generating mechanism. These procedures operate under minimal assumptions and make use of well known graph-analytic algorithms.
♻ ☆ Optimizing Attention with Mirror Descent: Generalized Max-Margin Token Selection
Attention mechanisms have revolutionized several domains of artificial intelligence, such as natural language processing and computer vision, by enabling models to selectively focus on relevant parts of the input data. While recent work has characterized the optimization dynamics of gradient descent (GD) in attention-based models and the structural properties of its preferred solutions, less is known about more general optimization algorithms such as mirror descent (MD). In this paper, we investigate the convergence properties and implicit biases of a family of MD algorithms tailored for softmax attention mechanisms, with the potential function chosen as the $p$-th power of the $\ell_p$-norm. Specifically, we show that these algorithms converge in direction to a generalized hard-margin SVM with an $\ell_p$-norm objective when applied to a classification problem using a softmax attention model. Notably, our theoretical results reveal that the convergence rate is comparable to that of traditional GD in simpler models, despite the highly nonlinear and nonconvex nature of the present problem. Additionally, we delve into the joint optimization dynamics of the key-query matrix and the decoder, establishing conditions under which this complex joint optimization converges to their respective hard-margin SVM solutions. Lastly, our numerical experiments on real data demonstrate that MD algorithms improve generalization over standard GD and excel in optimal token selection.
♻ ☆ Sparse autoencoders reveal selective remapping of visual concepts during adaptation ICLR 2025
Adapting foundation models for specific purposes has become a standard approach to build machine learning systems for downstream applications. Yet, it is an open question which mechanisms take place during adaptation. Here we develop a new Sparse Autoencoder (SAE) for the CLIP vision transformer, named PatchSAE, to extract interpretable concepts at granular levels (e.g., shape, color, or semantics of an object) and their patch-wise spatial attributions. We explore how these concepts influence the model output in downstream image classification tasks and investigate how recent state-of-the-art prompt-based adaptation techniques change the association of model inputs to these concepts. While activations of concepts slightly change between adapted and non-adapted models, we find that the majority of gains on common adaptation tasks can be explained with the existing concepts already present in the non-adapted foundation model. This work provides a concrete framework to train and use SAEs for Vision Transformers and provides insights into explaining adaptation mechanisms.
comment: Published as a conference paper at the Thirteenth International Conference on Learning Representations (ICLR 2025)
♻ ☆ Semi-Implicit Functional Gradient Flow for Efficient Sampling
Particle-based variational inference methods (ParVIs) use nonparametric variational families represented by particles to approximate the target distribution according to the kernelized Wasserstein gradient flow for the Kullback-Leibler (KL) divergence. Although functional gradient flows have been introduced to expand the kernel space for better flexibility, the deterministic updating mechanism may limit exploration and require expensive repetitive runs for new samples. In this paper, we propose Semi-Implicit Functional Gradient flow (SIFG), a functional gradient ParVI method that uses perturbed particles with Gaussian noise as the approximation family. We show that the corresponding functional gradient flow, which can be estimated via denoising score matching with neural networks, exhibits strong theoretical convergence guarantees due to a higher-order smoothness brought to the approximation family via Gaussian perturbation. In addition, we present an adaptive version of our method that automatically selects the appropriate noise magnitude during sampling, striking a good balance between exploration efficiency and approximation accuracy. Extensive experiments on both simulated and real-world datasets demonstrate the effectiveness and efficiency of the proposed framework.
comment: 46 pages, 13 figures
♻ ☆ Unified continuous-time q-learning for mean-field game and mean-field control problems
This paper studies the continuous-time q-learning in mean-field jump-diffusion models when the population distribution is not directly observable. We propose the integrated q-function in decoupled form (decoupled Iq-function) from the representative agent's perspective and establish its martingale characterization, which provides a unified policy evaluation rule for both mean-field game (MFG) and mean-field control (MFC) problems. Moreover, we consider the learning procedure where the representative agent updates the population distribution based on his own state values. Depending on the task to solve the MFG or MFC problem, we can employ the decoupled Iq-function differently to characterize the mean-field equilibrium policy or the mean-field optimal policy respectively. Based on these theoretical findings, we devise a unified q-learning algorithm for both MFG and MFC problems by utilizing test policies and the averaged martingale orthogonality condition. For several financial applications in the jump-diffusion setting, we obtain the exact parameterization of the decoupled Iq-functions and the value functions, and illustrate our q-learning algorithm with satisfactory performance.
♻ ☆ Invariant Federated Learning for Edge Intelligence: Mitigating Heterogeneity and Asynchrony via Exit Strategy and Invariant Penalty
This paper provides an invariant federated learning system for resource-constrained edge intelligence. This framework can avoid the impact of heterogeneity and asynchrony by exit strategy and invariant penalty. We decompose local information into two orthogonal components to measure the contribution or impact of heterogeneous and asynchronous clients. We propose that the exit of abnormal clients can guarantee the effect of the model on most clients. Meanwhile, to ensure the models' performance on exited abnormal clients and those who lack training resources, we propose Federated Learning with Invariant Penalty for Generalization (FedIPG) based on the invariant orthogonal decomposition of parameters. Theoretical proof shows that FedIPG reduces the Out-Of-Distribution prediction loss without increasing the communication burden. The performance of FedIPG combined with an exit strategy is tested empirically in multiple scales using four datasets. It shows our system can enhance In-Distribution performance and outperform the state-of-the-art algorithm in Out-Of-Distribution generalization while maintaining model convergence. Additionally, the results of the visual experiment prove that FedIPG contains preliminary causality in terms of ignoring confounding features.
♻ ☆ DITTO: Offline Imitation Learning with World Models
For imitation learning algorithms to scale to real-world challenges, they must handle high-dimensional observations, offline learning, and policy-induced covariate-shift. We propose DITTO, an offline imitation learning algorithm which addresses all three of these problems. DITTO optimizes a novel distance metric in the latent space of a learned world model: First, we train a world model on all available trajectory data, then, the imitation agent is unrolled from expert start states in the learned model, and penalized for its latent divergence from the expert dataset over multiple time steps. We optimize this multi-step latent divergence using standard reinforcement learning algorithms, which provably induces imitation learning, and empirically achieves state-of-the art performance and sample efficiency on a range of Atari environments from pixels, without any online environment access. We also adapt other standard imitation learning algorithms to the world model setting, and show that this considerably improves their performance. Our results show how creative use of world models can lead to a simple, robust, and highly-performant policy-learning framework.
♻ ☆ Inverting Transformer-based Vision Models
Understanding the mechanisms underlying deep neural networks in computer vision remains a fundamental challenge. While many previous approaches have focused on visualizing intermediate representations within deep neural networks, particularly convolutional neural networks, these techniques have yet to be thoroughly explored in transformer-based vision models. In this study, we apply a modular approach of training inverse models to reconstruct input images from intermediate layers within a Detection Transformer and a Vision Transformer, showing that this approach is efficient and feasible. Through qualitative and quantitative evaluations of reconstructed images, we generate insights into the underlying mechanisms of these architectures, highlighting their similarities and differences in terms of contextual shape and preservation of image details, inter-layer correlation, and robustness to color perturbations. Our analysis illustrates how these properties emerge within the models, contributing to a deeper understanding of transformer-based vision models. The code for reproducing our experiments is available at github.com/wiskott-lab/inverse-detection-transformer.
♻ ☆ Application of linear regression method to the deep reinforcement learning in continuous action cases
The linear regression (LR) method offers the advantage that optimal parameters can be calculated relatively easily, although its representation capability is limited than that of the deep learning technique. To improve deep reinforcement learning, the Least Squares Deep Q Network (LS-DQN) method was proposed by Levine et al., which combines Deep Q Network (DQN) with LR method. However, the LS-DQN method assumes that the actions are discrete. In this study, we propose the Double Least Squares Deep Deterministic Policy Gradient (DLS-DDPG) method to address this limitation. This method combines the LR method with the Deep Deterministic Policy Gradient (DDPG) technique, one of the representative deep reinforcement learning algorithms for continuous action cases. Numerical experiments conducted in MuJoCo environments showed that the LR update improved performance at least in some tasks, although there are difficulties such as the inability to make the regularization terms small.
comment: 21 pages, 6 figures
♻ ☆ Generating Likely Counterfactuals Using Sum-Product Networks
The need to explain decisions made by AI systems is driven by both recent regulation and user demand. The decisions are often explainable only post hoc. In counterfactual explanations, one may ask what constitutes the best counterfactual explanation. Clearly, multiple criteria must be taken into account, although "distance from the sample" is a key criterion. Recent methods that consider the plausibility of a counterfactual seem to sacrifice this original objective. Here, we present a system that provides high-likelihood explanations that are, at the same time, close and sparse. We show that the search for the most likely explanations satisfying many common desiderata for counterfactual explanations can be modeled using Mixed-Integer Optimization (MIO). We use a Sum-Product Network (SPN) to estimate the likelihood of a counterfactual. To achieve that, we propose an MIO formulation of an SPN, which can be of independent interest. The source code with examples is available at https://github.com/Epanemu/LiCE.
♻ ☆ Babel: A Scalable Pre-trained Model for Multi-Modal Sensing via Expandable Modality Alignment
This paper presents Babel, the expandable modality alignment model, specially designed for multi-modal sensing. While there has been considerable work on multi-modality alignment, they all struggle to effectively incorporate multiple sensing modalities due to the data scarcity constraints. How to utilize multi-modal data with partial pairings in sensing remains an unresolved challenge. Babel tackles this challenge by introducing the concept of expandable modality alignment. The key idea involves transforming the N-modality alignment into a series of binary-modality alignments. Novel techniques are also proposed to further mitigate data scarcity issue and balance the contribution of the newly incorporated modality with the previously established modality alignment during the expandable alignment process. We provide the comprehensive implementation. In the pre-training phase, Babel currently aligns 6 sensing modalities, namely Wi-Fi, mmWave, IMU, LiDAR, video, and depth. For the deployment phase, as a foundation model, any single or combination of aligned modalities could be selected from Babel and applied to downstream tasks. Evaluation demonstrates Babel's outstanding performance on eight human activity recognition datasets, compared to a broad range of baselines e.g., the SOTA single-modal sensing networks, multi-modal sensing framework, and multi-modal large language models. Babel not only improves the performance of individual modality sensing (12% averaged accuracy improvement), but also effectively fuses multiple available modalities (up to 22% accuracy increase). Case studies also highlight emerging application scenarios empowered by Babel, including cross-modality retrieval (i.e., sensing imaging), and bridging LLM for sensing comprehension.
comment: Accepted by SenSys'25
♻ ☆ SPHINX-X: Scaling Data and Parameters for a Family of Multi-modal Large Language Models ICML 2024
We propose SPHINX-X, an extensive Multimodality Large Language Model (MLLM) series developed upon SPHINX. To improve the architecture and training efficiency, we modify the SPHINX framework by removing redundant visual encoders, bypassing fully-padded sub-images with skip tokens, and simplifying multi-stage training into a one-stage all-in-one paradigm. To fully unleash the potential of MLLMs, we assemble a comprehensive multi-domain and multimodal dataset covering publicly available resources in language, vision, and vision-language tasks. We further enrich this collection with our curated OCR intensive and Set-of-Mark datasets, extending the diversity and generality. By training over different base LLMs including TinyLlama1.1B, InternLM2-7B, LLaMA2-13B, and Mixtral8x7B, we obtain a spectrum of MLLMs that vary in parameter size and multilingual capabilities. Comprehensive benchmarking reveals a strong correlation between the multi-modal performance with the data and parameter scales. Code and models are released at https://github.com/Alpha-VLLM/LLaMA2-Accessory
comment: Accepted by ICML 2024. Code and models are released at https://github.com/Alpha-VLLM/LLaMA2-Accessory
♻ ☆ AutArch: An AI-assisted workflow for object detection and automated recording in archaeological catalogues
The context of this paper is the creation of large uniform archaeological datasets from heterogeneous published resources, such as find catalogues - with the help of AI and Big Data. The paper is concerned with the challenge of consistent assemblages of archaeological data. We cannot simply combine existing records, as they differ in terms of quality and recording standards. Thus, records have to be recreated from published archaeological illustrations. This is only a viable path with the help of automation. The contribution of this paper is a new workflow for collecting data from archaeological find catalogues available as legacy resources, such as archaeological drawings and photographs in large unsorted PDF files; the workflow relies on custom software (AutArch) supporting image processing, object detection, and interactive means of validating and adjusting automatically retrieved data. We integrate artificial intelligence (AI) in terms of neural networks for object detection and classification into the workflow, thereby speeding up, automating, and standardising data collection. Objects commonly found in archaeological catalogues - such as graves, skeletons, ceramics, ornaments, stone tools and maps - are detected. Those objects are spatially related and analysed to extract real-life attributes, such as the size and orientation of graves based on the north arrow and the scale. We also automate recording of geometric whole-outlines through contour detection, as an alternative to landmark-based geometric morphometrics. Detected objects, contours, and other automatically retrieved data can be manually validated and adjusted. We use third millennium BC Europe (encompassing cultures such as 'Corded Ware' and 'Bell Beaker', and their burial practices) as a 'testing ground' and for evaluation purposes; this includes a user study for the workflow and the AutArch software.
♻ ☆ Strength Estimation and Human-Like Strength Adjustment in Games ICLR 2025
Strength estimation and adjustment are crucial in designing human-AI interactions, particularly in games where AI surpasses human players. This paper introduces a novel strength system, including a strength estimator (SE) and an SE-based Monte Carlo tree search, denoted as SE-MCTS, which predicts strengths from games and offers different playing strengths with human styles. The strength estimator calculates strength scores and predicts ranks from games without direct human interaction. SE-MCTS utilizes the strength scores in a Monte Carlo tree search to adjust playing strength and style. We first conduct experiments in Go, a challenging board game with a wide range of ranks. Our strength estimator significantly achieves over 80% accuracy in predicting ranks by observing 15 games only, whereas the previous method reached 49% accuracy for 100 games. For strength adjustment, SE-MCTS successfully adjusts to designated ranks while achieving a 51.33% accuracy in aligning to human actions, outperforming a previous state-of-the-art, with only 42.56% accuracy. To demonstrate the generality of our strength system, we further apply SE and SE-MCTS to chess and obtain consistent results. These results show a promising approach to strength estimation and adjustment, enhancing human-AI interactions in games. Our code is available at https://rlg.iis.sinica.edu.tw/papers/strength-estimator.
comment: Accepted by the Thirteenth International Conference on Learning Representations (ICLR 2025)
♻ ☆ Building Multilingual Datasets for Predicting Mental Health Severity through LLMs: Prospects and Challenges
Large Language Models (LLMs) are increasingly being integrated into various medical fields, including mental health support systems. However, there is a gap in research regarding the effectiveness of LLMs in non-English mental health support applications. To address this problem, we present a novel multilingual adaptation of widely-used mental health datasets, translated from English into six languages (e.g., Greek, Turkish, French, Portuguese, German, and Finnish). This dataset enables a comprehensive evaluation of LLM performance in detecting mental health conditions and assessing their severity across multiple languages. By experimenting with GPT and Llama, we observe considerable variability in performance across languages, despite being evaluated on the same translated dataset. This inconsistency underscores the complexities inherent in multilingual mental health support, where language-specific nuances and mental health data coverage can affect the accuracy of the models. Through comprehensive error analysis, we emphasize the risks of relying exclusively on LLMs in medical settings (e.g., their potential to contribute to misdiagnoses). Moreover, our proposed approach offers significant cost savings for multilingual tasks, presenting a major advantage for broad-scale implementation.
♻ ☆ Survival Analysis with Machine Learning for Predicting Li-ion Battery Remaining Useful Life
The accurate prediction of RUL for lithium-ion batteries is crucial for enhancing the reliability and longevity of energy storage systems. Traditional methods for RUL prediction often struggle with issues such as data sparsity, varying battery chemistries, and the inability to capture complex degradation patterns over time. In this study, we propose a survival analysis-based framework combined with deep learning models to predict the RUL of lithium-ion batteries. Specifically, we utilize five advanced models: the Cox-type models (Cox, CoxPH, and CoxTime) and two machine-learning-based models (DeepHit and MTLR). These models address the challenges of accurate RUL estimation by transforming raw time-series battery data into survival data, including key degradation indicators such as voltage, current, and internal resistance. Advanced feature extraction techniques enhance the model's robustness in diverse real-world scenarios, including varying charging conditions and battery chemistries. Our models are tested using 10-fold cross-validation, ensuring generalizability and minimizing overfitting. Experimental results show that our survival-based framework significantly improves RUL prediction accuracy compared to traditional methods, providing a reliable tool for battery management and maintenance optimization. This study contributes to the advancement of predictive maintenance in battery technology, offering valuable insights for both researchers and industry practitioners aiming to enhance the operational lifespan of lithium-ion batteries.
♻ ☆ Bypassing orthogonalization in the quantum DPP sampler
Given an $n\times r$ matrix $X$ of rank $r$, consider the problem of sampling $r$ integers $\mathtt{C}\subset \{1, \dots, n\}$ with probability proportional to the squared determinant of the rows of $X$ indexed by $\mathtt{C}$. The distribution of $\mathtt{C}$ is called a projection determinantal point process (DPP). The vanilla classical algorithm to sample a DPP works in two steps, an orthogonalization in $\mathcal{O}(nr^2)$ and a sampling step of the same cost. The bottleneck of recent quantum approaches to DPP sampling remains that preliminary orthogonalization step. For instance, (Kerenidis and Prakash, 2022) proposed an algorithm with the same $\mathcal{O}(nr^2)$ orthogonalization, followed by a $\mathcal{O}(nr)$ classical step to find the gates in a quantum circuit. The classical $\mathcal{O}(nr^2)$ orthogonalization thus still dominates the cost. Our first contribution is to reduce preprocessing to normalizing the columns of $X$, obtaining $\mathsf{X}$ in $\mathcal{O}(nr)$ classical operations. We show that a simple circuit inspired by the formalism of Kerenidis et al., 2022 samples a DPP of a type we had never encountered in applications, which is different from our target DPP. Plugging this circuit into a rejection sampling routine, we recover our target DPP after an expected $1/\det \mathsf{X}^\top\mathsf{X} = 1/a$ preparations of the quantum circuit. Using amplitude amplification, our second contribution is to boost the acceptance probability from $a$ to $1-a$ at the price of a circuit depth of $\mathcal{O}(r\log n/\sqrt{a})$ and $\mathcal{O}(\log n)$ extra qubits. Prepending a fast, sketching-based classical approximation of $a$, we obtain a pipeline to sample a projection DPP on a quantum computer, where the former $\mathcal{O}(nr^2)$ preprocessing bottleneck has been replaced by the $\mathcal{O}(nr)$ cost of normalizing the columns and the cost of our approximation of $a$.
comment: 44 pages, 16 figures. Minor corrections and details about the sketching cost
♻ ☆ Network reconstruction via the minimum description length principle
A fundamental problem associated with the task of network reconstruction from dynamical or behavioral data consists in determining the most appropriate model complexity in a manner that prevents overfitting, and produces an inferred network with a statistically justifiable number of edges. The status quo in this context is based on $L_{1}$ regularization combined with cross-validation. However, besides its high computational cost, this commonplace approach unnecessarily ties the promotion of sparsity with weight "shrinkage". This combination forces a trade-off between the bias introduced by shrinkage and the network sparsity, which often results in substantial overfitting even after cross-validation. In this work, we propose an alternative nonparametric regularization scheme based on hierarchical Bayesian inference and weight quantization, which does not rely on weight shrinkage to promote sparsity. Our approach follows the minimum description length (MDL) principle, and uncovers the weight distribution that allows for the most compression of the data, thus avoiding overfitting without requiring cross-validation. The latter property renders our approach substantially faster to employ, as it requires a single fit to the complete data. As a result, we have a principled and efficient inference scheme that can be used with a large variety of generative models, without requiring the number of edges to be known in advance. We also demonstrate that our scheme yields systematically increased accuracy in the reconstruction of both artificial and empirical networks. We highlight the use of our method with the reconstruction of interaction networks between microbial communities from large-scale abundance samples involving in the order of $10^{4}$ to $10^{5}$ species, and demonstrate how the inferred model can be used to predict the outcome of interventions in the system.
comment: 18 pages, 9 figures. Code and documentation are available at https://graph-tool.skewed.de/static/doc/demos/reconstruction_indirect/reconstruction.html
♻ ☆ Advancing Tool-Augmented Large Language Models: Integrating Insights from Errors in Inference Trees NeurIPS 2024
Tool-augmented large language models (LLMs) leverage tools, often in the form of APIs, to improve their reasoning capabilities on complex tasks. This enables them to act as intelligent agents interacting with the real world. The recently introduced ToolLLaMA model by Qin et al. [2023] utilizes the depth-first search-based decision tree (DFSDT) mechanism for multi-step reasoning with $16000+$ real-world APIs, effectively enhancing the performance of tool-augmented LLMs compared to traditional chain reasoning mechanisms. However, their approach only employs successful paths from decision trees (also called inference trees) for supervised fine-tuning (SFT), missing out on the potential learning opportunities from failed paths. Inspired by this, we propose an inference trajectory optimization framework based on preference learning to address this limitation. We first introduce a novel method for constructing step-wise preference data from tree-like expert trajectories, which leverages the previously ignored failed explorations in the decision trees. In the subsequent training phase, we first fine-tune the LLM with successful tool-usage expert trajectories and then apply direct preference optimization (DPO) with the preference data to update the LLM's policy, resulting in our ToolPrefer-LLaMA (TP-LLaMA) model. This approach not only enhances the utilization of original expert data but also broadens the learning space of the model. Our experiments demonstrate that by obtaining insights from errors in inference trees, TP-LLaMA significantly outperforms the baselines across almost all test scenarios by a large margin and exhibits better generalization capabilities with unseen APIs. At the same time, TP-LLaMA has also demonstrated superior reasoning efficiency compared to the baselines, making it more suitable for complex tool-usage reasoning tasks.
comment: Accepted by NeurIPS 2024
♻ ☆ Neuromorphic Attitude Estimation and Control
The real-world application of small drones is mostly hampered by energy limitations. Neuromorphic computing promises extremely energy-efficient AI for autonomous flight but is still challenging to train and deploy on real robots. To reap the maximal benefits from neuromorphic computing, it is necessary to perform all autonomy functions end-to-end on a single neuromorphic chip, from low-level attitude control to high-level navigation. This research presents the first neuromorphic control system using a spiking neural network (SNN) to effectively map a drone's raw sensory input directly to motor commands. We apply this method to low-level attitude estimation and control for a quadrotor, deploying the SNN on a tiny Crazyflie. We propose a modular SNN, separately training and then merging estimation and control sub-networks. The SNN is trained with imitation learning, using a flight dataset of sensory-motor pairs. Post-training, the network is deployed on the Crazyflie, issuing control commands from sensor inputs at 500Hz. Furthermore, for the training procedure we augmented training data by flying a controller with additional excitation and time-shifting the target data to enhance the predictive capabilities of the SNN. On the real drone, the perception-to-control SNN tracks attitude commands with an average error of 3.0 degrees, compared to 2.7 degrees for the regular flight stack. We also show the benefits of the proposed learning modifications for reducing the average tracking error and reducing oscillations. Our work shows the feasibility of performing neuromorphic end-to-end control, laying the basis for highly energy-efficient and low-latency neuromorphic autopilots.
♻ ☆ A physics-informed transformer neural operator for learning generalized solutions of initial boundary value problems
Initial boundary value problems arise commonly in applications with engineering and natural systems governed by nonlinear partial differential equations (PDEs). Operator learning is an emerging field for solving these equations by using a neural network to learn a map between infinite dimensional input and output function spaces. These neural operators are trained using a combination of data (observations or simulations) and PDE-residuals (physics-loss). A major drawback of existing neural approaches is the requirement to retrain with new initial/boundary conditions, and the necessity for a large amount of simulation data for training. We develop a physics-informed transformer neural operator (named PINTO) that efficiently generalizes to unseen initial and boundary conditions, trained in a simulation-free setting using only physics loss. The main innovation lies in our new iterative kernel integral operator units, implemented using cross-attention, to transform the PDE solution's domain points into an initial/boundary condition-aware representation vector, enabling efficient learning of the solution function for new scenarios. The PINTO architecture is applied to simulate the solutions of important equations used in engineering applications: advection, Burgers, and steady and unsteady Navier-Stokes equations (three flow scenarios). For these five test cases, we show that the relative errors during testing under challenging conditions of unseen initial/boundary conditions are only one-fifth to one-third of other leading physics informed operator learning methods. Moreover, our PINTO model is able to accurately solve the advection and Burgers equations at time steps that are not included in the training collocation points. The code is available at https://github.com/quest-lab-iisc/PINTO
comment: 29 pages, 11 figures, 4 tables
♻ ☆ Hierarchy-Boosted Funnel Learning for Identifying Semiconductors with Ultralow Lattice Thermal Conductivity
Data-driven machine learning (ML) has demonstrated tremendous potential in material property predictions. However, the scarcity of materials data with costly property labels in the vast chemical space presents a significant challenge for ML in efficiently predicting properties and uncovering structure-property relationships. Here, we propose a novel hierarchy-boosted funnel learning (HiBoFL) framework, which is successfully applied to identify semiconductors with ultralow lattice thermal conductivity ($\kappa_\mathrm{L}$). By training on only a few hundred materials targeted by unsupervised learning from a pool of hundreds of thousands, we achieve efficient and interpretable supervised predictions of ultralow $\kappa_\mathrm{L}$, thereby circumventing large-scale brute-force \textit{ab initio} calculations without clear objectives. As a result, we provide a list of candidates with ultralow $\kappa_\mathrm{L}$ for potential thermoelectric applications and discover a new factor that significantly influences structural anharmonicity. This HiBoFL framework offers a novel practical pathway for accelerating the discovery of functional materials.
comment: 15 pages, 6 figures
♻ ☆ Specialized Foundation Models Struggle to Beat Supervised Baselines
Following its success for vision and text, the "foundation model" (FM) paradigm -- pretraining large models on massive data, then fine-tuning on target tasks -- has rapidly expanded to domains in the sciences, engineering, healthcare, and beyond. Has this achieved what the original FMs accomplished, i.e. the supplanting of traditional supervised learning in their domains? To answer we look at three modalities -- genomics, satellite imaging, and time series -- with multiple recent FMs and compare them to a standard supervised learning workflow: model development, hyperparameter tuning, and training, all using only data from the target task. Across these three specialized domains, we find that it is consistently possible to train simple supervised models -- no more complicated than a lightly modified wide ResNet or UNet -- that match or even outperform the latest foundation models. Our work demonstrates that the benefits of large-scale pretraining have yet to be realized in many specialized areas, reinforces the need to compare new FMs to strong, well-tuned baselines, and introduces two new, easy-to-use, open-source, and automated workflows for doing so.
comment: The first two authors contributed equally. The order was determined by coin flip
♻ ☆ Examining Two Hop Reasoning Through Information Content Scaling
Prior work has found that transformers have an inconsistent ability to learn to answer latent two-hop questions -- questions of the form "Who is Bob's mother's boss?" We study why this is the case by examining how transformers' capacity to learn datasets of two-hop questions and answers (two-hop QA) scales with their size, motivated by prior work on transformer knowledge capacity for simple factual memorization. We find that capacity scaling and generalization both support the hypothesis that latent two-hop QA requires transformers to learn each fact twice, while two-hop QA with chain of thought does not. We also show that with appropriate dataset parameters, it is possible to "trap" very small models in a regime where they memorize answers to two-hop questions independently, even though they would perform better if they could learn to answer them with function composition. Our findings show that measurement of capacity scaling can complement existing interpretability methods, though there are challenges in using it for this purpose.
♻ ☆ Nonlinear Stochastic Gradient Descent and Heavy-tailed Noise: A Unified Framework and High-probability Guarantees
We study high-probability convergence in online learning, in the presence of heavy-tailed noise. To combat the heavy tails, a general framework of nonlinear SGD methods is considered, subsuming several popular nonlinearities like sign, quantization, component-wise and joint clipping. In our work the nonlinearity is treated in a black-box manner, allowing us to establish unified guarantees for a broad range of nonlinear methods. For symmetric noise and non-convex costs we establish convergence of gradient norm-squared, at a rate $\widetilde{\mathcal{O}}(t^{-1/4})$, while for the last iterate of strongly convex costs we establish convergence to the population optima, at a rate $\mathcal{O}(t^{-\zeta})$, where $\zeta \in (0,1)$ depends on noise and problem parameters. Further, if the noise is a (biased) mixture of symmetric and non-symmetric components, we show convergence to a neighbourhood of stationarity, whose size depends on the mixture coefficient, nonlinearity and noise. Compared to state-of-the-art, who only consider clipping and require unbiased noise with bounded $p$-th moments, $p \in (1,2]$, we provide guarantees for a broad class of nonlinearities, without any assumptions on noise moments. While the rate exponents in state-of-the-art depend on noise moments and vanish as $p \rightarrow 1$, our exponents are constant and strictly better whenever $p < 6/5$ for non-convex and $p < 8/7$ for strongly convex costs. Experiments validate our theory, showing that clipping is not always the optimal nonlinearity, further underlining the value of a general framework.
comment: 40 pages, 6 figures
♻ ☆ Selective Aggregation for Low-Rank Adaptation in Federated Learning ICLR 2025
We investigate LoRA in federated learning through the lens of the asymmetry analysis of the learned $A$ and $B$ matrices. In doing so, we uncover that $A$ matrices are responsible for learning general knowledge, while $B$ matrices focus on capturing client-specific knowledge. Based on this finding, we introduce Federated Share-A Low-Rank Adaptation (FedSA-LoRA), which employs two low-rank trainable matrices $A$ and $B$ to model the weight update, but only $A$ matrices are shared with the server for aggregation. Moreover, we delve into the relationship between the learned $A$ and $B$ matrices in other LoRA variants, such as rsLoRA and VeRA, revealing a consistent pattern. Consequently, we extend our FedSA-LoRA method to these LoRA variants, resulting in FedSA-rsLoRA and FedSA-VeRA. In this way, we establish a general paradigm for integrating LoRA with FL, offering guidance for future work on subsequent LoRA variants combined with FL. Extensive experimental results on natural language understanding and generation tasks demonstrate the effectiveness of the proposed method. Our code is available at https://github.com/Pengxin-Guo/FedSA-LoRA.
comment: Accepted at ICLR 2025
♻ ☆ STP: Self-play LLM Theorem Provers with Iterative Conjecturing and Proving
A fundamental challenge in formal theorem proving by LLMs is the lack of high-quality training data. Although reinforcement learning or expert iteration partially mitigates this issue by alternating between LLM generating proofs and finetuning them on correctly generated ones, performance quickly plateaus due to the scarcity of correct proofs (sparse rewards). To keep improving the models with limited data, we draw inspiration from mathematicians, who continuously develop new results, partly by proposing novel conjectures or exercises (which are often variants of known results) and attempting to solve them. We design the Self-play Theorem Prover (STP) that simultaneously takes on two roles, conjecturer and prover, each providing training signals to the other. The conjecturer is trained iteratively on previously generated conjectures that are barely provable by the current prover, which incentivizes it to generate increasingly challenging conjectures over time. The prover attempts to prove the conjectures with standard expert iteration. We evaluate STP with both Lean and Isabelle formal versifiers. With 51.3 billion tokens generated during the training in Lean, STP proves 28.5% of the statements in the LeanWorkbook dataset, doubling the previous best result of 13.2% achieved through expert iteration. The final model achieves state-of-the-art performance among whole-proof generation methods on miniF2F-test (65.0%, pass@3200), Proofnet-test (23.9%, pass@3200) and PutnamBench (8/644, pass@3200). We release our code, model, and dataset in this URL: https://github.com/kfdong/STP.
comment: 25 pages, 5 figures
♻ ☆ MODL: Multilearner Online Deep Learning
Online deep learning tackles the challenge of learning from data streams by balancing two competing goals: fast learning and deep learning. However, existing research primarily emphasizes deep learning solutions, which are more adept at handling the ``deep'' aspect than the ``fast'' aspect of online learning. In this work, we introduce an alternative paradigm through a hybrid multilearner approach. We begin by developing a fast online logistic regression learner, which operates without relying on backpropagation. It leverages closed-form recursive updates of model parameters, efficiently addressing the fast learning component of the online learning challenge. This approach is further integrated with a cascaded multilearner design, where shallow and deep learners are co-trained in a cooperative, synergistic manner to solve the online learning problem. We demonstrate that this approach achieves state-of-the-art performance on standard online learning datasets. We make our code available: https://github.com/AntonValk/MODL
♻ ☆ Separation capacity of linear reservoirs with random connectivity matrix
A natural hypothesis for the success of reservoir computing in generic tasks is the ability of the untrained reservoir to map different input time series to separable reservoir states - a property we term separation capacity. We provide a rigorous mathematical framework to quantify this capacity for random linear reservoirs, showing that it is fully characterised by the spectral properties of the generalised matrix of moments of the random reservoir connectivity matrix. Our analysis focuses on reservoirs with Gaussian connectivity matrices, both symmetric and i.i.d., although the techniques extend naturally to broader classes of random matrices. In the symmetric case, the generalised matrix of moments is a Hankel matrix. Using classical estimates from random matrix theory, we establish that separation capacity deteriorates over time and that, for short inputs, optimal separation in large reservoirs is achieved when the matrix entries are scaled with a factor $\rho_T/\sqrt{N}$, where $N$ is the reservoir dimension and $\rho_T$ depends on the maximum input length. In the i.i.d.\ case, we establish that optimal separation with large reservoirs is consistently achieved when the entries of the reservoir matrix are scaled with the exact factor $1/\sqrt{N}$, which aligns with common implementations of reservoir computing. We further give upper bounds on the quality of separation as a function of the length of the time series. We complement this analysis with an investigation of the likelihood of this separation and its consistency under different architectural choices.
♻ ☆ Neural Representation for Wireless Radiation Field Reconstruction: A 3D Gaussian Splatting Approach
Wireless channel modeling plays a pivotal role in designing, analyzing, and optimizing wireless communication systems. Nevertheless, developing an effective channel modeling approach has been a long-standing challenge. This issue has been escalated due to denser network deployment, larger antenna arrays, and broader bandwidth in next-generation networks. To address this challenge, we put forth WRF-GS, a novel framework for channel modeling based on wireless radiation field (WRF) reconstruction using 3D Gaussian splatting (3D-GS). WRF-GS employs 3D Gaussian primitives and neural networks to capture the interactions between the environment and radio signals, enabling efficient WRF reconstruction and visualization of the propagation characteristics. The reconstructed WRF can then be used to synthesize the spatial spectrum for comprehensive wireless channel characterization. While WRF-GS demonstrates remarkable effectiveness, it faces limitations in capturing high-frequency signal variations caused by complex multipath effects. To overcome these limitations, we propose WRF-GS+, an enhanced framework that integrates electromagnetic wave physics into the neural network design. WRF-GS+ leverages deformable 3D Gaussians to model both static and dynamic components of the WRF, significantly improving its ability to characterize signal variations. In addition, WRF-GS+ enhances the splatting process by simplifying the 3D-GS modeling process and improving computational efficiency. Experimental results demonstrate that both WRF-GS and WRF-GS+ outperform baselines for spatial spectrum synthesis, including ray tracing and other deep-learning approaches. Notably, WRF-GS+ achieves state-of-the-art performance in the received signal strength indication (RSSI) and channel state information (CSI) prediction tasks, surpassing existing methods by more than 0.7 dB and 3.36 dB, respectively.
comment: This work has been submitted to the IEEE journals for possible publication. The code is available at https://github.com/wenchaozheng/WRF-GSplus
♻ ☆ Harnessing Nonidealities in Analog In-Memory Computing Circuits: A Physical Modeling Approach for Neuromorphic Systems
Large-scale deep learning models are increasingly constrained by their immense energy consumption, limiting their scalability and applicability for edge intelligence. In-memory computing (IMC) offers a promising solution by addressing the von Neumann bottleneck inherent in traditional deep learning accelerators, significantly reducing energy consumption. However, the analog nature of IMC introduces hardware nonidealities that degrade model performance and reliability. This paper presents a novel approach to directly train physical models of IMC, formulated as ordinary-differential-equation (ODE)-based physical neural networks (PNNs). To enable the training of large-scale networks, we propose a technique called differentiable spike-time discretization (DSTD), which reduces the computational cost of ODE-based PNNs by up to 20 times in speed and 100 times in memory. We demonstrate that such large-scale networks enhance the learning performance by exploiting hardware nonidealities on the CIFAR-10 dataset. The proposed bottom-up methodology is validated through the post-layout SPICE simulations on the IMC circuit with nonideal characteristics using the sky130 process. The proposed PNN approach reduces the discrepancy between the model behavior and circuit dynamics by at least an order of magnitude. This work paves the way for leveraging nonideal physical devices, such as non-volatile resistive memories, for energy-efficient deep learning applications.
comment: Title changed
♻ ☆ Semi-Supervised End-To-End Contrastive Learning For Time Series Classification NeurIPS 2023
Time series classification is a critical task in various domains, such as finance, healthcare, and sensor data analysis. Unsupervised contrastive learning has garnered significant interest in learning effective representations from time series data with limited labels. The prevalent approach in existing contrastive learning methods consists of two separate stages: pre-training the encoder on unlabeled datasets and fine-tuning the well-trained model on a small-scale labeled dataset. However, such two-stage approaches suffer from several shortcomings, such as the inability of unsupervised pre-training contrastive loss to directly affect downstream fine-tuning classifiers, and the lack of exploiting the classification loss which is guided by valuable ground truth. In this paper, we propose an end-to-end model called SLOTS (Semi-supervised Learning fOr Time clasSification). SLOTS receives semi-labeled datasets, comprising a large number of unlabeled samples and a small proportion of labeled samples, and maps them to an embedding space through an encoder. We calculate not only the unsupervised contrastive loss but also measure the supervised contrastive loss on the samples with ground truth. The learned embeddings are fed into a classifier, and the classification loss is calculated using the available true labels. The unsupervised, supervised contrastive losses and classification loss are jointly used to optimize the encoder and classifier. We evaluate SLOTS by comparing it with ten state-of-the-art methods across five datasets. The results demonstrate that SLOTS is a simple yet effective framework. When compared to the two-stage framework, our end-to-end SLOTS utilizes the same input data, consumes a similar computational cost, but delivers significantly improved performance. We release code and datasets at https://anonymous.4open.science/r/SLOTS-242E.
comment: Submitted to NeurIPS 2023
♻ ☆ Knowledge-aware contrastive heterogeneous molecular graph learning
Molecular representation learning is pivotal in predicting molecular properties and advancing drug design. Traditional methodologies, which predominantly rely on homogeneous graph encoding, are limited by their inability to integrate external knowledge and represent molecular structures across different levels of granularity. To address these limitations, we propose a paradigm shift by encoding molecular graphs into heterogeneous structures, introducing a novel framework: Knowledge-aware Contrastive Heterogeneous Molecular Graph Learning (KCHML). This approach leverages contrastive learning to enrich molecular representations with embedded external knowledge. KCHML conceptualizes molecules through three distinct graph views-molecular, elemental, and pharmacological-enhanced by heterogeneous molecular graphs and a dual message-passing mechanism. This design offers a comprehensive representation for property prediction, as well as for downstream tasks such as drug-drug interaction (DDI) prediction. Extensive benchmarking demonstrates KCHML's superiority over state-of-the-art molecular property prediction models, underscoring its ability to capture intricate molecular features.
♻ ☆ Knowledge Graph Embeddings: A Comprehensive Survey on Capturing Relation Properties
Knowledge Graph Embedding (KGE) techniques play a pivotal role in transforming symbolic Knowledge Graphs (KGs) into numerical representations, thereby enhancing various deep learning models for knowledge-augmented applications. Unlike entities, relations in KGs are the carriers of semantic meaning, and their accurate modeling is crucial for the performance of KGE models. Firstly, we address the complex mapping properties inherent in relations, such as one-to-one, one-to-many, many-to-one, and many-to-many mappings. We provide a comprehensive summary of relation-aware mapping-based models, models that utilize specific representation spaces, tensor decomposition-based models, and neural network-based models. Next, focusing on capturing various relation patterns like symmetry, asymmetry, inversion, and composition, we review models that employ modified tensor decomposition, those based on modified relation-aware mappings, and those that leverage rotation operations. Subsequently, considering the implicit hierarchical relations among entities, we introduce models that incorporate auxiliary information, models based on hyperbolic spaces, and those that utilize the polar coordinate system. Finally, in response to more complex scenarios such as sparse and dynamic KGs, this paper discusses potential future research directions. We explore innovative ideas such as integrating multimodal information into KGE, enhancing relation pattern modeling with rules, and developing models to capture relation characteristics in dynamic KGE settings.
comment: 22 pages, 8 figures, 3 tables, this paper is a modified English version of our article already published in Computer Science journal (in Chinese), released to facilitate communication among international researchers in the relevant fields
♻ ☆ Prioritized Trajectory Replay: A Replay Memory for Data-driven Reinforcement Learning AAMAS 2024
In recent years, data-driven reinforcement learning (RL), also known as offline RL, have gained significant attention. However, the role of data sampling techniques in offline RL has been overlooked despite its potential to enhance online RL performance. Recent research suggests applying sampling techniques directly to state-transitions does not consistently improve performance in offline RL. Therefore, in this study, we propose a memory technique, (Prioritized) Trajectory Replay (TR/PTR), which extends the sampling perspective to trajectories for more comprehensive information extraction from limited data. TR enhances learning efficiency by backward sampling of trajectories that optimizes the use of subsequent state information. Building on TR, we build the weighted critic target to avoid sampling unseen actions in offline training, and Prioritized Trajectory Replay (PTR) that enables more efficient trajectory sampling, prioritized by various trajectory priority metrics. We demonstrate the benefits of integrating TR and PTR with existing offline RL algorithms on D4RL. In summary, our research emphasizes the significance of trajectory-based data sampling techniques in enhancing the efficiency and performance of offline RL algorithms.
comment: Accepted by AAMAS 2024, see https://dl.acm.org/doi/10.5555/3635637.3662980
♻ ☆ Autoencoded UMAP-Enhanced Clustering for Unsupervised Learning
We propose a novel approach to unsupervised learning by constructing a non-linear embedding of the data into a low-dimensional space followed by any conventional clustering algorithm. The embedding promotes clusterability of the data and is comprised of two mappings: the encoder of an autoencoder neural network and the output of UMAP algorithm. The autoencoder is trained with a composite loss function that incorporates both a conventional data reconstruction as a regularization component and a clustering-promoting component built using the spectral graph theory. The two embeddings and the subsequent clustering are integrated into a three-stage unsupervised learning framework, referred to as Autoencoded UMAP-Enhanced Clustering (AUEC). When applied to MNIST data, AUEC significantly outperforms the state-of-the-art techniques in terms of clustering accuracy.
♻ ☆ Parameter Efficient Mamba Tuning via Projector-targeted Diagonal-centric Linear Transformation CVPR 2025
Despite the growing interest in Mamba architecture as a potential replacement for Transformer architecture, parameter-efficient fine-tuning (PEFT) approaches for Mamba remain largely unexplored. In our study, we introduce two key insights-driven strategies for PEFT in Mamba architecture: (1) While state-space models (SSMs) have been regarded as the cornerstone of Mamba architecture, then expected to play a primary role in transfer learning, our findings reveal that Projectors -- not SSMs -- are the predominant contributors to transfer learning. (2) Based on our observation, we propose a novel PEFT method specialized to Mamba architecture: Projector-targeted Diagonal-centric Linear Transformation (ProDiaL). ProDiaL focuses on optimizing only the pretrained Projectors for new tasks through diagonal-centric linear transformation matrices, without directly fine-tuning the Projector weights. This targeted approach allows efficient task adaptation, utilizing less than 1% of the total parameters, and exhibits strong performance across both vision and language Mamba models, highlighting its versatility and effectiveness.
comment: accepted in CVPR 2025
♻ ☆ GET: Unlocking the Multi-modal Potential of CLIP for Generalized Category Discovery CVPR 2025
Given unlabelled datasets containing both old and new categories, generalized category discovery (GCD) aims to accurately discover new classes while correctly classifying old classes. Current GCD methods only use a single visual modality of information, resulting in a poor classification of visually similar classes. As a different modality, text information can provide complementary discriminative information, which motivates us to introduce it into the GCD task. However, the lack of class names for unlabelled data makes it impractical to utilize text information. To tackle this challenging problem, in this paper, we propose a Text Embedding Synthesizer (TES) to generate pseudo text embeddings for unlabelled samples. Specifically, our TES leverages the property that CLIP can generate aligned vision-language features, converting visual embeddings into tokens of the CLIP's text encoder to generate pseudo text embeddings. Besides, we employ a dual-branch framework, through the joint learning and instance consistency of different modality branches, visual and semantic information mutually enhance each other, promoting the interaction and fusion of visual and text knowledge. Our method unlocks the multi-modal potentials of CLIP and outperforms the baseline methods by a large margin on all GCD benchmarks, achieving new state-of-the-art. Our code is available at: https://github.com/enguangW/GET.
comment: CVPR 2025
♻ ☆ A Comprehensive Survey of Time Series Forecasting: Architectural Diversity and Open Challenges
Time series forecasting is a critical task that provides key information for decision-making across various fields. Recently, various fundamental deep learning architectures such as MLPs, CNNs, RNNs, and GNNs have been developed and applied to solve time series forecasting problems. However, the structural limitations caused by the inductive biases of each deep learning architecture constrained their performance. Transformer models, which excel at handling long-term dependencies, have become significant architectural components for time series forecasting. However, recent research has shown that alternatives such as simple linear layers can outperform Transformers. These findings have opened up new possibilities for using diverse architectures. In this context of exploration into various models, the architectural modeling of time series forecasting has now entered a renaissance. This survey not only provides a historical context for time series forecasting but also offers comprehensive and timely analysis of the movement toward architectural diversification. By comparing and re-examining various deep learning models, we uncover new perspectives and presents the latest trends in time series forecasting, including the emergence of hybrid models, diffusion models, Mamba models, and foundation models. By focusing on the inherent characteristics of time series data, we also address open challenges that have gained attention in time series forecasting, such as channel dependency, distribution shift, causality, and feature extraction. This survey explores vital elements that can enhance forecasting performance through diverse approaches. These contributions lead to lowering the entry barriers for newcomers to the field of time series forecasting, while also offering seasoned researchers broad perspectives, new opportunities, and deep insights.
comment: Submitted to the Artificial Intelligence Review on October 10, 2024
♻ ☆ Scientific Machine Learning Seismology
Scientific machine learning (SciML) is an interdisciplinary research field that integrates machine learning, particularly deep learning, with physics theory to understand and predict complex natural phenomena. By incorporating physical knowledge, SciML reduces the dependency on observational data, which is often limited in the natural sciences. In this article, the fundamental concepts of SciML, its applications in seismology, and prospects are described. Specifically, two popular methods are mainly discussed: physics-informed neural networks (PINNs) and neural operators (NOs). PINNs can address both forward and inverse problems by incorporating governing laws into the loss functions. The use of PINNs is expanding into areas such as simultaneous solutions of differential equations, inference in underdetermined systems, and regularization based on physics. These research directions would broaden the scope of deep learning in natural sciences. NOs are models designed for operator learning, which deals with relationships between infinite-dimensional spaces. NOs show promise in modeling the time evolution of complex systems based on observational or simulation data. Since large amounts of data are often required, combining NOs with physics-informed learning holds significant potential. Finally, SciML is considered from a broader perspective beyond deep learning: statistical (or mathematical) frameworks that integrate observational data with physical principles to model natural phenomena. In seismology, mathematically rigorous Bayesian statistics has been developed over the past decades, whereas more flexible and scalable deep learning has only emerged recently. Both approaches can be considered as part of SciML in a broad sense. Theoretical and practical insights in both directions would advance SciML methodologies and thereby deepen our understanding of earthquake phenomena.
comment: English translation of the article published in Zisin (Journal of the Seismological Society of Japan)
♻ ☆ Optimizing Cycle Life Prediction of Lithium-ion Batteries via a Physics-Informed Model
Accurately measuring the cycle lifetime of commercial lithium-ion batteries is crucial for performance and technology development. We introduce a novel hybrid approach combining a physics-based equation with a self-attention model to predict the cycle lifetimes of commercial lithium iron phosphate graphite cells via early-cycle data. After fitting capacity loss curves to this physics-based equation, we then use a self-attention layer to reconstruct entire battery capacity loss curves. Our model exhibits comparable performances to existing models while predicting more information: the entire capacity loss curve instead of cycle life. This provides more robustness and interpretability: our model does not need to be retrained for a different notion of end-of-life and is backed by physical intuition.
Computer Vision and Pattern Recognition 252
☆ Sonata: Self-Supervised Learning of Reliable Point Representations CVPR 2025
In this paper, we question whether we have a reliable self-supervised point cloud model that can be used for diverse 3D tasks via simple linear probing, even with limited data and minimal computation. We find that existing 3D self-supervised learning approaches fall short when evaluated on representation quality through linear probing. We hypothesize that this is due to what we term the "geometric shortcut", which causes representations to collapse to low-level spatial features. This challenge is unique to 3D and arises from the sparse nature of point cloud data. We address it through two key strategies: obscuring spatial information and enhancing the reliance on input features, ultimately composing a Sonata of 140k point clouds through self-distillation. Sonata is simple and intuitive, yet its learned representations are strong and reliable: zero-shot visualizations demonstrate semantic grouping, alongside strong spatial reasoning through nearest-neighbor relationships. Sonata demonstrates exceptional parameter and data efficiency, tripling linear probing accuracy (from 21.8% to 72.5%) on ScanNet and nearly doubling performance with only 1% of the data compared to previous approaches. Full fine-tuning further advances SOTA across both 3D indoor and outdoor perception tasks.
comment: CVPR 2025, produced by Pointcept x Meta, project page: https://xywu.me/sonata/
☆ Bridging Continuous and Discrete Tokens for Autoregressive Visual Generation
Autoregressive visual generation models typically rely on tokenizers to compress images into tokens that can be predicted sequentially. A fundamental dilemma exists in token representation: discrete tokens enable straightforward modeling with standard cross-entropy loss, but suffer from information loss and tokenizer training instability; continuous tokens better preserve visual details, but require complex distribution modeling, complicating the generation pipeline. In this paper, we propose TokenBridge, which bridges this gap by maintaining the strong representation capacity of continuous tokens while preserving the modeling simplicity of discrete tokens. To achieve this, we decouple discretization from the tokenizer training process through post-training quantization that directly obtains discrete tokens from continuous representations. Specifically, we introduce a dimension-wise quantization strategy that independently discretizes each feature dimension, paired with a lightweight autoregressive prediction mechanism that efficiently model the resulting large token space. Extensive experiments show that our approach achieves reconstruction and generation quality on par with continuous methods while using standard categorical prediction. This work demonstrates that bridging discrete and continuous paradigms can effectively harness the strengths of both approaches, providing a promising direction for high-quality visual generation with simple autoregressive modeling. Project page: https://yuqingwang1029.github.io/TokenBridge.
comment: Project page: https://yuqingwang1029.github.io/TokenBridge
☆ XAttention: Block Sparse Attention with Antidiagonal Scoring
Long-Context Transformer Models (LCTMs) are vital for real-world applications but suffer high computational costs due to attention's quadratic complexity. Block-sparse attention mitigates this by focusing computation on critical regions, yet existing methods struggle with balancing accuracy and efficiency due to costly block importance measurements. In this paper, we introduce XAttention, a plug-and-play framework that dramatically accelerates long-context inference in Transformers models using sparse attention. XAttention's key innovation is the insight that the sum of antidiagonal values (i.e., from the lower-left to upper-right) in the attention matrix provides a powerful proxy for block importance. This allows for precise identification and pruning of non-essential blocks, resulting in high sparsity and dramatically accelerated inference. Across comprehensive evaluations on demanding long-context benchmarks-including RULER and LongBench for language, VideoMME for video understanding, and VBench for video generation. XAttention achieves accuracy comparable to full attention while delivering substantial computational gains. We demonstrate up to 13.5x acceleration in attention computation. These results underscore XAttention's ability to unlock the practical potential of block sparse attention, paving the way for scalable and efficient deployment of LCTMs in real-world applications. Code is available at https://github.com/mit-han-lab/x-attention.
comment: The first two authors contributed equally to this work
☆ DynamicVis: An Efficient and General Visual Foundation Model for Remote Sensing Image Understanding
The advancement of remote sensing technology has improved the spatial resolution of satellite imagery, facilitating more detailed visual representations for diverse interpretations. However, existing methods exhibit limited generalization capabilities across varied applications. While some contemporary foundation models demonstrate potential, they are hindered by insufficient cross-task adaptability and primarily process low-resolution imagery of restricted sizes, thus failing to fully exploit high-resolution data or leverage comprehensive large-scene semantics. Crucially, remote sensing imagery differs fundamentally from natural images, as key foreground targets (eg., maritime objects, artificial structures) often occupy minimal spatial proportions (~1%) and exhibit sparse distributions. Efficiently modeling cross-task generalizable knowledge from lengthy 2D tokens (~100,000) poses a significant challenge yet remains critical for remote sensing image understanding. Motivated by the selective attention mechanisms inherent to the human visual system, we propose DynamicVis, a dynamic visual perception foundation model for remote sensing imagery. The framework integrates a novel dynamic region perception backbone based on the selective state space model, which strategically balances localized detail extraction with global contextual integration, enabling computationally efficient encoding of large-scale data while maintaining architectural scalability. To enhance cross-task knowledge transferring, we introduce a multi-instance learning paradigm utilizing meta-embedding representations, trained on million-scale region-level annotations. Evaluations across nine downstream tasks demonstrate the model's versatility. DynamicVis achieves multi-level feature modeling with exceptional efficiency, processing (2048x2048) pixels with 97 ms latency (6% of ViT's) and 833 MB GPU memory (3% of ViT's).
☆ Tokenize Image as a Set
This paper proposes a fundamentally new paradigm for image generation through set-based tokenization and distribution modeling. Unlike conventional methods that serialize images into fixed-position latent codes with a uniform compression ratio, we introduce an unordered token set representation to dynamically allocate coding capacity based on regional semantic complexity. This TokenSet enhances global context aggregation and improves robustness against local perturbations. To address the critical challenge of modeling discrete sets, we devise a dual transformation mechanism that bijectively converts sets into fixed-length integer sequences with summation constraints. Further, we propose Fixed-Sum Discrete Diffusion--the first framework to simultaneously handle discrete values, fixed sequence length, and summation invariance--enabling effective set distribution modeling. Experiments demonstrate our method's superiority in semantic-aware representation and generation quality. Our innovations, spanning novel representation and modeling strategies, advance visual generation beyond traditional sequential token paradigms. Our code and models are publicly available at https://github.com/Gengzigang/TokenSet.
☆ Bézier Splatting for Fast and Differentiable Vector Graphics
Differentiable vector graphics (VGs) are widely used in image vectorization and vector synthesis, while existing representations are costly to optimize and struggle to achieve high-quality rendering results for high-resolution images. This work introduces a new differentiable VG representation, dubbed B\'ezier splatting, that enables fast yet high-fidelity VG rasterization. B\'ezier splatting samples 2D Gaussians along B\'ezier curves, which naturally provide positional gradients at object boundaries. Thanks to the efficient splatting-based differentiable rasterizer, B\'ezier splatting achieves over 20x and 150x faster per forward and backward rasterization step for open curves compared to DiffVG. Additionally, we introduce an adaptive pruning and densification strategy that dynamically adjusts the spatial distribution of curves to escape local minima, further improving VG quality. Experimental results show that B\'ezier splatting significantly outperforms existing methods with better visual fidelity and 10x faster optimization speed.
☆ GAEA: A Geolocation Aware Conversational Model
Image geolocalization, in which, traditionally, an AI model predicts the precise GPS coordinates of an image is a challenging task with many downstream applications. However, the user cannot utilize the model to further their knowledge other than the GPS coordinate; the model lacks an understanding of the location and the conversational ability to communicate with the user. In recent days, with tremendous progress of large multimodal models (LMMs) proprietary and open-source researchers have attempted to geolocalize images via LMMs. However, the issues remain unaddressed; beyond general tasks, for more specialized downstream tasks, one of which is geolocalization, LMMs struggle. In this work, we propose to solve this problem by introducing a conversational model GAEA that can provide information regarding the location of an image, as required by a user. No large-scale dataset enabling the training of such a model exists. Thus we propose a comprehensive dataset GAEA with 800K images and around 1.6M question answer pairs constructed by leveraging OpenStreetMap (OSM) attributes and geographical context clues. For quantitative evaluation, we propose a diverse benchmark comprising 4K image-text pairs to evaluate conversational capabilities equipped with diverse question types. We consider 11 state-of-the-art open-source and proprietary LMMs and demonstrate that GAEA significantly outperforms the best open-source model, LLaVA-OneVision by 25.69% and the best proprietary model, GPT-4o by 8.28%. Our dataset, model and codes are available
comment: The dataset and code used in this submission is available at: https://ucf-crcv.github.io/GAEA/
☆ 1000+ FPS 4D Gaussian Splatting for Dynamic Scene Rendering
4D Gaussian Splatting (4DGS) has recently gained considerable attention as a method for reconstructing dynamic scenes. Despite achieving superior quality, 4DGS typically requires substantial storage and suffers from slow rendering speed. In this work, we delve into these issues and identify two key sources of temporal redundancy. (Q1) \textbf{Short-Lifespan Gaussians}: 4DGS uses a large portion of Gaussians with short temporal span to represent scene dynamics, leading to an excessive number of Gaussians. (Q2) \textbf{Inactive Gaussians}: When rendering, only a small subset of Gaussians contributes to each frame. Despite this, all Gaussians are processed during rasterization, resulting in redundant computation overhead. To address these redundancies, we present \textbf{4DGS-1K}, which runs at over 1000 FPS on modern GPUs. For Q1, we introduce the Spatial-Temporal Variation Score, a new pruning criterion that effectively removes short-lifespan Gaussians while encouraging 4DGS to capture scene dynamics using Gaussians with longer temporal spans. For Q2, we store a mask for active Gaussians across consecutive frames, significantly reducing redundant computations in rendering. Compared to vanilla 4DGS, our method achieves a $41\times$ reduction in storage and $9\times$ faster rasterization speed on complex dynamic scenes, while maintaining comparable visual quality. Please see our project page at https://4DGS-1K.github.io.
☆ MagicMotion: Controllable Video Generation with Dense-to-Sparse Trajectory Guidance
Recent advances in video generation have led to remarkable improvements in visual quality and temporal coherence. Upon this, trajectory-controllable video generation has emerged to enable precise object motion control through explicitly defined spatial paths. However, existing methods struggle with complex object movements and multi-object motion control, resulting in imprecise trajectory adherence, poor object consistency, and compromised visual quality. Furthermore, these methods only support trajectory control in a single format, limiting their applicability in diverse scenarios. Additionally, there is no publicly available dataset or benchmark specifically tailored for trajectory-controllable video generation, hindering robust training and systematic evaluation. To address these challenges, we introduce MagicMotion, a novel image-to-video generation framework that enables trajectory control through three levels of conditions from dense to sparse: masks, bounding boxes, and sparse boxes. Given an input image and trajectories, MagicMotion seamlessly animates objects along defined trajectories while maintaining object consistency and visual quality. Furthermore, we present MagicData, a large-scale trajectory-controlled video dataset, along with an automated pipeline for annotation and filtering. We also introduce MagicBench, a comprehensive benchmark that assesses both video quality and trajectory control accuracy across different numbers of objects. Extensive experiments demonstrate that MagicMotion outperforms previous methods across various metrics. Our project page are publicly available at https://quanhaol.github.io/magicmotion-site.
☆ SynCity: Training-Free Generation of 3D Worlds
We address the challenge of generating 3D worlds from textual descriptions. We propose SynCity, a training- and optimization-free approach, which leverages the geometric precision of pre-trained 3D generative models and the artistic versatility of 2D image generators to create large, high-quality 3D spaces. While most 3D generative models are object-centric and cannot generate large-scale worlds, we show how 3D and 2D generators can be combined to generate ever-expanding scenes. Through a tile-based approach, we allow fine-grained control over the layout and the appearance of scenes. The world is generated tile-by-tile, and each new tile is generated within its world-context and then fused with the scene. SynCity generates compelling and immersive scenes that are rich in detail and diversity.
comment: Project page: https://research.paulengstler.com/syncity/
☆ InfiniteYou: Flexible Photo Recrafting While Preserving Your Identity
Achieving flexible and high-fidelity identity-preserved image generation remains formidable, particularly with advanced Diffusion Transformers (DiTs) like FLUX. We introduce InfiniteYou (InfU), one of the earliest robust frameworks leveraging DiTs for this task. InfU addresses significant issues of existing methods, such as insufficient identity similarity, poor text-image alignment, and low generation quality and aesthetics. Central to InfU is InfuseNet, a component that injects identity features into the DiT base model via residual connections, enhancing identity similarity while maintaining generation capabilities. A multi-stage training strategy, including pretraining and supervised fine-tuning (SFT) with synthetic single-person-multiple-sample (SPMS) data, further improves text-image alignment, ameliorates image quality, and alleviates face copy-pasting. Extensive experiments demonstrate that InfU achieves state-of-the-art performance, surpassing existing baselines. In addition, the plug-and-play design of InfU ensures compatibility with various existing methods, offering a valuable contribution to the broader community.
comment: Project page: https://bytedance.github.io/InfiniteYou/ Code and model: https://github.com/bytedance/InfiniteYou
☆ DreamTexture: Shape from Virtual Texture with Analysis by Augmentation
DreamFusion established a new paradigm for unsupervised 3D reconstruction from virtual views by combining advances in generative models and differentiable rendering. However, the underlying multi-view rendering, along with supervision from large-scale generative models, is computationally expensive and under-constrained. We propose DreamTexture, a novel Shape-from-Virtual-Texture approach that leverages monocular depth cues to reconstruct 3D objects. Our method textures an input image by aligning a virtual texture with the real depth cues in the input, exploiting the inherent understanding of monocular geometry encoded in modern diffusion models. We then reconstruct depth from the virtual texture deformation with a new conformal map optimization, which alleviates memory-intensive volumetric representations. Our experiments reveal that generative models possess an understanding of monocular shape cues, which can be extracted by augmenting and aligning texture cues -- a novel monocular reconstruction paradigm that we call Analysis by Augmentation.
comment: Project page: https://anantarb.github.io/dreamtexture/
☆ M3: 3D-Spatial MultiModal Memory ICLR2025
We present 3D Spatial MultiModal Memory (M3), a multimodal memory system designed to retain information about medium-sized static scenes through video sources for visual perception. By integrating 3D Gaussian Splatting techniques with foundation models, M3 builds a multimodal memory capable of rendering feature representations across granularities, encompassing a wide range of knowledge. In our exploration, we identify two key challenges in previous works on feature splatting: (1) computational constraints in storing high-dimensional features for each Gaussian primitive, and (2) misalignment or information loss between distilled features and foundation model features. To address these challenges, we propose M3 with key components of principal scene components and Gaussian memory attention, enabling efficient training and inference. To validate M3, we conduct comprehensive quantitative evaluations of feature similarity and downstream tasks, as well as qualitative visualizations to highlight the pixel trace of Gaussian memory attention. Our approach encompasses a diverse range of foundation models, including vision-language models (VLMs), perception models, and large multimodal and language models (LMMs/LLMs). Furthermore, to demonstrate real-world applicability, we deploy M3's feature field in indoor scenes on a quadruped robot. Notably, we claim that M3 is the first work to address the core compression challenges in 3D feature distillation.
comment: ICLR2025 homepage: https://m3-spatial-memory.github.io code: https://github.com/MaureenZOU/m3-spatial
☆ RoboFactory: Exploring Embodied Agent Collaboration with Compositional Constraints
Designing effective embodied multi-agent systems is critical for solving complex real-world tasks across domains. Due to the complexity of multi-agent embodied systems, existing methods fail to automatically generate safe and efficient training data for such systems. To this end, we propose the concept of compositional constraints for embodied multi-agent systems, addressing the challenges arising from collaboration among embodied agents. We design various interfaces tailored to different types of constraints, enabling seamless interaction with the physical world. Leveraging compositional constraints and specifically designed interfaces, we develop an automated data collection framework for embodied multi-agent systems and introduce the first benchmark for embodied multi-agent manipulation, RoboFactory. Based on RoboFactory benchmark, we adapt and evaluate the method of imitation learning and analyzed its performance in different difficulty agent tasks. Furthermore, we explore the architectures and training strategies for multi-agent imitation learning, aiming to build safe and efficient embodied multi-agent systems.
comment: Project page: https://iranqin.github.io/robofactory/
☆ VerbDiff: Text-Only Diffusion Models with Enhanced Interaction Awareness CVPR 2025
Recent large-scale text-to-image diffusion models generate photorealistic images but often struggle to accurately depict interactions between humans and objects due to their limited ability to differentiate various interaction words. In this work, we propose VerbDiff to address the challenge of capturing nuanced interactions within text-to-image diffusion models. VerbDiff is a novel text-to-image generation model that weakens the bias between interaction words and objects, enhancing the understanding of interactions. Specifically, we disentangle various interaction words from frequency-based anchor words and leverage localized interaction regions from generated images to help the model better capture semantics in distinctive words without extra conditions. Our approach enables the model to accurately understand the intended interaction between humans and objects, producing high-quality images with accurate interactions aligned with specified verbs. Extensive experiments on the HICO-DET dataset demonstrate the effectiveness of our method compared to previous approaches.
comment: Accepted at CVPR 2025, code : https://github.com/SeungJuCha/VerbDiff.git
☆ SA-Occ: Satellite-Assisted 3D Occupancy Prediction in Real World
Existing vision-based 3D occupancy prediction methods are inherently limited in accuracy due to their exclusive reliance on street-view imagery, neglecting the potential benefits of incorporating satellite views. We propose SA-Occ, the first Satellite-Assisted 3D occupancy prediction model, which leverages GPS & IMU to integrate historical yet readily available satellite imagery into real-time applications, effectively mitigating limitations of ego-vehicle perceptions, involving occlusions and degraded performance in distant regions. To address the core challenges of cross-view perception, we propose: 1) Dynamic-Decoupling Fusion, which resolves inconsistencies in dynamic regions caused by the temporal asynchrony between satellite and street views; 2) 3D-Proj Guidance, a module that enhances 3D feature extraction from inherently 2D satellite imagery; and 3) Uniform Sampling Alignment, which aligns the sampling density between street and satellite views. Evaluated on Occ3D-nuScenes, SA-Occ achieves state-of-the-art performance, especially among single-frame methods, with a 39.05% mIoU (a 6.97% improvement), while incurring only 6.93 ms of additional latency per frame. Our code and newly curated dataset are available at https://github.com/chenchen235/SA-Occ.
comment: 10 pages
☆ Scale-wise Distillation of Diffusion Models
We present SwD, a scale-wise distillation framework for diffusion models (DMs), which effectively employs next-scale prediction ideas for diffusion-based few-step generators. In more detail, SwD is inspired by the recent insights relating diffusion processes to the implicit spectral autoregression. We suppose that DMs can initiate generation at lower data resolutions and gradually upscale the samples at each denoising step without loss in performance while significantly reducing computational costs. SwD naturally integrates this idea into existing diffusion distillation methods based on distribution matching. Also, we enrich the family of distribution matching approaches by introducing a novel patch loss enforcing finer-grained similarity to the target distribution. When applied to state-of-the-art text-to-image diffusion models, SwD approaches the inference times of two full resolution steps and significantly outperforms the counterparts under the same computation budget, as evidenced by automated metrics and human preference studies.
☆ SV4D 2.0: Enhancing Spatio-Temporal Consistency in Multi-View Video Diffusion for High-Quality 4D Generation
We present Stable Video 4D 2.0 (SV4D 2.0), a multi-view video diffusion model for dynamic 3D asset generation. Compared to its predecessor SV4D, SV4D 2.0 is more robust to occlusions and large motion, generalizes better to real-world videos, and produces higher-quality outputs in terms of detail sharpness and spatio-temporal consistency. We achieve this by introducing key improvements in multiple aspects: 1) network architecture: eliminating the dependency of reference multi-views and designing blending mechanism for 3D and frame attention, 2) data: enhancing quality and quantity of training data, 3) training strategy: adopting progressive 3D-4D training for better generalization, and 4) 4D optimization: handling 3D inconsistency and large motion via 2-stage refinement and progressive frame sampling. Extensive experiments demonstrate significant performance gain by SV4D 2.0 both visually and quantitatively, achieving better detail (-14\% LPIPS) and 4D consistency (-44\% FV4D) in novel-view video synthesis and 4D optimization (-12\% LPIPS and -24\% FV4D) compared to SV4D. Project page: https://sv4d2.0.github.io.
☆ Do Visual Imaginations Improve Vision-and-Language Navigation Agents?
Vision-and-Language Navigation (VLN) agents are tasked with navigating an unseen environment using natural language instructions. In this work, we study if visual representations of sub-goals implied by the instructions can serve as navigational cues and lead to increased navigation performance. To synthesize these visual representations or imaginations, we leverage a text-to-image diffusion model on landmark references contained in segmented instructions. These imaginations are provided to VLN agents as an added modality to act as landmark cues and an auxiliary loss is added to explicitly encourage relating these with their corresponding referring expressions. Our findings reveal an increase in success rate (SR) of around 1 point and up to 0.5 points in success scaled by inverse path length (SPL) across agents. These results suggest that the proposed approach reinforces visual understanding compared to relying on language instructions alone. Code and data for our work can be found at https://www.akhilperincherry.com/VLN-Imagine-website/.
Attentional Triple-Encoder Network in Spatiospectral Domains for Medical Image Segmentation
Retinal Optical Coherence Tomography (OCT) segmentation is essential for diagnosing pathology. Traditional methods focus on either spatial or spectral domains, overlooking their combined dependencies. We propose a triple-encoder network that integrates CNNs for spatial features, Fast Fourier Convolution (FFC) for spectral features, and attention mechanisms to capture global relationships across both domains. Attention fusion modules integrate convolution and cross-attention to further enhance features. Our method achieves an average Dice score improvement from 0.855 to 0.864, outperforming prior work.
comment: IEEE Conference on Artificial Intelligence (IEEE CAI)
☆ Panoptic-CUDAL Technical Report: Rural Australia Point Cloud Dataset in Rainy Conditions
Existing autonomous driving datasets are predominantly oriented towards well-structured urban settings and favorable weather conditions, leaving the complexities of rural environments and adverse weather conditions largely unaddressed. Although some datasets encompass variations in weather and lighting, bad weather scenarios do not appear often. Rainfall can significantly impair sensor functionality, introducing noise and reflections in LiDAR and camera data and reducing the system's capabilities for reliable environmental perception and safe navigation. We introduce the Panoptic-CUDAL dataset, a novel dataset purpose-built for panoptic segmentation in rural areas subject to rain. By recording high-resolution LiDAR, camera, and pose data, Panoptic-CUDAL offers a diverse, information-rich dataset in a challenging scenario. We present analysis of the recorded data and provide baseline results for panoptic and semantic segmentation methods on LiDAR point clouds. The dataset can be found here: https://robotics.sydney.edu.au/our-research/intelligent-transportation-systems/
☆ LaPIG: Cross-Modal Generation of Paired Thermal and Visible Facial Images
The success of modern machine learning, particularly in facial translation networks, is highly dependent on the availability of high-quality, paired, large-scale datasets. However, acquiring sufficient data is often challenging and costly. Inspired by the recent success of diffusion models in high-quality image synthesis and advancements in Large Language Models (LLMs), we propose a novel framework called LLM-assisted Paired Image Generation (LaPIG). This framework enables the construction of comprehensive, high-quality paired visible and thermal images using captions generated by LLMs. Our method encompasses three parts: visible image synthesis with ArcFace embedding, thermal image translation using Latent Diffusion Models (LDMs), and caption generation with LLMs. Our approach not only generates multi-view paired visible and thermal images to increase data diversity but also produces high-quality paired data while maintaining their identity information. We evaluate our method on public datasets by comparing it with existing methods, demonstrating the superiority of LaPIG.
☆ NuiScene: Exploring Efficient Generation of Unbounded Outdoor Scenes
In this paper, we explore the task of generating expansive outdoor scenes, ranging from castles to high-rises. Unlike indoor scene generation, which has been a primary focus of prior work, outdoor scene generation presents unique challenges, including wide variations in scene heights and the need for a method capable of rapidly producing large landscapes. To address this, we propose an efficient approach that encodes scene chunks as uniform vector sets, offering better compression and performance than the spatially structured latents used in prior methods. Furthermore, we train an explicit outpainting model for unbounded generation, which improves coherence compared to prior resampling-based inpainting schemes while also speeding up generation by eliminating extra diffusion steps. To facilitate this task, we curate NuiScene43, a small but high-quality set of scenes, preprocessed for joint training. Notably, when trained on scenes of varying styles, our model can blend different environments, such as rural houses and city skyscrapers, within the same scene, highlighting the potential of our curation process to leverage heterogeneous scenes for joint training.
☆ JARVIS-VLA: Post-Training Large-Scale Vision Language Models to Play Visual Games with Keyboards and Mouse
Recently, action-based decision-making in open-world environments has gained significant attention. Visual Language Action (VLA) models, pretrained on large-scale web datasets, have shown promise in decision-making tasks. However, previous work has primarily focused on action post-training, often neglecting enhancements to the foundational model itself. In response, we introduce a novel approach, Act from Visual Language Post-Training, which refines Visual Language Models (VLMs) through visual and linguistic guidance in a self-supervised manner. This enhancement improves the models' capabilities in world knowledge, visual recognition, and spatial grounding in open-world environments. Following the above post-training paradigms, we obtain the first VLA models in Minecraft that can follow human instructions on over 1k different atomic tasks, including crafting, smelting, cooking, mining, and killing. Our experiments demonstrate that post-training on non-trajectory tasks leads to a significant 40% improvement over the best agent baseline on a diverse set of atomic tasks. Furthermore, we demonstrate that our approach surpasses traditional imitation learning-based policies in Minecraft, achieving state-of-the-art performance. We have open-sourced the code, models, and datasets to foster further research. The project page can be found in https://craftjarvis.github.io/JarvisVLA.
comment: 22 pages, 5 figures
☆ UniSync: A Unified Framework for Audio-Visual Synchronization ICME 2025
Precise audio-visual synchronization in speech videos is crucial for content quality and viewer comprehension. Existing methods have made significant strides in addressing this challenge through rule-based approaches and end-to-end learning techniques. However, these methods often rely on limited audio-visual representations and suboptimal learning strategies, potentially constraining their effectiveness in more complex scenarios. To address these limitations, we present UniSync, a novel approach for evaluating audio-visual synchronization using embedding similarities. UniSync offers broad compatibility with various audio representations (e.g., Mel spectrograms, HuBERT) and visual representations (e.g., RGB images, face parsing maps, facial landmarks, 3DMM), effectively handling their significant dimensional differences. We enhance the contrastive learning framework with a margin-based loss component and cross-speaker unsynchronized pairs, improving discriminative capabilities. UniSync outperforms existing methods on standard datasets and demonstrates versatility across diverse audio-visual representations. Its integration into talking face generation frameworks enhances synchronization quality in both natural and AI-generated content.
comment: 7 pages, 3 figures, accepted by ICME 2025
☆ CaKE: Circuit-aware Editing Enables Generalizable Knowledge Learners
Knowledge Editing (KE) enables the modification of outdated or incorrect information in large language models (LLMs). While existing KE methods can update isolated facts, they struggle to generalize these updates to multi-hop reasoning tasks that depend on the modified knowledge. Through an analysis of reasoning circuits -- the neural pathways LLMs use for knowledge-based inference, we observe that current layer-localized KE approaches, such as MEMIT and WISE, which edit only single or a few model layers, struggle to effectively incorporate updated information into these reasoning pathways. To address this limitation, we propose CaKE (Circuit-aware Knowledge Editing), a novel method that enables more effective integration of updated knowledge in LLMs. CaKE leverages strategically curated data, guided by our circuits-based analysis, that enforces the model to utilize the modified knowledge, stimulating the model to develop appropriate reasoning circuits for newly integrated knowledge. Experimental results show that CaKE enables more accurate and consistent use of updated knowledge across related reasoning tasks, leading to an average of 20% improvement in multi-hop reasoning accuracy on MQuAKE dataset compared to existing KE methods. We release the code and data in https://github.com/zjunlp/CaKE.
comment: Work in progress
Gaussian Graph Network: Learning Efficient and Generalizable Gaussian Representations from Multi-view Images NeurIPS 2024
3D Gaussian Splatting (3DGS) has demonstrated impressive novel view synthesis performance. While conventional methods require per-scene optimization, more recently several feed-forward methods have been proposed to generate pixel-aligned Gaussian representations with a learnable network, which are generalizable to different scenes. However, these methods simply combine pixel-aligned Gaussians from multiple views as scene representations, thereby leading to artifacts and extra memory cost without fully capturing the relations of Gaussians from different images. In this paper, we propose Gaussian Graph Network (GGN) to generate efficient and generalizable Gaussian representations. Specifically, we construct Gaussian Graphs to model the relations of Gaussian groups from different views. To support message passing at Gaussian level, we reformulate the basic graph operations over Gaussian representations, enabling each Gaussian to benefit from its connected Gaussian groups with Gaussian feature fusion. Furthermore, we design a Gaussian pooling layer to aggregate various Gaussian groups for efficient representations. We conduct experiments on the large-scale RealEstate10K and ACID datasets to demonstrate the efficiency and generalization of our method. Compared to the state-of-the-art methods, our model uses fewer Gaussians and achieves better image quality with higher rendering speed.
comment: NeurIPS 2024
☆ Ultra-Resolution Adaptation with Ease
Text-to-image diffusion models have achieved remarkable progress in recent years. However, training models for high-resolution image generation remains challenging, particularly when training data and computational resources are limited. In this paper, we explore this practical problem from two key perspectives: data and parameter efficiency, and propose a set of key guidelines for ultra-resolution adaptation termed \emph{URAE}. For data efficiency, we theoretically and empirically demonstrate that synthetic data generated by some teacher models can significantly promote training convergence. For parameter efficiency, we find that tuning minor components of the weight matrices outperforms widely-used low-rank adapters when synthetic data are unavailable, offering substantial performance gains while maintaining efficiency. Additionally, for models leveraging guidance distillation, such as FLUX, we show that disabling classifier-free guidance, \textit{i.e.}, setting the guidance scale to 1 during adaptation, is crucial for satisfactory performance. Extensive experiments validate that URAE achieves comparable 2K-generation performance to state-of-the-art closed-source models like FLUX1.1 [Pro] Ultra with only 3K samples and 2K iterations, while setting new benchmarks for 4K-resolution generation. Codes are available \href{https://github.com/Huage001/URAE}{here}.
comment: Technical Report. Codes are available \href{https://github.com/Huage001/URAE}{here}
☆ Dynamic Point Maps: A Versatile Representation for Dynamic 3D Reconstruction
DUSt3R has recently shown that one can reduce many tasks in multi-view geometry, including estimating camera intrinsics and extrinsics, reconstructing the scene in 3D, and establishing image correspondences, to the prediction of a pair of viewpoint-invariant point maps, i.e., pixel-aligned point clouds defined in a common reference frame. This formulation is elegant and powerful, but unable to tackle dynamic scenes. To address this challenge, we introduce the concept of Dynamic Point Maps (DPM), extending standard point maps to support 4D tasks such as motion segmentation, scene flow estimation, 3D object tracking, and 2D correspondence. Our key intuition is that, when time is introduced, there are several possible spatial and time references that can be used to define the point maps. We identify a minimal subset of such combinations that can be regressed by a network to solve the sub tasks mentioned above. We train a DPM predictor on a mixture of synthetic and real data and evaluate it across diverse benchmarks for video depth prediction, dynamic point cloud reconstruction, 3D scene flow and object pose tracking, achieving state-of-the-art performance. Code, models and additional results are available at https://www.robots.ox.ac.uk/~vgg/research/dynamic-point-maps/.
comment: Web page: https://www.robots.ox.ac.uk/~vgg/research/dynamic-point-maps/
☆ Rapid patient-specific neural networks for intraoperative X-ray to volume registration
The integration of artificial intelligence in image-guided interventions holds transformative potential, promising to extract 3D geometric and quantitative information from conventional 2D imaging modalities during complex procedures. Achieving this requires the rapid and precise alignment of 2D intraoperative images (e.g., X-ray) with 3D preoperative volumes (e.g., CT, MRI). However, current 2D/3D registration methods fail across the broad spectrum of procedures dependent on X-ray guidance: traditional optimization techniques require custom parameter tuning for each subject, whereas neural networks trained on small datasets do not generalize to new patients or require labor-intensive manual annotations, increasing clinical burden and precluding application to new anatomical targets. To address these challenges, we present xvr, a fully automated framework for training patient-specific neural networks for 2D/3D registration. xvr uses physics-based simulation to generate abundant high-quality training data from a patient's own preoperative volumetric imaging, thereby overcoming the inherently limited ability of supervised models to generalize to new patients and procedures. Furthermore, xvr requires only 5 minutes of training per patient, making it suitable for emergency interventions as well as planned procedures. We perform the largest evaluation of a 2D/3D registration algorithm on real X-ray data to date and find that xvr robustly generalizes across a diverse dataset comprising multiple anatomical structures, imaging modalities, and hospitals. Across surgical tasks, xvr achieves submillimeter-accurate registration at intraoperative speeds, improving upon existing methods by an order of magnitude. xvr is released as open-source software freely available at https://github.com/eigenvivek/xvr.
☆ Unleashing Vecset Diffusion Model for Fast Shape Generation
3D shape generation has greatly flourished through the development of so-called "native" 3D diffusion, particularly through the Vecset Diffusion Model (VDM). While recent advancements have shown promising results in generating high-resolution 3D shapes, VDM still struggles with high-speed generation. Challenges exist because of difficulties not only in accelerating diffusion sampling but also VAE decoding in VDM, areas under-explored in previous works. To address these challenges, we present FlashVDM, a systematic framework for accelerating both VAE and DiT in VDM. For DiT, FlashVDM enables flexible diffusion sampling with as few as 5 inference steps and comparable quality, which is made possible by stabilizing consistency distillation with our newly introduced Progressive Flow Distillation. For VAE, we introduce a lightning vecset decoder equipped with Adaptive KV Selection, Hierarchical Volume Decoding, and Efficient Network Design. By exploiting the locality of the vecset and the sparsity of shape surface in the volume, our decoder drastically lowers FLOPs, minimizing the overall decoding overhead. We apply FlashVDM to Hunyuan3D-2 to obtain Hunyuan3D-2 Turbo. Through systematic evaluation, we show that our model significantly outperforms existing fast 3D generation methods, achieving comparable performance to the state-of-the-art while reducing inference time by over 45x for reconstruction and 32x for generation. Code and models are available at https://github.com/Tencent/FlashVDM.
comment: Technical report
☆ SceneMI: Motion In-betweening for Modeling Human-Scene Interactions
Modeling human-scene interactions (HSI) is essential for understanding and simulating everyday human behaviors. Recent approaches utilizing generative modeling have made progress in this domain; however, they are limited in controllability and flexibility for real-world applications. To address these challenges, we propose reformulating the HSI modeling problem as Scene-aware Motion In-betweening -- a more tractable and practical task. We introduce SceneMI, a framework that supports several practical applications, including keyframe-guided character animation in 3D scenes and enhancing the motion quality of imperfect HSI data. SceneMI employs dual scene descriptors to comprehensively encode global and local scene context. Furthermore, our framework leverages the inherent denoising nature of diffusion models to generalize on noisy keyframes. Experimental results demonstrate SceneMI's effectiveness in scene-aware keyframe in-betweening and generalization to the real-world GIMO dataset, where motions and scenes are acquired by noisy IMU sensors and smartphones. We further showcase SceneMI's applicability in HSI reconstruction from monocular videos.
comment: 15 pages, Project page: http://inwoohwang.me/SceneMI
☆ PSA-MIL: A Probabilistic Spatial Attention-Based Multiple Instance Learning for Whole Slide Image Classification
Whole Slide Images (WSIs) are high-resolution digital scans widely used in medical diagnostics. WSI classification is typically approached using Multiple Instance Learning (MIL), where the slide is partitioned into tiles treated as interconnected instances. While attention-based MIL methods aim to identify the most informative tiles, they often fail to fully exploit the spatial relationships among them, potentially overlooking intricate tissue structures crucial for accurate diagnosis. To address this limitation, we propose Probabilistic Spatial Attention MIL (PSA-MIL), a novel attention-based MIL framework that integrates spatial context into the attention mechanism through learnable distance-decayed priors, formulated within a probabilistic interpretation of self-attention as a posterior distribution. This formulation enables a dynamic inference of spatial relationships during training, eliminating the need for predefined assumptions often imposed by previous approaches. Additionally, we suggest a spatial pruning strategy for the posterior, effectively reducing self-attention's quadratic complexity. To further enhance spatial modeling, we introduce a diversity loss that encourages variation among attention heads, ensuring each captures distinct spatial representations. Together, PSA-MIL enables a more data-driven and adaptive integration of spatial context, moving beyond predefined constraints. We achieve state-of-the-art performance across both contextual and non-contextual baselines, while significantly reducing computational costs.
comment: 8 pages, 7 figures
☆ Generalized Few-shot 3D Point Cloud Segmentation with Vision-Language Model CVPR 2025
Generalized few-shot 3D point cloud segmentation (GFS-PCS) adapts models to new classes with few support samples while retaining base class segmentation. Existing GFS-PCS methods enhance prototypes via interacting with support or query features but remain limited by sparse knowledge from few-shot samples. Meanwhile, 3D vision-language models (3D VLMs), generalizing across open-world novel classes, contain rich but noisy novel class knowledge. In this work, we introduce a GFS-PCS framework that synergizes dense but noisy pseudo-labels from 3D VLMs with precise yet sparse few-shot samples to maximize the strengths of both, named GFS-VL. Specifically, we present a prototype-guided pseudo-label selection to filter low-quality regions, followed by an adaptive infilling strategy that combines knowledge from pseudo-label contexts and few-shot samples to adaptively label the filtered, unlabeled areas. Additionally, we design a novel-base mix strategy to embed few-shot samples into training scenes, preserving essential context for improved novel class learning. Moreover, recognizing the limited diversity in current GFS-PCS benchmarks, we introduce two challenging benchmarks with diverse novel classes for comprehensive generalization evaluation. Experiments validate the effectiveness of our framework across models and datasets. Our approach and benchmarks provide a solid foundation for advancing GFS-PCS in the real world. The code is at https://github.com/ZhaochongAn/GFS-VL
comment: Accepted to CVPR 2025
☆ Do image and video quality metrics model low-level human vision?
Image and video quality metrics, such as SSIM, LPIPS, and VMAF, are aimed to predict the perceived quality of the evaluated content and are often claimed to be "perceptual". Yet, few metrics directly model human visual perception, and most rely on hand-crafted formulas or training datasets to achieve alignment with perceptual data. In this paper, we propose a set of tests for full-reference quality metrics that examine their ability to model several aspects of low-level human vision: contrast sensitivity, contrast masking, and contrast matching. The tests are meant to provide additional scrutiny for newly proposed metrics. We use our tests to analyze 33 existing image and video quality metrics and find their strengths and weaknesses, such as the ability of LPIPS and MS-SSIM to predict contrast masking and poor performance of VMAF in this task. We further find that the popular SSIM metric overemphasizes differences in high spatial frequencies, but its multi-scale counterpart, MS-SSIM, addresses this shortcoming. Such findings cannot be easily made using existing evaluation protocols.
☆ From Monocular Vision to Autonomous Action: Guiding Tumor Resection via 3D Reconstruction
Surgical automation requires precise guidance and understanding of the scene. Current methods in the literature rely on bulky depth cameras to create maps of the anatomy, however this does not translate well to space-limited clinical applications. Monocular cameras are small and allow minimally invasive surgeries in tight spaces but additional processing is required to generate 3D scene understanding. We propose a 3D mapping pipeline that uses only RGB images to create segmented point clouds of the target anatomy. To ensure the most precise reconstruction, we compare different structure from motion algorithms' performance on mapping the central airway obstructions, and test the pipeline on a downstream task of tumor resection. In several metrics, including post-procedure tissue model evaluation, our pipeline performs comparably to RGB-D cameras and, in some cases, even surpasses their performance. These promising results demonstrate that automation guidance can be achieved in minimally invasive procedures with monocular cameras. This study is a step toward the complete autonomy of surgical robots.
comment: 7 Pages, 8 Figures, 1 Table. This work has been submitted IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) for possible publication
☆ Chain of Functions: A Programmatic Pipeline for Fine-Grained Chart Reasoning Data
Visual reasoning is crucial for multimodal large language models (MLLMs) to address complex chart queries, yet high-quality rationale data remains scarce. Existing methods leveraged (M)LLMs for data generation, but direct prompting often yields limited precision and diversity. In this paper, we propose \textit{Chain of Functions (CoF)}, a novel programmatic reasoning data generation pipeline that utilizes freely-explored reasoning paths as supervision to ensure data precision and diversity. Specifically, it starts with human-free exploration among the atomic functions (e.g., maximum data and arithmetic operations) to generate diverse function chains, which are then translated into linguistic rationales and questions with only a moderate open-sourced LLM. \textit{CoF} provides multiple benefits: 1) Precision: function-governed generation reduces hallucinations compared to freeform generation; 2) Diversity: enumerating function chains enables varied question taxonomies; 3) Explainability: function chains serve as built-in rationales, allowing fine-grained evaluation beyond overall accuracy; 4) Practicality: eliminating reliance on extremely large models. Employing \textit{CoF}, we construct the \textit{ChartCoF} dataset, with 1.4k complex reasoning Q\&A for fine-grained analysis and 50k Q\&A for reasoning enhancement. The fine-grained evaluation on \textit{ChartCoF} reveals varying performance across question taxonomies for each MLLM, and the experiments also show that finetuning with \textit{ChartCoF} achieves state-of-the-art performance among same-scale MLLMs on widely used benchmarks. Furthermore, the novel paradigm of function-governed rationale generation in \textit{CoF} could inspire broader applications beyond charts.
comment: Under review
☆ Plug-and-Play 1.x-Bit KV Cache Quantization for Video Large Language Models
Video large language models (VideoLLMs) have demonstrated the capability to process longer video inputs and enable complex reasoning and analysis. However, due to the thousands of visual tokens from the video frames, key-value (KV) cache can significantly increase memory requirements, becoming a bottleneck for inference speed and memory usage. KV cache quantization is a widely used approach to address this problem. In this paper, we find that 2-bit KV quantization of VideoLLMs can hardly hurt the model performance, while the limit of KV cache quantization in even lower bits has not been investigated. To bridge this gap, we introduce VidKV, a plug-and-play KV cache quantization method to compress the KV cache to lower than 2 bits. Specifically, (1) for key, we propose a mixed-precision quantization strategy in the channel dimension, where we perform 2-bit quantization for anomalous channels and 1-bit quantization combined with FFT for normal channels; (2) for value, we implement 1.58-bit quantization while selectively filtering semantically salient visual tokens for targeted preservation, for a better trade-off between precision and model performance. Importantly, our findings suggest that the value cache of VideoLLMs should be quantized in a per-channel fashion instead of the per-token fashion proposed by prior KV cache quantization works for LLMs. Empirically, extensive results with LLaVA-OV-7B and Qwen2.5-VL-7B on six benchmarks show that VidKV effectively compresses the KV cache to 1.5-bit and 1.58-bit precision with almost no performance drop compared to the FP16 counterparts.
comment: 12 pages
☆ M2N2V2: Multi-Modal Unsupervised and Training-free Interactive Segmentation
We present Markov Map Nearest Neighbor V2 (M2N2V2), a novel and simple, yet effective approach which leverages depth guidance and attention maps for unsupervised and training-free point-prompt-based interactive segmentation. Following recent trends in supervised multimodal approaches, we carefully integrate depth as an additional modality to create novel depth-guided Markov-maps. Furthermore, we observe occasional segment size fluctuations in M2N2 during the interactive process, which can decrease the overall mIoU's. To mitigate this problem, we model the prompting as a sequential process and propose a novel adaptive score function which considers the previous segmentation and the current prompt point in order to prevent unreasonable segment size changes. Using Stable Diffusion 2 and Depth Anything V2 as backbones, we empirically show that our proposed M2N2V2 significantly improves the Number of Clicks (NoC) and mIoU compared to M2N2 in all datasets except those from the medical domain. Interestingly, our unsupervised approach achieves competitive results compared to supervised methods like SAM and SimpleClick in the more challenging DAVIS and HQSeg44K datasets in the NoC metric, reducing the gap between supervised and unsupervised methods.
☆ RESFL: An Uncertainty-Aware Framework for Responsible Federated Learning by Balancing Privacy, Fairness and Utility in Autonomous Vehicles
Autonomous vehicles (AVs) increasingly rely on Federated Learning (FL) to enhance perception models while preserving privacy. However, existing FL frameworks struggle to balance privacy, fairness, and robustness, leading to performance disparities across demographic groups. Privacy-preserving techniques like differential privacy mitigate data leakage risks but worsen fairness by restricting access to sensitive attributes needed for bias correction. This work explores the trade-off between privacy and fairness in FL-based object detection for AVs and introduces RESFL, an integrated solution optimizing both. RESFL incorporates adversarial privacy disentanglement and uncertainty-guided fairness-aware aggregation. The adversarial component uses a gradient reversal layer to remove sensitive attributes, reducing privacy risks while maintaining fairness. The uncertainty-aware aggregation employs an evidential neural network to weight client updates adaptively, prioritizing contributions with lower fairness disparities and higher confidence. This ensures robust and equitable FL model updates. We evaluate RESFL on the FACET dataset and CARLA simulator, assessing accuracy, fairness, privacy resilience, and robustness under varying conditions. RESFL improves detection accuracy, reduces fairness disparities, and lowers privacy attack success rates while demonstrating superior robustness to adversarial conditions compared to other approaches.
comment: Submitted to PETS 2025 (under review)
☆ OpenMIBOOD: Open Medical Imaging Benchmarks for Out-Of-Distribution Detection
The growing reliance on Artificial Intelligence (AI) in critical domains such as healthcare demands robust mechanisms to ensure the trustworthiness of these systems, especially when faced with unexpected or anomalous inputs. This paper introduces the Open Medical Imaging Benchmarks for Out-Of-Distribution Detection (OpenMIBOOD), a comprehensive framework for evaluating out-of-distribution (OOD) detection methods specifically in medical imaging contexts. OpenMIBOOD includes three benchmarks from diverse medical domains, encompassing 14 datasets divided into covariate-shifted in-distribution, near-OOD, and far-OOD categories. We evaluate 24 post-hoc methods across these benchmarks, providing a standardized reference to advance the development and fair comparison of OOD detection methods. Results reveal that findings from broad-scale OOD benchmarks in natural image domains do not translate to medical applications, underscoring the critical need for such benchmarks in the medical field. By mitigating the risk of exposing AI models to inputs outside their training distribution, OpenMIBOOD aims to support the advancement of reliable and trustworthy AI systems in healthcare. The repository is available at https://github.com/remic-othr/OpenMIBOOD.
Efficient Bayesian Computation Using Plug-and-Play Priors for Poisson Inverse Problems
This paper introduces a novel plug-and-play (PnP) Langevin sampling methodology for Bayesian inference in low-photon Poisson imaging problems, a challenging class of problems with significant applications in astronomy, medicine, and biology. PnP Langevin sampling algorithms offer a powerful framework for Bayesian image restoration, enabling accurate point estimation as well as advanced inference tasks, including uncertainty quantification and visualization analyses, and empirical Bayesian inference for automatic model parameter tuning. However, existing PnP Langevin algorithms are not well-suited for low-photon Poisson imaging due to high solution uncertainty and poor regularity properties, such as exploding gradients and non-negativity constraints. To address these challenges, we propose two strategies for extending Langevin PnP sampling to Poisson imaging models: (i) an accelerated PnP Langevin method that incorporates boundary reflections and a Poisson likelihood approximation and (ii) a mirror sampling algorithm that leverages a Riemannian geometry to handle the constraints and the poor regularity of the likelihood without approximations. The effectiveness of these approaches is demonstrated through extensive numerical experiments and comparisons with state-of-the-art methods.
comment: 31 pages, 17 figures
☆ Temporal Score Analysis for Understanding and Correcting Diffusion Artifacts
Visual artifacts remain a persistent challenge in diffusion models, even with training on massive datasets. Current solutions primarily rely on supervised detectors, yet lack understanding of why these artifacts occur in the first place. In our analysis, we identify three distinct phases in the diffusion generative process: Profiling, Mutation, and Refinement. Artifacts typically emerge during the Mutation phase, where certain regions exhibit anomalous score dynamics over time, causing abrupt disruptions in the normal evolution pattern. This temporal nature explains why existing methods focusing only on spatial uncertainty of the final output fail at effective artifact localization. Based on these insights, we propose ASCED (Abnormal Score Correction for Enhancing Diffusion), that detects artifacts by monitoring abnormal score dynamics during the diffusion process, with a trajectory-aware on-the-fly mitigation strategy that appropriate generation of noise in the detected areas. Unlike most existing methods that apply post hoc corrections, \eg, by applying a noising-denoising scheme after generation, our mitigation strategy operates seamlessly within the existing diffusion process. Extensive experiments demonstrate that our proposed approach effectively reduces artifacts across diverse domains, matching or surpassing existing supervised methods without additional training.
☆ VP-NTK: Exploring the Benefits of Visual Prompting in Differentially Private Data Synthesis
Differentially private (DP) synthetic data has become the de facto standard for releasing sensitive data. However, many DP generative models suffer from the low utility of synthetic data, especially for high-resolution images. On the other hand, one of the emerging techniques in parameter efficient fine-tuning (PEFT) is visual prompting (VP), which allows well-trained existing models to be reused for the purpose of adapting to subsequent downstream tasks. In this work, we explore such a phenomenon in constructing captivating generative models with DP constraints. We show that VP in conjunction with DP-NTK, a DP generator that exploits the power of the neural tangent kernel (NTK) in training DP generative models, achieves a significant performance boost, particularly for high-resolution image datasets, with accuracy improving from 0.644$\pm$0.044 to 0.769. Lastly, we perform ablation studies on the effect of different parameters that influence the overall performance of VP-NTK. Our work demonstrates a promising step forward in improving the utility of DP synthetic data, particularly for high-resolution images.
comment: Accepted by ICASSP 2025
☆ Improving Autoregressive Image Generation through Coarse-to-Fine Token Prediction
Autoregressive models have shown remarkable success in image generation by adapting sequential prediction techniques from language modeling. However, applying these approaches to images requires discretizing continuous pixel data through vector quantization methods like VQ-VAE. To alleviate the quantization errors that existed in VQ-VAE, recent works tend to use larger codebooks. However, this will accordingly expand vocabulary size, complicating the autoregressive modeling task. This paper aims to find a way to enjoy the benefits of large codebooks without making autoregressive modeling more difficult. Through empirical investigation, we discover that tokens with similar codeword representations produce similar effects on the final generated image, revealing significant redundancy in large codebooks. Based on this insight, we propose to predict tokens from coarse to fine (CTF), realized by assigning the same coarse label for similar tokens. Our framework consists of two stages: (1) an autoregressive model that sequentially predicts coarse labels for each token in the sequence, and (2) an auxiliary model that simultaneously predicts fine-grained labels for all tokens conditioned on their coarse labels. Experiments on ImageNet demonstrate our method's superior performance, achieving an average improvement of 59 points in Inception Score compared to baselines. Notably, despite adding an inference step, our approach achieves faster sampling speeds.
comment: Work in progress
☆ CLS-RL: Image Classification with Rule-Based Reinforcement Learning
Classification is a core task in machine learning. Recent research has shown that although Multimodal Large Language Models (MLLMs) are initially poor at image classification, fine-tuning them with an adequate amount of data can significantly enhance their performance, making them comparable to SOTA classification models. However, acquiring large-scale labeled data is expensive. In this paper, we explore few-shot MLLM classification fine-tuning. We found that SFT can cause severe overfitting issues and may even degrade performance over the zero-shot approach. To address this challenge, inspired by the recent successes in rule-based reinforcement learning, we propose CLS-RL, which uses verifiable signals as reward to fine-tune MLLMs. We discovered that CLS-RL outperforms SFT in most datasets and has a much higher average accuracy on both base-to-new and few-shot learning setting. Moreover, we observed a free-lunch phenomenon for CLS-RL; when models are fine-tuned on a particular dataset, their performance on other distinct datasets may also improve over zero-shot models, even if those datasets differ in distribution and class names. This suggests that RL-based methods effectively teach models the fundamentals of classification. Lastly, inspired by recent works in inference time thinking, we re-examine the `thinking process' during fine-tuning, a critical aspect of RL-based methods, in the context of visual classification. We question whether such tasks require extensive thinking process during fine-tuning, proposing that this may actually detract from performance. Based on this premise, we introduce the No-Thinking-CLS-RL method, which minimizes thinking processes during training by setting an equality accuracy reward. Our findings indicate that, with much less fine-tuning time, No-Thinking-CLS-RL method achieves superior in-domain performance and generalization capabilities than CLS-RL.
comment: Preprint, work in progress
☆ MapGlue: Multimodal Remote Sensing Image Matching
Multimodal remote sensing image (MRSI) matching is pivotal for cross-modal fusion, localization, and object detection, but it faces severe challenges due to geometric, radiometric, and viewpoint discrepancies across imaging modalities. Existing unimodal datasets lack scale and diversity, limiting deep learning solutions. This paper proposes MapGlue, a universal MRSI matching framework, and MapData, a large-scale multimodal dataset addressing these gaps. Our contributions are twofold. MapData, a globally diverse dataset spanning 233 sampling points, offers original images (7,000x5,000 to 20,000x15,000 pixels). After rigorous cleaning, it provides 121,781 aligned electronic map-visible image pairs (512x512 pixels) with hybrid manual-automated ground truth, addressing the scarcity of scalable multimodal benchmarks. MapGlue integrates semantic context with a dual graph-guided mechanism to extract cross-modal invariant features. This structure enables global-to-local interaction, enhancing descriptor robustness against modality-specific distortions. Extensive evaluations on MapData and five public datasets demonstrate MapGlue's superiority in matching accuracy under complex conditions, outperforming state-of-the-art methods. Notably, MapGlue generalizes effectively to unseen modalities without retraining, highlighting its adaptability. This work addresses longstanding challenges in MRSI matching by combining scalable dataset construction with a robust, semantics-driven framework. Furthermore, MapGlue shows strong generalization capabilities on other modality matching tasks for which it was not specifically trained. The dataset and code are available at https://github.com/PeihaoWu/MapGlue.
comment: The dataset and code are available at https://github.com/PeihaoWu/MapGlue
☆ Accurate Scene Text Recognition with Efficient Model Scaling and Cloze Self-Distillation
Scaling architectures have been proven effective for improving Scene Text Recognition (STR), but the individual contribution of vision encoder and text decoder scaling remain under-explored. In this work, we present an in-depth empirical analysis and demonstrate that, contrary to previous observations, scaling the decoder yields significant performance gains, always exceeding those achieved by encoder scaling alone. We also identify label noise as a key challenge in STR, particularly in real-world data, which can limit the effectiveness of STR models. To address this, we propose Cloze Self-Distillation (CSD), a method that mitigates label noise by distilling a student model from context-aware soft predictions and pseudolabels generated by a teacher model. Additionally, we enhance the decoder architecture by introducing differential cross-attention for STR. Our methodology achieves state-of-the-art performance on 10 out of 11 benchmarks using only real data, while significantly reducing the parameter size and computational costs.
☆ Narrowing Class-Wise Robustness Gaps in Adversarial Training ICLR 2025
Efforts to address declining accuracy as a result of data shifts often involve various data-augmentation strategies. Adversarial training is one such method, designed to improve robustness to worst-case distribution shifts caused by adversarial examples. While this method can improve robustness, it may also hinder generalization to clean examples and exacerbate performance imbalances across different classes. This paper explores the impact of adversarial training on both overall and class-specific performance, as well as its spill-over effects. We observe that enhanced labeling during training boosts adversarial robustness by 53.50% and mitigates class imbalances by 5.73%, leading to improved accuracy in both clean and adversarial settings compared to standard adversarial training.
comment: 4 figures, ICLR 2025 Workshop on Foundation Models in the Wild
☆ OccluGaussian: Occlusion-Aware Gaussian Splatting for Large Scene Reconstruction and Rendering
In large-scale scene reconstruction using 3D Gaussian splatting, it is common to partition the scene into multiple smaller regions and reconstruct them individually. However, existing division methods are occlusion-agnostic, meaning that each region may contain areas with severe occlusions. As a result, the cameras within those regions are less correlated, leading to a low average contribution to the overall reconstruction. In this paper, we propose an occlusion-aware scene division strategy that clusters training cameras based on their positions and co-visibilities to acquire multiple regions. Cameras in such regions exhibit stronger correlations and a higher average contribution, facilitating high-quality scene reconstruction. We further propose a region-based rendering technique to accelerate large scene rendering, which culls Gaussians invisible to the region where the viewpoint is located. Such a technique significantly speeds up the rendering without compromising quality. Extensive experiments on multiple large scenes show that our method achieves superior reconstruction results with faster rendering speed compared to existing state-of-the-art approaches. Project page: https://occlugaussian.github.io.
comment: Project website: https://occlugaussian.github.io
☆ Iterative Optimal Attention and Local Model for Single Image Rain Streak Removal
High-fidelity imaging is crucial for the successful safety supervision and intelligent deployment of vision-based measurement systems (VBMS). It ensures high-quality imaging in VBMS, which is fundamental for reliable visual measurement and analysis. However, imaging quality can be significantly impaired by adverse weather conditions, particularly rain, leading to blurred images and reduced contrast. Such impairments increase the risk of inaccurate evaluations and misinterpretations in VBMS. To address these limitations, we propose an Expectation Maximization Reconstruction Transformer (EMResformer) for single image rain streak removal. The EMResformer retains the key self-attention values for feature aggregation, enhancing local features to produce superior image reconstruction. Specifically, we propose an Expectation Maximization Block seamlessly integrated into the single image rain streak removal network, enhancing its ability to eliminate superfluous information and restore a cleaner background image. Additionally, to further enhance local information for improved detail rendition, we introduce a Local Model Residual Block, which integrates two local model blocks along with a sequence of convolutions and activation functions. This integration synergistically facilitates the extraction of more pertinent features for enhanced single image rain streak removal. Extensive experiments validate that our proposed EMResformer surpasses current state-of-the-art single image rain streak removal methods on both synthetic and real-world datasets, achieving an improved balance between model complexity and single image deraining performance. Furthermore, we evaluate the effectiveness of our method in VBMS scenarios, demonstrating that high-quality imaging significantly improves the accuracy and reliability of VBMS tasks.
comment: 14 pages, 14 figures, 6 tables
☆ FreeFlux: Understanding and Exploiting Layer-Specific Roles in RoPE-Based MMDiT for Versatile Image Editing
The integration of Rotary Position Embedding (RoPE) in Multimodal Diffusion Transformer (MMDiT) has significantly enhanced text-to-image generation quality. However, the fundamental reliance of self-attention layers on positional embedding versus query-key similarity during generation remains an intriguing question. We present the first mechanistic analysis of RoPE-based MMDiT models (e.g., FLUX), introducing an automated probing strategy that disentangles positional information versus content dependencies by strategically manipulating RoPE during generation. Our analysis reveals distinct dependency patterns that do not straightforwardly correlate with depth, offering new insights into the layer-specific roles in RoPE-based MMDiT. Based on these findings, we propose a training-free, task-specific image editing framework that categorizes editing tasks into three types: position-dependent editing (e.g., object addition), content similarity-dependent editing (e.g., non-rigid editing), and region-preserved editing (e.g., background replacement). For each type, we design tailored key-value injection strategies based on the characteristics of the editing task. Extensive qualitative and quantitative evaluations demonstrate that our method outperforms state-of-the-art approaches, particularly in preserving original semantic content and achieving seamless modifications.
comment: Project page: https://wtybest.github.io/projects/FreeFlux/
☆ Selective Complementary Feature Fusion and Modal Feature Compression Interaction for Brain Tumor Segmentation
Efficient modal feature fusion strategy is the key to achieve accurate segmentation of brain glioma. However, due to the specificity of different MRI modes, it is difficult to carry out cross-modal fusion with large differences in modal features, resulting in the model ignoring rich feature information. On the other hand, the problem of multi-modal feature redundancy interaction occurs in parallel networks due to the proliferation of feature dimensions, further increase the difficulty of multi-modal feature fusion at the bottom end. In order to solve the above problems, we propose a noval complementary feature compression interaction network (CFCI-Net), which realizes the complementary fusion and compression interaction of multi-modal feature information with an efficient mode fusion strategy. Firstly, we propose a selective complementary feature fusion (SCFF) module, which adaptively fuses rich cross-modal feature information by complementary soft selection weights. Secondly, a modal feature compression interaction (MFCI) transformer is proposed to deal with the multi-mode fusion redundancy problem when the feature dimension surges. The MFCI transformer is composed of modal feature compression (MFC) and modal feature interaction (MFI) to realize redundancy feature compression and multi-mode feature interactive learning. %In MFI, we propose a hierarchical interactive attention mechanism based on multi-head attention. Evaluations on the BraTS2019 and BraTS2020 datasets demonstrate that CFCI-Net achieves superior results compared to state-of-the-art models. Code: https://github.com/CDmm0/CFCI-Net
☆ Binarized Mamba-Transformer for Lightweight Quad Bayer HybridEVS Demosaicing CVPR 2025
Quad Bayer demosaicing is the central challenge for enabling the widespread application of Hybrid Event-based Vision Sensors (HybridEVS). Although existing learning-based methods that leverage long-range dependency modeling have achieved promising results, their complexity severely limits deployment on mobile devices for real-world applications. To address these limitations, we propose a lightweight Mamba-based binary neural network designed for efficient and high-performing demosaicing of HybridEVS RAW images. First, to effectively capture both global and local dependencies, we introduce a hybrid Binarized Mamba-Transformer architecture that combines the strengths of the Mamba and Swin Transformer architectures. Next, to significantly reduce computational complexity, we propose a binarized Mamba (Bi-Mamba), which binarizes all projections while retaining the core Selective Scan in full precision. Bi-Mamba also incorporates additional global visual information to enhance global context and mitigate precision loss. We conduct quantitative and qualitative experiments to demonstrate the effectiveness of BMTNet in both performance and computational efficiency, providing a lightweight demosaicing solution suited for real-world edge devices. Our codes and models are available at https://github.com/Clausy9/BMTNet.
comment: Accepted by CVPR 2025
☆ Coupling deep and handcrafted features to assess smile genuineness
Assessing smile genuineness from video sequences is a vital topic concerned with recognizing facial expression and linking them with the underlying emotional states. There have been a number of techniques proposed underpinned with handcrafted features, as well as those that rely on deep learning to elaborate the useful features. As both of these approaches have certain benefits and limitations, in this work we propose to combine the features learned by a long short-term memory network with the features handcrafted to capture the dynamics of facial action units. The results of our experiments indicate that the proposed solution is more effective than the baseline techniques and it allows for assessing the smile genuineness from video sequences in real-time.
comment: Submitted to SPIE Defense + Commercial Sensing 2024
☆ Uncertainty Meets Diversity: A Comprehensive Active Learning Framework for Indoor 3D Object Detection CVPR 2025
Active learning has emerged as a promising approach to reduce the substantial annotation burden in 3D object detection tasks, spurring several initiatives in outdoor environments. However, its application in indoor environments remains unexplored. Compared to outdoor 3D datasets, indoor datasets face significant challenges, including fewer training samples per class, a greater number of classes, more severe class imbalance, and more diverse scene types and intra-class variances. This paper presents the first study on active learning for indoor 3D object detection, where we propose a novel framework tailored for this task. Our method incorporates two key criteria - uncertainty and diversity - to actively select the most ambiguous and informative unlabeled samples for annotation. The uncertainty criterion accounts for both inaccurate detections and undetected objects, ensuring that the most ambiguous samples are prioritized. Meanwhile, the diversity criterion is formulated as a joint optimization problem that maximizes the diversity of both object class distributions and scene types, using a new Class-aware Adaptive Prototype (CAP) bank. The CAP bank dynamically allocates representative prototypes to each class, helping to capture varying intra-class diversity across different categories. We evaluate our method on SUN RGB-D and ScanNetV2, where it outperforms baselines by a significant margin, achieving over 85% of fully-supervised performance with just 10% of the annotation budget.
comment: Accepted by CVPR 2025
☆ Probabilistic Prompt Distribution Learning for Animal Pose Estimation CVPR 2025
Multi-species animal pose estimation has emerged as a challenging yet critical task, hindered by substantial visual diversity and uncertainty. This paper challenges the problem by efficient prompt learning for Vision-Language Pretrained (VLP) models, \textit{e.g.} CLIP, aiming to resolve the cross-species generalization problem. At the core of the solution lies in the prompt designing, probabilistic prompt modeling and cross-modal adaptation, thereby enabling prompts to compensate for cross-modal information and effectively overcome large data variances under unbalanced data distribution. To this end, we propose a novel probabilistic prompting approach to fully explore textual descriptions, which could alleviate the diversity issues caused by long-tail property and increase the adaptability of prompts on unseen category instance. Specifically, we first introduce a set of learnable prompts and propose a diversity loss to maintain distinctiveness among prompts, thus representing diverse image attributes. Diverse textual probabilistic representations are sampled and used as the guidance for the pose estimation. Subsequently, we explore three different cross-modal fusion strategies at spatial level to alleviate the adverse impacts of visual uncertainty. Extensive experiments on multi-species animal pose benchmarks show that our method achieves the state-of-the-art performance under both supervised and zero-shot settings. The code is available at https://github.com/Raojiyong/PPAP.
comment: Accepted by CVPR 2025
☆ OSLoPrompt: Bridging Low-Supervision Challenges and Open-Set Domain Generalization in CLIP CVPR 2025
We introduce Low-Shot Open-Set Domain Generalization (LSOSDG), a novel paradigm unifying low-shot learning with open-set domain generalization (ODG). While prompt-based methods using models like CLIP have advanced DG, they falter in low-data regimes (e.g., 1-shot) and lack precision in detecting open-set samples with fine-grained semantics related to training classes. To address these challenges, we propose OSLOPROMPT, an advanced prompt-learning framework for CLIP with two core innovations. First, to manage limited supervision across source domains and improve DG, we introduce a domain-agnostic prompt-learning mechanism that integrates adaptable domain-specific cues and visually guided semantic attributes through a novel cross-attention module, besides being supported by learnable domain- and class-generic visual prompts to enhance cross-modal adaptability. Second, to improve outlier rejection during inference, we classify unfamiliar samples as "unknown" and train specialized prompts with systematically synthesized pseudo-open samples that maintain fine-grained relationships to known classes, generated through a targeted query strategy with off-the-shelf foundation models. This strategy enhances feature learning, enabling our model to detect open samples with varied granularity more effectively. Extensive evaluations across five benchmarks demonstrate that OSLOPROMPT establishes a new state-of-the-art in LSOSDG, significantly outperforming existing methods.
comment: Accepted to CVPR 2025
☆ MarkushGrapher: Joint Visual and Textual Recognition of Markush Structures
The automated analysis of chemical literature holds promise to accelerate discovery in fields such as material science and drug development. In particular, search capabilities for chemical structures and Markush structures (chemical structure templates) within patent documents are valuable, e.g., for prior-art search. Advancements have been made in the automatic extraction of chemical structures from text and images, yet the Markush structures remain largely unexplored due to their complex multi-modal nature. In this work, we present MarkushGrapher, a multi-modal approach for recognizing Markush structures in documents. Our method jointly encodes text, image, and layout information through a Vision-Text-Layout encoder and an Optical Chemical Structure Recognition vision encoder. These representations are merged and used to auto-regressively generate a sequential graph representation of the Markush structure along with a table defining its variable groups. To overcome the lack of real-world training data, we propose a synthetic data generation pipeline that produces a wide range of realistic Markush structures. Additionally, we present M2S, the first annotated benchmark of real-world Markush structures, to advance research on this challenging task. Extensive experiments demonstrate that our approach outperforms state-of-the-art chemistry-specific and general-purpose vision-language models in most evaluation settings. Code, models, and datasets will be available.
☆ Hyperspectral Imaging for Identifying Foreign Objects on Pork Belly
Ensuring food safety and quality is critical in the food processing industry, where the detection of contaminants remains a persistent challenge. This study presents an automated solution for detecting foreign objects on pork belly meat using hyperspectral imaging (HSI). A hyperspectral camera was used to capture data across various bands in the near-infrared (NIR) spectrum (900-1700 nm), enabling accurate identification of contaminants that are often undetectable through traditional visual inspection methods. The proposed solution combines pre-processing techniques with a segmentation approach based on a lightweight Vision Transformer (ViT) to distinguish contaminants from meat, fat, and conveyor belt materials. The adopted strategy demonstrates high detection accuracy and training efficiency, while also addressing key industrial challenges such as inherent noise, temperature variations, and spectral similarity between contaminants and pork belly. Experimental results validate the effectiveness of hyperspectral imaging in enhancing food safety, highlighting its potential for broad real-time applications in automated quality control processes.
comment: Article under review by Computers in Industry, Elsevier
☆ 3-D Image-to-Image Fusion in Lightsheet Microscopy by Two-Step Adversarial Network: Contribution to the FuseMyCells Challenge
Lightsheet microscopy is a powerful 3-D imaging technique that addresses limitations of traditional optical and confocal microscopy but suffers from a low penetration depth and reduced image quality at greater depths. Multiview lightsheet microscopy improves 3-D resolution by combining multiple views but simultaneously increasing the complexity and the photon budget, leading to potential photobleaching and phototoxicity. The FuseMyCells challenge, organized in conjunction with the IEEE ISBI 2025 conference, aims to benchmark deep learning-based solutions for fusing high-quality 3-D volumes from single 3-D views, potentially simplifying procedures and conserving the photon budget. In this work, we propose a contribution to the FuseMyCells challenge based on a two-step procedure. The first step processes a downsampled version of the image to capture the entire region of interest, while the second step uses a patch-based approach for high-resolution inference, incorporating adversarial loss to enhance visual outcomes. This method addresses challenges related to high data resolution, the necessity of global context, and the preservation of high-frequency details. Experimental results demonstrate the effectiveness of our approach, highlighting its potential to improve 3-D image fusion quality and extend the capabilities of lightsheet microscopy. The average SSIM for the nucleus and membranes is greater than 0.85 and 0.91, respectively.
☆ Disentangled and Interpretable Multimodal Attention Fusion for Cancer Survival Prediction
To improve the prediction of cancer survival using whole-slide images and transcriptomics data, it is crucial to capture both modality-shared and modality-specific information. However, multimodal frameworks often entangle these representations, limiting interpretability and potentially suppressing discriminative features. To address this, we propose Disentangled and Interpretable Multimodal Attention Fusion (DIMAF), a multimodal framework that separates the intra- and inter-modal interactions within an attention-based fusion mechanism to learn distinct modality-specific and modality-shared representations. We introduce a loss based on Distance Correlation to promote disentanglement between these representations and integrate Shapley additive explanations to assess their relative contributions to survival prediction. We evaluate DIMAF on four public cancer survival datasets, achieving a relative average improvement of 1.85% in performance and 23.7% in disentanglement compared to current state-of-the-art multimodal models. Beyond improved performance, our interpretable framework enables a deeper exploration of the underlying interactions between and within modalities in cancer biology.
comment: 11 pages, 1 figure, 3 tables
☆ PoseTraj: Pose-Aware Trajectory Control in Video Diffusion
Recent advancements in trajectory-guided video generation have achieved notable progress. However, existing models still face challenges in generating object motions with potentially changing 6D poses under wide-range rotations, due to limited 3D understanding. To address this problem, we introduce PoseTraj, a pose-aware video dragging model for generating 3D-aligned motion from 2D trajectories. Our method adopts a novel two-stage pose-aware pretraining framework, improving 3D understanding across diverse trajectories. Specifically, we propose a large-scale synthetic dataset PoseTraj-10K, containing 10k videos of objects following rotational trajectories, and enhance the model perception of object pose changes by incorporating 3D bounding boxes as intermediate supervision signals. Following this, we fine-tune the trajectory-controlling module on real-world videos, applying an additional camera-disentanglement module to further refine motion accuracy. Experiments on various benchmark datasets demonstrate that our method not only excels in 3D pose-aligned dragging for rotational trajectories but also outperforms existing baselines in trajectory accuracy and video quality.
comment: Code, data and project page: https://robingg1.github.io/Pose-Traj/
☆ Bokehlicious: Photorealistic Bokeh Rendering with Controllable Apertures
Bokeh rendering methods play a key role in creating the visually appealing, softly blurred backgrounds seen in professional photography. While recent learning-based approaches show promising results, generating realistic Bokeh with variable strength remains challenging. Existing methods require additional inputs and suffer from unrealistic Bokeh reproduction due to reliance on synthetic data. In this work, we propose Bokehlicious, a highly efficient network that provides intuitive control over Bokeh strength through an Aperture-Aware Attention mechanism, mimicking the physical lens aperture. To further address the lack of high-quality real-world data, we present RealBokeh, a novel dataset featuring 23,000 high-resolution (24-MP) images captured by professional photographers, covering diverse scenes with varied aperture and focal length settings. Evaluations on both our new RealBokeh and established Bokeh rendering benchmarks show that Bokehlicious consistently outperforms SOTA methods while significantly reducing computational cost and exhibiting strong zero-shot generalization. Our method and dataset further extend to defocus deblurring, achieving competitive results on the RealDOF benchmark. Our code and data can be found at https://github.com/TimSeizinger/Bokehlicious
comment: Technical Report
☆ Shining Yourself: High-Fidelity Ornaments Virtual Try-on with Diffusion Model
While virtual try-on for clothes and shoes with diffusion models has gained attraction, virtual try-on for ornaments, such as bracelets, rings, earrings, and necklaces, remains largely unexplored. Due to the intricate tiny patterns and repeated geometric sub-structures in most ornaments, it is much more difficult to guarantee identity and appearance consistency under large pose and scale variances between ornaments and models. This paper proposes the task of virtual try-on for ornaments and presents a method to improve the geometric and appearance preservation of ornament virtual try-ons. Specifically, we estimate an accurate wearing mask to improve the alignments between ornaments and models in an iterative scheme alongside the denoising process. To preserve structure details, we further regularize attention layers to map the reference ornament mask to the wearing mask in an implicit way. Experimental results demonstrate that our method successfully wears ornaments from reference images onto target models, handling substantial differences in scale and pose while preserving identity and achieving realistic visual effects.
☆ PromptHash: Affinity-Prompted Collaborative Cross-Modal Learning for Adaptive Hashing Retrieval CVPR2025
Cross-modal hashing is a promising approach for efficient data retrieval and storage optimization. However, contemporary methods exhibit significant limitations in semantic preservation, contextual integrity, and information redundancy, which constrains retrieval efficacy. We present PromptHash, an innovative framework leveraging affinity prompt-aware collaborative learning for adaptive cross-modal hashing. We propose an end-to-end framework for affinity-prompted collaborative hashing, with the following fundamental technical contributions: (i) a text affinity prompt learning mechanism that preserves contextual information while maintaining parameter efficiency, (ii) an adaptive gated selection fusion architecture that synthesizes State Space Model with Transformer network for precise cross-modal feature integration, and (iii) a prompt affinity alignment strategy that bridges modal heterogeneity through hierarchical contrastive learning. To the best of our knowledge, this study presents the first investigation into affinity prompt awareness within collaborative cross-modal adaptive hash learning, establishing a paradigm for enhanced semantic consistency across modalities. Through comprehensive evaluation on three benchmark multi-label datasets, PromptHash demonstrates substantial performance improvements over existing approaches. Notably, on the NUS-WIDE dataset, our method achieves significant gains of 18.22% and 18.65% in image-to-text and text-to-image retrieval tasks, respectively. The code is publicly available at https://github.com/ShiShuMo/PromptHash.
comment: Accepted by CVPR2025
☆ Landmarks Are Alike Yet Distinct: Harnessing Similarity and Individuality for One-Shot Medical Landmark Detection
Landmark detection plays a crucial role in medical imaging applications such as disease diagnosis, bone age estimation, and therapy planning. However, training models for detecting multiple landmarks simultaneously often encounters the "seesaw phenomenon", where improvements in detecting certain landmarks lead to declines in detecting others. Yet, training a separate model for each landmark increases memory usage and computational overhead. To address these challenges, we propose a novel approach based on the belief that "landmarks are distinct" by training models with pseudo-labels and template data updated continuously during the training process, where each model is dedicated to detecting a single landmark to achieve high accuracy. Furthermore, grounded on the belief that "landmarks are also alike", we introduce an adapter-based fusion model, combining shared weights with landmark-specific weights, to efficiently share model parameters while allowing flexible adaptation to individual landmarks. This approach not only significantly reduces memory and computational resource requirements but also effectively mitigates the seesaw phenomenon in multi-landmark training. Experimental results on publicly available medical image datasets demonstrate that the single-landmark models significantly outperform traditional multi-point joint training models in detecting individual landmarks. Although our adapter-based fusion model shows slightly lower performance compared to the combined results of all single-landmark models, it still surpasses the current state-of-the-art methods while achieving a notable improvement in resource efficiency.
☆ Expert Race: A Flexible Routing Strategy for Scaling Diffusion Transformer with Mixture of Experts
Diffusion models have emerged as mainstream framework in visual generation. Building upon this success, the integration of Mixture of Experts (MoE) methods has shown promise in enhancing model scalability and performance. In this paper, we introduce Race-DiT, a novel MoE model for diffusion transformers with a flexible routing strategy, Expert Race. By allowing tokens and experts to compete together and select the top candidates, the model learns to dynamically assign experts to critical tokens. Additionally, we propose per-layer regularization to address challenges in shallow layer learning, and router similarity loss to prevent mode collapse, ensuring better expert utilization. Extensive experiments on ImageNet validate the effectiveness of our approach, showcasing significant performance gains while promising scaling properties.
☆ Semantic-Guided Global-Local Collaborative Networks for Lightweight Image Super-Resolution
Single-Image Super-Resolution (SISR) plays a pivotal role in enhancing the accuracy and reliability of measurement systems, which are integral to various vision-based instrumentation and measurement applications. These systems often require clear and detailed images for precise object detection and recognition. However, images captured by visual measurement tools frequently suffer from degradation, including blurring and loss of detail, which can impede measurement accuracy.As a potential remedy, we in this paper propose a Semantic-Guided Global-Local Collaborative Network (SGGLC-Net) for lightweight SISR. Our SGGLC-Net leverages semantic priors extracted from a pre-trained model to guide the super-resolution process, enhancing image detail quality effectively. Specifically,we propose a Semantic Guidance Module that seamlessly integrates the semantic priors into the super-resolution network, enabling the network to more adeptly capture and utilize semantic priors, thereby enhancing image details. To further explore both local and non-local interactions for improved detail rendition,we propose a Global-Local Collaborative Module, which features three Global and Local Detail Enhancement Modules, as well as a Hybrid Attention Mechanism to work together to efficiently learn more useful features. Our extensive experiments show that SGGLC-Net achieves competitive PSNR and SSIM values across multiple benchmark datasets, demonstrating higher performance with the multi-adds reduction of 12.81G compared to state-of-the-art lightweight super-resolution approaches. These improvements underscore the potential of our approach to enhance the precision and effectiveness of visual measurement systems. Codes are at https://github.com/fanamber831/SGGLC-Net.
comment: 14 pages,13 figures, 9 tables
☆ SALT: Singular Value Adaptation with Low-Rank Transformation
The complex nature of medical image segmentation calls for models that are specifically designed to capture detailed, domain-specific features. Large foundation models offer considerable flexibility, yet the cost of fine-tuning these models remains a significant barrier. Parameter-Efficient Fine-Tuning (PEFT) methods, such as Low-Rank Adaptation (LoRA), efficiently update model weights with low-rank matrices but may suffer from underfitting when the chosen rank is insufficient to capture domain-specific nuances. Conversely, full-rank Singular Value Decomposition (SVD) based methods provide comprehensive updates by modifying all singular values, yet they often lack flexibility and exhibit variable performance across datasets. We propose SALT (Singular Value Adaptation with Low-Rank Transformation), a method that selectively adapts the most influential singular values using trainable scale and shift parameters while complementing this with a low-rank update for the remaining subspace. This hybrid approach harnesses the advantages of both LoRA and SVD, enabling effective adaptation without relying on increasing model size or depth. Evaluated on 5 challenging medical datasets, ranging from as few as 20 samples to 1000, SALT outperforms state-of-the-art PEFT (LoRA and SVD) by 2% to 5% in Dice with only 3.9% trainable parameters, demonstrating robust adaptation even in low-resource settings. The code for SALT is available at: https://github.com/BioMedIA-MBZUAI/SALT
☆ Closer to Ground Truth: Realistic Shape and Appearance Labeled Data Generation for Unsupervised Underwater Image Segmentation ECCV
Solving fish segmentation in underwater videos, a real-world problem of great practical value in marine and aquaculture industry, is a challenging task due to the difficulty of the filming environment, poor visibility and limited existing annotated underwater fish data. In order to overcome these obstacles, we introduce a novel two stage unsupervised segmentation approach that requires no human annotations and combines artificially created and real images. Our method generates challenging synthetic training data, by placing virtual fish in real-world underwater habitats, after performing fish transformations such as Thin Plate Spline shape warping and color Histogram Matching, which realistically integrate synthetic fish into the backgrounds, making the generated images increasingly closer to the real world data with every stage of our approach. While we validate our unsupervised method on the popular DeepFish dataset, obtaining a performance close to a fully-supervised SoTA model, we further show its effectiveness on the specific case of salmon segmentation in underwater videos, for which we introduce DeepSalmon, the largest dataset of its kind in the literature (30 GB). Moreover, on both datasets we prove the capability of our approach to boost the performance of the fully-supervised SoTA model.
comment: Proceedings of ECCVW 2024
☆ Hybrid-Level Instruction Injection for Video Token Compression in Multi-modal Large Language Models CVPR2025
Recent Multi-modal Large Language Models (MLLMs) have been challenged by the computational overhead resulting from massive video frames, often alleviated through compression strategies. However, the visual content is not equally contributed to user instructions, existing strategies (\eg, average pool) inevitably lead to the loss of potentially useful information. To tackle this, we propose the Hybrid-level Instruction Injection Strategy for Conditional Token Compression in MLLMs (HICom), utilizing the instruction as a condition to guide the compression from both local and global levels. This encourages the compression to retain the maximum amount of user-focused information while reducing visual tokens to minimize computational burden. Specifically, the instruction condition is injected into the grouped visual tokens at the local level and the learnable tokens at the global level, and we conduct the attention mechanism to complete the conditional compression. From the hybrid-level compression, the instruction-relevant visual parts are highlighted while the temporal-spatial structure is also preserved for easier understanding of LLMs. To further unleash the potential of HICom, we introduce a new conditional pre-training stage with our proposed dataset HICom-248K. Experiments show that our HICom can obtain distinguished video understanding ability with fewer tokens, increasing the performance by 2.43\% average on three multiple-choice QA benchmarks and saving 78.8\% tokens compared with the SOTA method. The code is available at https://github.com/lntzm/HICom.
comment: Accepted to CVPR2025
☆ Agentic Keyframe Search for Video Question Answering
Video question answering (VideoQA) enables machines to extract and comprehend key information from videos through natural language interaction, which is a critical step towards achieving intelligence. However, the demand for a thorough understanding of videos and high computational costs still limit the widespread applications of VideoQA. To address it, we propose Agentic Keyframe Search (AKeyS), a simple yet powerful algorithm for identifying keyframes in the VideoQA task. It can effectively distinguish key information from redundant, irrelevant content by leveraging modern language agents to direct classical search algorithms. Specifically, we first segment the video and organize it as a tree structure. Then, AKeyS uses a language agent to estimate heuristics and movement costs while dynamically expanding nodes. Finally, the agent determines if sufficient keyframes have been collected based on termination conditions and provides answers. Extensive experiments on the EgoSchema and NExT-QA datasets show that AKeyS outperforms all previous methods with the highest keyframe searching efficiency, which means it can accurately identify key information and conduct effective visual reasoning with minimal computational overhead. For example, on the EgoSchema subset, it achieves 1.8% higher accuracy while processing only 43.5% of the frames compared to VideoTree. We believe that AKeyS represents a significant step towards building intelligent agents for video understanding. The code is publicly available at https://github.com/fansunqi/AKeyS.
☆ Single Image Iterative Subject-driven Generation and Editing
Personalizing image generation and editing is particularly challenging when we only have a few images of the subject, or even a single image. A common approach to personalization is concept learning, which can integrate the subject into existing models relatively quickly, but produces images whose quality tends to deteriorate quickly when the number of subject images is small. Quality can be improved by pre-training an encoder, but training restricts generation to the training distribution, and is time consuming. It is still an open hard challenge to personalize image generation and editing from a single image without training. Here, we present SISO, a novel, training-free approach based on optimizing a similarity score with an input subject image. More specifically, SISO iteratively generates images and optimizes the model based on loss of similarity with the given subject image until a satisfactory level of similarity is achieved, allowing plug-and-play optimization to any image generator. We evaluated SISO in two tasks, image editing and image generation, using a diverse data set of personal subjects, and demonstrate significant improvements over existing methods in image quality, subject fidelity, and background preservation.
comment: Project page is at https://siso-paper.github.io/
☆ GraspCoT: Integrating Physical Property Reasoning for 6-DoF Grasping under Flexible Language Instructions
Flexible instruction-guided 6-DoF grasping is a significant yet challenging task for real-world robotic systems. Existing methods utilize the contextual understanding capabilities of the large language models (LLMs) to establish mappings between expressions and targets, allowing robots to comprehend users' intentions in the instructions. However, the LLM's knowledge about objects' physical properties remains underexplored despite its tight relevance to grasping. In this work, we propose GraspCoT, a 6-DoF grasp detection framework that integrates a Chain-of-Thought (CoT) reasoning mechanism oriented to physical properties, guided by auxiliary question-answering (QA) tasks. Particularly, we design a set of QA templates to enable hierarchical reasoning that includes three stages: target parsing, physical property analysis, and grasp action selection. Moreover, GraspCoT presents a unified multimodal LLM architecture, which encodes multi-view observations of 3D scenes into 3D-aware visual tokens, and then jointly embeds these visual tokens with CoT-derived textual tokens within LLMs to generate grasp pose predictions. Furthermore, we present IntentGrasp, a large-scale benchmark that fills the gap in public datasets for multi-object grasp detection under diverse and indirect verbal commands. Extensive experiments on IntentGrasp demonstrate the superiority of our method, with additional validation in real-world robotic applications confirming its practicality. Codes and data will be released.
☆ GazeSCRNN: Event-based Near-eye Gaze Tracking using a Spiking Neural Network
This work introduces GazeSCRNN, a novel spiking convolutional recurrent neural network designed for event-based near-eye gaze tracking. Leveraging the high temporal resolution, energy efficiency, and compatibility of Dynamic Vision Sensor (DVS) cameras with event-based systems, GazeSCRNN uses a spiking neural network (SNN) to address the limitations of traditional gaze-tracking systems in capturing dynamic movements. The proposed model processes event streams from DVS cameras using Adaptive Leaky-Integrate-and-Fire (ALIF) neurons and a hybrid architecture optimized for spatio-temporal data. Extensive evaluations on the EV-Eye dataset demonstrate the model's accuracy in predicting gaze vectors. In addition, we conducted ablation studies to reveal the importance of the ALIF neurons, dynamic event framing, and training techniques, such as Forward-Propagation-Through-Time, in enhancing overall system performance. The most accurate model achieved a Mean Angle Error (MAE) of 6.034{\deg} and a Mean Pupil Error (MPE) of 2.094 mm. Consequently, this work is pioneering in demonstrating the feasibility of using SNNs for event-based gaze tracking, while shedding light on critical challenges and opportunities for further improvement.
☆ SenseExpo: Efficient Autonomous Exploration with Prediction Information from Lightweight Neural Networks
This paper proposes SenseExpo, an efficient autonomous exploration framework based on a lightweight prediction network, which addresses the limitations of traditional methods in computational overhead and environmental generalization. By integrating Generative Adversarial Networks (GANs), Transformer, and Fast Fourier Convolution (FFC), we designed a lightweight prediction model with merely 709k parameters. Our smallest model achieves better performance on the KTH dataset than U-net (24.5M) and LaMa (51M), delivering PSNR 9.026 and SSIM 0.718, particularly representing a 38.7% PSNR improvement over the 51M-parameter LaMa model. Cross-domain testing demonstrates its strong generalization capability, with an FID score of 161.55 on the HouseExpo dataset, significantly outperforming comparable methods. Regarding exploration efficiency, on the KTH dataset,SenseExpo demonstrates approximately a 67.9% time reduction in exploration time compared to MapEx. On the MRPB 1.0 dataset, SenseExpo achieves 77.1% time reduction roughly compared to MapEx. Deployed as a plug-and-play ROS node, the framework seamlessly integrates with existing navigation systems, providing an efficient solution for resource-constrained devices.
☆ Automating 3D Dataset Generation with Neural Radiance Fields
3D detection is a critical task to understand spatial characteristics of the environment and is used in a variety of applications including robotics, augmented reality, and image retrieval. Training performant detection models require diverse, precisely annotated, and large scale datasets that involve complex and expensive creation processes. Hence, there are only few public 3D datasets that are additionally limited in their range of classes. In this work, we propose a pipeline for automatic generation of 3D datasets for arbitrary objects. By utilizing the universal 3D representation and rendering capabilities of Radiance Fields, our pipeline generates high quality 3D models for arbitrary objects. These 3D models serve as input for a synthetic dataset generator. Our pipeline is fast, easy to use and has a high degree of automation. Our experiments demonstrate, that 3D pose estimation networks, trained with our generated datasets, archive strong performance in typical application scenarios.
comment: Accepted and presented at ROBOVIS 2025 (5th International Conference on Robotics, Computer Vision and Intelligent Systems)
☆ Animating the Uncaptured: Humanoid Mesh Animation with Video Diffusion Models
Animation of humanoid characters is essential in various graphics applications, but requires significant time and cost to create realistic animations. We propose an approach to synthesize 4D animated sequences of input static 3D humanoid meshes, leveraging strong generalized motion priors from generative video models -- as such video models contain powerful motion information covering a wide variety of human motions. From an input static 3D humanoid mesh and a text prompt describing the desired animation, we synthesize a corresponding video conditioned on a rendered image of the 3D mesh. We then employ an underlying SMPL representation to animate the corresponding 3D mesh according to the video-generated motion, based on our motion optimization. This enables a cost-effective and accessible solution to enable the synthesis of diverse and realistic 4D animations.
comment: 16 pages, 10 figures
☆ SpiLiFormer: Enhancing Spiking Transformers with Lateral Inhibition
Spiking Neural Networks (SNNs) based on Transformers have garnered significant attention due to their superior performance and high energy efficiency. However, the spiking attention modules of most existing Transformer-based SNNs are adapted from those of analog Transformers, failing to fully address the issue of over-allocating attention to irrelevant contexts. To fix this fundamental yet overlooked issue, we propose a Lateral Inhibition-inspired Spiking Transformer (SpiLiFormer). It emulates the brain's lateral inhibition mechanism, guiding the model to enhance attention to relevant tokens while suppressing attention to irrelevant ones. Our model achieves state-of-the-art (SOTA) performance across multiple datasets, including CIFAR-10 (+0.45%), CIFAR-100 (+0.48%), CIFAR10-DVS (+2.70%), N-Caltech101 (+1.94%), and ImageNet-1K (+1.6%). Notably, on the ImageNet-1K dataset, SpiLiFormer (69.9M parameters, 4 time steps, 384 resolution) outperforms E-SpikeFormer (173.0M parameters, 8 time steps, 384 resolution), a SOTA spiking Transformer, by 0.46% using only 39% of the parameters and half the time steps. Our code and training checkpoints will be released upon acceptance.
comment: 16 pages, 7 figures
☆ DIPLI: Deep Image Prior Lucky Imaging for Blind Astronomical Image Restoration
Contemporary image restoration and super-resolution techniques effectively harness deep neural networks, markedly outperforming traditional methods. However, astrophotography presents unique challenges for deep learning due to limited training data. This work explores hybrid strategies, such as the Deep Image Prior (DIP) model, which facilitates blind training but is susceptible to overfitting, artifact generation, and instability when handling noisy images. We propose enhancements to the DIP model's baseline performance through several advanced techniques. First, we refine the model to process multiple frames concurrently, employing the Back Projection method and the TVNet model. Next, we adopt a Markov approach incorporating Monte Carlo estimation, Langevin dynamics, and a variational input technique to achieve unbiased estimates with minimal variance and counteract overfitting effectively. Collectively, these modifications reduce the likelihood of noise learning and mitigate loss function fluctuations during training, enhancing result stability. We validated our algorithm across multiple image sets of astronomical and celestial objects, achieving performance that not only mitigates limitations of Lucky Imaging, a classical computer vision technique that remains a standard in astronomical image reconstruction but surpasses the original DIP model, state of the art transformer- and diffusion-based models, underscoring the significance of our improvements.
comment: 10 pages, 7 figures, 2 tables
☆ A Survey on fMRI-based Brain Decoding for Reconstructing Multimodal Stimuli
In daily life, we encounter diverse external stimuli, such as images, sounds, and videos. As research in multimodal stimuli and neuroscience advances, fMRI-based brain decoding has become a key tool for understanding brain perception and its complex cognitive processes. Decoding brain signals to reconstruct stimuli not only reveals intricate neural mechanisms but also drives progress in AI, disease treatment, and brain-computer interfaces. Recent advancements in neuroimaging and image generation models have significantly improved fMRI-based decoding. While fMRI offers high spatial resolution for precise brain activity mapping, its low temporal resolution and signal noise pose challenges. Meanwhile, techniques like GANs, VAEs, and Diffusion Models have enhanced reconstructed image quality, and multimodal pre-trained models have boosted cross-modal decoding tasks. This survey systematically reviews recent progress in fMRI-based brain decoding, focusing on stimulus reconstruction from passive brain signals. It summarizes datasets, relevant brain regions, and categorizes existing methods by model structure. Additionally, it evaluates model performance and discusses their effectiveness. Finally, it identifies key challenges and proposes future research directions, offering valuable insights for the field. For more information and resources related to this survey, visit https://github.com/LpyNow/BrainDecodingImage.
comment: 31 pages, 6 figures
☆ Acc3D: Accelerating Single Image to 3D Diffusion Models via Edge Consistency Guided Score Distillation
We present Acc3D to tackle the challenge of accelerating the diffusion process to generate 3D models from single images. To derive high-quality reconstructions through few-step inferences, we emphasize the critical issue of regularizing the learning of score function in states of random noise. To this end, we propose edge consistency, i.e., consistent predictions across the high signal-to-noise ratio region, to enhance a pre-trained diffusion model, enabling a distillation-based refinement of the endpoint score function. Building on those distilled diffusion models, we propose an adversarial augmentation strategy to further enrich the generation detail and boost overall generation quality. The two modules complement each other, mutually reinforcing to elevate generative performance. Extensive experiments demonstrate that our Acc3D not only achieves over a $20\times$ increase in computational efficiency but also yields notable quality improvements, compared to the state-of-the-arts.
☆ STOP: Integrated Spatial-Temporal Dynamic Prompting for Video Understanding
Pre-trained on tremendous image-text pairs, vision-language models like CLIP have demonstrated promising zero-shot generalization across numerous image-based tasks. However, extending these capabilities to video tasks remains challenging due to limited labeled video data and high training costs. Recent video prompting methods attempt to adapt CLIP for video tasks by introducing learnable prompts, but they typically rely on a single static prompt for all video sequences, overlooking the diverse temporal dynamics and spatial variations that exist across frames. This limitation significantly hinders the model's ability to capture essential temporal information for effective video understanding. To address this, we propose an integrated Spatial-TempOral dynamic Prompting (STOP) model which consists of two complementary modules, the intra-frame spatial prompting and inter-frame temporal prompting. Our intra-frame spatial prompts are designed to adaptively highlight discriminative regions within each frame by leveraging intra-frame attention and temporal variation, allowing the model to focus on areas with substantial temporal dynamics and capture fine-grained spatial details. Additionally, to highlight the varying importance of frames for video understanding, we further introduce inter-frame temporal prompts, dynamically inserting prompts between frames with high temporal variance as measured by frame similarity. This enables the model to prioritize key frames and enhances its capacity to understand temporal dependencies across sequences. Extensive experiments on various video benchmarks demonstrate that STOP consistently achieves superior performance against state-of-the-art methods. The code is available at https://github.com/zhoujiahuan1991/CVPR2025-STOP.
☆ V-NAW: Video-based Noise-aware Adaptive Weighting for Facial Expression Recognition
Facial Expression Recognition (FER) plays a crucial role in human affective analysis and has been widely applied in computer vision tasks such as human-computer interaction and psychological assessment. The 8th Affective Behavior Analysis in-the-Wild (ABAW) Challenge aims to assess human emotions using the video-based Aff-Wild2 dataset. This challenge includes various tasks, including the video-based EXPR recognition track, which is our primary focus. In this paper, we demonstrate that addressing label ambiguity and class imbalance, which are known to cause performance degradation, can lead to meaningful performance improvements. Specifically, we propose Video-based Noise-aware Adaptive Weighting (V-NAW), which adaptively assigns importance to each frame in a clip to address label ambiguity and effectively capture temporal variations in facial expressions. Furthermore, we introduce a simple and effective augmentation strategy to reduce redundancy between consecutive frames, which is a primary cause of overfitting. Through extensive experiments, we validate the effectiveness of our approach, demonstrating significant improvements in video-based FER performance.
☆ Beyond the Visible: Multispectral Vision-Language Learning for Earth Observation
Vision-language models for Earth observation (EO) typically rely on the visual spectrum of data as the only model input, thus failing to leverage the rich spectral information available in the multispectral channels recorded by satellites. Therefore, in this paper, we introduce Llama3-MS-CLIP, the first vision-language model pre-trained with contrastive learning on a large-scale multispectral dataset and report on the performance gains due to the extended spectral range. Furthermore, we present the largest-to-date image-caption dataset for multispectral data, consisting of one million Sentinel-2 samples and corresponding textual descriptions generated with Llama3-LLaVA-Next and Overture Maps data. We develop a scalable captioning pipeline, which is validated by domain experts. We evaluate Llama3-MS-CLIP on multispectral zero-shot image classification and retrieval using three datasets of varying complexity. Our results demonstrate that Llama3-MS-CLIP significantly outperforms other RGB-based approaches, improving classification accuracy by 6.77% on average and retrieval performance by 4.63% mAP compared to the second-best model. Our results emphasize the relevance of multispectral vision-language learning. We release the image-caption dataset, code, and model weights under an open-source license.
☆ CausalCLIPSeg: Unlocking CLIP's Potential in Referring Medical Image Segmentation with Causal Intervention MICCAI 2024
Referring medical image segmentation targets delineating lesions indicated by textual descriptions. Aligning visual and textual cues is challenging due to their distinct data properties. Inspired by large-scale pre-trained vision-language models, we propose CausalCLIPSeg, an end-to-end framework for referring medical image segmentation that leverages CLIP. Despite not being trained on medical data, we enforce CLIP's rich semantic space onto the medical domain by a tailored cross-modal decoding method to achieve text-to-pixel alignment. Furthermore, to mitigate confounding bias that may cause the model to learn spurious correlations instead of meaningful causal relationships, CausalCLIPSeg introduces a causal intervention module which self-annotates confounders and excavates causal features from inputs for segmentation judgments. We also devise an adversarial min-max game to optimize causal features while penalizing confounding ones. Extensive experiments demonstrate the state-of-the-art performance of our proposed method. Code is available at https://github.com/WUTCM-Lab/CausalCLIPSeg.
comment: MICCAI 2024
☆ Don't Fight Hallucinations, Use Them: Estimating Image Realism using NLI over Atomic Facts AAAI-2025
Quantifying the realism of images remains a challenging problem in the field of artificial intelligence. For example, an image of Albert Einstein holding a smartphone violates common-sense because modern smartphone were invented after Einstein's death. We introduce a novel method for assessing image realism using Large Vision-Language Models (LVLMs) and Natural Language Inference (NLI). Our approach is based on the premise that LVLMs may generate hallucinations when confronted with images that defy common sense. Using LVLM to extract atomic facts from these images, we obtain a mix of accurate facts and erroneous hallucinations. We proceed by calculating pairwise entailment scores among these facts, subsequently aggregating these values to yield a singular reality score. This process serves to identify contradictions between genuine facts and hallucinatory elements, signaling the presence of images that violate common sense. Our approach has achieved a new state-of-the-art performance in zero-shot mode on the WHOOPS! dataset.
comment: Proceedings of De-Factify 4: 4nd Workshop on Multimodal Fact Checking and Hate Speech Detection, co-located with AAAI-2025
☆ UniCrossAdapter: Multimodal Adaptation of CLIP for Radiology Report Generation MICCAI 2024
Automated radiology report generation aims to expedite the tedious and error-prone reporting process for radiologists. While recent works have made progress, learning to align medical images and textual findings remains challenging due to the relative scarcity of labeled medical data. For example, datasets for this task are much smaller than those used for image captioning in computer vision. In this work, we propose to transfer representations from CLIP, a large-scale pre-trained vision-language model, to better capture cross-modal semantics between images and texts. However, directly applying CLIP is suboptimal due to the domain gap between natural images and radiology. To enable efficient adaptation, we introduce UniCrossAdapter, lightweight adapter modules that are incorporated into CLIP and fine-tuned on the target task while keeping base parameters fixed. The adapters are distributed across modalities and their interaction to enhance vision-language alignment. Experiments on two public datasets demonstrate the effectiveness of our approach, advancing state-of-the-art in radiology report generation. The proposed transfer learning framework provides a means of harnessing semantic knowledge from large-scale pre-trained models to tackle data-scarce medical vision-language tasks. Code is available at https://github.com/chauncey-tow/MRG-CLIP.
comment: MICCAI 2024 Workshop
☆ SaMam: Style-aware State Space Model for Arbitrary Image Style Transfer
Global effective receptive field plays a crucial role for image style transfer (ST) to obtain high-quality stylized results. However, existing ST backbones (e.g., CNNs and Transformers) suffer huge computational complexity to achieve global receptive fields. Recently, the State Space Model (SSM), especially the improved variant Mamba, has shown great potential for long-range dependency modeling with linear complexity, which offers a approach to resolve the above dilemma. In this paper, we develop a Mamba-based style transfer framework, termed SaMam. Specifically, a mamba encoder is designed to efficiently extract content and style information. In addition, a style-aware mamba decoder is developed to flexibly adapt to various styles. Moreover, to address the problems of local pixel forgetting, channel redundancy and spatial discontinuity of existing SSMs, we introduce both local enhancement and zigzag scan. Qualitative and quantitative results demonstrate that our SaMam outperforms state-of-the-art methods in terms of both accuracy and efficiency.
comment: 11 pages, 10 figures, 2 tables
☆ DnLUT: Ultra-Efficient Color Image Denoising via Channel-Aware Lookup Tables CVPR2025
While deep neural networks have revolutionized image denoising capabilities, their deployment on edge devices remains challenging due to substantial computational and memory requirements. To this end, we present DnLUT, an ultra-efficient lookup table-based framework that achieves high-quality color image denoising with minimal resource consumption. Our key innovation lies in two complementary components: a Pairwise Channel Mixer (PCM) that effectively captures inter-channel correlations and spatial dependencies in parallel, and a novel L-shaped convolution design that maximizes receptive field coverage while minimizing storage overhead. By converting these components into optimized lookup tables post-training, DnLUT achieves remarkable efficiency - requiring only 500KB storage and 0.1% energy consumption compared to its CNN contestant DnCNN, while delivering 20X faster inference. Extensive experiments demonstrate that DnLUT outperforms all existing LUT-based methods by over 1dB in PSNR, establishing a new state-of-the-art in resource-efficient color image denoising. The project is available at https://github.com/Stephen0808/DnLUT.
comment: Accepted by CVPR2025
☆ BlockDance: Reuse Structurally Similar Spatio-Temporal Features to Accelerate Diffusion Transformers CVPR2025
Diffusion models have demonstrated impressive generation capabilities, particularly with recent advancements leveraging transformer architectures to improve both visual and artistic quality. However, Diffusion Transformers (DiTs) continue to encounter challenges related to low inference speed, primarily due to the iterative denoising process. To address this issue, we propose BlockDance, a training-free approach that explores feature similarities at adjacent time steps to accelerate DiTs. Unlike previous feature-reuse methods that lack tailored reuse strategies for features at different scales, BlockDance prioritizes the identification of the most structurally similar features, referred to as Structurally Similar Spatio-Temporal (STSS) features. These features are primarily located within the structure-focused blocks of the transformer during the later stages of denoising. BlockDance caches and reuses these highly similar features to mitigate redundant computation, thereby accelerating DiTs while maximizing consistency with the generated results of the original model. Furthermore, considering the diversity of generated content and the varying distributions of redundant features, we introduce BlockDance-Ada, a lightweight decision-making network tailored for instance-specific acceleration. BlockDance-Ada dynamically allocates resources and provides superior content quality. Both BlockDance and BlockDance-Ada have proven effective across various generation tasks and models, achieving accelerations between 25% and 50% while maintaining generation quality.
comment: Accepted by CVPR2025
☆ Learning to Efficiently Adapt Foundation Models for Self-Supervised Endoscopic 3D Scene Reconstruction from Any Cameras
Accurate 3D scene reconstruction is essential for numerous medical tasks. Given the challenges in obtaining ground truth data, there has been an increasing focus on self-supervised learning (SSL) for endoscopic depth estimation as a basis for scene reconstruction. While foundation models have shown remarkable progress in visual tasks, their direct application to the medical domain often leads to suboptimal results. However, the visual features from these models can still enhance endoscopic tasks, emphasizing the need for efficient adaptation strategies, which still lack exploration currently. In this paper, we introduce Endo3DAC, a unified framework for endoscopic scene reconstruction that efficiently adapts foundation models. We design an integrated network capable of simultaneously estimating depth maps, relative poses, and camera intrinsic parameters. By freezing the backbone foundation model and training only the specially designed Gated Dynamic Vector-Based Low-Rank Adaptation (GDV-LoRA) with separate decoder heads, Endo3DAC achieves superior depth and pose estimation while maintaining training efficiency. Additionally, we propose a 3D scene reconstruction pipeline that optimizes depth maps' scales, shifts, and a few parameters based on our integrated network. Extensive experiments across four endoscopic datasets demonstrate that Endo3DAC significantly outperforms other state-of-the-art methods while requiring fewer trainable parameters. To our knowledge, we are the first to utilize a single network that only requires surgical videos to perform both SSL depth estimation and scene reconstruction tasks. The code will be released upon acceptance.
☆ Text-Driven Diffusion Model for Sign Language Production
We introduce the hfut-lmc team's solution to the SLRTP Sign Production Challenge. The challenge aims to generate semantically aligned sign language pose sequences from text inputs. To this end, we propose a Text-driven Diffusion Model (TDM) framework. During the training phase, TDM utilizes an encoder to encode text sequences and incorporates them into the diffusion model as conditional input to generate sign pose sequences. To guarantee the high quality and accuracy of the generated pose sequences, we utilize two key loss functions. The joint loss function L_{joint} is used to precisely measure and minimize the differences between the joint positions of the generated pose sequences and those of the ground truth. Similarly, the bone orientation loss function L_{bone} is instrumental in ensuring that the orientation of the bones in the generated poses aligns with the actual, correct orientations. In the inference stage, the TDM framework takes on a different yet equally important task. It starts with noisy sequences and, under the strict constraints of the text conditions, gradually refines and generates semantically consistent sign language pose sequences. Our carefully designed framework performs well on the sign language production task, and our solution achieves a BLEU-1 score of 20.17, placing second in the challenge.
comment: 10 pages, 7 figures
☆ No Thing, Nothing: Highlighting Safety-Critical Classes for Robust LiDAR Semantic Segmentation in Adverse Weather CVPR 2025
Existing domain generalization methods for LiDAR semantic segmentation under adverse weather struggle to accurately predict "things" categories compared to "stuff" categories. In typical driving scenes, "things" categories can be dynamic and associated with higher collision risks, making them crucial for safe navigation and planning. Recognizing the importance of "things" categories, we identify their performance drop as a serious bottleneck in existing approaches. We observed that adverse weather induces degradation of semantic-level features and both corruption of local features, leading to a misprediction of "things" as "stuff". To mitigate these corruptions, we suggest our method, NTN - segmeNt Things for No-accident. To address semantic-level feature corruption, we bind each point feature to its superclass, preventing the misprediction of things classes into visually dissimilar categories. Additionally, to enhance robustness against local corruption caused by adverse weather, we define each LiDAR beam as a local region and propose a regularization term that aligns the clean data with its corrupted counterpart in feature space. NTN achieves state-of-the-art performance with a +2.6 mIoU gain on the SemanticKITTI-to-SemanticSTF benchmark and +7.9 mIoU on the SemanticPOSS-to-SemanticSTF benchmark. Notably, NTN achieves a +4.8 and +7.9 mIoU improvement on "things" classes, respectively, highlighting its effectiveness.
comment: 18 pages, CVPR 2025
☆ Enhancing Close-up Novel View Synthesis via Pseudo-labeling AAAI 2025
Recent methods, such as Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS), have demonstrated remarkable capabilities in novel view synthesis. However, despite their success in producing high-quality images for viewpoints similar to those seen during training, they struggle when generating detailed images from viewpoints that significantly deviate from the training set, particularly in close-up views. The primary challenge stems from the lack of specific training data for close-up views, leading to the inability of current methods to render these views accurately. To address this issue, we introduce a novel pseudo-label-based learning strategy. This approach leverages pseudo-labels derived from existing training data to provide targeted supervision across a wide range of close-up viewpoints. Recognizing the absence of benchmarks for this specific challenge, we also present a new dataset designed to assess the effectiveness of both current and future methods in this area. Our extensive experiments demonstrate the efficacy of our approach.
comment: Accepted by AAAI 2025
☆ Jasmine: Harnessing Diffusion Prior for Self-supervised Depth Estimation
In this paper, we propose Jasmine, the first Stable Diffusion (SD)-based self-supervised framework for monocular depth estimation, which effectively harnesses SD's visual priors to enhance the sharpness and generalization of unsupervised prediction. Previous SD-based methods are all supervised since adapting diffusion models for dense prediction requires high-precision supervision. In contrast, self-supervised reprojection suffers from inherent challenges (e.g., occlusions, texture-less regions, illumination variance), and the predictions exhibit blurs and artifacts that severely compromise SD's latent priors. To resolve this, we construct a novel surrogate task of hybrid image reconstruction. Without any additional supervision, it preserves the detail priors of SD models by reconstructing the images themselves while preventing depth estimation from degradation. Furthermore, to address the inherent misalignment between SD's scale and shift invariant estimation and self-supervised scale-invariant depth estimation, we build the Scale-Shift GRU. It not only bridges this distribution gap but also isolates the fine-grained texture of SD output against the interference of reprojection loss. Extensive experiments demonstrate that Jasmine achieves SoTA performance on the KITTI benchmark and exhibits superior zero-shot generalization across multiple datasets.
☆ Reconstructing In-the-Wild Open-Vocabulary Human-Object Interactions CVPR 2025
Reconstructing human-object interactions (HOI) from single images is fundamental in computer vision. Existing methods are primarily trained and tested on indoor scenes due to the lack of 3D data, particularly constrained by the object variety, making it challenging to generalize to real-world scenes with a wide range of objects. The limitations of previous 3D HOI datasets were primarily due to the difficulty in acquiring 3D object assets. However, with the development of 3D reconstruction from single images, recently it has become possible to reconstruct various objects from 2D HOI images. We therefore propose a pipeline for annotating fine-grained 3D humans, objects, and their interactions from single images. We annotated 2.5k+ 3D HOI assets from existing 2D HOI datasets and built the first open-vocabulary in-the-wild 3D HOI dataset Open3DHOI, to serve as a future test set. Moreover, we design a novel Gaussian-HOI optimizer, which efficiently reconstructs the spatial interactions between humans and objects while learning the contact regions. Besides the 3D HOI reconstruction, we also propose several new tasks for 3D HOI understanding to pave the way for future work. Data and code will be publicly available at https://wenboran2002.github.io/3dhoi.
comment: Accepted to CVPR 2025
☆ Learning 3D Scene Analogies with Neural Contextual Scene Maps
Understanding scene contexts is crucial for machines to perform tasks and adapt prior knowledge in unseen or noisy 3D environments. As data-driven learning is intractable to comprehensively encapsulate diverse ranges of layouts and open spaces, we propose teaching machines to identify relational commonalities in 3D spaces. Instead of focusing on point-wise or object-wise representations, we introduce 3D scene analogies, which are smooth maps between 3D scene regions that align spatial relationships. Unlike well-studied single instance-level maps, these scene-level maps smoothly link large scene regions, potentially enabling unique applications in trajectory transfer in AR/VR, long demonstration transfer for imitation learning, and context-aware object rearrangement. To find 3D scene analogies, we propose neural contextual scene maps, which extract descriptor fields summarizing semantic and geometric contexts, and holistically align them in a coarse-to-fine manner for map estimation. This approach reduces reliance on individual feature points, making it robust to input noise or shape variations. Experiments demonstrate the effectiveness of our approach in identifying scene analogies and transferring trajectories or object placements in diverse indoor scenes, indicating its potential for robotics and AR/VR applications.
☆ UniHDSA: A Unified Relation Prediction Approach for Hierarchical Document Structure Analysis
Document structure analysis, aka document layout analysis, is crucial for understanding both the physical layout and logical structure of documents, serving information retrieval, document summarization, knowledge extraction, etc. Hierarchical Document Structure Analysis (HDSA) specifically aims to restore the hierarchical structure of documents created using authoring software with hierarchical schemas. Previous research has primarily followed two approaches: one focuses on tackling specific subtasks of HDSA in isolation, such as table detection or reading order prediction, while the other adopts a unified framework that uses multiple branches or modules, each designed to address a distinct task. In this work, we propose a unified relation prediction approach for HDSA, called UniHDSA, which treats various HDSA sub-tasks as relation prediction problems and consolidates relation prediction labels into a unified label space. This allows a single relation prediction module to handle multiple tasks simultaneously, whether at a page-level or document-level structure analysis. To validate the effectiveness of UniHDSA, we develop a multimodal end-to-end system based on Transformer architectures. Extensive experimental results demonstrate that our approach achieves state-of-the-art performance on a hierarchical document structure analysis benchmark, Comp-HRDoc, and competitive results on a large-scale document layout analysis dataset, DocLayNet, effectively illustrating the superiority of our method across all sub-tasks.
comment: Accepted by Pattern Recognition. arXiv admin note: substantial text overlap with arXiv:2405.11757
☆ UMIT: Unifying Medical Imaging Tasks via Vision-Language Models
With the rapid advancement of deep learning, particularly in the field of medical image analysis, an increasing number of Vision-Language Models (VLMs) are being widely applied to solve complex health and biomedical challenges. However, existing research has primarily focused on specific tasks or single modalities, which limits their applicability and generalization across diverse medical scenarios. To address this challenge, we propose UMIT, a unified multi-modal, multi-task VLM designed specifically for medical imaging tasks. UMIT is able to solve various tasks, including visual question answering, disease detection, and medical report generation. In addition, it is applicable to multiple imaging modalities (e.g., X-ray, CT and PET), covering a wide range of applications from basic diagnostics to complex lesion analysis. Moreover, UMIT supports both English and Chinese, expanding its applicability globally and ensuring accessibility to healthcare services in different linguistic contexts. To enhance the model's adaptability and task-handling capability, we design a unique two-stage training strategy and fine-tune UMIT with designed instruction templates. Through extensive empirical evaluation, UMIT outperforms previous methods in five tasks across multiple datasets. The performance of UMIT indicates that it can significantly enhance diagnostic accuracy and workflow efficiency, thus providing effective solutions for medical imaging applications.
☆ DocVideoQA: Towards Comprehensive Understanding of Document-Centric Videos through Question Answering
Remote work and online courses have become important methods of knowledge dissemination, leading to a large number of document-based instructional videos. Unlike traditional video datasets, these videos mainly feature rich-text images and audio that are densely packed with information closely tied to the visual content, requiring advanced multimodal understanding capabilities. However, this domain remains underexplored due to dataset availability and its inherent complexity. In this paper, we introduce the DocVideoQA task and dataset for the first time, comprising 1454 videos across 23 categories with a total duration of about 828 hours. The dataset is annotated with 154k question-answer pairs generated manually and via GPT, assessing models' comprehension, temporal awareness, and modality integration capabilities. Initially, we establish a baseline using open-source MLLMs. Recognizing the challenges in modality comprehension for document-centric videos, we present DV-LLaMA, a robust video MLLM baseline. Our method enhances unimodal feature extraction with diverse instruction-tuning data and employs contrastive learning to strengthen modality integration. Through fine-tuning, the LLM is equipped with audio-visual capabilities, leading to significant improvements in document-centric video understanding. Extensive testing on the DocVideoQA dataset shows that DV-LLaMA significantly outperforms existing models. We'll release the code and dataset to facilitate future research.
☆ Enhancing Zero-Shot Image Recognition in Vision-Language Models through Human-like Concept Guidance
In zero-shot image recognition tasks, humans demonstrate remarkable flexibility in classifying unseen categories by composing known simpler concepts. However, existing vision-language models (VLMs), despite achieving significant progress through large-scale natural language supervision, often underperform in real-world applications because of sub-optimal prompt engineering and the inability to adapt effectively to target classes. To address these issues, we propose a Concept-guided Human-like Bayesian Reasoning (CHBR) framework. Grounded in Bayes' theorem, CHBR models the concept used in human image recognition as latent variables and formulates this task by summing across potential concepts, weighted by a prior distribution and a likelihood function. To tackle the intractable computation over an infinite concept space, we introduce an importance sampling algorithm that iteratively prompts large language models (LLMs) to generate discriminative concepts, emphasizing inter-class differences. We further propose three heuristic approaches involving Average Likelihood, Confidence Likelihood, and Test Time Augmentation (TTA) Likelihood, which dynamically refine the combination of concepts based on the test image. Extensive evaluations across fifteen datasets demonstrate that CHBR consistently outperforms existing state-of-the-art zero-shot generalization methods.
comment: 21 pages, 7 figures 7 tables
☆ Repurposing 2D Diffusion Models with Gaussian Atlas for 3D Generation
Recent advances in text-to-image diffusion models have been driven by the increasing availability of paired 2D data. However, the development of 3D diffusion models has been hindered by the scarcity of high-quality 3D data, resulting in less competitive performance compared to their 2D counterparts. To address this challenge, we propose repurposing pre-trained 2D diffusion models for 3D object generation. We introduce Gaussian Atlas, a novel representation that utilizes dense 2D grids, enabling the fine-tuning of 2D diffusion models to generate 3D Gaussians. Our approach demonstrates successful transfer learning from a pre-trained 2D diffusion model to a 2D manifold flattened from 3D structures. To support model training, we compile GaussianVerse, a large-scale dataset comprising 205K high-quality 3D Gaussian fittings of various 3D objects. Our experimental results show that text-to-image diffusion models can be effectively adapted for 3D content generation, bridging the gap between 2D and 3D modeling.
☆ MiLA: Multi-view Intensive-fidelity Long-term Video Generation World Model for Autonomous Driving
In recent years, data-driven techniques have greatly advanced autonomous driving systems, but the need for rare and diverse training data remains a challenge, requiring significant investment in equipment and labor. World models, which predict and generate future environmental states, offer a promising solution by synthesizing annotated video data for training. However, existing methods struggle to generate long, consistent videos without accumulating errors, especially in dynamic scenes. To address this, we propose MiLA, a novel framework for generating high-fidelity, long-duration videos up to one minute. MiLA utilizes a Coarse-to-Re(fine) approach to both stabilize video generation and correct distortion of dynamic objects. Additionally, we introduce a Temporal Progressive Denoising Scheduler and Joint Denoising and Correcting Flow modules to improve the quality of generated videos. Extensive experiments on the nuScenes dataset show that MiLA achieves state-of-the-art performance in video generation quality. For more information, visit the project website: https://github.com/xiaomi-mlab/mila.github.io.
comment: project website: https://github.com/xiaomi-mlab/mila.github.io
☆ MASH-VLM: Mitigating Action-Scene Hallucination in Video-LLMs through Disentangled Spatial-Temporal Representations CVPR 2025
In this work, we tackle action-scene hallucination in Video Large Language Models (Video-LLMs), where models incorrectly predict actions based on the scene context or scenes based on observed actions. We observe that existing Video-LLMs often suffer from action-scene hallucination due to two main factors. First, existing Video-LLMs intermingle spatial and temporal features by applying an attention operation across all tokens. Second, they use the standard Rotary Position Embedding (RoPE), which causes the text tokens to overemphasize certain types of tokens depending on their sequential orders. To address these issues, we introduce MASH-VLM, Mitigating Action-Scene Hallucination in Video-LLMs through disentangled spatial-temporal representations. Our approach includes two key innovations: (1) DST-attention, a novel attention mechanism that disentangles the spatial and temporal tokens within the LLM by using masked attention to restrict direct interactions between the spatial and temporal tokens; (2) Harmonic-RoPE, which extends the dimensionality of the positional IDs, allowing the spatial and temporal tokens to maintain balanced positions relative to the text tokens. To evaluate the action-scene hallucination in Video-LLMs, we introduce the UNSCENE benchmark with 1,320 videos and 4,078 QA pairs. Extensive experiments demonstrate that MASH-VLM achieves state-of-the-art results on the UNSCENE benchmark, as well as on existing video understanding benchmarks.
comment: Accepted for CVPR 2025
☆ UniCoRN: Latent Diffusion-based Unified Controllable Image Restoration Network across Multiple Degradations
Image restoration is essential for enhancing degraded images across computer vision tasks. However, most existing methods address only a single type of degradation (e.g., blur, noise, or haze) at a time, limiting their real-world applicability where multiple degradations often occur simultaneously. In this paper, we propose UniCoRN, a unified image restoration approach capable of handling multiple degradation types simultaneously using a multi-head diffusion model. Specifically, we uncover the potential of low-level visual cues extracted from images in guiding a controllable diffusion model for real-world image restoration and we design a multi-head control network adaptable via a mixture-of-experts strategy. We train our model without any prior assumption of specific degradations, through a smartly designed curriculum learning recipe. Additionally, we also introduce MetaRestore, a metalens imaging benchmark containing images with multiple degradations and artifacts. Extensive evaluations on several challenging datasets, including our benchmark, demonstrate that our method achieves significant performance gains and can robustly restore images with severe degradations. Project page: https://codejaeger.github.io/unicorn-gh
☆ TruthLens: Explainable DeepFake Detection for Face Manipulated and Fully Synthetic Data
Detecting DeepFakes has become a crucial research area as the widespread use of AI image generators enables the effortless creation of face-manipulated and fully synthetic content, yet existing methods are often limited to binary classification (real vs. fake) and lack interpretability. To address these challenges, we propose TruthLens, a novel and highly generalizable framework for DeepFake detection that not only determines whether an image is real or fake but also provides detailed textual reasoning for its predictions. Unlike traditional methods, TruthLens effectively handles both face-manipulated DeepFakes and fully AI-generated content while addressing fine-grained queries such as "Does the eyes/nose/mouth look real or fake?" The architecture of TruthLens combines the global contextual understanding of multimodal large language models like PaliGemma2 with the localized feature extraction capabilities of vision-only models like DINOv2. This hybrid design leverages the complementary strengths of both models, enabling robust detection of subtle manipulations while maintaining interpretability. Extensive experiments on diverse datasets demonstrate that TruthLens outperforms state-of-the-art methods in detection accuracy (by 2-14%) and explainability, in both in-domain and cross-data settings, generalizing effectively across traditional and emerging manipulation techniques.
☆ Sequential Spatial-Temporal Network for Interpretable Automatic Ultrasonic Assessment of Fetal Head during labor
The intrapartum ultrasound guideline established by ISUOG highlights the Angle of Progression (AoP) and Head Symphysis Distance (HSD) as pivotal metrics for assessing fetal head descent and predicting delivery outcomes. Accurate measurement of the AoP and HSD requires a structured process. This begins with identifying standardized ultrasound planes, followed by the detection of specific anatomical landmarks within the regions of the pubic symphysis and fetal head that correlate with the delivery parameters AoP and HSD. Finally, these measurements are derived based on the identified anatomical landmarks. Addressing the clinical demands and standard operation process outlined in the ISUOG guideline, we introduce the Sequential Spatial-Temporal Network (SSTN), the first interpretable model specifically designed for the video of intrapartum ultrasound analysis. The SSTN operates by first identifying ultrasound planes, then segmenting anatomical structures such as the pubic symphysis and fetal head, and finally detecting key landmarks for precise measurement of HSD and AoP. Furthermore, the cohesive framework leverages task-related information to improve accuracy and reliability. Experimental evaluations on clinical datasets demonstrate that SSTN significantly surpasses existing models, reducing the mean absolute error by 18% for AoP and 22% for HSD.
comment: This work has been accepted to 2025 IEEE 22nd International Symposium on Biomedical Imaging (ISBI)
VideoRFSplat: Direct Scene-Level Text-to-3D Gaussian Splatting Generation with Flexible Pose and Multi-View Joint Modeling
We propose VideoRFSplat, a direct text-to-3D model leveraging a video generation model to generate realistic 3D Gaussian Splatting (3DGS) for unbounded real-world scenes. To generate diverse camera poses and unbounded spatial extent of real-world scenes, while ensuring generalization to arbitrary text prompts, previous methods fine-tune 2D generative models to jointly model camera poses and multi-view images. However, these methods suffer from instability when extending 2D generative models to joint modeling due to the modality gap, which necessitates additional models to stabilize training and inference. In this work, we propose an architecture and a sampling strategy to jointly model multi-view images and camera poses when fine-tuning a video generation model. Our core idea is a dual-stream architecture that attaches a dedicated pose generation model alongside a pre-trained video generation model via communication blocks, generating multi-view images and camera poses through separate streams. This design reduces interference between the pose and image modalities. Additionally, we propose an asynchronous sampling strategy that denoises camera poses faster than multi-view images, allowing rapidly denoised poses to condition multi-view generation, reducing mutual ambiguity and enhancing cross-modal consistency. Trained on multiple large-scale real-world datasets (RealEstate10K, MVImgNet, DL3DV-10K, ACID), VideoRFSplat outperforms existing text-to-3D direct generation methods that heavily depend on post-hoc refinement via score distillation sampling, achieving superior results without such refinement.
comment: Project page: https://gohyojun15.github.io/VideoRFSplat/
☆ Zero-1-to-A: Zero-Shot One Image to Animatable Head Avatars Using Video Diffusion CVPR 2025
Animatable head avatar generation typically requires extensive data for training. To reduce the data requirements, a natural solution is to leverage existing data-free static avatar generation methods, such as pre-trained diffusion models with score distillation sampling (SDS), which align avatars with pseudo ground-truth outputs from the diffusion model. However, directly distilling 4D avatars from video diffusion often leads to over-smooth results due to spatial and temporal inconsistencies in the generated video. To address this issue, we propose Zero-1-to-A, a robust method that synthesizes a spatial and temporal consistency dataset for 4D avatar reconstruction using the video diffusion model. Specifically, Zero-1-to-A iteratively constructs video datasets and optimizes animatable avatars in a progressive manner, ensuring that avatar quality increases smoothly and consistently throughout the learning process. This progressive learning involves two stages: (1) Spatial Consistency Learning fixes expressions and learns from front-to-side views, and (2) Temporal Consistency Learning fixes views and learns from relaxed to exaggerated expressions, generating 4D avatars in a simple-to-complex manner. Extensive experiments demonstrate that Zero-1-to-A improves fidelity, animation quality, and rendering speed compared to existing diffusion-based methods, providing a solution for lifelike avatar creation. Code is publicly available at: https://github.com/ZhenglinZhou/Zero-1-to-A.
comment: Accepted by CVPR 2025, project page: https://zhenglinzhou.github.io/zero-1-to-a
☆ What can Off-the-Shelves Large Multi-Modal Models do for Dynamic Scene Graph Generation?
Dynamic Scene Graph Generation (DSGG) for videos is a challenging task in computer vision. While existing approaches often focus on sophisticated architectural design and solely use recall during evaluation, we take a closer look at their predicted scene graphs and discover three critical issues with existing DSGG methods: severe precision-recall trade-off, lack of awareness on triplet importance, and inappropriate evaluation protocols. On the other hand, recent advances of Large Multimodal Models (LMMs) have shown great capabilities in video understanding, yet they have not been tested on fine-grained, frame-wise understanding tasks like DSGG. In this work, we conduct the first systematic analysis of Video LMMs for performing DSGG. Without relying on sophisticated architectural design, we show that LMMs with simple decoder-only structure can be turned into State-of-the-Art scene graph generators that effectively overcome the aforementioned issues, while requiring little finetuning (5-10% training data).
☆ BARD-GS: Blur-Aware Reconstruction of Dynamic Scenes via Gaussian Splatting CVPR2025
3D Gaussian Splatting (3DGS) has shown remarkable potential for static scene reconstruction, and recent advancements have extended its application to dynamic scenes. However, the quality of reconstructions depends heavily on high-quality input images and precise camera poses, which are not that trivial to fulfill in real-world scenarios. Capturing dynamic scenes with handheld monocular cameras, for instance, typically involves simultaneous movement of both the camera and objects within a single exposure. This combined motion frequently results in image blur that existing methods cannot adequately handle. To address these challenges, we introduce BARD-GS, a novel approach for robust dynamic scene reconstruction that effectively handles blurry inputs and imprecise camera poses. Our method comprises two main components: 1) camera motion deblurring and 2) object motion deblurring. By explicitly decomposing motion blur into camera motion blur and object motion blur and modeling them separately, we achieve significantly improved rendering results in dynamic regions. In addition, we collect a real-world motion blur dataset of dynamic scenes to evaluate our approach. Extensive experiments demonstrate that BARD-GS effectively reconstructs high-quality dynamic scenes under realistic conditions, significantly outperforming existing methods.
comment: CVPR2025. Project page at https://vulab-ai.github.io/BARD-GS/
☆ EDEN: Enhanced Diffusion for High-quality Large-motion Video Frame Interpolation CVPR2025
Handling complex or nonlinear motion patterns has long posed challenges for video frame interpolation. Although recent advances in diffusion-based methods offer improvements over traditional optical flow-based approaches, they still struggle to generate sharp, temporally consistent frames in scenarios with large motion. To address this limitation, we introduce EDEN, an Enhanced Diffusion for high-quality large-motion vidEo frame iNterpolation. Our approach first utilizes a transformer-based tokenizer to produce refined latent representations of the intermediate frames for diffusion models. We then enhance the diffusion transformer with temporal attention across the process and incorporate a start-end frame difference embedding to guide the generation of dynamic motion. Extensive experiments demonstrate that EDEN achieves state-of-the-art results across popular benchmarks, including nearly a 10% LPIPS reduction on DAVIS and SNU-FILM, and an 8% improvement on DAIN-HD.
comment: CVPR2025
☆ Computation-Efficient and Recognition-Friendly 3D Point Cloud Privacy Protection
3D point cloud has been widely used in applications such as self-driving cars, robotics, CAD models, etc. To the best of our knowledge, these applications raised the issue of privacy leakage in 3D point clouds, which has not been studied well. Different from the 2D image privacy, which is related to texture and 2D geometric structure, the 3D point cloud is texture-less and only relevant to 3D geometric structure. In this work, we defined the 3D point cloud privacy problem and proposed an efficient privacy-preserving framework named PointFlowGMM that can support downstream classification and segmentation tasks without seeing the original data. Using a flow-based generative model, the point cloud is projected into a latent Gaussian mixture distributed subspace. We further designed a novel angular similarity loss to obfuscate the original geometric structure and reduce the model size from 767MB to 120MB without a decrease in recognition performance. The projected point cloud in the latent space is orthogonally rotated randomly to further protect the original geometric structure, the class-to-class relationship is preserved after rotation, thus, the protected point cloud can support the recognition task. We evaluated our model on multiple datasets and achieved comparable recognition results on encrypted point clouds compared to the original point clouds.
☆ A Vision Centric Remote Sensing Benchmark CVPR
Multimodal Large Language Models (MLLMs) have achieved remarkable success in vision-language tasks but their remote sensing (RS) counterpart are relatively under explored. Unlike natural images, RS imagery presents unique challenges that current MLLMs struggle to handle, particularly in visual grounding and spatial reasoning. This study investigates the limitations of CLIP-based MLLMs in RS, highlighting their failure to differentiate visually distinct yet semantically similar RS images. To address this, we introduce a remote sensing multimodal visual patterns (RSMMVP) benchmark. It is designed to evaluate MLLMs in RS tasks by identifying the CLIP-blind pairs, where CLIP-based models incorrectly assign high similarity scores to visually distinct RS images. Through a visual question answering (VQA) evaluation, we analyze the performance of state-of-the-art MLLMs, revealing significant limitations in RS specific representation learning. The results provide valuable insights into the weaknesses of CLIP-based visual encoding and offer a foundation for future research to develop more effective MLLMs tailored for remote sensing applications.
comment: 6 PAGES, 7 figures, CVPR
☆ Controlling Avatar Diffusion with Learnable Gaussian Embedding
Recent advances in diffusion models have made significant progress in digital human generation. However, most existing models still struggle to maintain 3D consistency, temporal coherence, and motion accuracy. A key reason for these shortcomings is the limited representation ability of commonly used control signals(e.g., landmarks, depth maps, etc.). In addition, the lack of diversity in identity and pose variations in public datasets further hinders progress in this area. In this paper, we analyze the shortcomings of current control signals and introduce a novel control signal representation that is optimizable, dense, expressive, and 3D consistent. Our method embeds a learnable neural Gaussian onto a parametric head surface, which greatly enhances the consistency and expressiveness of diffusion-based head models. Regarding the dataset, we synthesize a large-scale dataset with multiple poses and identities. In addition, we use real/synthetic labels to effectively distinguish real and synthetic data, minimizing the impact of imperfections in synthetic data on the generated head images. Extensive experiments show that our model outperforms existing methods in terms of realism, expressiveness, and 3D consistency. Our code, synthetic datasets, and pre-trained models will be released in our project page: https://ustc3dv.github.io/Learn2Control/
comment: Project Page: https://ustc3dv.github.io/Learn2Control/
☆ Frequency Enhancement for Image Demosaicking
Recovering high-frequency textures in image demosaicking remains a challenging issue. While existing methods introduced elaborate spatial learning methods, they still exhibit limited performance. To address this issue, a frequency enhancement approach is proposed. Based on the frequency analysis of color filter array (CFA)/demosaicked/ground truth images, we propose Dual-path Frequency Enhancement Network (DFENet), which reconstructs RGB images in a divide-and-conquer manner through fourier-domain frequency selection. In DFENet, two frequency selectors are employed, each selecting a set of frequency components for processing along separate paths. One path focuses on generating missing information through detail refinement in spatial domain, while the other aims at suppressing undesirable frequencies with the guidance of CFA images in frequency domain. Multi-level frequency supervision with a stagewise training strategy is employed to further improve the reconstruction performance. With these designs, the proposed DFENet outperforms other state-of-the-art algorithms on different datasets and demonstrates significant advantages on hard cases. Moreover, to better assess algorithms' ability to reconstruct high-frequency textures, a new dataset, LineSet37, is contributed, which consists of 37 artificially designed and generated images. These images feature complex line patterns and are prone to severe visual artifacts like color moir\'e after demosaicking. Experiments on LineSet37 offer a more targeted evaluation of performance on challenging cases. The code and dataset are available at https://github.com/VelvetReverie/DFENet-demosaicking.
comment: 14 pages, 8 figures
☆ RL4Med-DDPO: Reinforcement Learning for Controlled Guidance Towards Diverse Medical Image Generation using Vision-Language Foundation Models
Vision-Language Foundation Models (VLFM) have shown a tremendous increase in performance in terms of generating high-resolution, photorealistic natural images. While VLFMs show a rich understanding of semantic content across modalities, they often struggle with fine-grained alignment tasks that require precise correspondence between image regions and textual descriptions a limitation in medical imaging, where accurate localization and detection of clinical features are essential for diagnosis and analysis. To address this issue, we propose a multi-stage architecture where a pre-trained VLFM provides a cursory semantic understanding, while a reinforcement learning (RL) algorithm refines the alignment through an iterative process that optimizes for understanding semantic context. The reward signal is designed to align the semantic information of the text with synthesized images. We demonstrate the effectiveness of our method on a medical imaging skin dataset where the generated images exhibit improved generation quality and alignment with prompt over the fine-tuned Stable Diffusion. We also show that the synthesized samples could be used to improve disease classifier performance for underrepresented subgroups through augmentation.
☆ UAS Visual Navigation in Large and Unseen Environments via a Meta Agent
The aim of this work is to develop an approach that enables Unmanned Aerial System (UAS) to efficiently learn to navigate in large-scale urban environments and transfer their acquired expertise to novel environments. To achieve this, we propose a meta-curriculum training scheme. First, meta-training allows the agent to learn a master policy to generalize across tasks. The resulting model is then fine-tuned on the downstream tasks. We organize the training curriculum in a hierarchical manner such that the agent is guided from coarse to fine towards the target task. In addition, we introduce Incremental Self-Adaptive Reinforcement learning (ISAR), an algorithm that combines the ideas of incremental learning and meta-reinforcement learning (MRL). In contrast to traditional reinforcement learning (RL), which focuses on acquiring a policy for a specific task, MRL aims to learn a policy with fast transfer ability to novel tasks. However, the MRL training process is time consuming, whereas our proposed ISAR algorithm achieves faster convergence than the conventional MRL algorithm. We evaluate the proposed methodologies in simulated environments and demonstrate that using this training philosophy in conjunction with the ISAR algorithm significantly improves the convergence speed for navigation in large-scale cities and the adaptation proficiency in novel environments.
☆ AutoDrive-QA- Automated Generation of Multiple-Choice Questions for Autonomous Driving Datasets Using Large Vision-Language Models
In autonomous driving, open-ended question answering often suffers from unreliable evaluations because freeform responses require either complex metrics or subjective human judgment. To address this challenge, we introduce AutoDrive-QA, an automatic pipeline that converts existing driving QA datasets (including DriveLM, NuScenes-QA, and LingoQA) into a structured multiple-choice question (MCQ) format. This benchmark systematically assesses perception, prediction, and planning tasks, providing a standardized and objective evaluation framework. AutoDrive-QA employs an automated pipeline that leverages large language models (LLMs) to generate high-quality, contextually relevant distractors based on domain-specific error patterns commonly found in autonomous driving scenarios. To evaluate both general capabilities and generalization performance, we test the benchmark on three public datasets and conduct zero-shot experiments on an unseen dataset. The zero-shot evaluations reveal that GPT-4V leads with 69.57% accuracy -- achieving 74.94% in Perception, 65.33% in Prediction, and 68.45% in Planning -- demonstrating that while all models excel in Perception, they struggle in Prediction. Consequently, AutoDrive-QA establishes a rigorous, unbiased standard for integrating and evaluating different vision-language models across various autonomous driving datasets, thereby improving generalization in this field. We release all the codes in the AutoDrive-QA GitHub Repository.
☆ Nano-3D: Metasurface-Based Neural Depth Imaging
Depth imaging is a foundational building block for broad applications, such as autonomous driving and virtual/augmented reality. Traditionally, depth cameras have relied on time-of-flight sensors or multi-lens systems to achieve physical depth measurements. However, these systems often face a trade-off between a bulky form factor and imprecise approximations, limiting their suitability for spatially constrained scenarios. Inspired by the emerging advancements of nano-optics, we present Nano-3D, a metasurface-based neural depth imaging solution with an ultra-compact footprint. Nano-3D integrates our custom-fabricated 700 nm thick TiO2 metasurface with a multi-module deep neural network to extract precise metric depth information from monocular metasurface-polarized imagery. We demonstrate the effectiveness of Nano-3D with both simulated and physical experiments. We hope the exhibited success paves the way for the community to bridge future graphics systems with emerging nanomaterial technologies through novel computational approaches.
☆ OffsetOPT: Explicit Surface Reconstruction without Normals CVPR 2025
Neural surface reconstruction has been dominated by implicit representations with marching cubes for explicit surface extraction. However, those methods typically require high-quality normals for accurate reconstruction. We propose OffsetOPT, a method that reconstructs explicit surfaces directly from 3D point clouds and eliminates the need for point normals. The approach comprises two stages: first, we train a neural network to predict surface triangles based on local point geometry, given uniformly distributed training point clouds. Next, we apply the frozen network to reconstruct surfaces from unseen point clouds by optimizing a per-point offset to maximize the accuracy of triangle predictions. Compared to state-of-the-art methods, OffsetOPT not only excels at reconstructing overall surfaces but also significantly preserves sharp surface features. We demonstrate its accuracy on popular benchmarks, including small-scale shapes and large-scale open surfaces.
comment: Accepted to CVPR 2025
☆ GraPLUS: Graph-based Placement Using Semantics for Image Composition
We present GraPLUS (Graph-based Placement Using Semantics), a novel framework for plausible object placement in images that leverages scene graphs and large language models. Our approach uniquely combines graph-structured scene representation with semantic understanding to determine contextually appropriate object positions. The framework employs GPT-2 to transform categorical node and edge labels into rich semantic embeddings that capture both definitional characteristics and typical spatial contexts, enabling nuanced understanding of object relationships and placement patterns. GraPLUS achieves placement accuracy of 92.1% and an FID score of 28.83 on the OPA dataset, outperforming state-of-the-art methods by 8.1% while maintaining competitive visual quality. In human evaluation studies involving 964 samples assessed by 19 participants, our method was preferred in 52.1% of cases, significantly outperforming previous approaches. The framework's key innovations include: (i) leveraging pre-trained scene graph models that transfer knowledge from other domains, (ii) edge-aware graph neural networks that process scene semantics through structured relationships, (iii) a cross-modal attention mechanism that aligns categorical embeddings with enhanced scene features, and (iv) a multiobjective training strategy incorporating semantic consistency constraints.
comment: 17 pages, 3 figures, 6 tables
☆ SAGE: Semantic-Driven Adaptive Gaussian Splatting in Extended Reality
3D Gaussian Splatting (3DGS) has significantly improved the efficiency and realism of three-dimensional scene visualization in several applications, ranging from robotics to eXtended Reality (XR). This work presents SAGE (Semantic-Driven Adaptive Gaussian Splatting in Extended Reality), a novel framework designed to enhance the user experience by dynamically adapting the Level of Detail (LOD) of different 3DGS objects identified via a semantic segmentation. Experimental results demonstrate how SAGE effectively reduces memory and computational overhead while keeping a desired target visual quality, thus providing a powerful optimization for interactive XR applications.
☆ Digitally Prototype Your Eye Tracker: Simulating Hardware Performance using 3D Synthetic Data
Eye tracking (ET) is a key enabler for Augmented and Virtual Reality (AR/VR). Prototyping new ET hardware requires assessing the impact of hardware choices on eye tracking performance. This task is compounded by the high cost of obtaining data from sufficiently many variations of real hardware, especially for machine learning, which requires large training datasets. We propose a method for end-to-end evaluation of how hardware changes impact machine learning-based ET performance using only synthetic data. We utilize a dataset of real 3D eyes, reconstructed from light dome data using neural radiance fields (NeRF), to synthesize captured eyes from novel viewpoints and camera parameters. Using this framework, we demonstrate that we can predict the relative performance across various hardware configurations, accounting for variations in sensor noise, illumination brightness, and optical blur. We also compare our simulator with the publicly available eye tracking dataset from the Project Aria glasses, demonstrating a strong correlation with real-world performance. Finally, we present a first-of-its-kind analysis in which we vary ET camera positions, evaluating ET performance ranging from on-axis direct views of the eye to peripheral views on the frame. Such an analysis would have previously required manufacturing physical devices to capture evaluation data. In short, our method enables faster prototyping of ET hardware.
comment: 14 pages, 12 figures
☆ EDiT: Efficient Diffusion Transformers with Linear Compressed Attention
Diffusion Transformers (DiTs) have emerged as a leading architecture for text-to-image synthesis, producing high-quality and photorealistic images. However, the quadratic scaling properties of the attention in DiTs hinder image generation with higher resolution or on devices with limited resources. This work introduces an efficient diffusion transformer (EDiT) to alleviate these efficiency bottlenecks in conventional DiTs and Multimodal DiTs (MM-DiTs). First, we present a novel linear compressed attention method that uses a multi-layer convolutional network to modulate queries with local information while keys and values are spatially aggregated. Second, we formulate a hybrid attention scheme for multi-modal inputs that combines linear attention for image-to-image interactions and standard scaled dot-product attention for interactions involving prompts. Merging these two approaches leads to an expressive, linear-time Multimodal Efficient Diffusion Transformer (MM-EDiT). We demonstrate the effectiveness of the EDiT and MM-EDiT architectures by integrating them into PixArt-Sigma(conventional DiT) and Stable Diffusion 3.5-Medium (MM-DiT), achieving up to 2.2x speedup with comparable image quality after distillation.
☆ Depth Matters: Multimodal RGB-D Perception for Robust Autonomous Agents
Autonomous agents that rely purely on perception to make real-time control decisions require efficient and robust architectures. In this work, we demonstrate that augmenting RGB input with depth information significantly enhances our agents' ability to predict steering commands compared to using RGB alone. We benchmark lightweight recurrent controllers that leverage the fused RGB-D features for sequential decision-making. To train our models, we collect high-quality data using a small-scale autonomous car controlled by an expert driver via a physical steering wheel, capturing varying levels of steering difficulty. Our models, trained under diverse configurations, were successfully deployed on real hardware. Specifically, our findings reveal that the early fusion of depth data results in a highly robust controller, which remains effective even with frame drops and increased noise levels, without compromising the network's focus on the task.
comment: Submitted to IROS 2025
☆ 4D Gaussian Splatting SLAM
Simultaneously localizing camera poses and constructing Gaussian radiance fields in dynamic scenes establish a crucial bridge between 2D images and the 4D real world. Instead of removing dynamic objects as distractors and reconstructing only static environments, this paper proposes an efficient architecture that incrementally tracks camera poses and establishes the 4D Gaussian radiance fields in unknown scenarios by using a sequence of RGB-D images. First, by generating motion masks, we obtain static and dynamic priors for each pixel. To eliminate the influence of static scenes and improve the efficiency on learning the motion of dynamic objects, we classify the Gaussian primitives into static and dynamic Gaussian sets, while the sparse control points along with an MLP is utilized to model the transformation fields of the dynamic Gaussians. To more accurately learn the motion of dynamic Gaussians, a novel 2D optical flow map reconstruction algorithm is designed to render optical flows of dynamic objects between neighbor images, which are further used to supervise the 4D Gaussian radiance fields along with traditional photometric and geometric constraints. In experiments, qualitative and quantitative evaluation results show that the proposed method achieves robust tracking and high-quality view synthesis performance in real-world environments.
☆ QuartDepth: Post-Training Quantization for Real-Time Depth Estimation on the Edge CVPR 2025
Monocular Depth Estimation (MDE) has emerged as a pivotal task in computer vision, supporting numerous real-world applications. However, deploying accurate depth estimation models on resource-limited edge devices, especially Application-Specific Integrated Circuits (ASICs), is challenging due to the high computational and memory demands. Recent advancements in foundational depth estimation deliver impressive results but further amplify the difficulty of deployment on ASICs. To address this, we propose QuartDepth which adopts post-training quantization to quantize MDE models with hardware accelerations for ASICs. Our approach involves quantizing both weights and activations to 4-bit precision, reducing the model size and computation cost. To mitigate the performance degradation, we introduce activation polishing and compensation algorithm applied before and after activation quantization, as well as a weight reconstruction method for minimizing errors in weight quantization. Furthermore, we design a flexible and programmable hardware accelerator by supporting kernel fusion and customized instruction programmability, enhancing throughput and efficiency. Experimental results demonstrate that our framework achieves competitive accuracy while enabling fast inference and higher energy efficiency on ASICs, bridging the gap between high-performance depth estimation and practical edge-device applicability. Code: https://github.com/shawnricecake/quart-depth
comment: Accepted by CVPR 2025
☆ Cross-Modal and Uncertainty-Aware Agglomeration for Open-Vocabulary 3D Scene Understanding CVPR 2025
The lack of a large-scale 3D-text corpus has led recent works to distill open-vocabulary knowledge from vision-language models (VLMs). owever, these methods typically rely on a single VLM to align the feature spaces of 3D models within a common language space, which limits the potential of 3D models to leverage the diverse spatial and semantic capabilities encapsulated in various foundation models. In this paper, we propose Cross-modal and Uncertainty-aware Agglomeration for Open-vocabulary 3D Scene Understanding dubbed CUA-O3D, the first model to integrate multiple foundation models-such as CLIP, DINOv2, and Stable Diffusion-into 3D scene understanding. We further introduce a deterministic uncertainty estimation to adaptively distill and harmonize the heterogeneous 2D feature embeddings from these models. Our method addresses two key challenges: (1) incorporating semantic priors from VLMs alongside the geometric knowledge of spatially-aware vision foundation models, and (2) using a novel deterministic uncertainty estimation to capture model-specific uncertainties across diverse semantic and geometric sensitivities, helping to reconcile heterogeneous representations during training. Extensive experiments on ScanNetV2 and Matterport3D demonstrate that our method not only advances open-vocabulary segmentation but also achieves robust cross-domain alignment and competitive spatial perception capabilities. The code will be available at \href{https://github.com/TyroneLi/CUA_O3D}{CUA_O3D}.
comment: Accepted by CVPR 2025
☆ GAIR: Improving Multimodal Geo-Foundation Model with Geo-Aligned Implicit Representations
Advancements in vision and language foundation models have inspired the development of geo-foundation models (GeoFMs), enhancing performance across diverse geospatial tasks. However, many existing GeoFMs primarily focus on overhead remote sensing (RS) data while neglecting other data modalities such as ground-level imagery. A key challenge in multimodal GeoFM development is to explicitly model geospatial relationships across modalities, which enables generalizability across tasks, spatial scales, and temporal contexts. To address these limitations, we propose GAIR, a novel multimodal GeoFM architecture integrating overhead RS data, street view (SV) imagery, and their geolocation metadata. We utilize three factorized neural encoders to project an SV image, its geolocation, and an RS image into the embedding space. The SV image needs to be located within the RS image's spatial footprint but does not need to be at its geographic center. In order to geographically align the SV image and RS image, we propose a novel implicit neural representations (INR) module that learns a continuous RS image representation and looks up the RS embedding at the SV image's geolocation. Next, these geographically aligned SV embedding, RS embedding, and location embedding are trained with contrastive learning objectives from unlabeled data. We evaluate GAIR across 10 geospatial tasks spanning RS image-based, SV image-based, and location embedding-based benchmarks. Experimental results demonstrate that GAIR outperforms state-of-the-art GeoFMs and other strong baselines, highlighting its effectiveness in learning generalizable and transferable geospatial representations.
comment: 18 pages, 10 figures
☆ TextBite: A Historical Czech Document Dataset for Logical Page Segmentation
Logical page segmentation is an important step in document analysis, enabling better semantic representations, information retrieval, and text understanding. Previous approaches define logical segmentation either through text or geometric objects, relying on OCR or precise geometry. To avoid the need for OCR, we define the task purely as segmentation in the image domain. Furthermore, to ensure the evaluation remains unaffected by geometrical variations that do not impact text segmentation, we propose to use only foreground text pixels in the evaluation metric and disregard all background pixels. To support research in logical document segmentation, we introduce TextBite, a dataset of historical Czech documents spanning the 18th to 20th centuries, featuring diverse layouts from newspapers, dictionaries, and handwritten records. The dataset comprises 8,449 page images with 78,863 annotated segments of logically and thematically coherent text. We propose a set of baseline methods combining text region detection and relation prediction. The dataset, baselines and evaluation framework can be accessed at https://github.com/DCGM/textbite-dataset.
☆ When Less is Enough: Adaptive Token Reduction for Efficient Image Representation
Vision encoders typically generate a large number of visual tokens, providing information-rich representations but significantly increasing computational demands. This raises the question of whether all generated tokens are equally valuable or if some of them can be discarded to reduce computational costs without compromising quality. In this paper, we introduce a new method for determining feature utility based on the idea that less valuable features can be reconstructed from more valuable ones. We implement this concept by integrating an autoencoder with a Gumbel-Softmax selection mechanism, that allows identifying and retaining only the most informative visual tokens. To validate our approach, we compared the performance of the LLaVA-NeXT model, using features selected by our method with randomly selected features. We found that on OCR-based tasks, more than 50% of the visual context can be removed with minimal performance loss, whereas randomly discarding the same proportion of features significantly affects the model capabilities. Furthermore, in general-domain tasks, even randomly retaining only 30% of tokens achieves performance comparable to using the full set of visual tokens. Our results highlight a promising direction towards adaptive and efficient multimodal pruning that facilitates scalable and low-overhead inference without compromising performance.
comment: 10 pages, 8 figures
☆ iFlame: Interleaving Full and Linear Attention for Efficient Mesh Generation
This paper propose iFlame, a novel transformer-based network architecture for mesh generation. While attention-based models have demonstrated remarkable performance in mesh generation, their quadratic computational complexity limits scalability, particularly for high-resolution 3D data. Conversely, linear attention mechanisms offer lower computational costs but often struggle to capture long-range dependencies, resulting in suboptimal outcomes. To address this trade-off, we propose an interleaving autoregressive mesh generation framework that combines the efficiency of linear attention with the expressive power of full attention mechanisms. To further enhance efficiency and leverage the inherent structure of mesh representations, we integrate this interleaving approach into an hourglass architecture, which significantly boosts efficiency. Our approach reduces training time while achieving performance comparable to pure attention-based models. To improve inference efficiency, we implemented a caching algorithm that almost doubles the speed and reduces the KV cache size by seven-eighths compared to the original Transformer. We evaluate our framework on ShapeNet and Objaverse, demonstrating its ability to generate high-quality 3D meshes efficiently. Our results indicate that the proposed interleaving framework effectively balances computational efficiency and generative performance, making it a practical solution for mesh generation. The training takes only 2 days with 4 GPUs on 39k data with a maximum of 4k faces on Objaverse.
comment: https://wanghanxiao123.github.io/iFa/
☆ Fed-NDIF: A Noise-Embedded Federated Diffusion Model For Low-Count Whole-Body PET Denoising
Low-count positron emission tomography (LCPET) imaging can reduce patients' exposure to radiation but often suffers from increased image noise and reduced lesion detectability, necessitating effective denoising techniques. Diffusion models have shown promise in LCPET denoising for recovering degraded image quality. However, training such models requires large and diverse datasets, which are challenging to obtain in the medical domain. To address data scarcity and privacy concerns, we combine diffusion models with federated learning -- a decentralized training approach where models are trained individually at different sites, and their parameters are aggregated on a central server over multiple iterations. The variation in scanner types and image noise levels within and across institutions poses additional challenges for federated learning in LCPET denoising. In this study, we propose a novel noise-embedded federated learning diffusion model (Fed-NDIF) to address these challenges, leveraging a multicenter dataset and varying count levels. Our approach incorporates liver normalized standard deviation (NSTD) noise embedding into a 2.5D diffusion model and utilizes the Federated Averaging (FedAvg) algorithm to aggregate locally trained models into a global model, which is subsequently fine-tuned on local datasets to optimize performance and obtain personalized models. Extensive validation on datasets from the University of Bern, Ruijin Hospital in Shanghai, and Yale-New Haven Hospital demonstrates the superior performance of our method in enhancing image quality and improving lesion quantification. The Fed-NDIF model shows significant improvements in PSNR, SSIM, and NMSE of the entire 3D volume, as well as enhanced lesion detectability and quantification, compared to local diffusion models and federated UNet-based models.
☆ TriTex: Learning Texture from a Single Mesh via Triplane Semantic Features
As 3D content creation continues to grow, transferring semantic textures between 3D meshes remains a significant challenge in computer graphics. While recent methods leverage text-to-image diffusion models for texturing, they often struggle to preserve the appearance of the source texture during texture transfer. We present \ourmethod, a novel approach that learns a volumetric texture field from a single textured mesh by mapping semantic features to surface colors. Using an efficient triplane-based architecture, our method enables semantic-aware texture transfer to a novel target mesh. Despite training on just one example, it generalizes effectively to diverse shapes within the same category. Extensive evaluation on our newly created benchmark dataset shows that \ourmethod{} achieves superior texture transfer quality and fast inference times compared to existing methods. Our approach advances single-example texture transfer, providing a practical solution for maintaining visual coherence across related 3D models in applications like game development and simulation.
comment: Project page: https://danacohen95.github.io/TriTex/
☆ Utilizing Reinforcement Learning for Bottom-Up part-wise Reconstruction of 2D Wire-Frame Projections
This work concerns itself with the task of reconstructing all edges of an arbitrary 3D wire-frame model projected to an image plane. We explore a bottom-up part-wise procedure undertaken by an RL agent to segment and reconstruct these 2D multipart objects. The environment's state is represented as a four-colour image, where different colours correspond to background, a target edge, a reconstruction line, and the overlap of both. At each step, the agent can transform the reconstruction line within a four-dimensional action space or terminate the episode using a specific termination action. To investigate the impact of reward function formulations, we tested episodic and incremental rewards, as well as combined approaches. Empirical results demonstrated that the latter yielded the most effective training performance. To further enhance efficiency and stability, we introduce curriculum learning strategies. First, an action-based curriculum was implemented, where the agent was initially restricted to a reduced action space, being able to only perform three of the five possible actions, before progressing to the full action space. Second, we test a task-based curriculum, where the agent first solves a simplified version of the problem before being presented with the full, more complex task. This second approach produced promising results, as the agent not only successfully transitioned from learning the simplified task to mastering the full task, but in doing so gained significant performance. This study demonstrates the potential of an iterative RL wire-frame reconstruction in two dimensions. By combining optimized reward function formulations with curriculum learning strategies, we achieved significant improvements in training success. The proposed methodology provides an effective framework for solving similar tasks and represents a promising direction for future research in the field.
comment: Accepted to RLDM 2025
☆ MobilePlantViT: A Mobile-friendly Hybrid ViT for Generalized Plant Disease Image Classification
Plant diseases significantly threaten global food security by reducing crop yields and undermining agricultural sustainability. AI-driven automated classification has emerged as a promising solution, with deep learning models demonstrating impressive performance in plant disease identification. However, deploying these models on mobile and edge devices remains challenging due to high computational demands and resource constraints, highlighting the need for lightweight, accurate solutions for accessible smart agriculture systems. To address this, we propose MobilePlantViT, a novel hybrid Vision Transformer (ViT) architecture designed for generalized plant disease classification, which optimizes resource efficiency while maintaining high performance. Extensive experiments across diverse plant disease datasets of varying scales show our model's effectiveness and strong generalizability, achieving test accuracies ranging from 80% to over 99%. Notably, with only 0.69 million parameters, our architecture outperforms the smallest versions of MobileViTv1 and MobileViTv2, despite their higher parameter counts. These results underscore the potential of our approach for real-world, AI-powered automated plant disease classification in sustainable and resource-efficient smart agriculture systems. All codes will be available in the GitHub repository: https://github.com/moshiurtonmoy/MobilePlantViT
comment: Submitted to a journal for peer-review under IEEE Transactions series
☆ Progressive Test Time Energy Adaptation for Medical Image Segmentation
We propose a model-agnostic, progressive test-time energy adaptation approach for medical image segmentation. Maintaining model performance across diverse medical datasets is challenging, as distribution shifts arise from inconsistent imaging protocols and patient variations. Unlike domain adaptation methods that require multiple passes through target data - impractical in clinical settings - our approach adapts pretrained models progressively as they process test data. Our method leverages a shape energy model trained on source data, which assigns an energy score at the patch level to segmentation maps: low energy represents in-distribution (accurate) shapes, while high energy signals out-of-distribution (erroneous) predictions. By minimizing this energy score at test time, we refine the segmentation model to align with the target distribution. To validate the effectiveness and adaptability, we evaluated our framework on eight public MRI (bSSFP, T1- and T2-weighted) and X-ray datasets spanning cardiac, spinal cord, and lung segmentation. We consistently outperform baselines both quantitatively and qualitatively.
☆ A Recipe for Generating 3D Worlds From a Single Image
We introduce a recipe for generating immersive 3D worlds from a single image by framing the task as an in-context learning problem for 2D inpainting models. This approach requires minimal training and uses existing generative models. Our process involves two steps: generating coherent panoramas using a pre-trained diffusion model and lifting these into 3D with a metric depth estimator. We then fill unobserved regions by conditioning the inpainting model on rendered point clouds, requiring minimal fine-tuning. Tested on both synthetic and real images, our method produces high-quality 3D environments suitable for VR display. By explicitly modeling the 3D structure of the generated environment from the start, our approach consistently outperforms state-of-the-art, video synthesis-based methods along multiple quantitative image quality metrics. Project Page: https://katjaschwarz.github.io/worlds/
☆ UniK3D: Universal Camera Monocular 3D Estimation
Monocular 3D estimation is crucial for visual perception. However, current methods fall short by relying on oversimplified assumptions, such as pinhole camera models or rectified images. These limitations severely restrict their general applicability, causing poor performance in real-world scenarios with fisheye or panoramic images and resulting in substantial context loss. To address this, we present UniK3D, the first generalizable method for monocular 3D estimation able to model any camera. Our method introduces a spherical 3D representation which allows for better disentanglement of camera and scene geometry and enables accurate metric 3D reconstruction for unconstrained camera models. Our camera component features a novel, model-independent representation of the pencil of rays, achieved through a learned superposition of spherical harmonics. We also introduce an angular loss, which, together with the camera module design, prevents the contraction of the 3D outputs for wide-view cameras. A comprehensive zero-shot evaluation on 13 diverse datasets demonstrates the state-of-the-art performance of UniK3D across 3D, depth, and camera metrics, with substantial gains in challenging large-field-of-view and panoramic settings, while maintaining top accuracy in conventional pinhole small-field-of-view domains. Code and models are available at github.com/lpiccinelli-eth/unik3d .
☆ Distributed LLMs and Multimodal Large Language Models: A Survey on Advances, Challenges, and Future Directions
Language models (LMs) are machine learning models designed to predict linguistic patterns by estimating the probability of word sequences based on large-scale datasets, such as text. LMs have a wide range of applications in natural language processing (NLP) tasks, including autocomplete and machine translation. Although larger datasets typically enhance LM performance, scalability remains a challenge due to constraints in computational power and resources. Distributed computing strategies offer essential solutions for improving scalability and managing the growing computational demand. Further, the use of sensitive datasets in training and deployment raises significant privacy concerns. Recent research has focused on developing decentralized techniques to enable distributed training and inference while utilizing diverse computational resources and enabling edge AI. This paper presents a survey on distributed solutions for various LMs, including large language models (LLMs), vision language models (VLMs), multimodal LLMs (MLLMs), and small language models (SLMs). While LLMs focus on processing and generating text, MLLMs are designed to handle multiple modalities of data (e.g., text, images, and audio) and to integrate them for broader applications. To this end, this paper reviews key advancements across the MLLM pipeline, including distributed training, inference, fine-tuning, and deployment, while also identifying the contributions, limitations, and future areas of improvement. Further, it categorizes the literature based on six primary focus areas of decentralization. Our analysis describes gaps in current methodologies for enabling distributed solutions for LMs and outline future research directions, emphasizing the need for novel solutions to enhance the robustness and applicability of distributed LMs.
♻ ☆ Paint by Inpaint: Learning to Add Image Objects by Removing Them First
Image editing has advanced significantly with the introduction of text-conditioned diffusion models. Despite this progress, seamlessly adding objects to images based on textual instructions without requiring user-provided input masks remains a challenge. We address this by leveraging the insight that removing objects (Inpaint) is significantly simpler than its inverse process of adding them (Paint), attributed to inpainting models that benefit from segmentation mask guidance. Capitalizing on this realization, by implementing an automated and extensive pipeline, we curate a filtered large-scale image dataset containing pairs of images and their corresponding object-removed versions. Using these pairs, we train a diffusion model to inverse the inpainting process, effectively adding objects into images. Unlike other editing datasets, ours features natural target images instead of synthetic ones while ensuring source-target consistency by construction. Additionally, we utilize a large Vision-Language Model to provide detailed descriptions of the removed objects and a Large Language Model to convert these descriptions into diverse, natural-language instructions. Our quantitative and qualitative results show that the trained model surpasses existing models in both object addition and general editing tasks. Visit our project page for the released dataset and trained models at https://rotsteinnoam.github.io/Paint-by-Inpaint.
♻ ☆ Benchmarking Large Language Models for Handwritten Text Recognition
Traditional machine learning models for Handwritten Text Recognition (HTR) rely on supervised training, requiring extensive manual annotations, and often produce errors due to the separation between layout and text processing. In contrast, Multimodal Large Language Models (MLLMs) offer a general approach to recognizing diverse handwriting styles without the need for model-specific training. The study benchmarks various proprietary and open-source LLMs against Transkribus models, evaluating their performance on both modern and historical datasets written in English, French, German, and Italian. In addition, emphasis is placed on testing the models' ability to autonomously correct previously generated outputs. Findings indicate that proprietary models, especially Claude 3.5 Sonnet, outperform open-source alternatives in zero-shot settings. MLLMs achieve excellent results in recognizing modern handwriting and exhibit a preference for the English language due to their pre-training dataset composition. Comparisons with Transkribus show no consistent advantage for either approach. Moreover, LLMs demonstrate limited ability to autonomously correct errors in zero-shot transcriptions.
♻ ☆ Pathways on the Image Manifold: Image Editing via Video Generation
Recent advances in image editing, driven by image diffusion models, have shown remarkable progress. However, significant challenges remain, as these models often struggle to follow complex edit instructions accurately and frequently compromise fidelity by altering key elements of the original image. Simultaneously, video generation has made remarkable strides, with models that effectively function as consistent and continuous world simulators. In this paper, we propose merging these two fields by utilizing image-to-video models for image editing. We reformulate image editing as a temporal process, using pretrained video models to create smooth transitions from the original image to the desired edit. This approach traverses the image manifold continuously, ensuring consistent edits while preserving the original image's key aspects. Our approach achieves state-of-the-art results on text-based image editing, demonstrating significant improvements in both edit accuracy and image preservation. Visit our project page at https://rotsteinnoam.github.io/Frame2Frame.
♻ ☆ VideoGen-of-Thought: Step-by-step generating multi-shot video with minimal manual intervention
Current video generation models excel at short clips but fail to produce cohesive multi-shot narratives due to disjointed visual dynamics and fractured storylines. Existing solutions either rely on extensive manual scripting/editing or prioritize single-shot fidelity over cross-scene continuity, limiting their practicality for movie-like content. We introduce VideoGen-of-Thought (VGoT), a step-by-step framework that automates multi-shot video synthesis from a single sentence by systematically addressing three core challenges: (1) Narrative Fragmentation: Existing methods lack structured storytelling. We propose dynamic storyline modeling, which first converts the user prompt into concise shot descriptions, then elaborates them into detailed, cinematic specifications across five domains (character dynamics, background continuity, relationship evolution, camera movements, HDR lighting), ensuring logical narrative progression with self-validation. (2) Visual Inconsistency: Existing approaches struggle with maintaining visual consistency across shots. Our identity-aware cross-shot propagation generates identity-preserving portrait (IPP) tokens that maintain character fidelity while allowing trait variations (expressions, aging) dictated by the storyline. (3) Transition Artifacts: Abrupt shot changes disrupt immersion. Our adjacent latent transition mechanisms implement boundary-aware reset strategies that process adjacent shots' features at transition points, enabling seamless visual flow while preserving narrative continuity. VGoT generates multi-shot videos that outperform state-of-the-art baselines by 20.4% in within-shot face consistency and 17.4% in style consistency, while achieving over 100% better cross-shot consistency and 10x fewer manual adjustments than alternatives.
comment: This paper should be a refined version of arXiv:2412.02259, "VideoGen-of-Thought: A Collaborative Framework for Multi-Shot Video Generation", but I mistakenly submit it as a new paper
♻ ☆ GIVEPose: Gradual Intra-class Variation Elimination for RGB-based Category-Level Object Pose Estimation CVPR2025
Recent advances in RGBD-based category-level object pose estimation have been limited by their reliance on precise depth information, restricting their broader applicability. In response, RGB-based methods have been developed. Among these methods, geometry-guided pose regression that originated from instance-level tasks has demonstrated strong performance. However, we argue that the NOCS map is an inadequate intermediate representation for geometry-guided pose regression method, as its many-to-one correspondence with category-level pose introduces redundant instance-specific information, resulting in suboptimal results. This paper identifies the intra-class variation problem inherent in pose regression based solely on the NOCS map and proposes the Intra-class Variation-Free Consensus (IVFC) map, a novel coordinate representation generated from the category-level consensus model. By leveraging the complementary strengths of the NOCS map and the IVFC map, we introduce GIVEPose, a framework that implements Gradual Intra-class Variation Elimination for category-level object pose estimation. Extensive evaluations on both synthetic and real-world datasets demonstrate that GIVEPose significantly outperforms existing state-of-the-art RGB-based approaches, achieving substantial improvements in category-level object pose estimation. Our code is available at https://github.com/ziqin-h/GIVEPose.
comment: CVPR2025
♻ ☆ Distilling 3D distinctive local descriptors for 6D pose estimation
Three-dimensional local descriptors are crucial for encoding geometric surface properties, making them essential for various point cloud understanding tasks. Among these descriptors, GeDi has demonstrated strong zero-shot 6D pose estimation capabilities but remains computationally impractical for real-world applications due to its expensive inference process. Can we retain GeDi's effectiveness while significantly improving its efficiency? In this paper, we explore this question by introducing a knowledge distillation framework that trains an efficient student model to regress local descriptors from a GeDi teacher. Our key contributions include: an efficient large-scale training procedure that ensures robustness to occlusions and partial observations while operating under compute and storage constraints, and a novel loss formulation that handles weak supervision from non-distinctive teacher descriptors. We validate our approach on five BOP Benchmark datasets and demonstrate a significant reduction in inference time while maintaining competitive performance with existing methods, bringing zero-shot 6D pose estimation closer to real-time feasibility. Project Website: https://tev-fbk.github.io/dGeDi/
comment: Project Website: https://tev-fbk.github.io/dGeDi/
♻ ☆ Conjuring Positive Pairs for Efficient Unification of Representation Learning and Image Synthesis
While representation learning and generative modeling seek to understand visual data, unifying both domains remains unexplored. Recent Unified Self-Supervised Learning (SSL) methods have started to bridge the gap between both paradigms. However, they rely solely on semantic token reconstruction, which requires an external tokenizer during training -- introducing a significant overhead. In this work, we introduce Sorcen, a novel unified SSL framework, incorporating a synergic Contrastive-Reconstruction objective. Our Contrastive objective, "Echo Contrast", leverages the generative capabilities of Sorcen, eliminating the need for additional image crops or augmentations during training. Sorcen "generates" an echo sample in the semantic token space, forming the contrastive positive pair. Sorcen operates exclusively on precomputed tokens, eliminating the need for an online token transformation during training, thereby significantly reducing computational overhead. Extensive experiments on ImageNet-1k demonstrate that Sorcen outperforms the previous Unified SSL SoTA by 0.4%, 1.48 FID, 1.76%, and 1.53% on linear probing, unconditional image generation, few-shot learning, and transfer learning, respectively, while being 60.8% more efficient. Additionally, Sorcen surpasses previous single-crop MIM SoTA in linear probing and achieves SoTA performance in unconditional image generation, highlighting significant improvements and breakthroughs in Unified SSL models.
comment: The source code is available in https://github.com/ImaGonEs/Sorcen
♻ ☆ SemHiTok: A Unified Image Tokenizer via Semantic-Guided Hierarchical Codebook for Multimodal Understanding and Generation
We present SemHiTok, a unified image Tokenizer via Semantic-Guided Hierarchical codebook that provides consistent discrete feature representations for multimodal understanding and generation tasks. Recently, unified multimodal large models (MLLMs) for understanding and generation have sparked exploration within research community. Previous works attempt to train a unified image tokenizer by combining loss functions for semantic feature reconstruction and pixel reconstruction. However, due to the differing levels of features prioritized by multimodal understanding and generation tasks, joint training methods face significant challenges in achieving a good trade-off. SemHiTok addresses this challenge through Semantic-Guided Hierarchical codebook which builds texture sub-codebooks on pre-trained semantic codebook. This design decouples the training of semantic reconstruction and pixel reconstruction and equips the tokenizer with low-level texture feature extraction capability without degradation of high-level semantic feature extraction ability. Our experiments demonstrate that SemHiTok achieves excellent rFID score at 256X256resolution compared to other unified tokenizers, and exhibits competitive performance on multimodal understanding and generation tasks.
comment: Under Review, Refer to the latest version
♻ ☆ Fine-Grained Open-Vocabulary Object Detection with Fined-Grained Prompts: Task, Dataset and Benchmark
Open-vocabulary detectors are proposed to locate and recognize objects in novel classes. However, variations in vision-aware language vocabulary data used for open-vocabulary learning can lead to unfair and unreliable evaluations. Recent evaluation methods have attempted to address this issue by incorporating object properties or adding locations and characteristics to the captions. Nevertheless, since these properties and locations depend on the specific details of the images instead of classes, detectors can not make accurate predictions without precise descriptions provided through human annotation. This paper introduces 3F-OVD, a novel task that extends supervised fine-grained object detection to the open-vocabulary setting. Our task is intuitive and challenging, requiring a deep understanding of Fine-grained captions and careful attention to Fine-grained details in images in order to accurately detect Fine-grained objects. Additionally, due to the scarcity of qualified fine-grained object detection datasets, we have created a new dataset, NEU-171K, tailored for both supervised and open-vocabulary settings. We benchmark state-of-the-art object detectors on our dataset for both settings. Furthermore, we propose a simple yet effective post-processing technique.
comment: 8 pages, 4 figures
♻ ☆ PC-Talk: Precise Facial Animation Control for Audio-Driven Talking Face Generation
Recent advancements in audio-driven talking face generation have made great progress in lip synchronization. However, current methods often lack sufficient control over facial animation such as speaking style and emotional expression, resulting in uniform outputs. In this paper, we focus on improving two key factors: lip-audio alignment and emotion control, to enhance the diversity and user-friendliness of talking videos. Lip-audio alignment control focuses on elements like speaking style and the scale of lip movements, whereas emotion control is centered on generating realistic emotional expressions, allowing for modifications in multiple attributes such as intensity. To achieve precise control of facial animation, we propose a novel framework, PC-Talk, which enables lip-audio alignment and emotion control through implicit keypoint deformations. First, our lip-audio alignment control module facilitates precise editing of speaking styles at the word level and adjusts lip movement scales to simulate varying vocal loudness levels, maintaining lip synchronization with the audio. Second, our emotion control module generates vivid emotional facial features with pure emotional deformation. This module also enables the fine modification of intensity and the combination of multiple emotions across different facial regions. Our method demonstrates outstanding control capabilities and achieves state-of-the-art performance on both HDTF and MEAD datasets in extensive experiments.
♻ ☆ Multi-subject Open-set Personalization in Video Generation CVPR 2025
Video personalization methods allow us to synthesize videos with specific concepts such as people, pets, and places. However, existing methods often focus on limited domains, require time-consuming optimization per subject, or support only a single subject. We present Video Alchemist $-$ a video model with built-in multi-subject, open-set personalization capabilities for both foreground objects and background, eliminating the need for time-consuming test-time optimization. Our model is built on a new Diffusion Transformer module that fuses each conditional reference image and its corresponding subject-level text prompt with cross-attention layers. Developing such a large model presents two main challenges: dataset and evaluation. First, as paired datasets of reference images and videos are extremely hard to collect, we sample selected video frames as reference images and synthesize a clip of the target video. However, while models can easily denoise training videos given reference frames, they fail to generalize to new contexts. To mitigate this issue, we design a new automatic data construction pipeline with extensive image augmentations. Second, evaluating open-set video personalization is a challenge in itself. To address this, we introduce a personalization benchmark that focuses on accurate subject fidelity and supports diverse personalization scenarios. Finally, our extensive experiments show that our method significantly outperforms existing personalization methods in both quantitative and qualitative evaluations.
comment: CVPR 2025. Project page: https://snap-research.github.io/open-set-video-personalization/
♻ ☆ Wolf: Dense Video Captioning with a World Summarization Framework
We propose Wolf, a WOrLd summarization Framework for accurate video captioning. Wolf is an automated captioning framework that adopts a mixture-of-experts approach, leveraging complementary strengths of Vision Language Models (VLMs). By utilizing both image and video models, our framework captures different levels of information and summarizes them efficiently. Our approach can be applied to enhance video understanding, auto-labeling, and captioning. To evaluate caption quality, we introduce CapScore, an LLM-based metric to assess the similarity and quality of generated captions compared to the ground truth captions. We further build four human-annotated datasets in three domains: autonomous driving, general scenes, and robotics, to facilitate comprehensive comparisons. We show that Wolf achieves superior captioning performance compared to state-of-the-art approaches from the research community (VILA1.5, CogAgent) and commercial solutions (Gemini-Pro-1.5, GPT-4V). For instance, in comparison with GPT-4V, Wolf improves CapScore both quality-wise by 55.6% and similarity-wise by 77.4% on challenging driving videos. Finally, we establish a benchmark for video captioning and introduce a leaderboard, aiming to accelerate advancements in video understanding, captioning, and data alignment. Webpage: https://wolfv0.github.io/.
♻ ☆ ReLearn: Unlearning via Learning for Large Language Models
Current unlearning methods for large language models usually rely on reverse optimization to reduce target token probabilities. However, this paradigm disrupts the subsequent tokens prediction, degrading model performance and linguistic coherence. Moreover, existing evaluation metrics overemphasize contextual forgetting while inadequately assessing response fluency and relevance. To address these challenges, we propose ReLearn, a data augmentation and fine-tuning pipeline for effective unlearning, along with a comprehensive evaluation framework. This framework introduces Knowledge Forgetting Rate (KFR) and Knowledge Retention Rate (KRR) to measure knowledge-level preservation, and Linguistic Score (LS) to evaluate generation quality. Our experiments show that ReLearn successfully achieves targeted forgetting while preserving high-quality output. Through mechanistic analysis, we further demonstrate how reverse optimization disrupts coherent text generation, while ReLearn preserves this essential capability. Code is available at https://github.com/zjunlp/unlearn.
comment: Work in progress
♻ ☆ Karyotype AI for Precision Oncology
We present a machine learning method capable of accurately detecting chromosome abnormalities that cause blood cancers directly from microscope images of the metaphase stage of cell division. The pipeline is built on a series of fine-tuned Vision Transformers. Current state of the art (and standard clinical practice) requires expensive, manual expert analysis, whereas our pipeline takes only 15 seconds per metaphase image. Using a novel pretraining-finetuning strategy to mitigate the challenge of data scarcity, we achieve a high precision-recall score of 94% AUC for the clinically significant del(5q) and t(9;22) anomalies. Our method also unlocks zero-shot detection of rare aberrations based on model latent embeddings. The ability to quickly, accurately, and scalably diagnose genetic abnormalities directly from metaphase images could transform karyotyping practice and improve patient outcomes. We will make code publicly available.
♻ ☆ Multi-Modal Foundation Models for Computational Pathology: A Survey
Foundation models have emerged as a powerful paradigm in computational pathology (CPath), enabling scalable and generalizable analysis of histopathological images. While early developments centered on uni-modal models trained solely on visual data, recent advances have highlighted the promise of multi-modal foundation models that integrate heterogeneous data sources such as textual reports, structured domain knowledge, and molecular profiles. In this survey, we provide a comprehensive and up-to-date review of multi-modal foundation models in CPath, with a particular focus on models built upon hematoxylin and eosin (H&E) stained whole slide images (WSIs) and tile-level representations. We categorize 32 state-of-the-art multi-modal foundation models into three major paradigms: vision-language, vision-knowledge graph, and vision-gene expression. We further divide vision-language models into non-LLM-based and LLM-based approaches. Additionally, we analyze 28 available multi-modal datasets tailored for pathology, grouped into image-text pairs, instruction datasets, and image-other modality pairs. Our survey also presents a taxonomy of downstream tasks, highlights training and evaluation strategies, and identifies key challenges and future directions. We aim for this survey to serve as a valuable resource for researchers and practitioners working at the intersection of pathology and AI.
♻ ☆ Unifying 2D and 3D Vision-Language Understanding
Progress in 3D vision-language learning has been hindered by the scarcity of large-scale 3D datasets. We introduce UniVLG, a unified architecture for 2D and 3D vision-language understanding that bridges the gap between existing 2D-centric models and the rich 3D sensory data available in embodied systems. Our approach initializes most model weights from pre-trained 2D models and trains on both 2D and 3D vision-language data. We propose a novel language-conditioned mask decoder shared across 2D and 3D modalities to ground objects effectively in both RGB and RGB-D images, outperforming box-based approaches. To further reduce the domain gap between 2D and 3D, we incorporate 2D-to-3D lifting strategies, enabling UniVLG to utilize 2D data to enhance 3D performance. With these innovations, our model achieves state-of-the-art performance across multiple 3D vision-language grounding tasks, demonstrating the potential of transferring advances from 2D vision-language learning to the data-constrained 3D domain. Furthermore, co-training on both 2D and 3D data enhances performance across modalities without sacrificing 2D capabilities. By removing the reliance on 3D mesh reconstruction and ground-truth object proposals, UniVLG sets a new standard for realistic, embodied-aligned evaluation. Code and additional visualizations are available at https://univlg.github.io .
comment: The first two authors contributed equally
♻ ☆ Repurposing Stable Diffusion Attention for Training-Free Unsupervised Interactive Segmentation CVPR 2025
Recent progress in interactive point prompt based Image Segmentation allows to significantly reduce the manual effort to obtain high quality semantic labels. State-of-the-art unsupervised methods use self-supervised pre-trained models to obtain pseudo-labels which are used in training a prompt-based segmentation model. In this paper, we propose a novel unsupervised and training-free approach based solely on the self-attention of Stable Diffusion. We interpret the self-attention tensor as a Markov transition operator, which enables us to iteratively construct a Markov chain. Pixel-wise counting of the required number of iterations along the Markov chain to reach a relative probability threshold yields a Markov-iteration-map, which we simply call a Markov-map. Compared to the raw attention maps, we show that our proposed Markov-map has less noise, sharper semantic boundaries and more uniform values within semantically similar regions. We integrate the Markov-map in a simple yet effective truncated nearest neighbor framework to obtain interactive point prompt based segmentation. Despite being training-free, we experimentally show that our approach yields excellent results in terms of Number of Clicks (NoC), even outperforming state-of-the-art training based unsupervised methods in most of the datasets. Code is available at https://github.com/mkarmann/m2n2.
comment: Accepted by CVPR 2025
♻ ☆ Revealing Key Details to See Differences: A Novel Prototypical Perspective for Skeleton-based Action Recognition CVPR 2025
In skeleton-based action recognition, a key challenge is distinguishing between actions with similar trajectories of joints due to the lack of image-level details in skeletal representations. Recognizing that the differentiation of similar actions relies on subtle motion details in specific body parts, we direct our approach to focus on the fine-grained motion of local skeleton components. To this end, we introduce ProtoGCN, a Graph Convolutional Network (GCN)-based model that breaks down the dynamics of entire skeleton sequences into a combination of learnable prototypes representing core motion patterns of action units. By contrasting the reconstruction of prototypes, ProtoGCN can effectively identify and enhance the discriminative representation of similar actions. Without bells and whistles, ProtoGCN achieves state-of-the-art performance on multiple benchmark datasets, including NTU RGB+D, NTU RGB+D 120, Kinetics-Skeleton, and FineGYM, which demonstrates the effectiveness of the proposed method. The code is available at https://github.com/firework8/ProtoGCN.
comment: Accepted by CVPR 2025
♻ ☆ Vision-Language Models Generate More Homogeneous Stories for Phenotypically Black Individuals
Vision-Language Models (VLMs) extend Large Language Models' capabilities by integrating image processing, but concerns persist about their potential to reproduce and amplify human biases. While research has documented how these models perpetuate stereotypes across demographic groups, most work has focused on between-group biases rather than within-group differences. This study investigates homogeneity bias-the tendency to portray groups as more uniform than they are-within Black Americans, examining how perceived racial phenotypicality influences VLMs' outputs. Using computer-generated images that systematically vary in phenotypicality, we prompted VLMs to generate stories about these individuals and measured text similarity to assess content homogeneity. Our findings reveal three key patterns: First, VLMs generate significantly more homogeneous stories about Black individuals with higher phenotypicality compared to those with lower phenotypicality. Second, stories about Black women consistently display greater homogeneity than those about Black men across all models tested. Third, in two of three VLMs, this homogeneity bias is primarily driven by a pronounced interaction where phenotypicality strongly influences content variation for Black women but has minimal impact for Black men. These results demonstrate how intersectionality shapes AI-generated representations and highlight the persistence of stereotyping that mirror documented biases in human perception, where increased racial phenotypicality leads to greater stereotyping and less individualized representation.
♻ ☆ TWIST & SCOUT: Grounding Multimodal LLM-Experts by Forget-Free Tuning
Spatial awareness is key to enable embodied multimodal AI systems. Yet, without vast amounts of spatial supervision, current Multimodal Large Language Models (MLLMs) struggle at this task. In this paper, we introduce TWIST & SCOUT, a framework that equips pre-trained MLLMs with visual grounding ability without forgetting their existing image and language understanding skills. To this end, we propose TWIST, a twin-expert stepwise tuning module that modifies the decoder of the language model using one frozen module pre-trained on image understanding tasks and another learnable one for visual grounding tasks. This allows the MLLM to retain previously learned knowledge and skills, while acquiring what is missing. To fine-tune the model effectively, we generate a high-quality synthetic dataset we call SCOUT, which mimics human reasoning in visual grounding. This dataset provides rich supervision signals, describing a step-by-step multimodal reasoning process, thereby simplifying the task of visual grounding. We evaluate our approach on several standard benchmark datasets, encompassing grounded image captioning, zero-shot localization, and visual grounding tasks. Our method consistently delivers strong performance across all tasks, while retaining the pre-trained image understanding capabilities.
♻ ☆ EPAM-Net: An Efficient Pose-driven Attention-guided Multimodal Network for Video Action Recognition
Existing multimodal-based human action recognition approaches are computationally intensive, limiting their deployment in real-time applications. In this work, we present a novel and efficient pose-driven attention-guided multimodal network (EPAM-Net) for action recognition in videos. Specifically, we propose eXpand temporal Shift (X-ShiftNet) convolutional architectures for RGB and pose streams to capture spatio-temporal features from RGB videos and their skeleton sequences. The X-ShiftNet tackles the high computational cost of the 3D CNNs by integrating the Temporal Shift Module (TSM) into an efficient 2D CNN, enabling efficient spatiotemporal learning. Then skeleton features are utilized to guide the visual network stream, focusing on keyframes and their salient spatial regions using the proposed spatial-temporal attention block. Finally, the predictions of the two streams are fused for final classification. The experimental results show that our method, with a significant reduction in floating-point operations (FLOPs), outperforms and competes with the state-of-the-art methods on NTU RGB-D 60, NTU RGB-D 120, PKU-MMD, and Toyota SmartHome datasets. The proposed EPAM-Net provides up to a 72.8x reduction in FLOPs and up to a 48.6x reduction in the number of network parameters. The code will be available at https://github.com/ahmed-nady/Multimodal-Action-Recognition.
♻ ☆ 2DSig-Detect: a semi-supervised framework for anomaly detection on image data using 2D-signatures
The rapid advancement of machine learning technologies raises questions about the security of machine learning models, with respect to both training-time (poisoning) and test-time (evasion, impersonation, and inversion) attacks. Models performing image-related tasks, e.g. detection, and classification, are vulnerable to adversarial attacks that can degrade their performance and produce undesirable outcomes. This paper introduces a novel technique for anomaly detection in images called 2DSig-Detect, which uses a 2D-signature-embedded semi-supervised framework rooted in rough path theory. We demonstrate our method in adversarial settings for training-time and test-time attacks, and benchmark our framework against other state of the art methods. Using 2DSig-Detect for anomaly detection, we show both superior performance and a reduction in the computation time to detect the presence of adversarial perturbations in images.
♻ ☆ Project-Probe-Aggregate: Efficient Fine-Tuning for Group Robustness CVPR 2025
While image-text foundation models have succeeded across diverse downstream tasks, they still face challenges in the presence of spurious correlations between the input and label. To address this issue, we propose a simple three-step approach,Project-Probe-Aggregate (PPA), that enables parameter-efficient fine-tuning for foundation models without relying on group annotations. Building upon the failure-based debiasing scheme, our method, PPA, improves its two key components: minority samples identification and the robust training algorithm. Specifically, we first train biased classifiers by projecting image features onto the nullspace of class proxies from text encoders. Next, we infer group labels using the biased classifier and probe group targets with prior correction. Finally, we aggregate group weights of each class to produce the debiased classifier. Our theoretical analysis shows that our PPA enhances minority group identification and is Bayes optimal for minimizing the balanced group error, mitigating spurious correlations. Extensive experimental results confirm the effectiveness of our PPA: it outperforms the state-of-the-art by an average worst-group accuracy while requiring less than 0.01% tunable parameters without training group labels.
comment: Accepted by CVPR 2025
♻ ☆ SSHNet: Unsupervised Cross-modal Homography Estimation via Problem Reformulation and Split Optimization CVPR 2025
We propose a novel unsupervised cross-modal homography estimation learning framework, named Split Supervised Homography estimation Network (SSHNet). SSHNet reformulates the unsupervised cross-modal homography estimation into two supervised sub-problems, each addressed by its specialized network: a homography estimation network and a modality transfer network. To realize stable training, we introduce an effective split optimization strategy to train each network separately within its respective sub-problem. We also formulate an extra homography feature space supervision to enhance feature consistency, further boosting the estimation accuracy. Moreover, we employ a simple yet effective distillation training technique to reduce model parameters and improve cross-domain generalization ability while maintaining comparable performance. The training stability of SSHNet enables its cooperation with various homography estimation architectures. Experiments reveal that the SSHNet using IHN as homography estimation network, namely SSHNet-IHN, outperforms previous unsupervised approaches by a significant margin. Even compared to supervised approaches MHN and LocalTrans, SSHNet-IHN achieves 47.4% and 85.8% mean average corner errors (MACEs) reduction on the challenging OPT-SAR dataset.
comment: Accepted by CVPR 2025
♻ ☆ UNIP: Rethinking Pre-trained Attention Patterns for Infrared Semantic Segmentation ICLR 2025
Pre-training techniques significantly enhance the performance of semantic segmentation tasks with limited training data. However, the efficacy under a large domain gap between pre-training (e.g. RGB) and fine-tuning (e.g. infrared) remains underexplored. In this study, we first benchmark the infrared semantic segmentation performance of various pre-training methods and reveal several phenomena distinct from the RGB domain. Next, our layerwise analysis of pre-trained attention maps uncovers that: (1) There are three typical attention patterns (local, hybrid, and global); (2) Pre-training tasks notably influence the pattern distribution across layers; (3) The hybrid pattern is crucial for semantic segmentation as it attends to both nearby and foreground elements; (4) The texture bias impedes model generalization in infrared tasks. Building on these insights, we propose UNIP, a UNified Infrared Pre-training framework, to enhance the pre-trained model performance. This framework uses the hybrid-attention distillation NMI-HAD as the pre-training target, a large-scale mixed dataset InfMix for pre-training, and a last-layer feature pyramid network LL-FPN for fine-tuning. Experimental results show that UNIP outperforms various pre-training methods by up to 13.5\% in average mIoU on three infrared segmentation tasks, evaluated using fine-tuning and linear probing metrics. UNIP-S achieves performance on par with MAE-L while requiring only 1/10 of the computational cost. Furthermore, UNIP significantly surpasses state-of-the-art (SOTA) infrared or RGB segmentation methods and demonstrates broad potential for application in other modalities, such as RGB and depth. Our code is available at https://github.com/casiatao/UNIP.
comment: ICLR 2025. 27 pages, 13 figures, 21 tables
♻ ☆ LiMoE: Mixture of LiDAR Representation Learners from Automotive Scenes CVPR 2025
LiDAR data pretraining offers a promising approach to leveraging large-scale, readily available datasets for enhanced data utilization. However, existing methods predominantly focus on sparse voxel representation, overlooking the complementary attributes provided by other LiDAR representations. In this work, we propose LiMoE, a framework that integrates the Mixture of Experts (MoE) paradigm into LiDAR data representation learning to synergistically combine multiple representations, such as range images, sparse voxels, and raw points. Our approach consists of three stages: i) Image-to-LiDAR Pretraining, which transfers prior knowledge from images to point clouds across different representations; ii) Contrastive Mixture Learning (CML), which uses MoE to adaptively activate relevant attributes from each representation and distills these mixed features into a unified 3D network; iii) Semantic Mixture Supervision (SMS), which combines semantic logits from multiple representations to boost downstream segmentation performance. Extensive experiments across eleven large-scale LiDAR datasets demonstrate our effectiveness and superiority. The code has been made publicly accessible.
comment: CVPR 2025; 27 pages, 17 figures, 10 tables; Project Page at https://ldkong.com/LiMoE
♻ ☆ How accurate is mechanobiology? A statistical test of cell force
Mechanobiology is gaining more and more traction as the fundamental role of physical forces in biological function becomes clearer. Forces at the microscale are often measured indirectly using inverse problems such as Traction Force Microscopy because biological experiments are hard to access with physical probes. In contrast with the experimental nature of biology and physics, these measurements do not come with error bars, confidence regions, or p-values. The aim of this manuscript is to publicize this issue and to propose a first step towards a remedy therefor in the form of a general reconstruction framework. We also show that this opens the door to hypothesis testing of seemingly abstract experimental questions.
♻ ☆ Defending Multimodal Backdoored Models by Repulsive Visual Prompt Tuning
Multimodal contrastive learning models (e.g., CLIP) can learn high-quality representations from large-scale image-text datasets, yet they exhibit significant vulnerabilities to backdoor attacks, raising serious safety concerns. In this paper, we disclose that CLIP's vulnerabilities primarily stem from its excessive encoding of class-irrelevant features, which can compromise the model's visual feature resistivity to input perturbations, making it more susceptible to capturing the trigger patterns inserted by backdoor attacks. Inspired by this finding, we propose Repulsive Visual Prompt Tuning (RVPT), a novel defense approach that employs specially designed deep visual prompt tuning and feature-repelling loss to eliminate excessive class-irrelevant features while simultaneously optimizing cross-entropy loss to maintain clean accuracy. Unlike existing multimodal backdoor defense methods that typically require the availability of poisoned data or involve fine-tuning the entire model, RVPT leverages few-shot downstream clean samples and only tunes a small number of parameters. Empirical results demonstrate that RVPT tunes only 0.27\% of the parameters relative to CLIP, yet it significantly outperforms state-of-the-art baselines, reducing the attack success rate from 67.53\% to 2.76\% against SoTA attacks and effectively generalizing its defensive capabilities across multiple datasets.
♻ ☆ The Devil is in the Spurious Correlations: Boosting Moment Retrieval with Dynamic Learning
Given a textual query along with a corresponding video, the objective of moment retrieval aims to localize the moments relevant to the query within the video. While commendable results have been demonstrated by existing transformer-based approaches, predicting the accurate temporal span of the target moment is still a major challenge. This paper reveals that a crucial reason stems from the spurious correlation between the text query and the moment context. Namely, the model makes predictions by overly associating queries with background frames rather than distinguishing target moments. To address this issue, we propose a dynamic learning approach for moment retrieval, where two strategies are designed to mitigate the spurious correlation. First, we introduce a novel video synthesis approach to construct a dynamic context for the queried moment, enabling the model to attend to the target moment of the corresponding query across dynamic backgrounds. Second, to alleviate the over-association with backgrounds, we enhance representations temporally by incorporating text-dynamics interaction, which encourages the model to align text with target moments through complementary dynamic representations. With the proposed method, our model significantly alleviates the spurious correlation issue in moment retrieval and establishes new state-of-the-art performance on two popular benchmarks, \ie, QVHighlights and Charades-STA. In addition, detailed ablation studies and evaluations across different architectures demonstrate the generalization and effectiveness of the proposed strategies. Our code will be publicly available.
♻ ☆ Bring Remote Sensing Object Detect Into Nature Language Model: Using SFT Method
Recently, large language models (LLMs) and vision-language models (VLMs) have achieved significant success, demonstrating remarkable capabilities in understanding various images and videos, particularly in classification and detection tasks. However, due to the substantial differences between remote sensing images and conventional optical images, these models face considerable challenges in comprehension, especially in detection tasks. Directly prompting VLMs with detection instructions often leads to unsatisfactory results. To address this issue, this letter explores the application of VLMs for object detection in remote sensing images. Specifically, we constructed supervised fine-tuning (SFT) datasets using publicly available remote sensing object detection datasets, including SSDD, HRSID, and NWPU-VHR-10. In these new datasets, we converted annotation information into JSON-compliant natural language descriptions, facilitating more effective understanding and training for the VLM. We then evaluate the detection performance of various fine-tuning strategies for VLMs and derive optimized model weights for object detection in remote sensing images. Finally, we evaluate the model's prior knowledge capabilities using natural language queries. Experimental results demonstrate that, without modifying the model architecture, remote sensing object detection can be effectively achieved using natural language alone. Additionally, the model exhibits the ability to perform certain vision question answering (VQA) tasks. Our datasets and related code will be released soon.
♻ ☆ Jointly Understand Your Command and Intention:Reciprocal Co-Evolution between Scene-Aware 3D Human Motion Synthesis and Analysis
As two intimate reciprocal tasks, scene-aware human motion synthesis and analysis require a joint understanding between multiple modalities, including 3D body motions, 3D scenes, and textual descriptions. In this paper, we integrate these two paired processes into a Co-Evolving Synthesis-Analysis (CESA) pipeline and mutually benefit their learning. Specifically, scene-aware text-to-human synthesis generates diverse indoor motion samples from the same textual description to enrich human-scene interaction intra-class diversity, thus significantly benefiting training a robust human motion analysis system. Reciprocally, human motion analysis would enforce semantic scrutiny on each synthesized motion sample to ensure its semantic consistency with the given textual description, thus improving realistic motion synthesis. Considering that real-world indoor human motions are goal-oriented and path-guided, we propose a cascaded generation strategy that factorizes text-driven scene-specific human motion generation into three stages: goal inferring, path planning, and pose synthesizing. Coupling CESA with this powerful cascaded motion synthesis model, we jointly improve realistic human motion synthesis and robust human motion analysis in 3D scenes.
♻ ☆ Text2Earth: Unlocking Text-driven Remote Sensing Image Generation with a Global-Scale Dataset and a Foundation Model
Generative foundation models have advanced large-scale text-driven natural image generation, becoming a prominent research trend across various vertical domains. However, in the remote sensing field, there is still a lack of research on large-scale text-to-image (text2image) generation technology. Existing remote sensing image-text datasets are small in scale and confined to specific geographic areas and scene types. Besides, existing text2image methods have struggled to achieve global-scale, multi-resolution controllable, and unbounded image generation. To address these challenges, this paper presents two key contributions: the Git-10M dataset and the Text2Earth foundation model. Git-10M is a global-scale image-text dataset comprising 10.5 million image-text pairs, 5 times larger than the previous largest one. The dataset covers a wide range of geographic scenes and contains resolution information, significantly surpassing existing datasets in both size and diversity. Building on Git-10M, we propose Text2Earth, a 1.3 billion parameter generative foundation model based on the diffusion framework to model global-scale remote sensing scenes. Text2Earth integrates a resolution guidance mechanism, enabling users to specify image resolutions. A dynamic condition adaptation strategy is proposed for training and inference to improve image quality. Text2Earth excels in zero-shot text2image generation and demonstrates robust generalization and flexibility across multiple tasks, including unbounded scene construction, image editing, and cross-modal image generation. This robust capability surpasses previous models restricted to the basic fixed size and limited scene types. On the previous benchmark dataset, Text2Earth outperforms previous models with an improvement of +26.23 FID and +20.95% Zero-shot Cls-OA metric.Our project page is https://chen-yang-liu.github.io/Text2Earth
♻ ☆ Switti: Designing Scale-Wise Transformers for Text-to-Image Synthesis CVPR 2025
This work presents Switti, a scale-wise transformer for text-to-image generation. We start by adapting an existing next-scale prediction autoregressive (AR) architecture to T2I generation, investigating and mitigating training stability issues in the process. Next, we argue that scale-wise transformers do not require causality and propose a non-causal counterpart facilitating ~21% faster sampling and lower memory usage while also achieving slightly better generation quality. Furthermore, we reveal that classifier-free guidance at high-resolution scales is often unnecessary and can even degrade performance. By disabling guidance at these scales, we achieve an additional sampling acceleration of ~32% and improve the generation of fine-grained details. Extensive human preference studies and automated evaluations show that Switti outperforms existing T2I AR models and competes with state-of-the-art T2I diffusion models while being up to 7x faster.
comment: CVPR 2025
♻ ☆ GSplatLoc: Grounding Keypoint Descriptors into 3D Gaussian Splatting for Improved Visual Localization
Although various visual localization approaches exist, such as scene coordinate regression and camera pose regression, these methods often struggle with optimization complexity or limited accuracy. To address these challenges, we explore the use of novel view synthesis techniques, particularly 3D Gaussian Splatting (3DGS), which enables the compact encoding of both 3D geometry and scene appearance. We propose a two-stage procedure that integrates dense and robust keypoint descriptors from the lightweight XFeat feature extractor into 3DGS, enhancing performance in both indoor and outdoor environments. The coarse pose estimates are directly obtained via 2D-3D correspondences between the 3DGS representation and query image descriptors. In the second stage, the initial pose estimate is refined by minimizing the rendering-based photometric warp loss. Benchmarking on widely used indoor and outdoor datasets demonstrates improvements over recent neural rendering-based localization methods, such as NeRFMatch and PNeRFLoc.
comment: Project website at https://gsplatloc.github.io/
♻ ☆ Transformation trees -- documentation of multimodal image registration
Multimodal image registration plays a key role in creating digital patient models by combining data from different imaging techniques into a single coordinate system. This process often involves multiple sequential and interconnected transformations, which must be well-documented to ensure transparency and reproducibility. In this paper, we propose the use of transformation trees as a method for structured recording and management of these transformations. This approach has been implemented in the dpVision software and uses a dedicated .dpw file format to store hierarchical relationships between images, transformations, and motion data. Transformation trees allow precise tracking of all image processing steps, reduce the need to store multiple copies of the same data, and enable the indirect registration of images that do not share common reference points. This improves the reproducibility of the analyses and facilitates later processing and integration of images from different sources. The practical application of this method is demonstrated with examples from orthodontics, including the integration of 3D face scans, intraoral scans, and CBCT images, as well as the documentation of mandibular motion. Beyond orthodontics, this method can be applied in other fields that require systematic management of image registration processes, such as maxillofacial surgery, oncology, and biomechanical analysis. Maintaining long-term data consistency is essential for both scientific research and clinical practice. It enables easier comparison of results in longitudinal studies, improves retrospective analysis, and supports the development of artificial intelligence algorithms by providing standardized and well-documented datasets. The proposed approach enhances data organization, allows for efficient analysis, and facilitates the reuse of information in future studies and diagnostic procedures.
comment: 28 pages, 15 figures
♻ ☆ FOCUS: Knowledge-enhanced Adaptive Visual Compression for Few-shot Whole Slide Image Classification CVPR'2025
Few-shot learning presents a critical solution for cancer diagnosis in computational pathology (CPath), addressing fundamental limitations in data availability, particularly the scarcity of expert annotations and patient privacy constraints. A key challenge in this paradigm stems from the inherent disparity between the limited training set of whole slide images (WSIs) and the enormous number of contained patches, where a significant portion of these patches lacks diagnostically relevant information, potentially diluting the model's ability to learn and focus on critical diagnostic features. While recent works attempt to address this by incorporating additional knowledge, several crucial gaps hinder further progress: (1) despite the emergence of powerful pathology foundation models (FMs), their potential remains largely untapped, with most approaches limiting their use to basic feature extraction; (2) current language guidance mechanisms attempt to align text prompts with vast numbers of WSI patches all at once, struggling to leverage rich pathological semantic information. To this end, we introduce the knowledge-enhanced adaptive visual compression framework, dubbed FOCUS, which uniquely combines pathology FMs with language prior knowledge to enable a focused analysis of diagnostically relevant regions by prioritizing discriminative WSI patches. Our approach implements a progressive three-stage compression strategy: we first leverage FMs for global visual redundancy elimination, and integrate compressed features with language prompts for semantic relevance assessment, then perform neighbor-aware visual token filtering while preserving spatial coherence. Extensive experiments on pathological datasets spanning breast, lung, and ovarian cancers demonstrate its superior performance in few-shot pathology diagnosis. Codes are available at https://github.com/dddavid4real/FOCUS.
comment: Accepted by CVPR'2025
♻ ☆ DongbaMIE: A Multimodal Information Extraction Dataset for Evaluating Semantic Understanding of Dongba Pictograms
Dongba pictographs are the only pictographs still in use in the world. They have pictorial ideographic features, and their symbols carry rich cultural and contextual information. Due to the lack of relevant datasets, existing research has difficulty in advancing the study of semantic understanding of Dongba pictographs. To this end, we propose \textbf{DongbaMIE}, the first multimodal dataset for semantic understanding and extraction of Dongba pictographs, consisting of Dongba pictograph images and corresponding Chinese semantic annotations. DongbaMIE contains 23,530 sentence-level and 2,539 paragraph-level images, covering four semantic dimensions: objects, actions, relations, and attributes. We systematically evaluate multimodal large language models (MLLMs), such as GPT-4o, Gemini-2.0, and Qwen2-VL. Experimental results show that best F1 scores of proprietary models, GPT-4o and Gemini, for object extraction task are only 3.16 and 3.11 respectively. For the open-source model Qwen2-VL, it achieves only 11.49 after supervised fine-tuning. These suggest that current MLLMs still face significant challenges in accurately recognizing diverse semantic information in Dongba pictographs.
comment: Our dataset can be obtained from: https://github.com/thinklis/DongbaMIE
♻ ☆ Beyond Role-Based Surgical Domain Modeling: Generalizable Re-Identification in the Operating Room
Surgical domain models improve workflow optimization through automated predictions of each staff member's surgical role. However, mounting evidence indicates that team familiarity and individuality impact surgical outcomes. We present a novel staff-centric modeling approach that characterizes individual team members through their distinctive movement patterns and physical characteristics, enabling long-term tracking and analysis of surgical personnel across multiple procedures. To address the challenge of inter-clinic variability, we develop a generalizable re-identification framework that encodes sequences of 3D point clouds to capture shape and articulated motion patterns unique to each individual. Our method achieves 86.19% accuracy on realistic clinical data while maintaining 75.27% accuracy when transferring between different environments - a 12% improvement over existing methods. When used to augment markerless personnel tracking, our approach improves accuracy by over 50%. Through extensive validation across three datasets and the introduction of a novel workflow visualization technique, we demonstrate how our framework can reveal novel insights into surgical team dynamics and space utilization patterns, advancing methods to analyze surgical workflows and team coordination.
comment: 26 pages, 14 figures
♻ ☆ Complexity in Complexity: Understanding Visual Complexity Through Structure, Color, and Surprise
Understanding how humans perceive visual complexity is a key area of study in visual cognition. Previous approaches to modeling visual complexity assessments have often resulted in intricate, difficult-to-interpret algorithms that employ numerous features or sophisticated deep learning architectures. While these complex models achieve high performance on specific datasets, they often sacrifice interpretability, making it challenging to understand the factors driving human perception of complexity. Recently (Shen, et al. 2024) proposed an interpretable segmentation-based model that accurately predicted complexity across various datasets, supporting the idea that complexity can be explained simply. In this work, we investigate the failure of their model to capture structural, color and surprisal contributions to complexity. To this end, we propose Multi-Scale Sobel Gradient (MSG) which measures spatial intensity variations, Multi-Scale Unique Color (MUC) which quantifies colorfulness across multiple scales, and surprise scores generated using a Large Language Model. We test our features on existing benchmarks and a novel dataset (Surprising Visual Genome) containing surprising images from Visual Genome. Our experiments demonstrate that modeling complexity accurately is not as simple as previously thought, requiring additional perceptual and semantic factors to address dataset biases. Our model improves predictive performance while maintaining interpretability, offering deeper insights into how visual complexity is perceived and assessed. Our code, analysis and data are available at https://github.com/Complexity-Project/Complexity-in-Complexity.
♻ ☆ Words in Motion: Extracting Interpretable Control Vectors for Motion Transformers ICLR 2025
Transformer-based models generate hidden states that are difficult to interpret. In this work, we analyze hidden states and modify them at inference, with a focus on motion forecasting. We use linear probing to analyze whether interpretable features are embedded in hidden states. Our experiments reveal high probing accuracy, indicating latent space regularities with functionally important directions. Building on this, we use the directions between hidden states with opposing features to fit control vectors. At inference, we add our control vectors to hidden states and evaluate their impact on predictions. Remarkably, such modifications preserve the feasibility of predictions. We further refine our control vectors using sparse autoencoders (SAEs). This leads to more linear changes in predictions when scaling control vectors. Our approach enables mechanistic interpretation as well as zero-shot generalization to unseen dataset characteristics with negligible computational overhead.
comment: ICLR 2025 camera-ready. Our implementation is available at \href{https://github.com/kit-mrt/future-motion}{this https URL}
♻ ☆ Tiny models from tiny data: Textual and null-text inversion for few-shot distillation
Few-shot learning deals with problems such as image classification using very few training examples. Recent vision foundation models show excellent few-shot transfer abilities, but are large and slow at inference. Using knowledge distillation, the capabilities of high-performing but slow models can be transferred to tiny, efficient models. However, common distillation methods require a large set of unlabeled data, which is not available in the few-shot setting. To overcome this lack of data, there has been a recent interest in using synthetic data. We expand on this line of research by presenting a novel diffusion model inversion technique (TINT) combining the diversity of textual inversion with the specificity of null-text inversion. Using this method in a few-shot distillation pipeline leads to state-of-the-art accuracy among small student models on popular benchmarks, while being significantly faster than prior work. Popular few-shot benchmarks involve evaluation over a large number of episodes, which is computationally cumbersome for methods involving synthetic data generation. We also present a theoretical analysis on how the accuracy estimator variance depends on the number of episodes and query examples, and use these results to lower the computational effort required for method evaluation. Finally, to further motivate the use of generative models in few-shot distillation, we demonstrate that our method outperforms training on real data mined from the dataset used in the original diffusion model training. Source code is available at https://github.com/pixwse/tiny2.
comment: 24 pages (13 main pages + references and appendix)
♻ ☆ ROCKET-1: Mastering Open-World Interaction with Visual-Temporal Context Prompting
Vision-language models (VLMs) have excelled in multimodal tasks, but adapting them to embodied decision-making in open-world environments presents challenges. One critical issue is bridging the gap between discrete entities in low-level observations and the abstract concepts required for effective planning. A common solution is building hierarchical agents, where VLMs serve as high-level reasoners that break down tasks into executable sub-tasks, typically specified using language. However, language suffers from the inability to communicate detailed spatial information. We propose visual-temporal context prompting, a novel communication protocol between VLMs and policy models. This protocol leverages object segmentation from past observations to guide policy-environment interactions. Using this approach, we train ROCKET-1, a low-level policy that predicts actions based on concatenated visual observations and segmentation masks, supported by real-time object tracking from SAM-2. Our method unlocks the potential of VLMs, enabling them to tackle complex tasks that demand spatial reasoning. Experiments in Minecraft show that our approach enables agents to achieve previously unattainable tasks, with a $\mathbf{76}\%$ absolute improvement in open-world interaction performance. Codes and demos are now available on the project page: https://craftjarvis.github.io/ROCKET-1.
♻ ☆ LongVALE: Vision-Audio-Language-Event Benchmark Towards Time-Aware Omni-Modal Perception of Long Videos CVPR2025
Despite impressive advancements in video understanding, most efforts remain limited to coarse-grained or visual-only video tasks. However, real-world videos encompass omni-modal information (vision, audio, and speech) with a series of events forming a cohesive storyline. The lack of multi-modal video data with fine-grained event annotations and the high cost of manual labeling are major obstacles to comprehensive omni-modality video perception. To address this gap, we propose an automatic pipeline consisting of high-quality multi-modal video filtering, semantically coherent omni-modal event boundary detection, and cross-modal correlation-aware event captioning. In this way, we present LongVALE, the first-ever Vision-Audio-Language Event understanding benchmark comprising 105K omni-modal events with precise temporal boundaries and detailed relation-aware captions within 8.4K high-quality long videos. Further, we build a baseline that leverages LongVALE to enable video large language models (LLMs) for omni-modality fine-grained temporal video understanding for the first time. Extensive experiments demonstrate the effectiveness and great potential of LongVALE in advancing comprehensive multi-modal video understanding.
comment: Accepted by CVPR2025
♻ ☆ Segmentation Guided Sparse Transformer for Under-Display Camera Image Restoration
Under-Display Camera (UDC) is an emerging technology that achieves full-screen display via hiding the camera under the display panel. However, the current implementation of UDC causes serious degradation. The incident light required for camera imaging undergoes attenuation and diffraction when passing through the display panel, leading to various artifacts in UDC imaging. Presently, the prevailing UDC image restoration methods predominantly utilize convolutional neural network architectures, whereas Transformer-based methods have exhibited superior performance in the majority of image restoration tasks. This is attributed to the Transformer's capability to sample global features for the local reconstruction of images, thereby achieving high-quality image restoration. In this paper, we observe that when using the Vision Transformer for UDC degraded image restoration, the global attention samples a large amount of redundant information and noise. Furthermore, compared to the ordinary Transformer employing dense attention, the Transformer utilizing sparse attention can alleviate the adverse impact of redundant information and noise. Building upon this discovery, we propose a Segmentation Guided Sparse Transformer method (SGSFormer) for the task of restoring high-quality images from UDC degraded images. Specifically, we utilize sparse self-attention to filter out redundant information and noise, directing the model's attention to focus on the features more relevant to the degraded regions in need of reconstruction. Moreover, we integrate the instance segmentation map as prior information to guide the sparse self-attention in filtering and focusing on the correct regions.
comment: 13 pages, 10 figures, conference or other essential info
♻ ☆ Towards Lossless Implicit Neural Representation via Bit Plane Decomposition
We quantify the upper bound on the size of the implicit neural representation (INR) model from a digital perspective. The upper bound of the model size increases exponentially as the required bit-precision increases. To this end, we present a bit-plane decomposition method that makes INR predict bit-planes, producing the same effect as reducing the upper bound of the model size. We validate our hypothesis that reducing the upper bound leads to faster convergence with constant model size. Our method achieves lossless representation in 2D image and audio fitting, even for high bit-depth signals, such as 16-bit, which was previously unachievable. We pioneered the presence of bit bias, which INR prioritizes as the most significant bit (MSB). We expand the application of the INR task to bit depth expansion, lossless image compression, and extreme network quantization. Our source code is available at https://github.com/WooKyoungHan/LosslessINR
♻ ☆ Odd-One-Out: Anomaly Detection by Comparing with Neighbors
This paper introduces a novel anomaly detection (AD) problem aimed at identifying `odd-looking' objects within a scene by comparing them to other objects present. Unlike traditional AD benchmarks with fixed anomaly criteria, our task detects anomalies specific to each scene by inferring a reference group of regular objects. To address occlusions, we use multiple views of each scene as input, construct 3D object-centric models for each instance from 2D views, enhancing these models with geometrically consistent part-aware representations. Anomalous objects are then detected through cross-instance comparison. We also introduce two new benchmarks, ToysAD-8K and PartsAD-15K as testbeds for future research in this task. We provide a comprehensive analysis of our method quantitatively and qualitatively on these benchmarks.
comment: Codes & Dataset at https://github.com/VICO-UoE/OddOneOutAD
♻ ☆ Vision-Language Models for Acute Tuberculosis Diagnosis: A Multimodal Approach Combining Imaging and Clinical Data
Background: This study introduces a Vision-Language Model (VLM) leveraging SIGLIP and Gemma-3b architectures for automated acute tuberculosis (TB) screening. By integrating chest X-ray images and clinical notes, the model aims to enhance diagnostic accuracy and efficiency, particularly in resource-limited settings. Methods: The VLM combines visual data from chest X-rays with clinical context to generate detailed, context-aware diagnostic reports. The architecture employs SIGLIP for visual encoding and Gemma-3b for decoding, ensuring effective representation of acute TB-specific pathologies and clinical insights. Results: Key acute TB pathologies, including consolidation, cavities, and nodules, were detected with high precision (97percent) and recall (96percent). The model demonstrated strong spatial localization capabilities and robustness in distinguishing TB-positive cases, making it a reliable tool for acute TB diagnosis. Conclusion: The multimodal capability of the VLM reduces reliance on radiologists, providing a scalable solution for acute TB screening. Future work will focus on improving the detection of subtle pathologies and addressing dataset biases to enhance its generalizability and application in diverse global healthcare settings.
comment: 11 pages, 3 figures
♻ ☆ Synthetic Prior for Few-Shot Drivable Head Avatar Inversion CVPR25
We present SynShot, a novel method for the few-shot inversion of a drivable head avatar based on a synthetic prior. We tackle three major challenges. First, training a controllable 3D generative network requires a large number of diverse sequences, for which pairs of images and high-quality tracked meshes are not always available. Second, the use of real data is strictly regulated (e.g., under the General Data Protection Regulation, which mandates frequent deletion of models and data to accommodate a situation when a participant's consent is withdrawn). Synthetic data, free from these constraints, is an appealing alternative. Third, state-of-the-art monocular avatar models struggle to generalize to new views and expressions, lacking a strong prior and often overfitting to a specific viewpoint distribution. Inspired by machine learning models trained solely on synthetic data, we propose a method that learns a prior model from a large dataset of synthetic heads with diverse identities, expressions, and viewpoints. With few input images, SynShot fine-tunes the pretrained synthetic prior to bridge the domain gap, modeling a photorealistic head avatar that generalizes to novel expressions and viewpoints. We model the head avatar using 3D Gaussian splatting and a convolutional encoder-decoder that outputs Gaussian parameters in UV texture space. To account for the different modeling complexities over parts of the head (e.g., skin vs hair), we embed the prior with explicit control for upsampling the number of per-part primitives. Compared to SOTA monocular and GAN-based methods, SynShot significantly improves novel view and expression synthesis.
comment: Accepted to CVPR25 Website: https://zielon.github.io/synshot/
♻ ☆ ARKit LabelMaker: A New Scale for Indoor 3D Scene Understanding
Neural network performance scales with both model size and data volume, as shown in both language and image processing. This requires scaling-friendly architectures and large datasets. While transformers have been adapted for 3D vision, a `GPT-moment' remains elusive due to limited training data. We introduce ARKit LabelMaker, a large-scale real-world 3D dataset with dense semantic annotation that is more than three times larger than prior largest dataset. Specifically, we extend ARKitScenes with automatically generated dense 3D labels using an extended LabelMaker pipeline, tailored for large-scale pre-training. Training on our dataset improves accuracy across architectures, achieving state-of-the-art 3D semantic segmentation scores on ScanNet and ScanNet200, with notable gains on tail classes. Our code is available at https://labelmaker.org and our dataset at https://huggingface.co/datasets/labelmaker/arkit_labelmaker.
♻ ☆ STEP: Simultaneous Tracking and Estimation of Pose for Animals and Humans
We introduce STEP, a novel framework utilizing Transformer-based discriminative model prediction for simultaneous tracking and estimation of pose across diverse animal species and humans. We are inspired by the fact that the human brain exploits spatiotemporal continuity and performs concurrent localization and pose estimation despite the specialization of brain areas for form and motion processing. Traditional discriminative models typically require predefined target states for determining model weights, a challenge we address through Gaussian Map Soft Prediction (GMSP) and Offset Map Regression Adapter (OMRA) Modules. These modules remove the necessity of keypoint target states as input, streamlining the process. Our method starts with a known target state in the initial frame of a given video sequence. It then seamlessly tracks the target and estimates keypoints of anatomical importance as output for subsequent frames. Unlike prevalent top-down pose estimation methods, our approach doesn't rely on per-frame target detections due to its tracking capability. This facilitates a significant advancement in inference efficiency and potential applications. We train and validate our approach on datasets encompassing diverse species. Our experiments demonstrate superior results compared to existing methods, opening doors to various applications, including but not limited to action recognition and behavioral analysis.
♻ ☆ Gaussian Eigen Models for Human Heads CVPR25
Current personalized neural head avatars face a trade-off: lightweight models lack detail and realism, while high-quality, animatable avatars require significant computational resources, making them unsuitable for commodity devices. To address this gap, we introduce Gaussian Eigen Models (GEM), which provide high-quality, lightweight, and easily controllable head avatars. GEM utilizes 3D Gaussian primitives for representing the appearance combined with Gaussian splatting for rendering. Building on the success of mesh-based 3D morphable face models (3DMM), we define GEM as an ensemble of linear eigenbases for representing the head appearance of a specific subject. In particular, we construct linear bases to represent the position, scale, rotation, and opacity of the 3D Gaussians. This allows us to efficiently generate Gaussian primitives of a specific head shape by a linear combination of the basis vectors, only requiring a low-dimensional parameter vector that contains the respective coefficients. We propose to construct these linear bases (GEM) by distilling high-quality compute-intense CNN-based Gaussian avatar models that can generate expression-dependent appearance changes like wrinkles. These high-quality models are trained on multi-view videos of a subject and are distilled using a series of principal component analyses. Once we have obtained the bases that represent the animatable appearance space of a specific human, we learn a regressor that takes a single RGB image as input and predicts the low-dimensional parameter vector that corresponds to the shown facial expression. In a series of experiments, we compare GEM's self-reenactment and cross-person reenactment results to state-of-the-art 3D avatar methods, demonstrating GEM's higher visual quality and better generalization to new expressions.
comment: Accepted to CVPR25 Website: https://zielon.github.io/gem/
♻ ☆ A General Adaptive Dual-level Weighting Mechanism for Remote Sensing Pansharpening CVPR
Currently, deep learning-based methods for remote sensing pansharpening have advanced rapidly. However, many existing methods struggle to fully leverage feature heterogeneity and redundancy, thereby limiting their effectiveness. We use the covariance matrix to model the feature heterogeneity and redundancy and propose Correlation-Aware Covariance Weighting (CACW) to adjust them. CACW captures these correlations through the covariance matrix, which is then processed by a nonlinear function to generate weights for adjustment. Building upon CACW, we introduce a general adaptive dual-level weighting mechanism (ADWM) to address these challenges from two key perspectives, enhancing a wide range of existing deep-learning methods. First, Intra-Feature Weighting (IFW) evaluates correlations among channels within each feature to reduce redundancy and enhance unique information. Second, Cross-Feature Weighting (CFW) adjusts contributions across layers based on inter-layer correlations, refining the final output. Extensive experiments demonstrate the superior performance of ADWM compared to recent state-of-the-art (SOTA) methods. Furthermore, we validate the effectiveness of our approach through generality experiments, redundancy visualization, comparison experiments, key variables and complexity analysis, and ablation studies. Our code is available at https://github.com/Jie-1203/ADWM.
comment: This paper is accepted at the CVPR Conference on Computer Vision and Pattern Recognition 2025
♻ ☆ Multi-View Pose-Agnostic Change Localization with Zero Labels CVPR 2025
Autonomous agents often require accurate methods for detecting and localizing changes in their environment, particularly when observations are captured from unconstrained and inconsistent viewpoints. We propose a novel label-free, pose-agnostic change detection method that integrates information from multiple viewpoints to construct a change-aware 3D Gaussian Splatting (3DGS) representation of the scene. With as few as 5 images of the post-change scene, our approach can learn an additional change channel in a 3DGS and produce change masks that outperform single-view techniques. Our change-aware 3D scene representation additionally enables the generation of accurate change masks for unseen viewpoints. Experimental results demonstrate state-of-the-art performance in complex multi-object scenes, achieving a 1.7x and 1.5x improvement in Mean Intersection Over Union and F1 score respectively over other baselines. We also contribute a new real-world dataset to benchmark change detection in diverse challenging scenes in the presence of lighting variations.
comment: Accepted at CVPR 2025
♻ ☆ Information-Preserved Blending Method for Forward-Looking Sonar Mosaicing in Non-Ideal System Configuration
Forward-Looking Sonar (FLS) has started to gain attention in the field of near-bottom close-range underwater inspection because of its high resolution and high framerate features. Although Automatic Target Recognition (ATR) algorithms have been applied tentatively for object-searching tasks, human supervision is still indispensable, especially when involving critical areas. A clear FLS mosaic containing all suspicious information is in demand to help experts deal with tremendous perception data. However, previous work only considered that FLS is working in an ideal system configuration, which assumes an appropriate sonar imaging setup and the availability of accurate positioning data. Without those promises, the intra-frame and inter-frame artifacts will appear and degrade the quality of the final mosaic by making the information of interest invisible. In this paper, we propose a novel blending method for FLS mosaicing which can preserve interested information. A Long-Short Time Sliding Window (LST-SW) is designed to rectify the local statistics of raw sonar images. The statistics are then utilized to construct a Global Variance Map (GVM). The GVM helps to emphasize the useful information contained in images in the blending phase by classifying the informative and featureless pixels, thereby enhancing the quality of final mosaic. The method is verified using data collected in the real environment. The results show that our method can preserve more details in FLS mosaics for human inspection purposes in practice.
♻ ☆ Weakly Supervised Contrastive Adversarial Training for Learning Robust Features from Semi-supervised Data CVPR 2025
Existing adversarial training (AT) methods often suffer from incomplete perturbation, meaning that not all non-robust features are perturbed when generating adversarial examples (AEs). This results in residual correlations between non-robust features and labels, leading to suboptimal learning of robust features. However, achieving complete perturbation, i.e., perturbing as many non-robust features as possible, is challenging due to the difficulty in distinguishing robust and non-robust features and the sparsity of labeled data. To address these challenges, we propose a novel approach called Weakly Supervised Contrastive Adversarial Training (WSCAT). WSCAT ensures complete perturbation for improved learning of robust features by disrupting correlations between non-robust features and labels through complete AE generation over partially labeled data, grounded in information theory. Extensive theoretical analysis and comprehensive experiments on widely adopted benchmarks validate the superiority of WSCAT. Our code is available at https://github.com/zhang-lilin/WSCAT.
comment: This paper has been accepted by CVPR 2025
♻ ☆ Generative Human Geometry Distribution
Realistic human geometry generation is an important yet challenging task, requiring both the preservation of fine clothing details and the accurate modeling of clothing-pose interactions. Geometry distributions, which can model the geometry of a single human as a distribution, provide a promising representation for high-fidelity synthesis. However, applying geometry distributions for human generation requires learning a dataset-level distribution over numerous individual geometry distributions. To address the resulting challenges, we propose a novel 3D human generative framework that, for the first time, models the distribution of human geometry distributions. Our framework operates in two stages: first, generating the human geometry distribution, and second, synthesizing high-fidelity humans by sampling from this distribution. We validate our method on two tasks: pose-conditioned 3D human generation and single-view-based novel pose generation. Experimental results demonstrate that our approach achieves the best quantitative results in terms of realism and geometric fidelity, outperforming state-of-the-art generative methods.
♻ ☆ EMOVA: Empowering Language Models to See, Hear and Speak with Vivid Emotions CVPR 2025
GPT-4o, an omni-modal model that enables vocal conversations with diverse emotions and tones, marks a milestone for omni-modal foundation models. However, empowering Large Language Models to perceive and generate images, texts, and speeches end-to-end with publicly available data remains challenging for the open-source community. Existing vision-language models rely on external tools for speech processing, while speech-language models still suffer from limited or totally without vision-understanding capabilities. To address this gap, we propose the EMOVA (EMotionally Omni-present Voice Assistant), to enable Large Language Models with end-to-end speech abilities while maintaining the leading vision-language performance. With a semantic-acoustic disentangled speech tokenizer, we surprisingly notice that omni-modal alignment can further enhance vision-language and speech abilities compared with the bi-modal aligned counterparts. Moreover, a lightweight style module is introduced for the flexible speech style controls including emotions and pitches. For the first time, EMOVA achieves state-of-the-art performance on both the vision-language and speech benchmarks, and meanwhile, supporting omni-modal spoken dialogue with vivid emotions.
comment: Accepted by CVPR 2025. Project Page: https://emova-ollm.github.io/
♻ ☆ ISP-AD: A Large-Scale Real-World Dataset for Advancing Industrial Anomaly Detection with Synthetic and Real Defects
Automatic visual inspection using machine learning-based methods plays a key role in achieving zero-defect policies in industry. Research on anomaly detection approaches is constrained by the availability of datasets that represent complex defect appearances and imperfect imaging conditions, which are typical to industrial processes. Recent benchmarks indicate that most publicly available datasets are biased towards optimal imaging conditions, leading to an overestimation of the methods' applicability to real-world industrial scenarios. To address this gap, we introduce the Industrial Screen Printing Anomaly Detection dataset (ISP-AD). It presents challenging small and weakly contrasted surface defects embedded within structured patterns exhibiting high permitted design variability. To the best of our knowledge, it is the largest publicly available industrial dataset to date, including both synthetic and real defects collected directly from the factory floor. In addition to the evaluation of defect detection performance of recent unsupervised anomaly detection methods, experiments on a mixed supervised training approach, incorporating both synthesized and real defects, were conducted. Even small amounts of injected real defects prove beneficial for model generalization. Furthermore, starting from training on purely synthetic defects, emerging real defective samples can be efficiently integrated into subsequent scalable training. Research findings indicate that supervision by means of both synthetic and accumulated real defects can complement each other, meeting demanded industrial inspection requirements such as low false positive rates and high recall. The presented unsupervised and supervised dataset splits are designed to emphasize research on unsupervised, self-supervised, and supervised approaches, enhancing their applicability to industrial settings.
comment: 26 pages, 6 figures, this preprint has been submitted to the Journal of Intelligent Manufacturing, the dataset is available at https://doi.org/10.5281/zenodo.14911043
♻ ☆ I2AM: Interpreting Image-to-Image Latent Diffusion Models via Bi-Attribution Maps
Large-scale diffusion models have made significant advances in image generation, particularly through cross-attention mechanisms. While cross-attention has been well-studied in text-to-image tasks, their interpretability in image-to-image (I2I) diffusion models remains underexplored. This paper introduces Image-to-Image Attribution Maps (I2AM), a method that enhances the interpretability of I2I models by visualizing bidirectional attribution maps, from the reference image to the generated image and vice versa. I2AM aggregates cross-attention scores across time steps, attention heads, and layers, offering insights into how critical features are transferred between images. We demonstrate the effectiveness of I2AM across object detection, inpainting, and super-resolution tasks. Our results demonstrate that I2AM successfully identifies key regions responsible for generating the output, even in complex scenes. Additionally, we introduce the Inpainting Mask Attention Consistency Score (IMACS) as a novel evaluation metric to assess the alignment between attribution maps and inpainting masks, which correlates strongly with existing performance metrics. Through extensive experiments, we show that I2AM enables model debugging and refinement, providing practical tools for improving I2I model's performance and interpretability.
comment: 23 pages
♻ ☆ HS-FPN: High Frequency and Spatial Perception FPN for Tiny Object Detection
The introduction of Feature Pyramid Network (FPN) has significantly improved object detection performance. However, substantial challenges remain in detecting tiny objects, as their features occupy only a very small proportion of the feature maps. Although FPN integrates multi-scale features, it does not directly enhance or enrich the features of tiny objects. Furthermore, FPN lacks spatial perception ability. To address these issues, we propose a novel High Frequency and Spatial Perception Feature Pyramid Network (HS-FPN) with two innovative modules. First, we designed a high frequency perception module (HFP) that generates high frequency responses through high pass filters. These high frequency responses are used as mask weights from both spatial and channel perspectives to enrich and highlight the features of tiny objects in the original feature maps. Second, we developed a spatial dependency perception module (SDP) to capture the spatial dependencies that FPN lacks. Our experiments demonstrate that detectors based on HS-FPN exhibit competitive advantages over state-of-the-art models on the AI-TOD dataset for tiny object detection.
comment: 13 pages,12 figures,7 tables
♻ ☆ MTGS: Multi-Traversal Gaussian Splatting
Multi-traversal data, commonly collected through daily commutes or by self-driving fleets, provides multiple viewpoints for scene reconstruction within a road block. This data offers significant potential for high-quality novel view synthesis, which is crucial for applications such as autonomous vehicle simulators. However, inherent challenges in multi-traversal data often result in suboptimal reconstruction quality, including variations in appearance and the presence of dynamic objects. To address these issues, we propose Multi-Traversal Gaussian Splatting (MTGS), a novel approach that reconstructs high-quality driving scenes from arbitrarily collected multi-traversal data by modeling a shared static geometry while separately handling dynamic elements and appearance variations. Our method employs a multi-traversal dynamic scene graph with a shared static node and traversal-specific dynamic nodes, complemented by color correction nodes with learnable spherical harmonics coefficient residuals. This approach enables high-fidelity novel view synthesis and provides flexibility to navigate any viewpoint. We conduct extensive experiments on a large-scale driving dataset, nuPlan, with multi-traversal data. Our results demonstrate that MTGS improves LPIPS by 23.5% and geometry accuracy by 46.3% compared to single-traversal baselines. The code and data would be available to the public.
♻ ☆ Preserve or Modify? Context-Aware Evaluation for Balancing Preservation and Modification in Text-Guided Image Editing CVPR 2025
The development of vision-language and generative models has significantly advanced text-guided image editing, which seeks the preservation of core elements in the source image while implementing modifications based on the target text. However, existing metrics have a context-blindness problem, indiscriminately applying the same evaluation criteria on completely different pairs of source image and target text, biasing towards either modification or preservation. Directional CLIP similarity, the only metric that considers both source image and target text, is also biased towards modification aspects and attends to irrelevant editing regions of the image. We propose AugCLIP, a context-aware metric that adaptively coordinates preservation and modification aspects, depending on the specific context of a given source image and target text. This is done by deriving the CLIP representation of an ideally edited image, that preserves the source image with necessary modifications to align with target text. More specifically, using a multi-modal large language model, AugCLIP augments the textual descriptions of the source and target, then calculates a modification vector through a hyperplane that separates source and target attributes in CLIP space. Extensive experiments on five benchmark datasets, encompassing a diverse range of editing scenarios, show that AugCLIP aligns remarkably well with human evaluation standards, outperforming existing metrics. The code is available at https://github.com/augclip/augclip_eval.
comment: accepted to CVPR 2025
♻ ☆ MG-SLAM: Structure Gaussian Splatting SLAM with Manhattan World Hypothesis
Gaussian Splatting SLAMs have made significant advancements in improving the efficiency and fidelity of real-time reconstructions. However, these systems often encounter incomplete reconstructions in complex indoor environments, characterized by substantial holes due to unobserved geometry caused by obstacles or limited view angles. To address this challenge, we present Manhattan Gaussian SLAM, an RGB-D system that leverages the Manhattan World hypothesis to enhance geometric accuracy and completeness. By seamlessly integrating fused line segments derived from structured scenes, our method ensures robust tracking in textureless indoor areas. Moreover, The extracted lines and planar surface assumption allow strategic interpolation of new Gaussians in regions of missing geometry, enabling efficient scene completion. Extensive experiments conducted on both synthetic and real-world scenes demonstrate that these advancements enable our method to achieve state-of-the-art performance, marking a substantial improvement in the capabilities of Gaussian SLAM systems.
♻ ☆ FreeCloth: Free-form Generation Enhances Challenging Clothed Human Modeling
Achieving realistic animated human avatars requires accurate modeling of pose-dependent clothing deformations. Existing learning-based methods heavily rely on the Linear Blend Skinning (LBS) of minimally-clothed human models like SMPL to model deformation. However, they struggle to handle loose clothing, such as long dresses, where the canonicalization process becomes ill-defined when the clothing is far from the body, leading to disjointed and fragmented results. To overcome this limitation, we propose FreeCloth, a novel hybrid framework to model challenging clothed humans. Our core idea is to use dedicated strategies to model different regions, depending on whether they are close to or distant from the body. Specifically, we segment the human body into three categories: unclothed, deformed, and generated. We simply replicate unclothed regions that require no deformation. For deformed regions close to the body, we leverage LBS to handle the deformation. As for the generated regions, which correspond to loose clothing areas, we introduce a novel free-form, part-aware generator to model them, as they are less affected by movements. This free-form generation paradigm brings enhanced flexibility and expressiveness to our hybrid framework, enabling it to capture the intricate geometric details of challenging loose clothing, such as skirts and dresses. Experimental results on the benchmark dataset featuring loose clothing demonstrate that FreeCloth achieves state-of-the-art performance with superior visual fidelity and realism, particularly in the most challenging cases.
comment: 23 pages, 26 figures
♻ ☆ A Retrospective Systematic Study on Hierarchical Sparse Query Transformer-assisted Ultrasound Screening for Early Hepatocellular Carcinoma
Hepatocellular carcinoma (HCC), ranking as the third leading cause of cancer-related mortality worldwide, demands urgent improvements in early detection to enhance patient survival. While ultrasound remains the preferred screening modality due to its cost-effectiveness and real-time capabilities, its sensitivity (59%-78%) heavily relies on radiologists' expertise, leading to inconsistent diagnostic outcomes and operational inefficiencies. Recent advancements in AI technology offer promising solutions to bridge this gap. This study introduces the Hierarchical Sparse Query Transformer (HSQformer), a novel hybrid architecture that synergizes CNNs' local feature extraction with Vision Transformers' global contextual awareness through latent space representation and sparse learning. By dynamically activating task-specific experts via a Mixture-of-Experts (MoE) framework, HSQformer achieves hierarchical feature integration without structural redundancy. Evaluated across three clinical scenarios: single-center, multi-center, and high-risk patient cohorts, HSQformer outperforms state-of-the-art models (e.g., 95.38% AUC in multi-center testing) and matches senior radiologists' diagnostic accuracy while significantly surpassing junior counterparts. These results highlight the potential of AI-assisted tools to standardize HCC screening, reduce dependency on human expertise, and improve early diagnosis rates. The full code is available at https://github.com/Asunatan/HSQformer.
♻ ☆ Advancing Time Series Wildfire Spread Prediction: Modeling Improvements and the WSTS+ Benchmark
Recent research has demonstrated the potential of deep neural networks (DNNs) to accurately predict wildfire spread on a given day based upon high-dimensional explanatory data from a single preceding day, or from a time series of T preceding days. Here, we introduce a variety of modeling improvements that achieve state-of-the-art (SOTA) accuracy for both single-day and multi-day input scenarios, as evaluated on a large public benchmark for next-day wildfire spread, termed the WildfireSpreadTS (WSTS) benchmark. Consistent with prior work, we found that models using time-series input obtained the best overall accuracy. Furthermore, we create a new benchmark, WSTS+, by incorporating four additional years of historical wildfire data into the WSTS benchmark. Our benchmark doubles the number of unique years of historical data, expands its geographic scope, and, to our knowledge, represents the largest public benchmark for time-series-based wildfire spread prediction.
comment: 8 pages, 7 figures
♻ ☆ Perturb-and-Revise: Flexible 3D Editing with Generative Trajectories CVPR 2025
Recent advancements in text-based diffusion models have accelerated progress in 3D reconstruction and text-based 3D editing. Although existing 3D editing methods excel at modifying color, texture, and style, they struggle with extensive geometric or appearance changes, thus limiting their applications. To this end, we propose Perturb-and-Revise, which makes possible a variety of NeRF editing. First, we perturb the NeRF parameters with random initializations to create a versatile initialization. The level of perturbation is determined automatically through analysis of the local loss landscape. Then, we revise the edited NeRF via generative trajectories. Combined with the generative process, we impose identity-preserving gradients to refine the edited NeRF. Extensive experiments demonstrate that Perturb-and-Revise facilitates flexible, effective, and consistent editing of color, appearance, and geometry in 3D. For 360{\deg} results, please visit our project page: https://susunghong.github.io/Perturb-and-Revise.
comment: CVPR 2025. Project page: https://susunghong.github.io/Perturb-and-Revise
♻ ☆ On Domain-Specific Post-Training for Multimodal Large Language Models
Adapting general multimodal large language models (MLLMs) to specific domains, such as scientific and industrial fields, is highly significant in promoting their practical applications. This paper systematically investigates domain adaptation of MLLMs through post-training, focusing on data synthesis, training pipelines, and task evaluation. (1) Data Synthesis: Using only open-source models, we develop a generate-then-filter pipeline that curates diverse visual instruction tasks based on domain-specific image-caption pairs. The resulting data surpass the data synthesized by manual rules or strong closed-source models (e.g., GPT-4V) in enhancing domain-specific performance. (2) Training Pipeline: While the two-stage training--initially on image-caption pairs followed by visual instruction tasks--is commonly adopted for developing general MLLMs, we apply a single-stage training pipeline to enhance task diversity for domain-specific post-training. (3) Task Evaluation: We conduct extensive experiments in high-impact domains such as biomedicine, food, and remote sensing, by post-training a variety of MLLMs and then evaluating MLLM performance on various domain-specific tasks. Furthermore, we fully open-source our models, code, and data to encourage future research in this area.
♻ ☆ SAUCE: Selective Concept Unlearning in Vision-Language Models with Sparse Autoencoders
Unlearning methods for vision-language models (VLMs) have primarily adapted techniques from large language models (LLMs), relying on weight updates that demand extensive annotated forget sets. Moreover, these methods perform unlearning at a coarse granularity, often leading to excessive forgetting and reduced model utility. To address this issue, we introduce SAUCE, a novel method that leverages sparse autoencoders (SAEs) for fine-grained and selective concept unlearning in VLMs. Briefly, SAUCE first trains SAEs to capture high-dimensional, semantically rich sparse features. It then identifies the features most relevant to the target concept for unlearning. During inference, it selectively modifies these features to suppress specific concepts while preserving unrelated information. We evaluate SAUCE on two distinct VLMs, LLaVA-v1.5-7B and LLaMA-3.2-11B-Vision-Instruct, across two types of tasks: concrete concept unlearning (objects and sports scenes) and abstract concept unlearning (emotions, colors, and materials), encompassing a total of 60 concepts. Extensive experiments demonstrate that SAUCE outperforms state-of-the-art methods by 18.04% in unlearning quality while maintaining comparable model utility. Furthermore, we investigate SAUCE's robustness against widely used adversarial attacks, its transferability across models, and its scalability in handling multiple simultaneous unlearning requests. Our findings establish SAUCE as an effective and scalable solution for selective concept unlearning in VLMs.
comment: More comparative experiments are needed
♻ ☆ Diffusion Model as a Noise-Aware Latent Reward Model for Step-Level Preference Optimization
Preference optimization for diffusion models aims to align them with human preferences for images. Previous methods typically leverage Vision-Language Models (VLMs) as pixel-level reward models to approximate human preferences. However, when used for step-level preference optimization, these models face challenges in handling noisy images of different timesteps and require complex transformations into pixel space. In this work, we demonstrate that diffusion models are inherently well-suited for step-level reward modeling in the latent space, as they can naturally extract features from noisy latent images. Accordingly, we propose the Latent Reward Model (LRM), which repurposes components of diffusion models to predict preferences of latent images at various timesteps. Building on LRM, we introduce Latent Preference Optimization (LPO), a method designed for step-level preference optimization directly in the latent space. Experimental results indicate that LPO not only significantly enhances performance in aligning diffusion models with general, aesthetic, and text-image alignment preferences, but also achieves 2.5-28$\times$ training speedup compared to existing preference optimization methods. Our code and models are available at https://github.com/Kwai-Kolors/LPO.
comment: 20 pages, 14 tables, 15 figures
♻ ☆ UDA4Inst: Unsupervised Domain Adaptation for Instance Segmentation
Instance segmentation is crucial for autonomous driving but is hindered by the lack of annotated real-world data due to expensive labeling costs. Unsupervised Domain Adaptation (UDA) offers a solution by transferring knowledge from labeled synthetic data to unlabeled real-world data. While UDA methods for synthetic to real-world domains (synth-to-real) show remarkable performance in tasks such as semantic segmentation and object detection, very few have been proposed for instance segmentation in vision-based autonomous driving. Moreover, existing methods rely on suboptimal baselines, which severely limits performance. We introduce \textbf{UDA4Inst}, a powerful framework for synth-to-real UDA in instance segmentation. Our framework enhances instance segmentation through \textit{Semantic Category Training} and \textit{Bidirectional Mixing Training}. With the Semantic Category Training method, semantically related classes are grouped and trained separately, enabling the generation of higher-quality pseudo-labels and improved segmentation performance. We further propose a bidirectional cross-domain data mixing strategy that combines instance-wise and patch-wise mixing techniques to effectively utilize data from both source and target domains, producing realistic composite images that improve the model's generalization performance. Extensive experiments demonstrate the effectiveness of our methods. Our approach establishes a new state-of-the-art on the SYNTHIA->Cityscapes benchmark with mAP 31.3. Notably, we are the first to report results on multiple novel synth-to-real instance segmentation datasets, using UrbanSyn and Synscapes as source domains while Cityscapes and KITTI360 serve as target domains. Our code will be released soon.
♻ ☆ Style-Friendly SNR Sampler for Style-Driven Generation
Recent text-to-image diffusion models generate high-quality images but struggle to learn new, personalized styles, which limits the creation of unique style templates. In style-driven generation, users typically supply reference images exemplifying the desired style, together with text prompts that specify desired stylistic attributes. Previous approaches popularly rely on fine-tuning, yet it often blindly utilizes objectives and noise level distributions from pre-training without adaptation. We discover that stylistic features predominantly emerge at higher noise levels, leading current fine-tuning methods to exhibit suboptimal style alignment. We propose the Style-friendly SNR sampler, which aggressively shifts the signal-to-noise ratio (SNR) distribution toward higher noise levels during fine-tuning to focus on noise levels where stylistic features emerge. This enhances models' ability to capture novel styles indicated by reference images and text prompts. We demonstrate improved generation of novel styles that cannot be adequately described solely with a text prompt, enabling the creation of new style templates for personalized content creation.
comment: Project page: https://stylefriendly.github.io/
♻ ☆ CLIMB: Data Foundations for Large Scale Multimodal Clinical Foundation Models
Recent advances in clinical AI have enabled remarkable progress across many clinical domains. However, existing benchmarks and models are primarily limited to a small set of modalities and tasks, which hinders the development of large-scale multimodal methods that can make holistic assessments of patient health and well-being. To bridge this gap, we introduce Clinical Large-Scale Integrative Multimodal Benchmark (CLIMB), a comprehensive clinical benchmark unifying diverse clinical data across imaging, language, temporal, and graph modalities. CLIMB comprises 4.51 million patient samples totaling 19.01 terabytes distributed across 2D imaging, 3D video, time series, graphs, and multimodal data. Through extensive empirical evaluation, we demonstrate that multitask pretraining significantly improves performance on understudied domains, achieving up to 29% improvement in ultrasound and 23% in ECG analysis over single-task learning. Pretraining on CLIMB also effectively improves models' generalization capability to new tasks, and strong unimodal encoder performance translates well to multimodal performance when paired with task-appropriate fusion strategies. Our findings provide a foundation for new architecture designs and pretraining strategies to advance clinical AI research. Code is released at https://github.com/DDVD233/climb.
♻ ☆ Causal Deciphering and Inpainting in Spatio-Temporal Dynamics via Diffusion Model
Spatio-temporal (ST) prediction has garnered a De facto attention in earth sciences, such as meteorological prediction, human mobility perception. However, the scarcity of data coupled with the high expenses involved in sensor deployment results in notable data imbalances. Furthermore, models that are excessively customized and devoid of causal connections further undermine the generalizability and interpretability. To this end, we establish a causal framework for ST predictions, termed CaPaint, which targets to identify causal regions in data and endow model with causal reasoning ability in a two-stage process. Going beyond this process, we utilize the back-door adjustment to specifically address the sub-regions identified as non-causal in the upstream phase. Specifically, we employ a novel image inpainting technique. By using a fine-tuned unconditional Diffusion Probabilistic Model (DDPM) as the generative prior, we in-fill the masks defined as environmental parts, offering the possibility of reliable extrapolation for potential data distributions. CaPaint overcomes the high complexity dilemma of optimal ST causal discovery models by reducing the data generation complexity from exponential to quasi-linear levels. Extensive experiments conducted on five real-world ST benchmarks demonstrate that integrating the CaPaint concept allows models to achieve improvements ranging from 4.3% to 77.3%. Moreover, compared to traditional mainstream ST augmenters, CaPaint underscores the potential of diffusion models in ST enhancement, offering a novel paradigm for this field. Our project is available at https://anonymous.4open.science/r/12345-DFCC.
♻ ☆ Zero-Shot Head Swapping in Real-World Scenarios CVPR'25
With growing demand in media and social networks for personalized images, the need for advanced head-swapping techniques, integrating an entire head from the head image with the body from the body image, has increased. However, traditional head swapping methods heavily rely on face-centered cropped data with primarily frontal facing views, which limits their effectiveness in real world applications. Additionally, their masking methods, designed to indicate regions requiring editing, are optimized for these types of dataset but struggle to achieve seamless blending in complex situations, such as when the original data includes features like long hair extending beyond the masked area. To overcome these limitations and enhance adaptability in diverse and complex scenarios, we propose a novel head swapping method, HID, that is robust to images including the full head and the upper body, and handles from frontal to side views, while automatically generating context aware masks. For automatic mask generation, we introduce the IOMask, which enables seamless blending of the head and body, effectively addressing integration challenges. We further introduce the hair injection module to capture hair details with greater precision. Our experiments demonstrate that the proposed approach achieves state-of-the-art performance in head swapping, providing visually consistent and realistic results across a wide range of challenging conditions.
comment: CVPR'25
♻ ☆ Aligning Text to Image in Diffusion Models is Easier Than You Think
While recent advancements in generative modeling have significantly improved text-image alignment, some residual misalignment between text and image representations still remains. Although many approaches have attempted to address this issue by fine-tuning models using various reward models, etc., we revisit the challenge from the perspective of representation alignment-an approach that has gained popularity with the success of REPresentation Alignment (REPA). We first argue that conventional text-to-image (T2I) diffusion models, typically trained on paired image and text data (i.e., positive pairs) by minimizing score matching or flow matching losses, is suboptimal from the standpoint of representation alignment. Instead, a better alignment can be achieved through contrastive learning that leverages both positive and negative pairs. To achieve this efficiently even with pretrained models, we introduce a lightweight contrastive fine tuning strategy called SoftREPA that uses soft text tokens. This approach improves alignment with minimal computational overhead by adding fewer than 1M trainable parameters to the pretrained model. Our theoretical analysis demonstrates that our method explicitly increases the mutual information between text and image representations, leading to enhanced semantic consistency. Experimental results across text-to-image generation and text-guided image editing tasks validate the effectiveness of our approach in improving the semantic consistency of T2I generative models.
♻ ☆ Image is All You Need to Empower Large-scale Diffusion Models for In-Domain Generation CVPR2025
In-domain generation aims to perform a variety of tasks within a specific domain, such as unconditional generation, text-to-image, image editing, 3D generation, and more. Early research typically required training specialized generators for each unique task and domain, often relying on fully-labeled data. Motivated by the powerful generative capabilities and broad applications of diffusion models, we are driven to explore leveraging label-free data to empower these models for in-domain generation. Fine-tuning a pre-trained generative model on domain data is an intuitive but challenging way and often requires complex manual hyper-parameter adjustments since the limited diversity of the training data can easily disrupt the model's original generative capabilities. To address this challenge, we propose a guidance-decoupled prior preservation mechanism to achieve high generative quality and controllability by image-only data, inspired by preserving the pre-trained model from a denoising guidance perspective. We decouple domain-related guidance from the conditional guidance used in classifier-free guidance mechanisms to preserve open-world control guidance and unconditional guidance from the pre-trained model. We further propose an efficient domain knowledge learning technique to train an additional text-free UNet copy to predict domain guidance. Besides, we theoretically illustrate a multi-guidance in-domain generation pipeline for a variety of generative tasks, leveraging multiple guidances from distinct diffusion models and conditions. Extensive experiments demonstrate the superiority of our method in domain-specific synthesis and its compatibility with various diffusion-based control methods and applications.
comment: Accepted to CVPR2025. Code is available at https://github.com/PRIV-Creation/In-domain-Generation-Diffusion
♻ ☆ A Survey of the Self Supervised Learning Mechanisms for Vision Transformers
Deep supervised learning models require high volume of labeled data to attain sufficiently good results. Although, the practice of gathering and annotating such big data is costly and laborious. Recently, the application of self supervised learning (SSL) in vision tasks has gained significant attention. The intuition behind SSL is to exploit the synchronous relationships within the data as a form of self-supervision, which can be versatile. In the current big data era, most of the data is unlabeled, and the success of SSL thus relies in finding ways to utilize this vast amount of unlabeled data available. Thus it is better for deep learning algorithms to reduce reliance on human supervision and instead focus on self-supervision based on the inherent relationships within the data. With the advent of ViTs, which have achieved remarkable results in computer vision, it is crucial to explore and understand the various SSL mechanisms employed for training these models specifically in scenarios where there is limited labelled data available. In this survey, we develop a comprehensive taxonomy of systematically classifying the SSL techniques based upon their representations and pre-training tasks being applied. Additionally, we discuss the motivations behind SSL, review popular pre-training tasks, and highlight the challenges and advancements in this field. Furthermore, we present a comparative analysis of different SSL methods, evaluate their strengths and limitations, and identify potential avenues for future research.
comment: 34 Pages, 5 Figures, 7 Tables
♻ ☆ V2X-R: Cooperative LiDAR-4D Radar Fusion for 3D Object Detection with Denoising Diffusion CVPR2025
Current Vehicle-to-Everything (V2X) systems have significantly enhanced 3D object detection using LiDAR and camera data. However, these methods suffer from performance degradation in adverse weather conditions. The weather-robust 4D radar provides Doppler and additional geometric information, raising the possibility of addressing this challenge. To this end, we present V2X-R, the first simulated V2X dataset incorporating LiDAR, camera, and 4D radar. V2X-R contains 12,079 scenarios with 37,727 frames of LiDAR and 4D radar point clouds, 150,908 images, and 170,859 annotated 3D vehicle bounding boxes. Subsequently, we propose a novel cooperative LiDAR-4D radar fusion pipeline for 3D object detection and implement it with various fusion strategies. To achieve weather-robust detection, we additionally propose a Multi-modal Denoising Diffusion (MDD) module in our fusion pipeline. MDD utilizes weather-robust 4D radar feature as a condition to prompt the diffusion model to denoise noisy LiDAR features. Experiments show that our LiDAR-4D radar fusion pipeline demonstrates superior performance in the V2X-R dataset. Over and above this, our MDD module further improved the performance of basic fusion model by up to 5.73%/6.70% in foggy/snowy conditions with barely disrupting normal performance. The dataset and code will be publicly available at: https://github.com/ylwhxht/V2X-R.
comment: Accepted by CVPR2025
♻ ☆ Spatiotemporal Multi-Camera Calibration using Freely Moving People
We propose a novel method for spatiotemporal multi-camera calibration using freely moving people in multiview videos. Since calibrating multiple cameras and finding matches across their views are inherently interdependent, performing both in a unified framework poses a significant challenge. We address these issues as a single registration problem of matching two sets of 3D points, leveraging human motion in dynamic multi-person scenes. To this end, we utilize 3D human poses obtained from an off-the-shelf monocular 3D human pose estimator and transform them into 3D points on a unit sphere, to solve the rotation, time offset, and the association alternatingly. We employ a probabilistic approach that can jointly solve both problems of aligning spatiotemporal data and establishing correspondences through soft assignment between two views. The translation is determined by applying coplanarity constraints. The pairwise registration results are integrated into a multiview setup, and then a nonlinear optimization method is used to improve the accuracy of the camera poses, temporal offsets, and multi-person associations. Extensive experiments on synthetic and real data demonstrate the effectiveness and flexibility of the proposed method as a practical marker-free calibration tool.
comment: Accepted to IEEE Robotics and Automation Letters (RA-L)
♻ ☆ SSTP: Efficient Sample Selection for Trajectory Prediction
Trajectory prediction is a core task in autonomous driving. However, training advanced trajectory prediction models on large-scale datasets is both time-consuming and computationally expensive. In addition, the imbalanced distribution of driving scenarios often biases models toward data-rich cases, limiting performance in safety-critical, data-scarce conditions. To address these challenges, we propose the Sample Selection for Trajectory Prediction (SSTP) framework, which constructs a compact yet balanced dataset for trajectory prediction. SSTP consists of two main stages (1) Extraction, in which a pretrained trajectory prediction model computes gradient vectors for each sample to capture their influence on parameter updates; and (2) Selection, where a submodular function is applied to greedily choose a representative subset that covers diverse driving scenarios. This approach significantly reduces the dataset size and mitigates scenario imbalance, without sacrificing prediction accuracy and even improving in high-density cases. We evaluate our proposed SSTP on the Argoverse 1 and Argoverse 2 benchmarks using a wide range of recent state-of-the-art models. Our experiments demonstrate that SSTP achieves comparable performance to full-dataset training using only half the data while delivering substantial improvements in high-density traffic scenes and significantly reducing training time. Importantly, SSTP exhibits strong generalization and robustness, and the selected subset is model-agnostic, offering a broadly applicable solution.
♻ ☆ D&M: Enriching E-commerce Videos with Sound Effects by Key Moment Detection and SFX Matching AAAI 2025
Videos showcasing specific products are increasingly important for E-commerce. Key moments naturally exist as the first appearance of a specific product, presentation of its distinctive features, the presence of a buying link, etc. Adding proper sound effects (SFX) to these key moments, or video decoration with SFX (VDSFX), is crucial for enhancing the user engaging experience. Previous studies about adding SFX to videos perform video to SFX matching at a holistic level, lacking the ability of adding SFX to a specific moment. Meanwhile, previous studies on video highlight detection or video moment retrieval consider only moment localization, leaving moment to SFX matching untouched. By contrast, we propose in this paper D&M, a unified method that accomplishes key moment detection and moment to SFX matching simultaneously. Moreover, for the new VDSFX task we build a large-scale dataset SFX-Moment from an E-commerce platform. For a fair comparison, we build competitive baselines by extending a number of current video moment detection methods to the new task. Extensive experiments on SFX-Moment show the superior performance of the proposed method over the baselines.
comment: Accepted by AAAI 2025
♻ ☆ Moto: Latent Motion Token as the Bridging Language for Learning Robot Manipulation from Videos
Recent developments in Large Language Models pre-trained on extensive corpora have shown significant success in various natural language processing tasks with minimal fine-tuning. This success offers new promise for robotics, which has long been constrained by the high cost of action-labeled data. We ask: given the abundant video data containing interaction-related knowledge available as a rich "corpus", can a similar generative pre-training approach be effectively applied to enhance robot learning? The key challenge is to identify an effective representation for autoregressive pre-training that benefits robot manipulation tasks. Inspired by the way humans learn new skills through observing dynamic environments, we propose that effective robotic learning should emphasize motion-related knowledge, which is closely tied to low-level actions and is hardware-agnostic, facilitating the transfer of learned motions to actual robot actions. To this end, we introduce Moto, which converts video content into latent Motion Token sequences by a Latent Motion Tokenizer, learning a bridging "language" of motion from videos in an unsupervised manner. We pre-train Moto-GPT through motion token autoregression, enabling it to capture diverse visual motion knowledge. After pre-training, Moto-GPT demonstrates the promising ability to produce semantically interpretable motion tokens, predict plausible motion trajectories, and assess trajectory rationality through output likelihood. To transfer learned motion priors to real robot actions, we implement a co-fine-tuning strategy that seamlessly bridges latent motion token prediction and real robot control. Extensive experiments show that the fine-tuned Moto-GPT exhibits superior robustness and efficiency on robot manipulation benchmarks, underscoring its effectiveness in transferring knowledge from video data to downstream visual manipulation tasks.
comment: Project released at: https://chenyi99.github.io/moto/ Update: Added content related to real-world robot experiments and learning from human videos
♻ ☆ MIA-Bench: Towards Better Instruction Following Evaluation of Multimodal LLMs ICLR 2025
We introduce MIA-Bench, a new benchmark designed to evaluate multimodal large language models (MLLMs) on their ability to strictly adhere to complex instructions. Our benchmark comprises a diverse set of 400 image-prompt pairs, each crafted to challenge the models' compliance with layered instructions in generating accurate responses that satisfy specific requested patterns. Evaluation results from a wide array of state-of-the-art MLLMs reveal significant variations in performance, highlighting areas for improvement in instruction fidelity. Additionally, we create extra training data and explore supervised fine-tuning to enhance the models' ability to strictly follow instructions without compromising performance on other tasks. We hope this benchmark not only serves as a tool for measuring MLLM adherence to instructions, but also guides future developments in MLLM training methods.
comment: Accepted at ICLR 2025
♻ ☆ Label-efficient multi-organ segmentation with a diffusion model
Accurate segmentation of multiple organs in Computed Tomography (CT) images plays a vital role in computer-aided diagnosis systems. While various supervised learning approaches have been proposed recently, these methods heavily depend on a large amount of high-quality labeled data, which are expensive to obtain in practice. To address this challenge, we propose a label-efficient framework using knowledge transfer from a pre-trained diffusion model for CT multi-organ segmentation. Specifically, we first pre-train a denoising diffusion model on 207,029 unlabeled 2D CT slices to capture anatomical patterns. Then, the model backbone is transferred to the downstream multi-organ segmentation task, followed by fine-tuning with few labeled data. In fine-tuning, two fine-tuning strategies, linear classification and fine-tuning decoder, are employed to enhance segmentation performance while preserving learned representations. Quantitative results show that the pre-trained diffusion model is capable of generating diverse and realistic 256x256 CT images (Fr\'echet inception distance (FID): 11.32, spatial Fr\'echet inception distance (sFID): 46.93, F1-score: 73.1%). Compared to state-of-the-art methods for multi-organ segmentation, our method achieves competitive performance on the FLARE 2022 dataset, particularly in limited labeled data scenarios. After fine-tuning with 1% and 10% labeled data, our method achieves dice similarity coefficients (DSCs) of 71.56% and 78.51%, respectively. Remarkably, the method achieves a DSC score of 51.81% using only four labeled CT slices. These results demonstrate the efficacy of our approach in overcoming the limitations of supervised learning approaches that is highly dependent on large-scale labeled data.
♻ ☆ CREMA: Generalizable and Efficient Video-Language Reasoning via Multimodal Modular Fusion ICLR 2025
Despite impressive advancements in recent multimodal reasoning approaches, they are still limited in flexibility and efficiency, as these models typically process only a few fixed modality inputs and require updates to numerous parameters. This paper tackles these critical challenges and proposes CREMA, a generalizable, highly efficient, and modular modality-fusion framework that can incorporate any new modality to enhance video reasoning. We first augment multiple informative modalities (such as optical flow, 3D point cloud, audio, thermal heatmap, and touch map) from given videos without extra human annotation by leveraging sensors or existing pre-trained models. Next, we introduce a query transformer with multiple parameter-efficient modules associated with each accessible modality. It projects diverse modality features to the LLM token embedding space, allowing the model to integrate different data types for response generation. Furthermore, we propose a novel progressive multimodal fusion design supported by a lightweight fusion module and modality-sequential training strategy. It helps compress information across various assisting modalities, maintaining computational efficiency in the LLM while improving performance. We validate our method on 7 video-language reasoning tasks assisted by diverse modalities, including conventional VideoQA and Video-Audio/3D/Touch/Thermal QA, and achieve better/equivalent performance against strong multimodal LLMs, including OneLLM, BLIP-2, and SeViLA while reducing over 90% trainable parameters. We provide extensive analyses of CREMA, including the impact of each modality on reasoning domains, the design of the fusion module, and example visualizations.
comment: ICLR 2025; first two authors contributed equally. Project page: https://CREMA-VideoLLM.github.io/
♻ ☆ MambaIC: State Space Models for High-Performance Learned Image Compression CVPR 2025
A high-performance image compression algorithm is crucial for real-time information transmission across numerous fields. Despite rapid progress in image compression, computational inefficiency and poor redundancy modeling still pose significant bottlenecks, limiting practical applications. Inspired by the effectiveness of state space models (SSMs) in capturing long-range dependencies, we leverage SSMs to address computational inefficiency in existing methods and improve image compression from multiple perspectives. In this paper, we integrate the advantages of SSMs for better efficiency-performance trade-off and propose an enhanced image compression approach through refined context modeling, which we term MambaIC. Specifically, we explore context modeling to adaptively refine the representation of hidden states. Additionally, we introduce window-based local attention into channel-spatial entropy modeling to reduce potential spatial redundancy during compression, thereby increasing efficiency. Comprehensive qualitative and quantitative results validate the effectiveness and efficiency of our approach, particularly for high-resolution image compression. Code is released at https://github.com/AuroraZengfh/MambaIC.
comment: Accepted to CVPR 2025
♻ ☆ VideoGen-of-Thought: Step-by-step generating multi-shot video with minimal manual intervention
Current video generation models excel at short clips but fail to produce cohesive multi-shot narratives due to disjointed visual dynamics and fractured storylines. Existing solutions either rely on extensive manual scripting/editing or prioritize single-shot fidelity over cross-scene continuity, limiting their practicality for movie-like content. We introduce VideoGen-of-Thought (VGoT), a step-by-step framework that automates multi-shot video synthesis from a single sentence by systematically addressing three core challenges: (1) Narrative Fragmentation: Existing methods lack structured storytelling. We propose dynamic storyline modeling, which first converts the user prompt into concise shot descriptions, then elaborates them into detailed, cinematic specifications across five domains (character dynamics, background continuity, relationship evolution, camera movements, HDR lighting), ensuring logical narrative progression with self-validation. (2) Visual Inconsistency: Existing approaches struggle with maintaining visual consistency across shots. Our identity-aware cross-shot propagation generates identity-preserving portrait (IPP) tokens that maintain character fidelity while allowing trait variations (expressions, aging) dictated by the storyline. (3) Transition Artifacts: Abrupt shot changes disrupt immersion. Our adjacent latent transition mechanisms implement boundary-aware reset strategies that process adjacent shots' features at transition points, enabling seamless visual flow while preserving narrative continuity. VGoT generates multi-shot videos that outperform state-of-the-art baselines by 20.4% in within-shot face consistency and 17.4% in style consistency, while achieving over 100% better cross-shot consistency and 10x fewer manual adjustments than alternatives.
comment: Code: https://github.com/DuNGEOnmassster/VideoGen-of-Thought.git; Webpage: https://cheliosoops.github.io/VGoT/
♻ ☆ Multimodal Industrial Anomaly Detection by Crossmodal Reverse Distillation
Knowledge distillation (KD) has been widely studied in unsupervised Industrial Image Anomaly Detection (AD), but its application to unsupervised multimodal AD remains underexplored. Existing KD-based methods for multimodal AD that use fused multimodal features to obtain teacher representations face challenges. Anomalies in one modality may not be effectively captured in the fused teacher features, leading to detection failures. Besides, these methods do not fully leverage the rich intra- and inter-modality information. In this paper, we propose Crossmodal Reverse Distillation (CRD) based on Multi-branch design to realize Multimodal Industrial AD. By assigning independent branches to each modality, our method enables finer detection of anomalies within each modality. Furthermore, we enhance the interaction between modalities during the distillation process by designing Crossmodal Filter and Amplifier. With the idea of crossmodal mapping, the student network is allowed to better learn normal features while anomalies in all modalities are ensured to be effectively detected. Experimental verifications on the MVTec 3D-AD dataset demonstrate that our method achieves state-of-the-art performance in multimodal anomaly detection and localization.
♻ ☆ Local Compositional Complexity: How to Detect a Human-readable Messsage
Data complexity is an important concept in the natural sciences and related areas, but lacks a rigorous and computable definition. In this paper, we focus on a particular sense of complexity that is high if the data is structured in a way that could serve to communicate a message. In this sense, human speech, written language, drawings, diagrams and photographs are high complexity, whereas data that is close to uniform throughout or populated by random values is low complexity. We describe a general framework for measuring data complexity based on dividing the shortest description of the data into a structured and an unstructured portion, and taking the size of the former as the complexity score. We outline an application of this framework in statistical mechanics that may allow a more objective characterisation of the macrostate and entropy of a physical system. Then, we derive a more precise and computable definition geared towards human communication, by proposing local compositionality as an appropriate specific structure. We demonstrate experimentally that this method can distinguish meaningful signals from noise or repetitive signals in auditory, visual and text domains, and could potentially help determine whether an extra-terrestrial signal contained a message.
♻ ☆ SDF-TopoNet: A Two-Stage Framework for Tubular Structure Segmentation via SDF Pre-training and Topology-Aware Fine-Tuning
Accurate segmentation of tubular and curvilinear structures, such as blood vessels, neurons, and road networks, is crucial in various applications. A key challenge is ensuring topological correctness while maintaining computational efficiency. Existing approaches often employ topological loss functions based on persistent homology, such as Betti error, to enforce structural consistency. However, these methods suffer from high computational costs and are insensitive to pixel-level accuracy, often requiring additional loss terms like Dice or MSE to compensate. To address these limitations, we propose \textbf{SDF-TopoNet}, an improved topology-aware segmentation framework that enhances both segmentation accuracy and training efficiency. Our approach introduces a novel two-stage training strategy. In the pre-training phase, we utilize the signed distance function (SDF) as an auxiliary learning target, allowing the model to encode topological information without directly relying on computationally expensive topological loss functions. In the fine-tuning phase, we incorporate a dynamic adapter alongside a refined topological loss to ensure topological correctness while mitigating overfitting and computational overhead. We evaluate our method on five benchmark datasets. Experimental results demonstrate that SDF-TopoNet outperforms existing methods in both topological accuracy and quantitative segmentation metrics, while significantly reducing training complexity.
♻ ☆ AirRoom: Objects Matter in Room Reidentification CVPR 2025
Room reidentification (ReID) is a challenging yet essential task with numerous applications in fields such as augmented reality (AR) and homecare robotics. Existing visual place recognition (VPR) methods, which typically rely on global descriptors or aggregate local features, often struggle in cluttered indoor environments densely populated with man-made objects. These methods tend to overlook the crucial role of object-oriented information. To address this, we propose AirRoom, an object-aware pipeline that integrates multi-level object-oriented information-from global context to object patches, object segmentation, and keypoints-utilizing a coarse-to-fine retrieval approach. Extensive experiments on four newly constructed datasets-MPReID, HMReID, GibsonReID, and ReplicaReID-demonstrate that AirRoom outperforms state-of-the-art (SOTA) models across nearly all evaluation metrics, with improvements ranging from 6% to 80%. Moreover, AirRoom exhibits significant flexibility, allowing various modules within the pipeline to be substituted with different alternatives without compromising overall performance. It also shows robust and consistent performance under diverse viewpoint variations.
comment: Paper accepted at CVPR 2025
♻ ☆ U-Motion: Learned Point Cloud Video Compression with U-Structured Temporal Context Generation
Point cloud video (PCV) is a versatile 3D representation of dynamic scenes with emerging applications. This paper introduces U-Motion, a learning-based compression scheme for both PCV geometry and attributes. We propose a U-Structured inter-frame prediction framework, U-Inter, which performs explicit motion estimation and compensation (ME/MC) at different scales with varying levels of detail. It integrates Top-Down (Fine-to-Coarse) Motion Propagation, Bottom-Up Motion Predictive Coding and Multi-scale Group Motion Compensation to enable accurate motion estimation and efficient motion compression at each scale. In addition, we design a multi-scale spatial-temporal predictive coding module to capture the cross-scale spatial redundancy remaining after U-Inter prediction. We conduct experiments following the MPEG Common Test Condition for dense dynamic point clouds and demonstrate that U-Motion can achieve significant gains over MPEG G-PCC-GesTM v3.0 and recently published learning-based methods for both geometry and attribute compression.
♻ ☆ Cooperative Hardware-Prompt Learning for Snapshot Compressive Imaging NeurIPS 2024
Existing reconstruction models in snapshot compressive imaging systems (SCI) are trained with a single well-calibrated hardware instance, making their performance vulnerable to hardware shifts and limited in adapting to multiple hardware configurations. To facilitate cross-hardware learning, previous efforts attempt to directly collect multi-hardware data and perform centralized training, which is impractical due to severe user data privacy concerns and hardware heterogeneity across different platforms/institutions. In this study, we explicitly consider data privacy and heterogeneity in cooperatively optimizing SCI systems by proposing a Federated Hardware-Prompt learning (FedHP) framework. Rather than mitigating the client drift by rectifying the gradients, which only takes effect on the learning manifold but fails to solve the heterogeneity rooted in the input data space, FedHP learns a hardware-conditioned prompter to align inconsistent data distribution across clients, serving as an indicator of the data inconsistency among different hardware (e.g., coded apertures). Extensive experimental results demonstrate that the proposed FedHP coordinates the pre-trained model to multiple hardware configurations, outperforming prevalent FL frameworks for 0.35dB under challenging heterogeneous settings. Moreover, a Snapshot Spectral Heterogeneous Dataset has been built upon multiple practical SCI systems. Data and code are aveilable at https://github.com/Jiamian-Wang/FedHP-Snapshot-Compressive-Imaging
comment: Accepted by NeurIPS 2024
♻ ☆ Mapping Global Floods with 10 Years of Satellite Radar Data
Floods cause extensive global damage annually, making effective monitoring essential. While satellite observations have proven invaluable for flood detection and tracking, comprehensive global flood datasets spanning extended time periods remain scarce. In this study, we introduce a novel deep learning flood detection model that leverages the cloud-penetrating capabilities of Sentinel-1 Synthetic Aperture Radar (SAR) satellite imagery, enabling consistent flood extent mapping in through cloud cover and in both day and night conditions. By applying this model to 10 years of SAR data, we create a unique, longitudinal global flood extent dataset with predictions unaffected by cloud coverage, offering comprehensive and consistent insights into historically flood-prone areas over the past decade. We use our model predictions to identify historically flood-prone areas in Ethiopia and demonstrate real-time disaster response capabilities during the May 2024 floods in Kenya. Additionally, our longitudinal analysis reveals potential increasing trends in global flood extent over time, although further validation is required to explore links to climate change. To maximize impact, we provide public access to both our model predictions and a code repository, empowering researchers and practitioners worldwide to advance flood monitoring and enhance disaster response strategies.
comment: 18 pages, 8 figures, under review
♻ ☆ CMMLoc: Advancing Text-to-PointCloud Localization with Cauchy-Mixture-Model Based Framework CVPR 2025
The goal of point cloud localization based on linguistic description is to identify a 3D position using textual description in large urban environments, which has potential applications in various fields, such as determining the location for vehicle pickup or goods delivery. Ideally, for a textual description and its corresponding 3D location, the objects around the 3D location should be fully described in the text description. However, in practical scenarios, e.g., vehicle pickup, passengers usually describe only the part of the most significant and nearby surroundings instead of the entire environment. In response to this $\textbf{partially relevant}$ challenge, we propose $\textbf{CMMLoc}$, an uncertainty-aware $\textbf{C}$auchy-$\textbf{M}$ixture-$\textbf{M}$odel ($\textbf{CMM}$) based framework for text-to-point-cloud $\textbf{Loc}$alization. To model the uncertain semantic relations between text and point cloud, we integrate CMM constraints as a prior during the interaction between the two modalities. We further design a spatial consolidation scheme to enable adaptive aggregation of different 3D objects with varying receptive fields. To achieve precise localization, we propose a cardinal direction integration module alongside a modality pre-alignment strategy, helping capture the spatial relationships among objects and bringing the 3D objects closer to the text modality. Comprehensive experiments validate that CMMLoc outperforms existing methods, achieving state-of-the-art results on the KITTI360Pose dataset. Codes are available in this GitHub repository https://github.com/kevin301342/CMMLoc.
comment: Accepted by CVPR 2025
♻ ☆ Multi-Reward as Condition for Instruction-based Image Editing
High-quality training triplets (instruction, original image, edited image) are essential for instruction-based image editing. Predominant training datasets (e.g., InsPix2Pix) are created using text-to-image generative models (e.g., Stable Diffusion, DALL-E) which are not trained for image editing. Accordingly, these datasets suffer from inaccurate instruction following, poor detail preserving, and generation artifacts. In this paper, we propose to address the training data quality issue with multi-perspective reward data instead of refining the ground-truth image quality. 1) we first design a quantitative metric system based on best-in-class LVLM (Large Vision Language Model), i.e., GPT-4o in our case, to evaluate the generation quality from 3 perspectives, namely, instruction following, detail preserving, and generation quality. For each perspective, we collected quantitative score in $0\sim 5$ and text descriptive feedback on the specific failure points in ground-truth edited images, resulting in a high-quality editing reward dataset, i.e., RewardEdit20K. 2) We further proposed a novel training framework to seamlessly integrate the metric output, regarded as multi-reward, into editing models to learn from the imperfect training triplets. During training, the reward scores and text descriptions are encoded as embeddings and fed into both the latent space and the U-Net of the editing models as auxiliary conditions. 3) We also build a challenging evaluation benchmark with real-world images/photos and diverse editing instructions, named Real-Edit. Experiments indicate that our multi-reward conditioned model outperforms its no-reward counterpart on two popular editing pipelines, i.e., InsPix2Pix and SmartEdit. Code is released at https://github.com/bytedance/Multi-Reward-Editing.
♻ ☆ Words in Motion: Extracting Interpretable Control Vectors for Motion Transformers ICLR 2025
Transformer-based models generate hidden states that are difficult to interpret. In this work, we analyze hidden states and modify them at inference, with a focus on motion forecasting. We use linear probing to analyze whether interpretable features are embedded in hidden states. Our experiments reveal high probing accuracy, indicating latent space regularities with functionally important directions. Building on this, we use the directions between hidden states with opposing features to fit control vectors. At inference, we add our control vectors to hidden states and evaluate their impact on predictions. Remarkably, such modifications preserve the feasibility of predictions. We further refine our control vectors using sparse autoencoders (SAEs). This leads to more linear changes in predictions when scaling control vectors. Our approach enables mechanistic interpretation as well as zero-shot generalization to unseen dataset characteristics with negligible computational overhead.
comment: ICLR 2025 camera-ready. Our implementation is available at github.com/kit-mrt/future-motion
♻ ☆ UVGS: Reimagining Unstructured 3D Gaussian Splatting using UV Mapping
3D Gaussian Splatting (3DGS) has demonstrated superior quality in modeling 3D objects and scenes. However, generating 3DGS remains challenging due to their discrete, unstructured, and permutation-invariant nature. In this work, we present a simple yet effective method to overcome these challenges. We utilize spherical mapping to transform 3DGS into a structured 2D representation, termed UVGS. UVGS can be viewed as multi-channel images, with feature dimensions as a concatenation of Gaussian attributes such as position, scale, color, opacity, and rotation. We further find that these heterogeneous features can be compressed into a lower-dimensional (e.g., 3-channel) shared feature space using a carefully designed multi-branch network. The compressed UVGS can be treated as typical RGB images. Remarkably, we discover that typical VAEs trained with latent diffusion models can directly generalize to this new representation without additional training. Our novel representation makes it effortless to leverage foundational 2D models, such as diffusion models, to directly model 3DGS. Additionally, one can simply increase the 2D UV resolution to accommodate more Gaussians, making UVGS a scalable solution compared to typical 3D backbones. This approach immediately unlocks various novel generation applications of 3DGS by inherently utilizing the already developed superior 2D generation capabilities. In our experiments, we demonstrate various unconditional, conditional generation, and inpainting applications of 3DGS based on diffusion models, which were previously non-trivial.
comment: https://aashishrai3799.github.io/uvgs
♻ ☆ 3D-GRAND: A Million-Scale Dataset for 3D-LLMs with Better Grounding and Less Hallucination CVPR 2025
The integration of language and 3D perception is crucial for embodied agents and robots that comprehend and interact with the physical world. While large language models (LLMs) have demonstrated impressive language understanding and generation capabilities, their adaptation to 3D environments (3D-LLMs) remains in its early stages. A primary challenge is a lack of large-scale datasets with dense grounding between language and 3D scenes. We introduce 3D-GRAND, a pioneering large-scale dataset comprising 40,087 household scenes paired with 6.2 million densely-grounded scene-language instructions. Our results show that instruction tuning with 3D-GRAND significantly enhances grounding capabilities and reduces hallucinations in 3D-LLMs. As part of our contributions, we propose a comprehensive benchmark 3D-POPE to systematically evaluate hallucination in 3D-LLMs, enabling fair comparisons of models. Our experiments highlight a scaling effect between dataset size and 3D-LLM performance, emphasizing the importance of large-scale 3D-text datasets for embodied AI research. Our results demonstrate early signals for effective sim-to-real transfer, indicating that models trained on large synthetic data can perform well on real-world 3D scans. Through 3D-GRAND and 3D-POPE, we aim to equip the embodied AI community with resources and insights to lead to more reliable and better-grounded 3D-LLMs. Project website: https://3d-grand.github.io
comment: CVPR 2025. Project website: https://3d-grand.github.io
♻ ☆ JPEG Inspired Deep Learning
Although it is traditionally believed that lossy image compression, such as JPEG compression, has a negative impact on the performance of deep neural networks (DNNs), it is shown by recent works that well-crafted JPEG compression can actually improve the performance of deep learning (DL). Inspired by this, we propose JPEG-DL, a novel DL framework that prepends any underlying DNN architecture with a trainable JPEG compression layer. To make the quantization operation in JPEG compression trainable, a new differentiable soft quantizer is employed at the JPEG layer, and then the quantization operation and underlying DNN are jointly trained. Extensive experiments show that in comparison with the standard DL, JPEG-DL delivers significant accuracy improvements across various datasets and model architectures while enhancing robustness against adversarial attacks. Particularly, on some fine-grained image classification datasets, JPEG-DL can increase prediction accuracy by as much as 20.9%. Our code is available on https://github.com/AhmedHussKhalifa/JPEG-Inspired-DL.git.
♻ ☆ MAD-AD: Masked Diffusion for Unsupervised Brain Anomaly Detection
Unsupervised anomaly detection in brain images is crucial for identifying injuries and pathologies without access to labels. However, the accurate localization of anomalies in medical images remains challenging due to the inherent complexity and variability of brain structures and the scarcity of annotated abnormal data. To address this challenge, we propose a novel approach that incorporates masking within diffusion models, leveraging their generative capabilities to learn robust representations of normal brain anatomy. During training, our model processes only normal brain MRI scans and performs a forward diffusion process in the latent space that adds noise to the features of randomly-selected patches. Following a dual objective, the model learns to identify which patches are noisy and recover their original features. This strategy ensures that the model captures intricate patterns of normal brain structures while isolating potential anomalies as noise in the latent space. At inference, the model identifies noisy patches corresponding to anomalies and generates a normal counterpart for these patches by applying a reverse diffusion process. Our method surpasses existing unsupervised anomaly detection techniques, demonstrating superior performance in generating accurate normal counterparts and localizing anomalies. The code is available at hhttps://github.com/farzad-bz/MAD-AD.
♻ ☆ Towards Automatic Evaluation for Image Transcreation
Beyond conventional paradigms of translating speech and text, recently, there has been interest in automated transcreation of images to facilitate localization of visual content across different cultures. Attempts to define this as a formal Machine Learning (ML) problem have been impeded by the lack of automatic evaluation mechanisms, with previous work relying solely on human evaluation. In this paper, we seek to close this gap by proposing a suite of automatic evaluation metrics inspired by machine translation (MT) metrics, categorized into: a) Object-based, b) Embedding-based, and c) VLM-based. Drawing on theories from translation studies and real-world transcreation practices, we identify three critical dimensions of image transcreation: cultural relevance, semantic equivalence and visual similarity, and design our metrics to evaluate systems along these axes. Our results show that proprietary VLMs best identify cultural relevance and semantic equivalence, while vision-encoder representations are adept at measuring visual similarity. Meta-evaluation across 7 countries shows our metrics agree strongly with human ratings, with average segment-level correlations ranging from 0.55-0.87. Finally, through a discussion of the merits and demerits of each metric, we offer a robust framework for automated image transcreation evaluation, grounded in both theoretical foundations and practical application. Our code can be found here: https://github.com/simran-khanuja/automatic-eval-img-transcreation.
comment: To be presented at NAACL 2025
♻ ☆ The Cooperative Network Architecture: Learning Structured Networks as Representation of Sensory Patterns
We introduce the Cooperative Network Architecture (CNA), a model that represents sensory signals using structured, recurrently connected networks of neurons, termed "nets." Nets are dynamically assembled from overlapping net fragments, which are learned based on statistical regularities in sensory input. This architecture offers robustness to noise, deformation, and out-of-distribution data, addressing challenges in current vision systems from a novel perspective. We demonstrate that net fragments can be learned without supervision and flexibly recombined to encode novel patterns, enabling figure completion and resilience to noise. Our findings establish CNA as a promising paradigm for developing neural representations that integrate local feature processing with global structure formation, providing a foundation for future research on invariant object recognition.
♻ ☆ These Magic Moments: Differentiable Uncertainty Quantification of Radiance Field Models
This paper introduces a novel approach to uncertainty quantification for radiance fields by leveraging higher-order moments of the rendering equation. Uncertainty quantification is crucial for downstream tasks including view planning and scene understanding, where safety and robustness are paramount. However, the high dimensionality and complexity of radiance fields pose significant challenges for uncertainty quantification, limiting the use of these uncertainty quantification methods in high-speed decision-making. We demonstrate that the probabilistic nature of the rendering process enables efficient and differentiable computation of higher-order moments for radiance field outputs, including color, depth, and semantic predictions. Our method outperforms existing radiance field uncertainty estimation techniques while offering a more direct, computationally efficient, and differentiable formulation without the need for post-processing. Beyond uncertainty quantification, we also illustrate the utility of our approach in downstream applications such as next-best-view (NBV) selection and active ray sampling for neural radiance field training. Extensive experiments on synthetic and real-world scenes confirm the efficacy of our approach, which achieves state-of-the-art performance while maintaining simplicity.
♻ ☆ Tracking Everything in Robotic-Assisted Surgery
Accurate tracking of tissues and instruments in videos is crucial for Robotic-Assisted Minimally Invasive Surgery (RAMIS), as it enables the robot to comprehend the surgical scene with precise locations and interactions of tissues and tools. Traditional keypoint-based sparse tracking is limited by featured points, while flow-based dense two-view matching suffers from long-term drifts. Recently, the Tracking Any Point (TAP) algorithm was proposed to overcome these limitations and achieve dense accurate long-term tracking. However, its efficacy in surgical scenarios remains untested, largely due to the lack of a comprehensive surgical tracking dataset for evaluation. To address this gap, we introduce a new annotated surgical tracking dataset for benchmarking tracking methods for surgical scenarios, comprising real-world surgical videos with complex tissue and instrument motions. We extensively evaluate state-of-the-art (SOTA) TAP-based algorithms on this dataset and reveal their limitations in challenging surgical scenarios, including fast instrument motion, severe occlusions, and motion blur, etc. Furthermore, we propose a new tracking method, namely SurgMotion, to solve the challenges and further improve the tracking performance. Our proposed method outperforms most TAP-based algorithms in surgical instruments tracking, and especially demonstrates significant improvements over baselines in challenging medical videos. Our code and dataset are available at https://github.com/zhanbh1019/SurgicalMotion.
comment: 7 pages
♻ ☆ MemorySAM: Memorize Modalities and Semantics with Segment Anything Model 2 for Multi-modal Semantic Segmentation
Research has focused on Multi-Modal Semantic Segmentation (MMSS), where pixel-wise predictions are derived from multiple visual modalities captured by diverse sensors. Recently, the large vision model, Segment Anything Model 2 (SAM2), has shown strong zero-shot segmentation performance on both images and videos. When extending SAM2 to MMSS, two issues arise: 1. How can SAM2 be adapted to multi-modal data? 2. How can SAM2 better understand semantics? Inspired by cross-frame correlation in videos, we propose to treat multi-modal data as a sequence of frames representing the same scene. Our key idea is to ''memorize'' the modality-agnostic information and 'memorize' the semantics related to the targeted scene. To achieve this, we apply SAM2's memory mechanisms across multi-modal data to capture modality-agnostic features. Meanwhile, to memorize the semantic knowledge, we propose a training-only Semantic Prototype Memory Module (SPMM) to store category-level prototypes across training for facilitating SAM2's transition from instance to semantic segmentation. A prototypical adaptation loss is imposed between global and local prototypes iteratively to align and refine SAM2's semantic understanding. Extensive experimental results demonstrate that our proposed MemorySAM outperforms SoTA methods by large margins on both synthetic and real-world benchmarks (65.38% on DELIVER, 52.88% on MCubeS). Source code will be made publicly available.
♻ ☆ Scaling Up Single Image Dehazing Algorithm by Cross-Data Vision Alignment for Richer Representation Learning and Beyond
In recent years, deep neural networks tasks have increasingly relied on high-quality image inputs. With the development of high-resolution representation learning, the task of image dehazing has received significant attention. Previously, many methods collect diverse image data for large-scale training to boost the performance on a target scene. Ignoring the domain gap between different data, former de-hazing methods simply adopt multiple datasets for explicit large-scale training, which often makes the methods themselves be violated. To address this problem, we propose a novel method of cross-data vision alignment for richer representation learning to improve the existing dehazing methodology. Specifically, we call for the internal- and external knowledge should be further adapted with a self-supervised manner to fill up the domain gap. By using cross-data external alignment, the datasets inherit samples from different domains that are firmly aligned, making the model learn more robust and generalizable features. By using the internal augmentation method, the model can fully exploit local information within the images, and then obtaining more image details. To demonstrate the effectiveness of our proposed method, we conduct training on the Natural Image Dataset (NID). Experimental results show that our method clearly resolves the domain gap in different dehazing datasets and presents a new pipeline for large-scale training in the dehazing task. Our approach significantly outperforms other advanced methods in dehazing and produces dehazed images that are closest to real haze-free images.
comment: A cross-dataset vision alignment and augmentation technology is proposed to boost generalizable feature learning in the de-hazing task
♻ ☆ Beyond Next-Token: Next-X Prediction for Autoregressive Visual Generation
Autoregressive (AR) modeling, known for its next-token prediction paradigm, underpins state-of-the-art language and visual generative models. Traditionally, a ``token'' is treated as the smallest prediction unit, often a discrete symbol in language or a quantized patch in vision. However, the optimal token definition for 2D image structures remains an open question. Moreover, AR models suffer from exposure bias, where teacher forcing during training leads to error accumulation at inference. In this paper, we propose xAR, a generalized AR framework that extends the notion of a token to an entity X, which can represent an individual patch token, a cell (a $k\times k$ grouping of neighboring patches), a subsample (a non-local grouping of distant patches), a scale (coarse-to-fine resolution), or even a whole image. Additionally, we reformulate discrete token classification as continuous entity regression, leveraging flow-matching methods at each AR step. This approach conditions training on noisy entities instead of ground truth tokens, leading to Noisy Context Learning, which effectively alleviates exposure bias. As a result, xAR offers two key advantages: (1) it enables flexible prediction units that capture different contextual granularity and spatial structures, and (2) it mitigates exposure bias by avoiding reliance on teacher forcing. On ImageNet-256 generation benchmark, our base model, xAR-B (172M), outperforms DiT-XL/SiT-XL (675M) while achieving 20$\times$ faster inference. Meanwhile, xAR-H sets a new state-of-the-art with an FID of 1.24, running 2.2$\times$ faster than the previous best-performing model without relying on vision foundation modules (e.g., DINOv2) or advanced guidance interval sampling.
comment: Project page at \url{https://oliverrensu.github.io/project/xAR}
Machine Learning 238
☆ GAEA: A Geolocation Aware Conversational Model
Image geolocalization, in which, traditionally, an AI model predicts the precise GPS coordinates of an image is a challenging task with many downstream applications. However, the user cannot utilize the model to further their knowledge other than the GPS coordinate; the model lacks an understanding of the location and the conversational ability to communicate with the user. In recent days, with tremendous progress of large multimodal models (LMMs) proprietary and open-source researchers have attempted to geolocalize images via LMMs. However, the issues remain unaddressed; beyond general tasks, for more specialized downstream tasks, one of which is geolocalization, LMMs struggle. In this work, we propose to solve this problem by introducing a conversational model GAEA that can provide information regarding the location of an image, as required by a user. No large-scale dataset enabling the training of such a model exists. Thus we propose a comprehensive dataset GAEA with 800K images and around 1.6M question answer pairs constructed by leveraging OpenStreetMap (OSM) attributes and geographical context clues. For quantitative evaluation, we propose a diverse benchmark comprising 4K image-text pairs to evaluate conversational capabilities equipped with diverse question types. We consider 11 state-of-the-art open-source and proprietary LMMs and demonstrate that GAEA significantly outperforms the best open-source model, LLaVA-OneVision by 25.69% and the best proprietary model, GPT-4o by 8.28%. Our dataset, model and codes are available
comment: The dataset and code used in this submission is available at: https://ucf-crcv.github.io/GAEA/
☆ MagicMotion: Controllable Video Generation with Dense-to-Sparse Trajectory Guidance
Recent advances in video generation have led to remarkable improvements in visual quality and temporal coherence. Upon this, trajectory-controllable video generation has emerged to enable precise object motion control through explicitly defined spatial paths. However, existing methods struggle with complex object movements and multi-object motion control, resulting in imprecise trajectory adherence, poor object consistency, and compromised visual quality. Furthermore, these methods only support trajectory control in a single format, limiting their applicability in diverse scenarios. Additionally, there is no publicly available dataset or benchmark specifically tailored for trajectory-controllable video generation, hindering robust training and systematic evaluation. To address these challenges, we introduce MagicMotion, a novel image-to-video generation framework that enables trajectory control through three levels of conditions from dense to sparse: masks, bounding boxes, and sparse boxes. Given an input image and trajectories, MagicMotion seamlessly animates objects along defined trajectories while maintaining object consistency and visual quality. Furthermore, we present MagicData, a large-scale trajectory-controlled video dataset, along with an automated pipeline for annotation and filtering. We also introduce MagicBench, a comprehensive benchmark that assesses both video quality and trajectory control accuracy across different numbers of objects. Extensive experiments demonstrate that MagicMotion outperforms previous methods across various metrics. Our project page are publicly available at https://quanhaol.github.io/magicmotion-site.
☆ InfiniteYou: Flexible Photo Recrafting While Preserving Your Identity
Achieving flexible and high-fidelity identity-preserved image generation remains formidable, particularly with advanced Diffusion Transformers (DiTs) like FLUX. We introduce InfiniteYou (InfU), one of the earliest robust frameworks leveraging DiTs for this task. InfU addresses significant issues of existing methods, such as insufficient identity similarity, poor text-image alignment, and low generation quality and aesthetics. Central to InfU is InfuseNet, a component that injects identity features into the DiT base model via residual connections, enhancing identity similarity while maintaining generation capabilities. A multi-stage training strategy, including pretraining and supervised fine-tuning (SFT) with synthetic single-person-multiple-sample (SPMS) data, further improves text-image alignment, ameliorates image quality, and alleviates face copy-pasting. Extensive experiments demonstrate that InfU achieves state-of-the-art performance, surpassing existing baselines. In addition, the plug-and-play design of InfU ensures compatibility with various existing methods, offering a valuable contribution to the broader community.
comment: Project page: https://bytedance.github.io/InfiniteYou/ Code and model: https://github.com/bytedance/InfiniteYou
Survey on Evaluation of LLM-based Agents
The emergence of LLM-based agents represents a paradigm shift in AI, enabling autonomous systems to plan, reason, use tools, and maintain memory while interacting with dynamic environments. This paper provides the first comprehensive survey of evaluation methodologies for these increasingly capable agents. We systematically analyze evaluation benchmarks and frameworks across four critical dimensions: (1) fundamental agent capabilities, including planning, tool use, self-reflection, and memory; (2) application-specific benchmarks for web, software engineering, scientific, and conversational agents; (3) benchmarks for generalist agents; and (4) frameworks for evaluating agents. Our analysis reveals emerging trends, including a shift toward more realistic, challenging evaluations with continuously updated benchmarks. We also identify critical gaps that future research must address-particularly in assessing cost-efficiency, safety, and robustness, and in developing fine-grained, and scalable evaluation methods. This survey maps the rapidly evolving landscape of agent evaluation, reveals the emerging trends in the field, identifies current limitations, and proposes directions for future research.
☆ DreamTexture: Shape from Virtual Texture with Analysis by Augmentation
DreamFusion established a new paradigm for unsupervised 3D reconstruction from virtual views by combining advances in generative models and differentiable rendering. However, the underlying multi-view rendering, along with supervision from large-scale generative models, is computationally expensive and under-constrained. We propose DreamTexture, a novel Shape-from-Virtual-Texture approach that leverages monocular depth cues to reconstruct 3D objects. Our method textures an input image by aligning a virtual texture with the real depth cues in the input, exploiting the inherent understanding of monocular geometry encoded in modern diffusion models. We then reconstruct depth from the virtual texture deformation with a new conformal map optimization, which alleviates memory-intensive volumetric representations. Our experiments reveal that generative models possess an understanding of monocular shape cues, which can be extracted by augmenting and aligning texture cues -- a novel monocular reconstruction paradigm that we call Analysis by Augmentation.
comment: Project page: https://anantarb.github.io/dreamtexture/
☆ RoboFactory: Exploring Embodied Agent Collaboration with Compositional Constraints
Designing effective embodied multi-agent systems is critical for solving complex real-world tasks across domains. Due to the complexity of multi-agent embodied systems, existing methods fail to automatically generate safe and efficient training data for such systems. To this end, we propose the concept of compositional constraints for embodied multi-agent systems, addressing the challenges arising from collaboration among embodied agents. We design various interfaces tailored to different types of constraints, enabling seamless interaction with the physical world. Leveraging compositional constraints and specifically designed interfaces, we develop an automated data collection framework for embodied multi-agent systems and introduce the first benchmark for embodied multi-agent manipulation, RoboFactory. Based on RoboFactory benchmark, we adapt and evaluate the method of imitation learning and analyzed its performance in different difficulty agent tasks. Furthermore, we explore the architectures and training strategies for multi-agent imitation learning, aiming to build safe and efficient embodied multi-agent systems.
comment: Project page: https://iranqin.github.io/robofactory/
☆ The Emperor's New Clothes in Benchmarking? A Rigorous Examination of Mitigation Strategies for LLM Benchmark Data Contamination
Benchmark Data Contamination (BDC)-the inclusion of benchmark testing samples in the training set-has raised increasing concerns in Large Language Model (LLM) evaluation, leading to falsely inflated performance estimates and undermining evaluation reliability. To address this, researchers have proposed various mitigation strategies to update existing benchmarks, including modifying original questions or generating new ones based on them. However, a rigorous examination of the effectiveness of these mitigation strategies remains lacking. In this paper, we design a systematic and controlled pipeline along with two novel metrics-fidelity and contamination resistance-to provide a fine-grained and comprehensive assessment of existing BDC mitigation strategies. Previous assessment methods, such as accuracy drop and accuracy matching, focus solely on aggregate accuracy, often leading to incomplete or misleading conclusions. Our metrics address this limitation by emphasizing question-level evaluation result matching. Extensive experiments with 10 LLMs, 5 benchmarks, 20 BDC mitigation strategies, and 2 contamination scenarios reveal that no existing strategy significantly improves resistance over the vanilla case (i.e., no benchmark update) across all benchmarks, and none effectively balances fidelity and contamination resistance. These findings underscore the urgent need for designing more effective BDC mitigation strategies. Our code repository is available at https://github.com/ASTRAL-Group/BDC_mitigation_assessment.
comment: 23 pages
☆ Exploring the Hidden Reasoning Process of Large Language Models by Misleading Them
Large language models (LLMs) and Vision language models (VLMs) have been able to perform various forms of reasoning tasks in a wide range of scenarios, but are they truly engaging in task abstraction and rule-based reasoning beyond mere memorization and pattern matching? To answer this question, we propose a novel experimental approach, Misleading Fine-Tuning (MisFT), to examine whether LLMs/VLMs perform abstract reasoning by altering their original understanding of fundamental rules. In particular, by constructing a dataset with math expressions that contradict correct operation principles, we fine-tune the model to learn those contradictory rules and assess its generalization ability on different test domains. Through a series of experiments, we find that current LLMs/VLMs are capable of effectively applying contradictory rules to solve practical math word problems and math expressions represented by images, implying the presence of an internal mechanism that abstracts before reasoning.
☆ ScalingNoise: Scaling Inference-Time Search for Generating Infinite Videos
Video diffusion models (VDMs) facilitate the generation of high-quality videos, with current research predominantly concentrated on scaling efforts during training through improvements in data quality, computational resources, and model complexity. However, inference-time scaling has received less attention, with most approaches restricting models to a single generation attempt. Recent studies have uncovered the existence of "golden noises" that can enhance video quality during generation. Building on this, we find that guiding the scaling inference-time search of VDMs to identify better noise candidates not only evaluates the quality of the frames generated in the current step but also preserves the high-level object features by referencing the anchor frame from previous multi-chunks, thereby delivering long-term value. Our analysis reveals that diffusion models inherently possess flexible adjustments of computation by varying denoising steps, and even a one-step denoising approach, when guided by a reward signal, yields significant long-term benefits. Based on the observation, we proposeScalingNoise, a plug-and-play inference-time search strategy that identifies golden initial noises for the diffusion sampling process to improve global content consistency and visual diversity. Specifically, we perform one-step denoising to convert initial noises into a clip and subsequently evaluate its long-term value, leveraging a reward model anchored by previously generated content. Moreover, to preserve diversity, we sample candidates from a tilted noise distribution that up-weights promising noises. In this way, ScalingNoise significantly reduces noise-induced errors, ensuring more coherent and spatiotemporally consistent video generation. Extensive experiments on benchmark datasets demonstrate that the proposed ScalingNoise effectively improves long video generation.
☆ The global convergence time of stochastic gradient descent in non-convex landscapes: Sharp estimates via large deviations
In this paper, we examine the time it takes for stochastic gradient descent (SGD) to reach the global minimum of a general, non-convex loss function. We approach this question through the lens of randomly perturbed dynamical systems and large deviations theory, and we provide a tight characterization of the global convergence time of SGD via matching upper and lower bounds. These bounds are dominated by the most "costly" set of obstacles that the algorithm may need to overcome to reach a global minimizer from a given initialization, coupling in this way the global geometry of the underlying loss landscape with the statistics of the noise entering the process. Finally, motivated by applications to the training of deep neural networks, we also provide a series of refinements and extensions of our analysis for loss functions with shallow local minima.
comment: 62 pages, 5 figures
☆ Truthful Elicitation of Imprecise Forecasts
The quality of probabilistic forecasts is crucial for decision-making under uncertainty. While proper scoring rules incentivize truthful reporting of precise forecasts, they fall short when forecasters face epistemic uncertainty about their beliefs, limiting their use in safety-critical domains where decision-makers (DMs) prioritize proper uncertainty management. To address this, we propose a framework for scoring imprecise forecasts -- forecasts given as a set of beliefs. Despite existing impossibility results for deterministic scoring rules, we enable truthful elicitation by drawing connection to social choice theory and introducing a two-way communication framework where DMs first share their aggregation rules (e.g., averaging or min-max) used in downstream decisions for resolving forecast ambiguity. This, in turn, helps forecasters resolve indecision during elicitation. We further show that truthful elicitation of imprecise forecasts is achievable using proper scoring rules randomized over the aggregation procedure. Our approach allows DM to elicit and integrate the forecaster's epistemic uncertainty into their decision-making process, thus improving credibility.
comment: 32 pages, 3 figures
☆ Sparse Nonparametric Contextual Bandits
This paper studies the problem of simultaneously learning relevant features and minimising regret in contextual bandit problems. We introduce and analyse a new class of contextual bandit problems, called sparse nonparametric contextual bandits, in which the expected reward function lies in the linear span of a small unknown set of features that belongs to a known infinite set of candidate features. We consider two notions of sparsity, for which the set of candidate features is either countable or uncountable. Our contribution is two-fold. First, we provide lower bounds on the minimax regret, which show that polynomial dependence on the number of actions is generally unavoidable in this setting. Second, we show that a variant of the Feel-Good Thompson Sampling algorithm enjoys regret bounds that match our lower bounds up to logarithmic factors of the horizon, and have logarithmic dependence on the effective number of candidate features. When we apply our results to kernelised and neural contextual bandits, we find that sparsity always enables better regret bounds, as long as the horizon is large enough relative to the sparsity and the number of actions.
comment: 45 pages
☆ Reinforcement Learning-based Heuristics to Guide Domain-Independent Dynamic Programming
Domain-Independent Dynamic Programming (DIDP) is a state-space search paradigm based on dynamic programming for combinatorial optimization. In its current implementation, DIDP guides the search using user-defined dual bounds. Reinforcement learning (RL) is increasingly being applied to combinatorial optimization problems and shares several key structures with DP, being represented by the Bellman equation and state-based transition systems. We propose using reinforcement learning to obtain a heuristic function to guide the search in DIDP. We develop two RL-based guidance approaches: value-based guidance using Deep Q-Networks and policy-based guidance using Proximal Policy Optimization. Our experiments indicate that RL-based guidance significantly outperforms standard DIDP and problem-specific greedy heuristics with the same number of node expansions. Further, despite longer node evaluation times, RL guidance achieves better run-time performance than standard DIDP on three of four benchmark domains.
comment: 24 pages, 4 figures, to be published in CPAIOR 2025 (https://sites.google.com/view/cpaior2025)
☆ Neural Networks: According to the Principles of Grassmann Algebra
In this paper, we explore the algebra of quantum idempotents and the quantization of fermions which gives rise to a Hilbert space equal to the Grassmann algebra associated with the Lie algebra. Since idempotents carry representations of the algebra under consideration, they form algebraic varieties and smooth manifolds in the natural topology. In addition to the motivation of linking up mathematical physics with machine learning, it is also shown that by using idempotents and invariant subspace of the corresponding algebras, these representations encode and perhaps provide a probabilistic interpretation of reasoning and relational paths in geometrical terms.
☆ Probabilistic Quantum SVM Training on Ising Machine
Quantum computing holds significant potential to accelerate machine learning algorithms, especially in solving optimization problems like those encountered in Support Vector Machine (SVM) training. However, current QUBO-based Quantum SVM (QSVM) methods rely solely on binary optimal solutions, limiting their ability to identify fuzzy boundaries in data. Additionally, the limited qubit count in contemporary quantum devices constrains training on larger datasets. In this paper, we propose a probabilistic quantum SVM training framework suitable for Coherent Ising Machines (CIMs). By formulating the SVM training problem as a QUBO model, we leverage CIMs' energy minimization capabilities and introduce a Boltzmann distribution-based probabilistic approach to better approximate optimal SVM solutions, enhancing robustness. To address qubit limitations, we employ batch processing and multi-batch ensemble strategies, enabling small-scale quantum devices to train SVMs on larger datasets and support multi-class classification tasks via a one-vs-one approach. Our method is validated through simulations and real-machine experiments on binary and multi-class datasets. On the banknote binary classification dataset, our CIM-based QSVM, utilizing an energy-based probabilistic approach, achieved up to 20% higher accuracy compared to the original QSVM, while training up to $10^4$ times faster than simulated annealing methods. Compared with classical SVM, our approach either matched or reduced training time. On the IRIS three-class dataset, our improved QSVM outperformed existing QSVM models in all key metrics. As quantum technology advances, increased qubit counts are expected to further enhance QSVM performance relative to classical SVM.
☆ Enhancing variational quantum algorithms by balancing training on classical and quantum hardware
Quantum computers offer a promising route to tackling problems that are classically intractable such as in prime-factorization, solving large-scale linear algebra and simulating complex quantum systems, but require fault-tolerant quantum hardware. On the other hand, variational quantum algorithms (VQAs) have the potential to provide a near-term route to quantum utility or advantage, and is usually constructed by using parametrized quantum circuits (PQCs) in combination with a classical optimizer for training. Although VQAs have been proposed for a multitude of tasks such as ground-state estimation, combinatorial optimization and unitary compilation, there remain major challenges in its trainability and resource costs on quantum hardware. Here we address these challenges by adopting Hardware Efficient and dynamical LIe algebra Supported Ansatz (HELIA), and propose two training schemes that combine an existing g-sim method (that uses the underlying group structure of the operators) and the Parameter-Shift Rule (PSR). Our improvement comes from distributing the resources required for gradient estimation and training to both classical and quantum hardware. We numerically test our proposal for ground-state estimation using Variational Quantum Eigensolver (VQE) and classification of quantum phases using quantum neural networks. Our methods show better accuracy and success of trials, and also need fewer calls to the quantum hardware on an average than using only PSR (upto 60% reduction), that runs exclusively on quantum hardware. We also numerically demonstrate the capability of HELIA in mitigating barren plateaus, paving the way for training large-scale quantum models.
comment: 28 pages, 13 figures, 5 tables, 4 algorithms
☆ CaKE: Circuit-aware Editing Enables Generalizable Knowledge Learners
Knowledge Editing (KE) enables the modification of outdated or incorrect information in large language models (LLMs). While existing KE methods can update isolated facts, they struggle to generalize these updates to multi-hop reasoning tasks that depend on the modified knowledge. Through an analysis of reasoning circuits -- the neural pathways LLMs use for knowledge-based inference, we observe that current layer-localized KE approaches, such as MEMIT and WISE, which edit only single or a few model layers, struggle to effectively incorporate updated information into these reasoning pathways. To address this limitation, we propose CaKE (Circuit-aware Knowledge Editing), a novel method that enables more effective integration of updated knowledge in LLMs. CaKE leverages strategically curated data, guided by our circuits-based analysis, that enforces the model to utilize the modified knowledge, stimulating the model to develop appropriate reasoning circuits for newly integrated knowledge. Experimental results show that CaKE enables more accurate and consistent use of updated knowledge across related reasoning tasks, leading to an average of 20% improvement in multi-hop reasoning accuracy on MQuAKE dataset compared to existing KE methods. We release the code and data in https://github.com/zjunlp/CaKE.
comment: Work in progress
☆ Lyra: An Efficient and Expressive Subquadratic Architecture for Modeling Biological Sequences
Deep learning architectures such as convolutional neural networks and Transformers have revolutionized biological sequence modeling, with recent advances driven by scaling up foundation and task-specific models. The computational resources and large datasets required, however, limit their applicability in biological contexts. We introduce Lyra, a subquadratic architecture for sequence modeling, grounded in the biological framework of epistasis for understanding sequence-to-function relationships. Mathematically, we demonstrate that state space models efficiently capture global epistatic interactions and combine them with projected gated convolutions for modeling local relationships. We demonstrate that Lyra is performant across over 100 wide-ranging biological tasks, achieving state-of-the-art (SOTA) performance in many key areas, including protein fitness landscape prediction, biophysical property prediction (e.g. disordered protein region functions) peptide engineering applications (e.g. antibody binding, cell-penetrating peptide prediction), RNA structure analysis, RNA function prediction, and CRISPR guide design. It achieves this with orders-of-magnitude improvements in inference speed and reduction in parameters (up to 120,000-fold in our tests) compared to recent biology foundation models. Using Lyra, we were able to train and run every task in this study on two or fewer GPUs in under two hours, democratizing access to biological sequence modeling at SOTA performance, with potential applications to many fields.
comment: 53 pages, 5 figures
☆ HiQ-Lip: The First Quantum-Classical Hierarchical Method for Global Lipschitz Constant Estimation of ReLU Networks
Estimating the global Lipschitz constant of neural networks is crucial for understanding and improving their robustness and generalization capabilities. However, precise calculations are NP-hard, and current semidefinite programming (SDP) methods face challenges such as high memory usage and slow processing speeds. In this paper, we propose \textbf{HiQ-Lip}, a hybrid quantum-classical hierarchical method that leverages Coherent Ising Machines (CIMs) to estimate the global Lipschitz constant. We tackle the estimation by converting it into a Quadratic Unconstrained Binary Optimization (QUBO) problem and implement a multilevel graph coarsening and refinement strategy to adapt to the constraints of contemporary quantum hardware. Our experimental evaluations on fully connected neural networks demonstrate that HiQ-Lip not only provides estimates comparable to state-of-the-art methods but also significantly accelerates the computation process. In specific tests involving two-layer neural networks with 256 hidden neurons, HiQ-Lip doubles the solving speed and offers more accurate upper bounds than the existing best method, LiPopt. These findings highlight the promising utility of small-scale quantum devices in advancing the estimation of neural network robustness.
☆ Nonlinear action prediction models reveal multi-timescale locomotor control
Modeling movement in real-world tasks is a fundamental scientific goal. However, it is unclear whether existing models and their assumptions, overwhelmingly tested in laboratory-constrained settings, generalize to the real world. For example, data-driven models of foot placement control -- a crucial action for stable locomotion -- assume linear and single timescale mappings. We develop nonlinear foot placement prediction models, finding that neural network architectures with flexible input history-dependence like GRU and Transformer perform best across multiple contexts (walking and running, treadmill and overground, varying terrains) and input modalities (multiple body states, gaze), outperforming traditional models. These models reveal context- and modality-dependent timescales: there is more reliance on fast-timescale predictions in complex terrain, gaze predictions precede body state predictions, and full-body state predictions precede center-of-mass-relevant predictions. Thus, nonlinear action prediction models provide quantifiable insights into real-world motor control and can be extended to other actions, contexts, and populations.
☆ Optimal Complexity in Byzantine-Robust Distributed Stochastic Optimization with Data Heterogeneity
In this paper, we establish tight lower bounds for Byzantine-robust distributed first-order stochastic optimization methods in both strongly convex and non-convex stochastic optimization. We reveal that when the distributed nodes have heterogeneous data, the convergence error comprises two components: a non-vanishing Byzantine error and a vanishing optimization error. We establish the lower bounds on the Byzantine error and on the minimum number of queries to a stochastic gradient oracle required to achieve an arbitrarily small optimization error. Nevertheless, we identify significant discrepancies between our established lower bounds and the existing upper bounds. To fill this gap, we leverage the techniques of Nesterov's acceleration and variance reduction to develop novel Byzantine-robust distributed stochastic optimization methods that provably match these lower bounds, up to logarithmic factors, implying that our established lower bounds are tight.
☆ Knowledge-guided machine learning model with soil moisture for corn yield prediction under drought conditions
Remote sensing (RS) techniques, by enabling non-contact acquisition of extensive ground observations, have become a valuable tool for corn yield prediction. Traditional process-based (PB) models are limited by fixed input features and struggle to incorporate large volumes of RS data. In contrast, machine learning (ML) models are often criticized for being ``black boxes'' with limited interpretability. To address these limitations, we used Knowledge-Guided Machine Learning (KGML), which combined the strengths of both approaches and fully used RS data. However, previous KGML methods overlooked the crucial role of soil moisture in plant growth. To bridge this gap, we proposed the Knowledge-Guided Machine Learning with Soil Moisture (KGML-SM) framework, using soil moisture as an intermediate variable to emphasize its key role in plant development. Additionally, based on the prior knowledge that the model may overestimate under drought conditions, we designed a drought-aware loss function that penalizes predicted yield in drought-affected areas. Our experiments showed that the KGML-SM model outperformed other ML models. Finally, we explored the relationships between drought, soil moisture, and corn yield prediction, assessing the importance of various features and analyzing how soil moisture impacts corn yield predictions across different regions and time periods.
☆ NeuralFoil: An Airfoil Aerodynamics Analysis Tool Using Physics-Informed Machine Learning
NeuralFoil is an open-source Python-based tool for rapid aerodynamics analysis of airfoils, similar in purpose to XFoil. Speedups ranging from 8x to 1,000x over XFoil are demonstrated, after controlling for equivalent accuracy. NeuralFoil computes both global and local quantities (lift, drag, velocity distribution, etc.) over a broad input space, including: an 18-dimensional space of airfoil shapes, possibly including control deflections; a 360 degree range of angles of attack; Reynolds numbers from $10^2$ to $10^{10}$; subsonic flows up to the transonic drag rise; and with varying turbulence parameters. Results match those of XFoil closely: the mean relative error of drag is 0.37% on simple cases, and remains as low as 2.0% on a test dataset with numerous post-stall and transitional cases. NeuralFoil facilitates gradient-based design optimization, due to its $C^\infty$-continuous solutions, automatic-differentiation-compatibility, and bounded computational cost without non-convergence issues. NeuralFoil is a hybrid of physics-informed machine learning techniques and analytical models. Here, physics information includes symmetries that are structurally embedded into the model architecture, feature engineering using domain knowledge, and guaranteed extrapolation to known limit cases. This work also introduces a new approach for surrogate model uncertainty quantification that enables robust design optimization. This work discusses the methodology and performance of NeuralFoil with several case studies, including a practical airfoil design optimization study including both aerodynamic and non-aerodynamic constraints. Here, NeuralFoil optimization is able to produce airfoils nearly identical in performance and shape to expert-designed airfoils within seconds; these computationally-optimized airfoils provide a useful starting point for further expert refinement.
comment: 42 pages, 14 figures
☆ On the Cone Effect in the Learning Dynamics ICLR 2025
Understanding the learning dynamics of neural networks is a central topic in the deep learning community. In this paper, we take an empirical perspective to study the learning dynamics of neural networks in real-world settings. Specifically, we investigate the evolution process of the empirical Neural Tangent Kernel (eNTK) during training. Our key findings reveal a two-phase learning process: i) in Phase I, the eNTK evolves significantly, signaling the rich regime, and ii) in Phase II, the eNTK keeps evolving but is constrained in a narrow space, a phenomenon we term the cone effect. This two-phase framework builds on the hypothesis proposed by Fort et al. (2020), but we uniquely identify the cone effect in Phase II, demonstrating its significant performance advantages over fully linearized training.
comment: Accepted by ICLR 2025 workshop DeLTa
☆ Active Learning For Repairable Hardware Systems With Partial Coverage
Identifying the optimal diagnostic test and hardware system instance to infer reliability characteristics using field data is challenging, especially when constrained by fixed budgets and minimal maintenance cycles. Active Learning (AL) has shown promise for parameter inference with limited data and budget constraints in machine learning/deep learning tasks. However, AL for reliability model parameter inference remains underexplored for repairable hardware systems. It requires specialized AL Acquisition Functions (AFs) that consider hardware aging and the fact that a hardware system consists of multiple sub-systems, which may undergo only partial testing during a given diagnostic test. To address these challenges, we propose a relaxed Mixed Integer Semidefinite Program (MISDP) AL AF that incorporates Diagnostic Coverage (DC), Fisher Information Matrices (FIMs), and diagnostic testing budgets. Furthermore, we design empirical-based simulation experiments focusing on two diagnostic testing scenarios: (1) partial tests of a hardware system with overlapping subsystem coverage, and (2) partial tests where one diagnostic test fully subsumes the subsystem coverage of another. We evaluate our proposed approach against the most widely used AL AF in the literature (entropy), as well as several intuitive AL AFs tailored for reliability model parameter inference. Our proposed AF ranked best on average among the alternative AFs across 6,000 experimental configurations, with respect to Area Under the Curve (AUC) of the Absolute Total Expected Event Error (ATEER) and Mean Squared Error (MSE) curves, with statistical significance calculated at a 0.05 alpha level using a Friedman hypothesis test.
comment: Submitted to IEEE Reliability and Maintainability Symposium - Europe 2025
☆ Structured-Noise Masked Modeling for Video, Audio and Beyond
Masked modeling has emerged as a powerful self-supervised learning framework, but existing methods largely rely on random masking, disregarding the structural properties of different modalities. In this work, we introduce structured noise-based masking, a simple yet effective approach that naturally aligns with the spatial, temporal, and spectral characteristics of video and audio data. By filtering white noise into distinct color noise distributions, we generate structured masks that preserve modality-specific patterns without requiring handcrafted heuristics or access to the data. Our approach improves the performance of masked video and audio modeling frameworks without any computational overhead. Extensive experiments demonstrate that structured noise masking achieves consistent improvement over random masking for standard and advanced masked modeling methods, highlighting the importance of modality-aware masking strategies for representation learning.
☆ Explainable Graph-theoretical Machine Learning: with Application to Alzheimer's Disease Prediction
Alzheimer's disease (AD) affects 50 million people worldwide and is projected to overwhelm 152 million by 2050. AD is characterized by cognitive decline due partly to disruptions in metabolic brain connectivity. Thus, early and accurate detection of metabolic brain network impairments is crucial for AD management. Chief to identifying such impairments is FDG-PET data. Despite advancements, most graph-based studies using FDG-PET data rely on group-level analysis or thresholding. Yet, group-level analysis can veil individual differences and thresholding may overlook weaker but biologically critical brain connections. Additionally, machine learning-based AD prediction largely focuses on univariate outcomes, such as disease status. Here, we introduce explainable graph-theoretical machine learning (XGML), a framework employing kernel density estimation and dynamic time warping to construct individual metabolic brain graphs that capture the distance between pair-wise brain regions and identify subgraphs most predictive of multivariate AD-related outcomes. Using FDG-PET data from the Alzheimer's Disease Neuroimaging Initiative, XGML builds metabolic brain graphs and uncovers subgraphs predictive of eight AD-related cognitive scores in new subjects. XGML shows robust performance, particularly for predicting scores measuring learning, memory, language, praxis, and orientation, such as CDRSB ($r = 0.74$), ADAS11 ($r = 0.73$), and ADAS13 ($r = 0.71$). Moreover, XGML unveils key edges jointly but differentially predictive of several AD-related outcomes; they may serve as potential network biomarkers for assessing overall cognitive decline. Together, we show the promise of graph-theoretical machine learning in biomarker discovery and disease prediction and its potential to improve our understanding of network neural mechanisms underlying AD.
☆ Uni-3DAR: Unified 3D Generation and Understanding via Autoregression on Compressed Spatial Tokens
Recent advancements in large language models and their multi-modal extensions have demonstrated the effectiveness of unifying generation and understanding through autoregressive next-token prediction. However, despite the critical role of 3D structural generation and understanding ({3D GU}) in AI for science, these tasks have largely evolved independently, with autoregressive methods remaining underexplored. To bridge this gap, we introduce Uni-3DAR, a unified framework that seamlessly integrates {3D GU} tasks via autoregressive prediction. At its core, Uni-3DAR employs a novel hierarchical tokenization that compresses 3D space using an octree, leveraging the inherent sparsity of 3D structures. It then applies an additional tokenization for fine-grained structural details, capturing key attributes such as atom types and precise spatial coordinates in microscopic 3D structures. We further propose two optimizations to enhance efficiency and effectiveness. The first is a two-level subtree compression strategy, which reduces the octree token sequence by up to 8x. The second is a masked next-token prediction mechanism tailored for dynamically varying token positions, significantly boosting model performance. By combining these strategies, Uni-3DAR successfully unifies diverse {3D GU} tasks within a single autoregressive framework. Extensive experiments across multiple microscopic {3D GU} tasks, including molecules, proteins, polymers, and crystals, validate its effectiveness and versatility. Notably, Uni-3DAR surpasses previous state-of-the-art diffusion models by a substantial margin, achieving up to 256\% relative improvement while delivering inference speeds up to 21.8x faster. The code is publicly available at https://github.com/dptech-corp/Uni-3DAR.
☆ Rethinking Robustness in Machine Learning: A Posterior Agreement Approach
The robustness of algorithms against covariate shifts is a fundamental problem with critical implications for the deployment of machine learning algorithms in the real world. Current evaluation methods predominantly match the robustness definition to that of standard generalization, relying on standard metrics like accuracy-based scores, which, while designed for performance assessment, lack a theoretical foundation encompassing their application in estimating robustness to distribution shifts. In this work, we set the desiderata for a robustness metric, and we propose a novel principled framework for the robustness assessment problem that directly follows the Posterior Agreement (PA) theory of model validation. Specifically, we extend the PA framework to the covariate shift setting by proposing a PA metric for robustness evaluation in supervised classification tasks. We assess the soundness of our metric in controlled environments and through an empirical robustness analysis in two different covariate shift scenarios: adversarial learning and domain generalization. We illustrate the suitability of PA by evaluating several models under different nature and magnitudes of shift, and proportion of affected observations. The results show that the PA metric provides a sensible and consistent analysis of the vulnerabilities in learning algorithms, even in the presence of few perturbed observations.
comment: Preprint submitted to TMLR. 29 pages, 13 figures
☆ RESFL: An Uncertainty-Aware Framework for Responsible Federated Learning by Balancing Privacy, Fairness and Utility in Autonomous Vehicles
Autonomous vehicles (AVs) increasingly rely on Federated Learning (FL) to enhance perception models while preserving privacy. However, existing FL frameworks struggle to balance privacy, fairness, and robustness, leading to performance disparities across demographic groups. Privacy-preserving techniques like differential privacy mitigate data leakage risks but worsen fairness by restricting access to sensitive attributes needed for bias correction. This work explores the trade-off between privacy and fairness in FL-based object detection for AVs and introduces RESFL, an integrated solution optimizing both. RESFL incorporates adversarial privacy disentanglement and uncertainty-guided fairness-aware aggregation. The adversarial component uses a gradient reversal layer to remove sensitive attributes, reducing privacy risks while maintaining fairness. The uncertainty-aware aggregation employs an evidential neural network to weight client updates adaptively, prioritizing contributions with lower fairness disparities and higher confidence. This ensures robust and equitable FL model updates. We evaluate RESFL on the FACET dataset and CARLA simulator, assessing accuracy, fairness, privacy resilience, and robustness under varying conditions. RESFL improves detection accuracy, reduces fairness disparities, and lowers privacy attack success rates while demonstrating superior robustness to adversarial conditions compared to other approaches.
comment: Submitted to PETS 2025 (under review)
☆ OpenMIBOOD: Open Medical Imaging Benchmarks for Out-Of-Distribution Detection
The growing reliance on Artificial Intelligence (AI) in critical domains such as healthcare demands robust mechanisms to ensure the trustworthiness of these systems, especially when faced with unexpected or anomalous inputs. This paper introduces the Open Medical Imaging Benchmarks for Out-Of-Distribution Detection (OpenMIBOOD), a comprehensive framework for evaluating out-of-distribution (OOD) detection methods specifically in medical imaging contexts. OpenMIBOOD includes three benchmarks from diverse medical domains, encompassing 14 datasets divided into covariate-shifted in-distribution, near-OOD, and far-OOD categories. We evaluate 24 post-hoc methods across these benchmarks, providing a standardized reference to advance the development and fair comparison of OOD detection methods. Results reveal that findings from broad-scale OOD benchmarks in natural image domains do not translate to medical applications, underscoring the critical need for such benchmarks in the medical field. By mitigating the risk of exposing AI models to inputs outside their training distribution, OpenMIBOOD aims to support the advancement of reliable and trustworthy AI systems in healthcare. The repository is available at https://github.com/remic-othr/OpenMIBOOD.
☆ Machine learning identifies nullclines in oscillatory dynamical systems
We introduce CLINE (Computational Learning and Identification of Nullclines), a neural network-based method that uncovers the hidden structure of nullclines from oscillatory time series data. Unlike traditional approaches aiming at direct prediction of system dynamics, CLINE identifies static geometric features of the phase space that encode the (non)linear relationships between state variables. It overcomes challenges such as multiple time scales and strong nonlinearities while producing interpretable results convertible into symbolic differential equations. We validate CLINE on various oscillatory systems, showcasing its effectiveness.
comment: 7 pages, 4 figures
☆ Empirical Analysis of Privacy-Fairness-Accuracy Trade-offs in Federated Learning: A Step Towards Responsible AI
Federated Learning (FL) enables collaborative machine learning while preserving data privacy but struggles to balance privacy preservation (PP) and fairness. Techniques like Differential Privacy (DP), Homomorphic Encryption (HE), and Secure Multi-Party Computation (SMC) protect sensitive data but introduce trade-offs. DP enhances privacy but can disproportionately impact underrepresented groups, while HE and SMC mitigate fairness concerns at the cost of computational overhead. This work explores the privacy-fairness trade-offs in FL under IID (Independent and Identically Distributed) and non-IID data distributions, benchmarking q-FedAvg, q-MAML, and Ditto on diverse datasets. Our findings highlight context-dependent trade-offs and offer guidelines for designing FL systems that uphold responsible AI principles, ensuring fairness, privacy, and equitable real-world applications.
comment: Submitted to IJCAI 2025 (under review)
☆ Flight Testing an Optionally Piloted Aircraft: a Case Study on Trust Dynamics in Human-Autonomy Teaming
This paper examines how trust is formed, maintained, or diminished over time in the context of human-autonomy teaming with an optionally piloted aircraft. Whereas traditional factor-based trust models offer a static representation of human confidence in technology, here we discuss how variations in the underlying factors lead to variations in trust, trust thresholds, and human behaviours. Over 200 hours of flight test data collected over a multi-year test campaign from 2021 to 2023 were reviewed. The dispositional-situational-learned, process-performance-purpose, and IMPACTS homeostasis trust models are applied to illuminate trust trends during nominal autonomous flight operations. The results offer promising directions for future studies on trust dynamics and design-for-trust in human-autonomy teaming.
comment: IEEE International Conference on Human-Machine Systems 2025, keywords: trust, human factors, aviation, safety-critical, human-autonomy teaming
☆ Reinforcement Learning for Reasoning in Small LLMs: What Works and What Doesn't
Enhancing the reasoning capabilities of large language models (LLMs) typically relies on massive computational resources and extensive datasets, limiting accessibility for resource-constrained settings. Our study investigates the potential of reinforcement learning (RL) to improve reasoning in small LLMs, focusing on a 1.5-billion-parameter model, DeepSeek-R1-Distill-Qwen-1.5B, under strict constraints: training on 4 NVIDIA A40 GPUs (48 GB VRAM each) within 24 hours. Adapting the Group Relative Policy Optimization (GRPO) algorithm and curating a compact, high-quality mathematical reasoning dataset, we conducted three experiments to explore model behavior and performance. Our results demonstrate rapid reasoning gains - e.g., AMC23 accuracy rising from 63% to 80% and AIME24 reaching 46.7%, surpassing o1-preview - using only 7,000 samples and a $42 training cost, compared to thousands of dollars for baseline models. However, challenges such as optimization instability and length constraints emerged with prolonged training. These findings highlight the efficacy of RL-based fine-tuning for small LLMs, offering a cost-effective alternative to large-scale approaches. We release our code and datasets as open-source resources, providing insights into trade-offs and laying a foundation for scalable, reasoning-capable LLMs in resource-limited environments. All are available at https://github.com/knoveleng/open-rs.
☆ Neural Variable-Order Fractional Differential Equation Networks AAAI 2025
Neural differential equation models have garnered significant attention in recent years for their effectiveness in machine learning applications.Among these, fractional differential equations (FDEs) have emerged as a promising tool due to their ability to capture memory-dependent dynamics, which are often challenging to model with traditional integer-order approaches.While existing models have primarily focused on constant-order fractional derivatives, variable-order fractional operators offer a more flexible and expressive framework for modeling complex memory patterns. In this work, we introduce the Neural Variable-Order Fractional Differential Equation network (NvoFDE), a novel neural network framework that integrates variable-order fractional derivatives with learnable neural networks.Our framework allows for the modeling of adaptive derivative orders dependent on hidden features, capturing more complex feature-updating dynamics and providing enhanced flexibility. We conduct extensive experiments across multiple graph datasets to validate the effectiveness of our approach.Our results demonstrate that NvoFDE outperforms traditional constant-order fractional and integer models across a range of tasks, showcasing its superior adaptability and performance.
comment: AAAI 2025
☆ Interpretable Neural Causal Models with TRAM-DAGs
The ultimate goal of most scientific studies is to understand the underlying causal mechanism between the involved variables. Structural causal models (SCMs) are widely used to represent such causal mechanisms. Given an SCM, causal queries on all three levels of Pearl's causal hierarchy can be answered: $L_1$ observational, $L_2$ interventional, and $L_3$ counterfactual. An essential aspect of modeling the SCM is to model the dependency of each variable on its causal parents. Traditionally this is done by parametric statistical models, such as linear or logistic regression models. This allows to handle all kinds of data types and fit interpretable models but bears the risk of introducing a bias. More recently neural causal models came up using neural networks (NNs) to model the causal relationships, allowing the estimation of nearly any underlying functional form without bias. However, current neural causal models are generally restricted to continuous variables and do not yield an interpretable form of the causal relationships. Transformation models range from simple statistical regressions to complex networks and can handle continuous, ordinal, and binary data. Here, we propose to use TRAMs to model the functional relationships in SCMs allowing us to bridge the gap between interpretability and flexibility in causal modeling. We call this method TRAM-DAG and assume currently that the underlying directed acyclic graph is known. For the fully observed case, we benchmark TRAM-DAGs against state-of-the-art statistical and NN-based causal models. We show that TRAM-DAGs are interpretable but also achieve equal or superior performance in queries ranging from $L_1$ to $L_3$ in the causal hierarchy. For the continuous case, TRAM-DAGs allow for counterfactual queries for three common causal structures, including unobserved confounding.
comment: Accepted at the CLeaR 2025 Conference
☆ Deferring Concept Bottleneck Models: Learning to Defer Interventions to Inaccurate Experts
Concept Bottleneck Models (CBMs) are machine learning models that improve interpretability by grounding their predictions on human-understandable concepts, allowing for targeted interventions in their decision-making process. However, when intervened on, CBMs assume the availability of humans that can identify the need to intervene and always provide correct interventions. Both assumptions are unrealistic and impractical, considering labor costs and human error-proneness. In contrast, Learning to Defer (L2D) extends supervised learning by allowing machine learning models to identify cases where a human is more likely to be correct than the model, thus leading to deferring systems with improved performance. In this work, we gain inspiration from L2D and propose Deferring CBMs (DCBMs), a novel framework that allows CBMs to learn when an intervention is needed. To this end, we model DCBMs as a composition of deferring systems and derive a consistent L2D loss to train them. Moreover, by relying on a CBM architecture, DCBMs can explain why defer occurs on the final task. Our results show that DCBMs achieve high predictive performance and interpretability at the cost of deferring more to humans.
☆ VP-NTK: Exploring the Benefits of Visual Prompting in Differentially Private Data Synthesis
Differentially private (DP) synthetic data has become the de facto standard for releasing sensitive data. However, many DP generative models suffer from the low utility of synthetic data, especially for high-resolution images. On the other hand, one of the emerging techniques in parameter efficient fine-tuning (PEFT) is visual prompting (VP), which allows well-trained existing models to be reused for the purpose of adapting to subsequent downstream tasks. In this work, we explore such a phenomenon in constructing captivating generative models with DP constraints. We show that VP in conjunction with DP-NTK, a DP generator that exploits the power of the neural tangent kernel (NTK) in training DP generative models, achieves a significant performance boost, particularly for high-resolution image datasets, with accuracy improving from 0.644$\pm$0.044 to 0.769. Lastly, we perform ablation studies on the effect of different parameters that influence the overall performance of VP-NTK. Our work demonstrates a promising step forward in improving the utility of DP synthetic data, particularly for high-resolution images.
comment: Accepted by ICASSP 2025
☆ Nonparametric Bellman Mappings for Value Iteration in Distributed Reinforcement Learning
This paper introduces novel Bellman mappings (B-Maps) for value iteration (VI) in distributed reinforcement learning (DRL), where multiple agents operate over a network without a centralized fusion node. Each agent constructs its own nonparametric B-Map for VI while communicating only with direct neighbors to achieve consensus. These B-Maps operate on Q-functions represented in a reproducing kernel Hilbert space, enabling a nonparametric formulation that allows for flexible, agent-specific basis function design. Unlike existing DRL methods that restrict information exchange to Q-function estimates, the proposed framework also enables agents to share basis information in the form of covariance matrices, capturing additional structural details. A theoretical analysis establishes linear convergence rates for both Q-function and covariance-matrix estimates toward their consensus values. The optimal learning rates for consensus-based updates are dictated by the ratio of the smallest positive eigenvalue to the largest one of the network's Laplacian matrix. Furthermore, each nodal Q-function estimate is shown to lie very close to the fixed point of a centralized nonparametric B-Map, effectively allowing the proposed DRL design to approximate the performance of a centralized fusion center. Numerical experiments on two well-known control problems demonstrate the superior performance of the proposed nonparametric B-Maps compared to prior methods. Notably, the results reveal a counter-intuitive finding: although the proposed approach involves greater information exchange -- specifically through the sharing of covariance matrices -- it achieves the desired performance with lower cumulative communication cost than existing DRL schemes, highlighting the crucial role of basis information in accelerating the learning process.
☆ Large Language Models for Water Distribution Systems Modeling and Decision-Making
The design, operations, and management of water distribution systems (WDS) involve complex mathematical models. These models are continually improving due to computational advancements, leading to better decision-making and more efficient WDS management. However, the significant time and effort required for modeling, programming, and analyzing results remain substantial challenges. Another issue is the professional burden, which confines the interaction with models, databases, and other sophisticated tools to a small group of experts, thereby causing non-technical stakeholders to depend on these experts or make decisions without modeling support. Furthermore, explaining model results is challenging even for experts, as it is often unclear which conditions cause the model to reach a certain state or recommend a specific policy. The recent advancements in Large Language Models (LLMs) open doors for a new stage in human-model interaction. This study proposes a framework of plain language interactions with hydraulic and water quality models based on LLM-EPANET architecture. This framework is tested with increasing levels of complexity of queries to study the ability of LLMs to interact with WDS models, run complex simulations, and report simulation results. The performance of the proposed framework is evaluated across several categories of queries and hyper-parameter configurations, demonstrating its potential to enhance decision-making processes in WDS management.
comment: Accepted to EWRI Congress 2025
☆ Manifold learning in metric spaces
Laplacian-based methods are popular for dimensionality reduction of data lying in $\mathbb{R}^N$. Several theoretical results for these algorithms depend on the fact that the Euclidean distance approximates the geodesic distance on the underlying submanifold which the data are assumed to lie on. However, for some applications, other metrics, such as the Wasserstein distance, may provide a more appropriate notion of distance than the Euclidean distance. We provide a framework that generalizes the problem of manifold learning to metric spaces and study when a metric satisfies sufficient conditions for the pointwise convergence of the graph Laplacian.
☆ Variance-Aware Noisy Training: Hardening DNNs against Unstable Analog Computations
The disparity between the computational demands of deep learning and the capabilities of compute hardware is expanding drastically. Although deep learning achieves remarkable performance in countless tasks, its escalating requirements for computational power and energy consumption surpass the sustainable limits of even specialized neural processing units, including the Apple Neural Engine and NVIDIA TensorCores. This challenge is intensified by the slowdown in CMOS scaling. Analog computing presents a promising alternative, offering substantial improvements in energy efficiency by directly manipulating physical quantities such as current, voltage, charge, or photons. However, it is inherently vulnerable to manufacturing variations, nonlinearities, and noise, leading to degraded prediction accuracy. One of the most effective techniques for enhancing robustness, Noisy Training, introduces noise during the training phase to reinforce the model against disturbances encountered during inference. Although highly effective, its performance degrades in real-world environments where noise characteristics fluctuate due to external factors such as temperature variations and temporal drift. This study underscores the necessity of Noisy Training while revealing its fundamental limitations in the presence of dynamic noise. To address these challenges, we propose Variance-Aware Noisy Training, a novel approach that mitigates performance degradation by incorporating noise schedules which emulate the evolving noise conditions encountered during inference. Our method substantially improves model robustness, without training overhead. We demonstrate a significant increase in robustness, from 72.3\% with conventional Noisy Training to 97.3\% with Variance-Aware Noisy Training on CIFAR-10 and from 38.5\% to 89.9\% on Tiny ImageNet.
☆ Narrowing Class-Wise Robustness Gaps in Adversarial Training ICLR 2025
Efforts to address declining accuracy as a result of data shifts often involve various data-augmentation strategies. Adversarial training is one such method, designed to improve robustness to worst-case distribution shifts caused by adversarial examples. While this method can improve robustness, it may also hinder generalization to clean examples and exacerbate performance imbalances across different classes. This paper explores the impact of adversarial training on both overall and class-specific performance, as well as its spill-over effects. We observe that enhanced labeling during training boosts adversarial robustness by 53.50% and mitigates class imbalances by 5.73%, leading to improved accuracy in both clean and adversarial settings compared to standard adversarial training.
comment: 4 figures, ICLR 2025 Workshop on Foundation Models in the Wild
☆ Neural Combinatorial Optimization for Real-World Routing
Vehicle Routing Problems (VRPs) are a class of NP-hard problems ubiquitous in several real-world logistics scenarios that pose significant challenges for optimization. Neural Combinatorial Optimization (NCO) has emerged as a promising alternative to classical approaches, as it can learn fast heuristics to solve VRPs. However, most research works in NCO for VRPs focus on simplified settings, which do not account for asymmetric distances and travel durations that cannot be derived by simple Euclidean distances and unrealistic data distributions, hindering real-world deployment. This work introduces RRNCO (Real Routing NCO) to bridge the gap of NCO between synthetic and real-world VRPs in the critical aspects of both data and modeling. First, we introduce a new, openly available dataset with real-world data containing a diverse dataset of locations, distances, and duration matrices from 100 cities, considering realistic settings with actual routing distances and durations obtained from Open Source Routing Machine (OSRM). Second, we propose a novel approach that efficiently processes both node and edge features through contextual gating, enabling the construction of more informed node embedding, and we finally incorporate an Adaptation Attention Free Module (AAFM) with neural adaptive bias mechanisms that effectively integrates not only distance matrices but also angular relationships between nodes, allowing our model to capture rich structural information. RRNCO achieves state-of-the-art results in real-world VRPs among NCO methods. We make our dataset and code publicly available at https://github.com/ai4co/real-routing-nco.
☆ Distributed Learning over Arbitrary Topology: Linear Speed-Up with Polynomial Transient Time
We study a distributed learning problem in which $n$ agents, each with potentially heterogeneous local data, collaboratively minimize the sum of their local cost functions via peer-to-peer communication. We propose a novel algorithm, Spanning Tree Push-Pull (STPP), which employs two spanning trees extracted from a general communication graph to distribute both model parameters and stochastic gradients. Unlike prior approaches that rely heavily on spectral gap properties, STPP leverages a more flexible topological characterization, enabling robust information flow and efficient updates. Theoretically, we prove that STPP achieves linear speedup and polynomial transient iteration complexity, up to $O(n^7)$ for smooth nonconvex objectives and $\tilde{O}(n^3)$ for smooth strongly convex objectives, under arbitrary network topologies. Moreover, compared with the existing methods, STPP achieves faster convergence rates on sparse and non-regular topologies (e.g., directed ring) and reduces communication overhead on dense networks (e.g., static exponential graph). These results significantly advance the state of the art, especially when $n$ is large. Numerical experiments further demonstrate the strong performance of STPP and confirm the practical relevance of its theoretical convergence rates across various common graph architectures. Our code is available at https://anonymous.4open.science/r/SpanningTreePushPull-5D3E.
☆ Improving Discriminator Guidance in Diffusion Models
Discriminator Guidance has become a popular method for efficiently refining pre-trained Score-Matching Diffusion models. However, in this paper, we demonstrate that the standard implementation of this technique does not necessarily lead to a distribution closer to the real data distribution. Specifically, we show that training the discriminator using Cross-Entropy loss, as commonly done, can in fact increase the Kullback-Leibler divergence between the model and target distributions, particularly when the discriminator overfits. To address this, we propose a theoretically sound training objective for discriminator guidance that properly minimizes the KL divergence. We analyze its properties and demonstrate empirically across multiple datasets that our proposed method consistently improves over the conventional method by producing samples of higher quality.
☆ Learn to Bid as a Price-Maker Wind Power Producer
Wind power producers (WPPs) participating in short-term power markets face significant imbalance costs due to their non-dispatchable and variable production. While some WPPs have a large enough market share to influence prices with their bidding decisions, existing optimal bidding methods rarely account for this aspect. Price-maker approaches typically model bidding as a bilevel optimization problem, but these methods require complex market models, estimating other participants' actions, and are computationally demanding. To address these challenges, we propose an online learning algorithm that leverages contextual information to optimize WPP bids in the price-maker setting. We formulate the strategic bidding problem as a contextual multi-armed bandit, ensuring provable regret minimization. The algorithm's performance is evaluated against various benchmark strategies using a numerical simulation of the German day-ahead and real-time markets.
☆ AIMI: Leveraging Future Knowledge and Personalization in Sparse Event Forecasting for Treatment Adherence
Adherence to prescribed treatments is crucial for individuals with chronic conditions to avoid costly or adverse health outcomes. For certain patient groups, intensive lifestyle interventions are vital for enhancing medication adherence. Accurate forecasting of treatment adherence can open pathways to developing an on-demand intervention tool, enabling timely and personalized support. With the increasing popularity of smartphones and wearables, it is now easier than ever to develop and deploy smart activity monitoring systems. However, effective forecasting systems for treatment adherence based on wearable sensors are still not widely available. We close this gap by proposing Adherence Forecasting and Intervention with Machine Intelligence (AIMI). AIMI is a knowledge-guided adherence forecasting system that leverages smartphone sensors and previous medication history to estimate the likelihood of forgetting to take a prescribed medication. A user study was conducted with 27 participants who took daily medications to manage their cardiovascular diseases. We designed and developed CNN and LSTM-based forecasting models with various combinations of input features and found that LSTM models can forecast medication adherence with an accuracy of 0.932 and an F-1 score of 0.936. Moreover, through a series of ablation studies involving convolutional and recurrent neural network architectures, we demonstrate that leveraging known knowledge about future and personalized training enhances the accuracy of medication adherence forecasting. Code available: https://github.com/ab9mamun/AIMI.
comment: 15 pages, 5 figures
☆ Hyperspectral Imaging for Identifying Foreign Objects on Pork Belly
Ensuring food safety and quality is critical in the food processing industry, where the detection of contaminants remains a persistent challenge. This study presents an automated solution for detecting foreign objects on pork belly meat using hyperspectral imaging (HSI). A hyperspectral camera was used to capture data across various bands in the near-infrared (NIR) spectrum (900-1700 nm), enabling accurate identification of contaminants that are often undetectable through traditional visual inspection methods. The proposed solution combines pre-processing techniques with a segmentation approach based on a lightweight Vision Transformer (ViT) to distinguish contaminants from meat, fat, and conveyor belt materials. The adopted strategy demonstrates high detection accuracy and training efficiency, while also addressing key industrial challenges such as inherent noise, temperature variations, and spectral similarity between contaminants and pork belly. Experimental results validate the effectiveness of hyperspectral imaging in enhancing food safety, highlighting its potential for broad real-time applications in automated quality control processes.
comment: Article under review by Computers in Industry, Elsevier
☆ OThink-MR1: Stimulating multimodal generalized reasoning capabilities through dynamic reinforcement learning
Multimodal Language Models have gained significant traction for their ability to process diverse input data types and generate coherent, contextually relevant outputs across various applications. While supervised fine-tuning (SFT) has been the predominant approach to enhance MLLM capabilities in task-specific optimization, it often falls short in fostering crucial generalized reasoning abilities. Despite the potential of reinforcement learning (RL) to address these limitations, it faces two issues: (1) its generalized capabilities in multimodal tasks remain underexplored. (2) its training constraints such as constant Kullback-Leibler or clamp strategy easily lead to suboptimal bottleneck. To adress these issues, we introduce OThink-MR1, a framework that extends RL to MLLMs, enabling them to achieve deeper understanding and reasoning across multimodal tasks. We design a dynamic Kullback-Leibler strategy that significantly enhances RL performance, surpassing SFT in same-task evaluations. Also, we are the first to reveal that RL exhibits remarkable cross-task generalization capabilities, which shows that models post-trained with RL on one multimodal task can be effectively transfered to another tasks. Finally, extensive experiments demonstrate the great reasoning ability of our proposed OThink-MR1.
☆ Redefining Toxicity: An Objective and Context-Aware Approach for Stress-Level-Based Detection
The fundamental problem of toxicity detection lies in the fact that the term "toxicity" is ill-defined. Such uncertainty causes researchers to rely on subjective and vague data during model training, which leads to non-robust and inaccurate results, following the 'garbage in - garbage out' paradigm. This study introduces a novel, objective, and context-aware framework for toxicity detection, leveraging stress levels as a key determinant of toxicity. We propose new definition, metric and training approach as a parts of our framework and demonstrate it's effectiveness using a dataset we collected.
☆ Expert Race: A Flexible Routing Strategy for Scaling Diffusion Transformer with Mixture of Experts
Diffusion models have emerged as mainstream framework in visual generation. Building upon this success, the integration of Mixture of Experts (MoE) methods has shown promise in enhancing model scalability and performance. In this paper, we introduce Race-DiT, a novel MoE model for diffusion transformers with a flexible routing strategy, Expert Race. By allowing tokens and experts to compete together and select the top candidates, the model learns to dynamically assign experts to critical tokens. Additionally, we propose per-layer regularization to address challenges in shallow layer learning, and router similarity loss to prevent mode collapse, ensuring better expert utilization. Extensive experiments on ImageNet validate the effectiveness of our approach, showcasing significant performance gains while promising scaling properties.
☆ Patch-based learning of adaptive Total Variation parameter maps for blind image denoising
We consider a patch-based learning approach defined in terms of neural networks to estimate spatially adaptive regularisation parameter maps for image denoising with weighted Total Variation and test it to situations when the noise distribution is unknown. As an example, we consider situations where noise could be either Gaussian or Poisson and perform preliminary model selection by a standard binary classification network. Then, we define a patch-based approach where at each image pixel an optimal weighting between TV regularisation and the corresponding data fidelity is learned in a supervised way using reference natural image patches upon optimisation of SSIM and in a sliding window fashion. Extensive numerical results are reported for both noise models, showing significant improvement w.r.t. results obtained by means of optimal scalar regularisation.
☆ InhibiDistilbert: Knowledge Distillation for a ReLU and Addition-based Transformer
This work explores optimizing transformer-based language models by integrating model compression techniques with inhibitor attention, a novel alternative attention mechanism. Inhibitor attention employs Manhattan distances and ReLU activations instead of the matrix multiplications and softmax activation of the conventional scaled dot-product attention. This shift offers potential computational and energy savings while maintaining model effectiveness. We propose further adjustments to improve the inhibitor mechanism's training efficiency and evaluate its performance on the DistilBERT architecture. Our knowledge distillation experiments indicate that the modified inhibitor transformer model can achieve competitive performance on standard NLP benchmarks, including General Language Understanding Evaluation (GLUE) and sentiment analysis tasks.
comment: 7 pages, 2 tables
☆ TVineSynth: A Truncated C-Vine Copula Generator of Synthetic Tabular Data to Balance Privacy and Utility AISTATS 2025
We propose TVineSynth, a vine copula based synthetic tabular data generator, which is designed to balance privacy and utility, using the vine tree structure and its truncation to do the trade-off. Contrary to synthetic data generators that achieve DP by globally adding noise, TVineSynth performs a controlled approximation of the estimated data generating distribution, so that it does not suffer from poor utility of the resulting synthetic data for downstream prediction tasks. TVineSynth introduces a targeted bias into the vine copula model that, combined with the specific tree structure of the vine, causes the model to zero out privacy-leaking dependencies while relying on those that are beneficial for utility. Privacy is here measured with membership (MIA) and attribute inference attacks (AIA). Further, we theoretically justify how the construction of TVineSynth ensures AIA privacy under a natural privacy measure for continuous sensitive attributes. When compared to competitor models, with and without DP, on simulated and on real-world data, TVineSynth achieves a superior privacy-utility balance.
comment: Accepted at the 28th International Conference on Artificial Intelligence and Statistics (AISTATS 2025)
☆ Information maximization for a broad variety of multi-armed bandit games
Information and free-energy maximization are physics principles that provide general rules for an agent to optimize actions in line with specific goals and policies. These principles are the building blocks for designing decision-making policies capable of efficient performance with only partial information. Notably, the information maximization principle has shown remarkable success in the classical bandit problem and has recently been shown to yield optimal algorithms for Gaussian and sub-Gaussian reward distributions. This article explores a broad extension of physics-based approaches to more complex and structured bandit problems. To this end, we cover three distinct types of bandit problems, where information maximization is adapted and leads to strong performance. Since the main challenge of information maximization lies in avoiding over-exploration, we highlight how information is tailored at various levels to mitigate this issue, paving the way for more efficient and robust decision-making strategies.
☆ Multivariate Time Series Anomaly Detection in Industry 5.0
Industry5.0 environments present a critical need for effective anomaly detection methods that can indicate equipment malfunctions, process inefficiencies, or potential safety hazards. The ever-increasing sensorization of manufacturing lines makes processes more observable, but also poses the challenge of continuously analyzing vast amounts of multivariate time series data. These challenges include data quality since data may contain noise, be unlabeled or even mislabeled. A promising approach consists of combining an embedding model with other Machine Learning algorithms to enhance the overall performance in detecting anomalies. Moreover, representing time series as vectors brings many advantages like higher flexibility and improved ability to capture complex temporal dependencies. We tested our solution in a real industrial use case, using data collected from a Bonfiglioli plant. The results demonstrate that, unlike traditional reconstruction-based autoencoders, which often struggle in the presence of sporadic noise, our embedding-based framework maintains high performance across various noise conditions.
☆ Sample-Efficient Bayesian Transfer Learning for Online Machine Parameter Optimization
Correctly setting the parameters of a production machine is essential to improve product quality, increase efficiency, and reduce production costs while also supporting sustainability goals. Identifying optimal parameters involves an iterative process of producing an object and evaluating its quality. Minimizing the number of iterations is, therefore, desirable to reduce the costs associated with unsuccessful attempts. This work introduces a method to optimize the machine parameters in the system itself using a \ac{BO} algorithm. By leveraging existing machine data, we use a transfer learning approach in order to identify an optimum with minimal iterations, resulting in a cost-effective transfer learning algorithm. We validate our approach on a laser machine for cutting sheet metal in the real world.
comment: Accepted in IEEE Conference on Artificial Intelligence, 2025
☆ Denoising-based Contractive Imitation Learning
A fundamental challenge in imitation learning is the \emph{covariate shift} problem. Existing methods to mitigate covariate shift often require additional expert interactions, access to environment dynamics, or complex adversarial training, which may not be practical in real-world applications. In this paper, we propose a simple yet effective method (DeCIL) to mitigate covariate shift by incorporating a denoising mechanism that enhances the contraction properties of the state transition mapping. Our approach involves training two neural networks: a dynamics model ( f ) that predicts the next state from the current state, and a joint state-action denoising policy network ( d ) that refines this state prediction via denoising and outputs the corresponding action. We provide theoretical analysis showing that the denoising network acts as a local contraction mapping, reducing the error propagation of the state transition and improving stability. Our method is straightforward to implement and can be easily integrated with existing imitation learning frameworks without requiring additional expert data or complex modifications to the training procedure. Empirical results demonstrate that our approach effectively improves success rate of various imitation learning tasks under noise perturbation.
☆ On the Limits of Applying Graph Transformers for Brain Connectome Classification
Brain connectomes offer detailed maps of neural connections within the brain. Recent studies have proposed novel connectome graph datasets and attempted to improve connectome classification by using graph deep learning. With recent advances demonstrating transformers' ability to model intricate relationships and outperform in various domains, this work explores their performance on the novel NeuroGraph benchmark datasets and synthetic variants derived from probabilistically removing edges to simulate noisy data. Our findings suggest that graph transformers offer no major advantage over traditional GNNs on this dataset. Furthermore, both traditional and transformer GNN models maintain accuracy even with all edges removed, suggesting that the dataset's graph structures may not significantly impact predictions. We propose further assessing NeuroGraph as a brain connectome benchmark, emphasizing the need for well-curated datasets and improved preprocessing strategies to obtain meaningful edge connections.
☆ A multi-model approach using XAI and anomaly detection to predict asteroid hazards
The potential for catastrophic collision makes near-Earth asteroids (NEAs) a serious concern. Planetary defense depends on accurately classifying potentially hazardous asteroids (PHAs), however the complexity of the data hampers conventional techniques. This work offers a sophisticated method for accurately predicting hazards by combining machine learning, deep learning, explainable AI (XAI), and anomaly detection. Our approach extracts essential parameters like size, velocity, and trajectory from historical and real-time asteroid data. A hybrid algorithm improves prediction accuracy by combining several cutting-edge models. A forecasting module predicts future asteroid behavior, and Monte Carlo simulations evaluate the likelihood of collisions. Timely mitigation is made possible by a real-time alarm system that notifies worldwide monitoring stations. This technique enhances planetary defense efforts by combining real-time alarms with sophisticated predictive modeling.
comment: 17 pages, 12 figures
☆ Learning 3D Scene Analogies with Neural Contextual Scene Maps
Understanding scene contexts is crucial for machines to perform tasks and adapt prior knowledge in unseen or noisy 3D environments. As data-driven learning is intractable to comprehensively encapsulate diverse ranges of layouts and open spaces, we propose teaching machines to identify relational commonalities in 3D spaces. Instead of focusing on point-wise or object-wise representations, we introduce 3D scene analogies, which are smooth maps between 3D scene regions that align spatial relationships. Unlike well-studied single instance-level maps, these scene-level maps smoothly link large scene regions, potentially enabling unique applications in trajectory transfer in AR/VR, long demonstration transfer for imitation learning, and context-aware object rearrangement. To find 3D scene analogies, we propose neural contextual scene maps, which extract descriptor fields summarizing semantic and geometric contexts, and holistically align them in a coarse-to-fine manner for map estimation. This approach reduces reliance on individual feature points, making it robust to input noise or shape variations. Experiments demonstrate the effectiveness of our approach in identifying scene analogies and transferring trajectories or object placements in diverse indoor scenes, indicating its potential for robotics and AR/VR applications.
☆ Time After Time: Deep-Q Effect Estimation for Interventions on When and What to do
Problems in fields such as healthcare, robotics, and finance requires reasoning about the value both of what decision or action to take and when to take it. The prevailing hope is that artificial intelligence will support such decisions by estimating the causal effect of policies such as how to treat patients or how to allocate resources over time. However, existing methods for estimating the effect of a policy struggle with \emph{irregular time}. They either discretize time, or disregard the effect of timing policies. We present a new deep-Q algorithm that estimates the effect of both when and what to do called Earliest Disagreement Q-Evaluation (EDQ). EDQ makes use of recursion for the Q-function that is compatible with flexible sequence models, such as transformers. EDQ provides accurate estimates under standard assumptions. We validate the approach through experiments on survival time and tumor growth tasks.
☆ LeanTTA: A Backpropagation-Free and Stateless Approach to Quantized Test-Time Adaptation on Edge Devices
While there are many advantages to deploying machine learning models on edge devices, the resource constraints of mobile platforms, the dynamic nature of the environment, and differences between the distribution of training versus in-the-wild data make such deployments challenging. Current test-time adaptation methods are often memory-intensive and not designed to be quantization-compatible or deployed on low-resource devices. To address these challenges, we present LeanTTA, a novel backpropagation-free and stateless framework for quantized test-time adaptation tailored to edge devices. Our approach minimizes computational costs by dynamically updating normalization statistics without backpropagation, which frees LeanTTA from the common pitfall of relying on large batches and historical data, making our method robust to realistic deployment scenarios. Our approach is the first to enable further computational gains by combining partial adaptation with quantized module fusion. We validate our framework across sensor modalities, demonstrating significant improvements over state-of-the-art TTA methods, including a 15.7% error reduction, peak memory usage of only 11.2MB for ResNet18, and fast adaptation within an order-of-magnitude of normal inference speeds on-device. LeanTTA provides a robust solution for achieving the right trade offs between accuracy and system efficiency in edge deployments, addressing the unique challenges posed by limited data and varied operational conditions.
comment: 8 pages, 5 figures
☆ Enhancing Zero-Shot Image Recognition in Vision-Language Models through Human-like Concept Guidance
In zero-shot image recognition tasks, humans demonstrate remarkable flexibility in classifying unseen categories by composing known simpler concepts. However, existing vision-language models (VLMs), despite achieving significant progress through large-scale natural language supervision, often underperform in real-world applications because of sub-optimal prompt engineering and the inability to adapt effectively to target classes. To address these issues, we propose a Concept-guided Human-like Bayesian Reasoning (CHBR) framework. Grounded in Bayes' theorem, CHBR models the concept used in human image recognition as latent variables and formulates this task by summing across potential concepts, weighted by a prior distribution and a likelihood function. To tackle the intractable computation over an infinite concept space, we introduce an importance sampling algorithm that iteratively prompts large language models (LLMs) to generate discriminative concepts, emphasizing inter-class differences. We further propose three heuristic approaches involving Average Likelihood, Confidence Likelihood, and Test Time Augmentation (TTA) Likelihood, which dynamically refine the combination of concepts based on the test image. Extensive evaluations across fifteen datasets demonstrate that CHBR consistently outperforms existing state-of-the-art zero-shot generalization methods.
comment: 21 pages, 7 figures 7 tables
☆ InCo-DPO: Balancing Distribution Shift and Data Quality for Enhanced Preference Optimization
Direct Preference Optimization (DPO) optimizes language models to align with human preferences. Utilizing on-policy samples, generated directly by the policy model, typically results in better performance due to its distribution consistency with the model compared to off-policy samples. This paper identifies the quality of candidate preference samples as another critical factor. While the quality of on-policy data is inherently constrained by the capabilities of the policy model, off-policy data, which can be derived from diverse sources, offers greater potential for quality despite experiencing distribution shifts. However, current research mostly relies on on-policy data and neglects the value of off-policy data in terms of data quality, due to the challenge posed by distribution shift. In this paper, we propose InCo-DPO, an efficient method for synthesizing preference data by integrating on-policy and off-policy data, allowing dynamic adjustments to balance distribution shifts and data quality, thus finding an optimal trade-off. Consequently, InCo-DPO overcomes the limitations of distribution shifts in off-policy data and the quality constraints of on-policy data. We evaluated InCo-DPO with the Alpaca-Eval 2.0 and Arena-Hard benchmarks. Experimental results demonstrate that our approach not only outperforms both on-policy and off-policy data but also achieves a state-of-the-art win rate of 60.8 on Arena-Hard with the vanilla DPO using Gemma-2 model.
☆ FedSAF: A Federated Learning Framework for Enhanced Gastric Cancer Detection and Privacy Preservation
Gastric cancer is one of the most commonly diagnosed cancers and has a high mortality rate. Due to limited medical resources, developing machine learning models for gastric cancer recognition provides an efficient solution for medical institutions. However, such models typically require large sample sizes for training and testing, which can challenge patient privacy. Federated learning offers an effective alternative by enabling model training across multiple institutions without sharing sensitive patient data. This paper addresses the limited sample size of publicly available gastric cancer data with a modified data processing method. This paper introduces FedSAF, a novel federated learning algorithm designed to improve the performance of existing methods, particularly in non-independent and identically distributed (non-IID) data scenarios. FedSAF incorporates attention-based message passing and the Fisher Information Matrix to enhance model accuracy, while a model splitting function reduces computation and transmission costs. Hyperparameter tuning and ablation studies demonstrate the effectiveness of this new algorithm, showing improvements in test accuracy on gastric cancer datasets, with FedSAF outperforming existing federated learning methods like FedAMP, FedAvg, and FedProx. The framework's robustness and generalization ability were further validated across additional datasets (SEED, BOT, FashionMNIST, and CIFAR-10), achieving high performance in diverse environments.
☆ Active management of battery degradation in wireless sensor network using deep reinforcement learning for group battery replacement
Wireless sensor networks (WSNs) have become a promising solution for structural health monitoring (SHM), especially in hard-to-reach or remote locations. Battery-powered WSNs offer various advantages over wired systems, however limited battery life has always been one of the biggest obstacles in practical use of the WSNs, regardless of energy harvesting methods. While various methods have been studied for battery health management, existing methods exclusively aim to extend lifetime of individual batteries, lacking a system level view. A consequence of applying such methods is that batteries in a WSN tend to fail at different times, posing significant difficulty on planning and scheduling of battery replacement trip. This study investigate a deep reinforcement learning (DRL) method for active battery degradation management by optimizing duty cycle of WSNs at the system level. This active management strategy effectively reduces earlier failure of battery individuals which enable group replacement without sacrificing WSN performances. A simulated environment based on a real-world WSN setup was developed to train a DRL agent and learn optimal duty cycle strategies. The performance of the strategy was validated in a long-term setup with various network sizes, demonstrating its efficiency and scalability.
☆ Network Embedding Exploration Tool (NEExT)
Many real-world and artificial systems and processes can be represented as graphs. Some examples of such systems include social networks, financial transactions, supply chains, and molecular structures. In many of these cases, one needs to consider a collection of graphs, rather than a single network. This could be a collection of distinct but related graphs, such as different protein structures or graphs resulting from dynamic processes on the same network. Examples of the latter include the evolution of social networks, community-induced graphs, or ego-nets around various nodes. A significant challenge commonly encountered is the absence of ground-truth labels for graphs or nodes, necessitating the use of unsupervised techniques to analyze such systems. Moreover, even when ground-truth labels are available, many existing graph machine learning methods depend on complex deep learning models, complicating model explainability and interpretability. To address some of these challenges, we have introduced NEExT (Network Embedding Exploration Tool) for embedding collections of graphs via user-defined node features. The advantages of the framework are twofold: (i) the ability to easily define your own interpretable node-based features in view of the task at hand, and (ii) fast embedding of graphs provided by the Vectorizers library. In this paper, we demonstrate the usefulness of NEExT on collections of synthetic and real-world graphs. For supervised tasks, we demonstrate that performance in graph classification tasks could be achieved similarly to other state-of-the-art techniques while maintaining model interpretability. Furthermore, our framework can also be used to generate high-quality embeddings in an unsupervised way, where target variables are not available.
comment: 24 pages, 10 figures
☆ Network-wide Freeway Traffic Estimation Using Sparse Sensor Data: A Dirichlet Graph Auto-Encoder Approach
Network-wide Traffic State Estimation (TSE), which aims to infer a complete image of network traffic states with sparsely deployed sensors, plays a vital role in intelligent transportation systems. With the development of data-driven methods, traffic dynamics modeling has advanced significantly. However, TSE poses fundamental challenges for data-driven approaches, since historical patterns cannot be learned locally at sensor-free segments. Although inductive graph learning shows promise in estimating states at locations without sensor, existing methods typically handle unobserved locations by filling them with zeros, introducing bias to the sensitive graph message propagation. The recently proposed Dirichlet Energy-based Feature Propagation (DEFP) method achieves State-Of-The-Art (SOTA) performance in unobserved node classification by eliminating the need for zero-filling. However, applying it to TSE faces three key challenges: inability to handle directed traffic networks, strong assumptions in traffic spatial correlation modeling, and overlooks distinct propagation rules of different patterns (e.g., congestion and free flow). We propose DGAE, a novel inductive graph representation model that addresses these challenges through theoretically derived DEFP for Directed graph (DEFP4D), enhanced spatial representation learning via DEFP4D-guided latent space encoding, and physics-guided propagation mechanisms that separately handles congested and free-flow patterns. Experiments on three traffic datasets demonstrate that DGAE outperforms existing SOTA methods and exhibits strong cross-city transferability. Furthermore, DEFP4D can serve as a standalone lightweight solution, showing superior performance under extremely sparse sensor conditions.
comment: This work has been submitted to the IEEE for possible publication
☆ FedAWA: Adaptive Optimization of Aggregation Weights in Federated Learning Using Client Vectors CVPR 2025
Federated Learning (FL) has emerged as a promising framework for distributed machine learning, enabling collaborative model training without sharing local data, thereby preserving privacy and enhancing security. However, data heterogeneity resulting from differences across user behaviors, preferences, and device characteristics poses a significant challenge for federated learning. Most previous works overlook the adjustment of aggregation weights, relying solely on dataset size for weight assignment, which often leads to unstable convergence and reduced model performance. Recently, several studies have sought to refine aggregation strategies by incorporating dataset characteristics and model alignment. However, adaptively adjusting aggregation weights while ensuring data security-without requiring additional proxy data-remains a significant challenge. In this work, we propose Federated learning with Adaptive Weight Aggregation (FedAWA), a novel method that adaptively adjusts aggregation weights based on client vectors during the learning process. The client vector captures the direction of model updates, reflecting local data variations, and is used to optimize the aggregation weight without requiring additional datasets or violating privacy. By assigning higher aggregation weights to local models whose updates align closely with the global optimization direction, FedAWA enhances the stability and generalization of the global model. Extensive experiments under diverse scenarios demonstrate the superiority of our method, providing a promising solution to the challenges of data heterogeneity in federated learning.
comment: Accepted in CVPR 2025
☆ Energy-Efficient Federated Learning and Migration in Digital Twin Edge Networks
The digital twin edge network (DITEN) is a significant paradigm in the sixth-generation wireless system (6G) that aims to organize well-developed infrastructures to meet the requirements of evolving application scenarios. However, the impact of the interaction between the long-term DITEN maintenance and detailed digital twin tasks, which often entail privacy considerations, is commonly overlooked in current research. This paper addresses this issue by introducing a problem of digital twin association and historical data allocation for a federated learning (FL) task within DITEN. To achieve this goal, we start by introducing a closed-form function to predict the training accuracy of the FL task, referring to it as the data utility. Subsequently, we carry out comprehensive convergence analyses on the proposed FL methodology. Our objective is to jointly optimize the data utility of the digital twin-empowered FL task and the energy costs incurred by the long-term DITEN maintenance, encompassing FL model training, data synchronization, and twin migration. To tackle the aforementioned challenge, we present an optimization-driven learning algorithm that effectively identifies optimized solutions for the formulated problem. Numerical results demonstrate that our proposed algorithm outperforms various baseline approaches.
☆ Control Pneumatic Soft Bending Actuator with Online Learning Pneumatic Physical Reservoir Computing
The intrinsic nonlinearities of soft robots present significant control but simultaneously provide them with rich computational potential. Reservoir computing (RC) has shown effectiveness in online learning systems for controlling nonlinear systems such as soft actuators. Conventional RC can be extended into physical reservoir computing (PRC) by leveraging the nonlinear dynamics of soft actuators for computation. This paper introduces a PRC-based online learning framework to control the motion of a pneumatic soft bending actuator, utilizing another pneumatic soft actuator as the PRC model. Unlike conventional designs requiring two RC models, the proposed control system employs a more compact architecture with a single RC model. Additionally, the framework enables zero-shot online learning, addressing limitations of previous PRC-based control systems reliant on offline training. Simulations and experiments validated the performance of the proposed system. Experimental results indicate that the PRC model achieved superior control performance compared to a linear model, reducing the root-mean-square error (RMSE) by an average of over 37% in bending motion control tasks. The proposed PRC-based online learning control framework provides a novel approach for harnessing physical systems' inherent nonlinearities to enhance the control of soft actuators.
comment: 8 pages, 13 figures, IEEE-RAS International Conference on Soft Robotics (RoboSoft 2025)
☆ Big data comparison of quantum invariants
We apply big data techniques, including exploratory and topological data analysis, to investigate quantum invariants. More precisely, our study explores the Jones polynomial's structural properties and contrasts its behavior under four principal methods of enhancement: coloring, rank increase, categorification, and leaving the realm of Lie algebras.
comment: 26 pages, many figures, comments welcome
☆ Communication Efficient Federated Learning with Linear Convergence on Heterogeneous Data
By letting local clients perform multiple local updates before communicating with a parameter server, modern federated learning algorithms such as FedAvg tackle the communication bottleneck problem in distributed learning and have found many successful applications. However, this asynchrony between local updates and communication also leads to a ''client-drift'' problem when the data is heterogeneous (not independent and identically distributed), resulting in errors in the final learning result. In this paper, we propose a federated learning algorithm, which is called FedCET, to ensure accurate convergence even under heterogeneous distributions of data across clients. Inspired by the distributed optimization algorithm NIDS, we use learning rates to weight information received from local clients to eliminate the ''client-drift''. We prove that under appropriate learning rates, FedCET can ensure linear convergence to the exact solution. Different from existing algorithms which have to share both gradients and a drift-correction term to ensure accurate convergence under heterogeneous data distributions, FedCET only shares one variable, which significantly reduces communication overhead. Numerical comparison with existing counterpart algorithms confirms the effectiveness of FedCET.
☆ Disentangling Uncertainties by Learning Compressed Data Representation
We study aleatoric and epistemic uncertainty estimation in a learned regressive system dynamics model. Disentangling aleatoric uncertainty (the inherent randomness of the system) from epistemic uncertainty (the lack of data) is crucial for downstream tasks such as risk-aware control and reinforcement learning, efficient exploration, and robust policy transfer. While existing approaches like Gaussian Processes, Bayesian networks, and model ensembles are widely adopted, they suffer from either high computational complexity or inaccurate uncertainty estimation. To address these limitations, we propose the Compressed Data Representation Model (CDRM), a framework that learns a neural network encoding of the data distribution and enables direct sampling from the output distribution. Our approach incorporates a novel inference procedure based on Langevin dynamics sampling, allowing CDRM to predict arbitrary output distributions rather than being constrained to a Gaussian prior. Theoretical analysis provides the conditions where CDRM achieves better memory and computational complexity compared to bin-based compression methods. Empirical evaluations show that CDRM demonstrates a superior capability to identify aleatoric and epistemic uncertainties separately, achieving AUROCs of 0.8876 and 0.9981 on a single test set containing a mixture of both uncertainties. Qualitative results further show that CDRM's capability extends to datasets with multimodal output distributions, a challenging scenario where existing methods consistently fail. Code and supplementary materials are available at https://github.com/ryeii/CDRM.
comment: Accepted by the 7th Annual Learning for Dynamics & Control Conference (L4DC) 2025
☆ Mixture of Lookup Experts
Mixture-of-Experts (MoE) activates only a subset of experts during inference, allowing the model to maintain low inference FLOPs and latency even as the parameter count scales up. However, since MoE dynamically selects the experts, all the experts need to be loaded into VRAM. Their large parameter size still limits deployment, and offloading, which load experts into VRAM only when needed, significantly increase inference latency. To address this, we propose Mixture of Lookup Experts (MoLE), a new MoE architecture that is efficient in both communication and VRAM usage. In MoLE, the experts are Feed-Forward Networks (FFNs) during training, taking the output of the embedding layer as input. Before inference, these experts can be re-parameterized as lookup tables (LUTs) that retrieves expert outputs based on input ids, and offloaded to storage devices. Therefore, we do not need to perform expert computations during inference. Instead, we directly retrieve the expert's computation results based on input ids and load them into VRAM, and thus the resulting communication overhead is negligible. Experiments show that, with the same FLOPs and VRAM usage, MoLE achieves inference speeds comparable to dense models and significantly faster than MoE with experts offloading, while maintaining performance on par with MoE.
☆ Blend the Separated: Mixture of Synergistic Experts for Data-Scarcity Drug-Target Interaction Prediction
Drug-target interaction prediction (DTI) is essential in various applications including drug discovery and clinical application. There are two perspectives of input data widely used in DTI prediction: Intrinsic data represents how drugs or targets are constructed, and extrinsic data represents how drugs or targets are related to other biological entities. However, any of the two perspectives of input data can be scarce for some drugs or targets, especially for those unpopular or newly discovered. Furthermore, ground-truth labels for specific interaction types can also be scarce. Therefore, we propose the first method to tackle DTI prediction under input data and/or label scarcity. To make our model functional when only one perspective of input data is available, we design two separate experts to process intrinsic and extrinsic data respectively and fuse them adaptively according to different samples. Furthermore, to make the two perspectives complement each other and remedy label scarcity, two experts synergize with each other in a mutually supervised way to exploit the enormous unlabeled data. Extensive experiments on 3 real-world datasets under different extents of input data scarcity and/or label scarcity demonstrate our model outperforms states of the art significantly and steadily, with a maximum improvement of 53.53%. We also test our model without any data scarcity and it still outperforms current methods.
☆ DNA Bench: When Silence is Smarter -- Benchmarking Over-Reasoning in Reasoning LLMs
Test-time scaling has significantly improved large language model performance, enabling deeper reasoning to solve complex problems. However, this increased reasoning capability also leads to excessive token generation and unnecessary problem-solving attempts. We introduce Don\'t Answer Bench (DNA Bench), a new benchmark designed to evaluate LLMs ability to robustly understand the tricky reasoning triggers and avoiding unnecessary generation. DNA Bench consists of 150 adversarially designed prompts that are easy for humans to understand and respond to, but surprisingly not for many of the recent prominent LLMs. DNA Bench tests models abilities across different capabilities, such as instruction adherence, hallucination avoidance, redundancy filtering, and unanswerable question recognition. We evaluate reasoning LLMs (RLMs), including DeepSeek-R1, OpenAI O3-mini, Claude-3.7-sonnet and compare them against a powerful non-reasoning model, e.g., GPT-4o. Our experiments reveal that RLMs generate up to 70x more tokens than necessary, often failing at tasks that simpler non-reasoning models handle efficiently with higher accuracy. Our findings underscore the need for more effective training and inference strategies in RLMs.
☆ MobiFuse: Learning Universal Human Mobility Patterns through Cross-domain Data Fusion
Human mobility modeling is critical for urban planning and transportation management, yet existing datasets often lack the resolution and semantic richness required for comprehensive analysis. To address this, we proposed a cross-domain data fusion framework that integrates multi-modal data of distinct nature and spatio-temporal resolution, including geographical, mobility, socio-demographic, and traffic information, to construct a privacy-preserving and semantically enriched human travel trajectory dataset. This framework is demonstrated through two case studies in Los Angeles (LA) and Egypt, where a domain adaptation algorithm ensures its transferability across diverse urban contexts. Quantitative evaluation shows that the generated synthetic dataset accurately reproduces mobility patterns observed in empirical data. Moreover, large-scale traffic simulations for LA County based on the generated synthetic demand align well with observed traffic. On California's I-405 corridor, the simulation yields a Mean Absolute Percentage Error of 5.85% for traffic volume and 4.36% for speed compared to Caltrans PeMS observations.
☆ Line Space Clustering (LSC): Feature-Based Clustering using K-medians and Dynamic Time Warping for Versatility
Clustering high-dimensional data is a critical challenge in machine learning due to the curse of dimensionality and the presence of noise. Traditional clustering algorithms often fail to capture the intrinsic structures in such data. This paper explores a combination of clustering methods, which we called Line Space Clustering (LSC), a representation that transforms data points into lines in a newly defined feature space, enabling clustering based on the similarity of feature value patterns, essentially treating features as sequences. LSC employs a combined distance metric that uses Euclidean and Dynamic Time Warping (DTW) distances, weighted by a parameter {\alpha}, allowing flexibility in emphasizing shape or magnitude similarities. We delve deeply into the mechanics of DTW and the Savitzky Golay filter, explaining their roles in the algorithm. Extensive experiments demonstrate the efficacy of LSC on synthetic and real-world datasets, showing that randomly experimenting with time-series optimized methods sometimes might surprisingly work on a complex dataset, particularly in noisy environments. Source code and experiments are available at: https://github.com/JoanikijChulev/LSC.
comment: 8 pages, 5 figures, 3 tables
☆ Prediction of Permissioned Blockchain Performance for Resource Scaling Configurations
Blockchain is increasingly offered as blockchain-as-a-service (BaaS) by cloud service providers. However, configuring BaaS appropriately for optimal performance and reliability resorts to try-and-error. A key challenge is that BaaS is often perceived as a ``black-box,'' leading to uncertainties in performance and resource provisioning. Previous studies attempted to address this challenge; however, the impacts of both vertical and horizontal scaling remain elusive. To this end, we present machine learning-based models to predict network reliability and throughput based on scaling configurations. In our evaluation, the models exhibit prediction errors of ~1.9%, which is highly accurate and can be applied in the real-world.
☆ Accelerating Transient CFD through Machine Learning-Based Flow Initialization
Transient computational fluid dynamics (CFD) simulations are essential for many industrial applications, but a significant portion of their computational cost stems from the time needed to reach statistical steadiness from initial conditions. We present a novel machine learning-based initialization method that reduces the cost of this subsequent transient solve substantially, achieving a 50% reduction in time-to-convergence compared to traditional uniform and potential flow-based initializations. Through a case study in automotive aerodynamics using a 16.7M-cell unsteady RANS simulation, we evaluate three ML-based initialization strategies. Two of these strategies are recommended for general use: (1) a physics-informed hybrid method combining ML predictions with potential flow solutions, and (2) a more versatile approach integrating ML predictions with uniform flow. Both strategies enable CFD solvers to achieve convergence times comparable to computationally expensive steady RANS initializations, while requiring only seconds of computation. We develop a robust statistical convergence metric based on windowed time-averaging for performance comparison between initialization strategies. Notably, these improvements are achieved using an ML model trained on a different dataset of automotive geometries, demonstrating strong generalization capabilities. The proposed methods integrate seamlessly with existing CFD workflows without requiring modifications to the underlying flow solver, providing a practical approach to accelerating industrial CFD simulations through improved ML-based initialization strategies.
comment: 17 pages, 8 figures
ATTENTION2D: Communication Efficient Distributed Self-Attention Mechanism
Transformer-based models have emerged as a leading architecture for natural language processing, natural language generation, and image generation tasks. A fundamental element of the transformer architecture is self-attention, which allows the model to capture intricate dependencies within the data. However, the self-attention mechanism also incurs significant computational and memory costs, particularly for long sequences. In this paper, we introduce ATTENTION2D, a novel approach that exploits parallelism along two dimensions - query and key/value - of the self-attention operation. This method enables efficient distribution and parallelization of computations across multiple devices. Our approach facilitates asymptotically faster training and inference phases compared to previous methods, without relying on approximations or incurring additional computational or memory overheads. Furthermore, unlike existing techniques that struggle to scale with an increasing number of processing units, our approach effectively scales with additional processing units. Our experimental results confirm the effectiveness of our method in improving communication efficiency and scalability. Compared to Ring Attention, our approach demonstrated up to a 5x performance boost on a GPT-3-like model using 64 NVIDIA A100 GPUs across 16 nodes, and up to a 9.4x performance boost on 64 NVIDIA H100 GPUs across 64 nodes.
☆ EarlyStopping: Implicit Regularization for Iterative Learning Procedures in Python
Iterative learning procedures are ubiquitous in machine learning and modern statistics. Regularision is typically required to prevent inflating the expected loss of a procedure in later iterations via the propagation of noise inherent in the data. Significant emphasis has been placed on achieving this regularisation implicitly by stopping procedures early. The EarlyStopping-package provides a toolbox of (in-sample) sequential early stopping rules for several well-known iterative estimation procedures, such as truncated SVD, Landweber (gradient descent), conjugate gradient descent, L2-boosting and regression trees. One of the central features of the package is that the algorithms allow the specification of the true data-generating process and keep track of relevant theoretical quantities. In this paper, we detail the principles governing the implementation of the EarlyStopping-package and provide a survey of recent foundational advances in the theoretical literature. We demonstrate how to use the EarlyStopping-package to explore core features of implicit regularisation and replicate results from the literature.
☆ Ordered Topological Deep Learning: a Network Modeling Case Study
Computer networks are the foundation of modern digital infrastructure, facilitating global communication and data exchange. As demand for reliable high-bandwidth connectivity grows, advanced network modeling techniques become increasingly essential to optimize performance and predict network behavior. Traditional modeling methods, such as packet-level simulators and queueing theory, have notable limitations --either being computationally expensive or relying on restrictive assumptions that reduce accuracy. In this context, the deep learning-based RouteNet family of models has recently redefined network modeling by showing an unprecedented cost-performance trade-off. In this work, we revisit RouteNet's sophisticated design and uncover its hidden connection to Topological Deep Learning (TDL), an emerging field that models higher-order interactions beyond standard graph-based methods. We demonstrate that, although originally formulated as a heterogeneous Graph Neural Network, RouteNet serves as the first instantiation of a new form of TDL. More specifically, this paper presents OrdGCCN, a novel TDL framework that introduces the notion of ordered neighbors in arbitrary discrete topological spaces, and shows that RouteNet's architecture can be naturally described as an ordered topological neural network. To the best of our knowledge, this marks the first successful real-world application of state-of-the-art TDL principles --which we confirm through extensive testbed experiments--, laying the foundation for the next generation of ordered TDL-driven applications.
☆ Optimal Nonlinear Online Learning under Sequential Price Competition via s-Concavity
We consider price competition among multiple sellers over a selling horizon of $T$ periods. In each period, sellers simultaneously offer their prices and subsequently observe their respective demand that is unobservable to competitors. The demand function for each seller depends on all sellers' prices through a private, unknown, and nonlinear relationship. To address this challenge, we propose a semi-parametric least-squares estimation of the nonlinear mean function, which does not require sellers to communicate demand information. We show that when all sellers employ our policy, their prices converge at a rate of $O(T^{-1/7})$ to the Nash equilibrium prices that sellers would reach if they were fully informed. Each seller incurs a regret of $O(T^{5/7})$ relative to a dynamic benchmark policy. A theoretical contribution of our work is proving the existence of equilibrium under shape-constrained demand functions via the concept of $s$-concavity and establishing regret bounds of our proposed policy. Technically, we also establish new concentration results for the least squares estimator under shape constraints. Our findings offer significant insights into dynamic competition-aware pricing and contribute to the broader study of non-parametric learning in strategic decision-making.
☆ Design and Implementation of an FPGA-Based Tiled Matrix Multiplication Accelerator for Transformer Self-Attention on the Xilinx KV260 SoM
Transformer-based LLMs spend most of their compute in large matrix multiplications for attention and feed-forward layers. Recognizing that the Q, K, and V linear projections within the Multi-Head Self-Attention (MHA) module represent a critical computational bottleneck, we strategically focused our efforts on accelerating these operations. We present a tiled matrix multiplication accelerator optimized for such workloads on a Xilinx KV260 on-board FPGA. Key innovations include persistent on-chip storage for one matrix operand, two-level tiling for data reuse, and a systolic-like unrolled compute engine. Implemented via high-level synthesis (HLS) and integrated with DistilBERT for Q, K, V projections, our accelerator achieves significant speedup and energy efficiency gains over CPU baselines. Standalone GEMM benchmarks show up to a 7x speedup over an ARM CPU (PyTorch) and ~200x over naive numpy, with a throughput of up to 3.1 GFLOPs on 768x3072 matrices. Although the overall end-to-end DistilBERT acceleration is more modest, our results validate the potential of FPGA-based acceleration for critical components of Transformer models.
comment: 7 pages, 4 figures, 2 tables. Prepared in ACM conference style. Preprint under review
☆ EDiT: Efficient Diffusion Transformers with Linear Compressed Attention
Diffusion Transformers (DiTs) have emerged as a leading architecture for text-to-image synthesis, producing high-quality and photorealistic images. However, the quadratic scaling properties of the attention in DiTs hinder image generation with higher resolution or on devices with limited resources. This work introduces an efficient diffusion transformer (EDiT) to alleviate these efficiency bottlenecks in conventional DiTs and Multimodal DiTs (MM-DiTs). First, we present a novel linear compressed attention method that uses a multi-layer convolutional network to modulate queries with local information while keys and values are spatially aggregated. Second, we formulate a hybrid attention scheme for multi-modal inputs that combines linear attention for image-to-image interactions and standard scaled dot-product attention for interactions involving prompts. Merging these two approaches leads to an expressive, linear-time Multimodal Efficient Diffusion Transformer (MM-EDiT). We demonstrate the effectiveness of the EDiT and MM-EDiT architectures by integrating them into PixArt-Sigma(conventional DiT) and Stable Diffusion 3.5-Medium (MM-DiT), achieving up to 2.2x speedup with comparable image quality after distillation.
☆ Towards Automated Semantic Interpretability in Reinforcement Learning via Vision-Language Models
Semantic Interpretability in Reinforcement Learning (RL) enables transparency, accountability, and safer deployment by making the agent's decisions understandable and verifiable. Achieving this, however, requires a feature space composed of human-understandable concepts, which traditionally rely on human specification and fail to generalize to unseen environments. In this work, we introduce Semantically Interpretable Reinforcement Learning with Vision-Language Models Empowered Automation (SILVA), an automated framework that leverages pre-trained vision-language models (VLM) for semantic feature extraction and interpretable tree-based models for policy optimization. SILVA first queries a VLM to identify relevant semantic features for an unseen environment, then extracts these features from the environment. Finally, it trains an Interpretable Control Tree via RL, mapping the extracted features to actions in a transparent and interpretable manner. To address the computational inefficiency of extracting features directly with VLMs, we develop a feature extraction pipeline that generates a dataset for training a lightweight convolutional network, which is subsequently used during RL. By leveraging VLMs to automate tree-based RL, SILVA removes the reliance on human annotation previously required by interpretable models while also overcoming the inability of VLMs alone to generate valid robot policies, enabling semantically interpretable reinforcement learning without human-in-the-loop.
☆ CAARMA: Class Augmentation with Adversarial Mixup Regularization
Speaker verification is a typical zero-shot learning task, where inference of unseen classes is performed by comparing embeddings of test instances to known examples. The models performing inference must hence naturally generate embeddings that cluster same-class instances compactly, while maintaining separation across classes. In order to learn to do so, they are typically trained on a large number of classes (speakers), often using specialized losses. However real-world speaker datasets often lack the class diversity needed to effectively learn this in a generalizable manner. We introduce CAARMA, a class augmentation framework that addresses this problem by generating synthetic classes through data mixing in the embedding space, expanding the number of training classes. To ensure the authenticity of the synthetic classes we adopt a novel adversarial refinement mechanism that minimizes categorical distinctions between synthetic and real classes. We evaluate CAARMA on multiple speaker verification tasks, as well as other representative zero-shot comparison-based speech analysis tasks and obtain consistent improvements: our framework demonstrates a significant improvement of 8\% over all baseline models. Code for CAARMA will be released.
☆ Depth Matters: Multimodal RGB-D Perception for Robust Autonomous Agents
Autonomous agents that rely purely on perception to make real-time control decisions require efficient and robust architectures. In this work, we demonstrate that augmenting RGB input with depth information significantly enhances our agents' ability to predict steering commands compared to using RGB alone. We benchmark lightweight recurrent controllers that leverage the fused RGB-D features for sequential decision-making. To train our models, we collect high-quality data using a small-scale autonomous car controlled by an expert driver via a physical steering wheel, capturing varying levels of steering difficulty. Our models, trained under diverse configurations, were successfully deployed on real hardware. Specifically, our findings reveal that the early fusion of depth data results in a highly robust controller, which remains effective even with frame drops and increased noise levels, without compromising the network's focus on the task.
comment: Submitted to IROS 2025
☆ NeuroSep-CP-LCB: A Deep Learning-based Contextual Multi-armed Bandit Algorithm with Uncertainty Quantification for Early Sepsis Prediction
In critical care settings, timely and accurate predictions can significantly impact patient outcomes, especially for conditions like sepsis, where early intervention is crucial. We aim to model patient-specific reward functions in a contextual multi-armed bandit setting. The goal is to leverage patient-specific clinical features to optimize decision-making under uncertainty. This paper proposes NeuroSep-CP-LCB, a novel integration of neural networks with contextual bandits and conformal prediction tailored for early sepsis detection. Unlike the algorithm pool selection problem in the previous paper, where the primary focus was identifying the most suitable pre-trained model for prediction tasks, this work directly models the reward function using a neural network, allowing for personalized and adaptive decision-making. Combining the representational power of neural networks with the robustness of conformal prediction intervals, this framework explicitly accounts for uncertainty in offline data distributions and provides actionable confidence bounds on predictions.
☆ Deep Q-Learning with Gradient Target Tracking
This paper introduces Q-learning with gradient target tracking, a novel reinforcement learning framework that provides a learned continuous target update mechanism as an alternative to the conventional hard update paradigm. In the standard deep Q-network (DQN), the target network is a copy of the online network's weights, held fixed for a number of iterations before being periodically replaced via a hard update. While this stabilizes training by providing consistent targets, it introduces a new challenge: the hard update period must be carefully tuned to achieve optimal performance. To address this issue, we propose two gradient-based target update methods: DQN with asymmetric gradient target tracking (AGT2-DQN) and DQN with symmetric gradient target tracking (SGT2-DQN). These methods replace the conventional hard target updates with continuous and structured updates using gradient descent, which effectively eliminates the need for manual tuning. We provide a theoretical analysis proving the convergence of these methods in tabular settings. Additionally, empirical evaluations demonstrate their advantages over standard DQN baselines, which suggest that gradient-based target updates can serve as an effective alternative to conventional target update mechanisms in Q-learning.
☆ Universal approximation property of neural stochastic differential equations
We identify various classes of neural networks that are able to approximate continuous functions locally uniformly subject to fixed global linear growth constraints. For such neural networks the associated neural stochastic differential equations can approximate general stochastic differential equations, both of It\^o diffusion type, arbitrarily well. Moreover, quantitative error estimates are derived for stochastic differential equations with sufficiently regular coefficients.
comment: 20 pages
☆ ATOM: A Framework of Detecting Query-Based Model Extraction Attacks for Graph Neural Networks
Graph Neural Networks (GNNs) have gained traction in Graph-based Machine Learning as a Service (GMLaaS) platforms, yet they remain vulnerable to graph-based model extraction attacks (MEAs), where adversaries reconstruct surrogate models by querying the victim model. Existing defense mechanisms, such as watermarking and fingerprinting, suffer from poor real-time performance, susceptibility to evasion, or reliance on post-attack verification, making them inadequate for handling the dynamic characteristics of graph-based MEA variants. To address these limitations, we propose ATOM, a novel real-time MEA detection framework tailored for GNNs. ATOM integrates sequential modeling and reinforcement learning to dynamically detect evolving attack patterns, while leveraging $k$-core embedding to capture the structural properties, enhancing detection precision. Furthermore, we provide theoretical analysis to characterize query behaviors and optimize detection strategies. Extensive experiments on multiple real-world datasets demonstrate that ATOM outperforms existing approaches in detection performance, maintaining stable across different time steps, thereby offering a more effective defense mechanism for GMLaaS environments.
☆ Limits of trust in medical AI
Artificial intelligence (AI) is expected to revolutionize the practice of medicine. Recent advancements in the field of deep learning have demonstrated success in a variety of clinical tasks: detecting diabetic retinopathy from images, predicting hospital readmissions, aiding in the discovery of new drugs, etc. AI's progress in medicine, however, has led to concerns regarding the potential effects of this technology upon relationships of trust in clinical practice. In this paper, I will argue that there is merit to these concerns, since AI systems can be relied upon, and are capable of reliability, but cannot be trusted, and are not capable of trustworthiness. Insofar as patients are required to rely upon AI systems for their medical decision-making, there is potential for this to produce a deficit of trust in relationships in clinical practice.
comment: 12 pages
☆ Making the unmodulated pyramid wavefront sensor smart II. First on-sky demonstration of extreme adaptive optics with deep learning
Pyramid wavefront sensors (PWFSs) are the preferred choice for current and future extreme adaptive optics (XAO) systems. Almost all instruments use the PWFS in its modulated form to mitigate its limited linearity range. However, this modulation comes at the cost of a reduction in sensitivity, a blindness to petal-piston modes, and a limit to the sensor's ability to operate at high speeds. Therefore, there is strong interest to use the PWFS without modulation, which can be enabled with nonlinear reconstructors. Here, we present the first on-sky demonstration of XAO with an unmodulated PWFS using a nonlinear reconstructor based on convolutional neural networks. We discuss the real-time implementation on the Magellan Adaptive Optics eXtreme (MagAO-X) instrument using the optimized TensorRT framework and show that inference is fast enough to run the control loop at >2 kHz frequencies. Our on-sky results demonstrate a successful closed-loop operation using a model calibrated with internal source data that delivers stable and robust correction under varying conditions. Performance analysis reveals that our smart PWFS achieves nearly the same Strehl ratio as the highly optimized modulated PWFS under favorable conditions on bright stars. Notably, we observe an improvement in performance on a fainter star under the influence of strong winds. These findings confirm the feasibility of using the PWFS in its unmodulated form and highlight its potential for next-generation instruments. Future efforts will focus on achieving even higher control loop frequencies (>3 kHz), optimizing the calibration procedures, and testing its performance on fainter stars, where more gain is expected for the unmodulated PWFS compared to its modulated counterpart.
comment: Accepted for publication in A&A
☆ QCPINN: Quantum Classical Physics-Informed Neural Networks for Solving PDEs
Hybrid quantum-classical neural network methods represent an emerging approach to solving computational challenges by leveraging advantages from both paradigms. As physics-informed neural networks (PINNs) have successfully applied to solve partial differential equations (PDEs) by incorporating physical constraints into neural architectures, this work investigates whether quantum-classical physics-informed neural networks (QCPINNs) can efficiently solve PDEs with reduced parameter counts compared to classical approaches. We evaluate two quantum circuit paradigms: continuous-variable (CV) and qubit-based discrete-variable (DV) across multiple circuit ansatze (Alternate, Cascade, Cross mesh, and Layered). Benchmarking across five challenging PDEs (Helmholtz, Cavity, Wave, Klein-Gordon, and Convection-Diffusion equations) demonstrates that our hybrid approaches achieve comparable accuracy to classical PINNs while requiring up to 89% fewer trainable parameters. DV-based implementations, particularly those with angle encoding and cascade circuit configurations, exhibit better stability and convergence properties across all problem types. For the Convection-Diffusion equation, our angle-cascade QCPINN achieves parameter efficiency and a 37% reduction in relative L2 error compared to classical counterparts. Our findings highlight the potential of quantum-enhanced architectures for physics-informed learning, establishing parameter efficiency as a quantifiable quantum advantage while providing a foundation for future quantum-classical hybrid systems solving complex physical models.
☆ Subgradient Method for System Identification with Non-Smooth Objectives
This paper investigates a subgradient-based algorithm to solve the system identification problem for linear time-invariant systems with non-smooth objectives. This is essential for robust system identification in safety-critical applications. While existing work provides theoretical exact recovery guarantees using optimization solvers, the design of fast learning algorithms with convergence guarantees for practical use remains unexplored. We analyze the subgradient method in this setting where the optimization problems to be solved change over time as new measurements are taken, and we establish linear convergence results for both the best and Polyak step sizes after a burn-in period. Additionally, we characterize the asymptotic convergence of the best average sub-optimality gap under diminishing and constant step sizes. Finally, we compare the time complexity of standard solvers with the subgradient algorithm and support our findings with experimental results. This is the first work to analyze subgradient algorithms for system identification with non-smooth objectives.
comment: 8 pages, 5 figures
☆ Accelerating Transformer Inference and Training with 2:4 Activation Sparsity
In this paper, we demonstrate how to leverage 2:4 sparsity, a popular hardware-accelerated GPU sparsity pattern, to activations to accelerate large language model training and inference. Crucially we exploit the intrinsic sparsity found in Squared-ReLU activations to provide this acceleration with no accuracy loss. Our approach achieves up to 1.3x faster Feed Forward Network (FFNs) in both the forwards and backwards pass. This work highlights the potential for sparsity to play a key role in accelerating large language model training and inference.
☆ A preliminary data fusion study to assess the feasibility of Foundation Process-Property Models in Laser Powder Bed Fusion
Foundation models are at the forefront of an increasing number of critical applications. In regards to technologies such as additive manufacturing (AM), these models have the potential to dramatically accelerate process optimization and, in turn, design of next generation materials. A major challenge that impedes the construction of foundation process-property models is data scarcity. To understand the impact of this challenge, and since foundation models rely on data fusion, in this work we conduct controlled experiments where we focus on the transferability of information across different material systems and properties. More specifically, we generate experimental datasets from 17-4 PH and 316L stainless steels (SSs) in Laser Powder Bed Fusion (LPBF) where we measure the effect of five process parameters on porosity and hardness. We then leverage Gaussian processes (GPs) for process-property modeling in various configurations to test if knowledge about one material system or property can be leveraged to build more accurate machine learning models for other material systems or properties. Through extensive cross-validation studies and probing the GPs' interpretable hyperparameters, we study the intricate relation among data size and dimensionality, complexity of the process-property relations, noise, and characteristics of machine learning models. Our findings highlight the need for structured learning approaches that incorporate domain knowledge in building foundation process-property models rather than relying on uninformed data fusion in data-limited applications.
Efficient Training of Neural Fractional-Order Differential Equation via Adjoint Backpropagation AAAI
Fractional-order differential equations (FDEs) enhance traditional differential equations by extending the order of differential operators from integers to real numbers, offering greater flexibility in modeling complex dynamical systems with nonlocal characteristics. Recent progress at the intersection of FDEs and deep learning has catalyzed a new wave of innovative models, demonstrating the potential to address challenges such as graph representation learning. However, training neural FDEs has primarily relied on direct differentiation through forward-pass operations in FDE numerical solvers, leading to increased memory usage and computational complexity, particularly in large-scale applications. To address these challenges, we propose a scalable adjoint backpropagation method for training neural FDEs by solving an augmented FDE backward in time, which substantially reduces memory requirements. This approach provides a practical neural FDE toolbox and holds considerable promise for diverse applications. We demonstrate the effectiveness of our method in several tasks, achieving performance comparable to baseline models while significantly reducing computational overhead.
comment: AAAI Conference on Artificial Intelligence 2025
☆ ContextGNN goes to Elliot: Towards Benchmarking Relational Deep Learning for Static Link Prediction (aka Personalized Item Recommendation)
Relational deep learning (RDL) settles among the most exciting advances in machine learning for relational databases, leveraging the representational power of message passing graph neural networks (GNNs) to derive useful knowledge and run predicting tasks on tables connected through primary-to-foreign key links. The RDL paradigm has been successfully applied to recommendation lately, through its most recent representative deep learning architecture namely, ContextGNN. While acknowledging ContextGNN's improved performance on real-world recommendation datasets and tasks, preliminary tests for the more traditional static link prediction task (aka personalized item recommendation) on the popular Amazon Book dataset have demonstrated how ContextGNN has still room for improvement compared to other state-of-the-art GNN-based recommender systems. To this end, with this paper, we integrate ContextGNN within Elliot, a popular framework for reproducibility and benchmarking analyses, counting around 50 state-of-the-art recommendation models from the literature to date. On such basis, we run preliminary experiments on three standard recommendation datasets and against six state-of-the-art GNN-based recommender systems, confirming similar trends to those observed by the authors in their original paper. The code is publicly available on GitHub: https://github.com/danielemalitesta/Rel-DeepLearning-RecSys.
☆ Advances in Protein Representation Learning: Methods, Applications, and Future Directions
Proteins are complex biomolecules that play a central role in various biological processes, making them critical targets for breakthroughs in molecular biology, medical research, and drug discovery. Deciphering their intricate, hierarchical structures, and diverse functions is essential for advancing our understanding of life at the molecular level. Protein Representation Learning (PRL) has emerged as a transformative approach, enabling the extraction of meaningful computational representations from protein data to address these challenges. In this paper, we provide a comprehensive review of PRL research, categorizing methodologies into five key areas: feature-based, sequence-based, structure-based, multimodal, and complex-based approaches. To support researchers in this rapidly evolving field, we introduce widely used databases for protein sequences, structures, and functions, which serve as essential resources for model development and evaluation. We also explore the diverse applications of these approaches in multiple domains, demonstrating their broad impact. Finally, we discuss pressing technical challenges and outline future directions to advance PRL, offering insights to inspire continued innovation in this foundational field.
☆ To impute or not to impute: How machine learning modelers treat missing data
Missing data is prevalent in tabular machine learning (ML) models, and different missing data treatment methods can significantly affect ML model training results. However, little is known about how ML researchers and engineers choose missing data treatment methods and what factors affect their choices. To this end, we conducted a survey of 70 ML researchers and engineers. Our results revealed that most participants were not making informed decisions regarding missing data treatment, which could significantly affect the validity of the ML models trained by these researchers. We advocate for better education on missing data, more standardized missing data reporting, and better missing data analysis tools.
☆ Whenever, Wherever: Towards Orchestrating Crowd Simulations with Spatio-Temporal Spawn Dynamics
Realistic crowd simulations are essential for immersive virtual environments, relying on both individual behaviors (microscopic dynamics) and overall crowd patterns (macroscopic characteristics). While recent data-driven methods like deep reinforcement learning improve microscopic realism, they often overlook critical macroscopic features such as crowd density and flow, which are governed by spatio-temporal spawn dynamics, namely, when and where agents enter a scene. Traditional methods, like random spawn rates, stochastic processes, or fixed schedules, are not guaranteed to capture the underlying complexity or lack diversity and realism. To address this issue, we propose a novel approach called nTPP-GMM that models spatio-temporal spawn dynamics using Neural Temporal Point Processes (nTPPs) that are coupled with a spawn-conditional Gaussian Mixture Model (GMM) for agent spawn and goal positions. We evaluate our approach by orchestrating crowd simulations of three diverse real-world datasets with nTPP-GMM. Our experiments demonstrate the orchestration with nTPP-GMM leads to realistic simulations that reflect real-world crowd scenarios and allow crowd analysis.
☆ Utilizing Reinforcement Learning for Bottom-Up part-wise Reconstruction of 2D Wire-Frame Projections
This work concerns itself with the task of reconstructing all edges of an arbitrary 3D wire-frame model projected to an image plane. We explore a bottom-up part-wise procedure undertaken by an RL agent to segment and reconstruct these 2D multipart objects. The environment's state is represented as a four-colour image, where different colours correspond to background, a target edge, a reconstruction line, and the overlap of both. At each step, the agent can transform the reconstruction line within a four-dimensional action space or terminate the episode using a specific termination action. To investigate the impact of reward function formulations, we tested episodic and incremental rewards, as well as combined approaches. Empirical results demonstrated that the latter yielded the most effective training performance. To further enhance efficiency and stability, we introduce curriculum learning strategies. First, an action-based curriculum was implemented, where the agent was initially restricted to a reduced action space, being able to only perform three of the five possible actions, before progressing to the full action space. Second, we test a task-based curriculum, where the agent first solves a simplified version of the problem before being presented with the full, more complex task. This second approach produced promising results, as the agent not only successfully transitioned from learning the simplified task to mastering the full task, but in doing so gained significant performance. This study demonstrates the potential of an iterative RL wire-frame reconstruction in two dimensions. By combining optimized reward function formulations with curriculum learning strategies, we achieved significant improvements in training success. The proposed methodology provides an effective framework for solving similar tasks and represents a promising direction for future research in the field.
comment: Accepted to RLDM 2025
☆ MobilePlantViT: A Mobile-friendly Hybrid ViT for Generalized Plant Disease Image Classification
Plant diseases significantly threaten global food security by reducing crop yields and undermining agricultural sustainability. AI-driven automated classification has emerged as a promising solution, with deep learning models demonstrating impressive performance in plant disease identification. However, deploying these models on mobile and edge devices remains challenging due to high computational demands and resource constraints, highlighting the need for lightweight, accurate solutions for accessible smart agriculture systems. To address this, we propose MobilePlantViT, a novel hybrid Vision Transformer (ViT) architecture designed for generalized plant disease classification, which optimizes resource efficiency while maintaining high performance. Extensive experiments across diverse plant disease datasets of varying scales show our model's effectiveness and strong generalizability, achieving test accuracies ranging from 80% to over 99%. Notably, with only 0.69 million parameters, our architecture outperforms the smallest versions of MobileViTv1 and MobileViTv2, despite their higher parameter counts. These results underscore the potential of our approach for real-world, AI-powered automated plant disease classification in sustainable and resource-efficient smart agriculture systems. All codes will be available in the GitHub repository: https://github.com/moshiurtonmoy/MobilePlantViT
comment: Submitted to a journal for peer-review under IEEE Transactions series
☆ Classification of User Reports for Detection of Faulty Computer Components using NLP Models: A Case Study
Computer manufacturers typically offer platforms for users to report faults. However, there remains a significant gap in these platforms' ability to effectively utilize textual reports, which impedes users from describing their issues in their own words. In this context, Natural Language Processing (NLP) offers a promising solution, by enabling the analysis of user-generated text. This paper presents an innovative approach that employs NLP models to classify user reports for detecting faulty computer components, such as CPU, memory, motherboard, video card, and more. In this work, we build a dataset of 341 user reports obtained from many sources. Additionally, through extensive experimental evaluation, our approach achieved an accuracy of 79% with our dataset.
comment: 9 pages, 2 figures
☆ Informative Path Planning to Explore and Map Unknown Planetary Surfaces with Gaussian Processes
Many environments, such as unvisited planetary surfaces and oceanic regions, remain unexplored due to a lack of prior knowledge. Autonomous vehicles must sample upon arrival, process data, and either transmit findings to a teleoperator or decide where to explore next. Teleoperation is suboptimal, as human intuition lacks mathematical guarantees for optimality. This study evaluates an informative path planning algorithm for mapping a scalar variable distribution while minimizing travel distance and ensuring model convergence. We compare traditional open loop coverage methods (e.g., Boustrophedon, Spiral) with information-theoretic approaches using Gaussian processes, which update models iteratively with confidence metrics. The algorithm's performance is tested on three surfaces, a parabola, Townsend function, and lunar crater hydration map, to assess noise, convexity, and function behavior. Results demonstrate that information-driven methods significantly outperform naive exploration in reducing model error and travel distance while improving convergence potential.
☆ A Recipe for Generating 3D Worlds From a Single Image
We introduce a recipe for generating immersive 3D worlds from a single image by framing the task as an in-context learning problem for 2D inpainting models. This approach requires minimal training and uses existing generative models. Our process involves two steps: generating coherent panoramas using a pre-trained diffusion model and lifting these into 3D with a metric depth estimator. We then fill unobserved regions by conditioning the inpainting model on rendered point clouds, requiring minimal fine-tuning. Tested on both synthetic and real images, our method produces high-quality 3D environments suitable for VR display. By explicitly modeling the 3D structure of the generated environment from the start, our approach consistently outperforms state-of-the-art, video synthesis-based methods along multiple quantitative image quality metrics. Project Page: https://katjaschwarz.github.io/worlds/
☆ Transformer-based Wireless Symbol Detection Over Fading Channels
Pre-trained Transformers, through in-context learning (ICL), have demonstrated exceptional capabilities to adapt to new tasks using example prompts without model update. Transformer-based wireless receivers, where prompts consist of the pilot data in the form of transmitted and received signal pairs, have shown high detection accuracy when pilot data are abundant. However, pilot information is often costly and limited in practice. In this work, we propose the DEcision Feedback INcontExt Detection (DEFINED) solution as a new wireless receiver design, which bypasses channel estimation and directly performs symbol detection using the (sometimes extremely) limited pilot data. The key innovation in DEFINED is the proposed decision feedback mechanism in ICL, where we sequentially incorporate the detected symbols into the prompts as pseudo-labels to improve the detection for subsequent symbols. Furthermore, we proposed another detection method where we combine ICL with Semi-Supervised Learning (SSL) to extract information from both labeled and unlabeled data during inference, thus avoiding the errors propagated during the decision feedback process of the original DEFINED. Extensive experiments across a broad range of wireless communication settings demonstrate that a small Transformer trained with DEFINED or IC-SSL achieves significant performance improvements over conventional methods, in some cases only needing a single pilot pair to achieve similar performance of the latter with more than 4 pilot pairs.
comment: arXiv admin note: substantial text overlap with arXiv:2411.07600
☆ A Statistical Analysis for Per-Instance Evaluation of Stochastic Optimizers: How Many Repeats Are Enough?
A key trait of stochastic optimizers is that multiple runs of the same optimizer in attempting to solve the same problem can produce different results. As a result, their performance is evaluated over several repeats, or runs, on the problem. However, the accuracy of the estimated performance metrics depends on the number of runs and should be studied using statistical tools. We present a statistical analysis of the common metrics, and develop guidelines for experiment design to measure the optimizer's performance using these metrics to a high level of confidence and accuracy. To this end, we first discuss the confidence interval of the metrics and how they are related to the number of runs of an experiment. We then derive a lower bound on the number of repeats in order to guarantee achieving a given accuracy in the metrics. Using this bound, we propose an algorithm to adaptively adjust the number of repeats needed to ensure the accuracy of the evaluated metric. Our simulation results demonstrate the utility of our analysis and how it allows us to conduct reliable benchmarking as well as hyperparameter tuning and prevent us from drawing premature conclusions regarding the performance of stochastic optimizers.
☆ Distributed LLMs and Multimodal Large Language Models: A Survey on Advances, Challenges, and Future Directions
Language models (LMs) are machine learning models designed to predict linguistic patterns by estimating the probability of word sequences based on large-scale datasets, such as text. LMs have a wide range of applications in natural language processing (NLP) tasks, including autocomplete and machine translation. Although larger datasets typically enhance LM performance, scalability remains a challenge due to constraints in computational power and resources. Distributed computing strategies offer essential solutions for improving scalability and managing the growing computational demand. Further, the use of sensitive datasets in training and deployment raises significant privacy concerns. Recent research has focused on developing decentralized techniques to enable distributed training and inference while utilizing diverse computational resources and enabling edge AI. This paper presents a survey on distributed solutions for various LMs, including large language models (LLMs), vision language models (VLMs), multimodal LLMs (MLLMs), and small language models (SLMs). While LLMs focus on processing and generating text, MLLMs are designed to handle multiple modalities of data (e.g., text, images, and audio) and to integrate them for broader applications. To this end, this paper reviews key advancements across the MLLM pipeline, including distributed training, inference, fine-tuning, and deployment, while also identifying the contributions, limitations, and future areas of improvement. Further, it categorizes the literature based on six primary focus areas of decentralization. Our analysis describes gaps in current methodologies for enabling distributed solutions for LMs and outline future research directions, emphasizing the need for novel solutions to enhance the robustness and applicability of distributed LMs.
☆ Explainable AI-Guided Efficient Approximate DNN Generation for Multi-Pod Systolic Arrays
Approximate deep neural networks (AxDNNs) are promising for enhancing energy efficiency in real-world devices. One of the key contributors behind this enhanced energy efficiency in AxDNNs is the use of approximate multipliers. Unfortunately, the simulation of approximate multipliers does not usually scale well on CPUs and GPUs. As a consequence, this slows down the overall simulation of AxDNNs aimed at identifying the appropriate approximate multipliers to achieve high energy efficiency with a minimum accuracy loss. To address this problem, we present a novel XAI-Gen methodology, which leverages the analytical model of the emerging hardware accelerator (e.g., Google TPU v4) and explainable artificial intelligence (XAI) to precisely identify the non-critical layers for approximation and quickly discover the appropriate approximate multipliers for AxDNN layers. Our results show that XAI-Gen achieves up to 7x lower energy consumption with only 1-2% accuracy loss. We also showcase the effectiveness of the XAI-Gen approach through a neural architecture search (XAI-NAS) case study. Interestingly, XAI-NAS achieves 40\% higher energy efficiency with up to 5x less execution time when compared to the state-of-the-art NAS methods for generating AxDNNs.
comment: This paper has been accepted in the ISQED 2025 conference
☆ Machine Learning-Based Genomic Linguistic Analysis (Gene Sequence Feature Learning): A Case Study on Predicting Heavy Metal Response Genes in Rice
This study explores the application of machine learning-based genetic linguistics for identifying heavy metal response genes in rice (Oryza sativa). By integrating convolutional neural networks and random forest algorithms, we developed a hybrid model capable of extracting and learning meaningful features from gene sequences, such as k-mer frequencies and physicochemical properties. The model was trained and tested on datasets of genes, achieving high predictive performance (precision: 0.89, F1-score: 0.82). RNA-seq and qRT-PCR experiments conducted on rice leaves which exposed to Hg0, revealed differential expression of genes associated with heavy metal responses, which validated the model's predictions. Co-expression network analysis identified 103 related genes, and a literature review indicated that these genes are highly likely to be involved in heavy metal-related biological processes. By integrating and comparing the analysis results with those of differentially expressed genes (DEGs), the validity of the new machine learning method was further demonstrated. This study highlights the efficacy of combining machine learning with genetic linguistics for large-scale gene prediction. It demonstrates a cost-effective and efficient approach for uncovering molecular mechanisms underlying heavy metal responses, with potential applications in developing stress-tolerant crop varieties.
☆ Investigating Retrieval-Augmented Generation in Quranic Studies: A Study of 13 Open-Source Large Language Models
Accurate and contextually faithful responses are critical when applying large language models (LLMs) to sensitive and domain-specific tasks, such as answering queries related to quranic studies. General-purpose LLMs often struggle with hallucinations, where generated responses deviate from authoritative sources, raising concerns about their reliability in religious contexts. This challenge highlights the need for systems that can integrate domain-specific knowledge while maintaining response accuracy, relevance, and faithfulness. In this study, we investigate 13 open-source LLMs categorized into large (e.g., Llama3:70b, Gemma2:27b, QwQ:32b), medium (e.g., Gemma2:9b, Llama3:8b), and small (e.g., Llama3.2:3b, Phi3:3.8b). A Retrieval-Augmented Generation (RAG) is used to make up for the problems that come with using separate models. This research utilizes a descriptive dataset of Quranic surahs including the meanings, historical context, and qualities of the 114 surahs, allowing the model to gather relevant knowledge before responding. The models are evaluated using three key metrics set by human evaluators: context relevance, answer faithfulness, and answer relevance. The findings reveal that large models consistently outperform smaller models in capturing query semantics and producing accurate, contextually grounded responses. The Llama3.2:3b model, even though it is considered small, does very well on faithfulness (4.619) and relevance (4.857), showing the promise of smaller architectures that have been well optimized. This article examines the trade-offs between model size, computational efficiency, and response quality while using LLMs in domain-specific applications.
comment: 11 pages, keywords: Large-language-models; retrieval-augmented generation; question answering; Quranic studies; Islamic teachings
☆ Procrustes Wasserstein Metric: A Modified Benamou-Brenier Approach with Applications to Latent Gaussian Distributions
We introduce a modified Benamou-Brenier type approach leading to a Wasserstein type distance that allows global invariance, specifically, isometries, and we show that the problem can be summarized to orthogonal transformations. This distance is defined by penalizing the action with a costless movement of the particle that does not change the direction and speed of its trajectory. We show that for Gaussian distribution resume to measuring the Euclidean distance between their ordered vector of eigenvalues and we show a direct application in recovering Latent Gaussian distributions.
♻ ☆ Sample Efficient Preference Alignment in LLMs via Active Exploration
Preference-based feedback is important for many applications in machine learning where evaluation of a reward function is not feasible. Notable recent examples arise in preference alignment for large language models, including in reinforcement learning from human feedback (RLHF) and direct preference optimization (DPO). For many applications of preference alignment, the cost of acquiring human feedback can be substantial. In this work, we take advantage of the fact that one can often choose contexts at which to obtain human feedback to most efficiently identify a good policy, and formalize the setting as an active contextual dueling bandit problem. We propose an active exploration algorithm to efficiently select the data and provide theoretical proof that it has a polynomial worst-case regret bound. We extend the setting and methodology for practical use in preference alignment of large language models. We provide two extensions, an online and an offline approach. Our method outperforms the baselines with limited samples of human preferences on several language models and four real-world datasets including two new datasets that we contribute to the literature.
♻ ☆ Pathways on the Image Manifold: Image Editing via Video Generation
Recent advances in image editing, driven by image diffusion models, have shown remarkable progress. However, significant challenges remain, as these models often struggle to follow complex edit instructions accurately and frequently compromise fidelity by altering key elements of the original image. Simultaneously, video generation has made remarkable strides, with models that effectively function as consistent and continuous world simulators. In this paper, we propose merging these two fields by utilizing image-to-video models for image editing. We reformulate image editing as a temporal process, using pretrained video models to create smooth transitions from the original image to the desired edit. This approach traverses the image manifold continuously, ensuring consistent edits while preserving the original image's key aspects. Our approach achieves state-of-the-art results on text-based image editing, demonstrating significant improvements in both edit accuracy and image preservation. Visit our project page at https://rotsteinnoam.github.io/Frame2Frame.
♻ ☆ LOCAL: Learning with Orientation Matrix to Infer Causal Structure from Time Series Data
Discovering the underlying Directed Acyclic Graph (DAG) from time series observational data is highly challenging due to the dynamic nature and complex nonlinear interactions between variables. Existing methods typically search for the optimal DAG by optimizing an objective function but face scalability challenges, as their computational demands grow exponentially with the dimensional expansion of variables. To this end, we propose LOCAL, a highly efficient, easy-to-implement, and constraint-free method for recovering dynamic causal structures. LOCAL is the first attempt to formulate a quasi-maximum likelihood-based score function for learning the dynamic DAG equivalent to the ground truth. Building on this, we introduce two adaptive modules that enhance the algebraic characterization of acyclicity: Asymptotic Causal Mask Learning (ACML) and Dynamic Graph Parameter Learning (DGPL). ACML constructs causal masks using learnable priority vectors and the Gumbel-Sigmoid function, ensuring DAG formation while optimizing computational efficiency. DGPL transforms causal learning into decomposed matrix products, capturing dynamic causal structure in high-dimensional data and improving interpretability. Extensive experiments on synthetic and real-world datasets demonstrate that LOCAL significantly outperforms existing methods and highlight LOCAL's potential as a robust and efficient method for dynamic causal discovery.
comment: 16 pages, 7 figures
♻ ☆ Wolf: Dense Video Captioning with a World Summarization Framework
We propose Wolf, a WOrLd summarization Framework for accurate video captioning. Wolf is an automated captioning framework that adopts a mixture-of-experts approach, leveraging complementary strengths of Vision Language Models (VLMs). By utilizing both image and video models, our framework captures different levels of information and summarizes them efficiently. Our approach can be applied to enhance video understanding, auto-labeling, and captioning. To evaluate caption quality, we introduce CapScore, an LLM-based metric to assess the similarity and quality of generated captions compared to the ground truth captions. We further build four human-annotated datasets in three domains: autonomous driving, general scenes, and robotics, to facilitate comprehensive comparisons. We show that Wolf achieves superior captioning performance compared to state-of-the-art approaches from the research community (VILA1.5, CogAgent) and commercial solutions (Gemini-Pro-1.5, GPT-4V). For instance, in comparison with GPT-4V, Wolf improves CapScore both quality-wise by 55.6% and similarity-wise by 77.4% on challenging driving videos. Finally, we establish a benchmark for video captioning and introduce a leaderboard, aiming to accelerate advancements in video understanding, captioning, and data alignment. Webpage: https://wolfv0.github.io/.
♻ ☆ Hamiltonian Neural Networks approach to fuzzball geodesics
The recent increase in computational resources and data availability has led to a significant rise in the use of Machine Learning (ML) techniques for data analysis in physics. However, the application of ML methods to solve differential equations capable of describing even complex physical systems is not yet fully widespread in theoretical high-energy physics. Hamiltonian Neural Networks (HNNs) are tools that minimize a loss function defined to solve Hamilton equations of motion. In this work, we implement several HNNs trained to solve, with high accuracy, the Hamilton equations for a massless probe moving inside a smooth and horizonless geometry known as D1-D5 circular fuzzball. We study both planar (equatorial) and non-planar geodesics in different regimes according to the impact parameter, some of which are unstable. Our findings suggest that HNNs could eventually replace standard numerical integrators, as they are equally accurate but more reliable in critical situations.
comment: 25 pages + Appendices, 39 figures
♻ ☆ Enhancing the Scalability and Applicability of Kohn-Sham Hamiltonians for Molecular Systems
Density Functional Theory (DFT) is a pivotal method within quantum chemistry and materials science, with its core involving the construction and solution of the Kohn-Sham Hamiltonian. Despite its importance, the application of DFT is frequently limited by the substantial computational resources required to construct the Kohn-Sham Hamiltonian. In response to these limitations, current research has employed deep-learning models to efficiently predict molecular and solid Hamiltonians, with roto-translational symmetries encoded in their neural networks. However, the scalability of prior models may be problematic when applied to large molecules, resulting in non-physical predictions of ground-state properties. In this study, we generate a substantially larger training set (PubChemQH) than used previously and use it to create a scalable model for DFT calculations with physical accuracy. For our model, we introduce a loss function derived from physical principles, which we call Wavefunction Alignment Loss (WALoss). WALoss involves performing a basis change on the predicted Hamiltonian to align it with the observed one; thus, the resulting differences can serve as a surrogate for orbital energy differences, allowing models to make better predictions for molecular orbitals and total energies than previously possible. WALoss also substantially accelerates self-consistent-field (SCF) DFT calculations. Here, we show it achieves a reduction in total energy prediction error by a factor of 1347 and an SCF calculation speed-up by a factor of 18%. These substantial improvements set new benchmarks for achieving accurate and applicable predictions in larger molecular systems.
♻ ☆ Do you know what q-means?
Clustering is one of the most important tools for analysis of large datasets, and perhaps the most popular clustering algorithm is Lloyd's iteration for $k$-means. This iteration takes $n$ vectors $V=[v_1,\dots,v_n]\in\mathbb{R}^{n\times d}$ and outputs $k$ centroids $c_1,\dots,c_k\in\mathbb{R}^d$; these partition the vectors into clusters based on which centroid is closest to a particular vector. We present an overall improved version of the "$q$-means" algorithm, the quantum algorithm originally proposed by Kerenidis, Landman, Luongo, and Prakash (NeurIPS'19) which performs $\varepsilon$-$k$-means, an approximate version of $k$-means clustering. Our algorithm does not rely on quantum linear algebra primitives of prior work, but instead only uses QRAM to prepare simple states based on the current iteration's clusters and multivariate quantum amplitude estimation. The time complexity is $\widetilde{O}\big(\frac{\|V\|_F}{\sqrt{n}}\frac{k^{5/2}d}{\varepsilon}(\sqrt{k} + \log{n})\big)$ and maintains the logarithmic dependence on $n$ while improving the dependence on most of the other parameters. We also present a "dequantized" algorithm for $\varepsilon$-$k$-means which runs in $O\big(\frac{\|V\|_F^2}{n}\frac{k^{2}}{\varepsilon^2}(kd + \log{n})\big)$ time. Notably, this classical algorithm matches the logarithmic dependence on $n$ attained by the quantum algorithm.
comment: 14 pages. v2: improved the quantum complexity, added references
♻ ☆ Masked Mixers for Language Generation and Retrieval
Attention mechanisms that confer selective focus on a strict subset of input elements are nearly ubiquitous in language models today. We posit there to be downside to the use of attention: most input information is lost. In support of this idea we observe poor input representation accuracy in transformers and more accurate representation in what we term masked mixers, which replace self-attention with masked convolutions. The masked mixer learns causal language modeling more efficiently than early transformer implementations and even outperforms optimized, current transformers when training on small ($n_{ctx}<512$) but not larger context windows. Evidence is presented for the hypothesis that differences in transformer and masked mixer training efficiencies for various tasks are best predicted by input representation accuracy, or equivalently global invertibility. We hypothesize that the information loss exhibited by transformers would be more detrimental to retrieval than generation, as the former is more closely approximated by a bijective and thus invertible function. We find that masked mixers are more effective retrieval models both when the pretrained embedding model is unchanged as well as when the embedding model is modified via cosine similarity-based InfoNCE loss minimization. A small masked mixer is shown to outperform a large and near state-of-the-art transformer-based retrieval model, despite the latter being trained with many orders of magnitude more data and compute.
comment: 31 pages, 9 figures, 4 tables, 14 supplementary figures, 10 supplementary tables
Seq-VCR: Preventing Collapse in Intermediate Transformer Representations for Enhanced Reasoning
Decoder-only Transformers often struggle with complex reasoning tasks, particularly arithmetic reasoning requiring multiple sequential operations. In this work, we identify representation collapse in the model's intermediate layers as a key factor limiting their reasoning capabilities. To address this, we propose Sequential Variance-Covariance Regularization (Seq-VCR), which enhances the entropy of intermediate representations and prevents collapse. Combined with dummy pause tokens as substitutes for chain-of-thought (CoT) tokens, our method significantly improves performance in arithmetic reasoning problems. In the challenging $5 \times 5$ integer multiplication task, our approach achieves $99.5\%$ exact match accuracy, outperforming models of the same size (which yield $0\%$ accuracy) and GPT-4 with five-shot CoT prompting ($44\%$). We also demonstrate superior results on arithmetic expression and longest increasing subsequence (LIS) datasets. Our findings highlight the importance of preventing intermediate layer representation collapse to enhance the reasoning capabilities of Transformers and show that Seq-VCR offers an effective solution without requiring explicit CoT supervision.
♻ ☆ ReLearn: Unlearning via Learning for Large Language Models
Current unlearning methods for large language models usually rely on reverse optimization to reduce target token probabilities. However, this paradigm disrupts the subsequent tokens prediction, degrading model performance and linguistic coherence. Moreover, existing evaluation metrics overemphasize contextual forgetting while inadequately assessing response fluency and relevance. To address these challenges, we propose ReLearn, a data augmentation and fine-tuning pipeline for effective unlearning, along with a comprehensive evaluation framework. This framework introduces Knowledge Forgetting Rate (KFR) and Knowledge Retention Rate (KRR) to measure knowledge-level preservation, and Linguistic Score (LS) to evaluate generation quality. Our experiments show that ReLearn successfully achieves targeted forgetting while preserving high-quality output. Through mechanistic analysis, we further demonstrate how reverse optimization disrupts coherent text generation, while ReLearn preserves this essential capability. Code is available at https://github.com/zjunlp/unlearn.
comment: Work in progress
♻ ☆ Karyotype AI for Precision Oncology
We present a machine learning method capable of accurately detecting chromosome abnormalities that cause blood cancers directly from microscope images of the metaphase stage of cell division. The pipeline is built on a series of fine-tuned Vision Transformers. Current state of the art (and standard clinical practice) requires expensive, manual expert analysis, whereas our pipeline takes only 15 seconds per metaphase image. Using a novel pretraining-finetuning strategy to mitigate the challenge of data scarcity, we achieve a high precision-recall score of 94% AUC for the clinically significant del(5q) and t(9;22) anomalies. Our method also unlocks zero-shot detection of rare aberrations based on model latent embeddings. The ability to quickly, accurately, and scalably diagnose genetic abnormalities directly from metaphase images could transform karyotyping practice and improve patient outcomes. We will make code publicly available.
♻ ☆ Quantum Algorithms for the Pathwise Lasso
We present a novel quantum high-dimensional linear regression algorithm with an $\ell_1$-penalty based on the classical LARS (Least Angle Regression) pathwise algorithm. Similarly to available classical algorithms for Lasso, our quantum algorithm provides the full regularisation path as the penalty term varies, but quadratically faster per iteration under specific conditions. A quadratic speedup on the number of features $d$ is possible by using the simple quantum minimum-finding subroutine from D\"urr and Hoyer (arXiv'96) in order to obtain the joining time at each iteration. We then improve upon this simple quantum algorithm and obtain a quadratic speedup both in the number of features $d$ and the number of observations $n$ by using the approximate quantum minimum-finding subroutine from Chen and de Wolf (ICALP'23). In order to do so, we approximately compute the joining times to be searched over by the approximate quantum minimum-finding subroutine. As another main contribution, we prove, via an approximate version of the KKT conditions and a duality gap, that the LARS algorithm (and therefore our quantum algorithm) is robust to errors. This means that it still outputs a path that minimises the Lasso cost function up to a small error if the joining times are only approximately computed. Furthermore, we show that, when the observations are sampled from a Gaussian distribution, our quantum algorithm's complexity only depends polylogarithmically on $n$, exponentially better than the classical LARS algorithm, while keeping the quadratic improvement on $d$. Moreover, we propose a dequantised version of our quantum algorithm that also retains the polylogarithmic dependence on $n$, albeit presenting the linear scaling on $d$ from the standard LARS algorithm. Finally, we prove query lower bounds for classical and quantum Lasso algorithms.
comment: 54 pages. v2: several improvements, typos fixed, references added, fixed a bug in Theorem 28, exponentially improved the complexity dependence on the number of observations $n$ for a random Gaussian input matrix; v3: new lower bounds added, published version at Quantum Journal
♻ ☆ Multi-Output Distributional Fairness via Post-Processing
The post-processing approaches are becoming prominent techniques to enhance machine learning models' fairness because of their intuitiveness, low computational cost, and excellent scalability. However, most existing post-processing methods are designed for task-specific fairness measures and are limited to single-output models. In this paper, we introduce a post-processing method for multi-output models, such as the ones used for multi-task/multi-class classification and representation learning, to enhance a model's distributional parity, a task-agnostic fairness measure. Existing methods for achieving distributional parity rely on the (inverse) cumulative density function of a model's output, restricting their applicability to single-output models. Extending previous works, we propose to employ optimal transport mappings to move a model's outputs across different groups towards their empirical Wasserstein barycenter. An approximation technique is applied to reduce the complexity of computing the exact barycenter and a kernel regression method is proposed to extend this process to out-of-sample data. Our empirical studies evaluate the proposed approach against various baselines on multi-task/multi-class classification and representation learning tasks, demonstrating the effectiveness of the proposed approach.
comment: 21 pages, 4 figures
♻ ☆ LLM-SR: Scientific Equation Discovery via Programming with Large Language Models ICLR 2025
Mathematical equations have been unreasonably effective in describing complex natural phenomena across various scientific disciplines. However, discovering such insightful equations from data presents significant challenges due to the necessity of navigating extremely large combinatorial hypothesis spaces. Current methods of equation discovery, commonly known as symbolic regression techniques, largely focus on extracting equations from data alone, often neglecting the domain-specific prior knowledge that scientists typically depend on. They also employ limited representations such as expression trees, constraining the search space and expressiveness of equations. To bridge this gap, we introduce LLM-SR, a novel approach that leverages the extensive scientific knowledge and robust code generation capabilities of Large Language Models (LLMs) to discover scientific equations from data. Specifically, LLM-SR treats equations as programs with mathematical operators and combines LLMs' scientific priors with evolutionary search over equation programs. The LLM iteratively proposes new equation skeleton hypotheses, drawing from its domain knowledge, which are then optimized against data to estimate parameters. We evaluate LLM-SR on four benchmark problems across diverse scientific domains (e.g., physics, biology), which we carefully designed to simulate the discovery process and prevent LLM recitation. Our results demonstrate that LLM-SR discovers physically accurate equations that significantly outperform state-of-the-art symbolic regression baselines, particularly in out-of-domain test settings. We also show that LLM-SR's incorporation of scientific priors enables more efficient equation space exploration than the baselines. Code and data are available: https://github.com/deep-symbolic-mathematics/LLM-SR
comment: ICLR 2025 Oral
♻ ☆ GenEFT: Understanding Statics and Dynamics of Model Generalization via Effective Theory
We present GenEFT: an effective theory framework for shedding light on the statics and dynamics of neural network generalization, and illustrate it with graph learning examples. We first investigate the generalization phase transition as data size increases, comparing experimental results with information-theory-based approximations. We find generalization in a Goldilocks zone where the decoder is neither too weak nor too powerful. We then introduce an effective theory for the dynamics of representation learning, where latent-space representations are modeled as interacting particles (repons), and find that it explains our experimentally observed phase transition between generalization and overfitting as encoder and decoder learning rates are scanned. This highlights the power of physics-inspired effective theories for bridging the gap between theoretical predictions and practice in machine learning.
comment: 12 pages, 6 figures
♻ ☆ Immune: Improving Safety Against Jailbreaks in Multi-modal LLMs via Inference-Time Alignment CVPR 2025
With the widespread deployment of Multimodal Large Language Models (MLLMs) for visual-reasoning tasks, improving their safety has become crucial. Recent research indicates that despite training-time safety alignment, these models remain vulnerable to jailbreak attacks. In this work, we first highlight an important safety gap to describe that alignment achieved solely through safety training may be insufficient against jailbreak attacks. To address this vulnerability, we propose Immune, an inference-time defense framework that leverages a safe reward model through controlled decoding to defend against jailbreak attacks. Additionally, we provide a mathematical characterization of Immune, offering insights on why it improves safety against jailbreaks. Extensive evaluations on diverse jailbreak benchmarks using recent MLLMs reveal that Immune effectively enhances model safety while preserving the model's original capabilities. For instance, against text-based jailbreak attacks on LLaVA-1.6, Immune reduces the attack success rate by 57.82% and 16.78% compared to the base MLLM and state-of-the-art defense strategy, respectively.
comment: Accepted to CVPR 2025
♻ ☆ BELLA: Black box model Explanations by Local Linear Approximations
Understanding the decision-making process of black-box models has become not just a legal requirement, but also an additional way to assess their performance. However, the state of the art post-hoc explanation approaches for regression models rely on synthetic data generation, which introduces uncertainty and can hurt the reliability of the explanations. Furthermore, they tend to produce explanations that apply to only very few data points. In this paper, we present BELLA, a deterministic model-agnostic post-hoc approach for explaining the individual predictions of regression black-box models. BELLA provides explanations in the form of a linear model trained in the feature space. BELLA maximizes the size of the neighborhood to which the linear model applies so that the explanations are accurate, simple, general, and robust. BELLA can produce both factual and counterfactual explanations.
comment: 19 pages,3 figures, submitted to TMLR journal
♻ ☆ Langevin Monte-Carlo Provably Learns Depth Two Neural Nets at Any Size and Data
In this work, we will establish that the Langevin Monte-Carlo algorithm can learn depth-2 neural nets of any size and for any data and we give non-asymptotic convergence rates for it. We achieve this via showing that under Total Variation distance and q-Renyi divergence, the iterates of Langevin Monte Carlo converge to the Gibbs distribution of Frobenius norm regularized losses for any of these nets, when using smooth activations and in both classification and regression settings. Most critically, the amount of regularization needed for our results is independent of the size of the net. This result combines several recent observations, like our previous papers showing that two-layer neural loss functions can always be regularized by a certain constant amount such that they satisfy the Villani conditions, and thus their Gibbs measures satisfy a Poincare inequality.
♻ ☆ Subjective Logic Encodings
Many existing approaches for learning from labeled data assume the existence of gold-standard labels. According to these approaches, inter-annotator disagreement is seen as noise to be removed, either through refinement of annotation guidelines, label adjudication, or label filtering. However, annotator disagreement can rarely be totally eradicated, especially on more subjective tasks such as sentiment analysis or hate speech detection where disagreement is natural. Therefore, a new approach to learning from labeled data, called data perspectivism, seeks to leverage inter-annotator disagreement to learn models that stay true to the inherent uncertainty of the task by treating annotations as opinions of the annotators, rather than gold-standard facts. Despite this conceptual grounding, existing methods under data perspectivism are limited to using disagreement as the sole source of annotation uncertainty. To expand the possibilities of data perspectivism, we introduce Subjective Logic Encodings (SLEs), a flexible framework for constructing classification targets that explicitly encodes annotations as opinions of the annotators. Based on Subjective Logic Theory, SLEs encode labels as Dirichlet distributions and provide principled methods for encoding and aggregating various types of annotation uncertainty -- annotator confidence, reliability, and disagreement -- into the targets. We show that SLEs are a generalization of other types of label encodings as well as how to estimate models to predict SLEs using a distribution matching objective.
comment: We make our code publicly available at https://github.com/jvasilakes/SLEncodings
♻ ☆ Lower Bounds for Chain-of-Thought Reasoning in Hard-Attention Transformers
Chain-of-thought reasoning and scratchpads have emerged as critical tools for enhancing the computational capabilities of transformers. While theoretical results show that polynomial-length scratchpads can extend transformers' expressivity from $TC^0$ to $PTIME$, their required length remains poorly understood. Empirical evidence even suggests that transformers need scratchpads even for many problems in $TC^0$, such as Parity or Multiplication, challenging optimistic bounds derived from circuit complexity. In this work, we initiate the study of systematic lower bounds for the number of CoT steps across different algorithmic problems, in the hard-attention regime. We study a variety of algorithmic problems, and provide bounds that are tight up to logarithmic factors. Overall, these results contribute to emerging understanding of the power and limitations of chain-of-thought reasoning.
♻ ☆ emg2qwerty: A Large Dataset with Baselines for Touch Typing using Surface Electromyography NeurIPS 2024
Surface electromyography (sEMG) non-invasively measures signals generated by muscle activity with sufficient sensitivity to detect individual spinal neurons and richness to identify dozens of gestures and their nuances. Wearable wrist-based sEMG sensors have the potential to offer low friction, subtle, information rich, always available human-computer inputs. To this end, we introduce emg2qwerty, a large-scale dataset of non-invasive electromyographic signals recorded at the wrists while touch typing on a QWERTY keyboard, together with ground-truth annotations and reproducible baselines. With 1,135 sessions spanning 108 users and 346 hours of recording, this is the largest such public dataset to date. These data demonstrate non-trivial, but well defined hierarchical relationships both in terms of the generative process, from neurons to muscles and muscle combinations, as well as in terms of domain shift across users and user sessions. Applying standard modeling techniques from the closely related field of Automatic Speech Recognition (ASR), we show strong baseline performance on predicting key-presses using sEMG signals alone. We believe the richness of this task and dataset will facilitate progress in several problems of interest to both the machine learning and neuroscientific communities. Dataset and code can be accessed at https://github.com/facebookresearch/emg2qwerty.
comment: Published at NeurIPS 2024 Datasets and Benchmarks Track
♻ ☆ Measuring memorization in language models via probabilistic extraction
Large language models (LLMs) are susceptible to memorizing training data, raising concerns about the potential extraction of sensitive information at generation time. Discoverable extraction is the most common method for measuring this issue: split a training example into a prefix and suffix, then prompt the LLM with the prefix, and deem the example extractable if the LLM generates the matching suffix using greedy sampling. This definition yields a yes-or-no determination of whether extraction was successful with respect to a single query. Though efficient to compute, we show that this definition is unreliable because it does not account for non-determinism present in more realistic (non-greedy) sampling schemes, for which LLMs produce a range of outputs for the same prompt. We introduce probabilistic discoverable extraction, which, without additional cost, relaxes discoverable extraction by considering multiple queries to quantify the probability of extracting a target sequence. We evaluate our probabilistic measure across different models, sampling schemes, and training-data repetitions, and find that this measure provides more nuanced information about extraction risk compared to traditional discoverable extraction.
comment: NAACL 25
♻ ☆ A Gentle Introduction and Tutorial on Deep Generative Models in Transportation Research
Deep Generative Models (DGMs) have rapidly advanced in recent years, becoming essential tools in various fields due to their ability to learn complex data distributions and generate synthetic data. Their importance in transportation research is increasingly recognized, particularly for applications like traffic data generation, prediction, and feature extraction. This paper offers a comprehensive introduction and tutorial on DGMs, with a focus on their applications in transportation. It begins with an overview of generative models, followed by detailed explanations of fundamental models, a systematic review of the literature, and practical tutorial code to aid implementation. The paper also discusses current challenges and opportunities, highlighting how these models can be effectively utilized and further developed in transportation research. This paper serves as a valuable reference, guiding researchers and practitioners from foundational knowledge to advanced applications of DGMs in transportation research.
comment: 64 pages, 21 figures, 4 tables
♻ ☆ BicliqueEncoder: An Efficient Method for Link Prediction in Bipartite Networks using Formal Concept Analysis and Transformer Encoder
We propose a novel and efficient method for link prediction in bipartite networks, using \textit{formal concept analysis} (FCA) and the Transformer encoder. Link prediction in bipartite networks finds practical applications in various domains such as product recommendation in online sales, and prediction of chemical-disease interaction in medical science. Since for link prediction, the topological structure of a network contains valuable information, many approaches focus on extracting structural features and then utilizing them for link prediction. Bi-cliques, as a type of structural feature of bipartite graphs, can be utilized for link prediction. Although several link prediction methods utilizing bi-cliques have been proposed and perform well in rather small datasets, all of them face challenges with scalability when dealing with large datasets since they demand substantial computational resources. This limits the practical utility of these approaches in real-world applications. To overcome the limitation, we introduce a novel approach employing iceberg concept lattices and the Transformer encoder. Our method requires fewer computational resources, making it suitable for large-scale datasets while maintaining high prediction performance. We conduct experiments on five large real-world datasets that exceed the capacity of previous bi-clique-based approaches to demonstrate the efficacy of our method. Additionally, we perform supplementary experiments on five small datasets to compare with the previous bi-clique-based methods for bipartite link prediction and demonstrate that our method is more efficient than the previous ones.
comment: 33 pages, 8 figures
♻ ☆ Robust LLM safeguarding via refusal feature adversarial training
Large language models (LLMs) are vulnerable to adversarial attacks that can elicit harmful responses. Defending against such attacks remains challenging due to the opacity of jailbreaking mechanisms and the high computational cost of training LLMs robustly. We demonstrate that adversarial attacks share a universal mechanism for circumventing LLM safeguards that works by ablating a dimension in the residual stream embedding space called the refusal feature. We further show that the operation of refusal feature ablation (RFA) approximates the worst-case perturbation of offsetting model safety. Based on these findings, we propose Refusal Feature Adversarial Training (ReFAT), a novel algorithm that efficiently performs LLM adversarial training by simulating the effect of input-level attacks via RFA. Experiment results show that ReFAT significantly improves the robustness of three popular LLMs against a wide range of adversarial attacks, with considerably less computational overhead compared to existing adversarial training methods.
♻ ☆ Navigating Demand Uncertainty in Container Shipping: Deep Reinforcement Learning for Enabling Adaptive and Feasible Master Stowage Planning
Reinforcement learning (RL) has shown promise in solving various combinatorial optimization problems. However, conventional RL faces challenges when dealing with real-world constraints, especially when action space feasibility is explicit and dependent on the corresponding state or trajectory. In this work, we focus on using RL in container shipping, often considered the cornerstone of global trade, by dealing with the critical challenge of master stowage planning. The main objective is to maximize cargo revenue and minimize operational costs while navigating demand uncertainty and various complex operational constraints, namely vessel capacity and stability, which must be dynamically updated along the vessel's voyage. To address this problem, we implement a deep reinforcement learning framework with feasibility projection to solve the master stowage planning problem (MPP) under demand uncertainty. The experimental results show that our architecture efficiently finds adaptive, feasible solutions for this multi-stage stochastic optimization problem, outperforming traditional mixed-integer programming and RL with feasibility regularization. Our AI-driven decision-support policy enables adaptive and feasible planning under uncertainty, optimizing operational efficiency and capacity utilization while contributing to sustainable and resilient global supply chains.
comment: This paper is currently under review for IJCAI 2025
♻ ☆ Puzzle: Distillation-Based NAS for Inference-Optimized LLMs
Large language models (LLMs) offer remarkable capabilities, yet their high inference costs restrict wider adoption. While increasing parameter counts improves accuracy, it also broadens the gap between state-of-the-art capabilities and practical deployability. We present Puzzle, a hardware-aware framework that accelerates the inference of LLMs while preserving their capabilities. Using neural architecture search (NAS) at a large-scale, Puzzle optimizes models with tens of billions of parameters. Our approach utilizes blockwise local knowledge distillation (BLD) for parallel architecture exploration and employs mixed-integer programming for precise constraint optimization. We showcase our framework's impact via Llama-3.1-Nemotron-51B-Instruct (Nemotron-51B), a publicly available model derived from Llama-3.1-70B-Instruct. Nemotron-51B achieves a 2.17x inference throughput speedup, fitting on a single NVIDIA H100 GPU while retaining 98.4% of the original model's benchmark accuracies. Notably, it is the most accurate model supporting single H100 GPU inference with large batch sizes, despite training on only 45B tokens, far fewer than the 15T used to train Llama-70B. Lastly, we derive Llama-3.3-Nemotron-49B-Super-Base to demonstrate Puzzle can retain long-context and that lightweight alignment on these derived models allows them to surpass the parent model in specific capabilities. Our work establishes that powerful LLM models can be optimized for efficient deployment with only negligible loss in quality, underscoring that inference performance, not parameter count alone, should guide model selection.
♻ ☆ Human Choice Prediction in Language-based Persuasion Games: Simulation-based Off-Policy Evaluation
Recent advances in Large Language Models (LLMs) have spurred interest in designing LLM-based agents for tasks that involve interaction with human and artificial agents. This paper addresses a key aspect in the design of such agents: predicting human decisions in off-policy evaluation (OPE). We focus on language-based persuasion games, where an expert aims to influence the decision-maker through verbal messages. In our OPE framework, the prediction model is trained on human interaction data collected from encounters with one set of expert agents, and its performance is evaluated on interactions with a different set of experts. Using a dedicated application, we collected a dataset of 87K decisions from humans playing a repeated decision-making game with artificial agents. To enhance off-policy performance, we propose a simulation technique involving interactions across the entire agent space and simulated decision-makers. Our learning strategy yields significant OPE gains, e.g., improving prediction accuracy in the top 15% challenging cases by 7.1%. Our code and the large dataset we collected and generated are submitted as supplementary material and publicly available in our GitHub repository: https://github.com/eilamshapira/HumanChoicePrediction
♻ ☆ Binary-Integer-Programming Based Algorithm for Expert Load Balancing in Mixture-of-Experts Models
For pre-training of MoE (Mixture-of-Experts) models, one of the main issues is unbalanced expert loads, which may cause routing collapse or increased computational overhead. Existing methods contain the Loss-Controlled method and the Loss-Free method, where both the unbalanced degrees at first several training steps are still high and decrease slowly. In this work, we propose BIP-Based Balancing, an expert load balancing algorithm based on binary integer programming (BIP). The algorithm maintains an additional vector q on each MoE layer that can help change the top-K order of s by solving a binary integer programming with very small time costs. We implement the algorithm on two MoE language models: 16-expert (0.3B) and 64-expert (1.1B). The experimental results show that on both models comparing with the Loss-Controlled method and the Loss-Free method, our algorithm trains models with the lowest perplexities, while saves at least 13% of pre-training time compared with the Loss-Controlled method. Within our current knowledge, this is the first routing algorithm that achieves maintaining load balance status on every expert in every MoE layer from the first step to the last step during the whole pre-training process, while the trained MoE models also perform well. The code material of this work is available at https://github.com/sunyuanLLM/bip_routing_algorithm.
♻ ☆ An Efficient Permutation-Based Kernel Two-Sample Test
Two-sample hypothesis testing-determining whether two sets of data are drawn from the same distribution-is a fundamental problem in statistics and machine learning with broad scientific applications. In the context of nonparametric testing, maximum mean discrepancy (MMD) has gained popularity as a test statistic due to its flexibility and strong theoretical foundations. However, its use in large-scale scenarios is plagued by high computational costs. In this work, we use a Nystr\"om approximation of the MMD to design a computationally efficient and practical testing algorithm while preserving statistical guarantees. Our main result is a finite-sample bound on the power of the proposed test for distributions that are sufficiently separated with respect to the MMD. The derived separation rate matches the known minimax optimal rate in this setting. We support our findings with a series of numerical experiments, emphasizing realistic scientific data.
comment: 23 pages, 2 figures
♻ ☆ RLOMM: An Efficient and Robust Online Map Matching Framework with Reinforcement Learning
Online map matching is a fundamental problem in location-based services, aiming to incrementally match trajectory data step-by-step onto a road network. However, existing methods fail to meet the needs for efficiency, robustness, and accuracy required by large-scale online applications, making this task still challenging. This paper introduces a novel framework that achieves high accuracy and efficient matching while ensuring robustness in handling diverse scenarios. To improve efficiency, we begin by modeling the online map matching problem as an Online Markov Decision Process (OMDP) based on its inherent characteristics. This approach helps efficiently merge historical and real-time data, reducing unnecessary calculations. Next, to enhance robustness, we design a reinforcement learning method, enabling robust handling of real-time data from dynamically changing environments. In particular, we propose a novel model learning process and a comprehensive reward function, allowing the model to make reasonable current matches from a future-oriented perspective, and to continuously update and optimize during the decision-making process based on feedback. Lastly, to address the heterogeneity between trajectories and roads, we design distinct graph structures, facilitating efficient representation learning through graph and recurrent neural networks. To further align trajectory and road data, we introduce contrastive learning to decrease their distance in the latent space, thereby promoting effective integration of the two. Extensive evaluations on three real-world datasets confirm that our method significantly outperforms existing state-of-the-art solutions in terms of accuracy, efficiency and robustness.
comment: Accepted by SIGMOD 2025
♻ ☆ LiMoE: Mixture of LiDAR Representation Learners from Automotive Scenes CVPR 2025
LiDAR data pretraining offers a promising approach to leveraging large-scale, readily available datasets for enhanced data utilization. However, existing methods predominantly focus on sparse voxel representation, overlooking the complementary attributes provided by other LiDAR representations. In this work, we propose LiMoE, a framework that integrates the Mixture of Experts (MoE) paradigm into LiDAR data representation learning to synergistically combine multiple representations, such as range images, sparse voxels, and raw points. Our approach consists of three stages: i) Image-to-LiDAR Pretraining, which transfers prior knowledge from images to point clouds across different representations; ii) Contrastive Mixture Learning (CML), which uses MoE to adaptively activate relevant attributes from each representation and distills these mixed features into a unified 3D network; iii) Semantic Mixture Supervision (SMS), which combines semantic logits from multiple representations to boost downstream segmentation performance. Extensive experiments across eleven large-scale LiDAR datasets demonstrate our effectiveness and superiority. The code has been made publicly accessible.
comment: CVPR 2025; 27 pages, 17 figures, 10 tables; Project Page at https://ldkong.com/LiMoE
♻ ☆ Asymptotic non-linear shrinkage and eigenvector overlap for weighted sample covariance
We compute asymptotic non-linear shrinkage formulas for covariance and precision matrix estimators for weighted sample covariances, and the joint sample-population eigenvector overlap distribution, in the spirit of Ledoit and P\'ech\'e. We detail explicitly the formulas for exponentially-weighted sample covariances. We propose an algorithm to numerically compute those formulas. Experimentally, we show the performance of the asymptotic non-linear shrinkage estimators. Finally, we test the robustness of the theory to a heavy-tailed distributions.
♻ ☆ Assessment of Spatio-Temporal Predictors in the Presence of Missing and Heterogeneous Data
Deep learning approaches achieve outstanding predictive performance in modeling modern data, despite the increasing complexity and scale. However, evaluating the quality of predictive models becomes more challenging, as traditional statistical assumptions often no longer hold. In particular, spatio-temporal data exhibit dependencies across both time and space, often involving nonlinear dynamics, non-stationarities, and missing observations. As a result, advanced predictors such as spatio-temporal graph neural networks require novel evaluation methodologies. This paper introduces a residual correlation analysis framework designed to assess the optimality of spatio-temporal predictive neural models, particularly in scenarios with incomplete and heterogeneous data. By leveraging the principle that residual correlation indicates information not captured by the model, this framework serves as a powerful tool to identify and localize regions in space and time where model performance can be improved. A key advantage of the proposed approach is its ability to operate under minimal assumptions, enabling robust evaluation of deep learning models applied to multivariate time series, even in the presence of missing and heterogeneous data. The methodology employs tailored spatio-temporal graphs to encode sparse spatial and temporal dependencies within the data and utilizes asymptotically distribution-free summary statistics to pinpoint time intervals and spatial regions where the model underperforms. The effectiveness of the proposed residual analysis is demonstrated through validation on both synthetic and real-world scenarios involving state-of-the-art predictive models.
♻ ☆ Federated Learning for Traffic Flow Prediction with Synthetic Data Augmentation
Deep-learning based traffic prediction models require vast amounts of data to learn embedded spatial and temporal dependencies. The inherent privacy and commercial sensitivity of such data has encouraged a shift towards decentralised data-driven methods, such as Federated Learning (FL). Under a traditional Machine Learning paradigm, traffic flow prediction models can capture spatial and temporal relationships within centralised data. In reality, traffic data is likely distributed across separate data silos owned by multiple stakeholders. In this work, a cross-silo FL setting is motivated to facilitate stakeholder collaboration for optimal traffic flow prediction applications. This work introduces an FL framework, referred to as FedTPS, to generate synthetic data to augment each client's local dataset by training a diffusion-based trajectory generation model through FL. The proposed framework is evaluated on a large-scale real world ride-sharing dataset using various FL methods and Traffic Flow Prediction models, including a novel prediction model we introduce, which leverages Temporal and Graph Attention mechanisms to learn the Spatio-Temporal dependencies embedded within regional traffic flow data. Experimental results show that FedTPS outperforms multiple other FL baselines with respect to global model performance.
comment: 11 pages, 7 figures, 6 tables, ACM format
♻ ☆ GSplatLoc: Grounding Keypoint Descriptors into 3D Gaussian Splatting for Improved Visual Localization
Although various visual localization approaches exist, such as scene coordinate regression and camera pose regression, these methods often struggle with optimization complexity or limited accuracy. To address these challenges, we explore the use of novel view synthesis techniques, particularly 3D Gaussian Splatting (3DGS), which enables the compact encoding of both 3D geometry and scene appearance. We propose a two-stage procedure that integrates dense and robust keypoint descriptors from the lightweight XFeat feature extractor into 3DGS, enhancing performance in both indoor and outdoor environments. The coarse pose estimates are directly obtained via 2D-3D correspondences between the 3DGS representation and query image descriptors. In the second stage, the initial pose estimate is refined by minimizing the rendering-based photometric warp loss. Benchmarking on widely used indoor and outdoor datasets demonstrates improvements over recent neural rendering-based localization methods, such as NeRFMatch and PNeRFLoc.
comment: Project website at https://gsplatloc.github.io/
♻ ☆ Stochastic tensor space feature theory with applications to robust machine learning
In this paper we develop a Multilevel Orthogonal Subspace (MOS) Karhunen-Loeve feature theory based on stochastic tensor spaces, for the construction of robust machine learning features. Training data is treated as instances of a random field within a relevant Bochner space. Our key observation is that separate machine learning classes can reside predominantly in mostly distinct subspaces. Using the Karhunen-Loeve expansion and a hierarchical expansion of the first (nominal) class, a MOS is constructed to detect anomalous signal components, treating the second class as an outlier of the first. The projection coefficients of the input data into these subspaces are then used to train a Machine Learning (ML) classifier. These coefficients become new features from which much clearer separation surfaces can arise for the underlying classes. Tests in the blood plasma dataset (Alzheimer's Disease Neuroimaging Initiative) show dramatic increases in accuracy. This is in contrast to popular ML methods such as Gradient Boosting, RUS Boost, Random Forest and (Convolutional) Neural Networks.
♻ ☆ Relational Object-Centric Actor-Critic
The advances in unsupervised object-centric representation learning have significantly improved its application to downstream tasks. Recent works highlight that disentangled object representations can aid policy learning in image-based, object-centric reinforcement learning tasks. This paper proposes a novel object-centric reinforcement learning algorithm that integrates actor-critic and model-based approaches by incorporating an object-centric world model within the critic. The world model captures the environment's data-generating process by predicting the next state and reward given the current state-action pair, where actions are interventions in the environment. In model-based reinforcement learning, world model learning can be interpreted as a causal induction problem, where the agent must learn the causal relationships underlying the environment's dynamics. We evaluate our method in a simulated 3D robotic environment and a 2D environment with compositional structure. As baselines, we compare against object-centric, model-free actor-critic algorithms and a state-of-the-art monolithic model-based algorithm. While the baselines show comparable performance in easier tasks, our approach outperforms them in more challenging scenarios with a large number of objects or more complex dynamics.
♻ ☆ Crowd-PrefRL: Preference-Based Reward Learning from Crowds
Preference-based reinforcement learning (RL) provides a framework to train AI agents using human feedback through preferences over pairs of behaviors, enabling agents to learn desired behaviors when it is difficult to specify a numerical reward function. While this paradigm leverages human feedback, it typically treats the feedback as given by a single human user. However, different users may desire multiple AI behaviors and modes of interaction. Meanwhile, incorporating preference feedback from crowds (i.e. ensembles of users) in a robust manner remains a challenge, and the problem of training RL agents using feedback from multiple human users remains understudied. In this work, we introduce a conceptual framework, Crowd-PrefRL, that integrates preference-based RL approaches with techniques from unsupervised crowdsourcing to enable training of autonomous system behaviors from crowdsourced feedback. We show preliminary results suggesting that Crowd-PrefRL can learn reward functions and agent policies from preference feedback provided by crowds of unknown expertise and reliability. We also show that in most cases, agents trained with Crowd-PrefRL outperform agents trained with majority-vote preferences or preferences from any individual user, especially when the spread of user error rates among the crowd is large. Results further suggest that our method can identify the presence of minority viewpoints within the crowd in an unsupervised manner.
♻ ☆ Words in Motion: Extracting Interpretable Control Vectors for Motion Transformers ICLR 2025
Transformer-based models generate hidden states that are difficult to interpret. In this work, we analyze hidden states and modify them at inference, with a focus on motion forecasting. We use linear probing to analyze whether interpretable features are embedded in hidden states. Our experiments reveal high probing accuracy, indicating latent space regularities with functionally important directions. Building on this, we use the directions between hidden states with opposing features to fit control vectors. At inference, we add our control vectors to hidden states and evaluate their impact on predictions. Remarkably, such modifications preserve the feasibility of predictions. We further refine our control vectors using sparse autoencoders (SAEs). This leads to more linear changes in predictions when scaling control vectors. Our approach enables mechanistic interpretation as well as zero-shot generalization to unseen dataset characteristics with negligible computational overhead.
comment: ICLR 2025 camera-ready. Our implementation is available at \href{https://github.com/kit-mrt/future-motion}{this https URL}
♻ ☆ Tiny models from tiny data: Textual and null-text inversion for few-shot distillation
Few-shot learning deals with problems such as image classification using very few training examples. Recent vision foundation models show excellent few-shot transfer abilities, but are large and slow at inference. Using knowledge distillation, the capabilities of high-performing but slow models can be transferred to tiny, efficient models. However, common distillation methods require a large set of unlabeled data, which is not available in the few-shot setting. To overcome this lack of data, there has been a recent interest in using synthetic data. We expand on this line of research by presenting a novel diffusion model inversion technique (TINT) combining the diversity of textual inversion with the specificity of null-text inversion. Using this method in a few-shot distillation pipeline leads to state-of-the-art accuracy among small student models on popular benchmarks, while being significantly faster than prior work. Popular few-shot benchmarks involve evaluation over a large number of episodes, which is computationally cumbersome for methods involving synthetic data generation. We also present a theoretical analysis on how the accuracy estimator variance depends on the number of episodes and query examples, and use these results to lower the computational effort required for method evaluation. Finally, to further motivate the use of generative models in few-shot distillation, we demonstrate that our method outperforms training on real data mined from the dataset used in the original diffusion model training. Source code is available at https://github.com/pixwse/tiny2.
comment: 24 pages (13 main pages + references and appendix)
♻ ☆ Generalized Decision Focused Learning under Imprecise Uncertainty--Theoretical Study
Decision Focused Learning has emerged as a critical paradigm for integrating machine learning with downstream optimisation. Despite its promise, existing methodologies predominantly rely on probabilistic models and focus narrowly on task objectives, overlooking the nuanced challenges posed by epistemic uncertainty, non-probabilistic modelling approaches, and the integration of uncertainty into optimisation constraints. This paper bridges these gaps by introducing innovative frameworks: (i) a non-probabilistic lens for epistemic uncertainty representation, leveraging intervals (the least informative uncertainty model), Contamination (hybrid model), and probability boxes (the most informative uncertainty model); (ii) methodologies to incorporate uncertainty into constraints, expanding Decision-Focused Learning's utility in constrained environments; (iii) the adoption of Imprecise Decision Theory for ambiguity-rich decision-making contexts; and (iv) strategies for addressing sparse data challenges. Empirical evaluations on benchmark optimisation problems demonstrate the efficacy of these approaches in improving decision quality and robustness and dealing with said gaps.
comment: 13 pages
♻ ☆ Self-supervised New Activity Detection in Sensor-based Smart Environments
With the rapid advancement of ubiquitous computing technology, human activity analysis based on time series data from a diverse range of sensors enables the delivery of more intelligent services. Despite the importance of exploring new activities in real-world scenarios, existing human activity recognition studies generally rely on predefined known activities and often overlook detecting new patterns (novelties) that have not been previously observed during training. Novelty detection in human activities becomes even more challenging due to (1) diversity of patterns within the same known activity, (2) shared patterns between known and new activities, and (3) differences in sensor properties of each activity dataset. We introduce CLAN, a two-tower model that leverages Contrastive Learning with diverse data Augmentation for New activity detection in sensor-based environments. CLAN simultaneously and explicitly utilizes multiple types of strongly shifted data as negative samples in contrastive learning, effectively learning invariant representations that adapt to various pattern variations within the same activity. To enhance the ability to distinguish between known and new activities that share common features, CLAN incorporates both time and frequency domains, enabling the learning of multi-faceted discriminative representations. Additionally, we design an automatic selection mechanism of data augmentation methods tailored to each dataset's properties, generating appropriate positive and negative pairs for contrastive learning. Comprehensive experiments on real-world datasets show that CLAN achieves a 9.24% improvement in AUROC compared to the best-performing baseline model.
♻ ☆ GraphXForm: Graph transformer for computer-aided molecular design
Generative deep learning has become pivotal in molecular design for drug discovery, materials science, and chemical engineering. A widely used paradigm is to pretrain neural networks on string representations of molecules and fine-tune them using reinforcement learning on specific objectives. However, string-based models face challenges in ensuring chemical validity and enforcing structural constraints like the presence of specific substructures. We propose to instead combine graph-based molecular representations, which can naturally ensure chemical validity, with transformer architectures, which are highly expressive and capable of modeling long-range dependencies between atoms. Our approach iteratively modifies a molecular graph by adding atoms and bonds, which ensures chemical validity and facilitates the incorporation of structural constraints. We present GraphXForm, a decoder-only graph transformer architecture, which is pretrained on existing compounds and then fine-tuned using a new training algorithm that combines elements of the deep cross-entropy method and self-improvement learning. We evaluate GraphXForm on various drug design tasks, demonstrating superior objective scores compared to state-of-the-art molecular design approaches. Furthermore, we apply GraphXForm to two solvent design tasks for liquid-liquid extraction, again outperforming alternative methods while flexibly enforcing structural constraints or initiating design from existing molecular structures.
comment: Published in Digital Discovery, 2025
♻ ☆ SelfReplay: Adapting Self-Supervised Sensory Models via Adaptive Meta-Task Replay
Self-supervised learning has emerged as a method for utilizing massive unlabeled data for pre-training models, providing an effective feature extractor for various mobile sensing applications. However, when deployed to end-users, these models encounter significant domain shifts attributed to user diversity. We investigate the performance degradation that occurs when self-supervised models are fine-tuned in heterogeneous domains. To address the issue, we propose SelfReplay, a few-shot domain adaptation framework for personalizing self-supervised models. SelfReplay proposes self-supervised meta-learning for initial model pre-training, followed by a user-side model adaptation by replaying the self-supervision with user-specific data. This allows models to adjust their pre-trained representations to the user with only a few samples. Evaluation with four benchmarks demonstrates that SelfReplay outperforms existing baselines by an average F1-score of 8.8%p. Our on-device computational overhead analysis on a commodity off-the-shelf (COTS) smartphone shows that SelfReplay completes adaptation within an unobtrusive latency (in three minutes) with only a 9.54% memory consumption, demonstrating the computational efficiency of the proposed method.
comment: Accepted to the 23rd ACM Conference on Embedded Networked Sensor Systems (ACM SenSys 2025)
♻ ☆ LongVALE: Vision-Audio-Language-Event Benchmark Towards Time-Aware Omni-Modal Perception of Long Videos CVPR2025
Despite impressive advancements in video understanding, most efforts remain limited to coarse-grained or visual-only video tasks. However, real-world videos encompass omni-modal information (vision, audio, and speech) with a series of events forming a cohesive storyline. The lack of multi-modal video data with fine-grained event annotations and the high cost of manual labeling are major obstacles to comprehensive omni-modality video perception. To address this gap, we propose an automatic pipeline consisting of high-quality multi-modal video filtering, semantically coherent omni-modal event boundary detection, and cross-modal correlation-aware event captioning. In this way, we present LongVALE, the first-ever Vision-Audio-Language Event understanding benchmark comprising 105K omni-modal events with precise temporal boundaries and detailed relation-aware captions within 8.4K high-quality long videos. Further, we build a baseline that leverages LongVALE to enable video large language models (LLMs) for omni-modality fine-grained temporal video understanding for the first time. Extensive experiments demonstrate the effectiveness and great potential of LongVALE in advancing comprehensive multi-modal video understanding.
comment: Accepted by CVPR2025
♻ ☆ SePer: Measure Retrieval Utility Through The Lens Of Semantic Perplexity Reduction ICLR 2025
Large Language Models (LLMs) have demonstrated improved generation performance by incorporating externally retrieved knowledge, a process known as retrieval-augmented generation (RAG). Despite the potential of this approach, existing studies evaluate RAG effectiveness by 1) assessing retrieval and generation components jointly, which obscures retrieval's distinct contribution, or 2) examining retrievers using traditional metrics such as NDCG, which creates a gap in understanding retrieval's true utility in the overall generation process. To address the above limitations, in this work, we introduce an automatic evaluation method that measures retrieval quality through the lens of information gain within the RAG framework. Specifically, we propose Semantic Perplexity (SePer), a metric that captures the LLM's internal belief about the correctness of the retrieved information. We quantify the utility of retrieval by the extent to which it reduces semantic perplexity post-retrieval. Extensive experiments demonstrate that SePer not only aligns closely with human preferences but also offers a more precise and efficient evaluation of retrieval utility across diverse RAG scenarios.
comment: ICLR 2025 Spotlight
♻ ☆ Spherical Tree-Sliced Wasserstein Distance
Sliced Optimal Transport (OT) simplifies the OT problem in high-dimensional spaces by projecting supports of input measures onto one-dimensional lines and then exploiting the closed-form expression of the univariate OT to reduce the computational burden of OT. Recently, the Tree-Sliced method has been introduced to replace these lines with more intricate structures, known as tree systems. This approach enhances the ability to capture topological information of integration domains in Sliced OT while maintaining low computational cost. Inspired by this approach, in this paper, we present an adaptation of tree systems on OT problems for measures supported on a sphere. As a counterpart to the Radon transform variant on tree systems, we propose a novel spherical Radon transform with a new integration domain called spherical trees. By leveraging this transform and exploiting the spherical tree structures, we derive closed-form expressions for OT problems on the sphere. Consequently, we obtain an efficient metric for measures on the sphere, named Spherical Tree-Sliced Wasserstein (STSW) distance. We provide an extensive theoretical analysis to demonstrate the topology of spherical trees and the well-definedness and injectivity of our Radon transform variant, which leads to an orthogonally invariant distance between spherical measures. Finally, we conduct a wide range of numerical experiments, including gradient flows and self-supervised learning, to assess the performance of our proposed metric, comparing it to recent benchmarks.
♻ ☆ Training Large Neural Networks With Low-Dimensional Error Feedback
Training deep neural networks typically relies on backpropagating high dimensional error signals a computationally intensive process with little evidence supporting its implementation in the brain. However, since most tasks involve low-dimensional outputs, we propose that low-dimensional error signals may suffice for effective learning. To test this hypothesis, we introduce a novel local learning rule based on Feedback Alignment that leverages indirect, low-dimensional error feedback to train large networks. Our method decouples the backward pass from the forward pass, enabling precise control over error signal dimensionality while maintaining high-dimensional representations. We begin with a detailed theoretical derivation for linear networks, which forms the foundation of our learning framework, and extend our approach to nonlinear, convolutional, and transformer architectures. Remarkably, we demonstrate that even minimal error dimensionality on the order of the task dimensionality can achieve performance matching that of traditional backpropagation. Furthermore, our rule enables efficient training of convolutional networks, which have previously been resistant to Feedback Alignment methods, with minimal error. This breakthrough not only paves the way toward more biologically accurate models of learning but also challenges the conventional reliance on high-dimensional gradient signals in neural network training. Our findings suggest that low-dimensional error signals can be as effective as high-dimensional ones, prompting a reevaluation of gradient-based learning in high-dimensional systems. Ultimately, our work offers a fresh perspective on neural network optimization and contributes to understanding learning mechanisms in both artificial and biological systems.
♻ ☆ Development of a graph neural network surrogate for travel demand modelling
As urban environments grow, the modelling of transportation systems becomes increasingly complex. This paper advances the field of travel demand modelling by introducing advanced Graph Neural Network (GNN) architectures as surrogate models, addressing key limitations of previous approaches. Building on prior work with Graph Convolutional Networks (GCNs), we introduce GATv3, a new Graph Attention Network (GAT) variant that mitigates over-smoothing through residual connections, enabling deeper and more expressive architectures. Additionally, we propose a fine-grained classification framework that improves predictive stability while achieving numerical precision comparable to regression, offering a more interpretable and efficient alternative. To enhance model performance, we develop a synthetic data generation strategy, which expands the augmented training dataset without overfitting. Our experiments demonstrate that GATv3 significantly improves classification performance, while the GCN model shows unexpected dominance in fine-grained classification when supplemented with additional training data. The results highlight the advantages of fine-grained classification over regression for travel demand modelling tasks and reveal new challenges in extending GAT-based architectures to complex transport scenarios. Notably, GATv3 appears well-suited for classification-based transportation applications, such as section control and congestion warning systems, which require a higher degree of differentiation among neighboring links. These findings contribute to refining GNN-based surrogates, offering new possibilities for applying GATv3 and fine-grained classification in broader transportation challenges.
♻ ☆ Theoretical Insights into Line Graph Transformation on Graph Learning
Line graph transformation has been widely studied in graph theory, where each node in a line graph corresponds to an edge in the original graph. This has inspired a series of graph neural networks (GNNs) applied to transformed line graphs, which have proven effective in various graph representation learning tasks. However, there is limited theoretical study on how line graph transformation affects the expressivity of GNN models. In this study, we focus on two types of graphs known to be challenging to the Weisfeiler-Leman (WL) tests: Cai-F\"urer-Immerman (CFI) graphs and strongly regular graphs, and show that applying line graph transformation helps exclude these challenging graph properties, thus potentially assist WL tests in distinguishing these graphs. We empirically validate our findings by conducting a series of experiments that compare the accuracy and efficiency of graph isomorphism tests and GNNs on both line-transformed and original graphs across these graph structure types.
comment: 21 pages, code available at https://github.com/lukeyf/graphs-and-lines
♻ ☆ Vision-Language Models for Acute Tuberculosis Diagnosis: A Multimodal Approach Combining Imaging and Clinical Data
Background: This study introduces a Vision-Language Model (VLM) leveraging SIGLIP and Gemma-3b architectures for automated acute tuberculosis (TB) screening. By integrating chest X-ray images and clinical notes, the model aims to enhance diagnostic accuracy and efficiency, particularly in resource-limited settings. Methods: The VLM combines visual data from chest X-rays with clinical context to generate detailed, context-aware diagnostic reports. The architecture employs SIGLIP for visual encoding and Gemma-3b for decoding, ensuring effective representation of acute TB-specific pathologies and clinical insights. Results: Key acute TB pathologies, including consolidation, cavities, and nodules, were detected with high precision (97percent) and recall (96percent). The model demonstrated strong spatial localization capabilities and robustness in distinguishing TB-positive cases, making it a reliable tool for acute TB diagnosis. Conclusion: The multimodal capability of the VLM reduces reliance on radiologists, providing a scalable solution for acute TB screening. Future work will focus on improving the detection of subtle pathologies and addressing dataset biases to enhance its generalizability and application in diverse global healthcare settings.
comment: 11 pages, 3 figures
♻ ☆ Interpreting the Curse of Dimensionality from Distance Concentration and Manifold Effect
The characteristics of data like distribution and heterogeneity, become more complex and counterintuitive as dimensionality increases. This phenomenon is known as curse of dimensionality, where common patterns and relationships (e.g., internal pattern and boundary pattern) that hold in low-dimensional space may be invalid in higher-dimensional space. It leads to a decreasing performance for the regression, classification, or clustering models or algorithms. Curse of dimensionality can be attributed to many causes. In this paper, we first summarize the potential challenges associated with manipulating high-dimensional data, and explains the possible causes for the failure of regression, classification, or clustering tasks. Subsequently, we delve into two major causes of the curse of dimensionality, distance concentration, and manifold effect, by performing theoretical and empirical analyses. The results demonstrate that, as the dimensionality increases, nearest neighbor search (NNS) using three classical distance measurements, Minkowski distance, Chebyshev distance, and cosine distance, becomes meaningless. Meanwhile, the data incorporates more redundant features, and the variance contribution of principal component analysis (PCA) is skewed towards a few dimensions.
comment: 21 pages, 10 figures
♻ ☆ A policy gradient approach for Finite Horizon Constrained Markov Decision Processes
The infinite horizon setting is widely adopted for problems of reinforcement learning (RL). These invariably result in stationary policies that are optimal. In many situations, finite horizon control problems are of interest and for such problems, the optimal policies are time-varying in general. Another setting that has become popular in recent times is of Constrained Reinforcement Learning, where the agent maximizes its rewards while it also aims to satisfy some given constraint criteria. However, this setting has only been studied in the context of infinite horizon MDPs where stationary policies are optimal. We present an algorithm for constrained RL in the Finite Horizon Setting where the horizon terminates after a fixed (finite) time. We use function approximation in our algorithm which is essential when the state and action spaces are large or continuous and use the policy gradient method to find the optimal policy. The optimal policy that we obtain depends on the stage and so is non-stationary in general. To the best of our knowledge, our paper presents the first policy gradient algorithm for the finite horizon setting with constraints. We show the convergence of our algorithm to a constrained optimal policy. We also compare and analyze the performance of our algorithm through experiments and show that our algorithm performs better than some other well known algorithms.
♻ ☆ Differentially Private Steering for Large Language Model Alignment ICLR 2025
Aligning Large Language Models (LLMs) with human values and away from undesirable behaviors (such as hallucination) has become increasingly important. Recently, steering LLMs towards a desired behavior via activation editing has emerged as an effective method to mitigate harmful generations at inference-time. Activation editing modifies LLM representations by preserving information from positive demonstrations (e.g., truthful) and minimising information from negative demonstrations (e.g., hallucinations). When these demonstrations come from a private dataset, the aligned LLM may leak private information contained in those private samples. In this work, we present the first study of aligning LLM behavior with private datasets. Our work proposes the Private Steering for LLM Alignment (PSA) algorithm to edit LLM activations with differential privacy (DP) guarantees. We conduct extensive experiments on seven different benchmarks with open-source LLMs of different sizes (0.5B to 7B) and model families (LlaMa, Qwen, Mistral and Gemma). Our results show that PSA achieves DP guarantees for LLM alignment with minimal loss in performance, including alignment metrics, open-ended text generation quality, and general-purpose reasoning. We also develop the first Membership Inference Attack (MIA) for evaluating and auditing the empirical privacy for the problem of LLM steering via activation editing. Our experiments support the theoretical guarantees by showing improved guarantees for our PSA algorithm compared to several existing non-private techniques.
comment: ICLR 2025 Camera Ready; Code: https://github.com/UKPLab/iclr2025-psa
♻ ☆ Polynomial Composition Activations: Unleashing the Dynamics of Large Language Models ICLR 2025
Transformers have found extensive applications across various domains due to the powerful fitting capabilities. This success can be partially attributed to their inherent nonlinearity. Thus, in addition to the ReLU function employed in the original transformer architecture, researchers have explored alternative modules such as GeLU and SwishGLU to enhance nonlinearity and thereby augment representational capacity. In this paper, we propose a novel category of polynomial composition activations (PolyCom), designed to optimize the dynamics of transformers. Theoretically, we provide a comprehensive mathematical analysis of PolyCom, highlighting its enhanced expressivity and efficacy relative to other activation functions. Notably, we demonstrate that networks incorporating PolyCom achieve the $\textbf{optimal approximation rate}$, indicating that PolyCom networks require minimal parameters to approximate general smooth functions in Sobolev spaces. We conduct empirical experiments on the pre-training configurations of large language models (LLMs), including both dense and sparse architectures. By substituting conventional activation functions with PolyCom, we enable LLMs to capture higher-order interactions within the data, thus improving performance metrics in terms of accuracy and convergence rates. Extensive experimental results demonstrate the effectiveness of our method, showing substantial improvements over other activation functions. Code is available at https://github.com/BryceZhuo/PolyCom.
comment: Accepted by ICLR 2025
♻ ☆ Model-based learning for multi-antenna multi-frequency location-to-channel mapping
Years of study of the propagation channel showed a close relation between a location and the associated communication channel response. The use of a neural network to learn the location-to-channel mapping can therefore be envisioned. The Implicit Neural Representation (INR) literature showed that classical neural architecture are biased towards learning low-frequency content, making the location-to-channel mapping learning a non-trivial problem. Indeed, it is well known that this mapping is a function rapidly varying with the location, on the order of the wavelength. This paper leverages the model-based machine learning paradigm to derive a problem-specific neural architecture from a propagation channel model. The resulting architecture efficiently overcomes the spectral-bias issue. It only learns low-frequency sparse correction terms activating a dictionary of high-frequency components. The proposed architecture is evaluated against classical INR architectures on realistic synthetic data, showing much better accuracy. Its mapping learning performance is explained based on the approximated channel model, highlighting the explainability of the model-based machine learning paradigm.
♻ ☆ Physically Parameterized Differentiable MUSIC for DoA Estimation with Uncalibrated Arrays
Direction of arrival (DoA) estimation is a common sensing problem in radar, sonar, audio, and wireless communication systems. It has gained renewed importance with the advent of the integrated sensing and communication paradigm. To fully exploit the potential of such sensing systems, it is crucial to take into account potential hardware impairments that can negatively impact the obtained performance. This study introduces a joint DoA estimation and hardware impairment learning scheme following a model-based approach. Specifically, a differentiable version of the multiple signal classification (MUSIC) algorithm is derived, allowing efficient learning of the considered impairments. The proposed approach supports both supervised and unsupervised learning strategies, showcasing its practical potential. Simulation results indicate that the proposed method successfully learns significant inaccuracies in both antenna locations and complex gains. Additionally, the proposed method outperforms the classical MUSIC algorithm in the DoA estimation task.
♻ ☆ Neural Networks Trained by Weight Permutation are Universal Approximators
The universal approximation property is fundamental to the success of neural networks, and has traditionally been achieved by training networks without any constraints on their parameters. However, recent experimental research proposed a novel permutation-based training method, which exhibited a desired classification performance without modifying the exact weight values. In this paper, we provide a theoretical guarantee of this permutation training method by proving its ability to guide a ReLU network to approximate one-dimensional continuous functions. Our numerical results further validate this method's efficiency in regression tasks with various initializations. The notable observations during weight permutation suggest that permutation training can provide an innovative tool for describing network learning behavior.
♻ ☆ TAET: Two-Stage Adversarial Equalization Training on Long-Tailed Distributions CVPR2025
Adversarial robustness is a critical challenge in deploying deep neural networks for real-world applications. While adversarial training is a widely recognized defense strategy, most existing studies focus on balanced datasets, overlooking the prevalence of long-tailed distributions in real-world data, which significantly complicates robustness. This paper provides a comprehensive analysis of adversarial training under long-tailed distributions and identifies limitations in the current state-of-the-art method, AT-BSL, in achieving robust performance under such conditions. To address these challenges, we propose a novel training framework, TAET, which integrates an initial stabilization phase followed by a stratified equalization adversarial training phase. Additionally, prior work on long-tailed robustness has largely ignored the crucial evaluation metric of balanced accuracy. To bridge this gap, we introduce the concept of balanced robustness, a comprehensive metric tailored for assessing robustness under long-tailed distributions. Extensive experiments demonstrate that our method surpasses existing advanced defenses, achieving significant improvements in both memory and computational efficiency. This work represents a substantial advancement in addressing robustness challenges in real-world applications. Our code is available at: https://github.com/BuhuiOK/TAET-Two-Stage-Adversarial-Equalization-Training-on-Long-Tailed-Distributions.
comment: Text: 8 pages of main content, 5 pages of appendices have been accepted by CVPR2025
♻ ☆ Deterministic Reservoir Computing for Chaotic Time Series Prediction
Reservoir Computing was shown in recent years to be useful as efficient to learn networks in the field of time series tasks. Their randomized initialization, a computational benefit, results in drawbacks in theoretical analysis of large random graphs, because of which deterministic variations are an still open field of research. Building upon Next-Gen Reservoir Computing and the Temporal Convolution Derived Reservoir Computing, we propose a deterministic alternative to the higher-dimensional mapping therein, TCRC-LM and TCRC-CM, utilizing the parametrized but deterministic Logistic mapping and Chebyshev maps. To further enhance the predictive capabilities in the task of time series forecasting, we propose the novel utilization of the Lobachevsky function as non-linear activation function. As a result, we observe a new, fully deterministic network being able to outperform TCRCs and classical Reservoir Computing in the form of the prominent Echo State Networks by up to $99.99\%$ for the non-chaotic time series and $87.13\%$ for the chaotic ones.
♻ ☆ GC-Fed: Gradient Centralized Federated Learning with Partial Client Participation
Federated Learning (FL) enables privacy-preserving multi-source information fusion (MSIF) but is challenged by client drift in highly heterogeneous data settings. Many existing drift-mitigation strategies rely on reference-based techniques--such as gradient adjustments or proximal loss--that use historical snapshots (e.g., past gradients or previous global models) as reference points. When only a subset of clients participates in each training round, these historical references may not accurately capture the overall data distribution, leading to unstable training. In contrast, our proposed Gradient Centralized Federated Learning (GC-Fed) employs a hyperplane as a historically independent reference point to guide local training and enhance inter-client alignment. GC-Fed comprises two complementary components: Local GC, which centralizes gradients during local training, and Global GC, which centralizes updates during server aggregation. In our hybrid design, Local GC is applied to feature-extraction layers to harmonize client contributions, while Global GC refines classifier layers to stabilize round-wise performance. Theoretical analysis and extensive experiments on benchmark FL tasks demonstrate that GC-Fed effectively mitigates client drift and achieves up to a 20% improvement in accuracy under heterogeneous and partial participation conditions.
♻ ☆ Label Unbalance in High-frequency Trading
In financial trading, return prediction is one of the foundation for a successful trading system. By the fast development of the deep learning in various areas such as graphical processing, natural language, it has also demonstrate significant edge in handling with financial data. While the success of the deep learning relies on huge amount of labeled sample, labeling each time/event as profitable or unprofitable, under the transaction cost, especially in the high-frequency trading world, suffers from serious label imbalance issue.In this paper, we adopts rigurious end-to-end deep learning framework with comprehensive label imbalance adjustment methods and succeed in predicting in high-frequency return in the Chinese future market. The code for our method is publicly available at https://github.com/RS2002/Label-Unbalance-in-High-Frequency-Trading .
comment: Technical Report
♻ ☆ NeuroLM: A Universal Multi-task Foundation Model for Bridging the Gap between Language and EEG Signals
Recent advancements for large-scale pre-training with neural signals such as electroencephalogram (EEG) have shown promising results, significantly boosting the development of brain-computer interfaces (BCIs) and healthcare. However, these pre-trained models often require full fine-tuning on each downstream task to achieve substantial improvements, limiting their versatility and usability, and leading to considerable resource wastage. To tackle these challenges, we propose NeuroLM, the first multi-task foundation model that leverages the capabilities of Large Language Models (LLMs) by regarding EEG signals as a foreign language, endowing the model with multi-task learning and inference capabilities. Our approach begins with learning a text-aligned neural tokenizer through vector-quantized temporal-frequency prediction, which encodes EEG signals into discrete neural tokens. These EEG tokens, generated by the frozen vector-quantized (VQ) encoder, are then fed into an LLM that learns causal EEG information via multi-channel autoregression. Consequently, NeuroLM can understand both EEG and language modalities. Finally, multi-task instruction tuning adapts NeuroLM to various downstream tasks. We are the first to demonstrate that, by specific incorporation with LLMs, NeuroLM unifies diverse EEG tasks within a single model through instruction tuning. The largest variant NeuroLM-XL has record-breaking 1.7B parameters for EEG signal processing, and is pre-trained on a large-scale corpus comprising approximately 25,000-hour EEG data. When evaluated on six diverse downstream datasets, NeuroLM showcases the huge potential of this multi-task learning paradigm.
comment: The Thirteenth International Conference on Learning Representations
♻ ☆ Shedding Light in Task Decomposition in Program Synthesis: The Driving Force of the Synthesizer Model ICLR 2025
Task decomposition is a fundamental mechanism in program synthesis, enabling complex problems to be broken down into manageable subtasks. ExeDec, a state-of-the-art program synthesis framework, employs this approach by combining a Subgoal Model for decomposition and a Synthesizer Model for program generation to facilitate compositional generalization. In this work, we develop REGISM, an adaptation of ExeDec that removes decomposition guidance and relies solely on iterative execution-driven synthesis. By comparing these two exemplary approaches-ExeDec, which leverages task decomposition, and REGISM, which does not-we investigate the interplay between task decomposition and program generation. Our findings indicate that ExeDec exhibits significant advantages in length generalization and concept composition tasks, likely due to its explicit decomposition strategies. At the same time, REGISM frequently matches or surpasses ExeDec's performance across various scenarios, with its solutions often aligning more closely with ground truth decompositions. These observations highlight the importance of repeated execution-guided synthesis in driving task-solving performance, even within frameworks that incorporate explicit decomposition strategies. Our analysis suggests that task decomposition approaches like ExeDec hold significant potential for advancing program synthesis, though further work is needed to clarify when and why these strategies are most effective.
comment: Accepted at ICLR 2025 Workshop Deep Learning for Code
♻ ☆ LICORICE: Label-Efficient Concept-Based Interpretable Reinforcement Learning ICLR 2025
Recent advances in reinforcement learning (RL) have predominantly leveraged neural network policies for decision-making, yet these models often lack interpretability, posing challenges for stakeholder comprehension and trust. Concept bottleneck models offer an interpretable alternative by integrating human-understandable concepts into policies. However, prior work assumes that concept annotations are readily available during training. For RL, this requirement poses a significant limitation: it necessitates continuous real-time concept annotation, which either places an impractical burden on human annotators or incurs substantial costs in API queries and inference time when employing automated labeling methods. To overcome this limitation, we introduce a novel training scheme that enables RL agents to efficiently learn a concept-based policy by only querying annotators to label a small set of data. Our algorithm, LICORICE, involves three main contributions: interleaving concept learning and RL training, using an ensemble to actively select informative data points for labeling, and decorrelating the concept data. We show how LICORICE reduces human labeling efforts to 500 or fewer concept labels in three environments, and 5000 or fewer in two more complex environments, all at no cost to performance. We also explore the use of VLMs as automated concept annotators, finding them effective in some cases but imperfect in others. Our work significantly reduces the annotation burden for interpretable RL, making it more practical for real-world applications that necessitate transparency.
comment: Accepted at ICLR 2025
♻ ☆ A Diagnosis and Treatment of Liver Diseases: Integrating Batch Processing, Rule-Based Event Detection and Explainable Artificial Intelligence
Liver diseases pose a significant global health burden, impacting many individuals and having substantial economic and social consequences. Rising liver problems are considered a fatal disease in many countries, such as Egypt and Moldova. This study aims to develop a diagnosis and treatment model for liver disease using Basic Formal Ontology (BFO), Patient Clinical Data (PCD) ontology, and detection rules derived from a decision tree algorithm. For the development of the ontology, the National Viral Hepatitis Control Program (NVHCP) guidelines were used, which made the ontology more accurate and reliable. The Apache Jena framework uses batch processing to detect events based on these rules. Based on the event detected, queries can be directly processed using SPARQL. We convert these Decision Tree (DT) and medical guidelines-based rules into Semantic Web Rule Language (SWRL) to operationalize the ontology. Using this SWRL in the ontology to predict different types of liver disease with the help of the Pellet and Drools inference engines in Protege Tools, a total of 615 records were taken from different liver diseases. After inferring the rules, the result can be generated for the patient according to the rules, and other patient-related details, along with different precautionary suggestions, can be obtained based on these results. These rules can make suggestions more accurate with the help of Explainable Artificial Intelligence (XAI) with open API-based suggestions. When the patient has prescribed a medical test, the model accommodates this result using optical character recognition (OCR), and the same process applies when the patient has prescribed a further medical suggestion according to the test report. These models combine to form a comprehensive Decision Support System (DSS) for the diagnosis of liver disease.
♻ ☆ HR-Bandit: Human-AI Collaborated Linear Recourse Bandit AISTATS 25
Human doctors frequently recommend actionable recourses that allow patients to modify their conditions to access more effective treatments. Inspired by such healthcare scenarios, we propose the Recourse Linear UCB ($\textsf{RLinUCB}$) algorithm, which optimizes both action selection and feature modifications by balancing exploration and exploitation. We further extend this to the Human-AI Linear Recourse Bandit ($\textsf{HR-Bandit}$), which integrates human expertise to enhance performance. $\textsf{HR-Bandit}$ offers three key guarantees: (i) a warm-start guarantee for improved initial performance, (ii) a human-effort guarantee to minimize required human interactions, and (iii) a robustness guarantee that ensures sublinear regret even when human decisions are suboptimal. Empirical results, including a healthcare case study, validate its superior performance against existing benchmarks.
comment: 18 pages, AISTATS 25
♻ ☆ Intelligent Agricultural Greenhouse Control System Based on Internet of Things and Machine Learning
This study endeavors to conceptualize and execute a sophisticated agricultural greenhouse control system grounded in the amalgamation of the Internet of Things (IoT) and machine learning. Through meticulous monitoring of intrinsic environmental parameters within the greenhouse and the integration of machine learning algorithms, the conditions within the greenhouse are aptly modulated. The envisaged outcome is an enhancement in crop growth efficiency and yield, accompanied by a reduction in resource wastage. In the backdrop of escalating global population figures and the escalating exigencies of climate change, agriculture confronts unprecedented challenges. Conventional agricultural paradigms have proven inadequate in addressing the imperatives of food safety and production efficiency. Against this backdrop, greenhouse agriculture emerges as a viable solution, proffering a controlled milieu for crop cultivation to augment yields, refine quality, and diminish reliance on natural resources [b1]. Nevertheless, greenhouse agriculture contends with a gamut of challenges. Traditional greenhouse management strategies, often grounded in experiential knowledge and predefined rules, lack targeted personalized regulation, thereby resulting in resource inefficiencies. The exigencies of real-time monitoring and precise control of the greenhouse's internal environment gain paramount importance with the burgeoning scale of agriculture. To redress this challenge, the study introduces IoT technology and machine learning algorithms into greenhouse agriculture, aspiring to institute an intelligent agricultural greenhouse control system conducive to augmenting the efficiency and sustainability of agricultural production.
♻ ☆ FreeCloth: Free-form Generation Enhances Challenging Clothed Human Modeling
Achieving realistic animated human avatars requires accurate modeling of pose-dependent clothing deformations. Existing learning-based methods heavily rely on the Linear Blend Skinning (LBS) of minimally-clothed human models like SMPL to model deformation. However, they struggle to handle loose clothing, such as long dresses, where the canonicalization process becomes ill-defined when the clothing is far from the body, leading to disjointed and fragmented results. To overcome this limitation, we propose FreeCloth, a novel hybrid framework to model challenging clothed humans. Our core idea is to use dedicated strategies to model different regions, depending on whether they are close to or distant from the body. Specifically, we segment the human body into three categories: unclothed, deformed, and generated. We simply replicate unclothed regions that require no deformation. For deformed regions close to the body, we leverage LBS to handle the deformation. As for the generated regions, which correspond to loose clothing areas, we introduce a novel free-form, part-aware generator to model them, as they are less affected by movements. This free-form generation paradigm brings enhanced flexibility and expressiveness to our hybrid framework, enabling it to capture the intricate geometric details of challenging loose clothing, such as skirts and dresses. Experimental results on the benchmark dataset featuring loose clothing demonstrate that FreeCloth achieves state-of-the-art performance with superior visual fidelity and realism, particularly in the most challenging cases.
comment: 23 pages, 26 figures
♻ ☆ DeDe: Detecting Backdoor Samples for SSL Encoders via Decoders CVPR 2025
Self-supervised learning (SSL) is pervasively exploited in training high-quality upstream encoders with a large amount of unlabeled data. However, it is found to be susceptible to backdoor attacks merely via polluting a small portion of training data. The victim encoders associate triggered inputs with target embeddings, e.g., mapping a triggered cat image to an airplane embedding, such that the downstream tasks inherit unintended behaviors when the trigger is activated. Emerging backdoor attacks have shown great threats across different SSL paradigms such as contrastive learning and CLIP, yet limited research is devoted to defending against such attacks, and existing defenses fall short in detecting advanced stealthy backdoors. To address the limitations, we propose a novel detection mechanism, DeDe, which detects the activation of backdoor mappings caused by triggered inputs on victim encoders. Specifically, DeDe trains a decoder for any given SSL encoder using an auxiliary dataset (which can be out-of-distribution or even slightly poisoned), so that for any triggered input that misleads the encoder into the target embedding, the decoder generates an output image significantly different from the input. DeDe leverages the discrepancy between the input and the decoded output to identify potential backdoor misbehavior during inference. We empirically evaluate DeDe on both contrastive learning and CLIP models against various types of backdoor attacks. Our results demonstrate promising detection effectiveness over various advanced attacks and superior performance compared over state-of-the-art detection methods.
comment: To appear on CVPR 2025
♻ ☆ Diffusion Attribution Score: Evaluating Training Data Influence in Diffusion Model
As diffusion models become increasingly popular, the misuse of copyrighted and private images has emerged as a major concern. One promising solution to mitigate this issue is identifying the contribution of specific training samples in generative models, a process known as data attribution. Existing data attribution methods for diffusion models typically quantify the contribution of a training sample by evaluating the change in diffusion loss when the sample is included or excluded from the training process. However, we argue that the direct usage of diffusion loss cannot represent such a contribution accurately due to the calculation of diffusion loss. Specifically, these approaches measure the divergence between predicted and ground truth distributions, which leads to an indirect comparison between the predicted distributions and cannot represent the variances between model behaviors. To address these issues, we aim to measure the direct comparison between predicted distributions with an attribution score to analyse the training sample importance, which is achieved by Diffusion Attribution Score (\textit{DAS}). Underpinned by rigorous theoretical analysis, we elucidate the effectiveness of DAS. Additionally, we explore strategies to accelerate DAS calculations, facilitating its application to large-scale diffusion models. Our extensive experiments across various datasets and diffusion models demonstrate that DAS significantly surpasses previous benchmarks in terms of the linear data-modelling score, establishing new state-of-the-art performance. Code is available at \hyperlink{here}{https://github.com/Jinxu-Lin/DAS}.
♻ ☆ Mirror Descent and Novel Exponentiated Gradient Algorithms Using Trace-Form Entropies and Deformed Logarithms
In this paper we propose and investigate a wide class of Mirror Descent updates (MD) and associated novel Generalized Exponentiated Gradient (GEG) algorithms by exploiting various trace-form entropies and associated deformed logarithms and their inverses - deformed (generalized) exponential functions. The proposed algorithms can be considered as extension of entropic MD and generalization of multiplicative updates. In the literature, there exist nowadays over fifty mathematically well defined generalized entropies, so impossible to exploit all of them in one research paper. So we focus on a few selected most popular entropies and associated logarithms like the Tsallis, Kaniadakis and Sharma-Taneja-Mittal and some of their extension like Tempesta or Kaniadakis-Scarfone entropies. The shape and properties of the deformed logarithms and their inverses are tuned by one or more hyperparameters. By learning these hyperparameters, we can adapt to distribution of training data, which can be designed to the specific geometry of the optimization problem, leading to potentially faster convergence and better performance. The using generalized entropies and associated deformed logarithms in the Bregman divergence, used as a regularization term, provides some new insight into exponentiated gradient descent updates.
comment: 22 pages, 9 figures
♻ ☆ On Domain-Specific Post-Training for Multimodal Large Language Models
Adapting general multimodal large language models (MLLMs) to specific domains, such as scientific and industrial fields, is highly significant in promoting their practical applications. This paper systematically investigates domain adaptation of MLLMs through post-training, focusing on data synthesis, training pipelines, and task evaluation. (1) Data Synthesis: Using only open-source models, we develop a generate-then-filter pipeline that curates diverse visual instruction tasks based on domain-specific image-caption pairs. The resulting data surpass the data synthesized by manual rules or strong closed-source models (e.g., GPT-4V) in enhancing domain-specific performance. (2) Training Pipeline: While the two-stage training--initially on image-caption pairs followed by visual instruction tasks--is commonly adopted for developing general MLLMs, we apply a single-stage training pipeline to enhance task diversity for domain-specific post-training. (3) Task Evaluation: We conduct extensive experiments in high-impact domains such as biomedicine, food, and remote sensing, by post-training a variety of MLLMs and then evaluating MLLM performance on various domain-specific tasks. Furthermore, we fully open-source our models, code, and data to encourage future research in this area.
♻ ☆ Mobile Edge Intelligence for Large Language Models: A Contemporary Survey
On-device large language models (LLMs), referring to running LLMs on edge devices, have raised considerable interest since they are more cost-effective, latency-efficient, and privacy-preserving compared with the cloud paradigm. Nonetheless, the performance of on-device LLMs is intrinsically constrained by resource limitations on edge devices. Sitting between cloud and on-device AI, mobile edge intelligence (MEI) presents a viable solution by provisioning AI capabilities at the edge of mobile networks, enabling end users to offload heavy AI computation to capable edge servers nearby. This article provides a contemporary survey on harnessing MEI for LLMs. We begin by illustrating several killer applications to demonstrate the urgent need for deploying LLMs at the network edge. Next, we present the preliminaries of LLMs and MEI, followed by resource-efficient LLM techniques. We then present an architectural overview of MEI for LLMs (MEI4LLM), outlining its core components and how it supports the deployment of LLMs. Subsequently, we delve into various aspects of MEI4LLM, extensively covering edge LLM caching and delivery, edge LLM training, and edge LLM inference. Finally, we identify future research opportunities. We hope this article inspires researchers in the field to leverage mobile edge computing to facilitate LLM deployment, thereby unleashing the potential of LLMs across various privacy- and delay-sensitive applications.
comment: 42 pages, 17 figures. This paper has been accepted by IEEE Communications Surveys & Tutorials
♻ ☆ Efficient Policy Evaluation with Safety Constraint for Reinforcement Learning
In reinforcement learning, classic on-policy evaluation methods often suffer from high variance and require massive online data to attain the desired accuracy. Previous studies attempt to reduce evaluation variance by searching for or designing proper behavior policies to collect data. However, these approaches ignore the safety of such behavior policies -- the designed behavior policies have no safety guarantee and may lead to severe damage during online executions. In this paper, to address the challenge of reducing variance while ensuring safety simultaneously, we propose an optimal variance-minimizing behavior policy under safety constraints. Theoretically, while ensuring safety constraints, our evaluation method is unbiased and has lower variance than on-policy evaluation. Empirically, our method is the only existing method to achieve both substantial variance reduction and safety constraint satisfaction. Furthermore, we show our method is even superior to previous methods in both variance reduction and execution safety.
comment: arXiv admin note: text overlap with arXiv:2410.02226
♻ ☆ Automatic Curriculum Expert Iteration for Reliable LLM Reasoning
Hallucinations (i.e., generating plausible but inaccurate content) and laziness (i.e. excessive refusals or defaulting to "I don't know") persist as major challenges in LLM reasoning. Current efforts to reduce hallucinations primarily focus on factual errors in knowledge-grounded tasks, often neglecting hallucinations related to faulty reasoning. Meanwhile, some approaches render LLMs overly conservative, limiting their problem-solving capabilities. To mitigate hallucination and laziness in reasoning tasks, we propose Automatic Curriculum Expert Iteration (Auto-CEI) to enhance LLM reasoning and align responses to the model's capabilities--assertively answering within its limits and declining when tasks exceed them. In our method, Expert Iteration explores the reasoning trajectories near the LLM policy, guiding incorrect paths back on track to reduce compounding errors and improve robustness; it also promotes appropriate "I don't know" responses after sufficient reasoning attempts. The curriculum automatically adjusts rewards, incentivizing extended reasoning before acknowledging incapability, thereby pushing the limits of LLM reasoning and aligning its behaviour with these limits. We compare Auto-CEI with various SOTA baselines across logical reasoning, mathematics, and planning tasks, where Auto-CEI achieves superior alignment by effectively balancing assertiveness and conservativeness. The code is available at https://github.com/SalesforceAIResearch/Auto-CEI .
comment: 20 pages
♻ ☆ CLIMB: Data Foundations for Large Scale Multimodal Clinical Foundation Models
Recent advances in clinical AI have enabled remarkable progress across many clinical domains. However, existing benchmarks and models are primarily limited to a small set of modalities and tasks, which hinders the development of large-scale multimodal methods that can make holistic assessments of patient health and well-being. To bridge this gap, we introduce Clinical Large-Scale Integrative Multimodal Benchmark (CLIMB), a comprehensive clinical benchmark unifying diverse clinical data across imaging, language, temporal, and graph modalities. CLIMB comprises 4.51 million patient samples totaling 19.01 terabytes distributed across 2D imaging, 3D video, time series, graphs, and multimodal data. Through extensive empirical evaluation, we demonstrate that multitask pretraining significantly improves performance on understudied domains, achieving up to 29% improvement in ultrasound and 23% in ECG analysis over single-task learning. Pretraining on CLIMB also effectively improves models' generalization capability to new tasks, and strong unimodal encoder performance translates well to multimodal performance when paired with task-appropriate fusion strategies. Our findings provide a foundation for new architecture designs and pretraining strategies to advance clinical AI research. Code is released at https://github.com/DDVD233/climb.
♻ ☆ Doubly Optimal Policy Evaluation for Reinforcement Learning
Policy evaluation estimates the performance of a policy by (1) collecting data from the environment and (2) processing raw data into a meaningful estimate. Due to the sequential nature of reinforcement learning, any improper data-collecting policy or data-processing method substantially deteriorates the variance of evaluation results over long time steps. Thus, policy evaluation often suffers from large variance and requires massive data to achieve the desired accuracy. In this work, we design an optimal combination of data-collecting policy and data-processing baseline. Theoretically, we prove our doubly optimal policy evaluation method is unbiased and guaranteed to have lower variance than previously best-performing methods. Empirically, compared with previous works, we show our method reduces variance substantially and achieves superior empirical performance.
♻ ☆ Distributionally Robust Learning for Multi-source Unsupervised Domain Adaptation
Empirical risk minimization often performs poorly when the distribution of the target domain differs from those of source domains. To address such potential distribution shifts, we develop an unsupervised domain adaptation approach that leverages labeled data from multiple source domains and unlabeled data from the target domain. We introduce a distributionally robust model that optimizes an adversarial reward based on the explained variance across a class of target distributions, ensuring generalization to the target domain. We show that the proposed robust model is a weighted average of conditional outcome models from source domains. This formulation allows us to compute the robust model through the aggregation of source models, which can be estimated using various machine learning algorithms of the users' choice, such as random forests, boosting, and neural networks. Additionally, we introduce a bias-correction step to obtain a more accurate aggregation weight, which is effective for various machine learning algorithms. Our framework can be interpreted as a distributionally robust federated learning approach that satisfies privacy constraints while providing insights into the importance of each source for prediction on the target domain. The performance of our method is evaluated on both simulated and real data.
♻ ☆ Aligning Text to Image in Diffusion Models is Easier Than You Think
While recent advancements in generative modeling have significantly improved text-image alignment, some residual misalignment between text and image representations still remains. Although many approaches have attempted to address this issue by fine-tuning models using various reward models, etc., we revisit the challenge from the perspective of representation alignment-an approach that has gained popularity with the success of REPresentation Alignment (REPA). We first argue that conventional text-to-image (T2I) diffusion models, typically trained on paired image and text data (i.e., positive pairs) by minimizing score matching or flow matching losses, is suboptimal from the standpoint of representation alignment. Instead, a better alignment can be achieved through contrastive learning that leverages both positive and negative pairs. To achieve this efficiently even with pretrained models, we introduce a lightweight contrastive fine tuning strategy called SoftREPA that uses soft text tokens. This approach improves alignment with minimal computational overhead by adding fewer than 1M trainable parameters to the pretrained model. Our theoretical analysis demonstrates that our method explicitly increases the mutual information between text and image representations, leading to enhanced semantic consistency. Experimental results across text-to-image generation and text-guided image editing tasks validate the effectiveness of our approach in improving the semantic consistency of T2I generative models.
♻ ☆ Diffusion-Driven Semantic Communication for Generative Models with Bandwidth Constraints
Diffusion models have been extensively utilized in AI-generated content (AIGC) in recent years, thanks to the superior generation capabilities. Combining with semantic communications, diffusion models are used for tasks such as denoising, data reconstruction, and content generation. However, existing diffusion-based generative models do not consider the stringent bandwidth limitation, which limits its application in wireless communication. This paper introduces a diffusion-driven semantic communication framework with advanced VAE-based compression for bandwidth-constrained generative model. Our designed architecture utilizes the diffusion model, where the signal transmission process through the wireless channel acts as the forward process in diffusion. To reduce bandwidth requirements, we incorporate a downsampling module and a paired upsampling module based on a variational auto-encoder with reparameterization at the receiver to ensure that the recovered features conform to the Gaussian distribution. Furthermore, we derive the loss function for our proposed system and evaluate its performance through comprehensive experiments. Our experimental results demonstrate significant improvements in pixel-level metrics such as peak signal to noise ratio (PSNR) and semantic metrics like learned perceptual image patch similarity (LPIPS). These enhancements are more profound regarding the compression rates and SNR compared to deep joint source-channel coding (DJSCC).
comment: accepted to IEEE for possible publication
♻ ☆ Exponentially Consistent Nonparametric Linkage-Based Clustering of Data Sequences
In this paper, we consider nonparametric clustering of $M$ independent and identically distributed (i.i.d.) data sequences generated from {\em unknown} distributions. The distributions of the $M$ data sequences belong to $K$ underlying distribution clusters. Existing results on exponentially consistent nonparametric clustering algorithms, like single linkage-based (SLINK) clustering and $k$-medoids distribution clustering, assume that the maximum intra-cluster distance ($d_L$) is smaller than the minimum inter-cluster distance ($d_H$). First, in the fixed sample size (FSS) setting, we show that exponential consistency can be achieved for SLINK clustering under a less strict assumption, $d_I < d_H$, where $d_I$ is the maximum distance between any two sub-clusters of a cluster that partition the cluster. Note that $d_I < d_L$ in general. Thus, our results show that SLINK is exponentially consistent for a larger class of problems than previously known. In our simulations, we also identify examples where $k$-medoids clustering is unable to find the true clusters, but SLINK is exponentially consistent. Then, we propose a sequential clustering algorithm, named SLINK-SEQ, based on SLINK and prove that it is also exponentially consistent. Simulation results show that the SLINK-SEQ algorithm requires fewer expected number of samples than the FSS SLINK algorithm for the same probability of error.
♻ ☆ A Survey of the Self Supervised Learning Mechanisms for Vision Transformers
Deep supervised learning models require high volume of labeled data to attain sufficiently good results. Although, the practice of gathering and annotating such big data is costly and laborious. Recently, the application of self supervised learning (SSL) in vision tasks has gained significant attention. The intuition behind SSL is to exploit the synchronous relationships within the data as a form of self-supervision, which can be versatile. In the current big data era, most of the data is unlabeled, and the success of SSL thus relies in finding ways to utilize this vast amount of unlabeled data available. Thus it is better for deep learning algorithms to reduce reliance on human supervision and instead focus on self-supervision based on the inherent relationships within the data. With the advent of ViTs, which have achieved remarkable results in computer vision, it is crucial to explore and understand the various SSL mechanisms employed for training these models specifically in scenarios where there is limited labelled data available. In this survey, we develop a comprehensive taxonomy of systematically classifying the SSL techniques based upon their representations and pre-training tasks being applied. Additionally, we discuss the motivations behind SSL, review popular pre-training tasks, and highlight the challenges and advancements in this field. Furthermore, we present a comparative analysis of different SSL methods, evaluate their strengths and limitations, and identify potential avenues for future research.
comment: 34 Pages, 5 Figures, 7 Tables
♻ ☆ A Label-Free Heterophily-Guided Approach for Unsupervised Graph Fraud Detection AAAI 2025
Graph fraud detection (GFD) has rapidly advanced in protecting online services by identifying malicious fraudsters. Recent supervised GFD research highlights that heterophilic connections between fraudsters and users can greatly impact detection performance, since fraudsters tend to camouflage themselves by building more connections to benign users. Despite the promising performance of supervised GFD methods, the reliance on labels limits their applications to unsupervised scenarios; Additionally, accurately capturing complex and diverse heterophily patterns without labels poses a further challenge. To fill the gap, we propose a Heterophily-guided Unsupervised Graph fraud dEtection approach (HUGE) for unsupervised GFD, which contains two essential components: a heterophily estimation module and an alignment-based fraud detection module. In the heterophily estimation module, we design a novel label-free heterophily metric called HALO, which captures the critical graph properties for GFD, enabling its outstanding ability to estimate heterophily from node attributes. In the alignment-based fraud detection module, we develop a joint MLP-GNN architecture with ranking loss and asymmetric alignment loss. The ranking loss aligns the predicted fraud score with the relative order of HALO, providing an extra robustness guarantee by comparing heterophily among non-adjacent nodes. Moreover, the asymmetric alignment loss effectively utilizes structural information while alleviating the feature-smooth effects of GNNs. Extensive experiments on 6 datasets demonstrate that HUGE significantly outperforms competitors, showcasing its effectiveness and robustness.
comment: 9 pages, 3 figures. Accepted by AAAI 2025
♻ ☆ LazyDiT: Lazy Learning for the Acceleration of Diffusion Transformers AAAI 2025
Diffusion Transformers have emerged as the preeminent models for a wide array of generative tasks, demonstrating superior performance and efficacy across various applications. The promising results come at the cost of slow inference, as each denoising step requires running the whole transformer model with a large amount of parameters. In this paper, we show that performing the full computation of the model at each diffusion step is unnecessary, as some computations can be skipped by lazily reusing the results of previous steps. Furthermore, we show that the lower bound of similarity between outputs at consecutive steps is notably high, and this similarity can be linearly approximated using the inputs. To verify our demonstrations, we propose the \textbf{LazyDiT}, a lazy learning framework that efficiently leverages cached results from earlier steps to skip redundant computations. Specifically, we incorporate lazy learning layers into the model, effectively trained to maximize laziness, enabling dynamic skipping of redundant computations. Experimental results show that LazyDiT outperforms the DDIM sampler across multiple diffusion transformer models at various resolutions. Furthermore, we implement our method on mobile devices, achieving better performance than DDIM with similar latency. Code: https://github.com/shawnricecake/lazydit
comment: Accepted by AAAI 2025
♻ ☆ SSTP: Efficient Sample Selection for Trajectory Prediction
Trajectory prediction is a core task in autonomous driving. However, training advanced trajectory prediction models on large-scale datasets is both time-consuming and computationally expensive. In addition, the imbalanced distribution of driving scenarios often biases models toward data-rich cases, limiting performance in safety-critical, data-scarce conditions. To address these challenges, we propose the Sample Selection for Trajectory Prediction (SSTP) framework, which constructs a compact yet balanced dataset for trajectory prediction. SSTP consists of two main stages (1) Extraction, in which a pretrained trajectory prediction model computes gradient vectors for each sample to capture their influence on parameter updates; and (2) Selection, where a submodular function is applied to greedily choose a representative subset that covers diverse driving scenarios. This approach significantly reduces the dataset size and mitigates scenario imbalance, without sacrificing prediction accuracy and even improving in high-density cases. We evaluate our proposed SSTP on the Argoverse 1 and Argoverse 2 benchmarks using a wide range of recent state-of-the-art models. Our experiments demonstrate that SSTP achieves comparable performance to full-dataset training using only half the data while delivering substantial improvements in high-density traffic scenes and significantly reducing training time. Importantly, SSTP exhibits strong generalization and robustness, and the selected subset is model-agnostic, offering a broadly applicable solution.
♻ ☆ Data Mixing Laws: Optimizing Data Mixtures by Predicting Language Modeling Performance ICLR2025
Pretraining data of large language models composes multiple domains (e.g., web texts, academic papers, codes), whose mixture proportions crucially impact the competence of outcome models. While existing endeavors rely on heuristics or qualitative strategies to tune the proportions, we discover the quantitative predictability of model performance regarding the mixture proportions in function forms, which we refer to as the data mixing laws. Fitting such functions on sample mixtures unveils model performance on unseen mixtures before actual runs, thus guiding the selection of an ideal data mixture. Furthermore, we propose nested use of the scaling laws of training steps, model sizes, and our data mixing law to enable predicting the performance of large models trained on massive data under various mixtures with only small-scale training. Moreover, experimental results verify that our method effectively optimizes the training mixture of a 1B model trained for 100B tokens in RedPajama, reaching a performance comparable to the one trained for 48% more steps on the default mixture. Extending the application of data mixing laws to continual training accurately predicts the critical mixture proportion that avoids catastrophic forgetting and outlooks the potential for dynamic data schedules
comment: accepted by ICLR2025, camera ready version
♻ ☆ Reversal Blessing: Thinking Backward May Outpace Thinking Forward in Multi-choice Questions
Language models usually use left-to-right (L2R) autoregressive factorization. However, L2R factorization may not always be the best inductive bias. Therefore, we investigate whether alternative factorizations of the text distribution could be beneficial in some tasks. We investigate right-to-left (R2L) training as a compelling alternative, focusing on multiple-choice questions (MCQs) as a test bed for knowledge extraction and reasoning. Through extensive experiments across various model sizes (2B-8B parameters) and training datasets, we find that R2L models can significantly outperform L2R models on several MCQ benchmarks, including logical reasoning, commonsense understanding, and truthfulness assessment tasks. Our analysis reveals that this performance difference may be fundamentally linked to multiple factors including calibration, computability and directional conditional entropy. We ablate the impact of these factors through controlled simulation studies using arithmetic tasks, where the impacting factors can be better disentangled. Our work demonstrates that exploring alternative factorizations of the text distribution can lead to improvements in LLM capabilities and provides theoretical insights into optimal factorization towards approximating human language distribution, and when each reasoning order might be more advantageous.
♻ ☆ Dynamic Backtracking in GFlowNets: Enhancing Decision Steps with Reward-Dependent Adjustment Mechanisms
Generative Flow Networks (GFlowNets or GFNs) are probabilistic models predicated on Markov flows, and they employ specific amortization algorithms to learn stochastic policies that generate compositional substances including biomolecules, chemical materials, etc. With a strong ability to generate high-performance biochemical molecules, GFNs accelerate the discovery of scientific substances, effectively overcoming the time-consuming, labor-intensive, and costly shortcomings of conventional material discovery methods. However, previous studies rarely focus on accumulating exploratory experience by adjusting generative structures, which leads to disorientation in complex sampling spaces. Efforts to address this issue, such as LS-GFN, are limited to local greedy searches and lack broader global adjustments. This paper introduces a novel variant of GFNs, the Dynamic Backtracking GFN (DB-GFN), which improves the adaptability of decision-making steps through a reward-based dynamic backtracking mechanism. DB-GFN allows backtracking during the network construction process according to the current state's reward value, thereby correcting disadvantageous decisions and exploring alternative pathways during the exploration process. When applied to generative tasks involving biochemical molecules and genetic material sequences, DB-GFN outperforms GFN models such as LS-GFN and GTB, as well as traditional reinforcement learning methods, in sample quality, sample exploration quantity, and training convergence speed. Additionally, owing to its orthogonal nature, DB-GFN shows great potential in future improvements of GFNs, and it can be integrated with other strategies to achieve higher search performance.
♻ ☆ KDSelector: A Knowledge-Enhanced and Data-Efficient Model Selector Learning Framework for Time Series Anomaly Detection
Model selection has been raised as an essential problem in the area of time series anomaly detection (TSAD), because there is no single best TSAD model for the highly heterogeneous time series in real-world applications. However, despite the success of existing model selection solutions that train a classification model (especially neural network, NN) using historical data as a selector to predict the correct TSAD model for each series, the NN-based selector learning methods used by existing solutions do not make full use of the knowledge in the historical data and require iterating over all training samples, which limits the accuracy and training speed of the selector. To address these limitations, we propose KDSelector, a novel knowledge-enhanced and data-efficient framework for learning the NN-based TSAD model selector, of which three key components are specifically designed to integrate available knowledge into the selector and dynamically prune less important and redundant samples during the learning. We develop a TSAD model selection system with KDSelector as the internal, to demonstrate how users improve the accuracy and training speed of their selectors by using KDSelector as a plug-and-play module. Our demonstration video is hosted at https://youtu.be/2uqupDWvTF0.
comment: This paper has been accepted by SIGMOD 2025
♻ ☆ Scalable Oversight for Superhuman AI via Recursive Self-Critiquing
As AI capabilities increasingly surpass human proficiency in complex tasks, current alignment techniques including SFT and RLHF face fundamental challenges in ensuring reliable oversight. These methods rely on direct human assessment and become untenable when AI outputs exceed human cognitive thresholds. In response to this challenge, we explore two hypotheses: (1) critique of critique can be easier than critique itself, extending the widely-accepted observation that verification is easier than generation to the critique domain, as critique itself is a specialized form of generation; (2) this difficulty relationship is recursively held, suggesting that when direct evaluation is infeasible, performing high-order critiques (e.g., critique of critique of critique) offers a more tractable supervision pathway. To examine these hypotheses, we perform Human-Human, Human-AI, and AI-AI experiments across multiple tasks. Our results demonstrate encouraging evidence supporting these hypotheses and suggest that recursive self-critiquing is a promising direction for scalable oversight.
♻ ☆ Moto: Latent Motion Token as the Bridging Language for Learning Robot Manipulation from Videos
Recent developments in Large Language Models pre-trained on extensive corpora have shown significant success in various natural language processing tasks with minimal fine-tuning. This success offers new promise for robotics, which has long been constrained by the high cost of action-labeled data. We ask: given the abundant video data containing interaction-related knowledge available as a rich "corpus", can a similar generative pre-training approach be effectively applied to enhance robot learning? The key challenge is to identify an effective representation for autoregressive pre-training that benefits robot manipulation tasks. Inspired by the way humans learn new skills through observing dynamic environments, we propose that effective robotic learning should emphasize motion-related knowledge, which is closely tied to low-level actions and is hardware-agnostic, facilitating the transfer of learned motions to actual robot actions. To this end, we introduce Moto, which converts video content into latent Motion Token sequences by a Latent Motion Tokenizer, learning a bridging "language" of motion from videos in an unsupervised manner. We pre-train Moto-GPT through motion token autoregression, enabling it to capture diverse visual motion knowledge. After pre-training, Moto-GPT demonstrates the promising ability to produce semantically interpretable motion tokens, predict plausible motion trajectories, and assess trajectory rationality through output likelihood. To transfer learned motion priors to real robot actions, we implement a co-fine-tuning strategy that seamlessly bridges latent motion token prediction and real robot control. Extensive experiments show that the fine-tuned Moto-GPT exhibits superior robustness and efficiency on robot manipulation benchmarks, underscoring its effectiveness in transferring knowledge from video data to downstream visual manipulation tasks.
comment: Project released at: https://chenyi99.github.io/moto/ Update: Added content related to real-world robot experiments and learning from human videos
♻ ☆ GRE^2-MDCL: Graph Representation Embedding Enhanced via Multidimensional Contrastive Learning
Graph representation learning has emerged as a powerful tool for preserving graph topology when mapping nodes to vector representations, enabling various downstream tasks such as node classification and community detection. However, most current graph neural network models face the challenge of requiring extensive labeled data, which limits their practical applicability in real-world scenarios where labeled data is scarce. To address this challenge, researchers have explored Graph Contrastive Learning (GCL), which leverages enhanced graph data and contrastive learning techniques. While promising, existing GCL methods often struggle with effectively capturing both local and global graph structures, and balancing the trade-off between nodelevel and graph-level representations. In this work, we propose Graph Representation Embedding Enhanced via Multidimensional Contrastive Learning (GRE2-MDCL). Our model introduces a novel triple network architecture with a multi-head attention GNN as the core. GRE2-MDCL first globally and locally augments the input graph using SVD and LAGNN techniques. It then constructs a multidimensional contrastive loss, incorporating cross-network, cross-view, and neighbor contrast, to optimize the model. Extensive experiments on benchmark datasets Cora, Citeseer, and PubMed demonstrate that GRE2-MDCL achieves state-of-the-art performance, with average accuracies of 82.5%, 72.5%, and 81.6% respectively. Visualizations further show tighter intra-cluster aggregation and clearer inter-cluster boundaries, highlighting the effectiveness of our framework in improving upon baseline GCL models.
comment: I am requesting the withdrawal of my paper due to errors identified in the methodology and experimental results. Specifically, there are inaccuracies in the analysis section that may lead to misleading conclusions
♻ ☆ DirectMultiStep: Direct Route Generation for Multistep Retrosynthesis
Traditional computer-aided synthesis planning (CASP) methods rely on iterative single-step predictions, leading to exponential search space growth that limits efficiency and scalability. We introduce a series of transformer-based models, that leverage a mixture of experts approach to directly generate multistep synthetic routes as a single string, conditionally predicting each transformation based on all preceding ones. Our DMS Explorer XL model, which requires only target compounds as input, outperforms state-of-the-art methods on the PaRoutes dataset with 1.9x and 3.1x improvements in Top-1 accuracy on the n$_1$ and n$_5$ test sets, respectively. Providing additional information, such as the desired number of steps and starting materials, enables both a reduction in model size and an increase in accuracy, highlighting the benefits of incorporating more constraints into the prediction process. The top-performing DMS-Flex (Duo) model scores 25-50% higher on Top-1 and Top-10 accuracies for both n$_1$ and n$_5$ sets. Additionally, our models successfully predict routes for FDA-approved drugs not included in the training data, demonstrating strong generalization capabilities. While the limited diversity of the training set may affect performance on less common reaction types, our multistep-first approach presents a promising direction towards fully automated retrosynthetic planning.
♻ ☆ Can a MISL Fly? Analysis and Ingredients for Mutual Information Skill Learning
Self-supervised learning has the potential of lifting several of the key challenges in reinforcement learning today, such as exploration, representation learning, and reward design. Recent work (METRA) has effectively argued that moving away from mutual information and instead optimizing a certain Wasserstein distance is important for good performance. In this paper, we argue that the benefits seen in that paper can largely be explained within the existing framework of mutual information skill learning (MISL). Our analysis suggests a new MISL method (contrastive successor features) that retains the excellent performance of METRA with fewer moving parts, and highlights connections between skill learning, contrastive representation learning, and successor features. Finally, through careful ablation studies, we provide further insight into some of the key ingredients for both our method and METRA.
comment: Code and videos are available on the website: https://princeton-rl.github.io/contrastive-successor-features/
♻ ☆ Mixed-Reality Digital Twins: Leveraging the Physical and Virtual Worlds for Hybrid Sim2Real Transition of Multi-Agent Reinforcement Learning Policies
Multi-agent reinforcement learning (MARL) for cyber-physical vehicle systems usually requires a significantly long training time due to their inherent complexity. Furthermore, deploying the trained policies in the real world demands a feature-rich environment along with multiple physical embodied agents, which may not be feasible due to monetary, physical, energy, or safety constraints. This work seeks to address these pain points by presenting a mixed-reality digital twin framework capable of: (i) selectively scaling parallelized workloads on-demand, and (ii) evaluating the trained policies across simulation-to-reality (sim2real) experiments. The viability and performance of the proposed framework are highlighted through two representative use cases, which cover cooperative as well as competitive classes of MARL problems. We study the effect of: (i) agent and environment parallelization on training time, and (ii) systematic domain randomization on zero-shot sim2real transfer across both case studies. Results indicate up to 76.3% reduction in training time with the proposed parallelization scheme and sim2real gap as low as 2.9% using the proposed deployment method.
♻ ☆ Unimodal Distributions for Ordinal Regression
In many real-world prediction tasks, class labels contain information about the relative order between labels that are not captured by commonly used loss functions such as multicategory cross-entropy. Recently, the preference for unimodal distributions in the output space has been incorporated into models and loss functions to account for such ordering information. However, current approaches rely on heuristics that lack a theoretical foundation. Here, we propose two new approaches to incorporate the preference for unimodal distributions into the predictive model. We analyse the set of unimodal distributions in the probability simplex and establish fundamental properties. We then propose a new architecture that imposes unimodal distributions and a new loss term that relies on the notion of projection in a set to promote unimodality. Experiments show the new architecture achieves top-2 performance, while the proposed new loss term is very competitive while maintaining high unimodality.
comment: 17 pages
♻ ☆ Words in Motion: Extracting Interpretable Control Vectors for Motion Transformers ICLR 2025
Transformer-based models generate hidden states that are difficult to interpret. In this work, we analyze hidden states and modify them at inference, with a focus on motion forecasting. We use linear probing to analyze whether interpretable features are embedded in hidden states. Our experiments reveal high probing accuracy, indicating latent space regularities with functionally important directions. Building on this, we use the directions between hidden states with opposing features to fit control vectors. At inference, we add our control vectors to hidden states and evaluate their impact on predictions. Remarkably, such modifications preserve the feasibility of predictions. We further refine our control vectors using sparse autoencoders (SAEs). This leads to more linear changes in predictions when scaling control vectors. Our approach enables mechanistic interpretation as well as zero-shot generalization to unseen dataset characteristics with negligible computational overhead.
comment: ICLR 2025 camera-ready. Our implementation is available at github.com/kit-mrt/future-motion
♻ ☆ A Single-Loop Smoothed Gradient Descent-Ascent Algorithm for Nonconvex-Concave Min-Max Problems ICML 2020
Nonconvex-concave min-max problem arises in many machine learning applications including minimizing a pointwise maximum of a set of nonconvex functions and robust adversarial training of neural networks. A popular approach to solve this problem is the gradient descent-ascent (GDA) algorithm which unfortunately can exhibit oscillation in case of nonconvexity. In this paper, we introduce a "smoothing" scheme which can be combined with GDA to stabilize the oscillation and ensure convergence to a stationary solution. We prove that the stabilized GDA algorithm can achieve an $O(1/\epsilon^2)$ iteration complexity for minimizing the pointwise maximum of a finite collection of nonconvex functions. Moreover, the smoothed GDA algorithm achieves an $O(1/\epsilon^4)$ iteration complexity for general nonconvex-concave problems. Extensions of this stabilized GDA algorithm to multi-block cases are presented. To the best of our knowledge, this is the first algorithm to achieve $O(1/\epsilon^2)$ for a class of nonconvex-concave problem. We illustrate the practical efficiency of the stabilized GDA algorithm on robust training.
comment: Accepted by ICML 2020; Correct typos in Proposition B.4, Lemma 4.3, B.6, B.10, B.12, D.1 and Theorem 3.4
♻ ☆ Unified Convergence Analysis for Adaptive Optimization with Moving Average Estimator
Although adaptive optimization algorithms have been successful in many applications, there are still some mysteries in terms of convergence analysis that have not been unraveled. This paper provides a novel non-convex analysis of adaptive optimization to uncover some of these mysteries. Our contributions are three-fold. First, we show that an increasing or large enough momentum parameter for the first-order moment used in practice is sufficient to ensure the convergence of adaptive algorithms whose adaptive scaling factors of the step size are bounded. Second, our analysis gives insights for practical implementations, e.g., increasing the momentum parameter in a stage-wise manner in accordance with stagewise decreasing step size would help improve the convergence. Third, the modular nature of our analysis allows its extension to solving other optimization problems, e.g., compositional, min-max and bilevel problems. As an interesting yet non-trivial use case, we present algorithms for solving non-convex min-max optimization and bilevel optimization that do not require using large batches of data to estimate gradients or double loops as the literature do. Our empirical studies corroborate our theoretical results.
comment: Accepted to Machine Learning
♻ ☆ The MASK Benchmark: Disentangling Honesty From Accuracy in AI Systems
As large language models (LLMs) become more capable and agentic, the requirement for trust in their outputs grows significantly, yet at the same time concerns have been mounting that models may learn to lie in pursuit of their goals. To address these concerns, a body of work has emerged around the notion of "honesty" in LLMs, along with interventions aimed at mitigating deceptive behaviors. However, evaluations of honesty are currently highly limited, with no benchmark combining large scale and applicability to all models. Moreover, many benchmarks claiming to measure honesty in fact simply measure accuracy--the correctness of a model's beliefs--in disguise. In this work, we introduce a large-scale human-collected dataset for measuring honesty directly, allowing us to disentangle accuracy from honesty for the first time. Across a diverse set of LLMs, we find that while larger models obtain higher accuracy on our benchmark, they do not become more honest. Surprisingly, while most frontier LLMs obtain high scores on truthfulness benchmarks, we find a substantial propensity in frontier LLMs to lie when pressured to do so, resulting in low honesty scores on our benchmark. We find that simple methods, such as representation engineering interventions, can improve honesty. These results underscore the growing need for robust evaluations and effective interventions to ensure LLMs remain trustworthy.
comment: Website: https://www.mask-benchmark.ai
♻ ☆ 3D-GRAND: A Million-Scale Dataset for 3D-LLMs with Better Grounding and Less Hallucination CVPR 2025
The integration of language and 3D perception is crucial for embodied agents and robots that comprehend and interact with the physical world. While large language models (LLMs) have demonstrated impressive language understanding and generation capabilities, their adaptation to 3D environments (3D-LLMs) remains in its early stages. A primary challenge is a lack of large-scale datasets with dense grounding between language and 3D scenes. We introduce 3D-GRAND, a pioneering large-scale dataset comprising 40,087 household scenes paired with 6.2 million densely-grounded scene-language instructions. Our results show that instruction tuning with 3D-GRAND significantly enhances grounding capabilities and reduces hallucinations in 3D-LLMs. As part of our contributions, we propose a comprehensive benchmark 3D-POPE to systematically evaluate hallucination in 3D-LLMs, enabling fair comparisons of models. Our experiments highlight a scaling effect between dataset size and 3D-LLM performance, emphasizing the importance of large-scale 3D-text datasets for embodied AI research. Our results demonstrate early signals for effective sim-to-real transfer, indicating that models trained on large synthetic data can perform well on real-world 3D scans. Through 3D-GRAND and 3D-POPE, we aim to equip the embodied AI community with resources and insights to lead to more reliable and better-grounded 3D-LLMs. Project website: https://3d-grand.github.io
comment: CVPR 2025. Project website: https://3d-grand.github.io
♻ ☆ Network-based Neighborhood regression
Given the ubiquity of modularity in biological systems, module-level regulation analysis is vital for understanding biological systems across various levels and their dynamics. Current statistical analysis on biological modules predominantly focuses on either detecting the functional modules in biological networks or sub-group regression on the biological features without using the network data. This paper proposes a novel network-based neighborhood regression framework whose regression functions depend on both the global community-level information and local connectivity structures among entities. An efficient community-wise least square optimization approach is developed to uncover the strength of regulation among the network modules while enabling asymptotic inference. With random graph theory, we derive non-asymptotic estimation error bounds for the proposed estimator, achieving exact minimax optimality. Unlike the root-n consistency typical in canonical linear regression, our model exhibits linear consistency in the number of nodes n, highlighting the advantage of incorporating neighborhood information. The effectiveness of the proposed framework is further supported by extensive numerical experiments. Application to whole-exome sequencing and RNA-sequencing Autism datasets demonstrates the usage of the proposed method in identifying the association between the gene modules of genetic variations and the gene modules of genomic differential expressions.
♻ ☆ A Scalable Crawling Algorithm Utilizing Noisy Change-Indicating Signals
Web refresh crawling is the problem of keeping a cache of web pages fresh, that is, having the most recent copy available when a page is requested, given a limited bandwidth available to the crawler. Under the assumption that the change and request events, resp., to each web page follow independent Poisson processes, the optimal scheduling policy was derived by Azar et al. 2018. In this paper, we study an extension of this problem where side information indicating content changes, such as various types of web pings, for example, signals from sitemaps, content delivery networks, etc., is available. Incorporating such side information into the crawling policy is challenging, because (i) the signals can be noisy with false positive events and with missing change events; and (ii) the crawler should achieve a fair performance over web pages regardless of the quality of the side information, which might differ from web page to web page. We propose a scalable crawling algorithm which (i) uses the noisy side information in an optimal way under mild assumptions; (ii) can be deployed without heavy centralized computation; (iii) is able to crawl web pages at a constant total rate without spikes in the total bandwidth usage over any time interval, and automatically adapt to the new optimal solution when the total bandwidth changes without centralized computation. Experiments clearly demonstrate the versatility of our approach.
♻ ☆ Re-Imagining Multimodal Instruction Tuning: A Representation View
Multimodal instruction tuning has proven to be an effective strategy for achieving zero-shot generalization by fine-tuning pre-trained Large Multimodal Models (LMMs) with instruction-following data. However, as the scale of LMMs continues to grow, fully fine-tuning these models has become highly parameter-intensive. Although Parameter-Efficient Fine-Tuning (PEFT) methods have been introduced to reduce the number of tunable parameters, a significant performance gap remains compared to full fine-tuning. Furthermore, existing PEFT approaches are often highly parameterized, making them difficult to interpret and control. In light of this, we introduce Multimodal Representation Tuning (MRT), a novel approach that focuses on directly editing semantically rich multimodal representations to achieve strong performance and provide intuitive control over LMMs. Empirical results show that our method surpasses current state-of-the-art baselines with significant performance gains (e.g., 1580.40 MME score) while requiring substantially fewer tunable parameters (e.g., 0.03% parameters). Additionally, we conduct experiments on editing instrumental tokens within multimodal representations, demonstrating that direct manipulation of these representations enables simple yet effective control over network behavior.
♻ ☆ Cost-Efficient Continual Learning with Sufficient Exemplar Memory
Continual learning (CL) research typically assumes highly constrained exemplar memory resources. However, in many real-world scenarios-especially in the era of large foundation models-memory is abundant, while GPU computational costs are the primary bottleneck. In this work, we investigate CL in a novel setting where exemplar memory is ample (i.e., sufficient exemplar memory). Unlike prior methods designed for strict exemplar memory constraints, we propose a simple yet effective approach that directly operates in the model's weight space through a combination of weight resetting and averaging techniques. Our method achieves state-of-the-art performance while reducing the computational cost to a quarter or third of existing methods. These findings challenge conventional CL assumptions and provide a practical baseline for computationally efficient CL applications.
comment: 12 pages, 5 figures
♻ ☆ Near-Optimal Sample Complexity for Iterated CVaR Reinforcement Learning with a Generative Model AISTATS 2025
In this work, we study the sample complexity problem of risk-sensitive Reinforcement Learning (RL) with a generative model, where we aim to maximize the Conditional Value at Risk (CVaR) with risk tolerance level $\tau$ at each step, named Iterated CVaR. We first build a connection between Iterated CVaR RL with $(s, a)$-rectangular distributional robust RL with the specific uncertainty set for CVaR. We develop nearly matching upper and lower bounds on the sample complexity for this problem. Specifically, we first prove that a value iteration-based algorithm, ICVaR-VI, achieves an $\epsilon$-optimal policy with at most $\overset{\sim}{O}\left(\frac{SA}{(1-\gamma)^4\tau^2\epsilon^2}\right)$ samples, where $\gamma$ is the discount factor, and $S, A$ are the sizes of the state and action spaces. Furthermore, if $\tau \geq \gamma$, then the sample complexity can be further improved to $\overset{\sim}{O}\left( \frac{SA}{(1-\gamma)^3\epsilon^2} \right)$. We further show a minimax lower bound of $\overset{\sim}{O} \left(\frac{(1-\gamma \tau)SA}{(1-\gamma)^4\tau\epsilon^2}\right)$. For a constant risk level $0<\tau\leq 1$, our upper and lower bounds match with each other, demonstrating the tightness and optimality of our analyses.We also investigate a limiting case with a small risk level $\tau$, called Worst-Path RL, where the objective is to maximize the minimum possible cumulative reward. We develop matching upper and lower bounds of $\overset{\sim}{O}\left(\frac{SA}{p_{\min}}\right)$, where $p_{\min}$ denotes the minimum non-zero reaching probability of the transition kernel.
comment: Accepted as a conference paper at AISTATS 2025
♻ ☆ The Cooperative Network Architecture: Learning Structured Networks as Representation of Sensory Patterns
We introduce the Cooperative Network Architecture (CNA), a model that represents sensory signals using structured, recurrently connected networks of neurons, termed "nets." Nets are dynamically assembled from overlapping net fragments, which are learned based on statistical regularities in sensory input. This architecture offers robustness to noise, deformation, and out-of-distribution data, addressing challenges in current vision systems from a novel perspective. We demonstrate that net fragments can be learned without supervision and flexibly recombined to encode novel patterns, enabling figure completion and resilience to noise. Our findings establish CNA as a promising paradigm for developing neural representations that integrate local feature processing with global structure formation, providing a foundation for future research on invariant object recognition.
♻ ☆ EmojiPrompt: Generative Prompt Obfuscation for Privacy-Preserving Communication with Cloud-based LLMs
Cloud-based Large Language Models (LLMs) such as ChatGPT have become increasingly integral to daily operations. Nevertheless, they also introduce privacy concerns: firstly, numerous studies underscore the risks to user privacy posed by jailbreaking cloud-based LLMs; secondly, the LLM service providers have access to all user data, which deters individuals from confidently utilizing such services. To address such concerns, we propose a simple yet effective paradigm, EmojiPrompt, to protect user privacy. At its core, EmojiPrompt performs generative transformation, obfuscating private data within prompts with linguistic and non-linguistic elements before submitting them to cloud-based LLMs. We evaluate EmojiPrompt's performance across 8 datasets from various domains. We also propose simulated inference attacks to assess EmojiPrompt's ability to preserve user privacy. The results demonstrate that EmojiPrompt effectively obfuscates user private data, while largely maintaining, or even enhancing, performances compared to the unobfuscated version. Furthermore, EmojiPrompt's atomic-level obfuscation allows it to function exclusively with cloud-based LLMs. For source code, please refer to: https://github.com/agiresearch/EmojiCrypt.
comment: Accepted to the 2025 Annual Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics (NAACL 2025)
♻ ☆ Exact Recovery Guarantees for Parameterized Nonlinear System Identification Problem under Sparse Disturbances or Semi-Oblivious Attacks
In this work, we study the problem of learning a nonlinear dynamical system by parameterizing its dynamics using basis functions. We assume that disturbances occur at each time step with an arbitrary probability $p$, which models the sparsity level of the disturbance vectors over time. These disturbances are drawn from an arbitrary, unknown probability distribution, which may depend on past disturbances, provided that it satisfies a zero-mean assumption. The primary objective of this paper is to learn the system's dynamics within a finite time and analyze the sample complexity as a function of $p$. To achieve this, we examine a LASSO-type non-smooth estimator, and establish necessary and sufficient conditions for its well-specifiedness and the uniqueness of the global solution to the underlying optimization problem. We then provide exact recovery guarantees for the estimator under two distinct conditions: boundedness and Lipschitz continuity of the basis functions. We show that finite-time exact recovery is achieved with high probability, even when $p$ approaches 1. Unlike prior works, which primarily focus on independent and identically distributed (i.i.d.) disturbances and provide only asymptotic guarantees for system learning, this study presents the first finite-time analysis of nonlinear dynamical systems under a highly general disturbance model. Our framework allows for possible temporal correlations in the disturbances and accommodates semi-oblivious adversarial attacks, significantly broadening the scope of existing theoretical results.
comment: 43 pages
♻ ☆ A Black Swan Hypothesis: The Role of Human Irrationality in AI Safety
Black swan events are statistically rare occurrences that carry extremely high risks. A typical view of defining black swan events is heavily assumed to originate from an unpredictable time-varying environments; however, the community lacks a comprehensive definition of black swan events. To this end, this paper challenges that the standard view is incomplete and claims that high-risk, statistically rare events can also occur in unchanging environments due to human misperception of their value and likelihood, which we call as spatial black swan event. We first carefully categorize black swan events, focusing on spatial black swan events, and mathematically formalize the definition of black swan events. We hope these definitions can pave the way for the development of algorithms to prevent such events by rationally correcting human perception.
comment: The title was changed and acknowledgment was included
♻ ☆ Hierarchical Spatio-Temporal State-Space Modeling for fMRI Analysis
Recent advances in deep learning structured state space models, especially the Mamba architecture, have demonstrated remarkable performance improvements while maintaining linear complexity. In this study, we introduce functional spatiotemporal Mamba (FST-Mamba), a Mamba-based model designed for discovering neurological biomarkers using functional magnetic resonance imaging (fMRI). We focus on dynamic functional network connectivity (dFNC) derived from fMRI and propose a hierarchical spatiotemporal Mamba-based network that processes spatial and temporal information separately using Mamba-based encoders. Leveraging the topological uniqueness of the FNC matrix, we introduce a component-wise varied-scale aggregation (CVA) mechanism to aggregate connectivity across individual components within brain networks, enabling the model to capture component-level and network-level information. Additionally, we propose symmetric rotary position encoding (SymRope) to encode the relative positions of each functional connection while considering the symmetric nature of the FNC matrix. Experimental results demonstrate significant improvements in the proposed FST-Mamba model on various brain-based classification and regression tasks. We further show brain connectivities and dynamics that are crucial for the prediction. Our work reveals the substantial potential of attention-free sequence modeling in brain discovery. The codes are publicly available here: https://github.com/yuxiangwei0808/FunctionalMamba/tree/main.
comment: Accepted to RECOMB 2025
♻ ☆ RePanda: Pandas-powered Tabular Verification and Reasoning
Fact-checking tabular data is essential for ensuring the accuracy of structured information. However, existing methods often rely on black-box models with opaque reasoning. We introduce RePanda, a structured fact verification approach that translates claims into executable pandas queries, enabling interpretable and verifiable reasoning. To train RePanda, we construct PanTabFact, a structured dataset derived from the TabFact train set, where claims are paired with executable queries generated using DeepSeek-Chat and refined through automated error correction. Fine-tuning DeepSeek-coder-7B-instruct-v1.5 on PanTabFact, RePanda achieves 84.09% accuracy on the TabFact test set. To evaluate Out-of-Distribution (OOD) generalization, we interpret question-answer pairs from WikiTableQuestions as factual claims and refer to this dataset as WikiFact. Without additional fine-tuning, RePanda achieves 84.72% accuracy on WikiFact, significantly outperforming all other baselines and demonstrating strong OOD robustness. Notably, these results closely match the zero-shot performance of DeepSeek-Chat (671B), indicating that our fine-tuning approach effectively distills structured reasoning from a much larger model into a compact, locally executable 7B model. Beyond fact verification, RePanda extends to tabular question answering by generating executable queries that retrieve precise answers. To support this, we introduce PanWiki, a dataset mapping WikiTableQuestions to pandas queries. Fine-tuning on PanWiki, RePanda achieves 75.1% accuracy in direct answer retrieval. These results highlight the effectiveness of structured execution-based reasoning for tabular verification and question answering. We have publicly released the dataset on Hugging Face at datasets/AtoosaChegini/PanTabFact.
♻ ☆ ContextGPT: Infusing LLMs Knowledge into Neuro-Symbolic Activity Recognition Models
Context-aware Human Activity Recognition (HAR) is a hot research area in mobile computing, and the most effective solutions in the literature are based on supervised deep learning models. However, the actual deployment of these systems is limited by the scarcity of labeled data that is required for training. Neuro-Symbolic AI (NeSy) provides an interesting research direction to mitigate this issue, by infusing common-sense knowledge about human activities and the contexts in which they can be performed into HAR deep learning classifiers. Existing NeSy methods for context-aware HAR rely on knowledge encoded in logic-based models (e.g., ontologies) whose design, implementation, and maintenance to capture new activities and contexts require significant human engineering efforts, technical knowledge, and domain expertise. Recent works show that pre-trained Large Language Models (LLMs) effectively encode common-sense knowledge about human activities. In this work, we propose ContextGPT: a novel prompt engineering approach to retrieve from LLMs common-sense knowledge about the relationship between human activities and the context in which they are performed. Unlike ontologies, ContextGPT requires limited human effort and expertise. An extensive evaluation carried out on two public datasets shows how a NeSy model obtained by infusing common-sense knowledge from ContextGPT is effective in data scarcity scenarios, leading to similar (and sometimes better) recognition rates than logic-based approaches with a fraction of the effort.
♻ ☆ Multilabel Prototype Generation for Data Reduction in k-Nearest Neighbour classification
Prototype Generation (PG) methods are typically considered for improving the efficiency of the $k$-Nearest Neighbour ($k$NN) classifier when tackling high-size corpora. Such approaches aim at generating a reduced version of the corpus without decreasing the classification performance when compared to the initial set. Despite their large application in multiclass scenarios, very few works have addressed the proposal of PG methods for the multilabel space. In this regard, this work presents the novel adaptation of four multiclass PG strategies to the multilabel case. These proposals are evaluated with three multilabel $k$NN-based classifiers, 12 corpora comprising a varied range of domains and corpus sizes, and different noise scenarios artificially induced in the data. The results obtained show that the proposed adaptations are capable of significantly improving -- both in terms of efficiency and classification performance -- the only reference multilabel PG work in the literature as well as the case in which no PG method is applied, also presenting a statistically superior robustness in noisy scenarios. Moreover, these novel PG strategies allow prioritising either the efficiency or efficacy criteria through its configuration depending on the target scenario, hence covering a wide area in the solution space not previously filled by other works.
♻ ☆ Scaling Up Single Image Dehazing Algorithm by Cross-Data Vision Alignment for Richer Representation Learning and Beyond
In recent years, deep neural networks tasks have increasingly relied on high-quality image inputs. With the development of high-resolution representation learning, the task of image dehazing has received significant attention. Previously, many methods collect diverse image data for large-scale training to boost the performance on a target scene. Ignoring the domain gap between different data, former de-hazing methods simply adopt multiple datasets for explicit large-scale training, which often makes the methods themselves be violated. To address this problem, we propose a novel method of cross-data vision alignment for richer representation learning to improve the existing dehazing methodology. Specifically, we call for the internal- and external knowledge should be further adapted with a self-supervised manner to fill up the domain gap. By using cross-data external alignment, the datasets inherit samples from different domains that are firmly aligned, making the model learn more robust and generalizable features. By using the internal augmentation method, the model can fully exploit local information within the images, and then obtaining more image details. To demonstrate the effectiveness of our proposed method, we conduct training on the Natural Image Dataset (NID). Experimental results show that our method clearly resolves the domain gap in different dehazing datasets and presents a new pipeline for large-scale training in the dehazing task. Our approach significantly outperforms other advanced methods in dehazing and produces dehazed images that are closest to real haze-free images.
comment: A cross-dataset vision alignment and augmentation technology is proposed to boost generalizable feature learning in the de-hazing task
♻ ☆ On the Challenges and Opportunities in Generative AI
The field of deep generative modeling has grown rapidly in the last few years. With the availability of massive amounts of training data coupled with advances in scalable unsupervised learning paradigms, recent large-scale generative models show tremendous promise in synthesizing high-resolution images and text, as well as structured data such as videos and molecules. However, we argue that current large-scale generative AI models exhibit several fundamental shortcomings that hinder their widespread adoption across domains. In this work, our objective is to identify these issues and highlight key unresolved challenges in modern generative AI paradigms that should be addressed to further enhance their capabilities, versatility, and reliability. By identifying these challenges, we aim to provide researchers with insights for exploring fruitful research directions, thus fostering the development of more robust and accessible generative AI solutions.
Computer Vision and Pattern Recognition 249
☆ TULIP: Towards Unified Language-Image Pretraining
Despite the recent success of image-text contrastive models like CLIP and SigLIP, these models often struggle with vision-centric tasks that demand high-fidelity image understanding, such as counting, depth estimation, and fine-grained object recognition. These models, by performing language alignment, tend to prioritize high-level semantics over visual understanding, weakening their image understanding. On the other hand, vision-focused models are great at processing visual information but struggle to understand language, limiting their flexibility for language-driven tasks. In this work, we introduce TULIP, an open-source, drop-in replacement for existing CLIP-like models. Our method leverages generative data augmentation, enhanced image-image and text-text contrastive learning, and image/text reconstruction regularization to learn fine-grained visual features while preserving global semantic alignment. Our approach, scaling to over 1B parameters, outperforms existing state-of-the-art (SOTA) models across multiple benchmarks, establishing a new SOTA zero-shot performance on ImageNet-1K, delivering up to a $2\times$ enhancement over SigLIP on RxRx1 in linear probing for few-shot classification, and improving vision-language models, achieving over $3\times$ higher scores than SigLIP on MMVP. Our code/checkpoints are available at https://tulip-berkeley.github.io
☆ Cube: A Roblox View of 3D Intelligence
Foundation models trained on vast amounts of data have demonstrated remarkable reasoning and generation capabilities in the domains of text, images, audio and video. Our goal at Roblox is to build such a foundation model for 3D intelligence, a model that can support developers in producing all aspects of a Roblox experience, from generating 3D objects and scenes to rigging characters for animation to producing programmatic scripts describing object behaviors. We discuss three key design requirements for such a 3D foundation model and then present our first step towards building such a model. We expect that 3D geometric shapes will be a core data type and describe our solution for 3D shape tokenizer. We show how our tokenization scheme can be used in applications for text-to-shape generation, shape-to-text generation and text-to-scene generation. We demonstrate how these applications can collaborate with existing large language models (LLMs) to perform scene analysis and reasoning. We conclude with a discussion outlining our path to building a fully unified foundation model for 3D intelligence.
comment: Our code and model weights can be found at: https://github.com/Roblox/cube
☆ Toward task-driven satellite image super-resolution
Super-resolution is aimed at reconstructing high-resolution images from low-resolution observations. State-of-the-art approaches underpinned with deep learning allow for obtaining outstanding results, generating images of high perceptual quality. However, it often remains unclear whether the reconstructed details are close to the actual ground-truth information and whether they constitute a more valuable source for image analysis algorithms. In the reported work, we address the latter problem, and we present our efforts toward learning super-resolution algorithms in a task-driven way to make them suitable for generating high-resolution images that can be exploited for automated image analysis. In the reported initial research, we propose a methodological approach for assessing the existing models that perform computer vision tasks in terms of whether they can be used for evaluating super-resolution reconstruction algorithms, as well as training them in a task-driven way. We support our analysis with experimental study and we expect it to establish a solid foundation for selecting appropriate computer vision tasks that will advance the capabilities of real-world super-resolution.
comment: Submitted to IEEE IGARSS 2024
☆ EgoDTM: Towards 3D-Aware Egocentric Video-Language Pretraining
Egocentric video-language pretraining has significantly advanced video representation learning. Humans perceive and interact with a fully 3D world, developing spatial awareness that extends beyond text-based understanding. However, most previous works learn from 1D text or 2D visual cues, such as bounding boxes, which inherently lack 3D understanding. To bridge this gap, we introduce EgoDTM, an Egocentric Depth- and Text-aware Model, jointly trained through large-scale 3D-aware video pretraining and video-text contrastive learning. EgoDTM incorporates a lightweight 3D-aware decoder to efficiently learn 3D-awareness from pseudo depth maps generated by depth estimation models. To further facilitate 3D-aware video pretraining, we enrich the original brief captions with hand-object visual cues by organically combining several foundation models. Extensive experiments demonstrate EgoDTM's superior performance across diverse downstream tasks, highlighting its superior 3D-aware visual understanding. Our code will be released at https://github.com/xuboshen/EgoDTM.
comment: Code will be released at: https://github.com/xuboshen/EgoDTM
☆ FP4DiT: Towards Effective Floating Point Quantization for Diffusion Transformers
Diffusion Models (DM) have revolutionized the text-to-image visual generation process. However, the large computational cost and model footprint of DMs hinders practical deployment, especially on edge devices. Post-training quantization (PTQ) is a lightweight method to alleviate these burdens without the need for training or fine-tuning. While recent DM PTQ methods achieve W4A8 on integer-based PTQ, two key limitations remain: First, while most existing DM PTQ methods evaluate on classical DMs like Stable Diffusion XL, 1.5 or earlier, which use convolutional U-Nets, newer Diffusion Transformer (DiT) models like the PixArt series, Hunyuan and others adopt fundamentally different transformer backbones to achieve superior image synthesis. Second, integer (INT) quantization is prevailing in DM PTQ but doesn't align well with the network weight and activation distribution, while Floating-Point Quantization (FPQ) is still under-investigated, yet it holds the potential to better align the weight and activation distributions in low-bit settings for DiT. In response, we introduce FP4DiT, a PTQ method that leverages FPQ to achieve W4A6 quantization. Specifically, we extend and generalize the Adaptive Rounding PTQ technique to adequately calibrate weight quantization for FPQ and demonstrate that DiT activations depend on input patch data, necessitating robust online activation quantization techniques. Experimental results demonstrate that FP4DiT outperforms integer-based PTQ at W4A6 and W4A8 precision and generates convincing visual content on PixArt-$\alpha$, PixArt-$\Sigma$ and Hunyuan in terms of several T2I metrics such as HPSv2 and CLIP.
comment: The code is available at https://github.com/cccrrrccc/FP4DiT
☆ Di$\mathtt{[M]}$O: Distilling Masked Diffusion Models into One-step Generator
Masked Diffusion Models (MDMs) have emerged as a powerful generative modeling technique. Despite their remarkable results, they typically suffer from slow inference with several steps. In this paper, we propose Di$\mathtt{[M]}$O, a novel approach that distills masked diffusion models into a one-step generator. Di$\mathtt{[M]}$O addresses two key challenges: (1) the intractability of using intermediate-step information for one-step generation, which we solve through token-level distribution matching that optimizes model output logits by an 'on-policy framework' with the help of an auxiliary model; and (2) the lack of entropy in the initial distribution, which we address through a token initialization strategy that injects randomness while maintaining similarity to teacher training distribution. We show Di$\mathtt{[M]}$O's effectiveness on both class-conditional and text-conditional image generation, impressively achieving performance competitive to multi-step teacher outputs while drastically reducing inference time. To our knowledge, we are the first to successfully achieve one-step distillation of masked diffusion models and the first to apply discrete distillation to text-to-image generation, opening new paths for efficient generative modeling.
☆ MotionStreamer: Streaming Motion Generation via Diffusion-based Autoregressive Model in Causal Latent Space
This paper addresses the challenge of text-conditioned streaming motion generation, which requires us to predict the next-step human pose based on variable-length historical motions and incoming texts. Existing methods struggle to achieve streaming motion generation, e.g., diffusion models are constrained by pre-defined motion lengths, while GPT-based methods suffer from delayed response and error accumulation problem due to discretized non-causal tokenization. To solve these problems, we propose MotionStreamer, a novel framework that incorporates a continuous causal latent space into a probabilistic autoregressive model. The continuous latents mitigate information loss caused by discretization and effectively reduce error accumulation during long-term autoregressive generation. In addition, by establishing temporal causal dependencies between current and historical motion latents, our model fully utilizes the available information to achieve accurate online motion decoding. Experiments show that our method outperforms existing approaches while offering more applications, including multi-round generation, long-term generation, and dynamic motion composition. Project Page: https://zju3dv.github.io/MotionStreamer/
comment: Project Page: https://zju3dv.github.io/MotionStreamer/
☆ V2X-DG: Domain Generalization for Vehicle-to-Everything Cooperative Perception ICRA 2025
LiDAR-based Vehicle-to-Everything (V2X) cooperative perception has demonstrated its impact on the safety and effectiveness of autonomous driving. Since current cooperative perception algorithms are trained and tested on the same dataset, the generalization ability of cooperative perception systems remains underexplored. This paper is the first work to study the Domain Generalization problem of LiDAR-based V2X cooperative perception (V2X-DG) for 3D detection based on four widely-used open source datasets: OPV2V, V2XSet, V2V4Real and DAIR-V2X. Our research seeks to sustain high performance not only within the source domain but also across other unseen domains, achieved solely through training on source domain. To this end, we propose Cooperative Mixup Augmentation based Generalization (CMAG) to improve the model generalization capability by simulating the unseen cooperation, which is designed compactly for the domain gaps in cooperative perception. Furthermore, we propose a constraint for the regularization of the robust generalized feature representation learning: Cooperation Feature Consistency (CFC), which aligns the intermediately fused features of the generalized cooperation by CMAG and the early fused features of the original cooperation in source domain. Extensive experiments demonstrate that our approach achieves significant performance gains when generalizing to other unseen datasets while it also maintains strong performance on the source dataset.
comment: accepted by ICRA 2025
☆ Visual Position Prompt for MLLM based Visual Grounding
Although Multimodal Large Language Models (MLLMs) excel at various image-related tasks, they encounter challenges in precisely aligning coordinates with spatial information within images, particularly in position-aware tasks such as visual grounding. This limitation arises from two key factors. First, MLLMs lack explicit spatial references, making it difficult to associate textual descriptions with precise image locations. Second, their feature extraction processes prioritize global context over fine-grained spatial details, leading to weak localization capability. To address this issue, we introduce VPP-LLaVA, an MLLM equipped with Visual Position Prompt (VPP) to improve its grounding capability. VPP-LLaVA integrates two complementary mechanisms. The global VPP overlays learnable, axis-like embeddings onto the input image to provide structured spatial cues. The local VPP focuses on fine-grained localization by incorporating position-aware queries, which suggests probable object locations. We also introduce a VPP-SFT dataset with 0.6M samples, consolidating high-quality visual grounding data into a compact format for efficient model training. Training on this dataset with VPP enhances the model's performance, achieving state-of-the-art results on standard grounding benchmarks despite using fewer training samples compared to other MLLMs like MiniGPT-v2, which rely on much larger datasets ($\sim$21M samples). The code and VPP-SFT dataset will be available at https://github.com/WayneTomas/VPP-LLaVA upon acceptance.
☆ LIFT: Latent Implicit Functions for Task- and Data-Agnostic Encoding
Implicit Neural Representations (INRs) are proving to be a powerful paradigm in unifying task modeling across diverse data domains, offering key advantages such as memory efficiency and resolution independence. Conventional deep learning models are typically modality-dependent, often requiring custom architectures and objectives for different types of signals. However, existing INR frameworks frequently rely on global latent vectors or exhibit computational inefficiencies that limit their broader applicability. We introduce LIFT, a novel, high-performance framework that addresses these challenges by capturing multiscale information through meta-learning. LIFT leverages multiple parallel localized implicit functions alongside a hierarchical latent generator to produce unified latent representations that span local, intermediate, and global features. This architecture facilitates smooth transitions across local regions, enhancing expressivity while maintaining inference efficiency. Additionally, we introduce ReLIFT, an enhanced variant of LIFT that incorporates residual connections and expressive frequency encodings. With this straightforward approach, ReLIFT effectively addresses the convergence-capacity gap found in comparable methods, providing an efficient yet powerful solution to improve capacity and speed up convergence. Empirical results show that LIFT achieves state-of-the-art (SOTA) performance in generative modeling and classification tasks, with notable reductions in computational costs. Moreover, in single-task settings, the streamlined ReLIFT architecture proves effective in signal representations and inverse problem tasks.
☆ Temporal Regularization Makes Your Video Generator Stronger
Temporal quality is a critical aspect of video generation, as it ensures consistent motion and realistic dynamics across frames. However, achieving high temporal coherence and diversity remains challenging. In this work, we explore temporal augmentation in video generation for the first time, and introduce FluxFlow for initial investigation, a strategy designed to enhance temporal quality. Operating at the data level, FluxFlow applies controlled temporal perturbations without requiring architectural modifications. Extensive experiments on UCF-101 and VBench benchmarks demonstrate that FluxFlow significantly improves temporal coherence and diversity across various video generation models, including U-Net, DiT, and AR-based architectures, while preserving spatial fidelity. These findings highlight the potential of temporal augmentation as a simple yet effective approach to advancing video generation quality.
comment: Project: https://haroldchen19.github.io/FluxFlow/
☆ Automated Processing of eXplainable Artificial Intelligence Outputs in Deep Learning Models for Fault Diagnostics of Large Infrastructures
Deep Learning (DL) models processing images to recognize the health state of large infrastructure components can exhibit biases and rely on non-causal shortcuts. eXplainable Artificial Intelligence (XAI) can address these issues but manually analyzing explanations generated by XAI techniques is time-consuming and prone to errors. This work proposes a novel framework that combines post-hoc explanations with semi-supervised learning to automatically identify anomalous explanations that deviate from those of correctly classified images and may therefore indicate model abnormal behaviors. This significantly reduces the workload for maintenance decision-makers, who only need to manually reclassify images flagged as having anomalous explanations. The proposed framework is applied to drone-collected images of insulator shells for power grid infrastructure monitoring, considering two different Convolutional Neural Networks (CNNs), GradCAM explanations and Deep Semi-Supervised Anomaly Detection. The average classification accuracy on two faulty classes is improved by 8% and maintenance operators are required to manually reclassify only 15% of the images. We compare the proposed framework with a state-of-the-art approach based on the faithfulness metric: the experimental results obtained demonstrate that the proposed framework consistently achieves F_1 scores larger than those of the faithfulness-based approach. Additionally, the proposed framework successfully identifies correct classifications that result from non-causal shortcuts, such as the presence of ID tags printed on insulator shells.
☆ Federated Continual 3D Segmentation With Single-round Communication
Federated learning seeks to foster collaboration among distributed clients while preserving the privacy of their local data. Traditionally, federated learning methods assume a fixed setting in which client data and learning objectives remain constant. However, in real-world scenarios, new clients may join, and existing clients may expand the segmentation label set as task requirements evolve. In such a dynamic federated analysis setup, the conventional federated communication strategy of model aggregation per communication round is suboptimal. As new clients join, this strategy requires retraining, linearly increasing communication and computation overhead. It also imposes requirements for synchronized communication, which is difficult to achieve among distributed clients. In this paper, we propose a federated continual learning strategy that employs a one-time model aggregation at the server through multi-model distillation. This approach builds and updates the global model while eliminating the need for frequent server communication. When integrating new data streams or onboarding new clients, this approach efficiently reuses previous client models, avoiding the need to retrain the global model across the entire federation. By minimizing communication load and bypassing the need to put unchanged clients online, our approach relaxes synchronization requirements among clients, providing an efficient and scalable federated analysis framework suited for real-world applications. Using multi-class 3D abdominal CT segmentation as an application task, we demonstrate the effectiveness of the proposed approach.
☆ Learn Your Scales: Towards Scale-Consistent Generative Novel View Synthesis
Conventional depth-free multi-view datasets are captured using a moving monocular camera without metric calibration. The scales of camera positions in this monocular setting are ambiguous. Previous methods have acknowledged scale ambiguity in multi-view data via various ad-hoc normalization pre-processing steps, but have not directly analyzed the effect of incorrect scene scales on their application. In this paper, we seek to understand and address the effect of scale ambiguity when used to train generative novel view synthesis methods (GNVS). In GNVS, new views of a scene or object can be minimally synthesized given a single image and are, thus, unconstrained, necessitating the use of generative methods. The generative nature of these models captures all aspects of uncertainty, including any uncertainty of scene scales, which act as nuisance variables for the task. We study the effect of scene scale ambiguity in GNVS when sampled from a single image by isolating its effect on the resulting models and, based on these intuitions, define new metrics that measure the scale inconsistency of generated views. We then propose a framework to estimate scene scales jointly with the GNVS model in an end-to-end fashion. Empirically, we show that our method reduces the scale inconsistency of generated views without the complexity or downsides of previous scale normalization methods. Further, we show that removing this ambiguity improves generated image quality of the resulting GNVS model.
☆ Visual Persona: Foundation Model for Full-Body Human Customization CVPR 2025
We introduce Visual Persona, a foundation model for text-to-image full-body human customization that, given a single in-the-wild human image, generates diverse images of the individual guided by text descriptions. Unlike prior methods that focus solely on preserving facial identity, our approach captures detailed full-body appearance, aligning with text descriptions for body structure and scene variations. Training this model requires large-scale paired human data, consisting of multiple images per individual with consistent full-body identities, which is notoriously difficult to obtain. To address this, we propose a data curation pipeline leveraging vision-language models to evaluate full-body appearance consistency, resulting in Visual Persona-500K, a dataset of 580k paired human images across 100k unique identities. For precise appearance transfer, we introduce a transformer encoder-decoder architecture adapted to a pre-trained text-to-image diffusion model, which augments the input image into distinct body regions, encodes these regions as local appearance features, and projects them into dense identity embeddings independently to condition the diffusion model for synthesizing customized images. Visual Persona consistently surpasses existing approaches, generating high-quality, customized images from in-the-wild inputs. Extensive ablation studies validate design choices, and we demonstrate the versatility of Visual Persona across various downstream tasks.
comment: CVPR 2025, Project page is available at https://cvlab-kaist.github.io/Visual-Persona
☆ Improving Adversarial Transferability on Vision Transformers via Forward Propagation Refinement CVPR2025
Vision Transformers (ViTs) have been widely applied in various computer vision and vision-language tasks. To gain insights into their robustness in practical scenarios, transferable adversarial examples on ViTs have been extensively studied. A typical approach to improving adversarial transferability is by refining the surrogate model. However, existing work on ViTs has restricted their surrogate refinement to backward propagation. In this work, we instead focus on Forward Propagation Refinement (FPR) and specifically refine two key modules of ViTs: attention maps and token embeddings. For attention maps, we propose Attention Map Diversification (AMD), which diversifies certain attention maps and also implicitly imposes beneficial gradient vanishing during backward propagation. For token embeddings, we propose Momentum Token Embedding (MTE), which accumulates historical token embeddings to stabilize the forward updates in both the Attention and MLP blocks. We conduct extensive experiments with adversarial examples transferred from ViTs to various CNNs and ViTs, demonstrating that our FPR outperforms the current best (backward) surrogate refinement by up to 7.0\% on average. We also validate its superiority against popular defenses and its compatibility with other transfer methods. Codes and appendix are available at https://github.com/RYC-98/FPR.
comment: CVPR2025
☆ Towards efficient keyword spotting using spike-based time difference encoders
Keyword spotting in edge devices is becoming increasingly important as voice-activated assistants are widely used. However, its deployment is often limited by the extreme low-power constraints of the target embedded systems. Here, we explore the Temporal Difference Encoder (TDE) performance in keyword spotting. This recent neuron model encodes the time difference in instantaneous frequency and spike count to perform efficient keyword spotting with neuromorphic processors. We use the TIdigits dataset of spoken digits with a formant decomposition and rate-based encoding into spikes. We compare three Spiking Neural Networks (SNNs) architectures to learn and classify spatio-temporal signals. The proposed SNN architectures are made of three layers with variation in its hidden layer composed of either (1) feedforward TDE, (2) feedforward Current-Based Leaky Integrate-and-Fire (CuBa-LIF), or (3) recurrent CuBa-LIF neurons. We first show that the spike trains of the frequency-converted spoken digits have a large amount of information in the temporal domain, reinforcing the importance of better exploiting temporal encoding for such a task. We then train the three SNNs with the same number of synaptic weights to quantify and compare their performance based on the accuracy and synaptic operations. The resulting accuracy of the feedforward TDE network (89%) is higher than the feedforward CuBa-LIF network (71%) and close to the recurrent CuBa-LIF network (91%). However, the feedforward TDE-based network performs 92% fewer synaptic operations than the recurrent CuBa-LIF network with the same amount of synapses. In addition, the results of the TDE network are highly interpretable and correlated with the frequency and timescale features of the spoken keywords in the dataset. Our findings suggest that the TDE is a promising neuron model for scalable event-driven processing of spatio-temporal patterns.
comment: 26 pages, 9 figures
☆ FedSCA: Federated Tuning with Similarity-guided Collaborative Aggregation for Heterogeneous Medical Image Segmentation
Transformer-based foundation models (FMs) have recently demonstrated remarkable performance in medical image segmentation. However, scaling these models is challenging due to the limited size of medical image datasets within isolated hospitals, where data centralization is restricted due to privacy concerns. These constraints, combined with the data-intensive nature of FMs, hinder their broader application. Integrating federated learning (FL) with foundation models (FLFM) fine-tuning offers a potential solution to these challenges by enabling collaborative model training without data sharing, thus allowing FMs to take advantage of a diverse pool of sensitive medical image data across hospitals/clients. However, non-independent and identically distributed (non-IID) data among clients, paired with computational and communication constraints in federated environments, presents an additional challenge that limits further performance improvements and remains inadequately addressed in existing studies. In this work, we propose a novel FLFM fine-tuning framework, \underline{\textbf{Fed}}erated tuning with \underline{\textbf{S}}imilarity-guided \underline{\textbf{C}}ollaborative \underline{\textbf{A}}ggregation (FedSCA), encompassing all phases of the FL process. This includes (1) specially designed parameter-efficient fine-tuning (PEFT) for local client training to enhance computational efficiency; (2) partial low-level adapter transmission for communication efficiency; and (3) similarity-guided collaborative aggregation (SGCA) on the server side to address non-IID issues. Extensive experiments on three FL benchmarks for medical image segmentation demonstrate the effectiveness of our proposed FedSCA, establishing new SOTA performance.
EfficientLLaVA:Generalizable Auto-Pruning for Large Vision-language Models CVPR 2025
While multimodal large language models demonstrate strong performance in complex reasoning tasks, they pose significant challenges related to model complexity during deployment, especially for resource-limited devices. In this paper, we propose an automatic pruning method for large vision-language models to enhance the efficiency of multimodal reasoning. Conventional methods rely on the training data of the original model to select the proper pruning ratio for different network components. However, these methods are impractical for large vision-language models due to the unaffordable search costs caused by web-scale training corpus. In contrast, our approach only leverages a small number of samples to search for the desired pruning policy by maximizing its generalization ability on unknown training data while maintaining the model accuracy, which enables the achievement of an optimal trade-off between accuracy and efficiency for large visual language models. Specifically, we formulate the generalization gap of the pruning strategy using the structural risk minimization principle. Based on both task performance and generalization capability, we iteratively search for the optimal pruning policy within a given search space and optimize the vision projector to evolve the search space with higher upper bound of performance. We conduct extensive experiments on the ScienceQA, Vizwiz, MM-vet, and LLaVA-Bench datasets for the task of visual question answering. Using only 64 samples for pruning policy search, EfficientLLaVA achieves an accuracy of 83.05% on ScienceQA, along with a $\times$ 1.8 speedup compared to the dense LLaVA-v1.5-7B model.
comment: Accepted by CVPR 2025
☆ Boosting HDR Image Reconstruction via Semantic Knowledge Transfer
Recovering High Dynamic Range (HDR) images from multiple Low Dynamic Range (LDR) images becomes challenging when the LDR images exhibit noticeable degradation and missing content. Leveraging scene-specific semantic priors offers a promising solution for restoring heavily degraded regions. However, these priors are typically extracted from sRGB Standard Dynamic Range (SDR) images, the domain/format gap poses a significant challenge when applying it to HDR imaging. To address this issue, we propose a general framework that transfers semantic knowledge derived from SDR domain via self-distillation to boost existing HDR reconstruction. Specifically, the proposed framework first introduces the Semantic Priors Guided Reconstruction Model (SPGRM), which leverages SDR image semantic knowledge to address ill-posed problems in the initial HDR reconstruction results. Subsequently, we leverage a self-distillation mechanism that constrains the color and content information with semantic knowledge, aligning the external outputs between the baseline and SPGRM. Furthermore, to transfer the semantic knowledge of the internal features, we utilize a semantic knowledge alignment module (SKAM) to fill the missing semantic contents with the complementary masks. Extensive experiments demonstrate that our method can significantly improve the HDR imaging quality of existing methods.
☆ SemEval-2025 Task 1: AdMIRe -- Advancing Multimodal Idiomaticity Representation
Idiomatic expressions present a unique challenge in NLP, as their meanings are often not directly inferable from their constituent words. Despite recent advancements in Large Language Models (LLMs), idiomaticity remains a significant obstacle to robust semantic representation. We present datasets and tasks for SemEval-2025 Task 1: AdMiRe (Advancing Multimodal Idiomaticity Representation), which challenges the community to assess and improve models' ability to interpret idiomatic expressions in multimodal contexts and in multiple languages. Participants competed in two subtasks: ranking images based on their alignment with idiomatic or literal meanings, and predicting the next image in a sequence. The most effective methods achieved human-level performance by leveraging pretrained LLMs and vision-language models in mixture-of-experts settings, with multiple queries used to smooth over the weaknesses in these models' representations of idiomaticity.
comment: Preprint; SemEval-2025 proceedings to appear at ACL 2025
☆ Leveraging Perfect Multimodal Alignment and Gaussian Assumptions for Cross-modal Transfer
Multimodal alignment aims to construct a joint latent vector space where two modalities representing the same concept map to the same vector. We formulate this as an inverse problem and show that under certain conditions perfect alignment can be achieved. We then address a specific application of alignment referred to as cross-modal transfer. Unsupervised cross-modal transfer aims to leverage a model trained with one modality to perform inference on another modality, without any labeled fine-tuning on the new modality. Assuming that semantic classes are represented as a mixture of Gaussians in the latent space, we show how cross-modal transfer can be performed by projecting the data points from the representation space onto different subspaces representing each modality. Our experiments on synthetic multimodal Gaussian data verify the effectiveness of our perfect alignment and cross-modal transfer method. We hope these findings inspire further exploration of the applications of perfect alignment and the use of Gaussian models for cross-modal learning.
☆ TruthLens:A Training-Free Paradigm for DeepFake Detection
The proliferation of synthetic images generated by advanced AI models poses significant challenges in identifying and understanding manipulated visual content. Current fake image detection methods predominantly rely on binary classification models that focus on accuracy while often neglecting interpretability, leaving users without clear insights into why an image is deemed real or fake. To bridge this gap, we introduce TruthLens, a novel training-free framework that reimagines deepfake detection as a visual question-answering (VQA) task. TruthLens utilizes state-of-the-art large vision-language models (LVLMs) to observe and describe visual artifacts and combines this with the reasoning capabilities of large language models (LLMs) like GPT-4 to analyze and aggregate evidence into informed decisions. By adopting a multimodal approach, TruthLens seamlessly integrates visual and semantic reasoning to not only classify images as real or fake but also provide interpretable explanations for its decisions. This transparency enhances trust and provides valuable insights into the artifacts that signal synthetic content. Extensive evaluations demonstrate that TruthLens outperforms conventional methods, achieving high accuracy on challenging datasets while maintaining a strong emphasis on explainability. By reframing deepfake detection as a reasoning-driven process, TruthLens establishes a new paradigm in combating synthetic media, combining cutting-edge performance with interpretability to address the growing threats of visual disinformation.
☆ Recover and Match: Open-Vocabulary Multi-Label Recognition through Knowledge-Constrained Optimal Transport CVPR 2025
Identifying multiple novel classes in an image, known as open-vocabulary multi-label recognition, is a challenging task in computer vision. Recent studies explore the transfer of powerful vision-language models such as CLIP. However, these approaches face two critical challenges: (1) The local semantics of CLIP are disrupted due to its global pre-training objectives, resulting in unreliable regional predictions. (2) The matching property between image regions and candidate labels has been neglected, relying instead on naive feature aggregation such as average pooling, which leads to spurious predictions from irrelevant regions. In this paper, we present RAM (Recover And Match), a novel framework that effectively addresses the above issues. To tackle the first problem, we propose Ladder Local Adapter (LLA) to enforce refocusing on local regions, recovering local semantics in a memory-friendly way. For the second issue, we propose Knowledge-Constrained Optimal Transport (KCOT) to suppress meaningless matching to non-GT labels by formulating the task as an optimal transport problem. As a result, RAM achieves state-of-the-art performance on various datasets from three distinct domains, and shows great potential to boost the existing methods. Code: https://github.com/EricTan7/RAM.
comment: CVPR 2025
☆ Euclid Quick Data Release (Q1). Active galactic nuclei identification using diffusion-based inpainting of Euclid VIS images
Light emission from galaxies exhibit diverse brightness profiles, influenced by factors such as galaxy type, structural features and interactions with other galaxies. Elliptical galaxies feature more uniform light distributions, while spiral and irregular galaxies have complex, varied light profiles due to their structural heterogeneity and star-forming activity. In addition, galaxies with an active galactic nucleus (AGN) feature intense, concentrated emission from gas accretion around supermassive black holes, superimposed on regular galactic light, while quasi-stellar objects (QSO) are the extreme case of the AGN emission dominating the galaxy. The challenge of identifying AGN and QSO has been discussed many times in the literature, often requiring multi-wavelength observations. This paper introduces a novel approach to identify AGN and QSO from a single image. Diffusion models have been recently developed in the machine-learning literature to generate realistic-looking images of everyday objects. Utilising the spatial resolving power of the Euclid VIS images, we created a diffusion model trained on one million sources, without using any source pre-selection or labels. The model learns to reconstruct light distributions of normal galaxies, since the population is dominated by them. We condition the prediction of the central light distribution by masking the central few pixels of each source and reconstruct the light according to the diffusion model. We further use this prediction to identify sources that deviate from this profile by examining the reconstruction error of the few central pixels regenerated in each source's core. Our approach, solely using VIS imaging, features high completeness compared to traditional methods of AGN and QSO selection, including optical, near-infrared, mid-infrared, and X-rays. [abridged]
comment: Paper submitted as part of the A&A Special Issue `Euclid Quick Data Release (Q1)', 32 pages, 26 figures
☆ SUM Parts: Benchmarking Part-Level Semantic Segmentation of Urban Meshes
Semantic segmentation in urban scene analysis has mainly focused on images or point clouds, while textured meshes - offering richer spatial representation - remain underexplored. This paper introduces SUM Parts, the first large-scale dataset for urban textured meshes with part-level semantic labels, covering about 2.5 km2 with 21 classes. The dataset was created using our own annotation tool, which supports both face- and texture-based annotations with efficient interactive selection. We also provide a comprehensive evaluation of 3D semantic segmentation and interactive annotation methods on this dataset. Our project page is available at https://tudelft3d.github.io/SUMParts/.
comment: 22 pages, 24 figures
☆ DCA: Dividing and Conquering Amnesia in Incremental Object Detection AAAI 2025
Incremental object detection (IOD) aims to cultivate an object detector that can continuously localize and recognize novel classes while preserving its performance on previous classes. Existing methods achieve certain success by improving knowledge distillation and exemplar replay for transformer-based detection frameworks, but the intrinsic forgetting mechanisms remain underexplored. In this paper, we dive into the cause of forgetting and discover forgetting imbalance between localization and recognition in transformer-based IOD, which means that localization is less-forgetting and can generalize to future classes, whereas catastrophic forgetting occurs primarily on recognition. Based on these insights, we propose a Divide-and-Conquer Amnesia (DCA) strategy, which redesigns the transformer-based IOD into a localization-then-recognition process. DCA can well maintain and transfer the localization ability, leaving decoupled fragile recognition to be specially conquered. To reduce feature drift in recognition, we leverage semantic knowledge encoded in pre-trained language models to anchor class representations within a unified feature space across incremental tasks. This involves designing a duplex classifier fusion and embedding class semantic features into the recognition decoding process in the form of queries. Extensive experiments validate that our approach achieves state-of-the-art performance, especially for long-term incremental scenarios. For example, under the four-step setting on MS-COCO, our DCA strategy significantly improves the final AP by 6.9%.
comment: Accepted by AAAI 2025
☆ Test-Time Backdoor Detection for Object Detection Models CVPR 2025
Object detection models are vulnerable to backdoor attacks, where attackers poison a small subset of training samples by embedding a predefined trigger to manipulate prediction. Detecting poisoned samples (i.e., those containing triggers) at test time can prevent backdoor activation. However, unlike image classification tasks, the unique characteristics of object detection -- particularly its output of numerous objects -- pose fresh challenges for backdoor detection. The complex attack effects (e.g., "ghost" object emergence or "vanishing" object) further render current defenses fundamentally inadequate. To this end, we design TRAnsformation Consistency Evaluation (TRACE), a brand-new method for detecting poisoned samples at test time in object detection. Our journey begins with two intriguing observations: (1) poisoned samples exhibit significantly more consistent detection results than clean ones across varied backgrounds. (2) clean samples show higher detection consistency when introduced to different focal information. Based on these phenomena, TRACE applies foreground and background transformations to each test sample, then assesses transformation consistency by calculating the variance in objects confidences. TRACE achieves black-box, universal backdoor detection, with extensive experiments showing a 30% improvement in AUROC over state-of-the-art defenses and resistance to adaptive attacks.
comment: Accepted to CVPR 2025
☆ Beacon2Science: Enhancing STEREO/HI beacon data1 with machine learning for efficient CME tracking
Observing and forecasting coronal mass ejections (CME) in real-time is crucial due to the strong geomagnetic storms they can generate that can have a potentially damaging effect, for example, on satellites and electrical devices. With its near-real-time availability, STEREO/HI beacon data is the perfect candidate for early forecasting of CMEs. However, previous work concluded that CME arrival prediction based on beacon data could not achieve the same accuracy as with high-resolution science data due to data gaps and lower quality. We present our novel pipeline entitled ''Beacon2Science'', bridging the gap between beacon and science data to improve CME tracking. Through this pipeline, we first enhance the quality (signal-to-noise ratio and spatial resolution) of beacon data. We then increase the time resolution of enhanced beacon images through learned interpolation to match science data's 40-minute resolution. We maximize information coherence between consecutive frames with adapted model architecture and loss functions through the different steps. The improved beacon images are comparable to science data, showing better CME visibility than the original beacon data. Furthermore, we compare CMEs tracked in beacon, enhanced beacon, and science images. The tracks extracted from enhanced beacon data are closer to those from science images, with a mean average error of $\sim 0.5 ^\circ$ of elongation compared to $1^\circ$ with original beacon data. The work presented in this paper paves the way for its application to forthcoming missions such as Vigil and PUNCH.
comment: 24 pages, 11 figures, 1 tables, submitted to AGU Space Weather on 14th Marc 2025
☆ PAPI-Reg: Patch-to-Pixel Solution for Efficient Cross-Modal Registration between LiDAR Point Cloud and Camera Image
The primary requirement for cross-modal data fusion is the precise alignment of data from different sensors. However, the calibration between LiDAR point clouds and camera images is typically time-consuming and needs external calibration board or specific environmental features. Cross-modal registration effectively solves this problem by aligning the data directly without requiring external calibration. However, due to the domain gap between the point cloud and the image, existing methods rarely achieve satisfactory registration accuracy while maintaining real-time performance. To address this issue, we propose a framework that projects point clouds into several 2D representations for matching with camera images, which not only leverages the geometric characteristic of LiDAR point clouds more effectively but also bridge the domain gap between the point cloud and image. Moreover, to tackle the challenges of cross modal differences and the limited overlap between LiDAR point clouds and images in the image matching task, we introduce a multi-scale feature extraction network to effectively extract features from both camera images and the projection maps of LiDAR point cloud. Additionally, we propose a patch-to-pixel matching network to provide more effective supervision and achieve higher accuracy. We validate the performance of our model through experiments on the KITTI and nuScenes datasets. Our network achieves real-time performance and extremely high registration accuracy. On the KITTI dataset, our model achieves a registration accuracy rate of over 99\%.
☆ EdgeRegNet: Edge Feature-based Multimodal Registration Network between Images and LiDAR Point Clouds
Cross-modal data registration has long been a critical task in computer vision, with extensive applications in autonomous driving and robotics. Accurate and robust registration methods are essential for aligning data from different modalities, forming the foundation for multimodal sensor data fusion and enhancing perception systems' accuracy and reliability. The registration task between 2D images captured by cameras and 3D point clouds captured by Light Detection and Ranging (LiDAR) sensors is usually treated as a visual pose estimation problem. High-dimensional feature similarities from different modalities are leveraged to identify pixel-point correspondences, followed by pose estimation techniques using least squares methods. However, existing approaches often resort to downsampling the original point cloud and image data due to computational constraints, inevitably leading to a loss in precision. Additionally, high-dimensional features extracted using different feature extractors from various modalities require specific techniques to mitigate cross-modal differences for effective matching. To address these challenges, we propose a method that uses edge information from the original point clouds and images for cross-modal registration. We retain crucial information from the original data by extracting edge points and pixels, enhancing registration accuracy while maintaining computational efficiency. The use of edge points and edge pixels allows us to introduce an attention-based feature exchange block to eliminate cross-modal disparities. Furthermore, we incorporate an optimal matching layer to improve correspondence identification. We validate the accuracy of our method on the KITTI and nuScenes datasets, demonstrating its state-of-the-art performance.
☆ TF-TI2I: Training-Free Text-and-Image-to-Image Generation via Multi-Modal Implicit-Context Learning in Text-to-Image Models
Text-and-Image-To-Image (TI2I), an extension of Text-To-Image (T2I), integrates image inputs with textual instructions to enhance image generation. Existing methods often partially utilize image inputs, focusing on specific elements like objects or styles, or they experience a decline in generation quality with complex, multi-image instructions. To overcome these challenges, we introduce Training-Free Text-and-Image-to-Image (TF-TI2I), which adapts cutting-edge T2I models such as SD3 without the need for additional training. Our method capitalizes on the MM-DiT architecture, in which we point out that textual tokens can implicitly learn visual information from vision tokens. We enhance this interaction by extracting a condensed visual representation from reference images, facilitating selective information sharing through Reference Contextual Masking -- this technique confines the usage of contextual tokens to instruction-relevant visual information. Additionally, our Winner-Takes-All module mitigates distribution shifts by prioritizing the most pertinent references for each vision token. Addressing the gap in TI2I evaluation, we also introduce the FG-TI2I Bench, a comprehensive benchmark tailored for TI2I and compatible with existing T2I methods. Our approach shows robust performance across various benchmarks, confirming its effectiveness in handling complex image-generation tasks.
☆ Challenges and Trends in Egocentric Vision: A Survey
With the rapid development of artificial intelligence technologies and wearable devices, egocentric vision understanding has emerged as a new and challenging research direction, gradually attracting widespread attention from both academia and industry. Egocentric vision captures visual and multimodal data through cameras or sensors worn on the human body, offering a unique perspective that simulates human visual experiences. This paper provides a comprehensive survey of the research on egocentric vision understanding, systematically analyzing the components of egocentric scenes and categorizing the tasks into four main areas: subject understanding, object understanding, environment understanding, and hybrid understanding. We explore in detail the sub-tasks within each category. We also summarize the main challenges and trends currently existing in the field. Furthermore, this paper presents an overview of high-quality egocentric vision datasets, offering valuable resources for future research. By summarizing the latest advancements, we anticipate the broad applications of egocentric vision technologies in fields such as augmented reality, virtual reality, and embodied intelligence, and propose future research directions based on the latest developments in the field.
☆ DeepMesh: Auto-Regressive Artist-mesh Creation with Reinforcement Learning
Triangle meshes play a crucial role in 3D applications for efficient manipulation and rendering. While auto-regressive methods generate structured meshes by predicting discrete vertex tokens, they are often constrained by limited face counts and mesh incompleteness. To address these challenges, we propose DeepMesh, a framework that optimizes mesh generation through two key innovations: (1) an efficient pre-training strategy incorporating a novel tokenization algorithm, along with improvements in data curation and processing, and (2) the introduction of Reinforcement Learning (RL) into 3D mesh generation to achieve human preference alignment via Direct Preference Optimization (DPO). We design a scoring standard that combines human evaluation with 3D metrics to collect preference pairs for DPO, ensuring both visual appeal and geometric accuracy. Conditioned on point clouds and images, DeepMesh generates meshes with intricate details and precise topology, outperforming state-of-the-art methods in both precision and quality. Project page: https://zhaorw02.github.io/DeepMesh/
comment: Project page: https://zhaorw02.github.io/DeepMesh/
☆ LEGION: Learning to Ground and Explain for Synthetic Image Detection
The rapid advancements in generative technology have emerged as a double-edged sword. While offering powerful tools that enhance convenience, they also pose significant social concerns. As defenders, current synthetic image detection methods often lack artifact-level textual interpretability and are overly focused on image manipulation detection, and current datasets usually suffer from outdated generators and a lack of fine-grained annotations. In this paper, we introduce SynthScars, a high-quality and diverse dataset consisting of 12,236 fully synthetic images with human-expert annotations. It features 4 distinct image content types, 3 categories of artifacts, and fine-grained annotations covering pixel-level segmentation, detailed textual explanations, and artifact category labels. Furthermore, we propose LEGION (LEarning to Ground and explain for Synthetic Image detectiON), a multimodal large language model (MLLM)-based image forgery analysis framework that integrates artifact detection, segmentation, and explanation. Building upon this capability, we further explore LEGION as a controller, integrating it into image refinement pipelines to guide the generation of higher-quality and more realistic images. Extensive experiments show that LEGION outperforms existing methods across multiple benchmarks, particularly surpassing the second-best traditional expert on SynthScars by 3.31% in mIoU and 7.75% in F1 score. Moreover, the refined images generated under its guidance exhibit stronger alignment with human preferences. The code, model, and dataset will be released.
comment: Project Page: https://opendatalab.github.io/LEGION
☆ DEPT: Deep Extreme Point Tracing for Ultrasound Image Segmentation
Automatic medical image segmentation plays a crucial role in computer aided diagnosis. However, fully supervised learning approaches often require extensive and labor-intensive annotation efforts. To address this challenge, weakly supervised learning methods, particularly those using extreme points as supervisory signals, have the potential to offer an effective solution. In this paper, we introduce Deep Extreme Point Tracing (DEPT) integrated with Feature-Guided Extreme Point Masking (FGEPM) algorithm for ultrasound image segmentation. Notably, our method generates pseudo labels by identifying the lowest-cost path that connects all extreme points on the feature map-based cost matrix. Additionally, an iterative training strategy is proposed to refine pseudo labels progressively, enabling continuous network improvement. Experimental results on two public datasets demonstrate the effectiveness of our proposed method. The performance of our method approaches that of the fully supervised method and outperforms several existing weakly supervised methods.
☆ CoE: Chain-of-Explanation via Automatic Visual Concept Circuit Description and Polysemanticity Quantification CVPR2025
Explainability is a critical factor influencing the wide deployment of deep vision models (DVMs). Concept-based post-hoc explanation methods can provide both global and local insights into model decisions. However, current methods in this field face challenges in that they are inflexible to automatically construct accurate and sufficient linguistic explanations for global concepts and local circuits. Particularly, the intrinsic polysemanticity in semantic Visual Concepts (VCs) impedes the interpretability of concepts and DVMs, which is underestimated severely. In this paper, we propose a Chain-of-Explanation (CoE) approach to address these issues. Specifically, CoE automates the decoding and description of VCs to construct global concept explanation datasets. Further, to alleviate the effect of polysemanticity on model explainability, we design a concept polysemanticity disentanglement and filtering mechanism to distinguish the most contextually relevant concept atoms. Besides, a Concept Polysemanticity Entropy (CPE), as a measure of model interpretability, is formulated to quantify the degree of concept uncertainty. The modeling of deterministic concepts is upgraded to uncertain concept atom distributions. Finally, CoE automatically enables linguistic local explanations of the decision-making process of DVMs by tracing the concept circuit. GPT-4o and human-based experiments demonstrate the effectiveness of CPE and the superiority of CoE, achieving an average absolute improvement of 36% in terms of explainability scores.
comment: Accepted by CVPR2025
☆ GO-N3RDet: Geometry Optimized NeRF-enhanced 3D Object Detector CVPR2025
We propose GO-N3RDet, a scene-geometry optimized multi-view 3D object detector enhanced by neural radiance fields. The key to accurate 3D object detection is in effective voxel representation. However, due to occlusion and lack of 3D information, constructing 3D features from multi-view 2D images is challenging. Addressing that, we introduce a unique 3D positional information embedded voxel optimization mechanism to fuse multi-view features. To prioritize neural field reconstruction in object regions, we also devise a double importance sampling scheme for the NeRF branch of our detector. We additionally propose an opacity optimization module for precise voxel opacity prediction by enforcing multi-view consistency constraints. Moreover, to further improve voxel density consistency across multiple perspectives, we incorporate ray distance as a weighting factor to minimize cumulative ray errors. Our unique modules synergetically form an end-to-end neural model that establishes new state-of-the-art in NeRF-based multi-view 3D detection, verified with extensive experiments on ScanNet and ARKITScenes. Code will be available at https://github.com/ZechuanLi/GO-N3RDet.
comment: Accepted by CVPR2025
☆ DiST-4D: Disentangled Spatiotemporal Diffusion with Metric Depth for 4D Driving Scene Generation
Current generative models struggle to synthesize dynamic 4D driving scenes that simultaneously support temporal extrapolation and spatial novel view synthesis (NVS) without per-scene optimization. A key challenge lies in finding an efficient and generalizable geometric representation that seamlessly connects temporal and spatial synthesis. To address this, we propose DiST-4D, the first disentangled spatiotemporal diffusion framework for 4D driving scene generation, which leverages metric depth as the core geometric representation. DiST-4D decomposes the problem into two diffusion processes: DiST-T, which predicts future metric depth and multi-view RGB sequences directly from past observations, and DiST-S, which enables spatial NVS by training only on existing viewpoints while enforcing cycle consistency. This cycle consistency mechanism introduces a forward-backward rendering constraint, reducing the generalization gap between observed and unseen viewpoints. Metric depth is essential for both accurate reliable forecasting and accurate spatial NVS, as it provides a view-consistent geometric representation that generalizes well to unseen perspectives. Experiments demonstrate that DiST-4D achieves state-of-the-art performance in both temporal prediction and NVS tasks, while also delivering competitive performance in planning-related evaluations.
☆ Detect-and-Guide: Self-regulation of Diffusion Models for Safe Text-to-Image Generation via Guideline Token Optimization CVPR25
Text-to-image diffusion models have achieved state-of-the-art results in synthesis tasks; however, there is a growing concern about their potential misuse in creating harmful content. To mitigate these risks, post-hoc model intervention techniques, such as concept unlearning and safety guidance, have been developed. However, fine-tuning model weights or adapting the hidden states of the diffusion model operates in an uninterpretable way, making it unclear which part of the intermediate variables is responsible for unsafe generation. These interventions severely affect the sampling trajectory when erasing harmful concepts from complex, multi-concept prompts, thus hindering their practical use in real-world settings. In this work, we propose the safe generation framework Detect-and-Guide (DAG), leveraging the internal knowledge of diffusion models to perform self-diagnosis and fine-grained self-regulation during the sampling process. DAG first detects harmful concepts from noisy latents using refined cross-attention maps of optimized tokens, then applies safety guidance with adaptive strength and editing regions to negate unsafe generation. The optimization only requires a small annotated dataset and can provide precise detection maps with generalizability and concept specificity. Moreover, DAG does not require fine-tuning of diffusion models, and therefore introduces no loss to their generation diversity. Experiments on erasing sexual content show that DAG achieves state-of-the-art safe generation performance, balancing harmfulness mitigation and text-following performance on multi-concept real-world prompts.
comment: CVPR25
☆ Benchmarking Large Language Models for Handwritten Text Recognition
Traditional machine learning models for Handwritten Text Recognition (HTR) rely on supervised training, requiring extensive manual annotations, and often produce errors due to the separation between layout and text processing. In contrast, Multimodal Large Language Models (MLLMs) offer a general approach to recognizing diverse handwriting styles without the need for model-specific training. The study benchmarks various proprietary and open-source LLMs against Transkribus models, evaluating their performance on both modern and historical datasets written in English, French, German, and Italian. In addition, emphasis is placed on testing the models' ability to autonomously correct previously generated outputs. Findings indicate that proprietary models, especially Claude 3.5 Sonnet, outperform open-source alternatives in zero-shot settings. MLLMs achieve excellent results in recognizing modern handwriting and exhibit a preference for the English language due to their pre-training dataset composition. Comparisons with Transkribus show no consistent advantage for either approach. Moreover, LLMs demonstrate limited ability to autonomously correct errors in zero-shot transcriptions.
☆ 3D Occupancy Prediction with Low-Resolution Queries via Prototype-aware View Transformation CVPR2025
The resolution of voxel queries significantly influences the quality of view transformation in camera-based 3D occupancy prediction. However, computational constraints and the practical necessity for real-time deployment require smaller query resolutions, which inevitably leads to an information loss. Therefore, it is essential to encode and preserve rich visual details within limited query sizes while ensuring a comprehensive representation of 3D occupancy. To this end, we introduce ProtoOcc, a novel occupancy network that leverages prototypes of clustered image segments in view transformation to enhance low-resolution context. In particular, the mapping of 2D prototypes onto 3D voxel queries encodes high-level visual geometries and complements the loss of spatial information from reduced query resolutions. Additionally, we design a multi-perspective decoding strategy to efficiently disentangle the densely compressed visual cues into a high-dimensional 3D occupancy scene. Experimental results on both Occ3D and SemanticKITTI benchmarks demonstrate the effectiveness of the proposed method, showing clear improvements over the baselines. More importantly, ProtoOcc achieves competitive performance against the baselines even with 75\% reduced voxel resolution.
comment: Accepted to CVPR2025
☆ A Review on Large Language Models for Visual Analytics
This paper provides a comprehensive review of the integration of Large Language Models (LLMs) with visual analytics, addressing their foundational concepts, capabilities, and wide-ranging applications. It begins by outlining the theoretical underpinnings of visual analytics and the transformative potential of LLMs, specifically focusing on their roles in natural language understanding, natural language generation, dialogue systems, and text-to-media transformations. The review further investigates how the synergy between LLMs and visual analytics enhances data interpretation, visualization techniques, and interactive exploration capabilities. Key tools and platforms including LIDA, Chat2VIS, Julius AI, and Zoho Analytics, along with specialized multimodal models such as ChartLlama and CharXIV, are critically evaluated. The paper discusses their functionalities, strengths, and limitations in supporting data exploration, visualization enhancement, automated reporting, and insight extraction. The taxonomy of LLM tasks, ranging from natural language understanding (NLU), natural language generation (NLG), to dialogue systems and text-to-media transformations, is systematically explored. This review provides a SWOT analysis of integrating Large Language Models (LLMs) with visual analytics, highlighting strengths like accessibility and flexibility, weaknesses such as computational demands and biases, opportunities in multimodal integration and user collaboration, and threats including privacy concerns and skill degradation. It emphasizes addressing ethical considerations and methodological improvements for effective integration.
☆ World Models in Artificial Intelligence: Sensing, Learning, and Reasoning Like a Child
World Models help Artificial Intelligence (AI) predict outcomes, reason about its environment, and guide decision-making. While widely used in reinforcement learning, they lack the structured, adaptive representations that even young children intuitively develop. Advancing beyond pattern recognition requires dynamic, interpretable frameworks inspired by Piaget's cognitive development theory. We highlight six key research areas -- physics-informed learning, neurosymbolic learning, continual learning, causal inference, human-in-the-loop AI, and responsible AI -- as essential for enabling true reasoning in AI. By integrating statistical learning with advances in these areas, AI can evolve from pattern recognition to genuine understanding, adaptation and reasoning capabilities.
comment: 11 pages, 1 figure
☆ Machine Unlearning in Hyperbolic vs. Euclidean Multimodal Contrastive Learning: Adapting Alignment Calibration to MERU
Machine unlearning methods have become increasingly important for selective concept removal in large pre-trained models. While recent work has explored unlearning in Euclidean contrastive vision-language models, the effectiveness of concept removal in hyperbolic spaces remains unexplored. This paper investigates machine unlearning in hyperbolic contrastive learning by adapting Alignment Calibration to MERU, a model that embeds images and text in hyperbolic space to better capture semantic hierarchies. Through systematic experiments and ablation studies, we demonstrate that hyperbolic geometry offers distinct advantages for concept removal, achieving near perfect forgetting with reasonable performance on retained concepts, particularly when scaling to multiple concept removal. Our approach introduces hyperbolic-specific components including entailment calibration and norm regularization that leverage the unique properties of hyperbolic space. Comparative analysis with Euclidean models reveals fundamental differences in unlearning dynamics, with hyperbolic unlearning reorganizing the semantic hierarchy while Euclidean approaches merely disconnect cross-modal associations. These findings not only advance machine unlearning techniques but also provide insights into the geometric properties that influence concept representation and removal in multimodal models. Source code available at https://github.com/alex-pv01/HAC
comment: Preprint
☆ UltraFlwr -- An Efficient Federated Medical and Surgical Object Detection Framework MICCAI
Object detection shows promise for medical and surgical applications such as cell counting and tool tracking. However, its faces multiple real-world edge deployment challenges including limited high-quality annotated data, data sharing restrictions, and computational constraints. In this work, we introduce UltraFlwr, a framework for federated medical and surgical object detection. By leveraging Federated Learning (FL), UltraFlwr enables decentralized model training across multiple sites without sharing raw data. To further enhance UltraFlwr's efficiency, we propose YOLO-PA, a set of novel Partial Aggregation (PA) strategies specifically designed for YOLO models in FL. YOLO-PA significantly reduces communication overhead by up to 83% per round while maintaining performance comparable to Full Aggregation (FA) strategies. Our extensive experiments on BCCD and m2cai16-tool-locations datasets demonstrate that YOLO-PA not only provides better client models compared to client-wise centralized training and FA strategies, but also facilitates efficient training and deployment across resource-constrained edge devices. Further, we also establish one of the first benchmarks in federated medical and surgical object detection. This paper advances the feasibility of training and deploying detection models on the edge, making federated object detection more practical for time-critical and resource-constrained medical and surgical applications. UltraFlwr is publicly available at https://github.com/KCL-BMEIS/UltraFlwr.
comment: 10 pages, 2 figures, under review @ MICCAI
☆ ARC: Anchored Representation Clouds for High-Resolution INR Classification ICLR 2025
Implicit neural representations (INRs) encode signals in neural network weights as a memory-efficient representation, decoupling sampling resolution from the associated resource costs. Current INR image classification methods are demonstrated on low-resolution data and are sensitive to image-space transformations. We attribute these issues to the global, fully-connected MLP neural network architecture encoding of current INRs, which lack mechanisms for local representation: MLPs are sensitive to absolute image location and struggle with high-frequency details. We propose ARC: Anchored Representation Clouds, a novel INR architecture that explicitly anchors latent vectors locally in image-space. By introducing spatial structure to the latent vectors, ARC captures local image data which in our testing leads to state-of-the-art implicit image classification of both low- and high-resolution images and increased robustness against image-space translation. Code can be found at https://github.com/JLuij/anchored_representation_clouds.
comment: Accepted at the ICLR 2025 Workshop on Neural Network Weights as a New Data Modality
☆ PointSFDA: Source-free Domain Adaptation for Point Cloud Completion
Conventional methods for point cloud completion, typically trained on synthetic datasets, face significant challenges when applied to out-of-distribution real-world scans. In this paper, we propose an effective yet simple source-free domain adaptation framework for point cloud completion, termed \textbf{PointSFDA}. Unlike unsupervised domain adaptation that reduces the domain gap by directly leveraging labeled source data, PointSFDA uses only a pretrained source model and unlabeled target data for adaptation, avoiding the need for inaccessible source data in practical scenarios. Being the first source-free domain adaptation architecture for point cloud completion, our method offers two core contributions. First, we introduce a coarse-to-fine distillation solution to explicitly transfer the global geometry knowledge learned from the source dataset. Second, as noise may be introduced due to domain gaps, we propose a self-supervised partial-mask consistency training strategy to learn local geometry information in the target domain. Extensive experiments have validated that our method significantly improves the performance of state-of-the-art networks in cross-domain shape completion. Our code is available at \emph{\textcolor{magenta}{https://github.com/Starak-x/PointSFDA}}.
☆ Object-Centric Pretraining via Target Encoder Bootstrapping ICLR 2025
Object-centric representation learning has recently been successfully applied to real-world datasets. This success can be attributed to pretrained non-object-centric foundation models, whose features serve as reconstruction targets for slot attention. However, targets must remain frozen throughout the training, which sets an upper bound on the performance object-centric models can attain. Attempts to update the target encoder by bootstrapping result in large performance drops, which can be attributed to its lack of object-centric inductive biases, causing the object-centric model's encoder to drift away from representations useful as reconstruction targets. To address these limitations, we propose Object-CEntric Pretraining by Target Encoder BOotstrapping, a self-distillation setup for training object-centric models from scratch, on real-world data, for the first time ever. In OCEBO, the target encoder is updated as an exponential moving average of the object-centric model, thus explicitly being enriched with object-centric inductive biases introduced by slot attention while removing the upper bound on performance present in other models. We mitigate the slot collapse caused by random initialization of the target encoder by introducing a novel cross-view patch filtering approach that limits the supervision to sufficiently informative patches. When pretrained on 241k images from COCO, OCEBO achieves unsupervised object discovery performance comparable to that of object-centric models with frozen non-object-centric target encoders pretrained on hundreds of millions of images. The code and pretrained models are publicly available at https://github.com/djukicn/ocebo.
comment: ICLR 2025
VideoGen-of-Thought: Step-by-step generating multi-shot video with minimal manual intervention
Current video generation models excel at short clips but fail to produce cohesive multi-shot narratives due to disjointed visual dynamics and fractured storylines. Existing solutions either rely on extensive manual scripting/editing or prioritize single-shot fidelity over cross-scene continuity, limiting their practicality for movie-like content. We introduce VideoGen-of-Thought (VGoT), a step-by-step framework that automates multi-shot video synthesis from a single sentence by systematically addressing three core challenges: (1) Narrative Fragmentation: Existing methods lack structured storytelling. We propose dynamic storyline modeling, which first converts the user prompt into concise shot descriptions, then elaborates them into detailed, cinematic specifications across five domains (character dynamics, background continuity, relationship evolution, camera movements, HDR lighting), ensuring logical narrative progression with self-validation. (2) Visual Inconsistency: Existing approaches struggle with maintaining visual consistency across shots. Our identity-aware cross-shot propagation generates identity-preserving portrait (IPP) tokens that maintain character fidelity while allowing trait variations (expressions, aging) dictated by the storyline. (3) Transition Artifacts: Abrupt shot changes disrupt immersion. Our adjacent latent transition mechanisms implement boundary-aware reset strategies that process adjacent shots' features at transition points, enabling seamless visual flow while preserving narrative continuity. VGoT generates multi-shot videos that outperform state-of-the-art baselines by 20.4% in within-shot face consistency and 17.4% in style consistency, while achieving over 100% better cross-shot consistency and 10x fewer manual adjustments than alternatives.
comment: Code: https://github.com/DuNGEOnmassster/VideoGen-of-Thought.git; Webpage: https://cheliosoops.github.io/VGoT/
☆ Text-Derived Relational Graph-Enhanced Network for Skeleton-Based Action Segmentation
Skeleton-based Temporal Action Segmentation (STAS) aims to segment and recognize various actions from long, untrimmed sequences of human skeletal movements. Current STAS methods typically employ spatio-temporal modeling to establish dependencies among joints as well as frames, and utilize one-hot encoding with cross-entropy loss for frame-wise classification supervision. However, these methods overlook the intrinsic correlations among joints and actions within skeletal features, leading to a limited understanding of human movements. To address this, we propose a Text-Derived Relational Graph-Enhanced Network (TRG-Net) that leverages prior graphs generated by Large Language Models (LLM) to enhance both modeling and supervision. For modeling, the Dynamic Spatio-Temporal Fusion Modeling (DSFM) method incorporates Text-Derived Joint Graphs (TJG) with channel- and frame-level dynamic adaptation to effectively model spatial relations, while integrating spatio-temporal core features during temporal modeling. For supervision, the Absolute-Relative Inter-Class Supervision (ARIS) method employs contrastive learning between action features and text embeddings to regularize the absolute class distributions, and utilizes Text-Derived Action Graphs (TAG) to capture the relative inter-class relationships among action features. Additionally, we propose a Spatial-Aware Enhancement Processing (SAEP) method, which incorporates random joint occlusion and axial rotation to enhance spatial generalization. Performance evaluations on four public datasets demonstrate that TRG-Net achieves state-of-the-art results.
☆ GIVEPose: Gradual Intra-class Variation Elimination for RGB-based Category-Level Object Pose Estimation CVPR2025
Recent advances in RGBD-based category-level object pose estimation have been limited by their reliance on precise depth information, restricting their broader applicability. In response, RGB-based methods have been developed. Among these methods, geometry-guided pose regression that originated from instance-level tasks has demonstrated strong performance. However, we argue that the NOCS map is an inadequate intermediate representation for geometry-guided pose regression method, as its many-to-one correspondence with category-level pose introduces redundant instance-specific information, resulting in suboptimal results. This paper identifies the intra-class variation problem inherent in pose regression based solely on the NOCS map and proposes the Intra-class Variation-Free Consensus (IVFC) map, a novel coordinate representation generated from the category-level consensus model. By leveraging the complementary strengths of the NOCS map and the IVFC map, we introduce GIVEPose, a framework that implements Gradual Intra-class Variation Elimination for category-level object pose estimation. Extensive evaluations on both synthetic and real-world datasets demonstrate that GIVEPose significantly outperforms existing state-of-the-art RGB-based approaches, achieving substantial improvements in category-level object pose estimation. Our code is available at https://github.com/ziqin-h/GIVEPose.
comment: CVPR2025
☆ Distilling 3D distinctive local descriptors for 6D pose estimation
Three-dimensional local descriptors are crucial for encoding geometric surface properties, making them essential for various point cloud understanding tasks. Among these descriptors, GeDi has demonstrated strong zero-shot 6D pose estimation capabilities but remains computationally impractical for real-world applications due to its expensive inference process. \textit{Can we retain GeDi's effectiveness while significantly improving its efficiency?} In this paper, we explore this question by introducing a knowledge distillation framework that trains an efficient student model to regress local descriptors from a GeDi teacher. Our key contributions include: an efficient large-scale training procedure that ensures robustness to occlusions and partial observations while operating under compute and storage constraints, and a novel loss formulation that handles weak supervision from non-distinctive teacher descriptors. We validate our approach on five BOP Benchmark datasets and demonstrate a significant reduction in inference time while maintaining competitive performance with existing methods, bringing zero-shot 6D pose estimation closer to real-time feasibility. Project Website: https://tev-fbk.github.io/dGeDi/
comment: Project Website: https://tev-fbk.github.io/dGeDi/
☆ When the Future Becomes the Past: Taming Temporal Correspondence for Self-supervised Video Representation Learning CVPR 2025
The past decade has witnessed notable achievements in self-supervised learning for video tasks. Recent efforts typically adopt the Masked Video Modeling (MVM) paradigm, leading to significant progress on multiple video tasks. However, two critical challenges remain: 1) Without human annotations, the random temporal sampling introduces uncertainty, increasing the difficulty of model training. 2) Previous MVM methods primarily recover the masked patches in the pixel space, leading to insufficient information compression for downstream tasks. To address these challenges jointly, we propose a self-supervised framework that leverages Temporal Correspondence for video Representation learning (T-CoRe). For challenge 1), we propose a sandwich sampling strategy that selects two auxiliary frames to reduce reconstruction uncertainty in a two-side-squeezing manner. Addressing challenge 2), we introduce an auxiliary branch into a self-distillation architecture to restore representations in the latent space, generating high-level semantic representations enriched with temporal information. Experiments of T-CoRe consistently present superior performance across several downstream tasks, demonstrating its effectiveness for video representation learning. The code is available at https://github.com/yafeng19/T-CORE.
comment: Accepted at CVPR 2025
☆ Intelligent Spatial Perception by Building Hierarchical 3D Scene Graphs for Indoor Scenarios with the Help of LLMs
This paper addresses the high demand in advanced intelligent robot navigation for a more holistic understanding of spatial environments, by introducing a novel system that harnesses the capabilities of Large Language Models (LLMs) to construct hierarchical 3D Scene Graphs (3DSGs) for indoor scenarios. The proposed framework constructs 3DSGs consisting of a fundamental layer with rich metric-semantic information, an object layer featuring precise point-cloud representation of object nodes as well as visual descriptors, and higher layers of room, floor, and building nodes. Thanks to the innovative application of LLMs, not only object nodes but also nodes of higher layers, e.g., room nodes, are annotated in an intelligent and accurate manner. A polling mechanism for room classification using LLMs is proposed to enhance the accuracy and reliability of the room node annotation. Thorough numerical experiments demonstrate the system's ability to integrate semantic descriptions with geometric data, creating an accurate and comprehensive representation of the environment instrumental for context-aware navigation and task planning.
comment: accepted by WRC SARA 2024
☆ An Investigation of Beam Density on LiDAR Object Detection Performance
Accurate 3D object detection is a critical component of autonomous driving, enabling vehicles to perceive their surroundings with precision and make informed decisions. LiDAR sensors, widely used for their ability to provide detailed 3D measurements, are key to achieving this capability. However, variations between training and inference data can cause significant performance drops when object detection models are employed in different sensor settings. One critical factor is beam density, as inference on sparse, cost-effective LiDAR sensors is often preferred in real-world applications. Despite previous work addressing the beam-density-induced domain gap, substantial knowledge gaps remain, particularly concerning dense 128-beam sensors in cross-domain scenarios. To gain better understanding of the impact of beam density on domain gaps, we conduct a comprehensive investigation that includes an evaluation of different object detection architectures. Our architecture evaluation reveals that combining voxel- and point-based approaches yields superior cross-domain performance by leveraging the strengths of both representations. Building on these findings, we analyze beam-density-induced domain gaps and argue that these domain gaps must be evaluated in conjunction with other domain shifts. Contrary to conventional beliefs, our experiments reveal that detectors benefit from training on denser data and exhibit robustness to beam density variations during inference.
comment: Accepted by CVWW 2025
☆ MultiBARF: Integrating Imagery of Different Wavelength Regions by Using Neural Radiance Fields
Optical sensor applications have become popular through digital transformation. Linking observed data to real-world locations and combining different image sensors is essential to make the applications practical and efficient. However, data preparation to try different sensor combinations requires high sensing and image processing expertise. To make data preparation easier for users unfamiliar with sensing and image processing, we have developed MultiBARF. This method replaces the co-registration and geometric calibration by synthesizing pairs of two different sensor images and depth images at assigned viewpoints. Our method extends Bundle Adjusting Neural Radiance Fields(BARF), a deep neural network-based novel view synthesis method, for the two imagers. Through experiments on visible light and thermographic images, we demonstrate that our method superimposes two color channels of those sensor images on NeRF.
☆ Conjuring Positive Pairs for Efficient Unification of Representation Learning and Image Synthesis
While representation learning and generative modeling seek to understand visual data, unifying both domains remains unexplored. Recent Unified Self-Supervised Learning (SSL) methods have started to bridge the gap between both paradigms. However, they rely solely on semantic token reconstruction, which requires an external tokenizer during training -- introducing a significant overhead. In this work, we introduce Sorcen, a novel unified SSL framework, incorporating a synergic Contrastive-Reconstruction objective. Our Contrastive objective, "Echo Contrast", leverages the generative capabilities of Sorcen, eliminating the need for additional image crops or augmentations during training. Sorcen "generates" an echo sample in the semantic token space, forming the contrastive positive pair. Sorcen operates exclusively on precomputed tokens, eliminating the need for an online token transformation during training, thereby significantly reducing computational overhead. Extensive experiments on ImageNet-1k demonstrate that Sorcen outperforms the previous Unified SSL SoTA by 0.4%, 1.48 FID, 1.76%, and 1.53% on linear probing, unconditional image generation, few-shot learning, and transfer learning, respectively, while being 60.8% more efficient. Additionally, Sorcen surpasses previous single-crop MIM SoTA in linear probing and achieves SoTA performance in unconditional image generation, highlighting significant improvements and breakthroughs in Unified SSL models.
comment: The source code is available in https://github.com/ImaGonEs/Sorcen
☆ Texture-Aware StarGAN for CT data harmonisation
Computed Tomography (CT) plays a pivotal role in medical diagnosis; however, variability across reconstruction kernels hinders data-driven approaches, such as deep learning models, from achieving reliable and generalized performance. To this end, CT data harmonization has emerged as a promising solution to minimize such non-biological variances by standardizing data across different sources or conditions. In this context, Generative Adversarial Networks (GANs) have proved to be a powerful framework for harmonization, framing it as a style-transfer problem. However, GAN-based approaches still face limitations in capturing complex relationships within the images, which are essential for effective harmonization. In this work, we propose a novel texture-aware StarGAN for CT data harmonization, enabling one-to-many translations across different reconstruction kernels. Although the StarGAN model has been successfully applied in other domains, its potential for CT data harmonization remains unexplored. Furthermore, our approach introduces a multi-scale texture loss function that embeds texture information across different spatial and angular scales into the harmonization process, effectively addressing kernel-induced texture variations. We conducted extensive experimentation on a publicly available dataset, utilizing a total of 48667 chest CT slices from 197 patients distributed over three different reconstruction kernels, demonstrating the superiority of our method over the baseline StarGAN.
☆ Single-Step Bidirectional Unpaired Image Translation Using Implicit Bridge Consistency Distillation
Unpaired image-to-image translation has seen significant progress since the introduction of CycleGAN. However, methods based on diffusion models or Schr\"odinger bridges have yet to be widely adopted in real-world applications due to their iterative sampling nature. To address this challenge, we propose a novel framework, Implicit Bridge Consistency Distillation (IBCD), which enables single-step bidirectional unpaired translation without using adversarial loss. IBCD extends consistency distillation by using a diffusion implicit bridge model that connects PF-ODE trajectories between distributions. Additionally, we introduce two key improvements: 1) distribution matching for consistency distillation and 2) adaptive weighting method based on distillation difficulty. Experimental results demonstrate that IBCD achieves state-of-the-art performance on benchmark datasets in a single generation step. Project page available at https://hyn2028.github.io/project_page/IBCD/index.html
comment: 25 pages, 16 figures
☆ DRoPE: Directional Rotary Position Embedding for Efficient Agent Interaction Modeling
Accurate and efficient modeling of agent interactions is essential for trajectory generation, the core of autonomous driving systems. Existing methods, scene-centric, agent-centric, and query-centric frameworks, each present distinct advantages and drawbacks, creating an impossible triangle among accuracy, computational time, and memory efficiency. To break this limitation, we propose Directional Rotary Position Embedding (DRoPE), a novel adaptation of Rotary Position Embedding (RoPE), originally developed in natural language processing. Unlike traditional relative position embedding (RPE), which introduces significant space complexity, RoPE efficiently encodes relative positions without explicitly increasing complexity but faces inherent limitations in handling angular information due to periodicity. DRoPE overcomes this limitation by introducing a uniform identity scalar into RoPE's 2D rotary transformation, aligning rotation angles with realistic agent headings to naturally encode relative angular information. We theoretically analyze DRoPE's correctness and efficiency, demonstrating its capability to simultaneously optimize trajectory generation accuracy, time complexity, and space complexity. Empirical evaluations compared with various state-of-the-art trajectory generation models, confirm DRoPE's good performance and significantly reduced space complexity, indicating both theoretical soundness and practical effectiveness. The video documentation is available at https://drope-traj.github.io/.
☆ Forensics-Bench: A Comprehensive Forgery Detection Benchmark Suite for Large Vision Language Models
Recently, the rapid development of AIGC has significantly boosted the diversities of fake media spread in the Internet, posing unprecedented threats to social security, politics, law, and etc. To detect the ever-increasingly diverse malicious fake media in the new era of AIGC, recent studies have proposed to exploit Large Vision Language Models (LVLMs) to design robust forgery detectors due to their impressive performance on a wide range of multimodal tasks. However, it still lacks a comprehensive benchmark designed to comprehensively assess LVLMs' discerning capabilities on forgery media. To fill this gap, we present Forensics-Bench, a new forgery detection evaluation benchmark suite to assess LVLMs across massive forgery detection tasks, requiring comprehensive recognition, location and reasoning capabilities on diverse forgeries. Forensics-Bench comprises 63,292 meticulously curated multi-choice visual questions, covering 112 unique forgery detection types from 5 perspectives: forgery semantics, forgery modalities, forgery tasks, forgery types and forgery models. We conduct thorough evaluations on 22 open-sourced LVLMs and 3 proprietary models GPT-4o, Gemini 1.5 Pro, and Claude 3.5 Sonnet, highlighting the significant challenges of comprehensive forgery detection posed by Forensics-Bench. We anticipate that Forensics-Bench will motivate the community to advance the frontier of LVLMs, striving for all-around forgery detectors in the era of AIGC. The deliverables will be updated at https://Forensics-Bench.github.io/.
comment: 31 pages, 19 figures
☆ Bridging the Gap: Fusing CNNs and Transformers to Decode the Elegance of Handwritten Arabic Script
Handwritten Arabic script recognition is a challenging task due to the script's dynamic letter forms and contextual variations. This paper proposes a hybrid approach combining convolutional neural networks (CNNs) and Transformer-based architectures to address these complexities. We evaluated custom and fine-tuned models, including EfficientNet-B7 and Vision Transformer (ViT-B16), and introduced an ensemble model that leverages confidence-based fusion to integrate their strengths. Our ensemble achieves remarkable performance on the IFN/ENIT dataset, with 96.38% accuracy for letter classification and 97.22% for positional classification. The results highlight the complementary nature of CNNs and Transformers, demonstrating their combined potential for robust Arabic handwriting recognition. This work advances OCR systems, offering a scalable solution for real-world applications.
☆ xMOD: Cross-Modal Distillation for 2D/3D Multi-Object Discovery from 2D motion CVPR 2025
Object discovery, which refers to the task of localizing objects without human annotations, has gained significant attention in 2D image analysis. However, despite this growing interest, it remains under-explored in 3D data, where approaches rely exclusively on 3D motion, despite its several challenges. In this paper, we present a novel framework that leverages advances in 2D object discovery which are based on 2D motion to exploit the advantages of such motion cues being more flexible and generalizable and to bridge the gap between 2D and 3D modalities. Our primary contributions are twofold: (i) we introduce DIOD-3D, the first baseline for multi-object discovery in 3D data using 2D motion, incorporating scene completion as an auxiliary task to enable dense object localization from sparse input data; (ii) we develop xMOD, a cross-modal training framework that integrates 2D and 3D data while always using 2D motion cues. xMOD employs a teacher-student training paradigm across the two modalities to mitigate confirmation bias by leveraging the domain gap. During inference, the model supports both RGB-only and point cloud-only inputs. Additionally, we propose a late-fusion technique tailored to our pipeline that further enhances performance when both modalities are available at inference. We evaluate our approach extensively on synthetic (TRIP-PD) and challenging real-world datasets (KITTI and Waymo). Notably, our approach yields a substantial performance improvement compared with the 2D object discovery state-of-the-art on all datasets with gains ranging from +8.7 to +15.1 in F1@50 score. The code is available at https://github.com/CEA-LIST/xMOD
comment: Accepted at CVPR 2025
☆ Learning 4D Panoptic Scene Graph Generation from Rich 2D Visual Scene CVPR 2025
The latest emerged 4D Panoptic Scene Graph (4D-PSG) provides an advanced-ever representation for comprehensively modeling the dynamic 4D visual real world. Unfortunately, current pioneering 4D-PSG research can primarily suffer from data scarcity issues severely, as well as the resulting out-of-vocabulary problems; also, the pipeline nature of the benchmark generation method can lead to suboptimal performance. To address these challenges, this paper investigates a novel framework for 4D-PSG generation that leverages rich 2D visual scene annotations to enhance 4D scene learning. First, we introduce a 4D Large Language Model (4D-LLM) integrated with a 3D mask decoder for end-to-end generation of 4D-PSG. A chained SG inference mechanism is further designed to exploit LLMs' open-vocabulary capabilities to infer accurate and comprehensive object and relation labels iteratively. Most importantly, we propose a 2D-to-4D visual scene transfer learning framework, where a spatial-temporal scene transcending strategy effectively transfers dimension-invariant features from abundant 2D SG annotations to 4D scenes, effectively compensating for data scarcity in 4D-PSG. Extensive experiments on the benchmark data demonstrate that we strikingly outperform baseline models by a large margin, highlighting the effectiveness of our method.
comment: CVPR 2025
☆ Exploiting Diffusion Prior for Real-World Image Dehazing with Unpaired Training AAAI2025
Unpaired training has been verified as one of the most effective paradigms for real scene dehazing by learning from unpaired real-world hazy and clear images. Although numerous studies have been proposed, current methods demonstrate limited generalization for various real scenes due to limited feature representation and insufficient use of real-world prior. Inspired by the strong generative capabilities of diffusion models in producing both hazy and clear images, we exploit diffusion prior for real-world image dehazing, and propose an unpaired framework named Diff-Dehazer. Specifically, we leverage diffusion prior as bijective mapping learners within the CycleGAN, a classic unpaired learning framework. Considering that physical priors contain pivotal statistics information of real-world data, we further excavate real-world knowledge by integrating physical priors into our framework. Furthermore, we introduce a new perspective for adequately leveraging the representation ability of diffusion models by removing degradation in image and text modalities, so as to improve the dehazing effect. Extensive experiments on multiple real-world datasets demonstrate the superior performance of our method. Our code https://github.com/ywxjm/Diff-Dehazer.
comment: Accepted by AAAI2025
☆ Manifold Learning for Hyperspectral Images
Traditional feature extraction and projection techniques, such as Principal Component Analysis, struggle to adequately represent X-Ray Transmission (XRT) Multi-Energy (ME) images, limiting the performance of neural networks in decision-making processes. To address this issue, we propose a method that approximates the dataset topology by constructing adjacency graphs using the Uniform Manifold Approximation and Projection. This approach captures nonlinear correlations within the data, significantly improving the performance of machine learning algorithms, particularly in processing Hyperspectral Images (HSI) from X-ray transmission spectroscopy. This technique not only preserves the global structure of the data but also enhances feature separability, leading to more accurate and robust classification results.
☆ A Novel Channel Boosted Residual CNN-Transformer with Regional-Boundary Learning for Breast Cancer Detection
Recent advancements in detecting tumors using deep learning on breast ultrasound images (BUSI) have demonstrated significant success. Deep CNNs and vision-transformers (ViTs) have demonstrated individually promising initial performance. However, challenges related to model complexity and contrast, texture, and tumor morphology variations introduce uncertainties that hinder the effectiveness of current methods. This study introduces a novel hybrid framework, CB-Res-RBCMT, combining customized residual CNNs and new ViT components for detailed BUSI cancer analysis. The proposed RBCMT uses stem convolution blocks with CNN Meet Transformer (CMT) blocks, followed by new Regional and boundary (RB) feature extraction operations for capturing contrast and morphological variations. Moreover, the CMT block incorporates global contextual interactions through multi-head attention, enhancing computational efficiency with a lightweight design. Additionally, the customized inverse residual and stem CNNs within the CMT effectively extract local texture information and handle vanishing gradients. Finally, the new channel-boosted (CB) strategy enriches the feature diversity of the limited dataset by combining the original RBCMT channels with transfer learning-based residual CNN-generated maps. These diverse channels are processed through a spatial attention block for optimal pixel selection, reducing redundancy and improving the discrimination of minor contrast and texture variations. The proposed CB-Res-RBCMT achieves an F1-score of 95.57%, accuracy of 95.63%, sensitivity of 96.42%, and precision of 94.79% on the standard harmonized stringent BUSI dataset, outperforming existing ViT and CNN methods. These results demonstrate the versatility of our integrated CNN-Transformer framework in capturing diverse features and delivering superior performance in BUSI cancer diagnosis.
comment: 12 pages, 10 Figures, 2 Tables. arXiv admin note: substantial text overlap with arXiv:2405.12986
☆ Universal Scene Graph Generation CVPR 2025
Scene graph (SG) representations can neatly and efficiently describe scene semantics, which has driven sustained intensive research in SG generation. In the real world, multiple modalities often coexist, with different types, such as images, text, video, and 3D data, expressing distinct characteristics. Unfortunately, current SG research is largely confined to single-modality scene modeling, preventing the full utilization of the complementary strengths of different modality SG representations in depicting holistic scene semantics. To this end, we introduce Universal SG (USG), a novel representation capable of fully characterizing comprehensive semantic scenes from any given combination of modality inputs, encompassing modality-invariant and modality-specific scenes. Further, we tailor a niche-targeting USG parser, USG-Par, which effectively addresses two key bottlenecks of cross-modal object alignment and out-of-domain challenges. We design the USG-Par with modular architecture for end-to-end USG generation, in which we devise an object associator to relieve the modality gap for cross-modal object alignment. Further, we propose a text-centric scene contrasting learning mechanism to mitigate domain imbalances by aligning multimodal objects and relations with textual SGs. Through extensive experiments, we demonstrate that USG offers a stronger capability for expressing scene semantics than standalone SGs, and also that our USG-Par achieves higher efficacy and performance.
comment: CVPR 2025
☆ Semantic Segmentation of Transparent and Opaque Drinking Glasses with the Help of Zero-shot Learning
Segmenting transparent structures in images is challenging since they are difficult to distinguish from the background. Common examples are drinking glasses, which are a ubiquitous part of our lives and appear in many different shapes and sizes. In this work we propose TransCaGNet, a modified version of the zero-shot model CaGNet. We exchange the segmentation backbone with the architecture of Trans4Trans to be capable of segmenting transparent objects. Since some glasses are rarely captured, we use zeroshot learning to be able to create semantic segmentations of glass categories not given during training. We propose a novel synthetic dataset covering a diverse set of different environmental conditions. Additionally we capture a real-world evaluation dataset since most applications take place in the real world. Comparing our model with Zeg-Clip we are able to show that TransCaGNet produces better mean IoU and accuracy values while ZegClip outperforms it mostly for unseen classes. To improve the segmentation results, we combine the semantic segmentation of the models with the segmentation results of SAM 2. Our evaluation emphasizes that distinguishing between different classes is challenging for the models due to similarity, points of view, or coverings. Taking this behavior into account, we assign glasses multiple possible categories. The modification leads to an improvement up to 13.68% for the mean IoU and up to 17.88% for the mean accuracy values on the synthetic dataset. Using our difficult synthetic dataset for training, the models produce even better results on the real-world dataset. The mean IoU is improved up to 5.55% and the mean accuracy up to 5.72% on the real-world dataset.
☆ Low-Complexity Patch-based No-Reference Point Cloud Quality Metric exploiting Weighted Structure and Texture Features
During the compression, transmission, and rendering of point clouds, various artifacts are introduced, affecting the quality perceived by the end user. However, evaluating the impact of these distortions on the overall quality is a challenging task. This study introduces PST-PCQA, a no-reference point cloud quality metric based on a low-complexity, learning-based framework. It evaluates point cloud quality by analyzing individual patches, integrating local and global features to predict the Mean Opinion Score. In summary, the process involves extracting features from patches, combining them, and using correlation weights to predict the overall quality. This approach allows us to assess point cloud quality without relying on a reference point cloud, making it particularly useful in scenarios where reference data is unavailable. Experimental tests on three state-of-the-art datasets show good prediction capabilities of PST-PCQA, through the analysis of different feature pooling strategies and its ability to generalize across different datasets. The ablation study confirms the benefits of evaluating quality on a patch-by-patch basis. Additionally, PST-PCQA's light-weight structure, with a small number of parameters to learn, makes it well-suited for real-time applications and devices with limited computational capacity. For reproducibility purposes, we made code, model, and pretrained weights available at https://github.com/michaelneri/PST-PCQA.
comment: Accepted for publication in IEEE Transactions on Broadcasting. Code at https://github.com/michaelneri/PST-PCQA
☆ TGV: Tabular Data-Guided Learning of Visual Cardiac Representations
Contrastive learning methods in computer vision typically rely on different views of the same image to form pairs. However, in medical imaging, we often seek to compare entire patients with different phenotypes rather than just multiple augmentations of one scan. We propose harnessing clinically relevant tabular data to identify distinct patient phenotypes and form more meaningful pairs in a contrastive learning framework. Our method uses tabular attributes to guide the training of visual representations, without requiring a joint embedding space. We demonstrate its strength using short-axis cardiac MR images and clinical attributes from the UK Biobank, where tabular data helps to more effectively distinguish between patient subgroups. Evaluation on downstream tasks, including fine-tuning and zero-shot prediction of cardiovascular artery diseases and cardiac phenotypes, shows that incorporating tabular data yields stronger visual representations than conventional methods that rely solely on image augmentations or combined image-tabular embeddings. Furthermore, we demonstrate that image encoders trained with tabular guidance are capable of embedding demographic information in their representations, allowing them to use insights from tabular data for unimodal predictions, making them well-suited to real-world medical settings where extensive clinical annotations may not be routinely available at inference time. The code will be available on GitHub.
☆ Disentangling Modes and Interference in the Spectrogram of Multicomponent Signals
In this paper, we investigate how the spectrogram of multicomponent signals can be decomposed into a mode part and an interference part. We explore two approaches: (i) a variational method inspired by texture-geometry decomposition in image processing, and (ii) a supervised learning approach using a U-Net architecture, trained on a dataset encompassing diverse interference patterns and noise conditions. Once the interference component is identified, we explain how it enables us to define a criterion to locally adapt the window length used in the definition of the spectrogram, for the sake of improving ridge detection in the presence of close modes. Numerical experiments illustrate the advantages and limitations of both approaches for spectrogram decomposition, highlighting their potential for enhancing time-frequency analysis in the presence of strong interference.
☆ Semi-KAN: KAN Provides an Effective Representation for Semi-Supervised Learning in Medical Image Segmentation
Deep learning-based medical image segmentation has shown remarkable success; however, it typically requires extensive pixel-level annotations, which are both expensive and time-intensive. Semi-supervised medical image segmentation (SSMIS) offers a viable alternative, driven by advancements in CNNs and ViTs. However, these networks often rely on single fixed activation functions and linear modeling patterns, limiting their ability to effectively learn robust representations. Given the limited availability of labeled date, achieving robust representation learning becomes crucial. Inspired by Kolmogorov-Arnold Networks (KANs), we propose Semi-KAN, which leverages the untapped potential of KANs to enhance backbone architectures for representation learning in SSMIS. Our findings indicate that: (1) compared to networks with fixed activation functions, KANs exhibit superior representation learning capabilities with fewer parameters, and (2) KANs excel in high-semantic feature spaces. Building on these insights, we integrate KANs into tokenized intermediate representations, applying them selectively at the encoder's bottleneck and the decoder's top layers within a U-Net pipeline to extract high-level semantic features. Although learnable activation functions improve feature expansion, they introduce significant computational overhead with only marginal performance gains. To mitigate this, we reduce the feature dimensions and employ horizontal scaling to capture multiple pattern representations. Furthermore, we design a multi-branch U-Net architecture with uncertainty estimation to effectively learn diverse pattern representations. Extensive experiments on four public datasets demonstrate that Semi-KAN surpasses baseline networks, utilizing fewer KAN layers and lower computational cost, thereby underscoring the potential of KANs as a promising approach for SSMIS.
comment: 18 pages, 7 figures, 6 tables
☆ One-Shot Medical Video Object Segmentation via Temporal Contrastive Memory Networks MICCAI 2024
Video object segmentation is crucial for the efficient analysis of complex medical video data, yet it faces significant challenges in data availability and annotation. We introduce the task of one-shot medical video object segmentation, which requires separating foreground and background pixels throughout a video given only the mask annotation of the first frame. To address this problem, we propose a temporal contrastive memory network comprising image and mask encoders to learn feature representations, a temporal contrastive memory bank that aligns embeddings from adjacent frames while pushing apart distant ones to explicitly model inter-frame relationships and stores these features, and a decoder that fuses encoded image features and memory readouts for segmentation. We also collect a diverse, multi-source medical video dataset spanning various modalities and anatomies to benchmark this task. Extensive experiments demonstrate state-of-the-art performance in segmenting both seen and unseen structures from a single exemplar, showing ability to generalize from scarce labels. This highlights the potential to alleviate annotation burdens for medical video analysis. Code is available at https://github.com/MedAITech/TCMN.
comment: MICCAI 2024 Workshop
☆ Taming Flow Matching with Unbalanced Optimal Transport into Fast Pansharpening
Pansharpening, a pivotal task in remote sensing for fusing high-resolution panchromatic and multispectral imagery, has garnered significant research interest. Recent advancements employing diffusion models based on stochastic differential equations (SDEs) have demonstrated state-of-the-art performance. However, the inherent multi-step sampling process of SDEs imposes substantial computational overhead, hindering practical deployment. While existing methods adopt efficient samplers, knowledge distillation, or retraining to reduce sampling steps (e.g., from 1,000 to fewer steps), such approaches often compromise fusion quality. In this work, we propose the Optimal Transport Flow Matching (OTFM) framework, which integrates the dual formulation of unbalanced optimal transport (UOT) to achieve one-step, high-quality pansharpening. Unlike conventional OT formulations that enforce rigid distribution alignment, UOT relaxes marginal constraints to enhance modeling flexibility, accommodating the intrinsic spectral and spatial disparities in remote sensing data. Furthermore, we incorporate task-specific regularization into the UOT objective, enhancing the robustness of the flow model. The OTFM framework enables simulation-free training and single-step inference while maintaining strict adherence to pansharpening constraints. Experimental evaluations across multiple datasets demonstrate that OTFM matches or exceeds the performance of previous regression-based models and leading diffusion-based methods while only needing one sampling step. Codes are available at https://github.com/294coder/PAN-OTFM.
☆ Language-based Image Colorization: A Benchmark and Beyond
Image colorization aims to bring colors back to grayscale images. Automatic image colorization methods, which requires no additional guidance, struggle to generate high-quality images due to color ambiguity, and provides limited user controllability. Thanks to the emergency of cross-modality datasets and models, language-based colorization methods are proposed to fully utilize the efficiency and flexibly of text descriptions to guide colorization. In view of the lack of a comprehensive review of language-based colorization literature, we conduct a thorough analysis and benchmarking. We first briefly summarize existing automatic colorization methods. Then, we focus on language-based methods and point out their core challenge on cross-modal alignment. We further divide these methods into two categories: one attempts to train a cross-modality network from scratch, while the other utilizes the pre-trained cross-modality model to establish the textual-visual correspondence. Based on the analyzed limitations of existing language-based methods, we propose a simple yet effective method based on distilled diffusion model. Extensive experiments demonstrate that our simple baseline can produces better results than previous complex methods with 14 times speed up. To the best of our knowledge, this is the first comprehensive review and benchmark on language-based image colorization field, providing meaningful insights for the community. The code is available at https://github.com/lyf1212/Color-Turbo.
☆ Ultrasound Image-to-Video Synthesis via Latent Dynamic Diffusion Models MICCAI 2024
Ultrasound video classification enables automated diagnosis and has emerged as an important research area. However, publicly available ultrasound video datasets remain scarce, hindering progress in developing effective video classification models. We propose addressing this shortage by synthesizing plausible ultrasound videos from readily available, abundant ultrasound images. To this end, we introduce a latent dynamic diffusion model (LDDM) to efficiently translate static images to dynamic sequences with realistic video characteristics. We demonstrate strong quantitative results and visually appealing synthesized videos on the BUSV benchmark. Notably, training video classification models on combinations of real and LDDM-synthesized videos substantially improves performance over using real data alone, indicating our method successfully emulates dynamics critical for discrimination. Our image-to-video approach provides an effective data augmentation solution to advance ultrasound video analysis. Code is available at https://github.com/MedAITech/U_I2V.
comment: MICCAI 2024
☆ Body-Hand Modality Expertized Networks with Cross-attention for Fine-grained Skeleton Action Recognition
Skeleton-based Human Action Recognition (HAR) is a vital technology in robotics and human-robot interaction. However, most existing methods concentrate primarily on full-body movements and often overlook subtle hand motions that are critical for distinguishing fine-grained actions. Recent work leverages a unified graph representation that combines body, hand, and foot keypoints to capture detailed body dynamics. Yet, these models often blur fine hand details due to the disparity between body and hand action characteristics and the loss of subtle features during the spatial-pooling. In this paper, we propose BHaRNet (Body-Hand action Recognition Network), a novel framework that augments a typical body-expert model with a hand-expert model. Our model jointly trains both streams with an ensemble loss that fosters cooperative specialization, functioning in a manner reminiscent of a Mixture-of-Experts (MoE). Moreover, cross-attention is employed via an expertized branch method and a pooling-attention module to enable feature-level interactions and selectively fuse complementary information. Inspired by MMNet, we also demonstrate the applicability of our approach to multi-modal tasks by leveraging RGB information, where body features guide RGB learning to capture richer contextual cues. Experiments on large-scale benchmarks (NTU RGB+D 60, NTU RGB+D 120, PKU-MMD, and Northwestern-UCLA) demonstrate that BHaRNet achieves SOTA accuracies -- improving from 86.4\% to 93.0\% in hand-intensive actions -- while maintaining fewer GFLOPs and parameters than the relevant unified methods.
comment: 7 figures, 8 pages
☆ Reducing Annotation Burden: Exploiting Image Knowledge for Few-Shot Medical Video Object Segmentation via Spatiotemporal Consistency Relearning MICCAI 2024
Few-shot video object segmentation aims to reduce annotation costs; however, existing methods still require abundant dense frame annotations for training, which are scarce in the medical domain. We investigate an extremely low-data regime that utilizes annotations from only a few video frames and leverages existing labeled images to minimize costly video annotations. Specifically, we propose a two-phase framework. First, we learn a few-shot segmentation model using labeled images. Subsequently, to improve performance without full supervision, we introduce a spatiotemporal consistency relearning approach on medical videos that enforces consistency between consecutive frames. Constraints are also enforced between the image model and relearning model at both feature and prediction levels. Experiments demonstrate the superiority of our approach over state-of-the-art few-shot segmentation methods. Our model bridges the gap between abundant annotated medical images and scarce, sparsely labeled medical videos to achieve strong video segmentation performance in this low data regime. Code is available at https://github.com/MedAITech/RAB.
comment: MICCAI 2024
☆ Neuro Symbolic Knowledge Reasoning for Procedural Video Question Answering
This paper introduces a new video question-answering (VQA) dataset that challenges models to leverage procedural knowledge for complex reasoning. It requires recognizing visual entities, generating hypotheses, and performing contextual, causal, and counterfactual reasoning. To address this, we propose neuro symbolic reasoning module that integrates neural networks and LLM-driven constrained reasoning over variables for interpretable answer generation. Results show that combining LLMs with structured knowledge reasoning with logic enhances procedural reasoning on the STAR benchmark and our dataset. Code and dataset at https://github.com/LUNAProject22/KML soon.
☆ Depth-Aware Range Image-Based Model for Point Cloud Segmentation
Point cloud segmentation (PCS) aims to separate points into different and meaningful groups. The task plays an important role in robotics because PCS enables robots to understand their physical environments directly. To process sparse and large-scale outdoor point clouds in real time, range image-based models are commonly adopted. However, in a range image, the lack of explicit depth information inevitably causes some separate objects in 3D space to touch each other, bringing difficulty for the range image-based models in correctly segmenting the objects. Moreover, previous PCS models are usually derived from the existing color image-based models and unable to make full use of the implicit but ordered depth information inherent in the range image, thereby achieving inferior performance. In this paper, we propose Depth-Aware Module (DAM) and Fast FMVNet V3. DAM perceives the ordered depth information in the range image by explicitly modelling the interdependence among channels. Fast FMVNet V3 incorporates DAM by integrating it into the last block in each architecture stage. Extensive experiments conducted on SemanticKITTI, nuScenes, and SemanticPOSS demonstrate that DAM brings a significant improvement for Fast FMVNet V3 with negligible computational cost.
comment: No Comments
☆ Aligning Information Capacity Between Vision and Language via Dense-to-Sparse Feature Distillation for Image-Text Matching
Enabling Visual Semantic Models to effectively handle multi-view description matching has been a longstanding challenge. Existing methods typically learn a set of embeddings to find the optimal match for each view's text and compute similarity. However, the visual and text embeddings learned through these approaches have limited information capacity and are prone to interference from locally similar negative samples. To address this issue, we argue that the information capacity of embeddings is crucial and propose Dense-to-Sparse Feature Distilled Visual Semantic Embedding (D2S-VSE), which enhances the information capacity of sparse text by leveraging dense text distillation. Specifically, D2S-VSE is a two-stage framework. In the pre-training stage, we align images with dense text to enhance the information capacity of visual semantic embeddings. In the fine-tuning stage, we optimize two tasks simultaneously, distilling dense text embeddings to sparse text embeddings while aligning images and sparse texts, enhancing the information capacity of sparse text embeddings. Our proposed D2S-VSE model is extensively evaluated on the large-scale MS-COCO and Flickr30K datasets, demonstrating its superiority over recent state-of-the-art methods.
☆ USAM-Net: A U-Net-based Network for Improved Stereo Correspondence and Scene Depth Estimation using Features from a Pre-trained Image Segmentation network
The increasing demand for high-accuracy depth estimation in autonomous driving and augmented reality applications necessitates advanced neural architectures capable of effectively leveraging multiple data modalities. In this context, we introduce the Unified Segmentation Attention Mechanism Network (USAM-Net), a novel convolutional neural network that integrates stereo image inputs with semantic segmentation maps and attention to enhance depth estimation performance. USAM-Net employs a dual-pathway architecture, which combines a pre-trained segmentation model (SAM) and a depth estimation model. The segmentation pathway preprocesses the stereo images to generate semantic masks, which are then concatenated with the stereo images as inputs to the depth estimation pathway. This integration allows the model to focus on important features such as object boundaries and surface textures which are crucial for accurate depth perception. Empirical evaluation on the DrivingStereo dataset demonstrates that USAM-Net achieves superior performance metrics, including a Global Difference (GD) of 3.61\% and an End-Point Error (EPE) of 0.88, outperforming traditional models such as CFNet, SegStereo, and iResNet. These results underscore the effectiveness of integrating segmentation information into stereo depth estimation tasks, highlighting the potential of USAM-Net in applications demanding high-precision depth data.
☆ ChatStitch: Visualizing Through Structures via Surround-View Unsupervised Deep Image Stitching with Collaborative LLM-Agents
Collaborative perception has garnered significant attention for its ability to enhance the perception capabilities of individual vehicles through the exchange of information with surrounding vehicle-agents. However, existing collaborative perception systems are limited by inefficiencies in user interaction and the challenge of multi-camera photorealistic visualization. To address these challenges, this paper introduces ChatStitch, the first collaborative perception system capable of unveiling obscured blind spot information through natural language commands integrated with external digital assets. To adeptly handle complex or abstract commands, ChatStitch employs a multi-agent collaborative framework based on Large Language Models. For achieving the most intuitive perception for humans, ChatStitch proposes SV-UDIS, the first surround-view unsupervised deep image stitching method under the non-global-overlapping condition. We conducted extensive experiments on the UDIS-D, MCOV-SLAM open datasets, and our real-world dataset. Specifically, our SV-UDIS method achieves state-of-the-art performance on the UDIS-D dataset for 3, 4, and 5 image stitching tasks, with PSNR improvements of 9%, 17%, and 21%, and SSIM improvements of 8%, 18%, and 26%, respectively.
☆ Generating Multimodal Driving Scenes via Next-Scene Prediction
Generative models in Autonomous Driving (AD) enable diverse scene creation, yet existing methods fall short by only capturing a limited range of modalities, restricting the capability of generating controllable scenes for comprehensive evaluation of AD systems. In this paper, we introduce a multimodal generation framework that incorporates four major data modalities, including a novel addition of map modality. With tokenized modalities, our scene sequence generation framework autoregressively predicts each scene while managing computational demands through a two-stage approach. The Temporal AutoRegressive (TAR) component captures inter-frame dynamics for each modality while the Ordered AutoRegressive (OAR) component aligns modalities within each scene by sequentially predicting tokens in a fixed order. To maintain coherence between map and ego-action modalities, we introduce the Action-aware Map Alignment (AMA) module, which applies a transformation based on the ego-action to maintain coherence between these modalities. Our framework effectively generates complex, realistic driving scenes over extended sequences, ensuring multimodal consistency and offering fine-grained control over scene elements.
☆ MMAIF: Multi-task and Multi-degradation All-in-One for Image Fusion with Language Guidance
Image fusion, a fundamental low-level vision task, aims to integrate multiple image sequences into a single output while preserving as much information as possible from the input. However, existing methods face several significant limitations: 1) requiring task- or dataset-specific models; 2) neglecting real-world image degradations (\textit{e.g.}, noise), which causes failure when processing degraded inputs; 3) operating in pixel space, where attention mechanisms are computationally expensive; and 4) lacking user interaction capabilities. To address these challenges, we propose a unified framework for multi-task, multi-degradation, and language-guided image fusion. Our framework includes two key components: 1) a practical degradation pipeline that simulates real-world image degradations and generates interactive prompts to guide the model; 2) an all-in-one Diffusion Transformer (DiT) operating in latent space, which fuses a clean image conditioned on both the degraded inputs and the generated prompts. Furthermore, we introduce principled modifications to the original DiT architecture to better suit the fusion task. Based on this framework, we develop two versions of the model: Regression-based and Flow Matching-based variants. Extensive qualitative and quantitative experiments demonstrate that our approach effectively addresses the aforementioned limitations and outperforms previous restoration+fusion and all-in-one pipelines. Codes are available at https://github.com/294coder/MMAIF.
☆ 3D Engine-ready Photorealistic Avatars via Dynamic Textures
As the digital and physical worlds become more intertwined, there has been a lot of interest in digital avatars that closely resemble their real-world counterparts. Current digitization methods used in 3D production pipelines require costly capture setups, making them impractical for mass usage among common consumers. Recent academic literature has found success in reconstructing humans from limited data using implicit representations (e.g., voxels used in NeRFs), which are able to produce impressive videos. However, these methods are incompatible with traditional rendering pipelines, making it difficult to use them in applications such as games. In this work, we propose an end-to-end pipeline that builds explicitly-represented photorealistic 3D avatars using standard 3D assets. Our key idea is the use of dynamically-generated textures to enhance the realism and visually mask deficiencies in the underlying mesh geometry. This allows for seamless integration with current graphics pipelines while achieving comparable visual quality to state-of-the-art 3D avatar generation methods.
☆ UPME: An Unsupervised Peer Review Framework for Multimodal Large Language Model Evaluation CVPR 2025
Multimodal Large Language Models (MLLMs) have emerged to tackle the challenges of Visual Question Answering (VQA), sparking a new research focus on conducting objective evaluations of these models. Existing evaluation methods face limitations due to the significant human workload required to design Q&A pairs for visual images, which inherently restricts the scale and scope of evaluations. Although automated MLLM-as-judge approaches attempt to reduce the human workload through automatic evaluations, they often introduce biases. To address these problems, we propose an Unsupervised Peer review MLLM Evaluation framework. It utilizes only image data, allowing models to automatically generate questions and conduct peer review assessments of answers from other models, effectively alleviating the reliance on human workload. Additionally, we introduce the vision-language scoring system to mitigate the bias issues, which focuses on three aspects: (i) response correctness; (ii) visual understanding and reasoning; and (iii) image-text correlation. Experimental results demonstrate that UPME achieves a Pearson correlation of 0.944 with human evaluations on the MMstar dataset and 0.814 on the ScienceQA dataset, indicating that our framework closely aligns with human-designed benchmarks and inherent human preferences.
comment: Accepted by CVPR 2025
☆ VisNumBench: Evaluating Number Sense of Multimodal Large Language Models
Can Multimodal Large Language Models (MLLMs) develop an intuitive number sense similar to humans? Targeting this problem, we introduce Visual Number Benchmark (VisNumBench) to evaluate the number sense abilities of MLLMs across a wide range of visual numerical tasks. VisNumBench consists of about 1,900 multiple-choice question-answer pairs derived from both synthetic and real-world visual data, covering seven visual numerical attributes and four types of visual numerical estimation tasks. Our experiments on VisNumBench led to the following key findings: (i) The 17 MLLMs we tested, including open-source models such as Qwen2.5-VL and InternVL2.5, as well as proprietary models like GPT-4o and Gemini 2.0 Flash, perform significantly below human levels in number sense-related tasks. (ii) Multimodal mathematical models and multimodal chain-of-thought (CoT) models did not exhibit significant improvements in number sense abilities. (iii) Stronger MLLMs with larger parameter sizes and broader general abilities demonstrate modest gains in number sense abilities. We believe VisNumBench will serve as a valuable resource for the research community, encouraging further advancements in enhancing MLLMs' number sense abilities. All benchmark resources, including code and datasets, will be publicly available at https://wwwtttjjj.github.io/VisNumBench/.
☆ Optimal Transport Adapter Tuning for Bridging Modality Gaps in Few-Shot Remote Sensing Scene Classification
Few-Shot Remote Sensing Scene Classification (FS-RSSC) presents the challenge of classifying remote sensing images with limited labeled samples. Existing methods typically emphasize single-modal feature learning, neglecting the potential benefits of optimizing multi-modal representations. To address this limitation, we propose a novel Optimal Transport Adapter Tuning (OTAT) framework aimed at constructing an ideal Platonic representational space through optimal transport (OT) theory. This framework seeks to harmonize rich visual information with less dense textual cues, enabling effective cross-modal information transfer and complementarity. Central to this approach is the Optimal Transport Adapter (OTA), which employs a cross-modal attention mechanism to enrich textual representations and facilitate subsequent better information interaction. By transforming the network optimization into an OT optimization problem, OTA establishes efficient pathways for balanced information exchange between modalities. Moreover, we introduce a sample-level Entropy-Aware Weighted (EAW) loss, which combines difficulty-weighted similarity scores with entropy-based regularization. This loss function provides finer control over the OT optimization process, enhancing its solvability and stability. Our framework offers a scalable and efficient solution for advancing multimodal learning in remote sensing applications. Extensive experiments on benchmark datasets demonstrate that OTAT achieves state-of-the-art performance in FS-RSSC, significantly improving the model performance and generalization.
☆ FAVOR-Bench: A Comprehensive Benchmark for Fine-Grained Video Motion Understanding
Multimodal Large Language Models (MLLMs) have shown remarkable capabilities in video content understanding but still struggle with fine-grained motion comprehension. To comprehensively assess the motion understanding ability of existing MLLMs, we introduce FAVOR-Bench, comprising 1,776 videos with structured manual annotations of various motions. Our benchmark includes both close-ended and open-ended tasks. For close-ended evaluation, we carefully design 8,184 multiple-choice question-answer pairs spanning six distinct sub-tasks. For open-ended evaluation, we develop both a novel cost-efficient LLM-free and a GPT-assisted caption assessment method, where the former can enhance benchmarking interpretability and reproducibility. Comprehensive experiments with 21 state-of-the-art MLLMs reveal significant limitations in their ability to comprehend and describe detailed temporal dynamics in video motions. To alleviate this limitation, we further build FAVOR-Train, a dataset consisting of 17,152 videos with fine-grained motion annotations. The results of finetuning Qwen2.5-VL on FAVOR-Train yield consistent improvements on motion-related tasks of TVBench, MotionBench and our FAVOR-Bench. Comprehensive assessment results demonstrate that the proposed FAVOR-Bench and FAVOR-Train provide valuable tools to the community for developing more powerful video understanding models. Project page: \href{https://favor-bench.github.io/}{https://favor-bench.github.io/}.
comment: FAVOR-Bench project page: https://favor-bench.github.io/
☆ A Language Vision Model Approach for Automated Tumor Contouring in Radiation Oncology
Background: Lung cancer ranks as the leading cause of cancer-related mortality worldwide. The complexity of tumor delineation, crucial for radiation therapy, requires expertise often unavailable in resource-limited settings. Artificial Intelligence(AI), particularly with advancements in deep learning (DL) and natural language processing (NLP), offers potential solutions yet is challenged by high false positive rates. Purpose: The Oncology Contouring Copilot (OCC) system is developed to leverage oncologist expertise for precise tumor contouring using textual descriptions, aiming to increase the efficiency of oncological workflows by combining the strengths of AI with human oversight. Methods: Our OCC system initially identifies nodule candidates from CT scans. Employing Language Vision Models (LVMs) like GPT-4V, OCC then effectively reduces false positives with clinical descriptive texts, merging textual and visual data to automate tumor delineation, designed to elevate the quality of oncology care by incorporating knowledge from experienced domain experts. Results: Deployments of the OCC system resulted in a significant reduction in the false discovery rate by 35.0%, a 72.4% decrease in false positives per scan, and an F1-score of 0.652 across our dataset for unbiased evaluation. Conclusions: OCC represents a significant advance in oncology care, particularly through the use of the latest LVMs to improve contouring results by (1) streamlining oncology treatment workflows by optimizing tumor delineation, reducing manual processes; (2) offering a scalable and intuitive framework to reduce false positives in radiotherapy planning using LVMs; (3) introducing novel medical language vision prompt techniques to minimize LVMs hallucinations with ablation study, and (4) conducting a comparative analysis of LVMs, highlighting their potential in addressing medical language vision challenges.
comment: 19 pages, 4 figures
☆ Shushing! Let's Imagine an Authentic Speech from the Silent Video
Vision-guided speech generation aims to produce authentic speech from facial appearance or lip motions without relying on auditory signals, offering significant potential for applications such as dubbing in filmmaking and assisting individuals with aphonia. Despite recent progress, existing methods struggle to achieve unified cross-modal alignment across semantics, timbre, and emotional prosody from visual cues, prompting us to propose Consistent Video-to-Speech (CV2S) as an extended task to enhance cross-modal consistency. To tackle emerging challenges, we introduce ImaginTalk, a novel cross-modal diffusion framework that generates faithful speech using only visual input, operating within a discrete space. Specifically, we propose a discrete lip aligner that predicts discrete speech tokens from lip videos to capture semantic information, while an error detector identifies misaligned tokens, which are subsequently refined through masked language modeling with BERT. To further enhance the expressiveness of the generated speech, we develop a style diffusion transformer equipped with a face-style adapter that adaptively customizes identity and prosody dynamics across both the channel and temporal dimensions while ensuring synchronization with lip-aware semantic features. Extensive experiments demonstrate that ImaginTalk can generate high-fidelity speech with more accurate semantic details and greater expressiveness in timbre and emotion compared to state-of-the-art baselines. Demos are shown at our project page: https://imagintalk.github.io.
comment: Project Page: https://imagintalk.github.io
☆ GenM$^3$: Generative Pretrained Multi-path Motion Model for Text Conditional Human Motion Generation
Scaling up motion datasets is crucial to enhance motion generation capabilities. However, training on large-scale multi-source datasets introduces data heterogeneity challenges due to variations in motion content. To address this, we propose Generative Pretrained Multi-path Motion Model (GenM$^3$), a comprehensive framework designed to learn unified motion representations. GenM$^3$ comprises two components: 1) a Multi-Expert VQ-VAE (MEVQ-VAE) that adapts to different dataset distributions to learn a unified discrete motion representation, and 2) a Multi-path Motion Transformer (MMT) that improves intra-modal representations by using separate modality-specific pathways, each with densely activated experts to accommodate variations within that modality, and improves inter-modal alignment by the text-motion shared pathway. To enable large-scale training, we integrate and unify 11 high-quality motion datasets (approximately 220 hours of motion data) and augment it with textual annotations (nearly 10,000 motion sequences labeled by a large language model and 300+ by human experts). After training on our integrated dataset, GenM$^3$ achieves a state-of-the-art FID of 0.035 on the HumanML3D benchmark, surpassing state-of-the-art methods by a large margin. It also demonstrates strong zero-shot generalization on IDEA400 dataset, highlighting its effectiveness and adaptability across diverse motion scenarios.
☆ Deep Polycuboid Fitting for Compact 3D Representation of Indoor Scenes 3DV 2025
This paper presents a novel framework for compactly representing a 3D indoor scene using a set of polycuboids through a deep learning-based fitting method. Indoor scenes mainly consist of man-made objects, such as furniture, which often exhibit rectilinear geometry. This property allows indoor scenes to be represented using combinations of polycuboids, providing a compact representation that benefits downstream applications like furniture rearrangement. Our framework takes a noisy point cloud as input and first detects six types of cuboid faces using a transformer network. Then, a graph neural network is used to validate the spatial relationships of the detected faces to form potential polycuboids. Finally, each polycuboid instance is reconstructed by forming a set of boxes based on the aggregated face labels. To train our networks, we introduce a synthetic dataset encompassing a diverse range of cuboid and polycuboid shapes that reflect the characteristics of indoor scenes. Our framework generalizes well to real-world indoor scene datasets, including Replica, ScanNet, and scenes captured with an iPhone. The versatility of our method is demonstrated through practical applications, such as virtual room tours and scene editing.
comment: Accepted to 3DV 2025
☆ Derm1M: A Million-scale Vision-Language Dataset Aligned with Clinical Ontology Knowledge for Dermatology
The emergence of vision-language models has transformed medical AI, enabling unprecedented advances in diagnostic capability and clinical applications. However, progress in dermatology has lagged behind other medical domains due to the lack of standard image-text pairs. Existing dermatological datasets are limited in both scale and depth, offering only single-label annotations across a narrow range of diseases instead of rich textual descriptions, and lacking the crucial clinical context needed for real-world applications. To address these limitations, we present Derm1M, the first large-scale vision-language dataset for dermatology, comprising 1,029,761 image-text pairs. Built from diverse educational resources and structured around a standard ontology collaboratively developed by experts, Derm1M provides comprehensive coverage for over 390 skin conditions across four hierarchical levels and 130 clinical concepts with rich contextual information such as medical history, symptoms, and skin tone. To demonstrate Derm1M potential in advancing both AI research and clinical application, we pretrained a series of CLIP-like models, collectively called DermLIP, on this dataset. The DermLIP family significantly outperforms state-of-the-art foundation models on eight diverse datasets across multiple tasks, including zero-shot skin disease classification, clinical and artifacts concept identification, few-shot/full-shot learning, and cross-modal retrieval. Our dataset and code will be public.
comment: 23 pages
☆ Robust Distribution Alignment for Industrial Anomaly Detection under Distribution Shift
Anomaly detection plays a crucial role in quality control for industrial applications. However, ensuring robustness under unseen domain shifts such as lighting variations or sensor drift remains a significant challenge. Existing methods attempt to address domain shifts by training generalizable models but often rely on prior knowledge of target distributions and can hardly generalise to backbones designed for other data modalities. To overcome these limitations, we build upon memory-bank-based anomaly detection methods, optimizing a robust Sinkhorn distance on limited target training data to enhance generalization to unseen target domains. We evaluate the effectiveness on both 2D and 3D anomaly detection benchmarks with simulated distribution shifts. Our proposed method demonstrates superior results compared with state-of-the-art anomaly detection and domain adaptation methods.
☆ POSTA: A Go-to Framework for Customized Artistic Poster Generation CVPR 2025
Poster design is a critical medium for visual communication. Prior work has explored automatic poster design using deep learning techniques, but these approaches lack text accuracy, user customization, and aesthetic appeal, limiting their applicability in artistic domains such as movies and exhibitions, where both clear content delivery and visual impact are essential. To address these limitations, we present POSTA: a modular framework powered by diffusion models and multimodal large language models (MLLMs) for customized artistic poster generation. The framework consists of three modules. Background Diffusion creates a themed background based on user input. Design MLLM then generates layout and typography elements that align with and complement the background style. Finally, to enhance the poster's aesthetic appeal, ArtText Diffusion applies additional stylization to key text elements. The final result is a visually cohesive and appealing poster, with a fully modular process that allows for complete customization. To train our models, we develop the PosterArt dataset, comprising high-quality artistic posters annotated with layout, typography, and pixel-level stylized text segmentation. Our comprehensive experimental analysis demonstrates POSTA's exceptional controllability and design diversity, outperforming existing models in both text accuracy and aesthetic quality.
comment: Accepted to CVPR 2025
☆ FetalFlex: Anatomy-Guided Diffusion Model for Flexible Control on Fetal Ultrasound Image Synthesis
Fetal ultrasound (US) examinations require the acquisition of multiple planes, each providing unique diagnostic information to evaluate fetal development and screening for congenital anomalies. However, obtaining a comprehensive, multi-plane annotated fetal US dataset remains challenging, particularly for rare or complex anomalies owing to their low incidence and numerous subtypes. This poses difficulties in training novice radiologists and developing robust AI models, especially for detecting abnormal fetuses. In this study, we introduce a Flexible Fetal US image generation framework (FetalFlex) to address these challenges, which leverages anatomical structures and multimodal information to enable controllable synthesis of fetal US images across diverse planes. Specifically, FetalFlex incorporates a pre-alignment module to enhance controllability and introduces a repaint strategy to ensure consistent texture and appearance. Moreover, a two-stage adaptive sampling strategy is developed to progressively refine image quality from coarse to fine levels. We believe that FetalFlex is the first method capable of generating both in-distribution normal and out-of-distribution abnormal fetal US images, without requiring any abnormal data. Experiments on multi-center datasets demonstrate that FetalFlex achieved state-of-the-art performance across multiple image quality metrics. A reader study further confirms the close alignment of the generated results with expert visual assessments. Furthermore, synthetic images by FetalFlex significantly improve the performance of six typical deep models in downstream classification and anomaly detection tasks. Lastly, FetalFlex's anatomy-level controllable generation offers a unique advantage for anomaly simulation and creating paired or counterfactual data at the pixel level. The demo is available at: https://dyf1023.github.io/FetalFlex/.
comment: 18 pages, 10 figures
☆ Spot the Fake: Large Multimodal Model-Based Synthetic Image Detection with Artifact Explanation
With the rapid advancement of Artificial Intelligence Generated Content (AIGC) technologies, synthetic images have become increasingly prevalent in everyday life, posing new challenges for authenticity assessment and detection. Despite the effectiveness of existing methods in evaluating image authenticity and locating forgeries, these approaches often lack human interpretability and do not fully address the growing complexity of synthetic data. To tackle these challenges, we introduce FakeVLM, a specialized large multimodal model designed for both general synthetic image and DeepFake detection tasks. FakeVLM not only excels in distinguishing real from fake images but also provides clear, natural language explanations for image artifacts, enhancing interpretability. Additionally, we present FakeClue, a comprehensive dataset containing over 100,000 images across seven categories, annotated with fine-grained artifact clues in natural language. FakeVLM demonstrates performance comparable to expert models while eliminating the need for additional classifiers, making it a robust solution for synthetic data detection. Extensive evaluations across multiple datasets confirm the superiority of FakeVLM in both authenticity classification and artifact explanation tasks, setting a new benchmark for synthetic image detection. The dataset and code will be released in: https://github.com/opendatalab/FakeVLM.
☆ When Domain Generalization meets Generalized Category Discovery: An Adaptive Task-Arithmetic Driven Approach
Generalized Class Discovery (GCD) clusters base and novel classes in a target domain using supervision from a source domain with only base classes. Current methods often falter with distribution shifts and typically require access to target data during training, which can sometimes be impractical. To address this issue, we introduce the novel paradigm of Domain Generalization in GCD (DG-GCD), where only source data is available for training, while the target domain, with a distinct data distribution, remains unseen until inference. To this end, our solution, DG2CD-Net, aims to construct a domain-independent, discriminative embedding space for GCD. The core innovation is an episodic training strategy that enhances cross-domain generalization by adapting a base model on tasks derived from source and synthetic domains generated by a foundation model. Each episode focuses on a cross-domain GCD task, diversifying task setups over episodes and combining open-set domain adaptation with a novel margin loss and representation learning for optimizing the feature space progressively. To capture the effects of fine-tuning on the base model, we extend task arithmetic by adaptively weighting the local task vectors concerning the fine-tuned models based on their GCD performance on a validation distribution. This episodic update mechanism boosts the adaptability of the base model to unseen targets. Experiments across three datasets confirm that DG2CD-Net outperforms existing GCD methods customized for DG-GCD.
☆ Mitigating Object Hallucinations in MLLMs via Multi-Frequency Perturbations
Recently, multimodal large language models (MLLMs) have demonstrated remarkable performance in visual-language tasks. However, the authenticity of the responses generated by MLLMs is often compromised by object hallucinations. We identify that a key cause of these hallucinations is the model's over-susceptibility to specific image frequency features in detecting objects. In this paper, we introduce Multi-Frequency Perturbations (MFP), a simple, cost-effective, and pluggable method that leverages both low-frequency and high-frequency features of images to perturb visual feature representations and explicitly suppress redundant frequency-domain features during inference, thereby mitigating hallucinations. Experimental results demonstrate that our method significantly mitigates object hallucinations across various model architectures. Furthermore, as a training-time method, MFP can be combined with inference-time methods to achieve state-of-the-art performance on the CHAIR benchmark.
☆ Degradation Alchemy: Self-Supervised Unknown-to-Known Transformation for Blind Hyperspectral Image Fusion
Hyperspectral image (HSI) fusion is an efficient technique that combines low-resolution HSI (LR-HSI) and high-resolution multispectral images (HR-MSI) to generate high-resolution HSI (HR-HSI). Existing supervised learning methods (SLMs) can yield promising results when test data degradation matches the training ones, but they face challenges in generalizing to unknown degradations. To unleash the potential and generalization ability of SLMs, we propose a novel self-supervised unknown-to-known degradation transformation framework (U2K) for blind HSI fusion, which adaptively transforms unknown degradation into the same type of degradation as those handled by pre-trained SLMs. Specifically, the proposed U2K framework consists of: (1) spatial and spectral Degradation Wrapping (DW) modules that map HR-HSI to unknown degraded HR-MSI and LR-HSI, and (2) Degradation Transformation (DT) modules that convert these wrapped data into predefined degradation patterns. The transformed HR-MSI and LR-HSI pairs are then processed by a pre-trained network to reconstruct the target HR-HSI. We train the U2K framework in a self-supervised manner using consistency loss and greedy alternating optimization, significantly improving the flexibility of blind HSI fusion. Extensive experiments confirm the effectiveness of our proposed U2K framework in boosting the adaptability of five existing SLMs under various degradation settings and surpassing state-of-the-art blind methods.
☆ Exploring the Limits of KV Cache Compression in Visual Autoregressive Transformers
A fundamental challenge in Visual Autoregressive models is the substantial memory overhead required during inference to store previously generated representations. Despite various attempts to mitigate this issue through compression techniques, prior works have not explicitly formalized the problem of KV-cache compression in this context. In this work, we take the first step in formally defining the KV-cache compression problem for Visual Autoregressive transformers. We then establish a fundamental negative result, proving that any mechanism for sequential visual token generation under attention-based architectures must use at least $\Omega(n^2 d)$ memory, when $d = \Omega(\log n)$, where $n$ is the number of tokens generated and $d$ is the embedding dimensionality. This result demonstrates that achieving truly sub-quadratic memory usage is impossible without additional structural constraints. Our proof is constructed via a reduction from a computational lower bound problem, leveraging randomized embedding techniques inspired by dimensionality reduction principles. Finally, we discuss how sparsity priors on visual representations can influence memory efficiency, presenting both impossibility results and potential directions for mitigating memory overhead.
☆ DPFlow: Adaptive Optical Flow Estimation with a Dual-Pyramid Framework CVPR 2025
Optical flow estimation is essential for video processing tasks, such as restoration and action recognition. The quality of videos is constantly increasing, with current standards reaching 8K resolution. However, optical flow methods are usually designed for low resolution and do not generalize to large inputs due to their rigid architectures. They adopt downscaling or input tiling to reduce the input size, causing a loss of details and global information. There is also a lack of optical flow benchmarks to judge the actual performance of existing methods on high-resolution samples. Previous works only conducted qualitative high-resolution evaluations on hand-picked samples. This paper fills this gap in optical flow estimation in two ways. We propose DPFlow, an adaptive optical flow architecture capable of generalizing up to 8K resolution inputs while trained with only low-resolution samples. We also introduce Kubric-NK, a new benchmark for evaluating optical flow methods with input resolutions ranging from 1K to 8K. Our high-resolution evaluation pushes the boundaries of existing methods and reveals new insights about their generalization capabilities. Extensive experimental results show that DPFlow achieves state-of-the-art results on the MPI-Sintel, KITTI 2015, Spring, and other high-resolution benchmarks.
comment: Accepted at CVPR 2025. The code and dataset are available at https://github.com/hmorimitsu/ptlflow/tree/main/ptlflow/models/dpflow. 24 pages, 17 figures
Efficient Personalization of Quantized Diffusion Model without Backpropagation
Diffusion models have shown remarkable performance in image synthesis, but they demand extensive computational and memory resources for training, fine-tuning and inference. Although advanced quantization techniques have successfully minimized memory usage for inference, training and fine-tuning these quantized models still require large memory possibly due to dequantization for accurate computation of gradients and/or backpropagation for gradient-based algorithms. However, memory-efficient fine-tuning is particularly desirable for applications such as personalization that often must be run on edge devices like mobile phones with private data. In this work, we address this challenge by quantizing a diffusion model with personalization via Textual Inversion and by leveraging a zeroth-order optimization on personalization tokens without dequantization so that it does not require gradient and activation storage for backpropagation that consumes considerable memory. Since a gradient estimation using zeroth-order optimization is quite noisy for a single or a few images in personalization, we propose to denoise the estimated gradient by projecting it onto a subspace that is constructed with the past history of the tokens, dubbed Subspace Gradient. In addition, we investigated the influence of text embedding in image generation, leading to our proposed time steps sampling, dubbed Partial Uniform Timestep Sampling for sampling with effective diffusion timesteps. Our method achieves comparable performance to prior methods in image and text alignment scores for personalizing Stable Diffusion with only forward passes while reducing training memory demand up to $8.2\times$.
☆ DVHGNN: Multi-Scale Dilated Vision HGNN for Efficient Vision Recognition
Recently, Vision Graph Neural Network (ViG) has gained considerable attention in computer vision. Despite its groundbreaking innovation, Vision Graph Neural Network encounters key issues including the quadratic computational complexity caused by its K-Nearest Neighbor (KNN) graph construction and the limitation of pairwise relations of normal graphs. To address the aforementioned challenges, we propose a novel vision architecture, termed Dilated Vision HyperGraph Neural Network (DVHGNN), which is designed to leverage multi-scale hypergraph to efficiently capture high-order correlations among objects. Specifically, the proposed method tailors Clustering and Dilated HyperGraph Construction (DHGC) to adaptively capture multi-scale dependencies among the data samples. Furthermore, a dynamic hypergraph convolution mechanism is proposed to facilitate adaptive feature exchange and fusion at the hypergraph level. Extensive qualitative and quantitative evaluations of the benchmark image datasets demonstrate that the proposed DVHGNN significantly outperforms the state-of-the-art vision backbones. For instance, our DVHGNN-S achieves an impressive top-1 accuracy of 83.1% on ImageNet-1K, surpassing ViG-S by +1.0% and ViHGNN-S by +0.6%.
☆ Temporal-Consistent Video Restoration with Pre-trained Diffusion Models
Video restoration (VR) aims to recover high-quality videos from degraded ones. Although recent zero-shot VR methods using pre-trained diffusion models (DMs) show good promise, they suffer from approximation errors during reverse diffusion and insufficient temporal consistency. Moreover, dealing with 3D video data, VR is inherently computationally intensive. In this paper, we advocate viewing the reverse process in DMs as a function and present a novel Maximum a Posterior (MAP) framework that directly parameterizes video frames in the seed space of DMs, eliminating approximation errors. We also introduce strategies to promote bilevel temporal consistency: semantic consistency by leveraging clustering structures in the seed space, and pixel-level consistency by progressive warping with optical flow refinements. Extensive experiments on multiple virtual reality tasks demonstrate superior visual quality and temporal consistency achieved by our method compared to the state-of-the-art.
☆ Fine-Grained Open-Vocabulary Object Detection with Fined-Grained Prompts: Task, Dataset and Benchmark
Open-vocabulary detectors are proposed to locate and recognize objects in novel classes. However, variations in vision-aware language vocabulary data used for open-vocabulary learning can lead to unfair and unreliable evaluations. Recent evaluation methods have attempted to address this issue by incorporating object properties or adding locations and characteristics to the captions. Nevertheless, since these properties and locations depend on the specific details of the images instead of classes, detectors can not make accurate predictions without precise descriptions provided through human annotation. This paper introduces 3F-OVD, a novel task that extends supervised fine-grained object detection to the open-vocabulary setting. Our task is intuitive and challenging, requiring a deep understanding of Fine-grained captions and careful attention to Fine-grained details in images in order to accurately detect Fine-grained objects. Additionally, due to the scarcity of qualified fine-grained object detection datasets, we have created a new dataset, NEU-171K, tailored for both supervised and open-vocabulary settings. We benchmark state-of-the-art object detectors on our dataset for both settings. Furthermore, we propose a simple yet effective post-processing technique.
comment: 8 pages, 4 figures
☆ Global Renewables Watch: A Temporal Dataset of Solar and Wind Energy Derived from Satellite Imagery
We present a comprehensive global temporal dataset of commercial solar photovoltaic (PV) farms and onshore wind turbines, derived from high-resolution satellite imagery analyzed quarterly from the fourth quarter of 2017 to the second quarter of 2024. We create this dataset by training deep learning-based segmentation models to identify these renewable energy installations from satellite imagery, then deploy them on over 13 trillion pixels covering the world. For each detected feature, we estimate the construction date and the preceding land use type. This dataset offers crucial insights into progress toward sustainable development goals and serves as a valuable resource for policymakers, researchers, and stakeholders aiming to assess and promote effective strategies for renewable energy deployment. Our final spatial dataset includes 375,197 individual wind turbines and 86,410 solar PV installations. We aggregate our predictions to the country level -- estimating total power capacity based on construction date, solar PV area, and number of windmills -- and find an $r^2$ value of $0.96$ and $0.93$ for solar PV and onshore wind respectively compared to IRENA's most recent 2023 country-level capacity estimates.
☆ Unlocking the Capabilities of Vision-Language Models for Generalizable and Explainable Deepfake Detection
Current vision-language models (VLMs) have demonstrated remarkable capabilities in understanding multimodal data, but their potential remains underexplored for deepfake detection due to the misaligned of their knowledge and forensics patterns. To this end, we present a novel paradigm that unlocks VLMs' potential capabilities through three components: (1) A knowledge-guided forgery adaptation module that aligns VLM's semantic space with forensic features through contrastive learning with external manipulation knowledge; (2) A multi-modal prompt tuning framework that jointly optimizes visual-textual embeddings for both localization and explainability; (3) An iterative refinement strategy enabling multi-turn dialog for evidence-based reasoning. Our framework includes a VLM-based Knowledge-guided Forgery Detector (KFD), a VLM image encoder, and a Large Language Model (LLM). The VLM image encoder extracts visual prompt embeddings from images, while the LLM receives visual and question prompt embeddings for inference. The KFD is used to calculate correlations between image features and pristine/deepfake class embeddings, enabling forgery classification and localization. The outputs from these components are used to construct forgery prompt embeddings. Finally, we feed these prompt embeddings into the LLM to generate textual detection responses to assist judgment. Extensive experiments on multiple benchmarks, including FF++, CDF2, DFD, DFDCP, and DFDC, demonstrate that our scheme surpasses state-of-the-art methods in generalization performance, while also supporting multi-turn dialogue capabilities.
☆ ClimateGS: Real-Time Climate Simulation with 3D Gaussian Style Transfer
Adverse climate conditions pose significant challenges for autonomous systems, demanding reliable perception and decision-making across diverse environments. To better simulate these conditions, physically-based NeRF rendering methods have been explored for their ability to generate realistic scene representations. However, these methods suffer from slow rendering speeds and long preprocessing times, making them impractical for real-time testing and user interaction. This paper presents ClimateGS, a novel framework integrating 3D Gaussian representations with physical simulation to enable real-time climate effects rendering. The novelty of this work is threefold: 1) developing a linear transformation for 3D Gaussian photorealistic style transfer, enabling direct modification of spherical harmonics across bands for efficient and consistent style adaptation; 2) developing a joint training strategy for 3D style transfer, combining supervised and self-supervised learning to accelerate convergence while preserving original scene details; 3) developing a real-time rendering method for climate simulation, integrating physics-based effects with 3D Gaussian to achieve efficient and realistic rendering. We evaluate ClimateGS on MipNeRF360 and Tanks and Temples, demonstrating real-time rendering with comparable or superior visual quality to SOTA 2D/3D methods, making it suitable for interactive applications.
☆ SemanticFlow: A Self-Supervised Framework for Joint Scene Flow Prediction and Instance Segmentation in Dynamic Environments
Accurate perception of dynamic traffic scenes is crucial for high-level autonomous driving systems, requiring robust object motion estimation and instance segmentation. However, traditional methods often treat them as separate tasks, leading to suboptimal performance, spatio-temporal inconsistencies, and inefficiency in complex scenarios due to the absence of information sharing. This paper proposes a multi-task SemanticFlow framework to simultaneously predict scene flow and instance segmentation of full-resolution point clouds. The novelty of this work is threefold: 1) developing a coarse-to-fine prediction based multi-task scheme, where an initial coarse segmentation of static backgrounds and dynamic objects is used to provide contextual information for refining motion and semantic information through a shared feature processing module; 2) developing a set of loss functions to enhance the performance of scene flow estimation and instance segmentation, while can help ensure spatial and temporal consistency of both static and dynamic objects within traffic scenes; 3) developing a self-supervised learning scheme, which utilizes coarse segmentation to detect rigid objects and compute their transformation matrices between sequential frames, enabling the generation of self-supervised labels. The proposed framework is validated on the Argoverse and Waymo datasets, demonstrating superior performance in instance segmentation accuracy, scene flow estimation, and computational efficiency, establishing a new benchmark for self-supervised methods in dynamic scene understanding.
☆ On the Robustness Tradeoff in Fine-Tuning
Fine-tuning has become the standard practice for adapting pre-trained (upstream) models to downstream tasks. However, the impact on model robustness is not well understood. In this work, we characterize the robustness-accuracy trade-off in fine-tuning. We evaluate the robustness and accuracy of fine-tuned models over 6 benchmark datasets and 7 different fine-tuning strategies. We observe a consistent trade-off between adversarial robustness and accuracy. Peripheral updates such as BitFit are more effective for simple tasks--over 75% above the average measured with area under the Pareto frontiers on CIFAR-10 and CIFAR-100. In contrast, fine-tuning information-heavy layers, such as attention layers via Compacter, achieves a better Pareto frontier on more complex tasks--57.5% and 34.6% above the average on Caltech-256 and CUB-200, respectively. Lastly, we observe that robustness of fine-tuning against out-of-distribution data closely tracks accuracy. These insights emphasize the need for robustness-aware fine-tuning to ensure reliable real-world deployments.
☆ H2ST: Hierarchical Two-Sample Tests for Continual Out-of-Distribution Detection
Task Incremental Learning (TIL) is a specialized form of Continual Learning (CL) in which a model incrementally learns from non-stationary data streams. Existing TIL methodologies operate under the closed-world assumption, presuming that incoming data remains in-distribution (ID). However, in an open-world setting, incoming samples may originate from out-of-distribution (OOD) sources, with their task identities inherently unknown. Continually detecting OOD samples presents several challenges for current OOD detection methods: reliance on model outputs leads to excessive dependence on model performance, selecting suitable thresholds is difficult, hindering real-world deployment, and binary ID/OOD classification fails to provide task-level identification. To address these issues, we propose a novel continual OOD detection method called the Hierarchical Two-sample Tests (H2ST). H2ST eliminates the need for threshold selection through hypothesis testing and utilizes feature maps to better exploit model capabilities without excessive dependence on model performance. The proposed hierarchical architecture enables task-level detection with superior performance and lower overhead compared to non-hierarchical classifier two-sample tests. Extensive experiments and analysis validate the effectiveness of H2ST in open-world TIL scenarios and its superiority to the existing methods. Code is available at \href{https://github.com/YuhangLiuu/H2ST}{https://github.com/YuhangLiuu/H2ST}.
comment: 15 pages, 8 figures
☆ Decompositional Neural Scene Reconstruction with Generative Diffusion Prior CVPR'25
Decompositional reconstruction of 3D scenes, with complete shapes and detailed texture of all objects within, is intriguing for downstream applications but remains challenging, particularly with sparse views as input. Recent approaches incorporate semantic or geometric regularization to address this issue, but they suffer significant degradation in underconstrained areas and fail to recover occluded regions. We argue that the key to solving this problem lies in supplementing missing information for these areas. To this end, we propose DP-Recon, which employs diffusion priors in the form of Score Distillation Sampling (SDS) to optimize the neural representation of each individual object under novel views. This provides additional information for the underconstrained areas, but directly incorporating diffusion prior raises potential conflicts between the reconstruction and generative guidance. Therefore, we further introduce a visibility-guided approach to dynamically adjust the per-pixel SDS loss weights. Together these components enhance both geometry and appearance recovery while remaining faithful to input images. Extensive experiments across Replica and ScanNet++ demonstrate that our method significantly outperforms SOTA methods. Notably, it achieves better object reconstruction under 10 views than the baselines under 100 views. Our method enables seamless text-based editing for geometry and appearance through SDS optimization and produces decomposed object meshes with detailed UV maps that support photorealistic Visual effects (VFX) editing. The project page is available at https://dp-recon.github.io/.
comment: CVPR'25. Project page: https://dp-recon.github.io/
☆ Prototype Perturbation for Relaxing Alignment Constraints in Backward-Compatible Learning
The traditional paradigm to update retrieval models requires re-computing the embeddings of the gallery data, a time-consuming and computationally intensive process known as backfilling. To circumvent backfilling, Backward-Compatible Learning (BCL) has been widely explored, which aims to train a new model compatible with the old one. Many previous works focus on effectively aligning the embeddings of the new model with those of the old one to enhance the backward-compatibility. Nevertheless, such strong alignment constraints would compromise the discriminative ability of the new model, particularly when different classes are closely clustered and hard to distinguish in the old feature space. To address this issue, we propose to relax the constraints by introducing perturbations to the old feature prototypes. This allows us to align the new feature space with a pseudo-old feature space defined by these perturbed prototypes, thereby preserving the discriminative ability of the new model in backward-compatible learning. We have developed two approaches for calculating the perturbations: Neighbor-Driven Prototype Perturbation (NDPP) and Optimization-Driven Prototype Perturbation (ODPP). Particularly, they take into account the feature distributions of not only the old but also the new models to obtain proper perturbations along with new model updating. Extensive experiments on the landmark and commodity datasets demonstrate that our approaches perform favorably against state-of-the-art BCL algorithms.
☆ Uncertainty-Aware Diffusion Guided Refinement of 3D Scenes
Reconstructing 3D scenes from a single image is a fundamentally ill-posed task due to the severely under-constrained nature of the problem. Consequently, when the scene is rendered from novel camera views, existing single image to 3D reconstruction methods render incoherent and blurry views. This problem is exacerbated when the unseen regions are far away from the input camera. In this work, we address these inherent limitations in existing single image-to-3D scene feedforward networks. To alleviate the poor performance due to insufficient information beyond the input image's view, we leverage a strong generative prior in the form of a pre-trained latent video diffusion model, for iterative refinement of a coarse scene represented by optimizable Gaussian parameters. To ensure that the style and texture of the generated images align with that of the input image, we incorporate on-the-fly Fourier-style transfer between the generated images and the input image. Additionally, we design a semantic uncertainty quantification module that calculates the per-pixel entropy and yields uncertainty maps used to guide the refinement process from the most confident pixels while discarding the remaining highly uncertain ones. We conduct extensive experiments on real-world scene datasets, including in-domain RealEstate-10K and out-of-domain KITTI-v2, showing that our approach can provide more realistic and high-fidelity novel view synthesis results compared to existing state-of-the-art methods.
comment: 13 pages, 7 figures
☆ Graph-Weighted Contrastive Learning for Semi-Supervised Hyperspectral Image Classification
Most existing graph-based semi-supervised hyperspectral image classification methods rely on superpixel partitioning techniques. However, they suffer from misclassification of certain pixels due to inaccuracies in superpixel boundaries, \ie, the initial inaccuracies in superpixel partitioning limit overall classification performance. In this paper, we propose a novel graph-weighted contrastive learning approach that avoids the use of superpixel partitioning and directly employs neural networks to learn hyperspectral image representation. Furthermore, while many approaches require all graph nodes to be available during training, our approach supports mini-batch training by processing only a subset of nodes at a time, reducing computational complexity and improving generalization to unseen nodes. Experimental results on three widely-used datasets demonstrate the effectiveness of the proposed approach compared to baselines relying on superpixel partitioning.
comment: Journal of Electronic Imaging, 2025
☆ SPNeRF: Open Vocabulary 3D Neural Scene Segmentation with Superpoints
Open-vocabulary segmentation, powered by large visual-language models like CLIP, has expanded 2D segmentation capabilities beyond fixed classes predefined by the dataset, enabling zero-shot understanding across diverse scenes. Extending these capabilities to 3D segmentation introduces challenges, as CLIP's image-based embeddings often lack the geometric detail necessary for 3D scene segmentation. Recent methods tend to address this by introducing additional segmentation models or replacing CLIP with variations trained on segmentation data, which lead to redundancy or loss on CLIP's general language capabilities. To overcome this limitation, we introduce SPNeRF, a NeRF based zero-shot 3D segmentation approach that leverages geometric priors. We integrate geometric primitives derived from the 3D scene into NeRF training to produce primitive-wise CLIP features, avoiding the ambiguity of point-wise features. Additionally, we propose a primitive-based merging mechanism enhanced with affinity scores. Without relying on additional segmentation models, our method further explores CLIP's capability for 3D segmentation and achieves notable improvements over original LERF.
comment: In Proceedings of the 20th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (2025)
☆ Sustainable Deep Learning-Based Breast Lesion Segmentation: Impact of Breast Region Segmentation on Performance
Purpose: Segmentation of the breast lesion in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is an essential step to accurately diagnose and plan treatment and monitor progress. This study aims to highlight the impact of breast region segmentation (BRS) on deep learning-based breast lesion segmentation (BLS) in breast DCE-MRI. Methods Using the Stavanger Dataset containing primarily 59 DCE-MRI scans and UNet++ as deep learning models, four different process were conducted to compare effect of BRS on BLS. These four approaches included the whole volume without BRS and with BRS, BRS with the selected lesion slices and lastly optimal volume with BRS. Preprocessing methods like augmentation and oversampling were used to enhance the small dataset, data shape uniformity and improve model performance. Optimal volume size were investigated by a precise process to ensure that all lesions existed in slices. To evaluate the model, a hybrid loss function including dice, focal and cross entropy along with 5-fold cross validation method were used and lastly a test dataset which was randomly split used to evaluate the model performance on unseen data for each of four mentioned approaches. Results Results demonstrate that using BRS considerably improved model performance and validation. Significant improvement in last approach -- optimal volume with BRS -- compared to the approach without BRS counting around 50 percent demonstrating how effective BRS has been in BLS. Moreover, huge improvement in energy consumption, decreasing up to 450 percent, introduces a green solution toward a more environmentally sustainable approach for future work on large dataset.
☆ Representational Similarity via Interpretable Visual Concepts ICLR 2025
How do two deep neural networks differ in how they arrive at a decision? Measuring the similarity of deep networks has been a long-standing open question. Most existing methods provide a single number to measure the similarity of two networks at a given layer, but give no insight into what makes them similar or dissimilar. We introduce an interpretable representational similarity method (RSVC) to compare two networks. We use RSVC to discover shared and unique visual concepts between two models. We show that some aspects of model differences can be attributed to unique concepts discovered by one model that are not well represented in the other. Finally, we conduct extensive evaluation across different vision model architectures and training protocols to demonstrate its effectiveness.
comment: 32 pages, 5 Figures, 16 Supplemental Figures, ICLR 2025
☆ Technical Report for the 5th CLVision Challenge at CVPR: Addressing the Class-Incremental with Repetition using Unlabeled Data -- 4th Place Solution
This paper outlines our approach to the 5th CLVision challenge at CVPR, which addresses the Class-Incremental with Repetition (CIR) scenario. In contrast to traditional class incremental learning, this novel setting introduces unique challenges and research opportunities, particularly through the integration of unlabeled data into the training process. In the CIR scenario, encountered classes may reappear in later learning experiences, and each experience may involve only a subset of the overall class distribution. Additionally, the unlabeled data provided during training may include instances of unseen classes, or irrelevant classes which should be ignored. Our approach focuses on retaining previously learned knowledge by utilizing knowledge distillation and pseudo-labeling techniques. The key characteristic of our method is the exploitation of unlabeled data during training, in order to maintain optimal performance on instances of previously encountered categories and reduce the detrimental effects of catastrophic forgetting. Our method achieves an average accuracy of 16.68\% during the pre-selection phase and 21.19% during the final evaluation phase, outperforming the baseline accuracy of 9.39%. We provide the implementation code at https://github.com/panagiotamoraiti/continual-learning-challenge-2024 .
☆ Multi-focal Conditioned Latent Diffusion for Person Image Synthesis CVPR 2025
The Latent Diffusion Model (LDM) has demonstrated strong capabilities in high-resolution image generation and has been widely employed for Pose-Guided Person Image Synthesis (PGPIS), yielding promising results. However, the compression process of LDM often results in the deterioration of details, particularly in sensitive areas such as facial features and clothing textures. In this paper, we propose a Multi-focal Conditioned Latent Diffusion (MCLD) method to address these limitations by conditioning the model on disentangled, pose-invariant features from these sensitive regions. Our approach utilizes a multi-focal condition aggregation module, which effectively integrates facial identity and texture-specific information, enhancing the model's ability to produce appearance realistic and identity-consistent images. Our method demonstrates consistent identity and appearance generation on the DeepFashion dataset and enables flexible person image editing due to its generation consistency. The code is available at https://github.com/jqliu09/mcld.
comment: CVPR 2025 Accepted
☆ The Change You Want To Detect: Semantic Change Detection In Earth Observation With Hybrid Data Generation
Bi-temporal change detection at scale based on Very High Resolution (VHR) images is crucial for Earth monitoring. This remains poorly addressed so far: methods either require large volumes of annotated data (semantic case), or are limited to restricted datasets (binary set-ups). Most approaches do not exhibit the versatility required for temporal and spatial adaptation: simplicity in architecture design and pretraining on realistic and comprehensive datasets. Synthetic datasets are the key solution but still fail to handle complex and diverse scenes. In this paper, we present HySCDG a generative pipeline for creating a large hybrid semantic change detection dataset that contains both real VHR images and inpainted ones, along with land cover semantic map at both dates and the change map. Being semantically and spatially guided, HySCDG generates realistic images, leading to a comprehensive and hybrid transfer-proof dataset FSC-180k. We evaluate FSC-180k on five change detection cases (binary and semantic), from zero-shot to mixed and sequential training, and also under low data regime training. Experiments demonstrate that pretraining on our hybrid dataset leads to a significant performance boost, outperforming SyntheWorld, a fully synthetic dataset, in every configuration. All codes, models, and data are available here: $\href{https://yb23.github.io/projects/cywd/}{https://yb23.github.io/projects/cywd/}$.
☆ High Temporal Consistency through Semantic Similarity Propagation in Semi-Supervised Video Semantic Segmentation for Autonomous Flight
Semantic segmentation from RGB cameras is essential to the perception of autonomous flying vehicles. The stability of predictions through the captured videos is paramount to their reliability and, by extension, to the trustworthiness of the agents. In this paper, we propose a lightweight video semantic segmentation approach-suited to onboard real-time inference-achieving high temporal consistency on aerial data through Semantic Similarity Propagation across frames. SSP temporally propagates the predictions of an efficient image segmentation model with global registration alignment to compensate for camera movements. It combines the current estimation and the prior prediction with linear interpolation using weights computed from the features similarities of the two frames. Because data availability is a challenge in this domain, we propose a consistency-aware Knowledge Distillation training procedure for sparsely labeled datasets with few annotations. Using a large image segmentation model as a teacher to train the efficient SSP, we leverage the strong correlations between labeled and unlabeled frames in the same training videos to obtain high-quality supervision on all frames. KD-SSP obtains a significant temporal consistency increase over the base image segmentation model of 12.5% and 6.7% TC on UAVid and RuralScapes respectively, with higher accuracy and comparable inference speed. On these aerial datasets, KD-SSP provides a superior segmentation quality and inference speed trade-off than other video methods proposed for general applications and shows considerably higher consistency. The code will be made publicly available upon acceptance.
☆ GASP: Unifying Geometric and Semantic Self-Supervised Pre-training for Autonomous Driving
Self-supervised pre-training based on next-token prediction has enabled large language models to capture the underlying structure of text, and has led to unprecedented performance on a large array of tasks when applied at scale. Similarly, autonomous driving generates vast amounts of spatiotemporal data, alluding to the possibility of harnessing scale to learn the underlying geometric and semantic structure of the environment and its evolution over time. In this direction, we propose a geometric and semantic self-supervised pre-training method, GASP, that learns a unified representation by predicting, at any queried future point in spacetime, (1) general occupancy, capturing the evolving structure of the 3D scene; (2) ego occupancy, modeling the ego vehicle path through the environment; and (3) distilled high-level features from a vision foundation model. By modeling geometric and semantic 4D occupancy fields instead of raw sensor measurements, the model learns a structured, generalizable representation of the environment and its evolution through time. We validate GASP on multiple autonomous driving benchmarks, demonstrating significant improvements in semantic occupancy forecasting, online mapping, and ego trajectory prediction. Our results demonstrate that continuous 4D geometric and semantic occupancy prediction provides a scalable and effective pre-training paradigm for autonomous driving. For code and additional visualizations, see \href{https://research.zenseact.com/publications/gasp/.
☆ CHROME: Clothed Human Reconstruction with Occlusion-Resilience and Multiview-Consistency from a Single Image
Reconstructing clothed humans from a single image is a fundamental task in computer vision with wide-ranging applications. Although existing monocular clothed human reconstruction solutions have shown promising results, they often rely on the assumption that the human subject is in an occlusion-free environment. Thus, when encountering in-the-wild occluded images, these algorithms produce multiview inconsistent and fragmented reconstructions. Additionally, most algorithms for monocular 3D human reconstruction leverage geometric priors such as SMPL annotations for training and inference, which are extremely challenging to acquire in real-world applications. To address these limitations, we propose CHROME: Clothed Human Reconstruction with Occlusion-Resilience and Multiview-ConsistEncy from a Single Image, a novel pipeline designed to reconstruct occlusion-resilient 3D humans with multiview consistency from a single occluded image, without requiring either ground-truth geometric prior annotations or 3D supervision. Specifically, CHROME leverages a multiview diffusion model to first synthesize occlusion-free human images from the occluded input, compatible with off-the-shelf pose control to explicitly enforce cross-view consistency during synthesis. A 3D reconstruction model is then trained to predict a set of 3D Gaussians conditioned on both the occluded input and synthesized views, aligning cross-view details to produce a cohesive and accurate 3D representation. CHROME achieves significant improvements in terms of both novel view synthesis (upto 3 db PSNR) and geometric reconstruction under challenging conditions.
☆ DiffPortrait360: Consistent Portrait Diffusion for 360 View Synthesis
Generating high-quality 360-degree views of human heads from single-view images is essential for enabling accessible immersive telepresence applications and scalable personalized content creation. While cutting-edge methods for full head generation are limited to modeling realistic human heads, the latest diffusion-based approaches for style-omniscient head synthesis can produce only frontal views and struggle with view consistency, preventing their conversion into true 3D models for rendering from arbitrary angles. We introduce a novel approach that generates fully consistent 360-degree head views, accommodating human, stylized, and anthropomorphic forms, including accessories like glasses and hats. Our method builds on the DiffPortrait3D framework, incorporating a custom ControlNet for back-of-head detail generation and a dual appearance module to ensure global front-back consistency. By training on continuous view sequences and integrating a back reference image, our approach achieves robust, locally continuous view synthesis. Our model can be used to produce high-quality neural radiance fields (NeRFs) for real-time, free-viewpoint rendering, outperforming state-of-the-art methods in object synthesis and 360-degree head generation for very challenging input portraits.
comment: Page:https://freedomgu.github.io/DiffPortrait360 Code:https://github.com/FreedomGu/DiffPortrait360/
☆ Toward Scalable, Flexible Scene Flow for Point Clouds
Scene flow estimation is the task of describing 3D motion between temporally successive observations. This thesis aims to build the foundation for building scene flow estimators with two important properties: they are scalable, i.e. they improve with access to more data and computation, and they are flexible, i.e. they work out-of-the-box in a variety of domains and on a variety of motion patterns without requiring significant hyperparameter tuning. In this dissertation we present several concrete contributions towards this. In Chapter 1 we contextualize scene flow and its prior methods. In Chapter 2 we present a blueprint to build and scale feedforward scene flow estimators without requiring expensive human annotations via large scale distillation from pseudolabels provided by strong unsupervised test-time optimization methods. In Chapter 3 we introduce a benchmark to better measure estimate quality across diverse object types, better bringing into focus what we care about and expect from scene flow estimators, and use this benchmark to host a public challenge that produced significant progress. In Chapter 4 we present a state-of-the-art unsupervised scene flow estimator that introduces a new, full sequence problem formulation and exhibits great promise in adjacent domains like 3D point tracking. Finally, in Chapter 5 I philosophize about what's next for scene flow and its potential future broader impacts.
comment: PhD Thesis
☆ UI-Vision: A Desktop-centric GUI Benchmark for Visual Perception and Interaction
Autonomous agents that navigate Graphical User Interfaces (GUIs) to automate tasks like document editing and file management can greatly enhance computer workflows. While existing research focuses on online settings, desktop environments, critical for many professional and everyday tasks, remain underexplored due to data collection challenges and licensing issues. We introduce UI-Vision, the first comprehensive, license-permissive benchmark for offline, fine-grained evaluation of computer use agents in real-world desktop environments. Unlike online benchmarks, UI-Vision provides: (i) dense, high-quality annotations of human demonstrations, including bounding boxes, UI labels, and action trajectories (clicks, drags, and keyboard inputs) across 83 software applications, and (ii) three fine-to-coarse grained tasks-Element Grounding, Layout Grounding, and Action Prediction-with well-defined metrics to rigorously evaluate agents' performance in desktop environments. Our evaluation reveals critical limitations in state-of-the-art models like UI-TARS-72B, including issues with understanding professional software, spatial reasoning, and complex actions like drag-and-drop. These findings highlight the challenges in developing fully autonomous computer use agents. By releasing UI-Vision as open-source, we aim to advance the development of more capable agents for real-world desktop tasks.
☆ Transport-Related Surface Detection with Machine Learning: Analyzing Temporal Trends in Madrid and Vienna
This study explores the integration of machine learning into urban aerial image analysis, with a focus on identifying infrastructure surfaces for cars and pedestrians and analyzing historical trends. It emphasizes the transition from convolutional architectures to transformer-based pre-trained models, underscoring their potential in global geospatial analysis. A workflow is presented for automatically generating geospatial datasets, enabling the creation of semantic segmentation datasets from various sources, including WMS/WMTS links, vectorial cartography, and OpenStreetMap (OSM) overpass-turbo requests. The developed code allows a fast dataset generation process for training machine learning models using openly available data without manual labelling. Using aerial imagery and vectorial data from the respective geographical offices of Madrid and Vienna, two datasets were generated for car and pedestrian surface detection. A transformer-based model was trained and evaluated for each city, demonstrating good accuracy values. The historical trend analysis involved applying the trained model to earlier images predating the availability of vectorial data 10 to 20 years, successfully identifying temporal trends in infrastructure for pedestrians and cars across different city areas. This technique is applicable for municipal governments to gather valuable data at a minimal cost.
comment: Preprint
☆ Cancelable Biometric Template Generation Using Random Feature Vector Transformations
Cancelable biometric schemes are designed to extract an identity-preserving, non-invertible as well as revocable pseudo-identifier from biometric data. Recognition systems need to store only this pseudo-identifier, to avoid tampering and/or stealing of original biometric data during the recognition process. State-of-the-art cancelable schemes generate pseudo-identifiers by transforming the original template using either user-specific salting or many-to-one transformations. In addition to the performance concerns, most of such schemes are modality-specific and prone to reconstruction attacks as there are chances for unauthorized access to security-critical transformation keys. A novel, modality-independent cancelable biometric scheme is proposed to overcome these limitations. In this scheme, a cancelable template (pseudo identifier) is generated as a distance vector between multiple random transformations of the biometric feature vector. These transformations were done by grouping feature vector components based on a set of user-specific random vectors. The proposed scheme nullifies the possibility of template reconstruction as the generated cancelable template contains only the distance values between the different random transformations of the feature vector and it does not store any details of the biometric template. The recognition performance of the proposed scheme is evaluated for face and fingerprint modalities. Equal Error Rate (EER) of 1.5 is obtained for face and 1.7 is obtained for the fingerprint in the worst case.
☆ Multi-Modal Gesture Recognition from Video and Surgical Tool Pose Information via Motion Invariants
Recognizing surgical gestures in real-time is a stepping stone towards automated activity recognition, skill assessment, intra-operative assistance, and eventually surgical automation. The current robotic surgical systems provide us with rich multi-modal data such as video and kinematics. While some recent works in multi-modal neural networks learn the relationships between vision and kinematics data, current approaches treat kinematics information as independent signals, with no underlying relation between tool-tip poses. However, instrument poses are geometrically related, and the underlying geometry can aid neural networks in learning gesture representation. Therefore, we propose combining motion invariant measures (curvature and torsion) with vision and kinematics data using a relational graph network to capture the underlying relations between different data streams. We show that gesture recognition improves when combining invariant signals with tool position, achieving 90.3\% frame-wise accuracy on the JIGSAWS suturing dataset. Our results show that motion invariant signals coupled with position are better representations of gesture motion compared to traditional position and quaternion representations. Our results highlight the need for geometric-aware modeling of kinematics for gesture recognition.
☆ A Context-Driven Training-Free Network for Lightweight Scene Text Segmentation and Recognition
Modern scene text recognition systems often depend on large end-to-end architectures that require extensive training and are prohibitively expensive for real-time scenarios. In such cases, the deployment of heavy models becomes impractical due to constraints on memory, computational resources, and latency. To address these challenges, we propose a novel, training-free plug-and-play framework that leverages the strengths of pre-trained text recognizers while minimizing redundant computations. Our approach uses context-based understanding and introduces an attention-based segmentation stage, which refines candidate text regions at the pixel level, improving downstream recognition. Instead of performing traditional text detection that follows a block-level comparison between feature map and source image and harnesses contextual information using pretrained captioners, allowing the framework to generate word predictions directly from scene context.Candidate texts are semantically and lexically evaluated to get a final score. Predictions that meet or exceed a pre-defined confidence threshold bypass the heavier process of end-to-end text STR profiling, ensuring faster inference and cutting down on unnecessary computations. Experiments on public benchmarks demonstrate that our paradigm achieves performance on par with state-of-the-art systems, yet requires substantially fewer resources.
☆ Vision-Speech Models: Teaching Speech Models to Converse about Images
The recent successes of Vision-Language models raise the question of how to equivalently imbue a pretrained speech model with vision understanding, an important milestone towards building a multimodal speech model able to freely converse about images. Building such a conversational Vision-Speech model brings its unique challenges: (i) paired image-speech datasets are much scarcer than their image-text counterparts, (ii) ensuring real-time latency at inference is crucial thus bringing compute and memory constraints, and (iii) the model should preserve prosodic features (e.g., speaker tone) which cannot be inferred from text alone. In this work, we introduce MoshiVis, augmenting a recent dialogue speech LLM, Moshi, with visual inputs through lightweight adaptation modules. An additional dynamic gating mechanism enables the model to more easily switch between the visual inputs and unrelated conversation topics. To reduce training costs, we design a simple one-stage, parameter-efficient fine-tuning pipeline in which we leverage a mixture of image-text (i.e., "speechless") and image-speech samples. We evaluate the model on downstream visual understanding tasks with both audio and text prompts, and report qualitative samples of interactions with MoshiVis. Our inference code will be made available, as well as the image-speech data used for audio evaluation.
☆ EarthScape: A Multimodal Dataset for Surficial Geologic Mapping and Earth Surface Analysis
Surficial geologic mapping is essential for understanding Earth surface processes, addressing modern challenges such as climate change and national security, and supporting common applications in engineering and resource management. However, traditional mapping methods are labor-intensive, limiting spatial coverage and introducing potential biases. To address these limitations, we introduce EarthScape, a novel, AI-ready multimodal dataset specifically designed for surficial geologic mapping and Earth surface analysis. EarthScape integrates high-resolution aerial RGB and near-infrared (NIR) imagery, digital elevation models (DEM), multi-scale DEM-derived terrain features, and hydrologic and infrastructure vector data. The dataset provides detailed annotations for seven distinct surficial geologic classes encompassing various geological processes. We present a comprehensive data processing pipeline using open-sourced raw data and establish baseline benchmarks using different spatial modalities to demonstrate the utility of EarthScape. As a living dataset with a vision for expansion, EarthScape bridges the gap between computer vision and Earth sciences, offering a valuable resource for advancing research in multimodal learning, geospatial analysis, and geological mapping. Our code is available at https://github.com/masseygeo/earthscape.
☆ LLaVA-MORE: A Comparative Study of LLMs and Visual Backbones for Enhanced Visual Instruction Tuning
Recent progress in Multimodal Large Language Models (MLLMs) has highlighted the critical roles of both the visual backbone and the underlying language model. While prior work has primarily focused on scaling these components to billions of parameters, the trade-offs between model size, architecture, and performance remain underexplored. Additionally, inconsistencies in training data and evaluation protocols have hindered direct comparisons, making it difficult to derive optimal design choices. In this paper, we introduce LLaVA-MORE, a new family of MLLMs that integrates recent language models with diverse visual backbones. To ensure fair comparisons, we employ a unified training protocol applied consistently across all architectures. Our analysis systematically explores both small- and medium-scale LLMs -- including Phi-4, LLaMA-3.1, and Gemma-2 -- to evaluate multimodal reasoning, generation, and instruction following, while examining the relationship between model size and performance. Beyond evaluating the LLM impact on final results, we conduct a comprehensive study of various visual encoders, ranging from CLIP-based architectures to alternatives such as DINOv2, SigLIP, and SigLIP2. Additional experiments investigate the effects of increased image resolution and variations in pre-training datasets. Overall, our results provide insights into the design of more effective MLLMs, offering a reproducible evaluation framework that facilitates direct comparisons and can guide future model development. Our source code and trained models are publicly available at: https://github.com/aimagelab/LLaVA-MORE.
☆ CAM-Seg: A Continuous-valued Embedding Approach for Semantic Image Generation
Traditional transformer-based semantic segmentation relies on quantized embeddings. However, our analysis reveals that autoencoder accuracy on segmentation mask using quantized embeddings (e.g. VQ-VAE) is 8% lower than continuous-valued embeddings (e.g. KL-VAE). Motivated by this, we propose a continuous-valued embedding framework for semantic segmentation. By reformulating semantic mask generation as a continuous image-to-embedding diffusion process, our approach eliminates the need for discrete latent representations while preserving fine-grained spatial and semantic details. Our key contribution includes a diffusion-guided autoregressive transformer that learns a continuous semantic embedding space by modeling long-range dependencies in image features. Our framework contains a unified architecture combining a VAE encoder for continuous feature extraction, a diffusion-guided transformer for conditioned embedding generation, and a VAE decoder for semantic mask reconstruction. Our setting facilitates zero-shot domain adaptation capabilities enabled by the continuity of the embedding space. Experiments across diverse datasets (e.g., Cityscapes and domain-shifted variants) demonstrate state-of-the-art robustness to distribution shifts, including adverse weather (e.g., fog, snow) and viewpoint variations. Our model also exhibits strong noise resilience, achieving robust performance ($\approx$ 95% AP compared to baseline) under gaussian noise, moderate motion blur, and moderate brightness/contrast variations, while experiencing only a moderate impact ($\approx$ 90% AP compared to baseline) from 50% salt and pepper noise, saturation and hue shifts. Code available: https://github.com/mahmed10/CAMSS.git
☆ How to Train Your Dragon: Automatic Diffusion-Based Rigging for Characters with Diverse Topologies
Recent diffusion-based methods have achieved impressive results on animating images of human subjects. However, most of that success has built on human-specific body pose representations and extensive training with labeled real videos. In this work, we extend the ability of such models to animate images of characters with more diverse skeletal topologies. Given a small number (3-5) of example frames showing the character in different poses with corresponding skeletal information, our model quickly infers a rig for that character that can generate images corresponding to new skeleton poses. We propose a procedural data generation pipeline that efficiently samples training data with diverse topologies on the fly. We use it, along with a novel skeleton representation, to train our model on articulated shapes spanning a large space of textures and topologies. Then during fine-tuning, our model rapidly adapts to unseen target characters and generalizes well to rendering new poses, both for realistic and more stylized cartoon appearances. To better evaluate performance on this novel and challenging task, we create the first 2D video dataset that contains both humanoid and non-humanoid subjects with per-frame keypoint annotations. With extensive experiments, we demonstrate the superior quality of our results. Project page: https://traindragondiffusion.github.io/
comment: Accepted to Eurographics 2025
☆ Guardians of Generation: Dynamic Inference-Time Copyright Shielding with Adaptive Guidance for AI Image Generation
Modern text-to-image generative models can inadvertently reproduce copyrighted content memorized in their training data, raising serious concerns about potential copyright infringement. We introduce Guardians of Generation, a model agnostic inference time framework for dynamic copyright shielding in AI image generation. Our approach requires no retraining or modification of the generative model weights, instead integrating seamlessly with existing diffusion pipelines. It augments the generation process with an adaptive guidance mechanism comprising three components: a detection module, a prompt rewriting module, and a guidance adjustment module. The detection module monitors user prompts and intermediate generation steps to identify features indicative of copyrighted content before they manifest in the final output. If such content is detected, the prompt rewriting mechanism dynamically transforms the user's prompt by sanitizing or replacing references that could trigger copyrighted material while preserving the prompt's intended semantics. The adaptive guidance module adaptively steers the diffusion process away from flagged content by modulating the model's sampling trajectory. Together, these components form a robust shield that enables a tunable balance between preserving creative fidelity and ensuring copyright compliance. We validate our method on a variety of generative models such as Stable Diffusion, SDXL, and Flux, demonstrating substantial reductions in copyrighted content generation with negligible impact on output fidelity or alignment with user intent. This work provides a practical, plug-and-play safeguard for generative image models, enabling more responsible deployment under real-world copyright constraints. Source code is available at: https://respailab.github.io/gog
♻ ☆ Advances in 4D Generation: A Survey
Generative artificial intelligence (AI) has made significant progress across various domains in recent years. Building on the rapid advancements in 2D, video, and 3D content generation fields, 4D generation has emerged as a novel and rapidly evolving research area, attracting growing attention. 4D generation focuses on creating dynamic 3D assets with spatiotemporal consistency based on user input, offering greater creative freedom and richer immersive experiences. This paper presents a comprehensive survey of the 4D generation field, systematically summarizing its core technologies, developmental trajectory, key challenges, and practical applications, while also exploring potential future research directions. The survey begins by introducing various fundamental 4D representation models, followed by a review of 4D generation frameworks built upon these representations and the key technologies that incorporate motion and geometry priors into 4D assets. We summarize five major challenges of 4D generation: consistency, controllability, diversity, efficiency, and fidelity, accompanied by an outline of existing solutions to address these issues. We systematically analyze applications of 4D generation, spanning dynamic object generation, scene generation, digital human synthesis, 4D editing, and autonomous driving. Finally, we provide an in-depth discussion of the obstacles currently hindering the development of the 4D generation. This survey offers a clear and comprehensive overview of 4D generation, aiming to stimulate further exploration and innovation in this rapidly evolving field. Our code is publicly available at: https://github.com/MiaoQiaowei/Awesome-4D.
♻ ☆ State Space Model Meets Transformer: A New Paradigm for 3D Object Detection ICLR 2025
DETR-based methods, which use multi-layer transformer decoders to refine object queries iteratively, have shown promising performance in 3D indoor object detection. However, the scene point features in the transformer decoder remain fixed, leading to minimal contributions from later decoder layers, thereby limiting performance improvement. Recently, State Space Models (SSM) have shown efficient context modeling ability with linear complexity through iterative interactions between system states and inputs. Inspired by SSMs, we propose a new 3D object DEtection paradigm with an interactive STate space model (DEST). In the interactive SSM, we design a novel state-dependent SSM parameterization method that enables system states to effectively serve as queries in 3D indoor detection tasks. In addition, we introduce four key designs tailored to the characteristics of point cloud and SSM: The serialization and bidirectional scanning strategies enable bidirectional feature interaction among scene points within the SSM. The inter-state attention mechanism models the relationships between state points, while the gated feed-forward network enhances inter-channel correlations. To the best of our knowledge, this is the first method to model queries as system states and scene points as system inputs, which can simultaneously update scene point features and query features with linear complexity. Extensive experiments on two challenging datasets demonstrate the effectiveness of our DEST-based method. Our method improves the GroupFree baseline in terms of AP50 on ScanNet V2 (+5.3) and SUN RGB-D (+3.2) datasets. Based on the VDETR baseline, Our method sets a new SOTA on the ScanNetV2 and SUN RGB-D datasets.
comment: Accepted by ICLR 2025. Project url: https://chuxwa.github.io/project_DEST/
♻ ☆ Creation-MMBench: Assessing Context-Aware Creative Intelligence in MLLM
Creativity is a fundamental aspect of intelligence, involving the ability to generate novel and appropriate solutions across diverse contexts. While Large Language Models (LLMs) have been extensively evaluated for their creative capabilities, the assessment of Multimodal Large Language Models (MLLMs) in this domain remains largely unexplored. To address this gap, we introduce Creation-MMBench, a multimodal benchmark specifically designed to evaluate the creative capabilities of MLLMs in real-world, image-based tasks. The benchmark comprises 765 test cases spanning 51 fine-grained tasks. To ensure rigorous evaluation, we define instance-specific evaluation criteria for each test case, guiding the assessment of both general response quality and factual consistency with visual inputs. Experimental results reveal that current open-source MLLMs significantly underperform compared to proprietary models in creative tasks. Furthermore, our analysis demonstrates that visual fine-tuning can negatively impact the base LLM's creative abilities. Creation-MMBench provides valuable insights for advancing MLLM creativity and establishes a foundation for future improvements in multimodal generative intelligence. Full data and evaluation code is released on https://github.com/open-compass/Creation-MMBench.
comment: Evaluation Code and dataset see https://github.com/open-compass/Creation-MMBench
♻ ☆ EvolvingGrasp: Evolutionary Grasp Generation via Efficient Preference Alignment
Dexterous robotic hands often struggle to generalize effectively in complex environments due to the limitations of models trained on low-diversity data. However, the real world presents an inherently unbounded range of scenarios, making it impractical to account for every possible variation. A natural solution is to enable robots learning from experience in complex environments, an approach akin to evolution, where systems improve through continuous feedback, learning from both failures and successes, and iterating toward optimal performance. Motivated by this, we propose EvolvingGrasp, an evolutionary grasp generation method that continuously enhances grasping performance through efficient preference alignment. Specifically, we introduce Handpose wise Preference Optimization (HPO), which allows the model to continuously align with preferences from both positive and negative feedback while progressively refining its grasping strategies. To further enhance efficiency and reliability during online adjustments, we incorporate a Physics-aware Consistency Model within HPO, which accelerates inference, reduces the number of timesteps needed for preference finetuning, and ensures physical plausibility throughout the process. Extensive experiments across four benchmark datasets demonstrate state of the art performance of our method in grasp success rate and sampling efficiency. Our results validate that EvolvingGrasp enables evolutionary grasp generation, ensuring robust, physically feasible, and preference-aligned grasping in both simulation and real scenarios.
♻ ☆ DualToken: Towards Unifying Visual Understanding and Generation with Dual Visual Vocabularies
The differing representation spaces required for visual understanding and generation pose a challenge in unifying them within the autoregressive paradigm of large language models. A vision tokenizer trained for reconstruction excels at capturing low-level perceptual details, making it well-suited for visual generation but lacking high-level semantic representations for understanding tasks. Conversely, a vision encoder trained via contrastive learning aligns well with language but struggles to decode back into the pixel space for generation tasks. To bridge this gap, we propose DualToken, a method that unifies representations for both understanding and generation within a single tokenizer. However, directly integrating reconstruction and semantic objectives in a single tokenizer creates conflicts, leading to degraded performance in both reconstruction quality and semantic performance. Instead of forcing a single codebook to handle both semantic and perceptual information, DualToken disentangles them by introducing separate codebooks for high and low-level features, effectively transforming their inherent conflict into a synergistic relationship. As a result, DualToken achieves state-of-the-art performance in both reconstruction and semantic tasks while demonstrating remarkable effectiveness in downstream MLLM understanding and generation tasks. Notably, we also show that DualToken, as a unified tokenizer, surpasses the naive combination of two distinct types vision encoders, providing superior performance within a unified MLLM.
♻ ☆ Manual Labelling Artificially Inflates Deep Learning-Based Segmentation Performance on RGB Images of Closed Canopy: Validation Using TLS
Monitoring forest dynamics at an individual tree scale is essential for accurately assessing ecosystem responses to climate change, yet traditional methods relying on field-based forest inventories are labor-intensive and limited in spatial coverage. Advances in remote sensing using drone-acquired RGB imagery combined with deep learning models have promised precise individual tree crown (ITC) segmentation; however, existing methods are frequently validated against human-annotated images, lacking rigorous independent ground truth. In this study, we generate high-fidelity validation labels from co-located Terrestrial Laser Scanning (TLS) data for drone imagery of mixed unmanaged boreal and Mediterranean forests. We evaluate the performance of two widely used deep learning ITC segmentation models - DeepForest (RetinaNet) and Detectree2 (Mask R-CNN) - on these data, and compare to performance on further Mediterranean forest data labelled manually. When validated against TLS-derived ground truth from Mediterranean forests, model performance decreased significantly compared to assessment based on hand-labelled from an ecologically similar site (AP50: 0.094 vs. 0.670). Restricting evaluation to only canopy trees shrank this gap considerably (Canopy AP50: 0.365), although performance was still far lower than on similar hand-labelled data. Models also performed poorly on boreal forest data (AP50: 0.142), although again increasing when evaluated on canopy trees only (Canopy AP50: 0.308). Both models showed very poor localisation accuracy at stricter IoU thresholds, even when restricted to canopy trees (Max AP75: 0.051). Similar results have been observed in studies using aerial LiDAR data, suggesting fundamental limitations in aerial-based segmentation approaches in closed canopy forests.
comment: 17 pages, 3 figures
♻ ☆ CTSR: Controllable Fidelity-Realness Trade-off Distillation for Real-World Image Super Resolution
Real-world image super-resolution is a critical image processing task, where two key evaluation criteria are the fidelity to the original image and the visual realness of the generated results. Although existing methods based on diffusion models excel in visual realness by leveraging strong priors, they often struggle to achieve an effective balance between fidelity and realness. In our preliminary experiments, we observe that a linear combination of multiple models outperforms individual models, motivating us to harness the strengths of different models for a more effective trade-off. Based on this insight, we propose a distillation-based approach that leverages the geometric decomposition of both fidelity and realness, alongside the performance advantages of multiple teacher models, to strike a more balanced trade-off. Furthermore, we explore the controllability of this trade-off, enabling a flexible and adjustable super-resolution process, which we call CTSR (Controllable Trade-off Super-Resolution). Experiments conducted on several real-world image super-resolution benchmarks demonstrate that our method surpasses existing state-of-the-art approaches, achieving superior performance across both fidelity and realness metrics.
♻ ☆ Towards Self-Improving Systematic Cognition for Next-Generation Foundation MLLMs
Despite their impressive capabilities, Multimodal Large Language Models (MLLMs) face challenges with fine-grained perception and complex reasoning. Prevalent multimodal pre-training approaches focus on enhancing perception by training on high-quality image captions due to the extremely high cost of collecting chain-of-thought (CoT) reasoning data for improving reasoning. While leveraging advanced MLLMs for caption generation enhances scalability, the outputs often lack comprehensiveness and accuracy. In this paper, we introduce Self-Improving cognition (SIcog), a self-learning framework designed to construct next-generation foundation MLLMs by enhancing their systematic cognitive capabilities through multimodal pre-training with self-generated data. Specifically, we propose Chain-of-Description, an approach that improves an MLLM's systematic perception by enabling step-by-step visual understanding, ensuring greater comprehensiveness and accuracy. Additionally, we adopt a structured CoT reasoning technique to enable MLLMs to integrate in-depth multimodal reasoning. To construct a next-generation foundation MLLM with self-improved cognition, SIcog first equips an MLLM with systematic perception and reasoning abilities using minimal external annotations. The enhanced models then generate detailed captions and CoT reasoning data, which are further curated through self-consistency. This curated data is ultimately used for multimodal pre-training to develop next-generation foundation models. Extensive experiments on both low- and high-resolution MLLMs across diverse benchmarks demonstrate that, with merely 213K self-generated pre-training samples, SIcog produces next-generation foundation MLLMs with significantly improved cognition, achieving benchmark-leading performance compared to prevalent pre-training approaches.
comment: 38 pages. Preprint, work in progress
♻ ☆ Accurate Automatic 3D Annotation of Traffic Lights and Signs for Autonomous Driving ECCV 2024
3D detection of traffic management objects, such as traffic lights and road signs, is vital for self-driving cars, particularly for address-to-address navigation where vehicles encounter numerous intersections with these static objects. This paper introduces a novel method for automatically generating accurate and temporally consistent 3D bounding box annotations for traffic lights and signs, effective up to a range of 200 meters. These annotations are suitable for training real-time models used in self-driving cars, which need a large amount of training data. The proposed method relies only on RGB images with 2D bounding boxes of traffic management objects, which can be automatically obtained using an off-the-shelf image-space detector neural network, along with GNSS/INS data, eliminating the need for LiDAR point cloud data.
comment: Accepted at the 2nd Workshop on Vision-Centric Autonomous Driving (VCAD) as part of ECCV 2024
♻ ☆ Multimodal Feature-Driven Deep Learning for the Prediction of Duck Body Dimensions and Weight
Accurate body dimension and weight measurements are critical for optimizing poultry management, health assessment, and economic efficiency. This study introduces an innovative deep learning-based model leveraging multimodal data-2D RGB images from different views, depth images, and 3D point clouds-for the non-invasive estimation of duck body dimensions and weight. A dataset of 1,023 Linwu ducks, comprising over 5,000 samples with diverse postures and conditions, was collected to support model training. The proposed method innovatively employs PointNet++ to extract key feature points from point clouds, extracts and computes corresponding 3D geometric features, and fuses them with multi-view convolutional 2D features. A Transformer encoder is then utilized to capture long-range dependencies and refine feature interactions, thereby enhancing prediction robustness. The model achieved a mean absolute percentage error (MAPE) of 6.33% and an R2 of 0.953 across eight morphometric parameters, demonstrating strong predictive capability. Unlike conventional manual measurements, the proposed model enables high-precision estimation while eliminating the necessity for physical handling, thereby reducing animal stress and broadening its application scope. This study marks the first application of deep learning techniques to poultry body dimension and weight estimation, providing a valuable reference for the intelligent and precise management of the livestock industry with far-reaching practical significance.
♻ ☆ Learning Shape-Independent Transformation via Spherical Representations for Category-Level Object Pose Estimation ICLR 2025
Category-level object pose estimation aims to determine the pose and size of novel objects in specific categories. Existing correspondence-based approaches typically adopt point-based representations to establish the correspondences between primitive observed points and normalized object coordinates. However, due to the inherent shape-dependence of canonical coordinates, these methods suffer from semantic incoherence across diverse object shapes. To resolve this issue, we innovatively leverage the sphere as a shared proxy shape of objects to learn shape-independent transformation via spherical representations. Based on this insight, we introduce a novel architecture called SpherePose, which yields precise correspondence prediction through three core designs. Firstly, We endow the point-wise feature extraction with SO(3)-invariance, which facilitates robust mapping between camera coordinate space and object coordinate space regardless of rotation transformation. Secondly, the spherical attention mechanism is designed to propagate and integrate features among spherical anchors from a comprehensive perspective, thus mitigating the interference of noise and incomplete point cloud. Lastly, a hyperbolic correspondence loss function is designed to distinguish subtle distinctions, which can promote the precision of correspondence prediction. Experimental results on CAMERA25, REAL275 and HouseCat6D benchmarks demonstrate the superior performance of our method, verifying the effectiveness of spherical representations and architectural innovations.
comment: Accepted by ICLR 2025. Project page is available at https://renhuan1999.github.io/SpherePose
♻ ☆ SlideChat: A Large Vision-Language Assistant for Whole-Slide Pathology Image Understanding CVPR2025
Despite the progress made by multimodal large language models (MLLMs) in computational pathology, they remain limited by a predominant focus on patch-level analysis, missing essential contextual information at the whole-slide level. The lack of large-scale instruction datasets and the gigapixel scale of whole slide images (WSIs) pose significant developmental challenges. In this paper, we present SlideChat, the first vision-language assistant capable of understanding gigapixel whole-slide images, exhibiting excellent multimodal conversational capability and response complex instruction across diverse pathology scenarios. To support its development, we created SlideInstruction, the largest instruction-following dataset for WSIs consisting of 4.2K WSI captions and 176K VQA pairs with multiple categories. Furthermore, we propose SlideBench, a multimodal benchmark that incorporates captioning and VQA tasks to assess SlideChat's capabilities in varied clinical settings such as microscopy, diagnosis. Compared to both general and specialized MLLMs, SlideChat exhibits exceptional capabilities achieving state-of-the-art performance on 18 of 22 tasks. For example, it achieved an overall accuracy of 81.17% on SlideBench-VQA (TCGA), and 54.15% on SlideBench-VQA (BCNB). Our code, data, and model is publicly accessible at https://uni-medical.github.io/SlideChat.github.io.
comment: Accepted by CVPR2025
♻ ☆ RMDM: Radio Map Diffusion Model with Physics Informed
With the rapid development of wireless communication technology, the efficient utilization of spectrum resources, optimization of communication quality, and intelligent communication have become critical. Radio map reconstruction is essential for enabling advanced applications, yet challenges such as complex signal propagation and sparse data hinder accurate reconstruction. To address these issues, we propose the **Radio Map Diffusion Model (RMDM)**, a physics-informed framework that integrates **Physics-Informed Neural Networks (PINNs)** to incorporate constraints like the **Helmholtz equation**. RMDM employs a dual U-Net architecture: the first ensures physical consistency by minimizing PDE residuals, boundary conditions, and source constraints, while the second refines predictions via diffusion-based denoising. By leveraging physical laws, RMDM significantly enhances accuracy, robustness, and generalization. Experiments demonstrate that RMDM outperforms state-of-the-art methods, achieving **NMSE of 0.0031** and **RMSE of 0.0125** under the Static RM (SRM) setting, and **NMSE of 0.0047** and **RMSE of 0.0146** under the Dynamic RM (DRM) setting. These results establish a novel paradigm for integrating physics-informed and data-driven approaches in radio map reconstruction, particularly under sparse data conditions.
♻ ☆ Safety at Scale: A Comprehensive Survey of Large Model Safety
The rapid advancement of large models, driven by their exceptional abilities in learning and generalization through large-scale pre-training, has reshaped the landscape of Artificial Intelligence (AI). These models are now foundational to a wide range of applications, including conversational AI, recommendation systems, autonomous driving, content generation, medical diagnostics, and scientific discovery. However, their widespread deployment also exposes them to significant safety risks, raising concerns about robustness, reliability, and ethical implications. This survey provides a systematic review of current safety research on large models, covering Vision Foundation Models (VFMs), Large Language Models (LLMs), Vision-Language Pre-training (VLP) models, Vision-Language Models (VLMs), Diffusion Models (DMs), and large-model-based Agents. Our contributions are summarized as follows: (1) We present a comprehensive taxonomy of safety threats to these models, including adversarial attacks, data poisoning, backdoor attacks, jailbreak and prompt injection attacks, energy-latency attacks, data and model extraction attacks, and emerging agent-specific threats. (2) We review defense strategies proposed for each type of attacks if available and summarize the commonly used datasets and benchmarks for safety research. (3) Building on this, we identify and discuss the open challenges in large model safety, emphasizing the need for comprehensive safety evaluations, scalable and effective defense mechanisms, and sustainable data practices. More importantly, we highlight the necessity of collective efforts from the research community and international collaboration. Our work can serve as a useful reference for researchers and practitioners, fostering the ongoing development of comprehensive defense systems and platforms to safeguard AI models.
comment: 47 pages, 3 figures, 11 tables; GitHub: https://github.com/xingjunm/Awesome-Large-Model-Safety
♻ ☆ FlowTok: Flowing Seamlessly Across Text and Image Tokens
Bridging different modalities lies at the heart of cross-modality generation. While conventional approaches treat the text modality as a conditioning signal that gradually guides the denoising process from Gaussian noise to the target image modality, we explore a much simpler paradigm-directly evolving between text and image modalities through flow matching. This requires projecting both modalities into a shared latent space, which poses a significant challenge due to their inherently different representations: text is highly semantic and encoded as 1D tokens, whereas images are spatially redundant and represented as 2D latent embeddings. To address this, we introduce FlowTok, a minimal framework that seamlessly flows across text and images by encoding images into a compact 1D token representation. Compared to prior methods, this design reduces the latent space size by 3.3x at an image resolution of 256, eliminating the need for complex conditioning mechanisms or noise scheduling. Moreover, FlowTok naturally extends to image-to-text generation under the same formulation. With its streamlined architecture centered around compact 1D tokens, FlowTok is highly memory-efficient, requires significantly fewer training resources, and achieves much faster sampling speeds-all while delivering performance comparable to state-of-the-art models. Code will be available at https://github.com/bytedance/1d-tokenizer.
comment: Project page at https://tacju.github.io/projects/flowtok.html
♻ ☆ Data-Free Dynamic Compression of CNNs for Tractable Efficiency
To reduce the computational cost of convolutional neural networks (CNNs) on resource-constrained devices, structured pruning approaches have shown promise in lowering floating-point operations (FLOPs) without substantial drops in accuracy. However, most methods require fine-tuning or specific training procedures to achieve a reasonable trade-off between retained accuracy and reduction in FLOPs, adding computational overhead and requiring training data to be available. To this end, we propose HASTE (Hashing for Tractable Efficiency), a data-free, plug-and-play convolution module that instantly reduces a network's test-time inference cost without training or fine-tuning. Our approach utilizes locality-sensitive hashing (LSH) to detect redundancies in the channel dimension of latent feature maps, compressing similar channels to reduce input and filter depth simultaneously, resulting in cheaper convolutions. We demonstrate our approach on the popular vision benchmarks CIFAR-10 and ImageNet, where we achieve a 46.72% reduction in FLOPs with only a 1.25% loss in accuracy by swapping the convolution modules in a ResNet34 on CIFAR-10 for our HASTE module.
comment: Accepted at VISAPP 2025
♻ ☆ The PanAf-FGBG Dataset: Understanding the Impact of Backgrounds in Wildlife Behaviour Recognition CVPR
Computer vision analysis of camera trap video footage is essential for wildlife conservation, as captured behaviours offer some of the earliest indicators of changes in population health. Recently, several high-impact animal behaviour datasets and methods have been introduced to encourage their use; however, the role of behaviour-correlated background information and its significant effect on out-of-distribution generalisation remain unexplored. In response, we present the PanAf-FGBG dataset, featuring 20 hours of wild chimpanzee behaviours, recorded at over 350 individual camera locations. Uniquely, it pairs every video with a chimpanzee (referred to as a foreground video) with a corresponding background video (with no chimpanzee) from the same camera location. We present two views of the dataset: one with overlapping camera locations and one with disjoint locations. This setup enables, for the first time, direct evaluation of in-distribution and out-of-distribution conditions, and for the impact of backgrounds on behaviour recognition models to be quantified. All clips come with rich behavioural annotations and metadata including unique camera IDs and detailed textual scene descriptions. Additionally, we establish several baselines and present a highly effective latent-space normalisation technique that boosts out-of-distribution performance by +5.42% mAP for convolutional and +3.75% mAP for transformer-based models. Finally, we provide an in-depth analysis on the role of backgrounds in out-of-distribution behaviour recognition, including the so far unexplored impact of background durations (i.e., the count of background frames within foreground videos).
comment: 2025 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
♻ ☆ IDArb: Intrinsic Decomposition for Arbitrary Number of Input Views and Illuminations ICLR 2025
Capturing geometric and material information from images remains a fundamental challenge in computer vision and graphics. Traditional optimization-based methods often require hours of computational time to reconstruct geometry, material properties, and environmental lighting from dense multi-view inputs, while still struggling with inherent ambiguities between lighting and material. On the other hand, learning-based approaches leverage rich material priors from existing 3D object datasets but face challenges with maintaining multi-view consistency. In this paper, we introduce IDArb, a diffusion-based model designed to perform intrinsic decomposition on an arbitrary number of images under varying illuminations. Our method achieves accurate and multi-view consistent estimation on surface normals and material properties. This is made possible through a novel cross-view, cross-domain attention module and an illumination-augmented, view-adaptive training strategy. Additionally, we introduce ARB-Objaverse, a new dataset that provides large-scale multi-view intrinsic data and renderings under diverse lighting conditions, supporting robust training. Extensive experiments demonstrate that IDArb outperforms state-of-the-art methods both qualitatively and quantitatively. Moreover, our approach facilitates a range of downstream tasks, including single-image relighting, photometric stereo, and 3D reconstruction, highlighting its broad applications in realistic 3D content creation.
comment: ICLR 2025. Project Page: https://lizb6626.github.io/IDArb/
♻ ☆ MaskHand: Generative Masked Modeling for Robust Hand Mesh Reconstruction in the Wild
Reconstructing a 3D hand mesh from a single RGB image is challenging due to complex articulations, self-occlusions, and depth ambiguities. Traditional discriminative methods, which learn a deterministic mapping from a 2D image to a single 3D mesh, often struggle with the inherent ambiguities in 2D-to-3D mapping. To address this challenge, we propose MaskHand, a novel generative masked model for hand mesh recovery that synthesizes plausible 3D hand meshes by learning and sampling from the probabilistic distribution of the ambiguous 2D-to-3D mapping process. MaskHand consists of two key components: (1) a VQ-MANO, which encodes 3D hand articulations as discrete pose tokens in a latent space, and (2) a Context-Guided Masked Transformer that randomly masks out pose tokens and learns their joint distribution, conditioned on corrupted token sequence, image context, and 2D pose cues. This learned distribution facilitates confidence-guided sampling during inference, producing mesh reconstructions with low uncertainty and high precision. Extensive evaluations on benchmark and real-world datasets demonstrate that MaskHand achieves state-of-the-art accuracy, robustness, and realism in 3D hand mesh reconstruction. Project website: https://m-usamasaleem.github.io/publication/MaskHand/MaskHand.html.
♻ ☆ On the Fourier analysis in the SO(3) space : EquiLoPO Network
Analyzing volumetric data with rotational invariance or equivariance is an active topic in current research. Existing deep-learning approaches utilize either group convolutional networks limited to discrete rotations or steerable convolutional networks with constrained filter structures. This work proposes a novel equivariant neural network architecture that achieves analytical Equivariance to Local Pattern Orientation on the continuous SO(3) group while allowing unconstrained trainable filters - EquiLoPO Network. Our key innovations are a group convolutional operation leveraging irreducible representations as the Fourier basis and a local activation function in the SO(3) space that provides a well-defined mapping from input to output functions, preserving equivariance. By integrating these operations into a ResNet-style architecture, we propose a model that overcomes the limitations of prior methods. A comprehensive evaluation on diverse 3D medical imaging datasets from MedMNIST3D demonstrates the effectiveness of our approach, which consistently outperforms state of the art. This work suggests the benefits of true rotational equivariance on SO(3) and flexible unconstrained filters enabled by the local activation function, providing a flexible framework for equivariant deep learning on volumetric data with potential applications across domains. Our code is publicly available at https://gricad-gitlab.univ-grenoble-alpes.fr/GruLab/ILPO/-/tree/main/EquiLoPO.
♻ ☆ Ctrl-U: Robust Conditional Image Generation via Uncertainty-aware Reward Modeling ICLR 2025
In this paper, we focus on the task of conditional image generation, where an image is synthesized according to user instructions. The critical challenge underpinning this task is ensuring both the fidelity of the generated images and their semantic alignment with the provided conditions. To tackle this issue, previous studies have employed supervised perceptual losses derived from pre-trained models, i.e., reward models, to enforce alignment between the condition and the generated result. However, we observe one inherent shortcoming: considering the diversity of synthesized images, the reward model usually provides inaccurate feedback when encountering newly generated data, which can undermine the training process. To address this limitation, we propose an uncertainty-aware reward modeling, called Ctrl-U, including uncertainty estimation and uncertainty-aware regularization, designed to reduce the adverse effects of imprecise feedback from the reward model. Given the inherent cognitive uncertainty within reward models, even images generated under identical conditions often result in a relatively large discrepancy in reward loss. Inspired by the observation, we explicitly leverage such prediction variance as an uncertainty indicator. Based on the uncertainty estimation, we regularize the model training by adaptively rectifying the reward. In particular, rewards with lower uncertainty receive higher loss weights, while those with higher uncertainty are given reduced weights to allow for larger variability. The proposed uncertainty regularization facilitates reward fine-tuning through consistency construction. Extensive experiments validate the effectiveness of our methodology in improving the controllability and generation quality, as well as its scalability across diverse conditional scenarios. Codes are publicly available at https://grenoble-zhang.github.io/Ctrl-U-Page/.
comment: ICLR 2025
♻ ☆ GaussRender: Learning 3D Occupancy with Gaussian Rendering
Understanding the 3D geometry and semantics of driving scenes is critical for safe autonomous driving. Recent advances in 3D occupancy prediction have improved scene representation but often suffer from spatial inconsistencies, leading to floating artifacts and poor surface localization. Existing voxel-wise losses (e.g., cross-entropy) fail to enforce geometric coherence. In this paper, we propose GaussRender, a module that improves 3D occupancy learning by enforcing projective consistency. Our key idea is to project both predicted and ground-truth 3D occupancy into 2D camera views, where we apply supervision. Our method penalizes 3D configurations that produce inconsistent 2D projections, thereby enforcing a more coherent 3D structure. To achieve this efficiently, we leverage differentiable rendering with Gaussian splatting. GaussRender seamlessly integrates with existing architectures while maintaining efficiency and requiring no inference-time modifications. Extensive evaluations on multiple benchmarks (SurroundOcc-nuScenes, Occ3D-nuScenes, SSCBench-KITTI360) demonstrate that GaussRender significantly improves geometric fidelity across various 3D occupancy models (TPVFormer, SurroundOcc, Symphonies), achieving state-of-the-art results, particularly on surface-sensitive metrics. The code is open-sourced at https://github.com/valeoai/GaussRender.
♻ ☆ Mitigating Ambiguities in 3D Classification with Gaussian Splatting CVPR 2025
3D classification with point cloud input is a fundamental problem in 3D vision. However, due to the discrete nature and the insufficient material description of point cloud representations, there are ambiguities in distinguishing wire-like and flat surfaces, as well as transparent or reflective objects. To address these issues, we propose Gaussian Splatting (GS) point cloud-based 3D classification. We find that the scale and rotation coefficients in the GS point cloud help characterize surface types. Specifically, wire-like surfaces consist of multiple slender Gaussian ellipsoids, while flat surfaces are composed of a few flat Gaussian ellipsoids. Additionally, the opacity in the GS point cloud represents the transparency characteristics of objects. As a result, ambiguities in point cloud-based 3D classification can be mitigated utilizing GS point cloud as input. To verify the effectiveness of GS point cloud input, we construct the first real-world GS point cloud dataset in the community, which includes 20 categories with 200 objects in each category. Experiments not only validate the superiority of GS point cloud input, especially in distinguishing ambiguous objects, but also demonstrate the generalization ability across different classification methods.
comment: Accepted by CVPR 2025
♻ ☆ MedVLM-R1: Incentivizing Medical Reasoning Capability of Vision-Language Models (VLMs) via Reinforcement Learning
Reasoning is a critical frontier for advancing medical image analysis, where transparency and trustworthiness play a central role in both clinician trust and regulatory approval. Although Medical Visual Language Models (VLMs) show promise for radiological tasks, most existing VLMs merely produce final answers without revealing the underlying reasoning. To address this gap, we introduce MedVLM-R1, a medical VLM that explicitly generates natural language reasoning to enhance transparency and trustworthiness. Instead of relying on supervised fine-tuning (SFT), which often suffers from overfitting to training distributions and fails to foster genuine reasoning, MedVLM-R1 employs a reinforcement learning framework that incentivizes the model to discover human-interpretable reasoning paths without using any reasoning references. Despite limited training data (600 visual question answering samples) and model parameters (2B), MedVLM-R1 boosts accuracy from 55.11% to 78.22% across MRI, CT, and X-ray benchmarks, outperforming larger models trained on over a million samples. It also demonstrates robust domain generalization under out-of-distribution tasks. By unifying medical image analysis with explicit reasoning, MedVLM-R1 marks a pivotal step toward trustworthy and interpretable AI in clinical practice. Inference model is available at: https://huggingface.co/JZPeterPan/MedVLM-R1.
♻ ☆ Paint by Inpaint: Learning to Add Image Objects by Removing Them First
Image editing has advanced significantly with the introduction of text-conditioned diffusion models. Despite this progress, seamlessly adding objects to images based on textual instructions without requiring user-provided input masks remains a challenge. We address this by leveraging the insight that removing objects (Inpaint) is significantly simpler than its inverse process of adding them (Paint), attributed to inpainting models that benefit from segmentation mask guidance. Capitalizing on this realization, by implementing an automated and extensive pipeline, we curate a filtered large-scale image dataset containing pairs of images and their corresponding object-removed versions. Using these pairs, we train a diffusion model to inverse the inpainting process, effectively adding objects into images. Unlike other editing datasets, ours features natural target images instead of synthetic ones while ensuring source-target consistency by construction. Additionally, we utilize a large Vision-Language Model to provide detailed descriptions of the removed objects and a Large Language Model to convert these descriptions into diverse, natural-language instructions. Our quantitative and qualitative results show that the trained model surpasses existing models in both object addition and general editing tasks. Visit our project page for the released dataset and trained models: https://rotsteinnoam.github.io/Paint-by-Inpaint.
♻ ☆ MultiPlaneNeRF: Neural Radiance Field with Non-Trainable Representation
NeRF is a popular model that efficiently represents 3D objects from 2D images. However, vanilla NeRF has some important limitations. NeRF must be trained on each object separately. The training time is long since we encode the object's shape and color in neural network weights. Moreover, NeRF does not generalize well to unseen data. In this paper, we present MultiPlaneNeRF -- a model that simultaneously solves the above problems. Our model works directly on 2D images. We project 3D points on 2D images to produce non-trainable representations. The projection step is not parametrized and a very shallow decoder can efficiently process the representation. Furthermore, we can train MultiPlaneNeRF on a large data set and force our implicit decoder to generalize across many objects. Consequently, we can only replace the 2D images (without additional training) to produce a NeRF representation of the new object. In the experimental section, we demonstrate that MultiPlaneNeRF achieves results comparable to state-of-the-art models for synthesizing new views and has generalization properties. Additionally, MultiPlane decoder can be used as a component in large generative models like GANs.
♻ ☆ Towards Long-Horizon Vision-Language Navigation: Platform, Benchmark and Method CVPR 2025
Existing Vision-Language Navigation (VLN) methods primarily focus on single-stage navigation, limiting their effectiveness in multi-stage and long-horizon tasks within complex and dynamic environments. To address these limitations, we propose a novel VLN task, named Long-Horizon Vision-Language Navigation (LH-VLN), which emphasizes long-term planning and decision consistency across consecutive subtasks. Furthermore, to support LH-VLN, we develop an automated data generation platform NavGen, which constructs datasets with complex task structures and improves data utility through a bidirectional, multi-granularity generation approach. To accurately evaluate complex tasks, we construct the Long-Horizon Planning and Reasoning in VLN (LHPR-VLN) benchmark consisting of 3,260 tasks with an average of 150 task steps, serving as the first dataset specifically designed for the long-horizon vision-language navigation task. Furthermore, we propose Independent Success Rate (ISR), Conditional Success Rate (CSR), and CSR weight by Ground Truth (CGT) metrics, to provide fine-grained assessments of task completion. To improve model adaptability in complex tasks, we propose a novel Multi-Granularity Dynamic Memory (MGDM) module that integrates short-term memory blurring with long-term memory retrieval to enable flexible navigation in dynamic environments. Our platform, benchmark and method supply LH-VLN with a robust data generation pipeline, comprehensive model evaluation dataset, reasonable metrics, and a novel VLN model, establishing a foundational framework for advancing LH-VLN.
comment: Accepted by CVPR 2025. A novel Long-Horizon Vision-Language Navigation task, project page: https://hcplab-sysu.github.io/LH-VLN/
♻ ☆ Pathways on the Image Manifold: Image Editing via Video Generation
Recent advances in image editing, driven by image diffusion models, have shown remarkable progress. However, significant challenges remain, as these models often struggle to follow complex edit instructions accurately and frequently compromise fidelity by altering key elements of the original image. Simultaneously, video generation has made remarkable strides, with models that effectively function as consistent and continuous world simulators. In this paper, we propose merging these two fields by utilizing image-to-video models for image editing. We reformulate image editing as a temporal process, using pretrained video models to create smooth transitions from the original image to the desired edit. This approach traverses the image manifold continuously, ensuring consistent edits while preserving the original image's key aspects. Our approach achieves state-of-the-art results on text-based image editing, demonstrating significant improvements in both edit accuracy and image preservation. Visit our project page: https://rotsteinnoam.github.io/Frame2Frame.
♻ ☆ MMO-IG: Multi-Class and Multi-Scale Object Image Generation for Remote Sensing
The rapid advancement of deep generative models (DGMs) has significantly advanced research in computer vision, providing a cost-effective alternative to acquiring vast quantities of expensive imagery. However, existing methods predominantly focus on synthesizing remote sensing (RS) images aligned with real images in a global layout view, which limits their applicability in RS image object detection (RSIOD) research. To address these challenges, we propose a multi-class and multi-scale object image generator based on DGMs, termed MMO-IG, designed to generate RS images with supervised object labels from global and local aspects simultaneously. Specifically, from the local view, MMO-IG encodes various RS instances using an iso-spacing instance map (ISIM). During the generation process, it decodes each instance region with iso-spacing value in ISIM-corresponding to both background and foreground instances-to produce RS images through the denoising process of diffusion models. Considering the complex interdependencies among MMOs, we construct a spatial-cross dependency knowledge graph (SCDKG). This ensures a realistic and reliable multidirectional distribution among MMOs for region embedding, thereby reducing the discrepancy between source and target domains. Besides, we propose a structured object distribution instruction (SODI) to guide the generation of synthesized RS image content from a global aspect with SCDKG-based ISIM together. Extensive experimental results demonstrate that our MMO-IG exhibits superior generation capabilities for RS images with dense MMO-supervised labels, and RS detectors pre-trained with MMO-IG show excellent performance on real-world datasets.
♻ ☆ Skin Cancer Machine Learning Model Tone Bias
Background: Many open-source skin cancer image datasets are the result of clinical trials conducted in countries with lighter skin tones. Due to this tone imbalance, machine learning models derived from these datasets can perform well at detecting skin cancer for lighter skin tones. Any tone bias in these models could introduce fairness concerns and reduce public trust in the artificial intelligence health field. Methods: We examine a subset of images from the International Skin Imaging Collaboration (ISIC) archive that provide tone information. The subset has a significant tone imbalance. These imbalances could explain a model's tone bias. To address this, we train models using the imbalanced dataset and a balanced dataset to compare against. The datasets are used to train a deep convolutional neural network model to classify the images as malignant or benign. We then evaluate the models' disparate impact, based on selection rate, relative to dark or light skin tone. Results: Using the imbalanced dataset, we found that the model is significantly better at detecting malignant images in lighter tone resulting in a disparate impact of 0.577. Using the balanced dataset, we found that the model is also significantly better at detecting malignant images in lighter versus darker tones with a disparate impact of 0.684. Using the imbalanced or balanced dataset to train the model still results in a disparate impact well below the standard threshold of 0.80 which suggests the model is biased with respect to skin tone. Conclusion: The results show that typical skin cancer machine learning models can be tone biased. These results provide evidence that diagnosis or tone imbalance is not the cause of the bias. Other techniques will be necessary to identify and address the bias in these models, an area of future investigation.
♻ ☆ Enhancing the automatic segmentation and analysis of 3D liver vasculature models MICCAI 2024
Surgical assessment of liver cancer patients requires identification of the vessel trees from medical images. Specifically, the venous trees - the portal (perfusing) and the hepatic (draining) trees are important for understanding the liver anatomy and disease state, and perform surgery planning. This research aims to improve the 3D segmentation, skeletonization, and subsequent analysis of vessel trees, by creating an automatic pipeline based on deep learning and image processing techniques. The first part of this work explores the impact of differentiable skeletonization methods such as ClDice and morphological skeletonization loss, on the overall liver vessel segmentation performance. To this aim, it studies how to improve vessel tree connectivity. The second part of this study converts a single class vessel segmentation into multi-class ones, separating the two venous trees. It builds on the previous two-class vessel segmentation model, which vessel tree outputs might be entangled, and on connected components and skeleton analyses of the trees. After providing sub-labeling of the specific anatomical branches of each venous tree, these algorithms also enable a morphometric analysis of the vessel trees by extracting various geometrical markers. In conclusion, we propose a method that successfully improves current skeletonization methods, for extensive vascular trees that contain vessels of different calibers. The separation algorithm creates a clean multi-class segmentation of the vessels, validated by surgeons to provide low error. A new, publicly shared high-quality liver vessel dataset of 77 cases is thus created. Finally a method to annotate vessel trees according to anatomy is provided, enabling a unique liver vessel morphometry analysis.
comment: Paper presented at MICCAI 2024 Workshop: ADSMI. This work was done in the context of an internship at Simbiotx, Inria
♻ ☆ TikZero: Zero-Shot Text-Guided Graphics Program Synthesis
With the rise of generative AI, synthesizing figures from text captions becomes a compelling application. However, achieving high geometric precision and editability requires representing figures as graphics programs in languages like TikZ, and aligned training data (i.e., graphics programs with captions) remains scarce. Meanwhile, large amounts of unaligned graphics programs and captioned raster images are more readily available. We reconcile these disparate data sources by presenting TikZero, which decouples graphics program generation from text understanding by using image representations as an intermediary bridge. It enables independent training on graphics programs and captioned images and allows for zero-shot text-guided graphics program synthesis during inference. We show that our method substantially outperforms baselines that can only operate with caption-aligned graphics programs. Furthermore, when leveraging caption-aligned graphics programs as a complementary training signal, TikZero matches or exceeds the performance of much larger models, including commercial systems like GPT-4o. Our code, datasets, and select models are publicly available.
comment: Project page: https://github.com/potamides/DeTikZify
Low-Biased General Annotated Dataset Generation CVPR2025
Pre-training backbone networks on a general annotated dataset (e.g., ImageNet) that comprises numerous manually collected images with category annotations has proven to be indispensable for enhancing the generalization capacity of downstream visual tasks. However, those manually collected images often exhibit bias, which is non-transferable across either categories or domains, thus causing the model's generalization capacity degeneration. To mitigate this problem, we present a low-biased general annotated dataset generation framework (lbGen). Instead of expensive manual collection, we aim at directly generating low-biased images with category annotations. To achieve this goal, we propose to leverage the advantage of a multimodal foundation model (e.g., CLIP), in terms of aligning images in a low-biased semantic space defined by language. Specifically, we develop a bi-level semantic alignment loss, which not only forces all generated images to be consistent with the semantic distribution of all categories belonging to the target dataset in an adversarial learning manner, but also requires each generated image to match the semantic description of its category name. In addition, we further cast an existing image quality scoring model into a quality assurance loss to preserve the quality of the generated image. By leveraging these two loss functions, we can obtain a low-biased image generation model by simply fine-tuning a pre-trained diffusion model using only all category names in the target dataset as input. Experimental results confirm that, compared with the manually labeled dataset or other synthetic datasets, the utilization of our generated low-biased dataset leads to stable generalization capacity enhancement of different backbone networks across various tasks, especially in tasks where the manually labeled samples are scarce.
comment: CVPR2025 Accepted Paper
♻ ☆ DCAT: Dual Cross-Attention Fusion for Disease Classification in Radiological Images with Uncertainty Estimation
Accurate and reliable image classification is crucial in radiology, where diagnostic decisions significantly impact patient outcomes. Conventional deep learning models tend to produce overconfident predictions despite underlying uncertainties, potentially leading to misdiagnoses. Attention mechanisms have emerged as powerful tools in deep learning, enabling models to focus on relevant parts of the input data. Combined with feature fusion, they can be effective in addressing uncertainty challenges. Cross-attention has become increasingly important in medical image analysis for capturing dependencies across features and modalities. This paper proposes a novel dual cross-attention fusion model for medical image analysis by addressing key challenges in feature integration and interpretability. Our approach introduces a bidirectional cross-attention mechanism with refined channel and spatial attention that dynamically fuses feature maps from EfficientNetB4 and ResNet34 leveraging multi-network contextual dependencies. The refined features through channel and spatial attention highlights discriminative patterns crucial for accurate classification. The proposed model achieved AUC of 99.75%, 100%, 99.93% and 98.69% and AUPR of 99.81%, 100%, 99.97%, and 96.36% on Covid-19, Tuberculosis, Pneumonia Chest X-ray images and Retinal OCT images respectively. The entropy values and several high uncertain samples give an interpretable visualization from the model enhancing transparency. By combining multi-scale feature extraction, bidirectional attention and uncertainty estimation, our proposed model strongly impacts medical image analysis.
comment: 18 pages, 8 figures, 5 tables
♻ ☆ KeyFace: Expressive Audio-Driven Facial Animation for Long Sequences via KeyFrame Interpolation CVPR 2025
Current audio-driven facial animation methods achieve impressive results for short videos but suffer from error accumulation and identity drift when extended to longer durations. Existing methods attempt to mitigate this through external spatial control, increasing long-term consistency but compromising the naturalness of motion. We propose KeyFace, a novel two-stage diffusion-based framework, to address these issues. In the first stage, keyframes are generated at a low frame rate, conditioned on audio input and an identity frame, to capture essential facial expressions and movements over extended periods of time. In the second stage, an interpolation model fills in the gaps between keyframes, ensuring smooth transitions and temporal coherence. To further enhance realism, we incorporate continuous emotion representations and handle a wide range of non-speech vocalizations (NSVs), such as laughter and sighs. We also introduce two new evaluation metrics for assessing lip synchronization and NSV generation. Experimental results show that KeyFace outperforms state-of-the-art methods in generating natural, coherent facial animations over extended durations, successfully encompassing NSVs and continuous emotions.
comment: CVPR 2025
♻ ☆ FiVL: A Framework for Improved Vision-Language Alignment through the Lens of Training, Evaluation and Explainability
Large Vision Language Models (LVLMs) have achieved significant progress in integrating visual and textual inputs for multimodal reasoning. However, a recurring challenge is ensuring these models utilize visual information as effectively as linguistic content when both modalities are necessary to formulate an accurate answer. We hypothesize that hallucinations arise due to the lack of effective visual grounding in current LVLMs. Furthermore, current vision-language benchmarks are not specifically measuring the degree to which the answer require the visual input. This limitation makes it challenging to confirm that the image is truly necessary, particularly in tasks like visual question answering. In this work, we introduce FiVL, a novel method for constructing datasets designed to train LVLMs for enhanced visual grounding and also evaluate their effectiveness in achieving it. We demonstrate the value of our datasets through three approaches. First, we introduce a novel training task based on our augmented training dataset, resulting in better performance than the baseline. Second, we present benchmarks to assess the model's ability to use image as substantive evidence, rather than relying solely on linguistic priors. Finally, we identify attention heads with the strongest vision-language alignment, enabling explainability on visual-driven hallucinations. The code is available at https://github.com/IntelLabs/fivl.
♻ ☆ DORNet: A Degradation Oriented and Regularized Network for Blind Depth Super-Resolution CVPR 2025
Recent RGB-guided depth super-resolution methods have achieved impressive performance under the assumption of fixed and known degradation (e.g., bicubic downsampling). However, in real-world scenarios, captured depth data often suffer from unconventional and unknown degradation due to sensor limitations and complex imaging environments (e.g., low reflective surfaces, varying illumination). Consequently, the performance of these methods significantly declines when real-world degradation deviate from their assumptions. In this paper, we propose the Degradation Oriented and Regularized Network (DORNet), a novel framework designed to adaptively address unknown degradation in real-world scenes through implicit degradation representations. Our approach begins with the development of a self-supervised degradation learning strategy, which models the degradation representations of low-resolution depth data using routing selection-based degradation regularization. To facilitate effective RGB-D fusion, we further introduce a degradation-oriented feature transformation module that selectively propagates RGB content into the depth data based on the learned degradation priors. Extensive experimental results on both real and synthetic datasets demonstrate the superiority of our DORNet in handling unknown degradation, outperforming existing methods. The code is available at https://github.com/yanzq95/DORNet.
comment: CVPR 2025
♻ ☆ ChemVLM: Exploring the Power of Multimodal Large Language Models in Chemistry Area
Large Language Models (LLMs) have achieved remarkable success and have been applied across various scientific fields, including chemistry. However, many chemical tasks require the processing of visual information, which cannot be successfully handled by existing chemical LLMs. This brings a growing need for models capable of integrating multimodal information in the chemical domain. In this paper, we introduce \textbf{ChemVLM}, an open-source chemical multimodal large language model specifically designed for chemical applications. ChemVLM is trained on a carefully curated bilingual multimodal dataset that enhances its ability to understand both textual and visual chemical information, including molecular structures, reactions, and chemistry examination questions. We develop three datasets for comprehensive evaluation, tailored to Chemical Optical Character Recognition (OCR), Multimodal Chemical Reasoning (MMCR), and Multimodal Molecule Understanding tasks. We benchmark ChemVLM against a range of open-source and proprietary multimodal large language models on various tasks. Experimental results demonstrate that ChemVLM achieves competitive performance across all evaluated tasks. Our model can be found at https://huggingface.co/AI4Chem/ChemVLM-26B.
comment: 11 pages, updated version
♻ ☆ Post-hoc Probabilistic Vision-Language Models
Vision-language models (VLMs), such as CLIP and SigLIP, have found remarkable success in classification, retrieval, and generative tasks. For this, VLMs deterministically map images and text descriptions to a joint latent space in which their similarity is assessed using the cosine similarity. However, a deterministic mapping of inputs fails to capture uncertainties over concepts arising from domain shifts when used in downstream tasks. In this work, we propose post-hoc uncertainty estimation in VLMs that does not require additional training. Our method leverages a Bayesian posterior approximation over the last layers in VLMs and analytically quantifies uncertainties over cosine similarities. We demonstrate its effectiveness for uncertainty quantification and support set selection in active learning. Compared to baselines, we obtain improved and well-calibrated predictive uncertainties, interpretable uncertainty estimates, and sample-efficient active learning. Our results show promise for safety-critical applications of large-scale models.
comment: Project page: https://aaltoml.github.io/BayesVLM/
♻ ☆ DepthCues: Evaluating Monocular Depth Perception in Large Vision Models CVPR 2025
Large-scale pre-trained vision models are becoming increasingly prevalent, offering expressive and generalizable visual representations that benefit various downstream tasks. Recent studies on the emergent properties of these models have revealed their high-level geometric understanding, in particular in the context of depth perception. However, it remains unclear how depth perception arises in these models without explicit depth supervision provided during pre-training. To investigate this, we examine whether the monocular depth cues, similar to those used by the human visual system, emerge in these models. We introduce a new benchmark, DepthCues, designed to evaluate depth cue understanding, and present findings across 20 diverse and representative pre-trained vision models. Our analysis shows that human-like depth cues emerge in more recent larger models. We also explore enhancing depth perception in large vision models by fine-tuning on DepthCues, and find that even without dense depth supervision, this improves depth estimation. To support further research, our benchmark and evaluation code will be made publicly available for studying depth perception in vision models.
comment: Accepted to CVPR 2025. Project page: https://danier97.github.io/depthcues/
♻ ☆ Deep Learning Pipeline for Fully Automated Myocardial Infarct Segmentation from Clinical Cardiac MR Scans
Purpose: To develop and evaluate a deep learning-based method that allows to perform myocardial infarct segmentation in a fully-automated way. Materials and Methods: For this retrospective study, a cascaded framework of two and three-dimensional convolutional neural networks (CNNs), specialized on identifying ischemic myocardial scars on late gadolinium enhancement (LGE) cardiac magnetic resonance (CMR) images, was trained on an in-house training dataset consisting of 144 examinations. On a separate test dataset from the same institution, including images from 152 examinations obtained between 2021 and 2023, a quantitative comparison between artificial intelligence (AI)-based segmentations and manual segmentations was performed. Further, qualitative assessment of segmentation accuracy was evaluated for both human and AI-generated contours by two CMR experts in a blinded experiment. Results: Excellent agreement could be found between manually and automatically calculated infarct volumes ($\rho_c$ = 0.9). The qualitative evaluation showed that compared to human-based measurements, the experts rated the AI-based segmentations to better represent the actual extent of infarction significantly (p < 0.001) more often (33.4% AI, 25.1% human, 41.5% equal). On the contrary, for segmentation of microvascular obstruction (MVO), manual measurements were still preferred (11.3% AI, 55.6% human, 33.1% equal). Conclusion: This fully-automated segmentation pipeline enables CMR infarct size to be calculated in a very short time and without requiring any pre-processing of the input images while matching the segmentation quality of trained human observers. In a blinded experiment, experts preferred automated infarct segmentations more often than manual segmentations, paving the way for a potential clinical application.
♻ ☆ MonoGSDF: Exploring Monocular Geometric Cues for Gaussian Splatting-Guided Implicit Surface Reconstruction
Accurate meshing from monocular images remains a key challenge in 3D vision. While state-of-the-art 3D Gaussian Splatting (3DGS) methods excel at synthesizing photorealistic novel views through rasterization-based rendering, their reliance on sparse, explicit primitives severely limits their ability to recover watertight and topologically consistent 3D surfaces.We introduce MonoGSDF, a novel method that couples Gaussian-based primitives with a neural Signed Distance Field (SDF) for high-quality reconstruction. During training, the SDF guides Gaussians' spatial distribution, while at inference, Gaussians serve as priors to reconstruct surfaces, eliminating the need for memory-intensive Marching Cubes. To handle arbitrary-scale scenes, we propose a scaling strategy for robust generalization. A multi-resolution training scheme further refines details and monocular geometric cues from off-the-shelf estimators enhance reconstruction quality. Experiments on real-world datasets show MonoGSDF outperforms prior methods while maintaining efficiency.
♻ ☆ Video In-context Learning: Autoregressive Transformers are Zero-Shot Video Imitators ICLR 2025
People interact with the real-world largely dependent on visual signal, which are ubiquitous and illustrate detailed demonstrations. In this paper, we explore utilizing visual signals as a new interface for models to interact with the environment. Specifically, we choose videos as a representative visual signal. And by training autoregressive Transformers on video datasets in a self-supervised objective, we find that the model emerges a zero-shot capability to infer the semantics from a demonstration video, and imitate the semantics to an unseen scenario. This allows the models to perform unseen tasks by watching the demonstration video in an in-context manner, without further fine-tuning. To validate the imitation capacity, we design various evaluation metrics including both objective and subjective measures. The results show that our models can generate high-quality video clips that accurately align with the semantic guidance provided by the demonstration videos, and we also show that the imitation capacity follows the scaling law. Code and models have been open-sourced.
comment: ICLR 2025
♻ ☆ RoomTour3D: Geometry-Aware Video-Instruction Tuning for Embodied Navigation CVPR2025
Vision-and-Language Navigation (VLN) suffers from the limited diversity and scale of training data, primarily constrained by the manual curation of existing simulators. To address this, we introduce RoomTour3D, a video-instruction dataset derived from web-based room tour videos that capture real-world indoor spaces and human walking demonstrations. Unlike existing VLN datasets, RoomTour3D leverages the scale and diversity of online videos to generate open-ended human walking trajectories and open-world navigable instructions. To compensate for the lack of navigation data in online videos, we perform 3D reconstruction and obtain 3D trajectories of walking paths augmented with additional information on the room types, object locations and 3D shape of surrounding scenes. Our dataset includes $\sim$100K open-ended description-enriched trajectories with $\sim$200K instructions, and 17K action-enriched trajectories from 1847 room tour environments. We demonstrate experimentally that RoomTour3D enables significant improvements across multiple VLN tasks including CVDN, SOON, R2R, and REVERIE. Moreover, RoomTour3D facilitates the development of trainable zero-shot VLN agents, showcasing the potential and challenges of advancing towards open-world navigation.
comment: CVPR2025
♻ ☆ DocLayLLM: An Efficient Multi-modal Extension of Large Language Models for Text-rich Document Understanding CVPR2025
Text-rich document understanding (TDU) requires comprehensive analysis of documents containing substantial textual content and complex layouts. While Multimodal Large Language Models (MLLMs) have achieved fast progress in this domain, existing approaches either demand significant computational resources or struggle with effective multi-modal integration. In this paper, we introduce DocLayLLM, an efficient multi-modal extension of LLMs specifically designed for TDU. By lightly integrating visual patch tokens and 2D positional tokens into LLMs' input and encoding the document content using the LLMs themselves, we fully take advantage of the document comprehension capability of LLMs and enhance their perception of OCR information. We have also deeply considered the role of chain-of-thought (CoT) and innovatively proposed the techniques of CoT Pre-training and CoT Annealing. Our DocLayLLM can achieve remarkable performances with lightweight training settings, showcasing its efficiency and effectiveness. Experimental results demonstrate that our DocLayLLM outperforms existing OCR-dependent methods and OCR-free competitors. Code and model are available at https://github.com/whlscut/DocLayLLM.
comment: CVPR2025
♻ ☆ LLaVA-UHD v2: an MLLM Integrating High-Resolution Semantic Pyramid via Hierarchical Window Transformer
Vision transformers (ViTs) are widely employed in multimodal large language models (MLLMs) for visual encoding. However, they exhibit inferior performance on tasks regarding fine-grained visual perception. We attribute this to the limitations of ViTs in capturing diverse multi-modal visual levels, such as low-level details. To address this issue, we present LLaVA-UHD v2, an MLLM with advanced perception abilities by introducing a well-designed vision-language projector, the Hierarchical window (Hiwin) transformer. Hiwin transformer enhances MLLM's ability to capture diverse multi-modal visual granularities, by incorporating our constructed high-resolution semantic pyramid. Specifically, Hiwin transformer comprises two key modules: (i) a visual detail injection module, which progressively injects low-level visual details into high-level language-aligned semantics features, thereby forming an inverse semantic pyramid (ISP), and (ii) a hierarchical window attention module, which leverages cross-scale windows to condense multi-level semantics from the ISP. Extensive experiments show that LLaVA-UHD v2 outperforms compared MLLMs on a wide range of benchmarks. Notably, our design achieves an average boost of 3.7% across 14 benchmarks compared with the baseline method, 9.3% on DocVQA for instance. All the data and code will be publicly available to facilitate future research.
♻ ☆ DEIM: DETR with Improved Matching for Fast Convergence CVPR 2025
We introduce DEIM, an innovative and efficient training framework designed to accelerate convergence in real-time object detection with Transformer-based architectures (DETR). To mitigate the sparse supervision inherent in one-to-one (O2O) matching in DETR models, DEIM employs a Dense O2O matching strategy. This approach increases the number of positive samples per image by incorporating additional targets, using standard data augmentation techniques. While Dense O2O matching speeds up convergence, it also introduces numerous low-quality matches that could affect performance. To address this, we propose the Matchability-Aware Loss (MAL), a novel loss function that optimizes matches across various quality levels, enhancing the effectiveness of Dense O2O. Extensive experiments on the COCO dataset validate the efficacy of DEIM. When integrated with RT-DETR and D-FINE, it consistently boosts performance while reducing training time by 50%. Notably, paired with RT-DETRv2, DEIM achieves 53.2% AP in a single day of training on an NVIDIA 4090 GPU. Additionally, DEIM-trained real-time models outperform leading real-time object detectors, with DEIM-D-FINE-L and DEIM-D-FINE-X achieving 54.7% and 56.5% AP at 124 and 78 FPS on an NVIDIA T4 GPU, respectively, without the need for additional data. We believe DEIM sets a new baseline for advancements in real-time object detection. Our code and pre-trained models are available at https://github.com/ShihuaHuang95/DEIM.
comment: CVPR 2025
♻ ☆ Gaussian Random Fields as an Abstract Representation of Patient Metadata for Multimodal Medical Image Segmentation
The growing rate of chronic wound occurrence, especially in patients with diabetes, has become a concerning trend in recent years. Chronic wounds are difficult and costly to treat, and have become a serious burden on health care systems worldwide. Chronic wounds can have devastating consequences for the patient, with infection often leading to reduced quality of life and increased mortality risk. Innovative deep learning methods for the detection and monitoring of such wounds have the potential to reduce the impact to both patient and clinician. We present a novel multimodal segmentation method which allows for the introduction of patient metadata into the training workflow whereby the patient data are expressed as Gaussian random fields. Our results indicate that the proposed method improved performance when utilising multiple models, each trained on different metadata categories. Using the Diabetic Foot Ulcer Challenge 2022 test set, when compared to the baseline results (intersection over union = 0.4670, Dice similarity coefficient = 0.5908) we demonstrate improvements of +0.0220 and +0.0229 for intersection over union and Dice similarity coefficient respectively. This paper presents the first study to focus on integrating patient data into a chronic wound segmentation workflow. Our results show significant performance gains when training individual models using specific metadata categories, followed by average merging of prediction masks using distance transforms. All source code for this study is available at: https://github.com/mmu-dermatology-research/multimodal-grf
♻ ☆ MMLNB: Multi-Modal Learning for Neuroblastoma Subtyping Classification Assisted with Textual Description Generation
Neuroblastoma (NB), a leading cause of childhood cancer mortality, exhibits significant histopathological variability, necessitating precise subtyping for accurate prognosis and treatment. Traditional diagnostic methods rely on subjective evaluations that are time-consuming and inconsistent. To address these challenges, we introduce MMLNB, a multi-modal learning (MML) model that integrates pathological images with generated textual descriptions to improve classification accuracy and interpretability. The approach follows a two-stage process. First, we fine-tune a Vision-Language Model (VLM) to enhance pathology-aware text generation. Second, the fine-tuned VLM generates textual descriptions, using a dual-branch architecture to independently extract visual and textual features. These features are fused via Progressive Robust Multi-Modal Fusion (PRMF) Block for stable training. Experimental results show that the MMLNB model is more accurate than the single modal model. Ablation studies demonstrate the importance of multi-modal fusion, fine-tuning, and the PRMF mechanism. This research creates a scalable AI-driven framework for digital pathology, enhancing reliability and interpretability in NB subtyping classification. Our source code is available at https://github.com/HovChen/MMLNB.
comment: 25 pages, 7 figures
♻ ☆ Improving Generalization of Universal Adversarial Perturbation via Dynamic Maximin Optimization AAAI 2025
Deep neural networks (DNNs) are susceptible to universal adversarial perturbations (UAPs). These perturbations are meticulously designed to fool the target model universally across all sample classes. Unlike instance-specific adversarial examples (AEs), generating UAPs is more complex because they must be generalized across a wide range of data samples and models. Our research reveals that existing universal attack methods, which optimize UAPs using DNNs with static model parameter snapshots, do not fully leverage the potential of DNNs to generate more effective UAPs. Rather than optimizing UAPs against static DNN models with a fixed training set, we suggest using dynamic model-data pairs to generate UAPs. In particular, we introduce a dynamic maximin optimization strategy, aiming to optimize the UAP across a variety of optimal model-data pairs. We term this approach DM-UAP. DM-UAP utilizes an iterative max-min-min optimization framework that refines the model-data pairs, coupled with a curriculum UAP learning algorithm to examine the combined space of model parameters and data thoroughly. Comprehensive experiments on the ImageNet dataset demonstrate that the proposed DM-UAP markedly enhances both cross-sample universality and cross-model transferability of UAPs. Using only 500 samples for UAP generation, DM-UAP outperforms the state-of-the-art approach with an average increase in fooling ratio of 12.108%.
comment: Accepted in AAAI 2025
♻ ☆ BiM-VFI: Bidirectional Motion Field-Guided Frame Interpolation for Video with Non-uniform Motions
Existing Video Frame interpolation (VFI) models tend to suffer from time-to-location ambiguity when trained with video of non-uniform motions, such as accelerating, decelerating, and changing directions, which often yield blurred interpolated frames. In this paper, we propose (i) a novel motion description map, Bidirectional Motion field (BiM), to effectively describe non-uniform motions; (ii) a BiM-guided Flow Net (BiMFN) with Content-Aware Upsampling Network (CAUN) for precise optical flow estimation; and (iii) Knowledge Distillation for VFI-centric Flow supervision (KDVCF) to supervise the motion estimation of VFI model with VFI-centric teacher flows. The proposed VFI is called a Bidirectional Motion field-guided VFI (BiM-VFI) model. Extensive experiments show that our BiM-VFI model significantly surpasses the recent state-of-the-art VFI methods by 26% and 45% improvements in LPIPS and STLPIPS respectively, yielding interpolated frames with much fewer blurs at arbitrary time instances.
comment: The last two authors are co-corresponding authors
♻ ☆ Learning from Mistakes: Iterative Prompt Relabeling for Text-to-Image Diffusion Model Training
Diffusion models have shown impressive performance in many domains. However, the model's capability to follow natural language instructions (e.g., spatial relationships between objects, generating complex scenes) is still unsatisfactory. In this work, we propose Iterative Prompt Relabeling (IPR), a novel algorithm that aligns images to text through iterative image sampling and prompt relabeling with feedback. IPR first samples a batch of images conditioned on the text, then relabels the text prompts of unmatched text-image pairs with classifier feedback. We conduct thorough experiments on SDv2 and SDXL, testing their capability to follow instructions on spatial relations. With IPR, we improved up to 15.22% (absolute improvement) on the challenging spatial relation VISOR benchmark, demonstrating superior performance compared to previous RL methods. Our code is publicly available at https://github.com/xinyan-cxy/IPR-RLDF.
♻ ☆ FlexWorld: Progressively Expanding 3D Scenes for Flexiable-View Synthesis
Generating flexible-view 3D scenes, including 360{\deg} rotation and zooming, from single images is challenging due to a lack of 3D data. To this end, we introduce FlexWorld, a novel framework consisting of two key components: (1) a strong video-to-video (V2V) diffusion model to generate high-quality novel view images from incomplete input rendered from a coarse scene, and (2) a progressive expansion process to construct a complete 3D scene. In particular, leveraging an advanced pre-trained video model and accurate depth-estimated training pairs, our V2V model can generate novel views under large camera pose variations. Building upon it, FlexWorld progressively generates new 3D content and integrates it into the global scene through geometry-aware scene fusion. Extensive experiments demonstrate the effectiveness of FlexWorld in generating high-quality novel view videos and flexible-view 3D scenes from single images, achieving superior visual quality under multiple popular metrics and datasets compared to existing state-of-the-art methods. Qualitatively, we highlight that FlexWorld can generate high-fidelity scenes with flexible views like 360{\deg} rotations and zooming. Project page: https://ml-gsai.github.io/FlexWorld.
♻ ☆ JMMMU: A Japanese Massive Multi-discipline Multimodal Understanding Benchmark for Culture-aware Evaluation
Accelerating research on Large Multimodal Models (LMMs) in non-English languages is crucial for enhancing user experiences across broader populations. In this paper, we introduce JMMMU (Japanese MMMU), the first large-scale Japanese benchmark designed to evaluate LMMs on expert-level tasks based on the Japanese cultural context. To facilitate comprehensive culture-aware evaluation, JMMMU features two complementary subsets: (i) culture-agnostic (CA) subset, where the culture-independent subjects (e.g., Math) are selected and translated into Japanese, enabling one-to-one comparison with its English counterpart MMMU; and (ii) culture-specific (CS) subset, comprising newly crafted subjects that reflect Japanese cultural context. Using the CA subset, we observe performance drop in many LMMs when evaluated in Japanese, which is purely attributable to language variation. Using the CS subset, we reveal their inadequate Japanese cultural understanding. Further, by combining both subsets, we identify that some LMMs perform well on the CA subset but not on the CS subset, exposing a shallow understanding of the Japanese language that lacks depth in cultural understanding. We hope this work will not only help advance LMM performance in Japanese but also serve as a guideline to create high-standard, culturally diverse benchmarks for multilingual LMM development. The project page is https://mmmu-japanese-benchmark.github.io/JMMMU/.
comment: Accepted at NAACL 2025. Project page: https://mmmu-japanese-benchmark.github.io/JMMMU/
♻ ☆ A Deep Learning Approach for Augmenting Perceptional Understanding of Histopathology Images
In Recent Years, Digital Technologies Have Made Significant Strides In Augmenting-Human-Health, Cognition, And Perception, Particularly Within The Field Of Computational-Pathology. This Paper Presents A Novel Approach To Enhancing The Analysis Of Histopathology Images By Leveraging A Mult-modal-Model That Combines Vision Transformers (Vit) With Gpt-2 For Image Captioning. The Model Is Fine-Tuned On The Specialized Arch-Dataset, Which Includes Dense Image Captions Derived From Clinical And Academic Resources, To Capture The Complexities Of Pathology Images Such As Tissue Morphologies, Staining Variations, And Pathological Conditions. By Generating Accurate, Contextually Captions, The Model Augments The Cognitive Capabilities Of Healthcare Professionals, Enabling More Efficient Disease Classification, Segmentation, And Detection. The Model Enhances The Perception Of Subtle Pathological Features In Images That Might Otherwise Go Unnoticed, Thereby Improving Diagnostic Accuracy. Our Approach Demonstrates The Potential For Digital Technologies To Augment Human Cognitive Abilities In Medical Image Analysis, Providing Steps Toward More Personalized And Accurate Healthcare Outcomes.
comment: Accepted by International Conference on Semantic & Natural Language Processing (SNLP 2025)
♻ ☆ Time-to-Event Pretraining for 3D Medical Imaging
With the rise of medical foundation models and the growing availability of imaging data, scalable pretraining techniques offer a promising way to identify imaging biomarkers predictive of future disease risk. While current self-supervised methods for 3D medical imaging models capture local structural features like organ morphology, they fail to link pixel biomarkers with long-term health outcomes due to a missing context problem. Current approaches lack the temporal context necessary to identify biomarkers correlated with disease progression, as they rely on supervision derived only from images and concurrent text descriptions. To address this, we introduce time-to-event pretraining, a pretraining framework for 3D medical imaging models that leverages large-scale temporal supervision from paired, longitudinal electronic health records (EHRs). Using a dataset of 18,945 CT scans (4.2 million 2D images) and time-to-event distributions across thousands of EHR-derived tasks, our method improves outcome prediction, achieving an average AUROC increase of 23.7% and a 29.4% gain in Harrell's C-index across 8 benchmark tasks. Importantly, these gains are achieved without sacrificing diagnostic classification performance. This study lays the foundation for integrating longitudinal EHR and 3D imaging data to advance clinical risk prediction.
comment: 34 pages, 19 figures
Toward Generalized Image Quality Assessment: Relaxing the Perfect Reference Quality Assumption CVPR 2025
Full-reference image quality assessment (FR-IQA) generally assumes that reference images are of perfect quality. However, this assumption is flawed due to the sensor and optical limitations of modern imaging systems. Moreover, recent generative enhancement methods are capable of producing images of higher quality than their original. All of these challenge the effectiveness and applicability of current FR-IQA models. To relax the assumption of perfect reference image quality, we build a large-scale IQA database, namely DiffIQA, containing approximately 180,000 images generated by a diffusion-based image enhancer with adjustable hyper-parameters. Each image is annotated by human subjects as either worse, similar, or better quality compared to its reference. Building on this, we present a generalized FR-IQA model, namely Adaptive Fidelity-Naturalness Evaluator (A-FINE), to accurately assess and adaptively combine the fidelity and naturalness of a test image. A-FINE aligns well with standard FR-IQA when the reference image is much more natural than the test image. We demonstrate by extensive experiments that A-FINE surpasses standard FR-IQA models on well-established IQA datasets and our newly created DiffIQA. To further validate A-FINE, we additionally construct a super-resolution IQA benchmark (SRIQA-Bench), encompassing test images derived from ten state-of-the-art SR methods with reliable human quality annotations. Tests on SRIQA-Bench re-affirm the advantages of A-FINE. The code and dataset are available at https://tianhewu.github.io/A-FINE-page.github.io/.
comment: Accepted by CVPR 2025
♻ ☆ GOOD: Towards Domain Generalized Orientated Object Detection
Oriented object detection has been rapidly developed in the past few years, but most of these methods assume the training and testing images are under the same statistical distribution, which is far from reality. In this paper, we propose the task of domain generalized oriented object detection, which intends to explore the generalization of oriented object detectors on arbitrary unseen target domains. Learning domain generalized oriented object detectors is particularly challenging, as the cross-domain style variation not only negatively impacts the content representation, but also leads to unreliable orientation predictions. To address these challenges, we propose a generalized oriented object detector (GOOD). After style hallucination by the emerging contrastive language-image pre-training (CLIP), it consists of two key components, namely, rotation-aware content consistency learning (RAC) and style consistency learning (SEC). The proposed RAC allows the oriented object detector to learn stable orientation representation from style-diversified samples. The proposed SEC further stabilizes the generalization ability of content representation from different image styles. Extensive experiments on multiple cross-domain settings show the state-of-the-art performance of GOOD. Source code will be publicly available.
comment: 18 pages. accepted by ISPRS
♻ ☆ Scalable Autoregressive Monocular Depth Estimation CVPR2025
This paper shows that the autoregressive model is an effective and scalable monocular depth estimator. Our idea is simple: We tackle the monocular depth estimation (MDE) task with an autoregressive prediction paradigm, based on two core designs. First, our depth autoregressive model (DAR) treats the depth map of different resolutions as a set of tokens, and conducts the low-to-high resolution autoregressive objective with a patch-wise casual mask. Second, our DAR recursively discretizes the entire depth range into more compact intervals, and attains the coarse-to-fine granularity autoregressive objective in an ordinal-regression manner. By coupling these two autoregressive objectives, our DAR establishes new state-of-the-art (SOTA) on KITTI and NYU Depth v2 by clear margins. Further, our scalable approach allows us to scale the model up to 2.0B and achieve the best RMSE of 1.799 on the KITTI dataset (5% improvement) compared to 1.896 by the current SOTA (Depth Anything). DAR further showcases zero-shot generalization ability on unseen datasets. These results suggest that DAR yields superior performance with an autoregressive prediction paradigm, providing a promising approach to equip modern autoregressive large models (e.g., GPT-4o) with depth estimation capabilities.
comment: Accepted by CVPR2025
♻ ☆ Beyond the Destination: A Novel Benchmark for Exploration-Aware Embodied Question Answering
Embodied Question Answering (EQA) is a challenging task in embodied intelligence that requires agents to dynamically explore 3D environments, actively gather visual information, and perform multi-step reasoning to answer questions. However, current EQA approaches suffer from critical limitations in exploration efficiency, dataset design, and evaluation metrics. Moreover, existing datasets often introduce biases or prior knowledge, leading to disembodied reasoning, while frontier-based exploration strategies struggle in cluttered environments and fail to ensure fine-grained exploration of task-relevant areas. To address these challenges, we construct the EXPloration-awaRe Embodied queStion anSwering Benchmark (EXPRESS-Bench), the largest dataset designed specifically to evaluate both exploration and reasoning capabilities. EXPRESS-Bench consists of 777 exploration trajectories and 2,044 question-trajectory pairs. To improve exploration efficiency, we propose Fine-EQA, a hybrid exploration model that integrates frontier-based and goal-oriented navigation to guide agents toward task-relevant regions more effectively. Additionally, we introduce a novel evaluation metric, Exploration-Answer Consistency (EAC), which ensures faithful assessment by measuring the alignment between answer grounding and exploration reliability. Extensive experimental comparisons with state-of-the-art EQA models demonstrate the effectiveness of our EXPRESS-Bench in advancing embodied exploration and question reasoning.
♻ ☆ ES-Parkour: Advanced Robot Parkour with Bio-inspired Event Camera and Spiking Neural Network
In recent years, quadruped robotics has advanced significantly, particularly in perception and motion control via reinforcement learning, enabling complex motions in challenging environments. Visual sensors like depth cameras enhance stability and robustness but face limitations, such as low operating frequencies relative to joint control and sensitivity to lighting, which hinder outdoor deployment. Additionally, deep neural networks in sensor and control systems increase computational demands. To address these issues, we introduce spiking neural networks (SNNs) and event cameras to perform a challenging quadruped parkour task. Event cameras capture dynamic visual data, while SNNs efficiently process spike sequences, mimicking biological perception. Experimental results demonstrate that this approach significantly outperforms traditional models, achieving excellent parkour performance with just 11.7% of the energy consumption of an artificial neural network (ANN)-based model, yielding an 88.3% energy reduction. By integrating event cameras with SNNs, our work advances robotic reinforcement learning and opens new possibilities for applications in demanding environments.
♻ ☆ Enhancing Layer Attention Efficiency through Pruning Redundant Retrievals
Growing evidence suggests that layer attention mechanisms, which enhance interaction among layers in deep neural networks, have significantly advanced network architectures. However, existing layer attention methods suffer from redundancy, as attention weights learned by adjacent layers often become highly similar. This redundancy causes multiple layers to extract nearly identical features, reducing the model's representational capacity and increasing training time. To address this issue, we propose a novel approach to quantify redundancy by leveraging the Kullback-Leibler (KL) divergence between adjacent layers. Additionally, we introduce an Enhanced Beta Quantile Mapping (EBQM) method that accurately identifies and skips redundant layers, thereby maintaining model stability. Our proposed Efficient Layer Attention (ELA) architecture, improves both training efficiency and overall performance, achieving a 30\% reduction in training time while enhancing performance in tasks such as image classification and object detection.
comment: 11 pages, 7 figures
♻ ☆ DPBridge: Latent Diffusion Bridge for Dense Prediction
Diffusion models have shown remarkable capabilities in modeling complex data distributions by transforming noise into structured data through stochastic processes. However, when applied to dense prediction tasks whose goal is to capture per-pixel relationships between RGB images and dense signal maps, starting the sampling process from an uninformative Gaussian noise often leads to inefficient sampling and long latency. To overcome these challenges, we propose DPBridge, a generative framework that establishes direct mapping between input RGB images and dense signal maps based on a tractable bridge process. Furthermore, we introduce finetuning strategies to leverage a pretrained large-scale image diffusion backbone, enjoying its rich visual prior knowledge to enable both efficient training and robust generalization. Experiments show that DPBridge achieves competitive performance compared to both feed-forward and diffusion-based approaches across various benchmarks, validating its effectiveness and adaptability.
♻ ☆ Next Patch Prediction for Autoregressive Visual Generation
Autoregressive models, built based on the Next Token Prediction (NTP) paradigm, show great potential in developing a unified framework that integrates both language and vision tasks. Pioneering works introduce NTP to autoregressive visual generation tasks. In this work, we rethink the NTP for autoregressive image generation and extend it to a novel Next Patch Prediction (NPP) paradigm. Our key idea is to group and aggregate image tokens into patch tokens with higher information density. By using patch tokens as a more compact input sequence, the autoregressive model is trained to predict the next patch, significantly reducing computational costs. To further exploit the natural hierarchical structure of image data, we propose a multi-scale coarse-to-fine patch grouping strategy. With this strategy, the training process begins with a large patch size and ends with vanilla NTP where the patch size is 1$\times$1, thus maintaining the original inference process without modifications. Extensive experiments across a diverse range of model sizes demonstrate that NPP could reduce the training cost to around 0.6 times while improving image generation quality by up to 1.0 FID score on the ImageNet 256x256 generation benchmark. Notably, our method retains the original autoregressive model architecture without introducing additional trainable parameters or specifically designing a custom image tokenizer, offering a flexible and plug-and-play solution for enhancing autoregressive visual generation.
comment: Code: https://github.com/PKU-YuanGroup/Next-Patch-Prediction, v2: add related work "Patch-Level Training for Large Language Models", v3: Add content
♻ ☆ Unveiling the Ignorance of MLLMs: Seeing Clearly, Answering Incorrectly
Multimodal Large Language Models (MLLMs) have displayed remarkable performance in multi-modal tasks, particularly in visual comprehension. However, we reveal that MLLMs often generate incorrect answers even when they understand the visual content. To this end, we manually construct a benchmark with 12 categories and design evaluation metrics that assess the degree of error in MLLM responses even when the visual content is seemingly understood. Based on this benchmark, we test 15 leading MLLMs and analyze the distribution of attention maps and logits of some MLLMs. Our investigation identifies two primary issues: 1) most instruction tuning datasets predominantly feature questions that 'directly' relate to the visual content, leading to a bias in MLLMs' responses to other indirect questions, and 2) MLLMs' attention to visual tokens is notably lower than to system and question tokens. We further observe that attention scores between questions and visual tokens as well as the model's confidence in the answers are lower in response to misleading questions than to straightforward ones. To address the first challenge, we introduce a paired positive and negative data construction pipeline to diversify the dataset. For the second challenge, we propose to enhance the model's focus on visual content during decoding by refining the text and visual prompt. For the text prompt, we propose a content guided refinement strategy that performs preliminary visual content analysis to generate structured information before answering the question. Additionally, we employ a visual attention refinement strategy that highlights question-relevant visual tokens to increase the model's attention to visual content that aligns with the question. Extensive experiments demonstrate that these challenges can be significantly mitigated with our proposed dataset and techniques.
♻ ☆ Leveraging BEV Paradigm for Ground-to-Aerial Image Synthesis
Ground-to-aerial image synthesis focuses on generating realistic aerial images from corresponding ground street view images while maintaining consistent content layout, simulating a top-down view. The significant viewpoint difference leads to domain gaps between views, and dense urban scenes limit the visible range of street views, making this cross-view generation task particularly challenging. In this paper, we introduce SkyDiffusion, a novel cross-view generation method for synthesizing aerial images from street view images, utilizing a diffusion model and the Bird's-Eye View (BEV) paradigm. The Curved-BEV method in SkyDiffusion converts street-view images into a BEV perspective, effectively bridging the domain gap, and employs a "multi-to-one" mapping strategy to address occlusion issues in dense urban scenes. Next, SkyDiffusion designed a BEV-guided diffusion model to generate content-consistent and realistic aerial images. Additionally, we introduce a novel dataset, Ground2Aerial-3, designed for diverse ground-to-aerial image synthesis applications, including disaster scene aerial synthesis, low-altitude UAV image synthesis, and historical high-resolution satellite image synthesis tasks. Experimental results demonstrate that SkyDiffusion outperforms state-of-the-art methods on cross-view datasets across natural (CVUSA), suburban (CVACT), urban (VIGOR-Chicago), and various application scenarios (G2A-3), achieving realistic and content-consistent aerial image generation. The code, datasets and more information of this work can be found at https://opendatalab.github.io/skydiffusion/ .
comment: 10 pages, 7 figures
♻ ☆ VideoDirector: Precise Video Editing via Text-to-Video Models
Despite the typical inversion-then-editing paradigm using text-to-image (T2I) models has demonstrated promising results, directly extending it to text-to-video (T2V) models still suffers severe artifacts such as color flickering and content distortion. Consequently, current video editing methods primarily rely on T2I models, which inherently lack temporal-coherence generative ability, often resulting in inferior editing results. In this paper, we attribute the failure of the typical editing paradigm to: 1) Tightly Spatial-temporal Coupling. The vanilla pivotal-based inversion strategy struggles to disentangle spatial-temporal information in the video diffusion model; 2) Complicated Spatial-temporal Layout. The vanilla cross-attention control is deficient in preserving the unedited content. To address these limitations, we propose a spatial-temporal decoupled guidance (STDG) and multi-frame null-text optimization strategy to provide pivotal temporal cues for more precise pivotal inversion. Furthermore, we introduce a self-attention control strategy to maintain higher fidelity for precise partial content editing. Experimental results demonstrate that our method (termed VideoDirector) effectively harnesses the powerful temporal generation capabilities of T2V models, producing edited videos with state-of-the-art performance in accuracy, motion smoothness, realism, and fidelity to unedited content.
comment: 15 figures
♻ ☆ ADBM: Adversarial diffusion bridge model for reliable adversarial purification ICLR 2025
Recently Diffusion-based Purification (DiffPure) has been recognized as an effective defense method against adversarial examples. However, we find DiffPure which directly employs the original pre-trained diffusion models for adversarial purification, to be suboptimal. This is due to an inherent trade-off between noise purification performance and data recovery quality. Additionally, the reliability of existing evaluations for DiffPure is questionable, as they rely on weak adaptive attacks. In this work, we propose a novel Adversarial Diffusion Bridge Model, termed ADBM. ADBM directly constructs a reverse bridge from the diffused adversarial data back to its original clean examples, enhancing the purification capabilities of the original diffusion models. Through theoretical analysis and experimental validation across various scenarios, ADBM has proven to be a superior and robust defense mechanism, offering significant promise for practical applications.
comment: ICLR 2025, fix typos in the proof
♻ ☆ Probabilistic Modeling of Disparity Uncertainty for Robust and Efficient Stereo Matching
Stereo matching plays a crucial role in various applications, where understanding uncertainty can enhance both safety and reliability. Despite this, the estimation and analysis of uncertainty in stereo matching have been largely overlooked. Previous works struggle to separate it into data (aleatoric) and model (epistemic) components and often provide limited interpretations of uncertainty. This interpretability is essential, as it allows for a clearer understanding of the underlying sources of error, enhancing both prediction confidence and decision-making processes. In this paper, we propose a new uncertainty-aware stereo matching framework. We adopt Bayes risk as the measurement of uncertainty and use it to separately estimate data and model uncertainty. We systematically analyze data uncertainty based on the probabilistic distribution of disparity and efficiently estimate model uncertainty without repeated model training. Experiments are conducted on four stereo benchmarks, and the results demonstrate that our method can estimate uncertainty accurately and efficiently, without sacrificing the disparity prediction accuracy.
♻ ☆ SemHiTok: A Unified Image Tokenizer via Semantic-Guided Hierarchical Codebook for Multimodal Understanding and Generation
We present SemHiTok, a unified image Tokenizer via Semantic-Guided Hierarchical codebook that provides consistent discrete feature representations for multimodal understanding and generation tasks. Recently, unified multimodal large models (MLLMs) for understanding and generation have sparked exploration within research community. Previous works attempt to train a unified image tokenizer by combining loss functions for semantic feature reconstruction and pixel reconstruction. However, due to the differing levels of features prioritized by multimodal understanding and generation tasks, joint training methods face significant challenges in achieving a good trade-off. SemHiTok addresses this challenge through Semantic-Guided Hierarchical codebook which builds texture sub-codebooks on pre-trained semantic codebook. This design decouples the training of semantic reconstruction and pixel reconstruction and equips the tokenizer with low-level texture feature extraction capability without degradation of high-level semantic feature extraction ability. Our experiments demonstrate that SemHiTok achieves excellent rFID score at 256X256resolution compared to other unified tokenizers, and exhibits competitive performance on multimodal understanding and generation tasks.
comment: Under Review, Refer to the latest version
♻ ☆ SpatialBot: Precise Spatial Understanding with Vision Language Models
Vision Language Models (VLMs) have achieved impressive performance in 2D image understanding, however they are still struggling with spatial understanding which is the foundation of Embodied AI. In this paper, we propose SpatialBot for better spatial understanding by feeding both RGB and depth images. Additionally, we have constructed the SpatialQA dataset, which involves multi-level depth-related questions to train VLMs for depth understanding. Finally, we present SpatialBench to comprehensively evaluate VLMs' capabilities in spatial understanding at different levels. Extensive experiments on our spatial-understanding benchmark, general VLM benchmarks and Embodied AI tasks, demonstrate the remarkable improvements of SpatialBot trained on SpatialQA. The model, code and data are available at https://github.com/BAAI-DCAI/SpatialBot.
♻ ☆ Hierarchical Features Matter: A Deep Exploration of Progressive Parameterization Method for Dataset Distillation CVPR2025
Dataset distillation is an emerging dataset reduction method, which condenses large-scale datasets while maintaining task accuracy. Current parameterization methods achieve enhanced performance under extremely high compression ratio by optimizing determined synthetic dataset in informative feature domain. However, they limit themselves to a fixed optimization space for distillation, neglecting the diverse guidance across different informative latent spaces. To overcome this limitation, we propose a novel parameterization method dubbed Hierarchical Parameterization Distillation (H-PD), to systematically explore hierarchical feature within provided feature space (e.g., layers within pre-trained generative adversarial networks). We verify the correctness of our insights by applying the hierarchical optimization strategy on GAN-based parameterization method. In addition, we introduce a novel class-relevant feature distance metric to alleviate the computational burden associated with synthetic dataset evaluation, bridging the gap between synthetic and original datasets. Experimental results demonstrate that the proposed H-PD achieves a significant performance improvement under various settings with equivalent time consumption, and even surpasses current generative distillation using diffusion models under extreme compression ratios IPC=1 and IPC=10.
comment: Accepted to CVPR2025
♻ ☆ MUSE-VL: Modeling Unified VLM through Semantic Discrete Encoding
We introduce MUSE-VL, a Unified Vision-Language Model through Semantic discrete Encoding for multimodal understanding and generation. Recently, the research community has begun exploring unified models for visual generation and understanding. However, existing vision tokenizers (e.g., VQGAN) only consider low-level information, which makes it difficult to align with language tokens. This results in high training complexity and necessitates a large amount of training data to achieve optimal performance. Additionally, their performance is still far from dedicated understanding models. This paper proposes Semantic Discrete Encoding (SDE), which effectively aligns the information of visual tokens and language tokens by adding semantic constraints to the visual tokenizer. This greatly reduces the amount of training data and improves the performance of the unified model. With the same LLM size, our method improved the understanding performance by 4.8% compared to the previous SOTA Emu3 and surpassed the dedicated understanding model LLaVA-NeXT 34B by 3.7%. Our model also surpasses the existing unified models on visual generation benchmarks.
♻ ☆ A Self-Correcting Vision-Language-Action Model for Fast and Slow System Manipulation
Recently, some studies have integrated Multimodal Large Language Models into robotic manipulation, constructing vision-language-action models (VLAs) to interpret multimodal information and predict SE(3) poses. While VLAs have shown promising progress, they may suffer from failures when faced with novel and complex tasks. To emulate human-like reasoning for more robust manipulation, we propose the self-corrected (SC-)VLA framework, which integrates fast system for directly predicting actions and slow system for reflecting on failed actions within a single VLA policy. For the fast system, we incorporate parameter-efficient fine-tuning to equip the model with pose prediction capabilities while preserving the inherent reasoning abilities of MLLMs. For the slow system, we propose a Chain-of-Thought training strategy for failure correction, designed to mimic human reflection after a manipulation failure. Specifically, our model learns to identify the causes of action failures, adaptively seek expert feedback, reflect on the current failure scenario, and iteratively generate corrective actions, step by step. Furthermore, a continuous policy learning method is designed based on successfully corrected samples, enhancing the fast system's adaptability to the current configuration. We compare SC-VLA with the previous SOTA VLA in both simulation and real-world tasks, demonstrating an efficient correction process and improved manipulation accuracy on both seen and unseen tasks.
♻ ☆ PSF-4D: A Progressive Sampling Framework for View Consistent 4D Editing
Instruction-guided generative models, especially those using text-to-image (T2I) and text-to-video (T2V) diffusion frameworks, have advanced the field of content editing in recent years. To extend these capabilities to 4D scene, we introduce a progressive sampling framework for 4D editing (PSF-4D) that ensures temporal and multi-view consistency by intuitively controlling the noise initialization during forward diffusion. For temporal coherence, we design a correlated Gaussian noise structure that links frames over time, allowing each frame to depend meaningfully on prior frames. Additionally, to ensure spatial consistency across views, we implement a cross-view noise model, which uses shared and independent noise components to balance commonalities and distinct details among different views. To further enhance spatial coherence, PSF-4D incorporates view-consistent iterative refinement, embedding view-aware information into the denoising process to ensure aligned edits across frames and views. Our approach enables high-quality 4D editing without relying on external models, addressing key challenges in previous methods. Through extensive evaluation on multiple benchmarks and multiple editing aspects (e.g., style transfer, multi-attribute editing, object removal, local editing, etc.), we show the effectiveness of our proposed method. Experimental results demonstrate that our proposed method outperforms state-of-the-art 4D editing methods in diverse benchmarks.
comment: 9 pages, 7 figures
♻ ☆ HotSpot: Signed Distance Function Optimization with an Asymptotically Sufficient Condition
We propose a method, HotSpot, for optimizing neural signed distance functions. Existing losses, such as the eikonal loss, act as necessary but insufficient constraints and cannot guarantee that the recovered implicit function represents a true distance function, even if the output minimizes these losses almost everywhere. Furthermore, the eikonal loss suffers from stability issues in optimization. Finally, in conventional methods, regularization losses that penalize surface area distort the reconstructed signed distance function. We address these challenges by designing a loss function using the solution of a screened Poisson equation. Our loss, when minimized, provides an asymptotically sufficient condition to ensure the output converges to a true distance function. Our loss also leads to stable optimization and naturally penalizes large surface areas. We present theoretical analysis and experiments on both challenging 2D and 3D datasets and show that our method provides better surface reconstruction and a more accurate distance approximation.
♻ ☆ MAT: Multi-Range Attention Transformer for Efficient Image Super-Resolution
Image super-resolution (SR) has significantly advanced through the adoption of Transformer architectures. However, conventional techniques aimed at enlarging the self-attention window to capture broader contexts come with inherent drawbacks, especially the significantly increased computational demands. Moreover, the feature perception within a fixed-size window of existing models restricts the effective receptive field (ERF) and the intermediate feature diversity. We demonstrate that a flexible integration of attention across diverse spatial extents can yield significant performance enhancements. In line with this insight, we introduce Multi-Range Attention Transformer (MAT) for SR tasks. MAT leverages the computational advantages inherent in dilation operation, in conjunction with self-attention mechanism, to facilitate both multi-range attention (MA) and sparse multi-range attention (SMA), enabling efficient capture of both regional and sparse global features. Combined with local feature extraction, MAT adeptly capture dependencies across various spatial ranges, improving the diversity and efficacy of its feature representations. We also introduce the MSConvStar module, which augments the model's ability for multi-range representation learning. Comprehensive experiments show that our MAT exhibits superior performance to existing state-of-the-art SR models with remarkable efficiency (~3.3 faster than SRFormer-light).
comment: IEEE CSVT
♻ ☆ MIRROR: Multi-Modal Pathological Self-Supervised Representation Learning via Modality Alignment and Retention
Histopathology and transcriptomics are fundamental modalities in oncology, encapsulating the morphological and molecular aspects of the disease. Multi-modal self-supervised learning has demonstrated remarkable potential in learning pathological representations by integrating diverse data sources. Conventional multi-modal integration methods primarily emphasize modality alignment, while paying insufficient attention to retaining the modality-specific structures. However, unlike conventional scenarios where multi-modal inputs share highly overlapping features, histopathology and transcriptomics exhibit pronounced heterogeneity, offering orthogonal yet complementary insights. Histopathology provides morphological and spatial context, elucidating tissue architecture and cellular topology, whereas transcriptomics delineates molecular signatures through gene expression patterns. This inherent disparity introduces a major challenge in aligning them while maintaining modality-specific fidelity. To address these challenges, we present MIRROR, a novel multi-modal representation learning method designed to foster both modality alignment and retention. MIRROR employs dedicated encoders to extract comprehensive features for each modality, which is further complemented by a modality alignment module to achieve seamless integration between phenotype patterns and molecular profiles. Furthermore, a modality retention module safeguards unique attributes from each modality, while a style clustering module mitigates redundancy and enhances disease-relevant information by modeling and aligning consistent pathological signatures within a clustering space. Extensive evaluations on TCGA cohorts for cancer subtyping and survival analysis highlight MIRROR's superior performance, demonstrating its effectiveness in constructing comprehensive oncological feature representations and benefiting the cancer diagnosis.
comment: 10 pages, 5 figures, 4 tables. Code available at https://github.com/TianyiFranklinWang/MIRROR. Project page: https://tianyifranklinwang.github.io/MIRROR
HandOS: 3D Hand Reconstruction in One Stage
Existing approaches of hand reconstruction predominantly adhere to a multi-stage framework, encompassing detection, left-right classification, and pose estimation. This paradigm induces redundant computation and cumulative errors. In this work, we propose HandOS, an end-to-end framework for 3D hand reconstruction. Our central motivation lies in leveraging a frozen detector as the foundation while incorporating auxiliary modules for 2D and 3D keypoint estimation. In this manner, we integrate the pose estimation capacity into the detection framework, while at the same time obviating the necessity of using the left-right category as a prerequisite. Specifically, we propose an interactive 2D-3D decoder, where 2D joint semantics is derived from detection cues while 3D representation is lifted from those of 2D joints. Furthermore, hierarchical attention is designed to enable the concurrent modeling of 2D joints, 3D vertices, and camera translation. Consequently, we achieve an end-to-end integration of hand detection, 2D pose estimation, and 3D mesh reconstruction within a one-stage framework, so that the above multi-stage drawbacks are overcome. Meanwhile, the HandOS reaches state-of-the-art performances on public benchmarks, e.g., 5.0 PA-MPJPE on FreiHand and 64.6\% PCK@0.05 on HInt-Ego4D. Project page: idea-research.github.io/HandOSweb.
♻ ☆ CLIP-PING: Boosting Lightweight Vision-Language Models with Proximus Intrinsic Neighbors Guidance
Beyond the success of Contrastive Language-Image Pre-training (CLIP), recent trends mark a shift toward exploring the applicability of lightweight vision-language models for resource-constrained scenarios. These models often deliver suboptimal performance when relying solely on a single image-text contrastive learning objective, spotlighting the need for more effective training mechanisms that guarantee robust cross-modal feature alignment. In this work, we propose CLIP-PING: Contrastive Language-Image Pre-training with Proximus Intrinsic Neighbors Guidance, a novel yet simple and efficient training paradigm designed to boost the performance of lightweight vision-language models with minimal computational overhead and lower data demands. CLIP-PING bootstraps unimodal features extracted from arbitrary pre-trained encoders to obtain intrinsic guidance of proximus neighbor samples, i.e., nearest-neighbor (NN) and cross nearest-neighbor (XNN). We find that extra contrastive supervision from these neighbors substantially boosts cross-modal alignment, enabling lightweight models to learn more generic features with rich semantic diversity. Extensive experiments reveal that CLIP-PING notably surpasses its peers in zero-shot generalization and cross-modal retrieval tasks. Specifically, a 5.5% gain on zero-shot ImageNet1K classification with 10.7% (I2T) and 5.7% (T2I) on Flickr30K retrieval, compared to the original CLIP when using ViT-XS image encoder trained on 3 million (image, text) pairs. Moreover, CLIP-PING showcases a strong transferability under the linear evaluation protocol across several downstream tasks.
comment: 14 pages, 5 figures, 24 tables
♻ ☆ How Can Time Series Analysis Benefit From Multiple Modalities? A Survey and Outlook
Time series analysis (TSA) is a longstanding research topic in the data mining community and has wide real-world significance. Compared to "richer" modalities such as language and vision, which have recently experienced explosive development and are densely connected, the time-series modality remains relatively underexplored and isolated. We notice that many recent TSA works have formed a new research field, i.e., Multiple Modalities for TSA (MM4TSA). In general, these MM4TSA works follow a common motivation: how TSA can benefit from multiple modalities. This survey is the first to offer a comprehensive review and a detailed outlook for this emerging field. Specifically, we systematically discuss three benefits: (1) reusing foundation models of other modalities for efficient TSA, (2) multimodal extension for enhanced TSA, and (3) cross-modality interaction for advanced TSA. We further group the works by the introduced modality type, including text, images, audio, tables, and others, within each perspective. Finally, we identify the gaps with future opportunities, including the reused modalities selections, heterogeneous modality combinations, and unseen tasks generalizations, corresponding to the three benefits. We release an up-to-date GitHub repository that includes key papers and resources.
comment: Github Repo: https://github.com/AdityaLab/MM4TSA
♻ ☆ DeepSeek-Inspired Exploration of RL-based LLMs and Synergy with Wireless Networks: A Survey
Reinforcement learning (RL)-based large language models (LLMs), such as ChatGPT, DeepSeek, and Grok-3, have gained significant attention for their exceptional capabilities in natural language processing and multimodal data understanding. Meanwhile, the rapid expansion of information services has driven the growing need for intelligence, efficient, and adaptable wireless networks. Wireless networks require the empowerment of RL-based LLMs while these models also benefit from wireless networks to broaden their application scenarios. Specifically, RL-based LLMs can enhance wireless communication systems through intelligent resource allocation, adaptive network optimization, and real-time decision-making. Conversely, wireless networks provide a vital infrastructure for the efficient training, deployment, and distributed inference of RL-based LLMs, especially in decentralized and edge computing environments. This mutual empowerment highlights the need for a deeper exploration of the interplay between these two domains. We first review recent advancements in wireless communications, highlighting the associated challenges and potential solutions. We then discuss the progress of RL-based LLMs, focusing on key technologies for LLM training, challenges, and potential solutions. Subsequently, we explore the mutual empowerment between these two fields, highlighting key motivations, open challenges, and potential solutions. Finally, we provide insights into future directions, applications, and their societal impact to further explore this intersection, paving the way for next-generation intelligent communication systems. Overall, this survey provides a comprehensive overview of the relationship between RL-based LLMs and wireless networks, offering a vision where these domains empower each other to drive innovations.
comment: 25 pages, 13 figures
♻ ☆ VEGGIE: Instructional Editing and Reasoning of Video Concepts with Grounded Generation
Recent video diffusion models have enhanced video editing, but it remains challenging to handle instructional editing and diverse tasks (e.g., adding, removing, changing) within a unified framework. In this paper, we introduce VEGGIE, a Video Editor with Grounded Generation from Instructions, a simple end-to-end framework that unifies video concept editing, grounding, and reasoning based on diverse user instructions. Specifically, given a video and text query, VEGGIE first utilizes an MLLM to interpret user intentions in instructions and ground them to the video contexts, generating frame-specific grounded task queries for pixel-space responses. A diffusion model then renders these plans and generates edited videos that align with user intent. To support diverse tasks and complex instructions, we employ a curriculum learning strategy: first aligning the MLLM and video diffusion model with large-scale instructional image editing data, followed by end-to-end fine-tuning on high-quality multitask video data. Additionally, we introduce a novel data synthesis pipeline to generate paired instructional video editing data for model training. It transforms static image data into diverse, high-quality video editing samples by leveraging Image-to-Video models to inject dynamics. VEGGIE shows strong performance in instructional video editing with different editing skills, outperforming the best instructional baseline as a versatile model, while other models struggle with multi-tasking. VEGGIE also excels in video object grounding and reasoning segmentation, where other baselines fail. We further reveal how the multiple tasks help each other and highlight promising applications like zero-shot multimodal instructional and in-context video editing.
comment: First three authors contributed equally. Project page: https://veggie-gen.github.io/
♻ ☆ S^2-Transformer for Mask-Aware Hyperspectral Image Reconstruction
Snapshot compressive imaging (SCI) surges as a novel way of capturing hyperspectral images. It operates an optical encoder to compress the 3D data into a 2D measurement and adopts a software decoder for the signal reconstruction. Recently, a representative SCI set-up of coded aperture snapshot compressive imager (CASSI) with Transformer reconstruction backend remarks high-fidelity sensing performance. However, dominant spatial and spectral attention designs show limitations in hyperspectral modeling. The spatial attention values describe the inter-pixel correlation but overlook the across-spectra variation within each pixel. The spectral attention size is unscalable to the token spatial size and thus bottlenecks information allocation. Besides, CASSI entangles the spatial and spectral information into a 2D measurement, placing a barrier for information disentanglement and modeling. In addition, CASSI blocks the light with a physical binary mask, yielding the masked data loss. To tackle above challenges, we propose a spatial-spectral (S2-) Transformer implemented by a paralleled attention design and a mask-aware learning strategy. Firstly, we systematically explore pros and cons of different spatial (-spectral) attention designs, based on which we find performing both attentions in parallel well disentangles and models the blended information. Secondly, the masked pixels induce higher prediction difficulty and should be treated differently from unmasked ones. We adaptively prioritize the loss penalty attributing to the mask structure by referring to the mask-encoded prediction as an uncertainty estimator. We theoretically discuss the distinct convergence tendencies between masked/unmasked regions of the proposed learning strategy. Extensive experiments demonstrate that on average, the results of the proposed method are superior over the state-of-the-art method.
comment: Accepted by TPAMI
♻ ☆ Duoduo CLIP: Efficient 3D Understanding with Multi-View Images ICLR 2025
We introduce Duoduo CLIP, a model for 3D representation learning that learns shape encodings from multi-view images instead of point clouds. The choice of multi-view images allows us to leverage 2D priors from off-the-shelf CLIP models to facilitate fine-tuning with 3D data. Our approach not only shows better generalization compared to existing point cloud methods, but also reduces GPU requirements and training time. In addition, the model is modified with cross-view attention to leverage information across multiple frames of the object which further boosts performance. Notably, our model is permutation invariant to the order of multi-view images while being pose-free. Compared to the current SOTA point cloud method that requires 480 A100 hours to train 1 billion model parameters we only require 57 A5000 hours and 87 million parameters. Multi-view images also provide more flexibility including being able to encode objects with a variable number of images, and performance scales when more views are used. In contrast, point cloud based methods require an entire scan or model of the object. We showcase this flexibility with benchmarks from images of real-world objects. Our model also achieves better performance in more fine-grained text to shape retrieval, demonstrating better text-and-shape alignment than point cloud based models.
comment: ICLR 2025
♻ ☆ SINGAPO: Single Image Controlled Generation of Articulated Parts in Objects
We address the challenge of creating 3D assets for household articulated objects from a single image. Prior work on articulated object creation either requires multi-view multi-state input, or only allows coarse control over the generation process. These limitations hinder the scalability and practicality for articulated object modeling. In this work, we propose a method to generate articulated objects from a single image. Observing the object in resting state from an arbitrary view, our method generates an articulated object that is visually consistent with the input image. To capture the ambiguity in part shape and motion posed by a single view of the object, we design a diffusion model that learns the plausible variations of objects in terms of geometry and kinematics. To tackle the complexity of generating structured data with attributes in multiple domains, we design a pipeline that produces articulated objects from high-level structure to geometric details in a coarse-to-fine manner, where we use a part connectivity graph and part abstraction as proxies. Our experiments show that our method outperforms the state-of-the-art in articulated object creation by a large margin in terms of the generated object realism, resemblance to the input image, and reconstruction quality.
comment: Project page: https://3dlg-hcvc.github.io/singapo
♻ ☆ Survey on Modeling of Human-made Articulated Objects
3D modeling of articulated objects is a research problem within computer vision, graphics, and robotics. Its objective is to understand the shape and motion of the articulated components, represent the geometry and mobility of object parts, and create realistic models that reflect articulated objects in the real world. This survey provides a comprehensive overview of the current state-of-the-art in 3D modeling of articulated objects, with a specific focus on the task of articulated part perception and articulated object creation (reconstruction and generation). We systematically review and discuss the relevant literature from two perspectives: geometry modeling (i.e., structure and shape of articulated parts) and articulation modeling (i.e., dynamics and motion of parts). Through this survey, we highlight the substantial progress made in these areas, outline the ongoing challenges, and identify gaps for future research. Our survey aims to serve as a foundational reference for researchers and practitioners in computer vision and graphics, offering insights into the complexities of articulated object modeling.
♻ ☆ The Wisdom of a Crowd of Brains: A Universal Brain Encoder
Image-to-fMRI encoding is important for both neuroscience research and practical applications. However, such "Brain-Encoders" have been typically trained per-subject and per fMRI-dataset, thus restricted to very limited training data. In this paper we propose a Universal Brain-Encoder, which can be trained jointly on data from many different subjects/datasets/machines. What makes this possible is our new voxel-centric Encoder architecture, which learns a unique "voxel-embedding" per brain-voxel. Our Encoder trains to predict the response of each brain-voxel on every image, by directly computing the cross-attention between the brain-voxel embedding and multi-level deep image features. This voxel-centric architecture allows the functional role of each brain-voxel to naturally emerge from the voxel-image cross-attention. We show the power of this approach to (i) combine data from multiple different subjects (a "Crowd of Brains") to improve each individual brain-encoding, (ii) quick & effective Transfer-Learning across subjects, datasets, and machines (e.g., 3-Tesla, 7-Tesla), with few training examples, and (iii) use the learned voxel-embeddings as a powerful tool to explore brain functionality (e.g., what is encoded where in the brain).
♻ ☆ All Seeds Are Not Equal: Enhancing Compositional Text-to-Image Generation with Reliable Random Seeds
Text-to-image diffusion models have demonstrated remarkable capability in generating realistic images from arbitrary text prompts. However, they often produce inconsistent results for compositional prompts such as "two dogs" or "a penguin on the right of a bowl". Understanding these inconsistencies is crucial for reliable image generation. In this paper, we highlight the significant role of initial noise in these inconsistencies, where certain noise patterns are more reliable for compositional prompts than others. Our analyses reveal that different initial random seeds tend to guide the model to place objects in distinct image areas, potentially adhering to specific patterns of camera angles and image composition associated with the seed. To improve the model's compositional ability, we propose a method for mining these reliable cases, resulting in a curated training set of generated images without requiring any manual annotation. By fine-tuning text-to-image models on these generated images, we significantly enhance their compositional capabilities. For numerical composition, we observe relative increases of 29.3% and 19.5% for Stable Diffusion and PixArt-{\alpha}, respectively. Spatial composition sees even larger gains, with 60.7% for Stable Diffusion and 21.1% for PixArt-{\alpha}.
♻ ☆ SphOR: A Representation Learning Perspective on Open-set Recognition for Identifying Unknown Classes in Deep Learning Models
The widespread use of deep learning classifiers necessitates Open-set recognition (OSR), which enables the identification of input data not only from classes known during training but also from unknown classes that might be present in test data. Many existing OSR methods are computationally expensive due to the reliance on complex generative models or suffer from high training costs. We investigate OSR from a representation-learning perspective, specifically through spherical embeddings. We introduce SphOR, a computationally efficient representation learning method that models the feature space as a mixture of von Mises-Fisher distributions. This approach enables the use of semantically ambiguous samples during training, to improve the detection of samples from unknown classes. We further explore the relationship between OSR performance and key representation learning properties which influence how well features are structured in high-dimensional space. Extensive experiments on multiple OSR benchmarks demonstrate the effectiveness of our method, producing state-of-the-art results, with improvements up-to 6% that validate its performance. Code at https://github.com/nadarasarbahavan/SpHOR
♻ ☆ Fine-Tuning Image-Conditional Diffusion Models is Easier than You Think WACV 2025
Recent work showed that large diffusion models can be reused as highly precise monocular depth estimators by casting depth estimation as an image-conditional image generation task. While the proposed model achieved state-of-the-art results, high computational demands due to multi-step inference limited its use in many scenarios. In this paper, we show that the perceived inefficiency was caused by a flaw in the inference pipeline that has so far gone unnoticed. The fixed model performs comparably to the best previously reported configuration while being more than 200$\times$ faster. To optimize for downstream task performance, we perform end-to-end fine-tuning on top of the single-step model with task-specific losses and get a deterministic model that outperforms all other diffusion-based depth and normal estimation models on common zero-shot benchmarks. We surprisingly find that this fine-tuning protocol also works directly on Stable Diffusion and achieves comparable performance to current state-of-the-art diffusion-based depth and normal estimation models, calling into question some of the conclusions drawn from prior works.
comment: WACV 2025 Oral. Project page at https://vision.rwth-aachen.de/diffusion-e2e-ft
♻ ☆ VideoRepair: Improving Text-to-Video Generation via Misalignment Evaluation and Localized Refinement
Recent text-to-video (T2V) diffusion models have demonstrated impressive generation capabilities across various domains. However, these models often generate videos that have misalignments with text prompts, especially when the prompts describe complex scenes with multiple objects and attributes. To address this, we introduce VideoRepair, a novel model-agnostic, training-free video refinement framework that automatically identifies fine-grained text-video misalignments and generates explicit spatial and textual feedback, enabling a T2V diffusion model to perform targeted, localized refinements. VideoRepair consists of two stages: In (1) video refinement planning, we first detect misalignments by generating fine-grained evaluation questions and answering them using an MLLM. Based on video evaluation outputs, we identify accurately generated objects and construct localized prompts to precisely refine misaligned regions. In (2) localized refinement, we enhance video alignment by 'repairing' the misaligned regions from the original video while preserving the correctly generated areas. This is achieved by frame-wise region decomposition using our Region-Preserving Segmentation (RPS) module. On two popular video generation benchmarks (EvalCrafter and T2V-CompBench), VideoRepair substantially outperforms recent baselines across various text-video alignment metrics. We provide a comprehensive analysis of VideoRepair components and qualitative examples.
comment: Project page: https://video-repair.github.io
♻ ☆ From Image to Video: An Empirical Study of Diffusion Representations
Diffusion models have revolutionized generative modeling, enabling unprecedented realism in image and video synthesis. This success has sparked interest in leveraging their representations for visual understanding tasks. While recent works have explored this potential for image generation, the visual understanding capabilities of video diffusion models remain largely uncharted. To address this gap, we systematically compare the same model architecture trained for video versus image generation, analyzing the performance of their latent representations on various downstream tasks including image classification, action recognition, depth estimation, and tracking. Results show that video diffusion models consistently outperform their image counterparts, though we find a striking range in the extent of this superiority. We further analyze features extracted from different layers and with varying noise levels, as well as the effect of model size and training budget on representation and generation quality. This work marks the first direct comparison of video and image diffusion objectives for visual understanding, offering insights into the role of temporal information in representation learning.
♻ ☆ MERGE: Multi-faceted Hierarchical Graph-based GNN for Gene Expression Prediction from Whole Slide Histopathology Images
Recent advances in Spatial Transcriptomics (ST) pair histology images with spatially resolved gene expression profiles, enabling predictions of gene expression across different tissue locations based on image patches. This opens up new possibilities for enhancing whole slide image (WSI) prediction tasks with localized gene expression. However, existing methods fail to fully leverage the interactions between different tissue locations, which are crucial for accurate joint prediction. To address this, we introduce MERGE (Multi-faceted hiErarchical gRaph for Gene Expressions), which combines a multi-faceted hierarchical graph construction strategy with graph neural networks (GNN) to improve gene expression predictions from WSIs. By clustering tissue image patches based on both spatial and morphological features, and incorporating intra- and inter-cluster edges, our approach fosters interactions between distant tissue locations during GNN learning. As an additional contribution, we evaluate different data smoothing techniques that are necessary to mitigate artifacts in ST data, often caused by technical imperfections. We advocate for adopting gene-aware smoothing methods that are more biologically justified. Experimental results on gene expression prediction show that our GNN method outperforms state-of-the-art techniques across multiple metrics.
comment: Main Paper: 8 pages, Supplementary Material: 11 pages, Figures: 19
♻ ☆ Med-R1: Reinforcement Learning for Generalizable Medical Reasoning in Vision-Language Models
Vision-language models (VLMs) have advanced reasoning in natural scenes, but their role in medical imaging remains underexplored. Medical reasoning tasks demand robust image analysis and well-justified answers, posing challenges due to the complexity of medical images. Transparency and trustworthiness are essential for clinical adoption and regulatory compliance. We introduce Med-R1, a framework exploring reinforcement learning (RL) to enhance VLMs' generalizability and trustworthiness in medical reasoning. Leveraging the DeepSeek strategy, we employ Group Relative Policy Optimization (GRPO) to guide reasoning paths via reward signals. Unlike supervised fine-tuning (SFT), which often overfits and lacks generalization, RL fosters robust and diverse reasoning. Med-R1 is evaluated across eight medical imaging modalities: CT, MRI, Ultrasound, Dermoscopy, Fundus Photography, Optical Coherence Tomography (OCT), Microscopy, and X-ray Imaging. Compared to its base model, Qwen2-VL-2B, Med-R1 achieves a 29.94% accuracy improvement and outperforms Qwen2-VL-72B, which has 36 times more parameters. Testing across five question types-modality recognition, anatomy identification, disease diagnosis, lesion grading, and biological attribute analysis Med-R1 demonstrates superior generalization, exceeding Qwen2-VL-2B by 32.06% and surpassing Qwen2-VL-72B in question-type generalization. These findings show that RL improves medical reasoning and enables parameter-efficient models to outperform significantly larger ones. With interpretable reasoning outputs, Med-R1 represents a promising step toward generalizable, trustworthy, and clinically viable medical VLMs.
♻ ☆ MRAG-Bench: Vision-Centric Evaluation for Retrieval-Augmented Multimodal Models ICLR 2025
Existing multimodal retrieval benchmarks primarily focus on evaluating whether models can retrieve and utilize external textual knowledge for question answering. However, there are scenarios where retrieving visual information is either more beneficial or easier to access than textual data. In this paper, we introduce a multimodal retrieval-augmented generation benchmark, MRAG-Bench, in which we systematically identify and categorize scenarios where visually augmented knowledge is better than textual knowledge, for instance, more images from varying viewpoints. MRAG-Bench consists of 16,130 images and 1,353 human-annotated multiple-choice questions across 9 distinct scenarios. With MRAG-Bench, we conduct an evaluation of 10 open-source and 4 proprietary large vision-language models (LVLMs). Our results show that all LVLMs exhibit greater improvements when augmented with images compared to textual knowledge, confirming that MRAG-Bench is vision-centric. Additionally, we conduct extensive analysis with MRAG-Bench, which offers valuable insights into retrieval-augmented LVLMs. Notably, the top-performing model, GPT-4o, faces challenges in effectively leveraging retrieved knowledge, achieving only a 5.82% improvement with ground-truth information, in contrast to a 33.16% improvement observed in human participants. These findings highlight the importance of MRAG-Bench in encouraging the community to enhance LVLMs' ability to utilize retrieved visual knowledge more effectively.
comment: ICLR 2025
♻ ☆ Latent Action Learning Requires Supervision in the Presence of Distractors ICLR 2025
Recently, latent action learning, pioneered by Latent Action Policies (LAPO), have shown remarkable pre-training efficiency on observation-only data, offering potential for leveraging vast amounts of video available on the web for embodied AI. However, prior work has focused on distractor-free data, where changes between observations are primarily explained by ground-truth actions. Unfortunately, real-world videos contain action-correlated distractors that may hinder latent action learning. Using Distracting Control Suite (DCS) we empirically investigate the effect of distractors on latent action learning and demonstrate that LAPO struggle in such scenario. We propose LAOM, a simple LAPO modification that improves the quality of latent actions by 8x, as measured by linear probing. Importantly, we show that providing supervision with ground-truth actions, as few as 2.5% of the full dataset, during latent action learning improves downstream performance by 4.2x on average. Our findings suggest that integrating supervision during Latent Action Models (LAM) training is critical in the presence of distractors, challenging the conventional pipeline of first learning LAM and only then decoding from latent to ground-truth actions.
comment: Preprint. In review. Edit: Accepted by ICLR 2025 Workshop on World Models: Understanding, Modelling and Scaling
♻ ☆ Continual Gesture Learning without Data via Synthetic Feature Sampling
Data-Free Class Incremental Learning (DFCIL) aims to enable models to continuously learn new classes while retraining knowledge of old classes, even when the training data for old classes is unavailable. Although explored primarily with image datasets by researchers, this study focuses on investigating DFCIL for skeleton-based gesture classification due to its significant real-world implications, particularly considering the growing prevalence of VR/AR headsets where gestures serve as the primary means of control and interaction. In this work, we made an intriguing observation: skeleton models trained with base classes(even very limited) demonstrate strong generalization capabilities to unseen classes without requiring additional training. Building on this insight, we developed Synthetic Feature Replay (SFR) that can sample synthetic features from class prototypes to replay for old classes and augment for new classes (under a few-shot setting). Our proposed method showcases significant advancements over the state-of-the-art, achieving up to 15% enhancements in mean accuracy across all steps and largely mitigating the accuracy imbalance between base classes and new classes.
♻ ☆ Semi-supervised Concept Bottleneck Models
Concept Bottleneck Models (CBMs) have garnered increasing attention due to their ability to provide concept-based explanations for black-box deep learning models while achieving high final prediction accuracy using human-like concepts. However, the training of current CBMs is heavily dependent on the precision and richness of the annotated concepts in the dataset. These concept labels are typically provided by experts, which can be costly and require significant resources and effort. Additionally, concept saliency maps frequently misalign with input saliency maps, causing concept predictions to correspond to irrelevant input features - an issue related to annotation alignment. To address these limitations, we propose a new framework called SSCBM (Semi-supervised Concept Bottleneck Model). Our SSCBM is suitable for practical situations where annotated data is scarce. By leveraging joint training on both labeled and unlabeled data and aligning the unlabeled data at the concept level, we effectively solve these issues. We proposed a strategy to generate pseudo labels and an alignment loss. Experiments demonstrate that our SSCBM is both effective and efficient. With only 10% labeled data, our model's concept and task accuracy on average across four datasets is only 2.44% and 3.93% lower, respectively, compared to the best baseline in the fully supervised learning setting.
comment: 16 pages
♻ ☆ Fast3R: Towards 3D Reconstruction of 1000+ Images in One Forward Pass CVPR 2025
Multi-view 3D reconstruction remains a core challenge in computer vision, particularly in applications requiring accurate and scalable representations across diverse perspectives. Current leading methods such as DUSt3R employ a fundamentally pairwise approach, processing images in pairs and necessitating costly global alignment procedures to reconstruct from multiple views. In this work, we propose Fast 3D Reconstruction (Fast3R), a novel multi-view generalization to DUSt3R that achieves efficient and scalable 3D reconstruction by processing many views in parallel. Fast3R's Transformer-based architecture forwards N images in a single forward pass, bypassing the need for iterative alignment. Through extensive experiments on camera pose estimation and 3D reconstruction, Fast3R demonstrates state-of-the-art performance, with significant improvements in inference speed and reduced error accumulation. These results establish Fast3R as a robust alternative for multi-view applications, offering enhanced scalability without compromising reconstruction accuracy.
comment: CVPR 2025. Project website: https://fast3r-3d.github.io/
♻ ☆ ViBe: A Text-to-Video Benchmark for Evaluating Hallucination in Large Multimodal Models
Recent advances in Large Multimodal Models (LMMs) have expanded their capabilities to video understanding, with Text-to-Video (T2V) models excelling in generating videos from textual prompts. However, they still frequently produce hallucinated content, revealing AI-generated inconsistencies. We introduce ViBe (https://vibe-t2v-bench.github.io/): a large-scale dataset of hallucinated videos from open-source T2V models. We identify five major hallucination types: Vanishing Subject, Omission Error, Numeric Variability, Subject Dysmorphia, and Visual Incongruity. Using ten T2V models, we generated and manually annotated 3,782 videos from 837 diverse MS COCO captions. Our proposed benchmark includes a dataset of hallucinated videos and a classification framework using video embeddings. ViBe serves as a critical resource for evaluating T2V reliability and advancing hallucination detection. We establish classification as a baseline, with the TimeSFormer + CNN ensemble achieving the best performance (0.345 accuracy, 0.342 F1 score). While initial baselines proposed achieve modest accuracy, this highlights the difficulty of automated hallucination detection and the need for improved methods. Our research aims to drive the development of more robust T2V models and evaluate their outputs based on user preferences.
♻ ☆ NFL-BA: Improving Endoscopic SLAM with Near-Field Light Bundle Adjustment
Simultaneous Localization And Mapping (SLAM) from endoscopy videos can enable autonomous navigation, guidance to unsurveyed regions, blindspot detections, and 3D visualizations, which can significantly improve patient outcomes and endoscopy experience for both physicians and patients. Existing dense SLAM algorithms often assume distant and static lighting and optimize scene geometry and camera parameters by minimizing a photometric rendering loss, often called Photometric Bundle Adjustment. However, endoscopy videos exhibit dynamic near-field lighting due to the co-located light and camera moving extremely close to the surface. In addition, low texture surfaces in endoscopy videos cause photometric bundle adjustment of the existing SLAM frameworks to perform poorly compared to indoor/outdoor scenes. To mitigate this problem, we introduce Near-Field Lighting Bundle Adjustment Loss (NFL-BA) which explicitly models near-field lighting as a part of Bundle Adjustment loss and enables better performance for low texture surfaces. Our proposed NFL-BA can be applied to any neural-rendering based SLAM framework. We show that by replacing traditional photometric bundle adjustment loss with our proposed NFL-BA results in improvement, using neural implicit SLAM and 3DGS SLAMs. In addition to producing state-of-the-art tracking and mapping results on colonoscopy C3VD dataset we also show improvement on real colonoscopy videos. See results at https://asdunnbe.github.io/NFL-BA/
♻ ☆ SDRT: Enhance Vision-Language Models by Self-Distillation with Diverse Reasoning Traces
Reasoning is increasingly crucial for various tasks. While chain-of-thought prompting enables large language models to leverage reasoning effectively, harnessing the reasoning capabilities of Vision-Language Models (VLMs) remains challenging. To solve this problem, we propose a novel self-distillation framework that enhances the reasoning capabilities of the model. The proposed framework introduces several key innovations. We start by employing a prompt library tailored to visual reasoning tasks to generate diverse in-context questions and utilize a two-step reasoning procedure to derive reasoning-guided responses. These responses are then used for self-distillation, enabling the model to internalize the reasoning process. Additionally, we improve the model architecture with several innovative components, including an intervention adapter for efficient parameter updates, a cross-modal skip connection to facilitate information exchange between modalities, and an ensemble learning algorithm to integrate diverse reasoning from multiple in-context questions. Extensive experiments show that our method significantly improves the baseline performance across five VQA datasets.
♻ ☆ V2X-DGW: Domain Generalization for Multi-agent Perception under Adverse Weather Conditions ICRA 2025
Current LiDAR-based Vehicle-to-Everything (V2X) multi-agent perception systems have shown the significant success on 3D object detection. While these models perform well in the trained clean weather, they struggle in unseen adverse weather conditions with the domain gap. In this paper, we propose a Domain Generalization based approach, named \textit{V2X-DGW}, for LiDAR-based 3D object detection on multi-agent perception system under adverse weather conditions. Our research aims to not only maintain favorable multi-agent performance in the clean weather but also promote the performance in the unseen adverse weather conditions by learning only on the clean weather data. To realize the Domain Generalization, we first introduce the Adaptive Weather Augmentation (AWA) to mimic the unseen adverse weather conditions, and then propose two alignments for generalizable representation learning: Trust-region Weather-invariant Alignment (TWA) and Agent-aware Contrastive Alignment (ACA). To evaluate this research, we add Fog, Rain, Snow conditions on two publicized multi-agent datasets based on physics-based models, resulting in two new datasets: OPV2V-w and V2XSet-w. Extensive experiments demonstrate that our V2X-DGW achieved significant improvements in the unseen adverse weathers. The code is available at https://github.com/Baolu1998/V2X-DGW.
comment: accepted by ICRA 2025
♻ ☆ Towards Adaptive Human-centric Video Anomaly Detection: A Comprehensive Framework and A New Benchmark
Human-centric Video Anomaly Detection (VAD) aims to identify human behaviors that deviate from normal. At its core, human-centric VAD faces substantial challenges, such as the complexity of diverse human behaviors, the rarity of anomalies, and ethical constraints. These challenges limit access to high-quality datasets and highlight the need for a dataset and framework supporting continual learning. Moving towards adaptive human-centric VAD, we introduce the HuVAD (Human-centric privacy-enhanced Video Anomaly Detection) dataset and a novel Unsupervised Continual Anomaly Learning (UCAL) framework. UCAL enables incremental learning, allowing models to adapt over time, bridging traditional training and real-world deployment. HuVAD prioritizes privacy by providing de-identified annotations and includes seven indoor/outdoor scenes, offering over 5x more pose-annotated frames than previous datasets. Our standard and continual benchmarks, utilize a comprehensive set of metrics, demonstrating that UCAL-enhanced models achieve superior performance in 82.14% of cases, setting a new state-of-the-art (SOTA). The dataset can be accessed at https://github.com/TeCSAR-UNCC/HuVAD.
♻ ☆ Improved YOLOv12 with LLM-Generated Synthetic Data for Enhanced Apple Detection and Benchmarking Against YOLOv11 and YOLOv10
This study evaluated the performance of the YOLOv12 object detection model, and compared against the performances YOLOv11 and YOLOv10 for apple detection in commercial orchards based on the model training completed entirely on synthetic images generated by Large Language Models (LLMs). The YOLOv12n configuration achieved the highest precision at 0.916, the highest recall at 0.969, and the highest mean Average Precision (mAP@50) at 0.978. In comparison, the YOLOv11 series was led by YOLO11x, which achieved the highest precision at 0.857, recall at 0.85, and mAP@50 at 0.91. For the YOLOv10 series, YOLOv10b and YOLOv10l both achieved the highest precision at 0.85, with YOLOv10n achieving the highest recall at 0.8 and mAP@50 at 0.89. These findings demonstrated that YOLOv12, when trained on realistic LLM-generated datasets surpassed its predecessors in key performance metrics. The technique also offered a cost-effective solution by reducing the need for extensive manual data collection in the agricultural field. In addition, this study compared the computational efficiency of all versions of YOLOv12, v11 and v10, where YOLOv11n reported the lowest inference time at 4.7 ms, compared to YOLOv12n's 5.6 ms and YOLOv10n's 5.9 ms. Although YOLOv12 is new and more accurate than YOLOv11, and YOLOv10, YOLO11n still stays the fastest YOLO model among YOLOv10, YOLOv11 and YOLOv12 series of models. (Index: YOLOv12, YOLOv11, YOLOv10, YOLOv13, YOLOv14, YOLOv15, YOLOE, YOLO Object detection)
comment: 8 pages, 5 Figures, 2 Tables
♻ ☆ Neuron-based explanations of neural networks sacrifice completeness and interpretability
High quality explanations of neural networks (NNs) should exhibit two key properties. Completeness ensures that they accurately reflect a network's function and interpretability makes them understandable to humans. Many existing methods provide explanations of individual neurons within a network. In this work we provide evidence that for AlexNet pretrained on ImageNet, neuron-based explanation methods sacrifice both completeness and interpretability compared to activation principal components. Neurons are a poor basis for AlexNet embeddings because they don't account for the distributed nature of these representations. By examining two quantitative measures of completeness and conducting a user study to measure interpretability, we show the most important principal components provide more complete and interpretable explanations than the most important neurons. Much of the activation variance may be explained by examining relatively few high-variance PCs, as opposed to studying every neuron. These principal components also strongly affect network function, and are significantly more interpretable than neurons. Our findings suggest that explanation methods for networks like AlexNet should avoid using neurons as a basis for embeddings and instead choose a basis, such as principal components, which accounts for the high dimensional and distributed nature of a network's internal representations. Interactive demo and code available at https://ndey96.github.io/neuron-explanations-sacrifice.
comment: TMLR 2025
Machine Learning 192
☆ TULIP: Towards Unified Language-Image Pretraining
Despite the recent success of image-text contrastive models like CLIP and SigLIP, these models often struggle with vision-centric tasks that demand high-fidelity image understanding, such as counting, depth estimation, and fine-grained object recognition. These models, by performing language alignment, tend to prioritize high-level semantics over visual understanding, weakening their image understanding. On the other hand, vision-focused models are great at processing visual information but struggle to understand language, limiting their flexibility for language-driven tasks. In this work, we introduce TULIP, an open-source, drop-in replacement for existing CLIP-like models. Our method leverages generative data augmentation, enhanced image-image and text-text contrastive learning, and image/text reconstruction regularization to learn fine-grained visual features while preserving global semantic alignment. Our approach, scaling to over 1B parameters, outperforms existing state-of-the-art (SOTA) models across multiple benchmarks, establishing a new SOTA zero-shot performance on ImageNet-1K, delivering up to a $2\times$ enhancement over SigLIP on RxRx1 in linear probing for few-shot classification, and improving vision-language models, achieving over $3\times$ higher scores than SigLIP on MMVP. Our code/checkpoints are available at https://tulip-berkeley.github.io
☆ Value Profiles for Encoding Human Variation
Modelling human variation in rating tasks is crucial for enabling AI systems for personalization, pluralistic model alignment, and computational social science. We propose representing individuals using value profiles -- natural language descriptions of underlying values compressed from in-context demonstrations -- along with a steerable decoder model to estimate ratings conditioned on a value profile or other rater information. To measure the predictive information in rater representations, we introduce an information-theoretic methodology. We find that demonstrations contain the most information, followed by value profiles and then demographics. However, value profiles offer advantages in terms of scrutability, interpretability, and steerability due to their compressed natural language format. Value profiles effectively compress the useful information from demonstrations (>70% information preservation). Furthermore, clustering value profiles to identify similarly behaving individuals better explains rater variation than the most predictive demographic groupings. Going beyond test set performance, we show that the decoder models interpretably change ratings according to semantic profile differences, are well-calibrated, and can help explain instance-level disagreement by simulating an annotator population. These results demonstrate that value profiles offer novel, predictive ways to describe individual variation beyond demographics or group information.
☆ Natural Quantization of Neural Networks
We propose a natural quantization of a standard neural network, where the neurons correspond to qubits and the activation functions are implemented via quantum gates and measurements. The simplest quantized neural network corresponds to applying single-qubit rotations, with the rotation angles being dependent on the weights and measurement outcomes of the previous layer. This realization has the advantage of being smoothly tunable from the purely classical limit with no quantum uncertainty (thereby reproducing the classical neural network exactly) to a quantum case, where superpositions introduce an intrinsic uncertainty in the network. We benchmark this architecture on a subset of the standard MNIST dataset and find a regime of "quantum advantage," where the validation error rate in the quantum realization is smaller than that in the classical model. We also consider another approach where quantumness is introduced via weak measurements of ancilla qubits entangled with the neuron qubits. This quantum neural network also allows for smooth tuning of the degree of quantumness by controlling an entanglement angle, $g$, with $g=\frac\pi 2$ replicating the classical regime. We find that validation error is also minimized within the quantum regime in this approach. We also observe a quantum transition, with sharp loss of the quantum network's ability to learn at a critical point $g_c$. The proposed quantum neural networks are readily realizable in present-day quantum computers on commercial datasets.
comment: 7 pages, 8 figures, 1 table
☆ Learning to Play Piano in the Real World
Towards the grand challenge of achieving human-level manipulation in robots, playing piano is a compelling testbed that requires strategic, precise, and flowing movements. Over the years, several works demonstrated hand-designed controllers on real world piano playing, while other works evaluated robot learning approaches on simulated piano scenarios. In this paper, we develop the first piano playing robotic system that makes use of learning approaches while also being deployed on a real world dexterous robot. Specifically, we make use of Sim2Real to train a policy in simulation using reinforcement learning before deploying the learned policy on a real world dexterous robot. In our experiments, we thoroughly evaluate the interplay between domain randomization and the accuracy of the dynamics model used in simulation. Moreover, we evaluate the robot's performance across multiple songs with varying complexity to study the generalization of our learned policy. By providing a proof-of-concept of learning to play piano in the real world, we want to encourage the community to adopt piano playing as a compelling benchmark towards human-level manipulation. We open-source our code and show additional videos at https://lasr.org/research/learning-to-play-piano .
comment: 10 pages
☆ SWEET-RL: Training Multi-Turn LLM Agents on Collaborative Reasoning Tasks
Large language model (LLM) agents need to perform multi-turn interactions in real-world tasks. However, existing multi-turn RL algorithms for optimizing LLM agents fail to perform effective credit assignment over multiple turns while leveraging the generalization capabilities of LLMs and it remains unclear how to develop such algorithms. To study this, we first introduce a new benchmark, ColBench, where an LLM agent interacts with a human collaborator over multiple turns to solve realistic tasks in backend programming and frontend design. Building on this benchmark, we propose a novel RL algorithm, SWEET-RL (RL with Step-WisE Evaluation from Training-time information), that uses a carefully designed optimization objective to train a critic model with access to additional training-time information. The critic provides step-level rewards for improving the policy model. Our experiments demonstrate that SWEET-RL achieves a 6% absolute improvement in success and win rates on ColBench compared to other state-of-the-art multi-turn RL algorithms, enabling Llama-3.1-8B to match or exceed the performance of GPT4-o in realistic collaborative content creation.
comment: 29 pages, 16 figures
☆ What Makes a Reward Model a Good Teacher? An Optimization Perspective
The success of Reinforcement Learning from Human Feedback (RLHF) critically depends on the quality of the reward model. While this quality is primarily evaluated through accuracy, it remains unclear whether accuracy fully captures what makes a reward model an effective teacher. We address this question from an optimization perspective. First, we prove that regardless of how accurate a reward model is, if it induces low reward variance, then the RLHF objective suffers from a flat landscape. Consequently, even a perfectly accurate reward model can lead to extremely slow optimization, underperforming less accurate models that induce higher reward variance. We additionally show that a reward model that works well for one language model can induce low reward variance, and thus a flat objective landscape, for another. These results establish a fundamental limitation of evaluating reward models solely based on accuracy or independently of the language model they guide. Experiments using models of up to 8B parameters corroborate our theory, demonstrating the interplay between reward variance, accuracy, and reward maximization rate. Overall, our findings highlight that beyond accuracy, a reward model needs to induce sufficient variance for efficient optimization.
comment: Code available at https://github.com/princeton-pli/what-makes-good-rm
☆ Di$\mathtt{[M]}$O: Distilling Masked Diffusion Models into One-step Generator
Masked Diffusion Models (MDMs) have emerged as a powerful generative modeling technique. Despite their remarkable results, they typically suffer from slow inference with several steps. In this paper, we propose Di$\mathtt{[M]}$O, a novel approach that distills masked diffusion models into a one-step generator. Di$\mathtt{[M]}$O addresses two key challenges: (1) the intractability of using intermediate-step information for one-step generation, which we solve through token-level distribution matching that optimizes model output logits by an 'on-policy framework' with the help of an auxiliary model; and (2) the lack of entropy in the initial distribution, which we address through a token initialization strategy that injects randomness while maintaining similarity to teacher training distribution. We show Di$\mathtt{[M]}$O's effectiveness on both class-conditional and text-conditional image generation, impressively achieving performance competitive to multi-step teacher outputs while drastically reducing inference time. To our knowledge, we are the first to successfully achieve one-step distillation of masked diffusion models and the first to apply discrete distillation to text-to-image generation, opening new paths for efficient generative modeling.
☆ Temporal Encoding Strategies for Energy Time Series Prediction
In contemporary power systems, energy consumption prediction plays a crucial role in maintaining grid stability and resource allocation enabling power companies to minimize energy waste and avoid overloading the grid. While there are several research works on energy optimization, they often fail to address the complexities of real-time fluctuations and the cyclic pattern of energy consumption. This work proposes a novel approach to enhance the accuracy of predictive models by employing sinusoidal encoding on periodic features of time-series data. To demonstrate the increase in performance, several statistical and ensemble machine learning models were trained on an energy demand dataset, using the proposed sinusoidal encoding. The performance of these models was then benchmarked against identical models trained on traditional encoding methods. The results demonstrated a 12.6% improvement of Root Mean Squared Error (from 0.5497 to 0.4802) and a 7.8% increase in the R^2 score (from 0.7530 to 0.8118), indicating that the proposed encoding better captures the cyclic nature of temporal patterns than traditional methods. The proposed methodology significantly improves prediction accuracy while maintaining computational efficiency, making it suitable for real-time applications in smart grid systems.
☆ Reducing Communication Overhead in Federated Learning for Network Anomaly Detection with Adaptive Client Selection
Communication overhead in federated learning (FL) poses a significant challenge for network anomaly detection systems, where diverse client configurations and network conditions impact efficiency and detection accuracy. Existing approaches attempt optimization individually but struggle to balance reduced overhead with performance. This paper presents an adaptive FL framework combining batch size optimization, client selection, and asynchronous updates for efficient anomaly detection. Using UNSW-NB15 for general network traffic and ROAD for automotive networks, our framework reduces communication overhead by 97.6% (700.0s to 16.8s) while maintaining comparable accuracy (95.10% vs. 95.12%). The Mann-Whitney U test confirms significant improvements (p < 0.05). Profiling analysis reveals efficiency gains via reduced GPU operations and memory transfers, ensuring robust detection across varying client conditions.
☆ A discontinuity-capturing neural network with categorical embedding and its application to anisotropic elliptic interface problems
In this paper, we propose a discontinuity-capturing shallow neural network with categorical embedding to represent piecewise smooth functions. The network comprises three hidden layers, a discontinuity-capturing layer, a categorical embedding layer, and a fully-connected layer. Under such a design, we show that a piecewise smooth function, even with a large number of pieces, can be approximated by a single neural network with high prediction accuracy. We then leverage the proposed network model to solve anisotropic elliptic interface problems. The network is trained by minimizing the mean squared error loss of the system. Our results show that, despite its simple and shallow structure, the proposed neural network model exhibits comparable efficiency and accuracy to traditional grid-based numerical methods.
☆ Accurate, transferable, and verifiable machine-learned interatomic potentials for layered materials
Twisted layered van-der-Waals materials often exhibit unique electronic and optical properties absent in their non-twisted counterparts. Unfortunately, predicting such properties is hindered by the difficulty in determining the atomic structure in materials displaying large moir\'e domains. Here, we introduce a split machine-learned interatomic potential and dataset curation approach that separates intralayer and interlayer interactions and significantly improves model accuracy -- with a tenfold increase in energy and force prediction accuracy relative to conventional models. We further demonstrate that traditional MLIP validation metrics -- force and energy errors -- are inadequate for moir\'e structures and develop a more holistic, physically-motivated metric based on the distribution of stacking configurations. This metric effectively compares the entirety of large-scale moir\'e domains between two structures instead of relying on conventional measures evaluated on smaller commensurate cells. Finally, we establish that one-dimensional instead of two-dimensional moir\'e structures can serve as efficient surrogate systems for validating MLIPs, allowing for a practical model validation protocol against explicit DFT calculations. Applying our framework to HfS2/GaS bilayers reveals that accurate structural predictions directly translate into reliable electronic properties. Our model-agnostic approach integrates seamlessly with various intralayer and interlayer interaction models, enabling computationally tractable relaxation of moir\'e materials, from bilayer to complex multilayers, with rigorously validated accuracy.
comment: 10 pages, 5 figures
☆ LIFT: Latent Implicit Functions for Task- and Data-Agnostic Encoding
Implicit Neural Representations (INRs) are proving to be a powerful paradigm in unifying task modeling across diverse data domains, offering key advantages such as memory efficiency and resolution independence. Conventional deep learning models are typically modality-dependent, often requiring custom architectures and objectives for different types of signals. However, existing INR frameworks frequently rely on global latent vectors or exhibit computational inefficiencies that limit their broader applicability. We introduce LIFT, a novel, high-performance framework that addresses these challenges by capturing multiscale information through meta-learning. LIFT leverages multiple parallel localized implicit functions alongside a hierarchical latent generator to produce unified latent representations that span local, intermediate, and global features. This architecture facilitates smooth transitions across local regions, enhancing expressivity while maintaining inference efficiency. Additionally, we introduce ReLIFT, an enhanced variant of LIFT that incorporates residual connections and expressive frequency encodings. With this straightforward approach, ReLIFT effectively addresses the convergence-capacity gap found in comparable methods, providing an efficient yet powerful solution to improve capacity and speed up convergence. Empirical results show that LIFT achieves state-of-the-art (SOTA) performance in generative modeling and classification tasks, with notable reductions in computational costs. Moreover, in single-task settings, the streamlined ReLIFT architecture proves effective in signal representations and inverse problem tasks.
☆ Exploiting Prior Knowledge in Preferential Learning of Individualized Autonomous Vehicle Driving Styles
Trajectory planning for automated vehicles commonly employs optimization over a moving horizon - Model Predictive Control - where the cost function critically influences the resulting driving style. However, finding a suitable cost function that results in a driving style preferred by passengers remains an ongoing challenge. We employ preferential Bayesian optimization to learn the cost function by iteratively querying a passenger's preference. Due to increasing dimensionality of the parameter space, preference learning approaches might struggle to find a suitable optimum with a limited number of experiments and expose the passenger to discomfort when exploring the parameter space. We address these challenges by incorporating prior knowledge into the preferential Bayesian optimization framework. Our method constructs a virtual decision maker from real-world human driving data to guide parameter sampling. In a simulation experiment, we achieve faster convergence of the prior-knowledge-informed learning procedure compared to existing preferential Bayesian optimization approaches and reduce the number of inadequate driving styles sampled.
comment: 6 pages, 6 figures, accepted for ECC 2025
☆ HQNN-FSP: A Hybrid Classical-Quantum Neural Network for Regression-Based Financial Stock Market Prediction
Financial time-series forecasting remains a challenging task due to complex temporal dependencies and market fluctuations. This study explores the potential of hybrid quantum-classical approaches to assist in financial trend prediction by leveraging quantum resources for improved feature representation and learning. A custom Quantum Neural Network (QNN) regressor is introduced, designed with a novel ansatz tailored for financial applications. Two hybrid optimization strategies are proposed: (1) a sequential approach where classical recurrent models (RNN/LSTM) extract temporal dependencies before quantum processing, and (2) a joint learning framework that optimizes classical and quantum parameters simultaneously. Systematic evaluation using TimeSeriesSplit, k-fold cross-validation, and predictive error analysis highlights the ability of these hybrid models to integrate quantum computing into financial forecasting workflows. The findings demonstrate how quantum-assisted learning can contribute to financial modeling, offering insights into the practical role of quantum resources in time-series analysis.
comment: 11 pages and 11 figures
☆ Geometrically-Aware One-Shot Skill Transfer of Category-Level Objects
Robotic manipulation of unfamiliar objects in new environments is challenging and requires extensive training or laborious pre-programming. We propose a new skill transfer framework, which enables a robot to transfer complex object manipulation skills and constraints from a single human demonstration. Our approach addresses the challenge of skill acquisition and task execution by deriving geometric representations from demonstrations focusing on object-centric interactions. By leveraging the Functional Maps (FM) framework, we efficiently map interaction functions between objects and their environments, allowing the robot to replicate task operations across objects of similar topologies or categories, even when they have significantly different shapes. Additionally, our method incorporates a Task-Space Imitation Algorithm (TSIA) which generates smooth, geometrically-aware robot paths to ensure the transferred skills adhere to the demonstrated task constraints. We validate the effectiveness and adaptability of our approach through extensive experiments, demonstrating successful skill transfer and task execution in diverse real-world environments without requiring additional training.
comment: 7 pages, 6 figures
☆ Online Imitation Learning for Manipulation via Decaying Relative Correction through Teleoperation
Teleoperated robotic manipulators enable the collection of demonstration data, which can be used to train control policies through imitation learning. However, such methods can require significant amounts of training data to develop robust policies or adapt them to new and unseen tasks. While expert feedback can significantly enhance policy performance, providing continuous feedback can be cognitively demanding and time-consuming for experts. To address this challenge, we propose to use a cable-driven teleoperation system which can provide spatial corrections with 6 degree of freedom to the trajectories generated by a policy model. Specifically, we propose a correction method termed Decaying Relative Correction (DRC) which is based upon the spatial offset vector provided by the expert and exists temporarily, and which reduces the intervention steps required by an expert. Our results demonstrate that DRC reduces the required expert intervention rate by 30\% compared to a standard absolute corrective method. Furthermore, we show that integrating DRC within an online imitation learning framework rapidly increases the success rate of manipulation tasks such as raspberry harvesting and cloth wiping.
☆ FedBEns: One-Shot Federated Learning based on Bayesian Ensemble
One-Shot Federated Learning (FL) is a recent paradigm that enables multiple clients to cooperatively learn a global model in a single round of communication with a central server. In this paper, we analyze the One-Shot FL problem through the lens of Bayesian inference and propose FedBEns, an algorithm that leverages the inherent multimodality of local loss functions to find better global models. Our algorithm leverages a mixture of Laplace approximations for the clients' local posteriors, which the server then aggregates to infer the global model. We conduct extensive experiments on various datasets, demonstrating that the proposed method outperforms competing baselines that typically rely on unimodal approximations of the local losses.
☆ Robustness of Nonlinear Representation Learning
We study the problem of unsupervised representation learning in slightly misspecified settings, and thus formalize the study of robustness of nonlinear representation learning. We focus on the case where the mixing is close to a local isometry in a suitable distance and show based on existing rigidity results that the mixing can be identified up to linear transformations and small errors. In a second step, we investigate Independent Component Analysis (ICA) with observations generated according to $x=f(s)=As+h(s)$ where $A$ is an invertible mixing matrix and $h$ a small perturbation. We show that we can approximately recover the matrix $A$ and the independent components. Together, these two results show approximate identifiability of nonlinear ICA with almost isometric mixing functions. Those results are a step towards identifiability results for unsupervised representation learning for real-world data that do not follow restrictive model classes.
comment: 37 pages
☆ Leveraging Perfect Multimodal Alignment and Gaussian Assumptions for Cross-modal Transfer
Multimodal alignment aims to construct a joint latent vector space where two modalities representing the same concept map to the same vector. We formulate this as an inverse problem and show that under certain conditions perfect alignment can be achieved. We then address a specific application of alignment referred to as cross-modal transfer. Unsupervised cross-modal transfer aims to leverage a model trained with one modality to perform inference on another modality, without any labeled fine-tuning on the new modality. Assuming that semantic classes are represented as a mixture of Gaussians in the latent space, we show how cross-modal transfer can be performed by projecting the data points from the representation space onto different subspaces representing each modality. Our experiments on synthetic multimodal Gaussian data verify the effectiveness of our perfect alignment and cross-modal transfer method. We hope these findings inspire further exploration of the applications of perfect alignment and the use of Gaussian models for cross-modal learning.
☆ Borsuk-Ulam and Replicable Learning of Large-Margin Halfspaces
Recent advances in learning theory have established that, for total concepts, list replicability, global stability, differentially private (DP) learnability, and shared-randomness replicability coincide precisely with the finiteness of the Littlestone dimension. Does the same hold for partial concept classes? We answer this question by studying the large-margin half-spaces class, which has bounded Littlestone dimension and is purely DP-learnable and shared-randomness replicable even in high dimensions. We prove that the list replicability number of $\gamma$-margin half-spaces satisfies \[ \frac{d}{2} + 1 \le \mathrm{LR}(H_{\gamma}^d) \le d, \] which increases with the dimension $d$. This reveals a surprising separation for partial concepts: list replicability and global stability do not follow from bounded Littlestone dimension, DP-learnability, or shared-randomness replicability. By applying our main theorem, we also answer the following open problems. - We prove that any disambiguation of an infinite-dimensional large-margin half-space to a total concept class has unbounded Littlestone dimension, answering an open question of Alon et al. (FOCS '21). - We prove that the maximum list-replicability number of any *finite* set of points and homogeneous half-spaces in $d$-dimensional Euclidean space is $d$, resolving a problem of Chase et al. (FOCS '23). - We prove that any disambiguation of the Gap Hamming Distance problem in the large gap regime has unbounded public-coin randomized communication complexity. This answers an open problem of Fang et al. (STOC '25). We prove the lower bound via a topological argument involving the local Borsuk-Ulam theorem of Chase et al. (STOC '24). For the upper bound, we design a learning rule that relies on certain triangulations of the cross-polytope and recent results on the generalization properties of SVM.
☆ Beacon2Science: Enhancing STEREO/HI beacon data1 with machine learning for efficient CME tracking
Observing and forecasting coronal mass ejections (CME) in real-time is crucial due to the strong geomagnetic storms they can generate that can have a potentially damaging effect, for example, on satellites and electrical devices. With its near-real-time availability, STEREO/HI beacon data is the perfect candidate for early forecasting of CMEs. However, previous work concluded that CME arrival prediction based on beacon data could not achieve the same accuracy as with high-resolution science data due to data gaps and lower quality. We present our novel pipeline entitled ''Beacon2Science'', bridging the gap between beacon and science data to improve CME tracking. Through this pipeline, we first enhance the quality (signal-to-noise ratio and spatial resolution) of beacon data. We then increase the time resolution of enhanced beacon images through learned interpolation to match science data's 40-minute resolution. We maximize information coherence between consecutive frames with adapted model architecture and loss functions through the different steps. The improved beacon images are comparable to science data, showing better CME visibility than the original beacon data. Furthermore, we compare CMEs tracked in beacon, enhanced beacon, and science images. The tracks extracted from enhanced beacon data are closer to those from science images, with a mean average error of $\sim 0.5 ^\circ$ of elongation compared to $1^\circ$ with original beacon data. The work presented in this paper paves the way for its application to forthcoming missions such as Vigil and PUNCH.
comment: 24 pages, 11 figures, 1 tables, submitted to AGU Space Weather on 14th Marc 2025
☆ Learning to quantify graph nodes
Network Quantification is the problem of estimating the class proportions in unlabeled subsets of graph nodes. When prior probability shift is at play, this task cannot be effectively addressed by first classifying the nodes and then counting the class predictions. In addition, unlike non-relational quantification on i.i.d. datapoints, Network Quantification demands enhanced flexibility to capture a broad range of connectivity patterns, resilience to the challenge of heterophily, and efficiency to scale to larger networks. To meet these stringent requirements we introduce XNQ, a novel method that synergizes the flexibility and efficiency of the unsupervised node embeddings computed by randomized recursive Graph Neural Networks, with an Expectation-Maximization algorithm that provides a robust quantification-aware adjustment to the output probabilities of a calibrated node classifier. We validate the design choices underpinning our method through comprehensive ablation experiments. In an extensive evaluation, we find that our approach consistently and significantly improves on the best Network Quantification methods to date, thereby setting the new state of the art for this challenging task. Simultaneously, it provides a training speed-up of up to 10x-100x over other graph learning based methods.
☆ Fast MLE and MAPE-Based Device Activity Detection for Grant-Free Access via PSCA and PSCA-Net
Fast and accurate device activity detection is the critical challenge in grant-free access for supporting massive machine-type communications (mMTC) and ultra-reliable low-latency communications (URLLC) in 5G and beyond. The state-of-the-art methods have unsatisfactory error rates or computation times. To address these outstanding issues, we propose new maximum likelihood estimation (MLE) and maximum a posterior estimation (MAPE) based device activity detection methods for known and unknown pathloss that achieve superior error rate and computation time tradeoffs using optimization and deep learning techniques. Specifically, we investigate four non-convex optimization problems for MLE and MAPE in the two pathloss cases, with one MAPE problem being formulated for the first time. For each non-convex problem, we develop an innovative parallel iterative algorithm using the parallel successive convex approximation (PSCA) method. Each PSCA-based algorithm allows parallel computations, uses up to the objective function's second-order information, converges to the problem's stationary points, and has a low per-iteration computational complexity compared to the state-of-the-art algorithms. Then, for each PSCA-based iterative algorithm, we present a deep unrolling neural network implementation, called PSCA-Net, to further reduce the computation time. Each PSCA-Net elegantly marries the underlying PSCA-based algorithm's parallel computation mechanism with the parallelizable neural network architecture and effectively optimizes its step sizes based on vast data samples to speed up the convergence. Numerical results demonstrate that the proposed methods can significantly reduce the error rate and computation time compared to the state-of-the-art methods, revealing their significant values for grant-free access.
☆ ImputeGAP: A Comprehensive Library for Time Series Imputation
With the prevalence of sensor failures, imputation--the process of estimating missing values--has emerged as the cornerstone of time series data preparation. While numerous imputation algorithms have been developed to address these data gaps, existing libraries provide limited support. Furthermore, they often lack the ability to simulate realistic patterns of time series missing data and fail to account for the impact of imputation on subsequent downstream analysis. This paper introduces ImputeGAP, a comprehensive library for time series imputation that supports a diverse range of imputation methods and modular missing data simulation catering to datasets with varying characteristics. The library includes extensive customization options, such as automated hyperparameter tuning, benchmarking, explainability, downstream evaluation, and compatibility with popular time series frameworks.
☆ A Personalized Data-Driven Generative Model of Human Motion
The deployment of autonomous virtual avatars (in extended reality) and robots in human group activities - such as rehabilitation therapy, sports, and manufacturing - is expected to increase as these technologies become more pervasive. Designing cognitive architectures and control strategies to drive these agents requires realistic models of human motion. However, existing models only provide simplified descriptions of human motor behavior. In this work, we propose a fully data-driven approach, based on Long Short-Term Memory neural networks, to generate original motion that captures the unique characteristics of specific individuals. We validate the architecture using real data of scalar oscillatory motion. Extensive analyses show that our model effectively replicates the velocity distribution and amplitude envelopes of the individual it was trained on, remaining different from other individuals, and outperforming state-of-the-art models in terms of similarity to human data.
comment: 6 pages, 9 figures
☆ A Foundation Model for Patient Behavior Monitoring and Suicide Detection UAI 2025
Foundation models (FMs) have achieved remarkable success across various domains, yet their adoption in healthcare remains limited. While significant advances have been made in medical imaging, genetic biomarkers, and time series from electronic health records, the potential of FMs for patient behavior monitoring through wearable devices remains underexplored. These datasets are inherently heterogeneous, multisource, and often exhibit high rates of missing data, posing unique challenges. This paper introduces a novel FM based on a modified vector quantized variational autoencoder (VQ-VAE), specifically designed to process real-world data from wearable devices. We demonstrate that our pretrained FM, trained on a broad cohort of psychiatric patients, performs downstream tasks via its latent representation without fine-tuning on a held-out cohort of suicidal patients. To illustrate this, we develop a probabilistic change-point detection algorithm for suicide detection and demonstrate the FM's effectiveness in predicting emotional states. Our results show that the discrete latent structure of the VQ-VAE outperforms a state-of-the-art Informer architecture in unsupervised suicide detection, while matching its performance in supervised emotion prediction when the latent dimensionality is increased, though at the cost of reduced unsupervised accuracy. This trade-off highlights the need for future FMs to integrate hybrid discrete-continuous structures for balanced performance across tasks.
comment: 10 pages (31 with appendices), 6 figures (13 with appendices); submitted to UAI 2025
☆ Online federated learning framework for classification
In this paper, we develop a novel online federated learning framework for classification, designed to handle streaming data from multiple clients while ensuring data privacy and computational efficiency. Our method leverages the generalized distance-weighted discriminant technique, making it robust to both homogeneous and heterogeneous data distributions across clients. In particular, we develop a new optimization algorithm based on the Majorization-Minimization principle, integrated with a renewable estimation procedure, enabling efficient model updates without full retraining. We provide a theoretical guarantee for the convergence of our estimator, proving its consistency and asymptotic normality under standard regularity conditions. In addition, we establish that our method achieves Bayesian risk consistency, ensuring its reliability for classification tasks in federated environments. We further incorporate differential privacy mechanisms to enhance data security, protecting client information while maintaining model performance. Extensive numerical experiments on both simulated and real-world datasets demonstrate that our approach delivers high classification accuracy, significant computational efficiency gains, and substantial savings in data storage requirements compared to existing methods.
☆ Kolmogorov-Arnold Network for Transistor Compact Modeling
Neural network (NN)-based transistor compact modeling has recently emerged as a transformative solution for accelerating device modeling and SPICE circuit simulations. However, conventional NN architectures, despite their widespread adoption in state-of-the-art methods, primarily function as black-box problem solvers. This lack of interpretability significantly limits their capacity to extract and convey meaningful insights into learned data patterns, posing a major barrier to their broader adoption in critical modeling tasks. This work introduces, for the first time, Kolmogorov-Arnold network (KAN) for the transistor - a groundbreaking NN architecture that seamlessly integrates interpretability with high precision in physics-based function modeling. We systematically evaluate the performance of KAN and Fourier KAN for FinFET compact modeling, benchmarking them against the golden industry-standard compact model and the widely used MLP architecture. Our results reveal that KAN and FKAN consistently achieve superior prediction accuracy for critical figures of merit, including gate current, drain charge, and source charge. Furthermore, we demonstrate and improve the unique ability of KAN to derive symbolic formulas from learned data patterns - a capability that not only enhances interpretability but also facilitates in-depth transistor analysis and optimization. This work highlights the transformative potential of KAN in bridging the gap between interpretability and precision in NN-driven transistor compact modeling. By providing a robust and transparent approach to transistor modeling, KAN represents a pivotal advancement for the semiconductor industry as it navigates the challenges of advanced technology scaling.
comment: 13 pages, 8 figures
☆ Partially Observable Reinforcement Learning with Memory Traces
Partially observable environments present a considerable computational challenge in reinforcement learning due to the need to consider long histories. Learning with a finite window of observations quickly becomes intractable as the window length grows. In this work, we introduce memory traces. Inspired by eligibility traces, these are compact representations of the history of observations in the form of exponential moving averages. We prove sample complexity bounds for the problem of offline on-policy evaluation that quantify the value errors achieved with memory traces for the class of Lipschitz continuous value estimates. We establish a close connection to the window approach, and demonstrate that, in certain environments, learning with memory traces is significantly more sample efficient. Finally, we underline the effectiveness of memory traces empirically in online reinforcement learning experiments for both value prediction and control.
☆ Learning Topology Actions for Power Grid Control: A Graph-Based Soft-Label Imitation Learning Approach
The rising proportion of renewable energy in the electricity mix introduces significant operational challenges for power grid operators. Effective power grid management demands adaptive decision-making strategies capable of handling dynamic conditions. With the increase in complexity, more and more Deep Learning (DL) approaches have been proposed to find suitable grid topologies for congestion management. In this work, we contribute to this research by introducing a novel Imitation Learning (IL) approach that leverages soft labels derived from simulated topological action outcomes, thereby capturing multiple viable actions per state. Unlike traditional IL methods that rely on hard labels to enforce a single optimal action, our method constructs soft labels over actions, by leveraging effective actions that prove suitable in resolving grid congestion. To further enhance decision-making, we integrate Graph Neural Networks (GNNs) to encode the structural properties of power grids, ensuring that the topology-aware representations contribute to better agent performance. Our approach significantly outperforms state-of-the-art baselines, all of which use only topological actions, as well as feedforward and GNN-based architectures with hard labels. Most notably, it achieves a 17% better performance compared to the greedy expert agent from which the imitation targets were derived.
☆ Food Delivery Time Prediction in Indian Cities Using Machine Learning Models
Accurate prediction of food delivery times significantly impacts customer satisfaction, operational efficiency, and profitability in food delivery services. However, existing studies primarily utilize static historical data and often overlook dynamic, real-time contextual factors crucial for precise prediction, particularly in densely populated Indian cities. This research addresses these gaps by integrating real-time contextual variables such as traffic density, weather conditions, local events, and geospatial data (restaurant and delivery location coordinates) into predictive models. We systematically compare various machine learning algorithms, including Linear Regression, Decision Trees, Bagging, Random Forest, XGBoost, and LightGBM, on a comprehensive food delivery dataset specific to Indian urban contexts. Rigorous data preprocessing and feature selection significantly enhanced model performance. Experimental results demonstrate that the LightGBM model achieves superior predictive accuracy, with an R2 score of 0.76 and Mean Squared Error (MSE) of 20.59, outperforming traditional baseline approaches. Our study thus provides actionable insights for improving logistics strategies in complex urban environments. The complete methodology and code are publicly available for reproducibility and further research.
comment: for code implementation, check https://github.com/Vikranth3140/Food-Delivery-Time-Prediction
☆ Multi-Agent Actor-Critic with Harmonic Annealing Pruning for Dynamic Spectrum Access Systems
Multi-Agent Deep Reinforcement Learning (MADRL) has emerged as a powerful tool for optimizing decentralized decision-making systems in complex settings, such as Dynamic Spectrum Access (DSA). However, deploying deep learning models on resource-constrained edge devices remains challenging due to their high computational cost. To address this challenge, in this paper, we present a novel sparse recurrent MARL framework integrating gradual neural network pruning into the independent actor global critic paradigm. Additionally, we introduce a harmonic annealing sparsity scheduler, which achieves comparable, and in certain cases superior, performance to standard linear and polynomial pruning schedulers at large sparsities. Our experimental investigation demonstrates that the proposed DSA framework can discover superior policies, under diverse training conditions, outperforming conventional DSA, MADRL baselines, and state-of-the-art pruning techniques.
comment: 5 pages, 3 figures, 1 table, submited to an IEEE conference
☆ World Models in Artificial Intelligence: Sensing, Learning, and Reasoning Like a Child
World Models help Artificial Intelligence (AI) predict outcomes, reason about its environment, and guide decision-making. While widely used in reinforcement learning, they lack the structured, adaptive representations that even young children intuitively develop. Advancing beyond pattern recognition requires dynamic, interpretable frameworks inspired by Piaget's cognitive development theory. We highlight six key research areas -- physics-informed learning, neurosymbolic learning, continual learning, causal inference, human-in-the-loop AI, and responsible AI -- as essential for enabling true reasoning in AI. By integrating statistical learning with advances in these areas, AI can evolve from pattern recognition to genuine understanding, adaptation and reasoning capabilities.
comment: 11 pages, 1 figure
☆ Machine Unlearning in Hyperbolic vs. Euclidean Multimodal Contrastive Learning: Adapting Alignment Calibration to MERU
Machine unlearning methods have become increasingly important for selective concept removal in large pre-trained models. While recent work has explored unlearning in Euclidean contrastive vision-language models, the effectiveness of concept removal in hyperbolic spaces remains unexplored. This paper investigates machine unlearning in hyperbolic contrastive learning by adapting Alignment Calibration to MERU, a model that embeds images and text in hyperbolic space to better capture semantic hierarchies. Through systematic experiments and ablation studies, we demonstrate that hyperbolic geometry offers distinct advantages for concept removal, achieving near perfect forgetting with reasonable performance on retained concepts, particularly when scaling to multiple concept removal. Our approach introduces hyperbolic-specific components including entailment calibration and norm regularization that leverage the unique properties of hyperbolic space. Comparative analysis with Euclidean models reveals fundamental differences in unlearning dynamics, with hyperbolic unlearning reorganizing the semantic hierarchy while Euclidean approaches merely disconnect cross-modal associations. These findings not only advance machine unlearning techniques but also provide insights into the geometric properties that influence concept representation and removal in multimodal models. Source code available at https://github.com/alex-pv01/HAC
comment: Preprint
☆ Global Group Fairness in Federated Learning via Function Tracking AISTATS 2025
We investigate group fairness regularizers in federated learning, aiming to train a globally fair model in a distributed setting. Ensuring global fairness in distributed training presents unique challenges, as fairness regularizers typically involve probability metrics between distributions across all clients and are not naturally separable by client. To address this, we introduce a function-tracking scheme for the global fairness regularizer based on a Maximum Mean Discrepancy (MMD), which incurs a small communication overhead. This scheme seamlessly integrates into most federated learning algorithms while preserving rigorous convergence guarantees, as demonstrated in the context of FedAvg. Additionally, when enforcing differential privacy, the kernel-based MMD regularization enables straightforward analysis through a change of kernel, leveraging an intuitive interpretation of kernel convolution. Numerical experiments confirm our theoretical insights.
comment: The paper is accepted to AISTATS 2025
☆ Preference Construction: A Bayesian Interactive Preference Elicitation Framework Based on Monte Carlo Tree Search
We present a novel preference learning framework to capture participant preferences efficiently within limited interaction rounds. It involves three main contributions. First, we develop a variational Bayesian approach to infer the participant's preference model by estimating posterior distributions and managing uncertainty from limited information. Second, we propose an adaptive questioning policy that maximizes cumulative uncertainty reduction, formulating questioning as a finite Markov decision process and using Monte Carlo Tree Search to prioritize promising question trajectories. By considering long-term effects and leveraging the efficiency of the Bayesian approach, the policy avoids shortsightedness. Third, we apply the framework to Multiple Criteria Decision Aiding, with pairwise comparison as the preference information and an additive value function as the preference model. We integrate the reparameterization trick to address high-variance issues, enhancing robustness and efficiency. Computational studies on real-world and synthetic datasets demonstrate the framework's practical usability, outperforming baselines in capturing preferences and achieving superior uncertainty reduction within limited interactions.
☆ Machine learning surrogate models of many-body dispersion interactions in polymer melts
Accurate prediction of many-body dispersion (MBD) interactions is essential for understanding the van der Waals forces that govern the behavior of many complex molecular systems. However, the high computational cost of MBD calculations limits their direct application in large-scale simulations. In this work, we introduce a machine learning surrogate model specifically designed to predict MBD forces in polymer melts, a system that demands accurate MBD description and offers structural advantages for machine learning approaches. Our model is based on a trimmed SchNet architecture that selectively retains the most relevant atomic connections and incorporates trainable radial basis functions for geometric encoding. We validate our surrogate model on datasets from polyethylene, polypropylene, and polyvinyl chloride melts, demonstrating high predictive accuracy and robust generalization across diverse polymer systems. In addition, the model captures key physical features, such as the characteristic decay behavior of MBD interactions, providing valuable insights for optimizing cutoff strategies. Characterized by high computational efficiency, our surrogate model enables practical incorporation of MBD effects into large-scale molecular simulations.
☆ DeCaFlow: A Deconfounding Causal Generative Model
Causal generative models (CGMs) have recently emerged as capable approaches to simulate the causal mechanisms generating our observations, enabling causal inference. Unfortunately, existing approaches either are overly restrictive, assuming the absence of hidden confounders, or lack generality, being tailored to a particular query and graph. In this work, we introduce DeCaFlow, a CGM that accounts for hidden confounders in a single amortized training process using only observational data and the causal graph. Importantly, DeCaFlow can provably identify all causal queries with a valid adjustment set or sufficiently informative proxy variables. Remarkably, for the first time to our knowledge, we show that a confounded counterfactual query is identifiable, and thus solvable by DeCaFlow, as long as its interventional counterpart is as well. Our empirical results on diverse settings (including the Ecoli70 dataset, with 3 independent hidden confounders, tens of observed variables and hundreds of causal queries) show that DeCaFlow outperforms existing approaches, while demonstrating its out-of-the-box flexibility.
comment: 32 pages, 22 figures. Under submission
☆ FedLWS: Federated Learning with Adaptive Layer-wise Weight Shrinking ICLR 2025
In Federated Learning (FL), weighted aggregation of local models is conducted to generate a new global model, and the aggregation weights are typically normalized to 1. A recent study identifies the global weight shrinking effect in FL, indicating an enhancement in the global model's generalization when the sum of weights (i.e., the shrinking factor) is smaller than 1, where how to learn the shrinking factor becomes crucial. However, principled approaches to this solution have not been carefully studied from the adequate consideration of privacy concerns and layer-wise distinctions. To this end, we propose a novel model aggregation strategy, Federated Learning with Adaptive Layer-wise Weight Shrinking (FedLWS), which adaptively designs the shrinking factor in a layer-wise manner and avoids optimizing the shrinking factors on a proxy dataset. We initially explored the factors affecting the shrinking factor during the training process. Then we calculate the layer-wise shrinking factors by considering the distinctions among each layer of the global model. FedLWS can be easily incorporated with various existing methods due to its flexibility. Extensive experiments under diverse scenarios demonstrate the superiority of our method over several state-of-the-art approaches, providing a promising tool for enhancing the global model in FL.
comment: Accepted in ICLR 2025
☆ VIPER: Visual Perception and Explainable Reasoning for Sequential Decision-Making
While Large Language Models (LLMs) excel at reasoning on text and Vision-Language Models (VLMs) are highly effective for visual perception, applying those models for visual instruction-based planning remains a widely open problem. In this paper, we introduce VIPER, a novel framework for multimodal instruction-based planning that integrates VLM-based perception with LLM-based reasoning. Our approach uses a modular pipeline where a frozen VLM generates textual descriptions of image observations, which are then processed by an LLM policy to predict actions based on the task goal. We fine-tune the reasoning module using behavioral cloning and reinforcement learning, improving our agent's decision-making capabilities. Experiments on the ALFWorld benchmark show that VIPER significantly outperforms state-of-the-art visual instruction-based planners while narrowing the gap with purely text-based oracles. By leveraging text as an intermediate representation, VIPER also enhances explainability, paving the way for a fine-grained analysis of perception and reasoning components.
☆ Interpretability of Graph Neural Networks to Assert Effects of Global Change Drivers on Ecological Networks
Pollinators play a crucial role for plant reproduction, either in natural ecosystem or in human-modified landscape. Global change drivers,including climate change or land use modifications, can alter the plant-pollinator interactions. To assert the potential influence of global change drivers on pollination, large-scale interactions, climate and land use data are required. While recent machine learning methods, such as graph neural networks (GNNs), allow the analysis of such datasets, interpreting their results can be challenging. We explore existing methods for interpreting GNNs in order to highlight the effects of various environmental covariates on pollination network connectivity. A large simulation study is performed to confirm whether these methods can detect the interactive effect between a covariate and a genus of plant on connectivity, and whether the application of debiasing techniques influences the estimation of these effects. An application on the Spipoll dataset, with and without accounting for sampling effects, highlights the potential impact of land use on network connectivity and shows that accounting for sampling effects partially alters the estimation of these effects.
☆ Control, Optimal Transport and Neural Differential Equations in Supervised Learning
From the perspective of control theory, neural differential equations (neural ODEs) have become an important tool for supervised learning. In the fundamental work of Ruiz-Balet and Zuazua (SIAM REVIEW 2023), the authors pose an open problem regarding the connection between control theory, optimal transport theory, and neural differential equations. More precisely, they inquire how one can quantify the closeness of the optimal flows in neural transport equations to the true dynamic optimal transport. In this work, we propose a construction of neural differential equations that converge to the true dynamic optimal transport in the limit, providing a significant step in solving the formerly mentioned open problem.
Diffusion-Based Forecasting for Uncertainty-Aware Model Predictive Control
We propose Diffusion-Informed Model Predictive Control (D-I MPC), a generic framework for uncertainty-aware prediction and decision-making in partially observable stochastic systems by integrating diffusion-based time series forecasting models in Model Predictive Control algorithms. In our approach, a diffusion-based time series forecasting model is used to probabilistically estimate the evolution of the system's stochastic components. These forecasts are then incorporated into MPC algorithms to estimate future trajectories and optimize action selection under the uncertainty of the future. We evaluate the framework on the task of energy arbitrage, where a Battery Energy Storage System participates in the day-ahead electricity market of the New York state. Experimental results indicate that our model-based approach with a diffusion-based forecaster significantly outperforms both implementations with classical forecasting methods and model-free reinforcement learning baselines.
comment: 5 pages, 3 figures, 3 tables. This version is submitted to the 33rd European Signal Processing Conference (EUSIPCO 2025), to be held in Isola delle Femmine - Palermo - Italy, on September 8-12, 2025
☆ Continual Contrastive Learning on Tabular Data with Out of Distribution
Out-of-distribution (OOD) prediction remains a significant challenge in machine learning, particularly for tabular data where traditional methods often fail to generalize beyond their training distribution. This paper introduces Tabular Continual Contrastive Learning (TCCL), a novel framework designed to address OOD challenges in tabular data processing. TCCL integrates contrastive learning principles with continual learning mechanisms, featuring a three-component architecture: an Encoder for data transformation, a Decoder for representation learning, and a Learner Head. We evaluate TCCL against 14 baseline models, including state-of-the-art deep learning approaches and gradient-boosted decision trees (GBDT), across eight diverse tabular datasets. Our experimental results demonstrate that TCCL consistently outperforms existing methods in both classification and regression tasks on OOD data, with particular strength in handling distribution shifts. These findings suggest that TCCL represents a significant advancement in handling OOD scenarios for tabular data.
comment: accepeted on esann 2025
☆ Multivariate Gaussian Topic Modelling: A novel approach to discover topics with greater semantic coherence
An important aspect of text mining involves information retrieval in form of discovery of semantic themes (topics) from documents using topic modelling. While generative topic models like Latent Dirichlet Allocation (LDA) elegantly model topics as probability distributions and are useful in identifying latent topics from large document corpora with minimal supervision, they suffer from difficulty in topic interpretability and reduced performance in shorter texts. Here we propose a novel Multivariate Gaussian Topic modelling (MGD) approach. In this approach topics are presented as Multivariate Gaussian Distributions and documents as Gaussian Mixture Models. Using EM algorithm, the various constituent Multivariate Gaussian Distributions and their corresponding parameters are identified. Analysis of the parameters helps identify the keywords having the highest variance and mean contributions to the topic, and from these key-words topic annotations are carried out. This approach is first applied on a synthetic dataset to demonstrate the interpretability benefits vis-\`a-vis LDA. A real-world application of this topic model is demonstrated in analysis of risks and hazards at a petrochemical plant by applying the model on safety incident reports to identify the major latent hazards plaguing the plant. This model achieves a higher mean topic coherence of 0.436 vis-\`a-vis 0.294 for LDA.
comment: 12 pages
☆ Manifold Learning for Hyperspectral Images
Traditional feature extraction and projection techniques, such as Principal Component Analysis, struggle to adequately represent X-Ray Transmission (XRT) Multi-Energy (ME) images, limiting the performance of neural networks in decision-making processes. To address this issue, we propose a method that approximates the dataset topology by constructing adjacency graphs using the Uniform Manifold Approximation and Projection. This approach captures nonlinear correlations within the data, significantly improving the performance of machine learning algorithms, particularly in processing Hyperspectral Images (HSI) from X-ray transmission spectroscopy. This technique not only preserves the global structure of the data but also enhances feature separability, leading to more accurate and robust classification results.
☆ Ambient Noise Full Waveform Inversion with Neural Operators
Numerical simulations of seismic wave propagation are crucial for investigating velocity structures and improving seismic hazard assessment. However, standard methods such as finite difference or finite element are computationally expensive. Recent studies have shown that a new class of machine learning models, called neural operators, can solve the elastodynamic wave equation orders of magnitude faster than conventional methods. Full waveform inversion is a prime beneficiary of the accelerated simulations. Neural operators, as end-to-end differentiable operators, combined with automatic differentiation, provide an alternative approach to the adjoint-state method. Since neural operators do not involve the Born approximation, when used for full waveform inversion they have the potential to include additional phases and alleviate cycle-skipping problems present in traditional adjoint-state formulations. In this study, we demonstrate the application of neural operators for full waveform inversion on a real seismic dataset, which consists of several nodal transects collected across the San Gabriel, Chino, and San Bernardino basins in the Los Angeles metropolitan area.
☆ A Novel Channel Boosted Residual CNN-Transformer with Regional-Boundary Learning for Breast Cancer Detection
Recent advancements in detecting tumors using deep learning on breast ultrasound images (BUSI) have demonstrated significant success. Deep CNNs and vision-transformers (ViTs) have demonstrated individually promising initial performance. However, challenges related to model complexity and contrast, texture, and tumor morphology variations introduce uncertainties that hinder the effectiveness of current methods. This study introduces a novel hybrid framework, CB-Res-RBCMT, combining customized residual CNNs and new ViT components for detailed BUSI cancer analysis. The proposed RBCMT uses stem convolution blocks with CNN Meet Transformer (CMT) blocks, followed by new Regional and boundary (RB) feature extraction operations for capturing contrast and morphological variations. Moreover, the CMT block incorporates global contextual interactions through multi-head attention, enhancing computational efficiency with a lightweight design. Additionally, the customized inverse residual and stem CNNs within the CMT effectively extract local texture information and handle vanishing gradients. Finally, the new channel-boosted (CB) strategy enriches the feature diversity of the limited dataset by combining the original RBCMT channels with transfer learning-based residual CNN-generated maps. These diverse channels are processed through a spatial attention block for optimal pixel selection, reducing redundancy and improving the discrimination of minor contrast and texture variations. The proposed CB-Res-RBCMT achieves an F1-score of 95.57%, accuracy of 95.63%, sensitivity of 96.42%, and precision of 94.79% on the standard harmonized stringent BUSI dataset, outperforming existing ViT and CNN methods. These results demonstrate the versatility of our integrated CNN-Transformer framework in capturing diverse features and delivering superior performance in BUSI cancer diagnosis.
comment: 12 pages, 10 Figures, 2 Tables. arXiv admin note: substantial text overlap with arXiv:2405.12986
☆ Scalable Trajectory-User Linking with Dual-Stream Representation Networks AAAI 2025
Trajectory-user linking (TUL) aims to match anonymous trajectories to the most likely users who generated them, offering benefits for a wide range of real-world spatio-temporal applications. However, existing TUL methods are limited by high model complexity and poor learning of the effective representations of trajectories, rendering them ineffective in handling large-scale user trajectory data. In this work, we propose a novel $\underline{Scal}$abl$\underline{e}$ Trajectory-User Linking with dual-stream representation networks for large-scale $\underline{TUL}$ problem, named ScaleTUL. Specifically, ScaleTUL generates two views using temporal and spatial augmentations to exploit supervised contrastive learning framework to effectively capture the irregularities of trajectories. In each view, a dual-stream trajectory encoder, consisting of a long-term encoder and a short-term encoder, is designed to learn unified trajectory representations that fuse different temporal-spatial dependencies. Then, a TUL layer is used to associate the trajectories with the corresponding users in the representation space using a two-stage training model. Experimental results on check-in mobility datasets from three real-world cities and the nationwide U.S. demonstrate the superiority of ScaleTUL over state-of-the-art baselines for large-scale TUL tasks.
comment: The paper has been accepted by AAAI 2025
☆ Embedding spatial context in urban traffic forecasting with contrastive pre-training
Urban traffic forecasting is a commonly encountered problem, with wide-ranging applications in fields such as urban planning, civil engineering and transport. In this paper, we study the enhancement of traffic forecasting with pre-training, focusing on spatio-temporal graph methods. While various machine learning methods to solve traffic forecasting problems have been explored and extensively studied, there is a gap of a more contextual approach: studying how relevant non-traffic data can improve prediction performance on traffic forecasting problems. We call this data spatial context. We introduce a novel method of combining road and traffic information through the notion of a traffic quotient graph, a quotient graph formed from road geometry and traffic sensors. We also define a way to encode this relationship in the form of a geometric encoder, pre-trained using contrastive learning methods and enhanced with OpenStreetMap data. We introduce and discuss ways to integrate this geometric encoder with existing graph neural network (GNN)-based traffic forecasting models, using a contrastive pre-training paradigm. We demonstrate the potential for this hybrid model to improve generalisation and performance with zero additional traffic data. Code for this paper is available at https://github.com/mattchrlw/forecasting-on-new-roads.
comment: 21 pages with references, 10 figures
☆ Application of linear regression method to the deep reinforcement learning in continuous action cases
The linear regression (LR) method offers the advantage that optimal parameters can be calculated relatively easily, although its representation capability is limited than that of the deep learning technique. To improve deep reinforcement learning, the Least Squares Deep Q Network (LS-DQN) method was proposed by Levine et al., which combines Deep Q Network (DQN) with LR method. However, the LS-DQN method assumes that the actions are discrete. In this study, we propose the Double Least Squares Deep Deterministic Policy Gradient (DLS-DDPG) method to address this limitation. This method combines the LR method with the Deep Deterministic Policy Gradient (DDPG) technique, one of the representative deep reinforcement learning algorithms for continuous action cases. Numerical experiments conducted in MuJoCo environments showed that the LR update improved performance at least in some tasks, although there are difficulties such as the inability to make the regularization terms small.
comment: 21 pages, 6 figures
☆ Continual Multimodal Contrastive Learning
Multimodal contrastive learning (MCL) advances in aligning different modalities and generating multimodal representations in a joint space. By leveraging contrastive learning across diverse modalities, large-scale multimodal data enhances representational quality. However, a critical yet often overlooked challenge remains: multimodal data is rarely collected in a single process, and training from scratch is computationally expensive. Instead, emergent multimodal data can be used to optimize existing models gradually, \textit{i.e.}, models are trained on a sequence of modality pair data. We define this problem as Continual Multimodal Contrastive Learning (CMCL), an underexplored yet crucial research direction at the intersection of multimodal and continual learning. In this paper, we formulate CMCL through two specialized principles of stability and plasticity. We theoretically derive a novel optimization-based method, which projects updated gradients from dual sides onto subspaces where any gradient is prevented from interfering with the previously learned knowledge. Two upper bounds provide theoretical insights on both stability and plasticity in our solution. Beyond our theoretical contributions, we conduct experiments on multiple datasets by comparing our method against advanced continual learning baselines. The empirical results further support our claims and demonstrate the efficacy of our method. The code will be publicly available.
comment: 36 pages, 9 figures, 4 tables
☆ Proceedings of the 3rd Italian Conference on Big Data and Data Science (ITADATA2024)
Proceedings of the 3rd Italian Conference on Big Data and Data Science (ITADATA2024), held in Pisa, Italy, September 17-19, 2024. The Italian Conference on Big Data and Data Science (ITADATA2024) is the annual event supported by the CINI Big Data National Laboratory and ISTI CNR that aims to put together Italian researchers and professionals from academia, industry, government, and public administration working in the field of big data and data science, as well as related fields (e.g., security and privacy, HPC, Cloud). ITADATA2024 covered research on all theoretical and practical aspects of Big Data and data science including data governance, data processing, data analysis, data reporting, data protection, as well as experimental studies and lessons learned. In particular, ITADATA2024 focused on - Data spaces - Data processing life cycle - Machine learning and Large Language Models - Applications of big data and data science in healthcare, finance, industry 5.0, and beyond - Data science for social network analysis
☆ Enhancing Code LLM Training with Programmer Attention
Human attention provides valuable yet underexploited signals for code LLM training, offering a perspective beyond purely machine-driven attention. Despite the complexity and cost of collecting eye-tracking data, there has also been limited progress in systematically using these signals for code LLM training. To address both issues, we propose a cohesive pipeline spanning augmentation and reward-based fine-tuning. Specifically, we introduce (1) an eye-tracking path augmentation method to expand programmer attention datasets, (2) a pattern abstraction step that refines raw fixations into learnable attention motifs, and (3) a reward-guided strategy for integrating these insights directly into a CodeT5 supervised fine-tuning process. Our experiments yield +7.16 in CodeBLEU on the CodeXGlue benchmark for code summarization, underscoring how uniting human and machine attention can boost code intelligence. We hope this work encourages broader exploration of human-centric methods in next-generation AI4SE.
☆ Prada: Black-Box LLM Adaptation with Private Data on Resource-Constrained Devices
In recent years, Large Language Models (LLMs) have demonstrated remarkable abilities in various natural language processing tasks. However, adapting these models to specialized domains using private datasets stored on resource-constrained edge devices, such as smartphones and personal computers, remains challenging due to significant privacy concerns and limited computational resources. Existing model adaptation methods either compromise data privacy by requiring data transmission or jeopardize model privacy by exposing proprietary LLM parameters. To address these challenges, we propose Prada, a novel privacy-preserving and efficient black-box LLM adaptation system using private on-device datasets. Prada employs a lightweight proxy model fine-tuned with Low-Rank Adaptation (LoRA) locally on user devices. During inference, Prada leverages the logits offset, i.e., difference in outputs between the base and adapted proxy models, to iteratively refine outputs from a remote black-box LLM. This offset-based adaptation approach preserves both data privacy and model privacy, as there is no need to share sensitive data or proprietary model parameters. Furthermore, we incorporate speculative decoding to further speed up the inference process of Prada, making the system practically deployable on bandwidth-constrained edge devices, enabling a more practical deployment of Prada. Extensive experiments on various downstream tasks demonstrate that Prada achieves performance comparable to centralized fine-tuning methods while significantly reducing computational overhead by up to 60% and communication costs by up to 80%.
☆ ACE: A Cardinality Estimator for Set-Valued Queries
Cardinality estimation is a fundamental functionality in database systems. Most existing cardinality estimators focus on handling predicates over numeric or categorical data. They have largely omitted an important data type, set-valued data, which frequently occur in contemporary applications such as information retrieval and recommender systems. The few existing estimators for such data either favor high-frequency elements or rely on a partial independence assumption, which limits their practical applicability. We propose ACE, an Attention-based Cardinality Estimator for estimating the cardinality of queries over set-valued data. We first design a distillation-based data encoder to condense the dataset into a compact matrix. We then design an attention-based query analyzer to capture correlations among query elements. To handle variable-sized queries, a pooling module is introduced, followed by a regression model (MLP) to generate final cardinality estimates. We evaluate ACE on three datasets with varying query element distributions, demonstrating that ACE outperforms the state-of-the-art competitors in terms of both accuracy and efficiency.
comment: This paper has been accepted by PVLDB Vol 18
☆ Semi-Gradient SARSA Routing with Theoretical Guarantee on Traffic Stability and Weight Convergence
We consider the traffic control problem of dynamic routing over parallel servers, which arises in a variety of engineering systems such as transportation and data transmission. We propose a semi-gradient, on-policy algorithm that learns an approximate optimal routing policy. The algorithm uses generic basis functions with flexible weights to approximate the value function across the unbounded state space. Consequently, the training process lacks Lipschitz continuity of the gradient, boundedness of the temporal-difference error, and a prior guarantee on ergodicity, which are the standard prerequisites in existing literature on reinforcement learning theory. To address this, we combine a Lyapunov approach and an ordinary differential equation-based method to jointly characterize the behavior of traffic state and approximation weights. Our theoretical analysis proves that the training scheme guarantees traffic state stability and ensures almost surely convergence of the weights to the approximate optimum. We also demonstrate via simulations that our algorithm attains significantly faster convergence than neural network-based methods with an insignificant approximation error.
comment: arXiv admin note: text overlap with arXiv:2404.09188
☆ pFedFair: Towards Optimal Group Fairness-Accuracy Trade-off in Heterogeneous Federated Learning
Federated learning (FL) algorithms commonly aim to maximize clients' accuracy by training a model on their collective data. However, in several FL applications, the model's decisions should meet a group fairness constraint to be independent of sensitive attributes such as gender or race. While such group fairness constraints can be incorporated into the objective function of the FL optimization problem, in this work, we show that such an approach would lead to suboptimal classification accuracy in an FL setting with heterogeneous client distributions. To achieve an optimal accuracy-group fairness trade-off, we propose the Personalized Federated Learning for Client-Level Group Fairness (pFedFair) framework, where clients locally impose their fairness constraints over the distributed training process. Leveraging the image embedding models, we extend the application of pFedFair to computer vision settings, where we numerically show that pFedFair achieves an optimal group fairness-accuracy trade-off in heterogeneous FL settings. We present the results of several numerical experiments on benchmark and synthetic datasets, which highlight the suboptimality of non-personalized FL algorithms and the improvements made by the pFedFair method.
☆ A Semantic and Clean-label Backdoor Attack against Graph Convolutional Networks
Graph Convolutional Networks (GCNs) have shown excellent performance in graph-structured tasks such as node classification and graph classification. However, recent research has shown that GCNs are vulnerable to a new type of threat called the backdoor attack, where the adversary can inject a hidden backdoor into the GCNs so that the backdoored model performs well on benign samples, whereas its prediction will be maliciously changed to the attacker-specified target label if the hidden backdoor is activated by the attacker-defined trigger. Clean-label backdoor attack and semantic backdoor attack are two new backdoor attacks to Deep Neural Networks (DNNs), they are more imperceptible and have posed new and serious threats. The semantic and clean-label backdoor attack is not fully explored in GCNs. In this paper, we propose a semantic and clean-label backdoor attack against GCNs under the context of graph classification to reveal the existence of this security vulnerability in GCNs. Specifically, SCLBA conducts an importance analysis on graph samples to select one type of node as semantic trigger, which is then inserted into the graph samples to create poisoning samples without changing the labels of the poisoning samples to the attacker-specified target label. We evaluate SCLBA on multiple datasets and the results show that SCLBA can achieve attack success rates close to 99% with poisoning rates of less than 3%, and with almost no impact on the performance of model on benign samples.
☆ Pseudo-Relevance Feedback Can Improve Zero-Shot LLM-Based Dense Retrieval
Pseudo-relevance feedback (PRF) refines queries by leveraging initially retrieved documents to improve retrieval effectiveness. In this paper, we investigate how large language models (LLMs) can facilitate PRF for zero-shot LLM-based dense retrieval, extending the recently proposed PromptReps method. Specifically, our approach uses LLMs to extract salient passage features-such as keywords and summaries-from top-ranked documents, which are then integrated into PromptReps to produce enhanced query representations. Experiments on passage retrieval benchmarks demonstrate that incorporating PRF significantly boosts retrieval performance. Notably, smaller rankers with PRF can match the effectiveness of larger rankers without PRF, highlighting PRF's potential to improve LLM-driven search while maintaining an efficient balance between effectiveness and resource usage.
☆ Exploring the Limits of KV Cache Compression in Visual Autoregressive Transformers
A fundamental challenge in Visual Autoregressive models is the substantial memory overhead required during inference to store previously generated representations. Despite various attempts to mitigate this issue through compression techniques, prior works have not explicitly formalized the problem of KV-cache compression in this context. In this work, we take the first step in formally defining the KV-cache compression problem for Visual Autoregressive transformers. We then establish a fundamental negative result, proving that any mechanism for sequential visual token generation under attention-based architectures must use at least $\Omega(n^2 d)$ memory, when $d = \Omega(\log n)$, where $n$ is the number of tokens generated and $d$ is the embedding dimensionality. This result demonstrates that achieving truly sub-quadratic memory usage is impossible without additional structural constraints. Our proof is constructed via a reduction from a computational lower bound problem, leveraging randomized embedding techniques inspired by dimensionality reduction principles. Finally, we discuss how sparsity priors on visual representations can influence memory efficiency, presenting both impossibility results and potential directions for mitigating memory overhead.
☆ Robust Support Vector Machines for Imbalanced and Noisy Data via Benders Decomposition
This study introduces a novel formulation to enhance Support Vector Machines (SVMs) in handling class imbalance and noise. Unlike the conventional Soft Margin SVM, which penalizes the magnitude of constraint violations, the proposed model quantifies the number of violations and aims to minimize their frequency. To achieve this, a binary variable is incorporated into the objective function of the primal SVM formulation, replacing the traditional slack variable. Furthermore, each misclassified sample is assigned a priority and an associated constraint. The resulting formulation is a mixed-integer programming model, efficiently solved using Benders decomposition. The proposed model's performance was benchmarked against existing models, including Soft Margin SVM, weighted SVM, and NuSVC. Two primary hypotheses were examined: 1) The proposed model improves the F1-score for the minority class in imbalanced classification tasks. 2) The proposed model enhances classification accuracy in noisy datasets. These hypotheses were evaluated using a Wilcoxon test across multiple publicly available datasets from the OpenML repository. The results supported both hypotheses (\( p < 0.05 \)). In addition, the proposed model exhibited several interesting properties, such as improved robustness to noise, a decision boundary shift favoring the minority class, a reduced number of support vectors, and decreased prediction time. The open-source Python implementation of the proposed SVM model is available.
☆ Evaluating Time Series Models with Knowledge Discovery
Time series data is one of the most ubiquitous data modalities existing in a diverse critical domains such as healthcare, seismology, manufacturing and energy. Recent years, there are increasing interest of the data mining community to develop time series deep learning models to pursue better performance. The models performance often evaluate by certain evaluation metrics such as RMSE, Accuracy, and F1-score. Yet time series data are often hard to interpret and are collected with unknown environmental factors, sensor configuration, latent physic mechanisms, and non-stationary evolving behavior. As a result, a model that is better on standard metric-based evaluation may not always perform better in real-world tasks. In this blue sky paper, we aim to explore the challenge that exists in the metric-based evaluation framework for time series data mining and propose a potential blue-sky idea -- developing a knowledge-discovery-based evaluation framework, which aims to effectively utilize domain-expertise knowledge to evaluate a model. We demonstrate that an evidence-seeking explanation can potentially have stronger persuasive power than metric-based evaluation and obtain better generalization ability for time series data mining tasks.
comment: accepted in SIAM SDM 2025 - Blue Sky Track (to appear)
☆ Global Renewables Watch: A Temporal Dataset of Solar and Wind Energy Derived from Satellite Imagery
We present a comprehensive global temporal dataset of commercial solar photovoltaic (PV) farms and onshore wind turbines, derived from high-resolution satellite imagery analyzed quarterly from the fourth quarter of 2017 to the second quarter of 2024. We create this dataset by training deep learning-based segmentation models to identify these renewable energy installations from satellite imagery, then deploy them on over 13 trillion pixels covering the world. For each detected feature, we estimate the construction date and the preceding land use type. This dataset offers crucial insights into progress toward sustainable development goals and serves as a valuable resource for policymakers, researchers, and stakeholders aiming to assess and promote effective strategies for renewable energy deployment. Our final spatial dataset includes 375,197 individual wind turbines and 86,410 solar PV installations. We aggregate our predictions to the country level -- estimating total power capacity based on construction date, solar PV area, and number of windmills -- and find an $r^2$ value of $0.96$ and $0.93$ for solar PV and onshore wind respectively compared to IRENA's most recent 2023 country-level capacity estimates.
☆ 1000 Layer Networks for Self-Supervised RL: Scaling Depth Can Enable New Goal-Reaching Capabilities
Scaling up self-supervised learning has driven breakthroughs in language and vision, yet comparable progress has remained elusive in reinforcement learning (RL). In this paper, we study building blocks for self-supervised RL that unlock substantial improvements in scalability, with network depth serving as a critical factor. Whereas most RL papers in recent years have relied on shallow architectures (around 2 - 5 layers), we demonstrate that increasing the depth up to 1024 layers can significantly boost performance. Our experiments are conducted in an unsupervised goal-conditioned setting, where no demonstrations or rewards are provided, so an agent must explore (from scratch) and learn how to maximize the likelihood of reaching commanded goals. Evaluated on simulated locomotion and manipulation tasks, our approach increases performance by $2\times$ - $50\times$. Increasing the model depth not only increases success rates but also qualitatively changes the behaviors learned.
comment: Link to project website: https://wang-kevin3290.github.io/scaling-crl/
☆ LogLLaMA: Transformer-based log anomaly detection with LLaMA
Log anomaly detection refers to the task that distinguishes the anomalous log messages from normal log messages. Transformer-based large language models (LLMs) are becoming popular for log anomaly detection because of their superb ability to understand complex and long language patterns. In this paper, we propose LogLLaMA, a novel framework that leverages LLaMA2. LogLLaMA is first finetuned on normal log messages from three large-scale datasets to learn their patterns. After finetuning, the model is capable of generating successive log messages given previous log messages. Our generative model is further trained to identify anomalous log messages using reinforcement learning (RL). The experimental results show that LogLLaMA outperforms the state-of-the-art approaches for anomaly detection on BGL, Thunderbird, and HDFS datasets.
comment: 8 pages, 5 figures
☆ On the Robustness Tradeoff in Fine-Tuning
Fine-tuning has become the standard practice for adapting pre-trained (upstream) models to downstream tasks. However, the impact on model robustness is not well understood. In this work, we characterize the robustness-accuracy trade-off in fine-tuning. We evaluate the robustness and accuracy of fine-tuned models over 6 benchmark datasets and 7 different fine-tuning strategies. We observe a consistent trade-off between adversarial robustness and accuracy. Peripheral updates such as BitFit are more effective for simple tasks--over 75% above the average measured with area under the Pareto frontiers on CIFAR-10 and CIFAR-100. In contrast, fine-tuning information-heavy layers, such as attention layers via Compacter, achieves a better Pareto frontier on more complex tasks--57.5% and 34.6% above the average on Caltech-256 and CUB-200, respectively. Lastly, we observe that robustness of fine-tuning against out-of-distribution data closely tracks accuracy. These insights emphasize the need for robustness-aware fine-tuning to ensure reliable real-world deployments.
☆ Curiosity-Diffuser: Curiosity Guide Diffusion Models for Reliability
One of the bottlenecks in robotic intelligence is the instability of neural network models, which, unlike control models, lack a well-defined convergence domain and stability. This leads to risks when applying intelligence in the physical world. Specifically, imitation policy based on neural network may generate hallucinations, leading to inaccurate behaviors that impact the safety of real-world applications. To address this issue, this paper proposes the Curiosity-Diffuser, aimed at guiding the conditional diffusion model to generate trajectories with lower curiosity, thereby improving the reliability of policy. The core idea is to use a Random Network Distillation (RND) curiosity module to assess whether the model's behavior aligns with the training data, and then minimize curiosity by classifier guidance diffusion to reduce overgeneralization during inference. Additionally, we propose a computationally efficient metric for evaluating the reliability of the policy, measuring the similarity between the generated behaviors and the training dataset, to facilitate research about reliability learning. Finally, simulation verify the effectiveness and applicability of the proposed method to a variety of scenarios, showing that Curiosity-Diffuser significantly improves task performance and produces behaviors that are more similar to the training data. The code for this work is available at: github.com/CarlDegio/Curiosity-Diffuser
☆ H2ST: Hierarchical Two-Sample Tests for Continual Out-of-Distribution Detection
Task Incremental Learning (TIL) is a specialized form of Continual Learning (CL) in which a model incrementally learns from non-stationary data streams. Existing TIL methodologies operate under the closed-world assumption, presuming that incoming data remains in-distribution (ID). However, in an open-world setting, incoming samples may originate from out-of-distribution (OOD) sources, with their task identities inherently unknown. Continually detecting OOD samples presents several challenges for current OOD detection methods: reliance on model outputs leads to excessive dependence on model performance, selecting suitable thresholds is difficult, hindering real-world deployment, and binary ID/OOD classification fails to provide task-level identification. To address these issues, we propose a novel continual OOD detection method called the Hierarchical Two-sample Tests (H2ST). H2ST eliminates the need for threshold selection through hypothesis testing and utilizes feature maps to better exploit model capabilities without excessive dependence on model performance. The proposed hierarchical architecture enables task-level detection with superior performance and lower overhead compared to non-hierarchical classifier two-sample tests. Extensive experiments and analysis validate the effectiveness of H2ST in open-world TIL scenarios and its superiority to the existing methods. Code is available at \href{https://github.com/YuhangLiuu/H2ST}{https://github.com/YuhangLiuu/H2ST}.
comment: 15 pages, 8 figures
☆ Robust Transmission of Punctured Text with Large Language Model-based Recovery
With the recent advancements in deep learning, semantic communication which transmits only task-oriented features, has rapidly emerged. However, since feature extraction relies on learning-based models, its performance fundamentally depends on the training dataset or tasks. For practical scenarios, it is essential to design a model that demonstrates robust performance regardless of dataset or tasks. In this correspondence, we propose a novel text transmission model that selects and transmits only a few characters and recovers the missing characters at the receiver using a large language model (LLM). Additionally, we propose a novel importance character extractor (ICE), which selects transmitted characters to enhance LLM recovery performance. Simulations demonstrate that the proposed filter selection by ICE outperforms random filter selection, which selects transmitted characters randomly. Moreover, the proposed model exhibits robust performance across different datasets and tasks and outperforms traditional bit-based communication in low signal-to-noise ratio conditions.
comment: This work has been submitted to the IEEE for possible publication
☆ Scaled Supervision is an Implicit Lipschitz Regularizer AAAI
In modern social media, recommender systems (RecSys) rely on the click-through rate (CTR) as the standard metric to evaluate user engagement. CTR prediction is traditionally framed as a binary classification task to predict whether a user will interact with a given item. However, this approach overlooks the complexity of real-world social modeling, where the user, item, and their interactive features change dynamically in fast-paced online environments. This dynamic nature often leads to model instability, reflected in overfitting short-term fluctuations rather than higher-level interactive patterns. While overfitting calls for more scaled and refined supervisions, current solutions often rely on binary labels that overly simplify fine-grained user preferences through the thresholding process, which significantly reduces the richness of the supervision. Therefore, we aim to alleviate the overfitting problem by increasing the supervision bandwidth in CTR training. Specifically, (i) theoretically, we formulate the impact of fine-grained preferences on model stability as a Lipschitz constrain; (ii) empirically, we discover that scaling the supervision bandwidth can act as an implicit Lipschitz regularizer, stably optimizing existing CTR models to achieve better generalizability. Extensive experiments show that this scaled supervision significantly and consistently improves the optimization process and the performance of existing CTR models, even without the need for additional hyperparameter tuning.
comment: Accepted to the International AAAI Conference on Web and Social Media (ICWSM 2025)
☆ Learning with Expert Abstractions for Efficient Multi-Task Continuous Control
Decision-making in complex, continuous multi-task environments is often hindered by the difficulty of obtaining accurate models for planning and the inefficiency of learning purely from trial and error. While precise environment dynamics may be hard to specify, human experts can often provide high-fidelity abstractions that capture the essential high-level structure of a task and user preferences in the target environment. Existing hierarchical approaches often target discrete settings and do not generalize across tasks. We propose a hierarchical reinforcement learning approach that addresses these limitations by dynamically planning over the expert-specified abstraction to generate subgoals to learn a goal-conditioned policy. To overcome the challenges of learning under sparse rewards, we shape the reward based on the optimal state value in the abstract model. This structured decision-making process enhances sample efficiency and facilitates zero-shot generalization. Our empirical evaluation on a suite of procedurally generated continuous control environments demonstrates that our approach outperforms existing hierarchical reinforcement learning methods in terms of sample efficiency, task completion rate, scalability to complex tasks, and generalization to novel scenarios.
comment: 12 pages, 6 figures. Submitted to RLC 2025. Code and experiments at https://github.com/Intelligent-Reliable-Autonomous-Systems/gcrs-expert-abstractions
☆ Long Context Modeling with Ranked Memory-Augmented Retrieval
Effective long-term memory management is crucial for language models handling extended contexts. We introduce a novel framework that dynamically ranks memory entries based on relevance. Unlike previous works, our model introduces a novel relevance scoring and a pointwise re-ranking model for key-value embeddings, inspired by learning-to-rank techniques in information retrieval. Enhanced Ranked Memory Augmented Retrieval ERMAR achieves state-of-the-art results on standard benchmarks.
☆ Pruning-Based TinyML Optimization of Machine Learning Models for Anomaly Detection in Electric Vehicle Charging Infrastructure
With the growing need for real-time processing on IoT devices, optimizing machine learning (ML) models' size, latency, and computational efficiency is essential. This paper investigates a pruning method for anomaly detection in resource-constrained environments, specifically targeting Electric Vehicle Charging Infrastructure (EVCI). Using the CICEVSE2024 dataset, we trained and optimized three models-Multi-Layer Perceptron (MLP), Long Short-Term Memory (LSTM), and XGBoost-through hyperparameter tuning with Optuna, further refining them using SHapley Additive exPlanations (SHAP)-based feature selection (FS) and unstructured pruning techniques. The optimized models achieved significant reductions in model size and inference times, with only a marginal impact on their performance. Notably, our findings indicate that, in the context of EVCI, pruning and FS can enhance computational efficiency while retaining critical anomaly detection capabilities.
comment: This paper has been accepted for presentation at IEEE ICC 2025. The final published version will be available in the conference proceedings. The implementation and code are available at: https://github.com/Western-OC2-Lab/EVCI-Pruning
☆ A New Benchmark for Online Learning with Budget-Balancing Constraints
The adversarial Bandit with Knapsack problem is a multi-armed bandits problem with budget constraints and adversarial rewards and costs. In each round, a learner selects an action to take and observes the reward and cost of the selected action. The goal is to maximize the sum of rewards while satisfying the budget constraint. The classical benchmark to compare against is the best fixed distribution over actions that satisfies the budget constraint in expectation. Unlike its stochastic counterpart, where rewards and costs are drawn from some fixed distribution (Badanidiyuru et al., 2018), the adversarial BwK problem does not admit a no-regret algorithm for every problem instance due to the "spend-or-save" dilemma (Immorlica et al., 2022). A key problem left open by existing works is whether there exists a weaker but still meaningful benchmark to compare against such that no-regret learning is still possible. In this work, we present a new benchmark to compare against, motivated both by real-world applications such as autobidding and by its underlying mathematical structure. The benchmark is based on the Earth Mover's Distance (EMD), and we show that sublinear regret is attainable against any strategy whose spending pattern is within EMD $o(T^2)$ of any sub-pacing spending pattern. As a special case, we obtain results against the "pacing over windows" benchmark, where we partition time into disjoint windows of size $w$ and allow the benchmark strategies to choose a different distribution over actions for each window while satisfying a pacing budget constraint. Against this benchmark, our algorithm obtains a regret bound of $\tilde{O}(T/\sqrt{w}+\sqrt{wT})$. We also show a matching lower bound, proving the optimality of our algorithm in this important special case. In addition, we provide further evidence of the necessity of the EMD condition for obtaining a sublinear regret.
☆ The Hardness of Validating Observational Studies with Experimental Data AISTATS 2025
Observational data is often readily available in large quantities, but can lead to biased causal effect estimates due to the presence of unobserved confounding. Recent works attempt to remove this bias by supplementing observational data with experimental data, which, when available, is typically on a smaller scale due to the time and cost involved in running a randomised controlled trial. In this work, we prove a theorem that places fundamental limits on this ``best of both worlds'' approach. Using the framework of impossible inference, we show that although it is possible to use experimental data to \emph{falsify} causal effect estimates from observational data, in general it is not possible to \emph{validate} such estimates. Our theorem proves that while experimental data can be used to detect bias in observational studies, without additional assumptions on the smoothness of the correction function, it can not be used to remove it. We provide a practical example of such an assumption, developing a novel Gaussian Process based approach to construct intervals which contain the true treatment effect with high probability, both inside and outside of the support of the experimental data. We demonstrate our methodology on both simulated and semi-synthetic datasets and make the \href{https://github.com/Jakefawkes/Obs_and_exp_data}{code available}.
comment: Published at AISTATS 2025
☆ PARQ: Piecewise-Affine Regularized Quantization
We develop a principled method for quantization-aware training (QAT) of large-scale machine learning models. Specifically, we show that convex, piecewise-affine regularization (PAR) can effectively induce the model parameters to cluster towards discrete values. We minimize PAR-regularized loss functions using an aggregate proximal stochastic gradient method (AProx) and prove that it has last-iterate convergence. Our approach provides an interpretation of the straight-through estimator (STE), a widely used heuristic for QAT, as the asymptotic form of PARQ. We conduct experiments to demonstrate that PARQ obtains competitive performance on convolution- and transformer-based vision tasks.
☆ Using machine learning to map simulated noisy and laser-limited multidimensional spectra to molecular electronic couplings
Two-dimensional electronic spectroscopy (2DES) has enabled significant discoveries in both biological and synthetic energy-transducing systems. Although deriving chemical information from 2DES is a complex task, machine learning (ML) offers exciting opportunities to translate complicated spectroscopic data into physical insight. Recent studies have found that neural networks (NNs) can map simulated multidimensional spectra to molecular-scale properties with high accuracy. However, simulations often do not capture experimental factors that influence real spectra, including noise and suboptimal pulse resonance conditions, bringing into question the experimental utility of NNs trained on simulated data. Here, we show how factors associated with experimental 2D spectral data influence the ability of NNs to map simulated 2DES spectra onto underlying intermolecular electronic couplings. By systematically introducing multisourced noise into a library of 356000 simulated 2D spectra, we show that noise does not hamper NN performance for spectra exceeding threshold signal-to-noise ratios (SNR) (> 6.6 if background noise dominates vs. > 2.5 for intensity-dependent noise). In stark contrast to human-based analyses of 2DES data, we find that the NN accuracy improves significantly (ca. 84% $\rightarrow$ 96%) when the data are constrained by the bandwidth and center frequency of the pump pulses. This result is consistent with the NN learning the optical trends described by Kasha's theory of molecular excitons. Our findings convey positive prospects for adapting simulation-trained NNs to extract molecular properties from inherently imperfect experimental 2DES data. More broadly, we propose that machine-learned perspectives of nonlinear spectroscopic data may produce unique and, perhaps, counterintuitive guidelines for experimental design.
comment: 24 pages, 15 figures
☆ Tuning Sequential Monte Carlo Samplers via Greedy Incremental Divergence Minimization
The performance of sequential Monte Carlo (SMC) samplers heavily depends on the tuning of the Markov kernels used in the path proposal. For SMC samplers with unadjusted Markov kernels, standard tuning objectives, such as the Metropolis-Hastings acceptance rate or the expected-squared jump distance, are no longer applicable. While stochastic gradient-based end-to-end optimization has been explored for tuning SMC samplers, they often incur excessive training costs, even for tuning just the kernel step sizes. In this work, we propose a general adaptation framework for tuning the Markov kernels in SMC samplers by minimizing the incremental Kullback-Leibler (KL) divergence between the proposal and target paths. For step size tuning, we provide a gradient- and tuning-free algorithm that is generally applicable for kernels such as Langevin Monte Carlo (LMC). We further demonstrate the utility of our approach by providing a tailored scheme for tuning \textit{kinetic} LMC used in SMC samplers. Our implementations are able to obtain a full \textit{schedule} of tuned parameters at the cost of a few vanilla SMC runs, which is a fraction of gradient-based approaches.
☆ Approximation properties of neural ODEs
We study the approximation properties of shallow neural networks whose activation function is defined as the flow of a neural ordinary differential equation (neural ODE) at the final time of the integration interval. We prove the universal approximation property (UAP) of such shallow neural networks in the space of continuous functions. Furthermore, we investigate the approximation properties of shallow neural networks whose parameters are required to satisfy some constraints. In particular, we constrain the Lipschitz constant of the flow of the neural ODE to increase the stability of the shallow neural network, and we restrict the norm of the weight matrices of the linear layers to one to make sure that the restricted expansivity of the flow is not compensated by the increased expansivity of the linear layers. For this setting, we prove approximation bounds that tell us the accuracy to which we can approximate a continuous function with a shallow neural network with such constraints. We prove that the UAP holds if we consider only the constraint on the Lipschitz constant of the flow or the unit norm constraint on the weight matrices of the linear layers.
comment: 30 pages, 11 figures, 2 tables
☆ Good Actions Succeed, Bad Actions Generalize: A Case Study on Why RL Generalizes Better
Supervised learning (SL) and reinforcement learning (RL) are both widely used to train general-purpose agents for complex tasks, yet their generalization capabilities and underlying mechanisms are not yet fully understood. In this paper, we provide a direct comparison between SL and RL in terms of zero-shot generalization. Using the Habitat visual navigation task as a testbed, we evaluate Proximal Policy Optimization (PPO) and Behavior Cloning (BC) agents across two levels of generalization: state-goal pair generalization within seen environments and generalization to unseen environments. Our experiments show that PPO consistently outperforms BC across both zero-shot settings and performance metrics-success rate and SPL. Interestingly, even though additional optimal training data enables BC to match PPO's zero-shot performance in SPL, it still falls significantly behind in success rate. We attribute this to a fundamental difference in how models trained by these algorithms generalize: BC-trained models generalize by imitating successful trajectories, whereas TD-based RL-trained models generalize through combinatorial experience stitching-leveraging fragments of past trajectories (mostly failed ones) to construct solutions for new tasks. This allows RL to efficiently find solutions in vast state space and discover novel strategies beyond the scope of human knowledge. Besides providing empirical evidence and understanding, we also propose practical guidelines for improving the generalization capabilities of RL and SL through algorithm design.
☆ Robotic Paper Wrapping by Learning Force Control
Robotic packaging using wrapping paper poses significant challenges due to the material's complex deformation properties. The packaging process itself involves multiple steps, primarily categorized as folding the paper or creating creases. Small deviations in the robot's arm trajectory or force vector can lead to tearing or wrinkling of the paper, exacerbated by the variability in material properties. This study introduces a novel framework that combines imitation learning and reinforcement learning to enable a robot to perform each step of the packaging process efficiently. The framework allows the robot to follow approximate trajectories of the tool-center point (TCP) based on human demonstrations while optimizing force control parameters to prevent tearing or wrinkling, even with variable wrapping paper materials. The proposed method was validated through ablation studies, which demonstrated successful task completion with a significant reduction in tear and wrinkle rates. Furthermore, the force control strategy proved to be adaptable across different wrapping paper materials and robust against variations in the size of the target object.
☆ Sequential learning based PINNs to overcome temporal domain complexities in unsteady flow past flapping wings
For a data-driven and physics combined modelling of unsteady flow systems with moving immersed boundaries, Sundar {\it et al.} introduced an immersed boundary-aware (IBA) framework, combining Physics-Informed Neural Networks (PINNs) and the immersed boundary method (IBM). This approach was beneficial because it avoided case-specific transformations to a body-attached reference frame. Building on this, we now address the challenges of long time integration in velocity reconstruction and pressure recovery by extending this IBA framework with sequential learning strategies. Key difficulties for PINNs in long time integration include temporal sparsity, long temporal domains and rich spectral content. To tackle these, a moving boundary-enabled PINN is developed, proposing two sequential learning strategies: - a time marching with gradual increase in time domain size, however, this approach struggles with error accumulation over long time domains; and - a time decomposition which divides the temporal domain into smaller segments, combined with transfer learning it effectively reduces error propagation and computational complexity. The key findings for modelling of incompressible unsteady flows past a flapping airfoil include: - for quasi-periodic flows, the time decomposition approach with preferential spatio-temporal sampling improves accuracy and efficiency for pressure recovery and aerodynamic load reconstruction, and, - for long time domains, decomposing it into smaller temporal segments and employing multiple sub-networks, simplifies the problem ensuring stability and reduced network sizes. This study highlights the limitations of traditional PINNs for long time integration of flow-structure interaction problems and demonstrates the benefits of decomposition-based strategies for addressing error accumulation, computational cost, and complex dynamics.
☆ Model Risk Management for Generative AI In Financial Institutions
The success of OpenAI's ChatGPT in 2023 has spurred financial enterprises into exploring Generative AI applications to reduce costs or drive revenue within different lines of businesses in the Financial Industry. While these applications offer strong potential for efficiencies, they introduce new model risks, primarily hallucinations and toxicity. As highly regulated entities, financial enterprises (primarily large US banks) are obligated to enhance their model risk framework with additional testing and controls to ensure safe deployment of such applications. This paper outlines the key aspects for model risk management of generative AI model with a special emphasis on additional practices required in model validation.
Survey on Generalization Theory for Graph Neural Networks
Message-passing graph neural networks (MPNNs) have emerged as the leading approach for machine learning on graphs, attracting significant attention in recent years. While a large set of works explored the expressivity of MPNNs, i.e., their ability to separate graphs and approximate functions over them, comparatively less attention has been directed toward investigating their generalization abilities, i.e., making meaningful predictions beyond the training data. Here, we systematically review the existing literature on the generalization abilities of MPNNs. We analyze the strengths and limitations of various studies in these domains, providing insights into their methodologies and findings. Furthermore, we identify potential avenues for future research, aiming to deepen our understanding of the generalization abilities of MPNNs.
☆ Multi-Modal Gesture Recognition from Video and Surgical Tool Pose Information via Motion Invariants
Recognizing surgical gestures in real-time is a stepping stone towards automated activity recognition, skill assessment, intra-operative assistance, and eventually surgical automation. The current robotic surgical systems provide us with rich multi-modal data such as video and kinematics. While some recent works in multi-modal neural networks learn the relationships between vision and kinematics data, current approaches treat kinematics information as independent signals, with no underlying relation between tool-tip poses. However, instrument poses are geometrically related, and the underlying geometry can aid neural networks in learning gesture representation. Therefore, we propose combining motion invariant measures (curvature and torsion) with vision and kinematics data using a relational graph network to capture the underlying relations between different data streams. We show that gesture recognition improves when combining invariant signals with tool position, achieving 90.3\% frame-wise accuracy on the JIGSAWS suturing dataset. Our results show that motion invariant signals coupled with position are better representations of gesture motion compared to traditional position and quaternion representations. Our results highlight the need for geometric-aware modeling of kinematics for gesture recognition.
☆ Using machine learning to measure evidence of students' sensemaking in physics courses
In the education system, problem-solving correctness is often inappropriately conflated with student learning. Advances in both Physics Education Research (PER) and Machine Learning (ML) provide the initial tools to develop a more meaningful and efficient measurement scheme for whether physics students are engaging in sensemaking: a learning process of figuring out the how and why for a particular phenomena. In this work, we contribute such a measurement scheme, which quantifies the evidence of students' physical sensemaking given their written explanations for their solutions to physics problems. We outline how the proposed human annotation scheme can be automated into a deployable ML model using language encoders and shared probabilistic classifiers. The procedure is scalable for a large number of problems and students. We implement three unique language encoders with logistic regression, and provide a deployability analysis on 385 real student explanations from the 2023 Introduction to Physics course at Tufts University. Furthermore, we compute sensemaking scores for all students, and analyze these measurements alongside their corresponding problem-solving accuracies. We find no linear relationship between these two variables, supporting the hypothesis that one is not a reliable proxy for the other. We discuss how sensemaking scores can be used alongside problem-solving accuracies to provide a more nuanced snapshot of student performance in physics class.
☆ Neural Lyapunov Function Approximation with Self-Supervised Reinforcement Learning ICRA
Control Lyapunov functions are traditionally used to design a controller which ensures convergence to a desired state, yet deriving these functions for nonlinear systems remains a complex challenge. This paper presents a novel, sample-efficient method for neural approximation of nonlinear Lyapunov functions, leveraging self-supervised Reinforcement Learning (RL) to enhance training data generation, particularly for inaccurately represented regions of the state space. The proposed approach employs a data-driven World Model to train Lyapunov functions from off-policy trajectories. The method is validated on both standard and goal-conditioned robotic tasks, demonstrating faster convergence and higher approximation accuracy compared to the state-of-the-art neural Lyapunov approximation baseline. The code is available at: https://github.com/CAV-Research-Lab/SACLA.git
comment: Accepted at IEEE International Conference on Robotics and Automation (ICRA)
☆ Does Context Matter? ContextualJudgeBench for Evaluating LLM-based Judges in Contextual Settings
The large language model (LLM)-as-judge paradigm has been used to meet the demand for a cheap, reliable, and fast evaluation of model outputs during AI system development and post-deployment monitoring. While judge models -- LLMs finetuned to specialize in assessing and critiquing model outputs -- have been touted as general purpose evaluators, they are typically evaluated only on non-contextual scenarios, such as instruction following. The omission of contextual settings -- those where external information is used as context to generate an output -- is surprising given the increasing prevalence of retrieval-augmented generation (RAG) and summarization use cases. Contextual assessment is uniquely challenging, as evaluation often depends on practitioner priorities, leading to conditional evaluation criteria (e.g., comparing responses based on factuality and then considering completeness if they are equally factual). To address the gap, we propose ContextualJudgeBench, a judge benchmark with 2,000 challenging response pairs across eight splits inspired by real-world contextual evaluation scenarios. We build our benchmark with a multi-pronged data construction pipeline that leverages both existing human annotations and model-based perturbations. Our comprehensive study across 11 judge models and 9 general purpose models, reveals that the contextual information and its assessment criteria present a significant challenge to even state-of-the-art models. For example, OpenAI's o1, the best-performing model, barely reaches 55% consistent accuracy.
comment: 23 pages, 13 figures, 6 tables
☆ PEnGUiN: Partially Equivariant Graph NeUral Networks for Sample Efficient MARL
Equivariant Graph Neural Networks (EGNNs) have emerged as a promising approach in Multi-Agent Reinforcement Learning (MARL), leveraging symmetry guarantees to greatly improve sample efficiency and generalization. However, real-world environments often exhibit inherent asymmetries arising from factors such as external forces, measurement inaccuracies, or intrinsic system biases. This paper introduces \textit{Partially Equivariant Graph NeUral Networks (PEnGUiN)}, a novel architecture specifically designed to address these challenges. We formally identify and categorize various types of partial equivariance relevant to MARL, including subgroup equivariance, feature-wise equivariance, regional equivariance, and approximate equivariance. We theoretically demonstrate that PEnGUiN is capable of learning both fully equivariant (EGNN) and non-equivariant (GNN) representations within a unified framework. Through extensive experiments on a range of MARL problems incorporating various asymmetries, we empirically validate the efficacy of PEnGUiN. Our results consistently demonstrate that PEnGUiN outperforms both EGNNs and standard GNNs in asymmetric environments, highlighting their potential to improve the robustness and applicability of graph-based MARL algorithms in real-world scenarios.
Efficient Post-Hoc Uncertainty Calibration via Variance-Based Smoothing
Since state-of-the-art uncertainty estimation methods are often computationally demanding, we investigate whether incorporating prior information can improve uncertainty estimates in conventional deep neural networks. Our focus is on machine learning tasks where meaningful predictions can be made from sub-parts of the input. For example, in speaker classification, the speech waveform can be divided into sequential patches, each containing information about the same speaker. We observe that the variance between sub-predictions serves as a reliable proxy for uncertainty in such settings. Our proposed variance-based scaling framework produces competitive uncertainty estimates in classification while being less computationally demanding and allowing for integration as a post-hoc calibration tool. This approach also leads to a simple extension of deep ensembles, improving the expressiveness of their predicted distributions.
☆ Hierarchical clustering with maximum density paths and mixture models
Hierarchical clustering is an effective and interpretable technique for analyzing structure in data, offering a nuanced understanding by revealing insights at multiple scales and resolutions. It is particularly helpful in settings where the exact number of clusters is unknown, and provides a robust framework for exploring complex datasets. Additionally, hierarchical clustering can uncover inner structures within clusters, capturing subtle relationships and nested patterns that may be obscured by traditional flat clustering methods. However, existing hierarchical clustering methods struggle with high-dimensional data, especially when there are no clear density gaps between modes. Our method addresses this limitation by leveraging a two-stage approach, first employing a Gaussian or Student's t mixture model to overcluster the data, and then hierarchically merging clusters based on the induced density landscape. This approach yields state-of-the-art clustering performance while also providing a meaningful hierarchy, making it a valuable tool for exploratory data analysis. Code is available at https://github.com/ecker-lab/tneb clustering.
☆ Performance-bounded Online Ensemble Learning Method Based on Multi-armed bandits and Its Applications in Real-time Safety Assessment
Ensemble learning plays a crucial role in practical applications of online learning due to its enhanced classification performance and adaptable adjustment mechanisms. However, most weight allocation strategies in ensemble learning are heuristic, making it challenging to theoretically guarantee that the ensemble classifier outperforms its base classifiers. To address this issue, a performance-bounded online ensemble learning method based on multi-armed bandits, named PB-OEL, is proposed in this paper. Specifically, multi-armed bandit with expert advice is incorporated into online ensemble learning, aiming to update the weights of base classifiers and make predictions. A theoretical framework is established to bound the performance of the ensemble classifier relative to base classifiers. By setting expert advice of bandits, the bound exceeds the performance of any base classifier when the length of data stream is sufficiently large. Additionally, performance bounds for scenarios with limited annotations are also derived. Numerous experiments on benchmark datasets and a dataset of real-time safety assessment tasks are conducted. The experimental results validate the theoretical bound to a certain extent and demonstrate that the proposed method outperforms existing state-of-the-art methods.
comment: 14 pages, 9 figures
☆ Understanding the Generalization of In-Context Learning in Transformers: An Empirical Study
Large language models (LLMs) like GPT-4 and LLaMA-3 utilize the powerful in-context learning (ICL) capability of Transformer architecture to learn on the fly from limited examples. While ICL underpins many LLM applications, its full potential remains hindered by a limited understanding of its generalization boundaries and vulnerabilities. We present a systematic investigation of transformers' generalization capability with ICL relative to training data coverage by defining a task-centric framework along three dimensions: inter-problem, intra-problem, and intra-task generalization. Through extensive simulation and real-world experiments, encompassing tasks such as function fitting, API calling, and translation, we find that transformers lack inter-problem generalization with ICL, but excel in intra-task and intra-problem generalization. When the training data includes a greater variety of mixed tasks, it significantly enhances the generalization ability of ICL on unseen tasks and even on known simple tasks. This guides us in designing training data to maximize the diversity of tasks covered and to combine different tasks whenever possible, rather than solely focusing on the target task for testing.
comment: 32 pages
☆ Sparseformer: a Transferable Transformer with Multi-granularity Token Sparsification for Medical Time Series Classification
Medical time series (MedTS) classification is crucial for improved diagnosis in healthcare, and yet it is challenging due to the varying granularity of patterns, intricate inter-channel correlation, information redundancy, and label scarcity. While existing transformer-based models have shown promise in time series analysis, they mainly focus on forecasting and fail to fully exploit the distinctive characteristics of MedTS data. In this paper, we introduce Sparseformer, a transformer specifically designed for MedTS classification. We propose a sparse token-based dual-attention mechanism that enables global modeling and token compression, allowing dynamic focus on the most informative tokens while distilling redundant features. This mechanism is then applied to the multi-granularity, cross-channel encoding of medical signals, capturing intra- and inter-granularity correlations and inter-channel connections. The sparsification design allows our model to handle heterogeneous inputs of varying lengths and channels directly. Further, we introduce an adaptive label encoder to address label space misalignment across datasets, equipping our model with cross-dataset transferability to alleviate the medical label scarcity issue. Our model outperforms 12 baselines across seven medical datasets under supervised learning. In the few-shot learning experiments, our model also achieves superior average results. In addition, the in-domain and cross-domain experiments among three diagnostic scenarios demonstrate our model's zero-shot learning capability. Collectively, these findings underscore the robustness and transferability of our model in various medical applications.
comment: 3 figures, 16 pages, 5 tables
☆ A Bird Song Detector for improving bird identification through Deep Learning: a case study from Doñana
Passive Acoustic Monitoring with automatic recorders is essential for ecosystem conservation but generates vast unsupervised audio data, posing challenges for extracting meaningful information. Deep Learning techniques offer a promising solution. BirdNET, a widely used model for bird identification, has shown success in many study systems but is limited in some regions due to biases in its training data. A key challenge in bird species detection is that many recordings either lack target species or contain overlapping vocalizations. To overcome these problems, we developed a multi-stage pipeline for automatic bird vocalization identification in Do\~nana National Park (SW Spain), a region facing significant conservation threats. Our approach included a Bird Song Detector to isolate vocalizations and custom classifiers trained with BirdNET embeddings. We manually annotated 461 minutes of audio from three habitats across nine locations, yielding 3,749 annotations for 34 classes. Spectrograms facilitated the use of image processing techniques. Applying the Bird Song Detector before classification improved species identification, as all classification models performed better when analyzing only the segments where birds were detected. Specifically, the combination of the Bird Song Detector and fine-tuned BirdNET compared to the baseline without the Bird Song Detector. Our approach demonstrated the effectiveness of integrating a Bird Song Detector with fine-tuned classification models for bird identification at local soundscapes. These findings highlight the need to adapt general-purpose tools for specific ecological challenges, as demonstrated in Do\~nana. Automatically detecting bird species serves for tracking the health status of this threatened ecosystem, given the sensitivity of birds to environmental changes, and helps in the design of conservation measures for reducing biodiversity loss
comment: 20 pages, 13 images, for associated dataset see https://huggingface.co/datasets/GrunCrow/BIRDeep_AudioAnnotations , for associated code see https://github.com/GrunCrow/BIRDeep_BirdSongDetector_NeuralNetworks and https://github.com/GrunCrow/Bird-Song-Detector
☆ Machine Learning Techniques for Multifactor Analysis of National Carbon Dioxide Emissions
This paper presents a comprehensive study leveraging Support Vector Machine (SVM) regression and Principal Component Regression (PCR) to analyze carbon dioxide emissions in a global dataset of 62 countries and their dependence on idiosyncratic, country-specific parameters. The objective is to understand the factors contributing to carbon dioxide emissions and identify the most predictive elements. The analysis provides country-specific emission estimates, highlighting diverse national trajectories and pinpointing areas for targeted interventions in climate change mitigation, sustainable development, and the growing carbon credit markets and green finance sector. The study aims to support policymaking with accurate representations of carbon dioxide emissions, offering nuanced information for formulating effective strategies to address climate change while informing initiatives related to carbon trading and environmentally sustainable investments.
☆ Neuronal Activation States as Sample Embeddings for Data Selection in Task-Specific Instruction Tuning
Task-specific instruction tuning enhances the performance of large language models (LLMs) on specialized tasks, yet efficiently selecting relevant data for this purpose remains a challenge. Inspired by neural coactivation in the human brain, we propose a novel data selection method called NAS, which leverages neuronal activation states as embeddings for samples in the feature space. Extensive experiments show that NAS outperforms classical data selection methods in terms of both effectiveness and robustness across different models, datasets, and selection ratios.
comment: preprint
☆ LLM-Aided Customizable Profiling of Code Data Based On Programming Language Concepts
Data profiling is critical in machine learning for generating descriptive statistics, supporting both deeper understanding and downstream tasks like data valuation and curation. This work addresses profiling specifically in the context of code datasets for Large Language Models (code-LLMs), where data quality directly influences tasks such as code generation and summarization. Characterizing code datasets in terms of programming language concepts enables better insights and targeted data curation. Our proposed methodology decomposes code data profiling into two phases: (1) an offline phase where LLMs are leveraged to derive and learn rules for extracting syntactic and semantic concepts across various programming languages, including previously unseen or low-resource languages, and (2) an online deterministic phase applying these derived rules for efficient real-time analysis. This hybrid approach is customizable, extensible to new syntactic and semantic constructs, and scalable to multiple languages. Experimentally, our LLM-aided method achieves a mean accuracy of 90.33% for syntactic extraction rules and semantic classification accuracies averaging 80% and 77% across languages and semantic concepts, respectively.
comment: 21 pages
♻ ☆ Technical Report: Aggregation on Learnable Manifolds for Asynchronous Federated Optimization
In Federated Learning (FL), a primary challenge to the server-side aggregation of client models is device heterogeneity in both loss landscape geometry and computational capacity. This issue can be particularly pronounced in clinical contexts where variations in data distribution (aggravated by class imbalance), infrastructure requirements, and sample sizes are common. We propose AsyncManifold, a novel asynchronous FL framework to address these issues by taking advantage of underlying solution space geometry at each of the local training, delay-correction, and aggregation stages. Our proposal is accompanied by a convergence proof in a general form and, motivated through exploratory studies of local behaviour, a proof-of-concept algorithm which performs aggregation along non-linear mode connections and hence avoids barriers to convergence that techniques based on linear interpolation will encounter.
comment: 22 pages, 3 figures. Preliminary technical project report [v2] fixed abstract wording
♻ ☆ MoonCast: High-Quality Zero-Shot Podcast Generation
Recent advances in text-to-speech synthesis have achieved notable success in generating high-quality short utterances for individual speakers. However, these systems still face challenges when extending their capabilities to long, multi-speaker, and spontaneous dialogues, typical of real-world scenarios such as podcasts. These limitations arise from two primary challenges: 1) long speech: podcasts typically span several minutes, exceeding the upper limit of most existing work; 2) spontaneity: podcasts are marked by their spontaneous, oral nature, which sharply contrasts with formal, written contexts; existing works often fall short in capturing this spontaneity. In this paper, we propose MoonCast, a solution for high-quality zero-shot podcast generation, aiming to synthesize natural podcast-style speech from text-only sources (e.g., stories, technical reports, news in TXT, PDF, or Web URL formats) using the voices of unseen speakers. To generate long audio, we adopt a long-context language model-based audio modeling approach utilizing large-scale long-context speech data. To enhance spontaneity, we utilize a podcast generation module to generate scripts with spontaneous details, which have been empirically shown to be as crucial as the text-to-speech modeling itself. Experiments demonstrate that MoonCast outperforms baselines, with particularly notable improvements in spontaneity and coherence.
♻ ☆ Tapered Off-Policy REINFORCE: Stable and efficient reinforcement learning for LLMs
We propose a new algorithm for fine-tuning large language models using reinforcement learning. Tapered Off-Policy REINFORCE (TOPR) uses an asymmetric, tapered variant of importance sampling to speed up learning while maintaining stable learning dynamics, even without the use of KL regularization. TOPR can be applied in a fully offline fashion, allows the handling of positive and negative examples in a unified framework, and benefits from the implementational simplicity that is typical of Monte Carlo algorithms. We demonstrate the effectiveness of our approach with a series of experiments on the GSM8K and MATH reasoning benchmarks, finding performance gains for training both a model for solution generation and as a generative verifier. We show that properly leveraging positive and negative examples alike in the off-policy regime simultaneously increases test-time accuracy and training data efficiency, all the while avoiding the ``wasted inference'' that comes with discarding negative examples. We find that this advantage persists over multiple iterations of training and can be amplified by dataset curation techniques, enabling us to match 70B-parameter model performance with 8B language models. As a corollary to this work, we find that REINFORCE's baseline parameter plays an important and unexpected role in defining dataset composition in the presence of negative examples, and is consequently critical in driving off-policy performance.
♻ ☆ Persistent Homology-induced Graph Ensembles for Time Series Regressions
The effectiveness of Spatio-temporal Graph Neural Networks (STGNNs) in time-series applications is often limited by their dependence on fixed, hand-crafted input graph structures. Motivated by insights from the Topological Data Analysis (TDA) paradigm, of which real-world data exhibits multi-scale patterns, we construct several graphs using Persistent Homology Filtration -- a mathematical framework describing the multiscale structural properties of data points. Then, we use the constructed graphs as an input to create an ensemble of Graph Neural Networks. The ensemble aggregates the signals from the individual learners via an attention-based routing mechanism, thus systematically encoding the inherent multiscale structures of data. Four different real-world experiments on seismic activity prediction and traffic forecasting (PEMS-BAY, METR-LA) demonstrate that our approach consistently outperforms single-graph baselines while providing interpretable insights.
♻ ☆ Scam Detection for Ethereum Smart Contracts: Leveraging Graph Representation Learning for Secure Blockchain
As more and more attacks have been detected on Ethereum smart contracts, it has seriously affected finance and credibility. Current anti-fraud detection techniques, including code parsing or manual feature extraction, still have some shortcomings, although some generalization or adaptability can be obtained. In the face of this situation, this paper proposes to use graphical representation learning technology to find transaction patterns and distinguish malicious transaction contracts, that is, to represent Ethereum transaction data as graphs, and then use advanced ML technology to obtain reliable and accurate results. Taking into account the sample imbalance, we treated with SMOTE-ENN and tested several models, in which MLP performed better than GCN, but the exact effect depends on its field trials. Our research opens up more possibilities for trust and security in the Ethereum ecosystem.
comment: Accepted to ISCAIT 2025
♻ ☆ Enhanced High-Dimensional Data Visualization through Adaptive Multi-Scale Manifold Embedding
To address the dual challenges of the curse of dimensionality and the difficulty in separating intra-cluster and inter-cluster structures in high-dimensional manifold embedding, we proposes an Adaptive Multi-Scale Manifold Embedding (AMSME) algorithm. By introducing ordinal distance to replace traditional Euclidean distances, we theoretically demonstrate that ordinal distance overcomes the constraints of the curse of dimensionality in high-dimensional spaces, effectively distinguishing heterogeneous samples. We design an adaptive neighborhood adjustment method to construct similarity graphs that simultaneously balance intra-cluster compactness and inter-cluster separability. Furthermore, we develop a two-stage embedding framework: the first stage achieves preliminary cluster separation while preserving connectivity between structurally similar clusters via the similarity graph, and the second stage enhances inter-cluster separation through a label-driven distance reweighting. Experimental results demonstrate that AMSME significantly preserves intra-cluster topological structures and improves inter-cluster separation on real-world datasets. Additionally, leveraging its multi-resolution analysis capability, AMSME discovers novel neuronal subtypes in the mouse lumbar dorsal root ganglion scRNA-seq dataset, with marker gene analysis revealing their distinct biological roles.
♻ ☆ Self-Vocabularizing Training for Neural Machine Translation
Past vocabulary learning techniques identify relevant vocabulary before training, relying on statistical and entropy-based assumptions that largely neglect the role of model training. Empirically, we observe that trained translation models are induced to use a byte-pair encoding (BPE) vocabulary subset distinct from the original BPE vocabulary, leading to performance improvements when retrained with the induced vocabulary. In this paper, we analyze this discrepancy in neural machine translation by examining vocabulary and entropy shifts during self-training--where each iteration generates a labeled dataset by pairing source sentences with the model's predictions to define a new vocabulary. Building on these insights, we propose self-vocabularizing training, an iterative method that self-selects a smaller, more optimal vocabulary, yielding up to a 1.49 BLEU improvement. Moreover, we find that deeper model architectures lead to both an increase in unique token usage and a 6-8% reduction in vocabulary size.
comment: Accepted to NAACL SRW 2025
♻ ☆ Privacy amplification by random allocation
We consider the privacy guarantees of an algorithm in which a user's data is used in $k$ steps randomly and uniformly chosen from a sequence (or set) of $t$ differentially private steps. We demonstrate that the privacy guarantees of this sampling scheme can be upper bound by the privacy guarantees of the well-studied independent (or Poisson) subsampling in which each step uses the user's data with probability $(1+ o(1))k/t $. Further, we provide two additional analysis techniques that lead to numerical improvements in some parameter regimes. The case of $k=1$ has been previously studied in the context of DP-SGD in Balle et al. (2020) and very recently in Chua et al. (2024); Choquette-Choo et al. (2024). Privacy analysis of Balle et al. (2020) relies on privacy amplification by shuffling which leads to overly conservative bounds. Privacy analysis of Chua et al. (2024a); Choquette-Choo et al. (2024) relies on Monte Carlo simulations that are computationally prohibitive in many practical scenarios and have additional inherent limitations.
♻ ☆ Uncertainty-Aware PPG-2-ECG for Enhanced Cardiovascular Diagnosis using Diffusion Models
Analyzing the cardiovascular system condition via Electrocardiography (ECG) is a common and highly effective approach, and it has been practiced and perfected over many decades. ECG sensing is non-invasive and relatively easy to acquire, and yet it is still cumbersome for holter monitoring tests that may span over hours and even days. A possible alternative in this context is Photoplethysmography (PPG): An optically-based signal that measures blood volume fluctuations, as typically sensed by conventional ``wearable devices''. While PPG presents clear advantages in acquisition, convenience, and cost-effectiveness, ECG provides more comprehensive information, allowing for a more precise detection of heart conditions. This implies that a conversion from PPG to ECG, as recently discussed in the literature, inherently involves an unavoidable level of uncertainty. In this paper we introduce a novel methodology for addressing the PPG-2-ECG conversion, and offer an enhanced classification of cardiovascular conditions using the given PPG, all while taking into account the uncertainties arising from the conversion process. We provide a mathematical justification for our proposed computational approach, and present empirical studies demonstrating its superior performance compared to state-of-the-art baseline methods.
♻ ☆ SAVA: Scalable Learning-Agnostic Data Valuation ICLR 2025
Selecting data for training machine learning models is crucial since large, web-scraped, real datasets contain noisy artifacts that affect the quality and relevance of individual data points. These noisy artifacts will impact model performance. We formulate this problem as a data valuation task, assigning a value to data points in the training set according to how similar or dissimilar they are to a clean and curated validation set. Recently, LAVA demonstrated the use of optimal transport (OT) between a large noisy training dataset and a clean validation set, to value training data efficiently, without the dependency on model performance. However, the LAVA algorithm requires the entire dataset as an input, this limits its application to larger datasets. Inspired by the scalability of stochastic (gradient) approaches which carry out computations on batches of data points instead of the entire dataset, we analogously propose SAVA, a scalable variant of LAVA with its computation on batches of data points. Intuitively, SAVA follows the same scheme as LAVA which leverages the hierarchically defined OT for data valuation. However, while LAVA processes the whole dataset, SAVA divides the dataset into batches of data points, and carries out the OT problem computation on those batches. Moreover, our theoretical derivations on the trade-off of using entropic regularization for OT problems include refinements of prior work. We perform extensive experiments, to demonstrate that SAVA can scale to large datasets with millions of data points and does not trade off data valuation performance.
comment: Accepted at ICLR 2025. 27 pages, 12 figures
♻ ☆ Smooth InfoMax -- Towards easier Post-Hoc interpretability
We introduce Smooth InfoMax (SIM), a novel method for self-supervised representation learning that incorporates an interpretability constraint into the learned representations at various depths of the neural network. SIM's architecture is split up into probabilistic modules, each locally optimized using the InfoNCE bound. Inspired by VAEs, the representations from these modules are designed to be samples from Gaussian distributions and are further constrained to be close to the standard normal distribution. This results in a smooth and predictable space, enabling traversal of the latent space through a decoder for easier post-hoc analysis of the learned representations. We evaluate SIM's performance on sequential speech data, showing that it performs competitively with its less interpretable counterpart, Greedy InfoMax (GIM). Moreover, we provide insights into SIM's internal representations, demonstrating that the contained information is less entangled throughout the representation and more concentrated in a smaller subset of the dimensions. This further highlights the improved interpretability of SIM.
♻ ☆ Probabilities of Chat LLMs Are Miscalibrated but Still Predict Correctness on Multiple-Choice Q&A
We study 15 large language models (LLMs) fine-tuned for chat and find that their maximum softmax probabilities (MSPs) are consistently miscalibrated on multiple-choice Q&A. However, those MSPs might still encode useful uncertainty information. Specifically, we hypothesized that wrong answers would be associated with smaller MSPs compared to correct answers. Via rigorous statistical testing, we show that this hypothesis holds for models which perform well on the underlying Q&A task. We also find a strong direction correlation between Q&A accuracy and MSP correctness prediction, while finding no correlation between Q&A accuracy and calibration error. This suggests that within the current fine-tuning paradigm, we can expect correctness prediction but not calibration to improve as LLM capabilities progress. To demonstrate the utility of correctness prediction, we show that when models have the option to abstain, performance can be improved by selectively abstaining based on the MSP of the initial model response, using only a small amount of labeled data to choose the MSP threshold.
♻ ☆ A Role of Environmental Complexity on Representation Learning in Deep Reinforcement Learning Agents
We developed a simulated environment to train deep reinforcement learning agents on a shortcut usage navigation task, motivated by the Dual Solutions Paradigm test used for human navigators. We manipulated the frequency with which agents were exposed to a shortcut and a navigation cue, to investigate how these factors influence shortcut usage development. We find that all agents rapidly achieve optimal performance in closed shortcut trials once initial learning starts. However, their navigation speed and shortcut usage when it is open happen faster in agents with higher shortcut exposure. Analysis of the agents' artificial neural networks activity revealed that frequent presentation of a cue initially resulted in better encoding of the cue in the activity of individual nodes, compared to agents who encountered the cue less often. However, stronger cue representations were ultimately formed through the use of the cue in the context of navigation planning, rather than simply through exposure. We found that in all agents, spatial representations develop early in training and subsequently stabilize before navigation strategies fully develop, suggesting that having spatially consistent activations is necessary for basic navigation, but insufficient for advanced strategies. Further, using new analysis techniques, we found that the planned trajectory rather than the agent's immediate location is encoded in the agent's networks. Moreover, the encoding is represented at the population rather than the individual node level. These techniques could have broader applications in studying neural activity across populations of neurons or network nodes beyond individual activity patterns.
♻ ☆ Subversion Strategy Eval: Can language models statelessly strategize to subvert control protocols?
An AI control protocol is a plan for usefully deploying AI systems that prevents an AI from intentionally causing some unacceptable outcome. Previous work evaluated protocols by subverting them using an AI following a human-written strategy. This paper investigates how well AI systems can generate and act on their own strategies for subverting control protocols whilst operating statelessly (without shared memory between contexts). To do this, an AI system may need to reliably generate optimal plans in each context, take actions with well-calibrated probabilities, and coordinate plans with other instances of itself without communicating. We develop Subversion Strategy Eval, a suite of eight environments, covering a range of protocols and strategic capabilities, and six sets of affordances that help isolate individual capabilities. We implement the evaluation in Inspect-AI and release it open-source. We evaluate Claude 3.5 models, including helpful-only versions, as well as OpenAI reasoning models. None of the models demonstrate substantial capability in strategizing to subvert control protocols statelessly. However, providing models with additional affordances, such as the ability to share a plan between contexts, can substantially improve performance. We hope our evaluations can act as a leading indicator for when models are capable of subverting control protocols and also relax the worst-case assumption of perfect strategic ability in AI control evaluations.
♻ ☆ dFLMoE: Decentralized Federated Learning via Mixture of Experts for Medical Data Analysis
Federated learning has wide applications in the medical field. It enables knowledge sharing among different healthcare institutes while protecting patients' privacy. However, existing federated learning systems are typically centralized, requiring clients to upload client-specific knowledge to a central server for aggregation. This centralized approach would integrate the knowledge from each client into a centralized server, and the knowledge would be already undermined during the centralized integration before it reaches back to each client. Besides, the centralized approach also creates a dependency on the central server, which may affect training stability if the server malfunctions or connections are unstable. To address these issues, we propose a decentralized federated learning framework named dFLMoE. In our framework, clients directly exchange lightweight head models with each other. After exchanging, each client treats both local and received head models as individual experts, and utilizes a client-specific Mixture of Experts (MoE) approach to make collective decisions. This design not only reduces the knowledge damage with client-specific aggregations but also removes the dependency on the central server to enhance the robustness of the framework. We validate our framework on multiple medical tasks, demonstrating that our method evidently outperforms state-of-the-art approaches under both model homogeneity and heterogeneity settings.
comment: One of the authors, Wenyuan Cai, currently requests not to make the paper public. Before we officially release the paper, we request to withdraw the submission
♻ ☆ Predictable Scale: Part I -- Optimal Hyperparameter Scaling Law in Large Language Model Pretraining
The impressive capabilities of Large Language Models (LLMs) across diverse tasks are now well-established, yet their effective deployment necessitates careful hyperparameter optimization. Through extensive empirical studies involving grid searches across diverse configurations, we discover universal scaling laws governing these hyperparameters: optimal learning rate follows a power-law relationship with both model parameters and data sizes, while optimal batch size scales primarily with data sizes. Our analysis reveals a convex optimization landscape for hyperparameters under fixed models and data size conditions. This convexity implies an optimal hyperparameter plateau. We contribute a universal, plug-and-play optimal hyperparameter tool for the community. Its estimated values on the test set are merely 0.09% away from the globally optimal LLM performance found via an exhaustive search. These laws demonstrate remarkable robustness across variations in model sparsity, training data distribution, and model shape. To our best known, this is the first work that unifies different model shapes and structures, such as Mixture-of-Experts models and dense transformers, as well as establishes optimal hyperparameter scaling laws across diverse data distributions. This exhaustive optimization process demands substantial computational resources, utilizing nearly one million NVIDIA H800 GPU hours to train 3,700 LLMs of varying sizes and hyperparameters from scratch and consuming approximately 100 trillion tokens in total. To facilitate reproducibility and further research, we will progressively release all loss measurements and model checkpoints through our designated repository https://step-law.github.io/
comment: 22 pages
♻ ☆ Weighted-Sum of Gaussian Process Latent Variable Models
This work develops a Bayesian non-parametric approach to signal separation where the signals may vary according to latent variables. Our key contribution is to augment Gaussian Process Latent Variable Models (GPLVMs) for the case where each data point comprises the weighted sum of a known number of pure component signals, observed across several input locations. Our framework allows arbitrary non-linear variations in the signals while being able to incorporate useful priors for the linear weights, such as summing-to-one. Our contributions are particularly relevant to spectroscopy, where changing conditions may cause the underlying pure component signals to vary from sample to sample. To demonstrate the applicability to both spectroscopy and other domains, we consider several applications: a near-infrared spectroscopy dataset with varying temperatures, a simulated dataset for identifying flow configuration through a pipe, and a dataset for determining the type of rock from its reflectance.
♻ ☆ The Impact of Input Order Bias on Large Language Models for Software Fault Localization
Large Language Models (LLMs) have shown significant potential in software engineering tasks such as Fault Localization (FL) and Automatic Program Repair (APR). This study investigates how input order and context size influence LLM performance in FL, a crucial step for many downstream software engineering tasks. We evaluate different method orderings using Kendall Tau distances, including "perfect" (where ground truths appear first) and "worst" (where ground truths appear last), across two benchmarks containing Java and Python projects. Our results reveal a strong order bias: in Java projects, Top-1 FL accuracy drops from 57% to 20% when reversing the order, while in Python projects, it decreases from 38% to approximately 3%. However, segmenting inputs into smaller contexts mitigates this bias, reducing the performance gap in FL from 22% and 6% to just 1% across both benchmarks. We replaced method names with semantically meaningful alternatives to determine whether this bias is due to data leakage. The observed trends remained consistent, suggesting that the bias is not caused by memorization from training data but rather by the inherent effect of input order. Additionally, we explored ordering methods based on traditional FL techniques and metrics, finding that DepGraph's ranking achieves 48% Top-1 accuracy, outperforming simpler approaches such as CallGraph(DFS). These findings highlight the importance of structuring inputs, managing context effectively, and selecting appropriate ordering strategies to enhance LLM performance in FL and other software engineering applications.
♻ ☆ Data-Free Dynamic Compression of CNNs for Tractable Efficiency
To reduce the computational cost of convolutional neural networks (CNNs) on resource-constrained devices, structured pruning approaches have shown promise in lowering floating-point operations (FLOPs) without substantial drops in accuracy. However, most methods require fine-tuning or specific training procedures to achieve a reasonable trade-off between retained accuracy and reduction in FLOPs, adding computational overhead and requiring training data to be available. To this end, we propose HASTE (Hashing for Tractable Efficiency), a data-free, plug-and-play convolution module that instantly reduces a network's test-time inference cost without training or fine-tuning. Our approach utilizes locality-sensitive hashing (LSH) to detect redundancies in the channel dimension of latent feature maps, compressing similar channels to reduce input and filter depth simultaneously, resulting in cheaper convolutions. We demonstrate our approach on the popular vision benchmarks CIFAR-10 and ImageNet, where we achieve a 46.72% reduction in FLOPs with only a 1.25% loss in accuracy by swapping the convolution modules in a ResNet34 on CIFAR-10 for our HASTE module.
comment: Accepted at VISAPP 2025
♻ ☆ A sharp uniform-in-time error estimate for Stochastic Gradient Langevin Dynamics
We establish a sharp uniform-in-time error estimate for the Stochastic Gradient Langevin Dynamics (SGLD), which is a widely-used sampling algorithm. Under mild assumptions, we obtain a uniform-in-time $O(\eta^2)$ bound for the KL-divergence between the SGLD iteration and the Langevin diffusion, where $\eta$ is the step size (or learning rate). Our analysis is also valid for varying step sizes. Consequently, we are able to derive an $O(\eta)$ bound for the distance between the invariant measures of the SGLD iteration and the Langevin diffusion, in terms of Wasserstein or total variation distances. Our result can be viewed as a significant improvement compared with existing analysis for SGLD in related literature.
♻ ☆ SHIRE: Enhancing Sample Efficiency using Human Intuition in REinforcement Learning
The ability of neural networks to perform robotic perception and control tasks such as depth and optical flow estimation, simultaneous localization and mapping (SLAM), and automatic control has led to their widespread adoption in recent years. Deep Reinforcement Learning has been used extensively in these settings, as it does not have the unsustainable training costs associated with supervised learning. However, DeepRL suffers from poor sample efficiency, i.e., it requires a large number of environmental interactions to converge to an acceptable solution. Modern RL algorithms such as Deep Q Learning and Soft Actor-Critic attempt to remedy this shortcoming but can not provide the explainability required in applications such as autonomous robotics. Humans intuitively understand the long-time-horizon sequential tasks common in robotics. Properly using such intuition can make RL policies more explainable while enhancing their sample efficiency. In this work, we propose SHIRE, a novel framework for encoding human intuition using Probabilistic Graphical Models (PGMs) and using it in the Deep RL training pipeline to enhance sample efficiency. Our framework achieves 25-78% sample efficiency gains across the environments we evaluate at negligible overhead cost. Additionally, by teaching RL agents the encoded elementary behavior, SHIRE enhances policy explainability. A real-world demonstration further highlights the efficacy of policies trained using our framework.
♻ ☆ MaskHand: Generative Masked Modeling for Robust Hand Mesh Reconstruction in the Wild
Reconstructing a 3D hand mesh from a single RGB image is challenging due to complex articulations, self-occlusions, and depth ambiguities. Traditional discriminative methods, which learn a deterministic mapping from a 2D image to a single 3D mesh, often struggle with the inherent ambiguities in 2D-to-3D mapping. To address this challenge, we propose MaskHand, a novel generative masked model for hand mesh recovery that synthesizes plausible 3D hand meshes by learning and sampling from the probabilistic distribution of the ambiguous 2D-to-3D mapping process. MaskHand consists of two key components: (1) a VQ-MANO, which encodes 3D hand articulations as discrete pose tokens in a latent space, and (2) a Context-Guided Masked Transformer that randomly masks out pose tokens and learns their joint distribution, conditioned on corrupted token sequence, image context, and 2D pose cues. This learned distribution facilitates confidence-guided sampling during inference, producing mesh reconstructions with low uncertainty and high precision. Extensive evaluations on benchmark and real-world datasets demonstrate that MaskHand achieves state-of-the-art accuracy, robustness, and realism in 3D hand mesh reconstruction. Project website: https://m-usamasaleem.github.io/publication/MaskHand/MaskHand.html.
♻ ☆ On the Fourier analysis in the SO(3) space : EquiLoPO Network
Analyzing volumetric data with rotational invariance or equivariance is an active topic in current research. Existing deep-learning approaches utilize either group convolutional networks limited to discrete rotations or steerable convolutional networks with constrained filter structures. This work proposes a novel equivariant neural network architecture that achieves analytical Equivariance to Local Pattern Orientation on the continuous SO(3) group while allowing unconstrained trainable filters - EquiLoPO Network. Our key innovations are a group convolutional operation leveraging irreducible representations as the Fourier basis and a local activation function in the SO(3) space that provides a well-defined mapping from input to output functions, preserving equivariance. By integrating these operations into a ResNet-style architecture, we propose a model that overcomes the limitations of prior methods. A comprehensive evaluation on diverse 3D medical imaging datasets from MedMNIST3D demonstrates the effectiveness of our approach, which consistently outperforms state of the art. This work suggests the benefits of true rotational equivariance on SO(3) and flexible unconstrained filters enabled by the local activation function, providing a flexible framework for equivariant deep learning on volumetric data with potential applications across domains. Our code is publicly available at https://gricad-gitlab.univ-grenoble-alpes.fr/GruLab/ILPO/-/tree/main/EquiLoPO.
♻ ☆ The Pitfalls of Imitation Learning when Actions are Continuous
We study the problem of imitating an expert demonstrator in a discrete-time, continuous state-and-action control system. We show that, even if the dynamics are stable (i.e. contracting exponentially quickly), and the expert is smooth and deterministic, any smooth, deterministic imitator policy necessarily suffers error on execution that is exponentially larger, as a function of problem horizon, than the error under the distribution of expert training data. Our negative result applies to both behavior cloning and offline-RL algorithms, unless they produce highly "improper" imitator policies--those which are non-smooth, non-Markovian, or which exhibit highly state-dependent stochasticity--or unless the expert trajectory distribution is sufficiently "spread." We provide experimental evidence of the benefits of these more complex policy parameterizations, explicating the benefits of today's popular policy parameterizations in robot learning (e.g. action-chunking and Diffusion Policies). We also establish a host of complementary negative and positive results for imitation in control systems.
comment: 98 pages, 2 figures, updated introduction
♻ ☆ Scalable Co-Clustering for Large-Scale Data through Dynamic Partitioning and Hierarchical Merging
Co-clustering simultaneously clusters rows and columns, revealing more fine-grained groups. However, existing co-clustering methods suffer from poor scalability and cannot handle large-scale data. This paper presents a novel and scalable co-clustering method designed to uncover intricate patterns in high-dimensional, large-scale datasets. Specifically, we first propose a large matrix partitioning algorithm that partitions a large matrix into smaller submatrices, enabling parallel co-clustering. This method employs a probabilistic model to optimize the configuration of submatrices, balancing the computational efficiency and depth of analysis. Additionally, we propose a hierarchical co-cluster merging algorithm that efficiently identifies and merges co-clusters from these submatrices, enhancing the robustness and reliability of the process. Extensive evaluations validate the effectiveness and efficiency of our method. Experimental results demonstrate a significant reduction in computation time, with an approximate 83% decrease for dense matrices and up to 30% for sparse matrices.
comment: 8 pages, 2 figures
♻ ☆ Sample Efficient Reinforcement Learning from Human Feedback via Active Exploration
Preference-based feedback is important for many applications in machine learning where evaluation of a reward function is not feasible. Notable recent examples arise in preference alignment for large language models, including in reinforcement learning from human feedback (RLHF) and direct preference optimization (DPO). For many applications of preference alignment, the cost of acquiring human feedback can be substantial. In this work, we take advantage of the fact that one can often choose contexts at which to obtain human feedback to most efficiently identify a good policy, and formalize the setting as an active contextual dueling bandit problem. We propose an active exploration algorithm to efficiently select the data and provide theoretical proof that it has a polynomial worst-case regret bound. We extend the setting and methodology for practical use in preference alignment of large language models. We provide two extensions, an online and an offline approach. Our method outperforms the baselines with limited samples of human preferences on several language models and four real-world datasets including two new datasets that we contribute to the literature.
♻ ☆ Artificial Replay: A Meta-Algorithm for Harnessing Historical Data in Bandits
Most real-world deployments of bandit algorithms exist somewhere in between the offline and online set-up, where some historical data is available upfront and additional data is collected dynamically online. How best to incorporate historical data to "warm start" bandit algorithms is an open question: naively initializing reward estimates using all historical samples can suffer from spurious data and imbalanced data coverage, leading to data inefficiency (amount of historical data used) - particularly for continuous action spaces. To address these challenges, we propose ArtificialReplay, a meta-algorithm for incorporating historical data into any arbitrary base bandit algorithm. We show that ArtificialReplay uses only a fraction of the historical data compared to a full warm-start approach, while still achieving identical regret for base algorithms that satisfy independence of irrelevant data (IIData), a novel and broadly applicable property that we introduce. We complement these theoretical results with experiments on K-armed bandits and continuous combinatorial bandits, on which we model green security domains using real poaching data. Our results show the practical benefits of ArtificialReplay for improving data efficiency, including for base algorithms that do not satisfy IIData.
comment: 55 pages (30 pages main paper), 9 figures
♻ ☆ Learning on One Mode: Addressing Multi-modality in Offline Reinforcement Learning ICLR 2025
Offline reinforcement learning (RL) seeks to learn optimal policies from static datasets without interacting with the environment. A common challenge is handling multi-modal action distributions, where multiple behaviours are represented in the data. Existing methods often assume unimodal behaviour policies, leading to suboptimal performance when this assumption is violated. We propose weighted imitation Learning on One Mode (LOM), a novel approach that focuses on learning from a single, promising mode of the behaviour policy. By using a Gaussian mixture model to identify modes and selecting the best mode based on expected returns, LOM avoids the pitfalls of averaging over conflicting actions. Theoretically, we show that LOM improves performance while maintaining simplicity in policy learning. Empirically, LOM outperforms existing methods on standard D4RL benchmarks and demonstrates its effectiveness in complex, multi-modal scenarios.
comment: Published as a conference paper at ICLR 2025
♻ ☆ DeepExtractor: Time-domain reconstruction of signals and glitches in gravitational wave data with deep learning
Gravitational wave (GW) interferometers, detect faint signals from distant astrophysical events, such as binary black hole mergers. However, their high sensitivity also makes them susceptible to background noise, which can obscure these signals. This noise often includes transient artifacts called "glitches" that can mimic astrophysical signals or mask their characteristics. Fast and accurate reconstruction of both signals and glitches is crucial for reliable scientific inference. In this study, we present DeepExtractor, a deep learning framework designed to reconstruct signals and glitches with power exceeding interferometer noise, regardless of their source. We design DeepExtractor to model the inherent noise distribution of GW interferometers, following conventional assumptions that the noise is Gaussian and stationary over short time scales. It operates by predicting and subtracting the noise component of the data, retaining only the clean reconstruction. Our approach achieves superior generalization capabilities for arbitrary signals and glitches compared to methods that directly map inputs to the clean training waveforms. We validate DeepExtractor's effectiveness through three experiments: (1) reconstructing simulated glitches injected into simulated detector noise, (2) comparing performance with the state-of-the-art BayesWave algorithm, and (3) analyzing real data from the Gravity Spy dataset to demonstrate effective glitch subtraction from LIGO strain data. DeepExtractor achieves a median mismatch of only 0.9% for simulated glitches, outperforming several deep learning baselines. Additionally, DeepExtractor surpasses BayesWave in glitch recovery, offering a dramatic computational speedup by reconstructing one glitch sample in approx. 0.1 seconds on a CPU, compared to BayesWave's processing time of approx. one hour per glitch.
comment: 22 pages, 16 figures, 4 tables
♻ ☆ Pathways on the Image Manifold: Image Editing via Video Generation
Recent advances in image editing, driven by image diffusion models, have shown remarkable progress. However, significant challenges remain, as these models often struggle to follow complex edit instructions accurately and frequently compromise fidelity by altering key elements of the original image. Simultaneously, video generation has made remarkable strides, with models that effectively function as consistent and continuous world simulators. In this paper, we propose merging these two fields by utilizing image-to-video models for image editing. We reformulate image editing as a temporal process, using pretrained video models to create smooth transitions from the original image to the desired edit. This approach traverses the image manifold continuously, ensuring consistent edits while preserving the original image's key aspects. Our approach achieves state-of-the-art results on text-based image editing, demonstrating significant improvements in both edit accuracy and image preservation. Visit our project page: https://rotsteinnoam.github.io/Frame2Frame.
♻ ☆ On the Need and Applicability of Causality for Fairness: A Unified Framework for AI Auditing and Legal Analysis
As Artificial Intelligence (AI) increasingly influences decisions in critical societal sectors, understanding and establishing causality becomes essential for evaluating the fairness of automated systems. This article explores the significance of causal reasoning in addressing algorithmic discrimination, emphasizing both legal and societal perspectives. By reviewing landmark cases and regulatory frameworks, particularly within the European Union, we illustrate the challenges inherent in proving causal claims when confronted with opaque AI decision-making processes. The discussion outlines practical obstacles and methodological limitations in applying causal inference to real-world fairness scenarios, proposing actionable solutions to enhance transparency, accountability, and fairness in algorithm-driven decisions.
♻ ☆ Network Analytics for Anti-Money Laundering -- A Systematic Literature Review and Experimental Evaluation
Money laundering presents a pervasive challenge, burdening society by financing illegal activities. The use of network information is increasingly being explored to more effectively combat money laundering, given it involves connected parties. This led to a surge in research on network analytics (NA) for anti-money laundering (AML). The literature on NA for AML is, however, fragmented and a comprehensive overview of existing work is missing. This results in limited understanding of the methods to apply and their comparative detection power. Therefore, this paper presents an extensive and unique literature review, based on 97 papers from Web of Science and Scopus, resulting in a taxonomy following a recently proposed fraud analytics framework. We conclude that most research relies on expert-based rules and manual features, while deep learning methods have been gaining traction. This paper also presents a comprehensive framework to evaluate and compare the performance of prominent NA methods in a standardized setup. We apply it on two publicly available data sets, comparing manual feature engineering, random walk-based, and deep learning methods. We conclude that (1) network analytics increases the predictive power, but caution is needed when applying GNNs based on the class imbalance and network topology, and that (2) care should be taken with open-source data as this can give overly optimistic results. The open-source implementation facilitates researchers and practitioners to extend upon the results and experiment on proprietary data, promoting a standardized approach for the analysis and evaluation of network analytics for AML.
♻ ☆ LOCAL: Learning with Orientation Matrix to Infer Causal Structure from Time Series Data
Discovering the underlying Directed Acyclic Graph (DAG) from time series observational data is highly challenging due to the dynamic nature and complex nonlinear interactions between variables. Existing methods typically search for the optimal DAG by optimizing an objective function but face scalability challenges, as their computational demands grow exponentially with the dimensional expansion of variables. To this end, we propose LOCAL, a highly efficient, easy-to-implement, and constraint-free method for recovering dynamic causal structures. LOCAL is the first attempt to formulate a quasi-maximum likelihood-based score function for learning the dynamic DAG equivalent to the ground truth. Building on this, we introduce two adaptive modules that enhance the algebraic characterization of acyclicity: Asymptotic Causal Mask Learning (ACML) and Dynamic Graph Parameter Learning (DGPL). ACML constructs causal masks using learnable priority vectors and the Gumbel-Sigmoid function, ensuring DAG formation while optimizing computational efficiency. DGPL transforms causal learning into decomposed matrix products, capturing dynamic causal structure in high-dimensional data and improving interpretability. Extensive experiments on synthetic and real-world datasets demonstrate that LOCAL significantly outperforms existing methods and highlight LOCAL's potential as a robust and efficient method for dynamic causal discovery.
comment: 16 pages, 7 figures
♻ ☆ DCAT: Dual Cross-Attention Fusion for Disease Classification in Radiological Images with Uncertainty Estimation
Accurate and reliable image classification is crucial in radiology, where diagnostic decisions significantly impact patient outcomes. Conventional deep learning models tend to produce overconfident predictions despite underlying uncertainties, potentially leading to misdiagnoses. Attention mechanisms have emerged as powerful tools in deep learning, enabling models to focus on relevant parts of the input data. Combined with feature fusion, they can be effective in addressing uncertainty challenges. Cross-attention has become increasingly important in medical image analysis for capturing dependencies across features and modalities. This paper proposes a novel dual cross-attention fusion model for medical image analysis by addressing key challenges in feature integration and interpretability. Our approach introduces a bidirectional cross-attention mechanism with refined channel and spatial attention that dynamically fuses feature maps from EfficientNetB4 and ResNet34 leveraging multi-network contextual dependencies. The refined features through channel and spatial attention highlights discriminative patterns crucial for accurate classification. The proposed model achieved AUC of 99.75%, 100%, 99.93% and 98.69% and AUPR of 99.81%, 100%, 99.97%, and 96.36% on Covid-19, Tuberculosis, Pneumonia Chest X-ray images and Retinal OCT images respectively. The entropy values and several high uncertain samples give an interpretable visualization from the model enhancing transparency. By combining multi-scale feature extraction, bidirectional attention and uncertainty estimation, our proposed model strongly impacts medical image analysis.
comment: 18 pages, 8 figures, 5 tables
♻ ☆ DynFrs: An Efficient Framework for Machine Unlearning in Random Forest ICLR 2025
Random Forests are widely recognized for establishing efficacy in classification and regression tasks, standing out in various domains such as medical diagnosis, finance, and personalized recommendations. These domains, however, are inherently sensitive to privacy concerns, as personal and confidential data are involved. With increasing demand for the right to be forgotten, particularly under regulations such as GDPR and CCPA, the ability to perform machine unlearning has become crucial for Random Forests. However, insufficient attention was paid to this topic, and existing approaches face difficulties in being applied to real-world scenarios. Addressing this gap, we propose the DynFrs framework designed to enable efficient machine unlearning in Random Forests while preserving predictive accuracy. Dynfrs leverages subsampling method Occ(q) and a lazy tag strategy Lzy, and is still adaptable to any Random Forest variant. In essence, Occ(q) ensures that each sample in the training set occurs only in a proportion of trees so that the impact of deleting samples is limited, and Lzy delays the reconstruction of a tree node until necessary, thereby avoiding unnecessary modifications on tree structures. In experiments, applying Dynfrs on Extremely Randomized Trees yields substantial improvements, achieving orders of magnitude faster unlearning performance and better predictive accuracy than existing machine unlearning methods for Random Forests.
comment: Accepted by ICLR 2025
♻ ☆ ChemVLM: Exploring the Power of Multimodal Large Language Models in Chemistry Area
Large Language Models (LLMs) have achieved remarkable success and have been applied across various scientific fields, including chemistry. However, many chemical tasks require the processing of visual information, which cannot be successfully handled by existing chemical LLMs. This brings a growing need for models capable of integrating multimodal information in the chemical domain. In this paper, we introduce \textbf{ChemVLM}, an open-source chemical multimodal large language model specifically designed for chemical applications. ChemVLM is trained on a carefully curated bilingual multimodal dataset that enhances its ability to understand both textual and visual chemical information, including molecular structures, reactions, and chemistry examination questions. We develop three datasets for comprehensive evaluation, tailored to Chemical Optical Character Recognition (OCR), Multimodal Chemical Reasoning (MMCR), and Multimodal Molecule Understanding tasks. We benchmark ChemVLM against a range of open-source and proprietary multimodal large language models on various tasks. Experimental results demonstrate that ChemVLM achieves competitive performance across all evaluated tasks. Our model can be found at https://huggingface.co/AI4Chem/ChemVLM-26B.
comment: 11 pages, updated version
♻ ☆ Post-hoc Probabilistic Vision-Language Models
Vision-language models (VLMs), such as CLIP and SigLIP, have found remarkable success in classification, retrieval, and generative tasks. For this, VLMs deterministically map images and text descriptions to a joint latent space in which their similarity is assessed using the cosine similarity. However, a deterministic mapping of inputs fails to capture uncertainties over concepts arising from domain shifts when used in downstream tasks. In this work, we propose post-hoc uncertainty estimation in VLMs that does not require additional training. Our method leverages a Bayesian posterior approximation over the last layers in VLMs and analytically quantifies uncertainties over cosine similarities. We demonstrate its effectiveness for uncertainty quantification and support set selection in active learning. Compared to baselines, we obtain improved and well-calibrated predictive uncertainties, interpretable uncertainty estimates, and sample-efficient active learning. Our results show promise for safety-critical applications of large-scale models.
comment: Project page: https://aaltoml.github.io/BayesVLM/
♻ ☆ Tensor-Based Foundations of Ordinary Least Squares and Neural Network Regression Models
This article introduces a novel approach to the mathematical development of Ordinary Least Squares and Neural Network regression models, diverging from traditional methods in current Machine Learning literature. By leveraging Tensor Analysis and fundamental matrix computations, the theoretical foundations of both models are meticulously detailed and extended to their complete algorithmic forms. The study culminates in the presentation of three algorithms, including a streamlined version of the Backpropagation Algorithm for Neural Networks, illustrating the benefits of this new mathematical approach.
comment: 16 pages, 3 algorithms
♻ ☆ On the Approximability of Stationary Processes using the ARMA Model
Within the theoretical literature on stationary random variables, pure Moving Average models and pure Autoregressive models have a rich body of work, but the corresponding literature on Autoregressive Moving Average (ARMA) models is very sparse. We attempt to fill certain gaps in this sparse line of work. Central to our observations is the spectral lemma connecting supnorm based function approximation on the unit circle to random variable approximation. This method allows us to provide quantitative approximation bounds in contrast with the qualitative boundedness and stability guarantees associated with unit root tests. Using the spectral lemma we first identify a class of stationary processes where approximation guarantees are feasible. This turns a known heuristic argument motivating ARMA models based on rational approximations into a rigorous result. Second, we identify an idealized stationary random process for which we conjecture that a good ARMA approximation is not possible. Third, we calculate exact approximation bounds for an example process, and a constructive proof that, for a given order, Pad\'e approximations do not always correspond to the best ARMA approximation. Unlike prior literature, our approach uses the generating function of the random process rather than the spectral measure, and further our results focus on approximation error of the random variable rather than the prediction error as in some classical infimum results by Szego, Kolmogorov, and Wiener.
comment: 12 pages, 3 figures
♻ ☆ Adaptive Pruning with Module Robustness Sensitivity: Balancing Compression and Robustness
Neural network pruning has traditionally focused on weight-based criteria to achieve model compression, frequently overlooking the crucial balance between adversarial robustness and accuracy. Existing approaches often fail to preserve robustness in pruned networks, leaving them more susceptible to adversarial attacks. This paper introduces Module Robustness Sensitivity (MRS), a novel metric that quantifies layer-wise sensitivity to adversarial perturbations and dynamically informs pruning decisions. Leveraging MRS, we propose Module Robust Pruning and Fine-Tuning (MRPF), an adaptive pruning algorithm compatible with any adversarial training method, offering both flexibility and scalability. Extensive experiments on SVHN, CIFAR, and Tiny-ImageNet across diverse architectures, including ResNet, VGG, and MobileViT, demonstrate that MRPF significantly enhances adversarial robustness while maintaining competitive accuracy and computational efficiency. Furthermore, MRPF consistently outperforms state-of-the-art structured pruning methods in balancing robustness, accuracy, and compression. This work establishes a practical and generalizable framework for robust pruning, addressing the long-standing trade-off between model compression and robustness preservation.
♻ ☆ Lightweight Software Kernels and Hardware Extensions for Efficient Sparse Deep Neural Networks on Microcontrollers
The acceleration of pruned Deep Neural Networks (DNNs) on edge devices such as Microcontrollers (MCUs) is a challenging task, given the tight area- and power-constraints of these devices. In this work, we propose a three-fold contribution to address this problem. First, we design a set of optimized software kernels for N:M pruned layers, targeting ultra-low-power, multicore RISC-V MCUs, which are up to 2.1x and 3.4x faster than their dense counterparts at 1:8 and 1:16 sparsity, respectively. Then, we implement a lightweight Instruction-Set Architecture (ISA) extension to accelerate the indirect load and non-zero indices decompression operations required by our kernels, obtaining up to 1.9x extra speedup, at the cost of a 5% area overhead. Lastly, we extend an open-source DNN compiler to utilize our sparse kernels for complete networks, showing speedups of 3.21x and 1.81x on a ResNet18 and a Vision Transformer (ViT), with less than 1.5% accuracy drop compared to a dense baseline.
comment: Accepted at MLSys 2025
♻ ☆ Topology meets Machine Learning: An Introduction using the Euler Characteristic Transform
This overview article makes the case for how topological concepts can enrich research in machine learning. Using the Euler Characteristic Transform (ECT), a geometrical-topological invariant, as a running example, I present different use cases that result in more efficient models for analyzing point clouds, graphs, and meshes. Moreover, I outline a vision for how topological concepts could be used in the future, comprising (1) the learning of functions on topological spaces, (2) the building of hybrid models that imbue neural networks with knowledge about the topological information in data, and (3) the analysis of qualitative properties of neural networks. With current research already addressing some of these aspects, this article thus serves as an introduction and invitation to this nascent area of research.
♻ ☆ Improving Generalization of Universal Adversarial Perturbation via Dynamic Maximin Optimization AAAI 2025
Deep neural networks (DNNs) are susceptible to universal adversarial perturbations (UAPs). These perturbations are meticulously designed to fool the target model universally across all sample classes. Unlike instance-specific adversarial examples (AEs), generating UAPs is more complex because they must be generalized across a wide range of data samples and models. Our research reveals that existing universal attack methods, which optimize UAPs using DNNs with static model parameter snapshots, do not fully leverage the potential of DNNs to generate more effective UAPs. Rather than optimizing UAPs against static DNN models with a fixed training set, we suggest using dynamic model-data pairs to generate UAPs. In particular, we introduce a dynamic maximin optimization strategy, aiming to optimize the UAP across a variety of optimal model-data pairs. We term this approach DM-UAP. DM-UAP utilizes an iterative max-min-min optimization framework that refines the model-data pairs, coupled with a curriculum UAP learning algorithm to examine the combined space of model parameters and data thoroughly. Comprehensive experiments on the ImageNet dataset demonstrate that the proposed DM-UAP markedly enhances both cross-sample universality and cross-model transferability of UAPs. Using only 500 samples for UAP generation, DM-UAP outperforms the state-of-the-art approach with an average increase in fooling ratio of 12.108%.
comment: Accepted in AAAI 2025
♻ ☆ Robustness bounds on the successful adversarial examples in probabilistic models: Implications from Gaussian processes
Adversarial example (AE) is an attack method for machine learning, which is crafted by adding imperceptible perturbation to the data inducing misclassification. In the current paper, we investigated the upper bound of the probability of successful AEs based on the Gaussian Process (GP) classification, a probabilistic inference model. We proved a new upper bound of the probability of a successful AE attack that depends on AE's perturbation norm, the kernel function used in GP, and the distance of the closest pair with different labels in the training dataset. Surprisingly, the upper bound is determined regardless of the distribution of the sample dataset. We showed that our theoretical result was confirmed through the experiment using ImageNet. In addition, we showed that changing the parameters of the kernel function induces a change of the upper bound of the probability of successful AEs.
♻ ☆ Efficient Optimization Algorithms for Linear Adversarial Training AISTATS 2025
Adversarial training can be used to learn models that are robust against perturbations. For linear models, it can be formulated as a convex optimization problem. Compared to methods proposed in the context of deep learning, leveraging the optimization structure allows significantly faster convergence rates. Still, the use of generic convex solvers can be inefficient for large-scale problems. Here, we propose tailored optimization algorithms for the adversarial training of linear models, which render large-scale regression and classification problems more tractable. For regression problems, we propose a family of solvers based on iterative ridge regression and, for classification, a family of solvers based on projected gradient descent. The methods are based on extended variable reformulations of the original problem. We illustrate their efficiency in numerical examples.
comment: Paper accepted at AISTATS 2025
♻ ☆ ArtGS: Building Interactable Replicas of Complex Articulated Objects via Gaussian Splatting
Building articulated objects is a key challenge in computer vision. Existing methods often fail to effectively integrate information across different object states, limiting the accuracy of part-mesh reconstruction and part dynamics modeling, particularly for complex multi-part articulated objects. We introduce ArtGS, a novel approach that leverages 3D Gaussians as a flexible and efficient representation to address these issues. Our method incorporates canonical Gaussians with coarse-to-fine initialization and updates for aligning articulated part information across different object states, and employs a skinning-inspired part dynamics modeling module to improve both part-mesh reconstruction and articulation learning. Extensive experiments on both synthetic and real-world datasets, including a new benchmark for complex multi-part objects, demonstrate that ArtGS achieves state-of-the-art performance in joint parameter estimation and part mesh reconstruction. Our approach significantly improves reconstruction quality and efficiency, especially for multi-part articulated objects. Additionally, we provide comprehensive analyses of our design choices, validating the effectiveness of each component to highlight potential areas for future improvement. Our work is made publicly available at: https://articulate-gs.github.io.
♻ ☆ Discrete Copula Diffusion
Discrete diffusion models have recently shown significant progress in modeling complex data, such as natural languages and DNA sequences. However, unlike diffusion models for continuous data, which can generate high-quality samples in just a few denoising steps, modern discrete diffusion models still require hundreds or even thousands of denoising steps to perform well. In this paper, we identify a fundamental limitation that prevents discrete diffusion models from achieving strong performance with fewer steps -- they fail to capture dependencies between output variables at each denoising step. To address this issue, we provide a formal explanation and introduce a general approach to supplement the missing dependency information by incorporating another deep generative model, termed the copula model. Our method does not require fine-tuning either the diffusion model or the copula model, yet it enables high-quality sample generation with significantly fewer denoising steps. When we apply this approach to autoregressive copula models, the combined model outperforms both models individually in unconditional and conditional text generation. Specifically, the hybrid model achieves better (un)conditional text generation using 8 to 32 times fewer denoising steps than the diffusion model alone. In addition to presenting an effective discrete diffusion generation algorithm, this paper emphasizes the importance of modeling inter-variable dependencies in discrete diffusion.
♻ ☆ Comparing Targeting Strategies for Maximizing Social Welfare with Limited Resources ICLR 2025
Machine learning is increasingly used to select which individuals receive limited-resource interventions in domains such as human services, education, development, and more. However, it is often not apparent what the right quantity is for models to predict. Policymakers rarely have access to data from a randomized controlled trial (RCT) that would enable accurate estimates of which individuals would benefit more from the intervention, while observational data creates a substantial risk of bias in treatment effect estimates. Practitioners instead commonly use a technique termed ``risk-based targeting" where the model is just used to predict each individual's status quo outcome (an easier, non-causal task). Those with higher predicted risk are offered treatment. There is currently almost no empirical evidence to inform which choices lead to the most effective machine learning-informed targeting strategies in social domains. In this work, we use data from 5 real-world RCTs in a variety of domains to empirically assess such choices. We find that when treatment effects can be estimated with high accuracy (which we simulate by allowing the model to partially observe outcomes in advance), treatment effect based targeting substantially outperforms risk-based targeting, even when treatment effect estimates are biased. Moreover, these results hold even when the policymaker has strong normative preferences for assisting higher-risk individuals. However, the features and data actually available in most RCTs we examine do not suffice for accurate estimates of heterogeneous treatment effects. Our results suggest treatment effect targeting has significant potential benefits, but realizing these benefits requires improvements to data collection and model training beyond what is currently common in practice.
comment: Accepted to ICLR 2025 as a Poster
♻ ☆ Relax and penalize: a new bilevel approach to mixed-binary hyperparameter optimization
In recent years, bilevel approaches have become very popular to efficiently estimate high-dimensional hyperparameters of machine learning models. However, to date, binary parameters are handled by continuous relaxation and rounding strategies, which could lead to inconsistent solutions. In this context, we tackle the challenging optimization of mixed-binary hyperparameters by resorting to an equivalent continuous bilevel reformulation based on an appropriate penalty term. We propose an algorithmic framework that, under suitable assumptions, is guaranteed to provide mixed-binary solutions. Moreover, the generality of the method allows to safely use existing continuous bilevel solvers within the proposed framework. We evaluate the performance of our approach for two specific machine learning problems, i.e., the estimation of the group-sparsity structure in regression problems and the data distillation problem. The reported results show that our method is competitive with state-of-the-art approaches based on relaxation and rounding
♻ ☆ Personalized Interpretable Classification
How to interpret a data mining model has received much attention recently, because people may distrust a black-box predictive model if they do not understand how the model works. Hence, it will be trustworthy if a model can provide transparent illustrations on how to make the decision. Although many rule-based interpretable classification algorithms have been proposed, all these existing solutions cannot directly construct an interpretable model to provide personalized prediction for each individual test sample. In this paper, we make a first step towards formally introducing personalized interpretable classification as a new data mining problem to the literature. In addition to the problem formulation on this new issue, we present a greedy algorithm called PIC (Personalized Interpretable Classifier) to identify a personalized rule for each individual test sample. To improve the running efficiency, a fast approximate algorithm called fPIC is presented as well. To demonstrate the necessity, feasibility and advantages of such a personalized interpretable classification method, we conduct a series of empirical studies on real data sets. The experimental results show that: (1) The new problem formulation enables us to find interesting rules for test samples that may be missed by existing non-personalized classifiers. (2) Our algorithms can achieve the same-level predictive accuracy as those state-of-the-art (SOTA) interpretable classifiers. (3) On a real data set for predicting breast cancer metastasis, such personalized interpretable classifiers can outperform SOTA methods in terms of both accuracy and interpretability.
♻ ☆ FLP-XR: Future Location Prediction on Extreme Scale Maritime Data in Real-time
Movements of maritime vessels are inherently complex and challenging to model due to the dynamic and often unpredictable nature of maritime operations. Even within structured maritime environments, such as shipping lanes and port approaches, where vessels adhere to navigational rules and predefined sea routes, uncovering underlying patterns is far from trivial. The necessity for accurate modeling of the mobility of maritime vessels arises from the numerous applications it serves, including risk assessment for collision avoidance, optimization of shipping routes, and efficient port management. This paper introduces FLP-XR, a model that leverages maritime mobility data to construct a robust framework that offers precise predictions while ensuring extremely fast training and inference capabilities. We demonstrate the efficiency of our approach through an extensive experimental study using three real-world AIS datasets. According to the experimental results, FLP-XR outperforms the current state-of-the-art in many cases, whereas it performs 2-3 orders of magnitude faster in terms of training and inference.
♻ ☆ Time-to-Event Pretraining for 3D Medical Imaging
With the rise of medical foundation models and the growing availability of imaging data, scalable pretraining techniques offer a promising way to identify imaging biomarkers predictive of future disease risk. While current self-supervised methods for 3D medical imaging models capture local structural features like organ morphology, they fail to link pixel biomarkers with long-term health outcomes due to a missing context problem. Current approaches lack the temporal context necessary to identify biomarkers correlated with disease progression, as they rely on supervision derived only from images and concurrent text descriptions. To address this, we introduce time-to-event pretraining, a pretraining framework for 3D medical imaging models that leverages large-scale temporal supervision from paired, longitudinal electronic health records (EHRs). Using a dataset of 18,945 CT scans (4.2 million 2D images) and time-to-event distributions across thousands of EHR-derived tasks, our method improves outcome prediction, achieving an average AUROC increase of 23.7% and a 29.4% gain in Harrell's C-index across 8 benchmark tasks. Importantly, these gains are achieved without sacrificing diagnostic classification performance. This study lays the foundation for integrating longitudinal EHR and 3D imaging data to advance clinical risk prediction.
comment: 34 pages, 19 figures
♻ ☆ Learning to Negotiate via Voluntary Commitment AISTATS 2025
The partial alignment and conflict of autonomous agents lead to mixed-motive scenarios in many real-world applications. However, agents may fail to cooperate in practice even when cooperation yields a better outcome. One well known reason for this failure comes from non-credible commitments. To facilitate commitments among agents for better cooperation, we define Markov Commitment Games (MCGs), a variant of commitment games, where agents can voluntarily commit to their proposed future plans. Based on MCGs, we propose a learnable commitment protocol via policy gradients. We further propose incentive-compatible learning to accelerate convergence to equilibria with better social welfare. Experimental results in challenging mixed-motive tasks demonstrate faster empirical convergence and higher returns for our method compared with its counterparts. Our code is available at https://github.com/shuhui-zhu/DCL.
comment: Accepted by AISTATS 2025
♻ ☆ Implicit Bias of Mirror Flow for Shallow Neural Networks in Univariate Regression
We examine the implicit bias of mirror flow in univariate least squares error regression with wide and shallow neural networks. For a broad class of potential functions, we show that mirror flow exhibits lazy training and has the same implicit bias as ordinary gradient flow when the network width tends to infinity. For ReLU networks, we characterize this bias through a variational problem in function space. Our analysis includes prior results for ordinary gradient flow as a special case and lifts limitations which required either an intractable adjustment of the training data or networks with skip connections. We further introduce scaled potentials and show that for these, mirror flow still exhibits lazy training but is not in the kernel regime. For networks with absolute value activations, we show that mirror flow with scaled potentials induces a rich class of biases, which generally cannot be captured by an RKHS norm. A takeaway is that whereas the parameter initialization determines how strongly the curvature of the learned function is penalized at different locations of the input space, the scaled potential determines how the different magnitudes of the curvature are penalized.
♻ ☆ Review-Based Hyperbolic Cross-Domain Recommendation
The issue of data sparsity poses a significant challenge to recommender systems. In response to this, algorithms that leverage side information such as review texts have been proposed. Furthermore, Cross-Domain Recommendation (CDR), which captures domain-shareable knowledge and transfers it from a richer domain (source) to a sparser one (target), has received notable attention. Nevertheless, the majority of existing methodologies assume a Euclidean embedding space, encountering difficulties in accurately representing richer text information and managing complex interactions between users and items. This paper advocates a hyperbolic CDR approach based on review texts for modeling user-item relationships. We first emphasize that conventional distance-based domain alignment techniques may cause problems because small modifications in hyperbolic geometry result in magnified perturbations, ultimately leading to the collapse of hierarchical structures. To address this challenge, we propose hierarchy-aware embedding and domain alignment schemes that adjust the scale to extract domain-shareable information without disrupting structural forms. The process involves the initial embedding of review texts in hyperbolic space, followed by feature extraction incorporating degree-based normalization and structure alignment. We conducted extensive experiments to substantiate the efficiency, robustness, and scalability of our proposed model in comparison to state-of-the-art baselines.
comment: WSDM '25
♻ ☆ MOFFlow: Flow Matching for Structure Prediction of Metal-Organic Frameworks
Metal-organic frameworks (MOFs) are a class of crystalline materials with promising applications in many areas such as carbon capture and drug delivery. In this work, we introduce MOFFlow, the first deep generative model tailored for MOF structure prediction. Existing approaches, including ab initio calculations and even deep generative models, struggle with the complexity of MOF structures due to the large number of atoms in the unit cells. To address this limitation, we propose a novel Riemannian flow matching framework that reduces the dimensionality of the problem by treating the metal nodes and organic linkers as rigid bodies, capitalizing on the inherent modularity of MOFs. By operating in the $SE(3)$ space, MOFFlow effectively captures the roto-translational dynamics of these rigid components in a scalable way. Our experiment demonstrates that MOFFlow accurately predicts MOF structures containing several hundred atoms, significantly outperforming conventional methods and state-of-the-art machine learning baselines while being much faster.
comment: 10 pages, 6 figures
♻ ☆ ES-Parkour: Advanced Robot Parkour with Bio-inspired Event Camera and Spiking Neural Network
In recent years, quadruped robotics has advanced significantly, particularly in perception and motion control via reinforcement learning, enabling complex motions in challenging environments. Visual sensors like depth cameras enhance stability and robustness but face limitations, such as low operating frequencies relative to joint control and sensitivity to lighting, which hinder outdoor deployment. Additionally, deep neural networks in sensor and control systems increase computational demands. To address these issues, we introduce spiking neural networks (SNNs) and event cameras to perform a challenging quadruped parkour task. Event cameras capture dynamic visual data, while SNNs efficiently process spike sequences, mimicking biological perception. Experimental results demonstrate that this approach significantly outperforms traditional models, achieving excellent parkour performance with just 11.7% of the energy consumption of an artificial neural network (ANN)-based model, yielding an 88.3% energy reduction. By integrating event cameras with SNNs, our work advances robotic reinforcement learning and opens new possibilities for applications in demanding environments.
♻ ☆ Bonsai: Gradient-free Graph Distillation for Node Classification
Graph distillation has emerged as a promising avenue to enable scalable training of GNNs by compressing the training dataset while preserving essential graph characteristics. Our study uncovers significant shortcomings in current graph distillation techniques. First, the majority of the algorithms paradoxically require training on the full dataset to perform distillation. Second, due to their gradient-emulating approach, these methods require fresh distillation for any change in hyperparameters or GNN architecture, limiting their flexibility and reusability. Finally, they fail to achieve substantial size reduction due to synthesizing fully-connected, edge-weighted graphs. To address these challenges, we present Bonsai, a novel graph distillation method empowered by the observation that \textit{computation trees} form the fundamental processing units of message-passing GNNs. Bonsai distills datasets by encoding a careful selection of \textit{exemplar} trees that maximize the representation of all computation trees in the training set. This unique approach imparts Bonsai as the first linear-time, model-agnostic graph distillation algorithm for node classification that outperforms existing baselines across $6$ real-world datasets on accuracy, while being $22$ times faster on average. Bonsai is grounded in rigorous mathematical guarantees on the adopted approximation strategies making it robust to GNN architectures, datasets, and parameters.
♻ ☆ Dial-In LLM: Human-Aligned LLM-in-the-loop Intent Clustering for Customer Service Dialogues
Discovering customer intentions in dialogue conversations is crucial for automated service agents. Yet, existing intent clustering methods often fail to align with human perceptions due to the heavy reliance on embedding distance metrics and sentence embeddings. To address these limitations, we propose integrating the semantic understanding capabilities of LLMs into an $\textbf{LLM-in-the-loop (LLM-ITL)}$ intent clustering framework. Specifically, this paper (1) investigates the effectiveness of fine-tuned LLMs in semantic coherence evaluation and intent cluster naming, achieving over 95% accuracy; (2) designs an LLM-ITL clustering algorithm that facilitates the iterative discovery of coherent intent clusters; and (3) proposes task-specific techniques tailored for customer service dialogue intent clustering. Since existing English benchmarks pose limited semantic diversity and intent labels, we introduced a comprehensive Chinese dialogue intent dataset, comprising over 100,000 real customer service calls and 1,507 human-annotated intent clusters. The proposed approaches significantly outperformed LLM-guided baselines, achieving notable improvements in clustering quality and a 12% boost in the downstream intent classification task. Combined with several best practices, our findings highlight the potential of LLM-in-the-loop techniques for scalable and human-aligned problem-solving. Sample code and datasets are available at: https://anonymous.4open.science/r/Dial-in-LLM-0410.
♻ ☆ ADBM: Adversarial diffusion bridge model for reliable adversarial purification ICLR 2025
Recently Diffusion-based Purification (DiffPure) has been recognized as an effective defense method against adversarial examples. However, we find DiffPure which directly employs the original pre-trained diffusion models for adversarial purification, to be suboptimal. This is due to an inherent trade-off between noise purification performance and data recovery quality. Additionally, the reliability of existing evaluations for DiffPure is questionable, as they rely on weak adaptive attacks. In this work, we propose a novel Adversarial Diffusion Bridge Model, termed ADBM. ADBM directly constructs a reverse bridge from the diffused adversarial data back to its original clean examples, enhancing the purification capabilities of the original diffusion models. Through theoretical analysis and experimental validation across various scenarios, ADBM has proven to be a superior and robust defense mechanism, offering significant promise for practical applications.
comment: ICLR 2025, fix typos in the proof
♻ ☆ High-Rank Irreducible Cartesian Tensor Decomposition and Bases of Equivariant Spaces
Irreducible Cartesian tensors (ICTs) play a crucial role in the design of equivariant graph neural networks, as well as in theoretical chemistry and chemical physics. Meanwhile, the design space of available linear operations on tensors that preserve symmetry presents a significant challenge. The ICT decomposition and a basis of this equivariant space are difficult to obtain for high-rank tensors. After decades of research, Bonvicini (2024) recently achieves an explicit ICT decomposition for $n=5$ with factorial time/space complexity. In this work we, for the first time, obtains decomposition matrices for ICTs up to rank $n=9$ with reduced and affordable complexity, by constructing what we call path matrices. The path matrices are obtained via performing chain-like contractions with Clebsch-Gordan matrices following the parentage scheme. We prove and leverage that the concatenation of path matrices is an orthonormal change-of-basis matrix between the Cartesian tensor product space and the spherical direct sum spaces. Furthermore, we identify a complete orthogonal basis for the equivariant space, rather than a spanning set (Pearce-Crump, 2023), through this path matrices technique. To the best of our knowledge, this is also the first analytic, rather than numerical, method for theoretically obtaining arbitrary rank orthogonal ICT decomposition matrices and orthogonal equivariant bases. We further extend our result to the arbitrary tensor product and direct sum spaces, enabling free design between different spaces while keeping symmetry. The Python code is available at https://github.com/ShihaoShao-GH/ICT-decomposition-and-equivariant-bases, where the $n=6,\dots,9$ ICT decomposition matrices are obtained in 1s, 3s, 11s, and 4m32s on 28-cores Intel(R) Xeon(R) Gold 6330 CPU @ 2.00GHz, respectively.
comment: 48 pages
♻ ☆ A Scalable Crawling Algorithm Utilizing Noisy Change-Indicating Signals
Web refresh crawling is the problem of keeping a cache of web pages fresh, that is, having the most recent copy available when a page is requested, given a limited bandwidth available to the crawler. Under the assumption that the change and request events, resp., to each web page follow independent Poisson processes, the optimal scheduling policy was derived by Azar et al. 2018. In this paper, we study an extension of this problem where side information indicating content changes, such as various types of web pings, for example, signals from sitemaps, content delivery networks, etc., is available. Incorporating such side information into the crawling policy is challenging, because (i) the signals can be noisy with false positive events and with missing change events; and (ii) the crawler should achieve a fair performance over web pages regardless of the quality of the side information, which might differ from web page to web page. We propose a scalable crawling algorithm which (i) uses the noisy side information in an optimal way under mild assumptions; (ii) can be deployed without heavy centralized computation; (iii) is able to crawl web pages at a constant total rate without spikes in the total bandwidth usage over any time interval, and automatically adapt to the new optimal solution when the total bandwidth changes without centralized computation. Experiments clearly demonstrate the versatility of our approach.
♻ ☆ The Bandit Whisperer: Communication Learning for Restless Bandits
Applying Reinforcement Learning (RL) to Restless Multi-Arm Bandits (RMABs) offers a promising avenue for addressing allocation problems with resource constraints and temporal dynamics. However, classic RMAB models largely overlook the challenges of (systematic) data errors - a common occurrence in real-world scenarios due to factors like varying data collection protocols and intentional noise for differential privacy. We demonstrate that conventional RL algorithms used to train RMABs can struggle to perform well in such settings. To solve this problem, we propose the first communication learning approach in RMABs, where we study which arms, when involved in communication, are most effective in mitigating the influence of such systematic data errors. In our setup, the arms receive Q-function parameters from similar arms as messages to guide behavioral policies, steering Q-function updates. We learn communication strategies by considering the joint utility of messages across all pairs of arms and using a Q-network architecture that decomposes the joint utility. Both theoretical and empirical evidence validate the effectiveness of our method in significantly improving RMAB performance across diverse problems.
♻ ☆ Interpretable High-order Knowledge Graph Neural Network for Predicting Synthetic Lethality in Human Cancers
Synthetic lethality (SL) is a promising gene interaction for cancer therapy. Recent SL prediction methods integrate knowledge graphs (KGs) into graph neural networks (GNNs) and employ attention mechanisms to extract local subgraphs as explanations for target gene pairs. However, attention mechanisms often lack fidelity, typically generate a single explanation per gene pair, and fail to ensure trustworthy high-order structures in their explanations. To overcome these limitations, we propose Diverse Graph Information Bottleneck for Synthetic Lethality (DGIB4SL), a KG-based GNN that generates multiple faithful explanations for the same gene pair and effectively encodes high-order structures. Specifically, we introduce a novel DGIB objective, integrating a Determinant Point Process (DPP) constraint into the standard IB objective, and employ 13 motif-based adjacency matrices to capture high-order structures in gene representations. Experimental results show that DGIB4SL outperforms state-of-the-art baselines and provides multiple explanations for SL prediction, revealing diverse biological mechanisms underlying SL inference.
comment: 15 pages. Accepted by Briefings in Bioinformatics
♻ ☆ Introducing Verification Task of Set Consistency with Set-Consistency Energy Networks
Examining logical inconsistencies among multiple statements (such as collections of sentences or question-answer pairs) is a crucial challenge in machine learning, particularly for ensuring the safety and reliability of models. Traditional methods that rely on pairwise comparisons often fail to capture inconsistencies that only emerge when more than two statements are evaluated collectively. To address this gap, we introduce the task of set-consistency verification, an extension of natural language inference (NLI) that assesses the logical coherence of entire sets rather than isolated pairs. Building on this task, we present the Set-Consistency Energy Network (SC-Energy), a novel model that employs a contrastive loss framework to learn the compatibility among a collection of statements. Our approach not only efficiently verifies inconsistencies and pinpoints the specific statements responsible for logical contradictions, but also significantly outperforms existing methods including prompting-based LLM models. Furthermore, we release two new datasets: Set-LConVQA and Set-SNLI for set-consistency verification task.
♻ ☆ Tensor Completion for Surrogate Modeling of Material Property Prediction AAAI 2025
When designing materials to optimize certain properties, there are often many possible configurations of designs that need to be explored. For example, the materials' composition of elements will affect properties such as strength or conductivity, which are necessary to know when developing new materials. Exploring all combinations of elements to find optimal materials becomes very time consuming, especially when there are more design variables. For this reason, there is growing interest in using machine learning (ML) to predict a material's properties. In this work, we model the optimization of certain material properties as a tensor completion problem, to leverage the structure of our datasets and navigate the vast number of combinations of material configurations. Across a variety of material property prediction tasks, our experiments show tensor completion methods achieving 10-20% decreased error compared with baseline ML models such as GradientBoosting and Multilayer Perceptron (MLP), while maintaining similar training speed.
comment: 2 page paper presented at the AAAI 2025 Bridge on Knowledge-Guided Machine Learning
♻ ☆ From Commands to Prompts: LLM-based Semantic File System for AIOS ICLR2025
Large language models (LLMs) have demonstrated significant potential in the development of intelligent applications and systems such as LLM-based agents and agent operating systems (AIOS). However, when these applications and systems interact with the underlying file system, the file system still remains the traditional paradigm: reliant on manual navigation through precise commands. This paradigm poses a bottleneck to the usability of these systems as users are required to navigate complex folder hierarchies and remember cryptic file names. To address this limitation, we propose an LLM-based semantic file system ( LSFS ) for prompt-driven file management. Unlike conventional approaches, LSFS incorporates LLMs to enable users or agents to interact with files through natural language prompts, facilitating semantic file management. At the macro-level, we develop a comprehensive API set to achieve semantic file management functionalities, such as semantic file retrieval, file update monitoring and summarization, and semantic file rollback). At the micro-level, we store files by constructing semantic indexes for them, design and implement syscalls of different semantic operations (e.g., CRUD, group by, join) powered by vector database. Our experiments show that LSFS offers significant improvements over traditional file systems in terms of user convenience, the diversity of supported functions, and the accuracy and efficiency of file operations. Additionally, with the integration of LLM, our system enables more intelligent file management tasks, such as content summarization and version comparison, further enhancing its capabilities.
comment: Accepted by International Conference on Learning Representations 2025(ICLR2025)
♻ ☆ HotSpot: Signed Distance Function Optimization with an Asymptotically Sufficient Condition
We propose a method, HotSpot, for optimizing neural signed distance functions. Existing losses, such as the eikonal loss, act as necessary but insufficient constraints and cannot guarantee that the recovered implicit function represents a true distance function, even if the output minimizes these losses almost everywhere. Furthermore, the eikonal loss suffers from stability issues in optimization. Finally, in conventional methods, regularization losses that penalize surface area distort the reconstructed signed distance function. We address these challenges by designing a loss function using the solution of a screened Poisson equation. Our loss, when minimized, provides an asymptotically sufficient condition to ensure the output converges to a true distance function. Our loss also leads to stable optimization and naturally penalizes large surface areas. We present theoretical analysis and experiments on both challenging 2D and 3D datasets and show that our method provides better surface reconstruction and a more accurate distance approximation.
♻ ☆ How Can Time Series Analysis Benefit From Multiple Modalities? A Survey and Outlook
Time series analysis (TSA) is a longstanding research topic in the data mining community and has wide real-world significance. Compared to "richer" modalities such as language and vision, which have recently experienced explosive development and are densely connected, the time-series modality remains relatively underexplored and isolated. We notice that many recent TSA works have formed a new research field, i.e., Multiple Modalities for TSA (MM4TSA). In general, these MM4TSA works follow a common motivation: how TSA can benefit from multiple modalities. This survey is the first to offer a comprehensive review and a detailed outlook for this emerging field. Specifically, we systematically discuss three benefits: (1) reusing foundation models of other modalities for efficient TSA, (2) multimodal extension for enhanced TSA, and (3) cross-modality interaction for advanced TSA. We further group the works by the introduced modality type, including text, images, audio, tables, and others, within each perspective. Finally, we identify the gaps with future opportunities, including the reused modalities selections, heterogeneous modality combinations, and unseen tasks generalizations, corresponding to the three benefits. We release an up-to-date GitHub repository that includes key papers and resources.
comment: Github Repo: https://github.com/AdityaLab/MM4TSA
♻ ☆ Hard constraint learning approaches with trainable influence functions for evolutionary equations
This paper develops a novel deep learning approach for solving evolutionary equations, which integrates sequential learning strategies with an enhanced hard constraint strategy featuring trainable parameters, addressing the low computational accuracy of standard Physics-Informed Neural Networks (PINNs) in large temporal domains.Sequential learning strategies divide a large temporal domain into multiple subintervals and solve them one by one in a chronological order, which naturally respects the principle of causality and improves the stability of the PINN solution. The improved hard constraint strategy strictly ensures the continuity and smoothness of the PINN solution at time interval nodes, and at the same time passes the information from the previous interval to the next interval, which avoids the incorrect/trivial solution at the position far from the initial time. Furthermore, by investigating the requirements of different types of equations on hard constraints, we design a novel influence function with trainable parameters for hard constraints, which provides theoretical and technical support for the effective implementations of hard constraint strategies, and significantly improves the universality and computational accuracy of our method. In addition, an adaptive time-domain partitioning algorithm is proposed, which plays an important role in the application of the proposed method as well as in the improvement of computational efficiency and accuracy. Numerical experiments verify the performance of the method. The data and code accompanying this paper are available at https://github.com/zhizhi4452/HCS.
♻ ☆ Speculative MoE: Communication Efficient Parallel MoE Inference with Speculative Token and Expert Pre-scheduling
MoE (Mixture of Experts) prevails as a neural architecture that can scale modern transformer-based LLMs (Large Language Models) to unprecedented scales. Nevertheless, large MoEs' great demands of computing power, memory capacity and memory bandwidth make scalable serving a fundamental challenge and efficient parallel inference has become a requisite to attain adequate throughput under latency constraints. DeepSpeed-MoE, one state-of-the-art MoE inference framework, adopts a 3D-parallel paradigm including EP (Expert Parallelism), TP (Tensor Parallel) and DP (Data Parallelism). However, our analysis shows DeepSpeed-MoE's inference efficiency is largely bottlenecked by EP, which is implemented with costly all-to-all collectives to route token activation. Our work aims to boost DeepSpeed-MoE by strategically reducing EP's communication overhead with a technique named Speculative MoE. Speculative MoE has two speculative parallelization schemes, speculative token shuffling and speculative expert grouping, which predict outstanding tokens' expert routing paths and pre-schedule tokens and experts across devices to losslessly trim EP's communication volume. Besides DeepSpeed-MoE, we also build Speculative MoE into a prevailing MoE inference engine SGLang. Experiments show Speculative MoE can significantly boost state-of-the-art MoE inference frameworks on fast homogeneous and slow heterogeneous interconnects.
♻ ☆ Distilling Long-tailed Datasets CVPR 2025
Dataset distillation aims to synthesize a small, information-rich dataset from a large one for efficient model training. However, existing dataset distillation methods struggle with long-tailed datasets, which are prevalent in real-world scenarios. By investigating the reasons behind this unexpected result, we identified two main causes: 1) The distillation process on imbalanced datasets develops biased gradients, leading to the synthesis of similarly imbalanced distilled datasets. 2) The experts trained on such datasets perform suboptimally on tail classes, resulting in misguided distillation supervision and poor-quality soft-label initialization. To address these issues, we first propose Distribution-agnostic Matching to avoid directly matching the biased expert trajectories. It reduces the distance between the student and the biased expert trajectories and prevents the tail class bias from being distilled to the synthetic dataset. Moreover, we improve the distillation guidance with Expert Decoupling, which jointly matches the decoupled backbone and classifier to improve the tail class performance and initialize reliable soft labels. This work pioneers the field of long-tailed dataset distillation, marking the first effective effort to distill long-tailed datasets.
comment: CVPR 2025. Code is available at https://github.com/ichbill/LTDD
♻ ☆ Edge AI for Real-time Fetal Assessment in Rural Guatemala
Perinatal complications, defined as conditions that arise during pregnancy, childbirth, and the immediate postpartum period, represent a significant burden on maternal and neonatal health worldwide. Factors contributing to these disparities include limited access to quality healthcare, socioeconomic inequalities, and variations in healthcare infrastructure. Addressing these issues is crucial for improving health outcomes for mothers and newborns, particularly in underserved communities. To mitigate these challenges, we have developed an AI-enabled smartphone application designed to provide decision support at the point-of-care. This tool aims to enhance health monitoring during pregnancy by leveraging machine learning (ML) techniques. The intended use of this application is to assist midwives during routine home visits by offering real-time analysis and providing feedback based on collected data. The application integrates TensorFlow Lite (TFLite) and other Python-based algorithms within a Kotlin framework to process data in real-time. It is designed for use in low-resource settings, where traditional healthcare infrastructure may be lacking. The intended patient population includes pregnant women and new mothers in underserved areas and the developed system was piloted in rural Guatemala. This ML-based solution addresses the critical need for accessible and quality perinatal care by empowering healthcare providers with decision support tools to improve maternal and neonatal health outcomes.
♻ ☆ DeepSeek-Inspired Exploration of RL-based LLMs and Synergy with Wireless Networks: A Survey
Reinforcement learning (RL)-based large language models (LLMs), such as ChatGPT, DeepSeek, and Grok-3, have gained significant attention for their exceptional capabilities in natural language processing and multimodal data understanding. Meanwhile, the rapid expansion of information services has driven the growing need for intelligence, efficient, and adaptable wireless networks. Wireless networks require the empowerment of RL-based LLMs while these models also benefit from wireless networks to broaden their application scenarios. Specifically, RL-based LLMs can enhance wireless communication systems through intelligent resource allocation, adaptive network optimization, and real-time decision-making. Conversely, wireless networks provide a vital infrastructure for the efficient training, deployment, and distributed inference of RL-based LLMs, especially in decentralized and edge computing environments. This mutual empowerment highlights the need for a deeper exploration of the interplay between these two domains. We first review recent advancements in wireless communications, highlighting the associated challenges and potential solutions. We then discuss the progress of RL-based LLMs, focusing on key technologies for LLM training, challenges, and potential solutions. Subsequently, we explore the mutual empowerment between these two fields, highlighting key motivations, open challenges, and potential solutions. Finally, we provide insights into future directions, applications, and their societal impact to further explore this intersection, paving the way for next-generation intelligent communication systems. Overall, this survey provides a comprehensive overview of the relationship between RL-based LLMs and wireless networks, offering a vision where these domains empower each other to drive innovations.
comment: 25 pages, 13 figures
♻ ☆ ANaGRAM: A Natural Gradient Relative to Adapted Model for efficient PINNs learning ICLR 2025
In the recent years, Physics Informed Neural Networks (PINNs) have received strong interest as a method to solve PDE driven systems, in particular for data assimilation purpose. This method is still in its infancy, with many shortcomings and failures that remain not properly understood. In this paper we propose a natural gradient approach to PINNs which contributes to speed-up and improve the accuracy of the training. Based on an in depth analysis of the differential geometric structures of the problem, we come up with two distinct contributions: (i) a new natural gradient algorithm that scales as $\min(P^2S, S^2P)$, where $P$ is the number of parameters, and $S$ the batch size; (ii) a mathematically principled reformulation of the PINNs problem that allows the extension of natural gradient to it, with proved connections to Green's function theory.
comment: accepted in ICLR 2025
♻ ☆ Combat Urban Congestion via Collaboration: Heterogeneous GNN-based MARL for Coordinated Platooning and Traffic Signal Control
Over the years, reinforcement learning has emerged as a popular approach to develop signal control and vehicle platooning strategies either independently or in a hierarchical way. However, jointly controlling both in real-time to alleviate traffic congestion presents new challenges, such as the inherent physical and behavioral heterogeneity between signal control and platooning, as well as coordination between them. This paper proposes an innovative solution to tackle these challenges based on heterogeneous graph multi-agent reinforcement learning and traffic theories. Our approach involves: 1) designing platoon and signal control as distinct reinforcement learning agents with their own set of observations, actions, and reward functions to optimize traffic flow; 2) designing coordination by incorporating graph neural networks within multi-agent reinforcement learning to facilitate seamless information exchange among agents on a regional scale; 3) applying alternating optimization for training, allowing agents to update their own policies and adapt to other agents' policies. We evaluate our approach through SUMO simulations, which show convergent results in terms of both travel time and fuel consumption, and superior performance compared to other adaptive signal control methods.
♻ ☆ Time Series Classification of Supraglacial Lakes Evolution over Greenland Ice Sheet ICML
The Greenland Ice Sheet (GrIS) has emerged as a significant contributor to global sea level rise, primarily due to increased meltwater runoff. Supraglacial lakes, which form on the ice sheet surface during the summer months, can impact ice sheet dynamics and mass loss; thus, better understanding these lakes' seasonal evolution and dynamics is an important task. This study presents a computationally efficient time series classification approach that uses Gaussian Mixture Models (GMMs) of the Reconstructed Phase Spaces (RPSs) to identify supraglacial lakes based on their seasonal evolution: 1) those that refreeze at the end of the melt season, 2) those that drain during the melt season, and 3) those that become buried, remaining liquid insulated a few meters beneath the surface. Our approach uses time series data from the Sentinel-1 and Sentinel-2 satellites, which utilize microwave and visible radiation, respectively. Evaluated on a GrIS-wide dataset, the RPS-GMM model, trained on a single representative sample per class, achieves 85.46% accuracy with Sentinel-1 data alone and 89.70% with combined Sentinel-1 and Sentinel-2 data. This performance significantly surpasses existing machine learning and deep learning models which require a large training data. The results demonstrate the robustness of the RPS-GMM model in capturing the complex temporal dynamics of supraglacial lakes with minimal training data.
comment: Published in 2024 International Conference on Machine Learning and Applications (ICMLA). [DOI: https://doi.org/10.1109/ICMLA61862.2024.00072]
♻ ☆ All Seeds Are Not Equal: Enhancing Compositional Text-to-Image Generation with Reliable Random Seeds
Text-to-image diffusion models have demonstrated remarkable capability in generating realistic images from arbitrary text prompts. However, they often produce inconsistent results for compositional prompts such as "two dogs" or "a penguin on the right of a bowl". Understanding these inconsistencies is crucial for reliable image generation. In this paper, we highlight the significant role of initial noise in these inconsistencies, where certain noise patterns are more reliable for compositional prompts than others. Our analyses reveal that different initial random seeds tend to guide the model to place objects in distinct image areas, potentially adhering to specific patterns of camera angles and image composition associated with the seed. To improve the model's compositional ability, we propose a method for mining these reliable cases, resulting in a curated training set of generated images without requiring any manual annotation. By fine-tuning text-to-image models on these generated images, we significantly enhance their compositional capabilities. For numerical composition, we observe relative increases of 29.3% and 19.5% for Stable Diffusion and PixArt-{\alpha}, respectively. Spatial composition sees even larger gains, with 60.7% for Stable Diffusion and 21.1% for PixArt-{\alpha}.
♻ ☆ Generalization Guarantees for Representation Learning via Data-Dependent Gaussian Mixture Priors ICLR 2025
We establish in-expectation and tail bounds on the generalization error of representation learning type algorithms. The bounds are in terms of the relative entropy between the distribution of the representations extracted from the training and "test'' datasets and a data-dependent symmetric prior, i.e., the Minimum Description Length (MDL) of the latent variables for the training and test datasets. Our bounds are shown to reflect the "structure" and "simplicity'' of the encoder and significantly improve upon the few existing ones for the studied model. We then use our in-expectation bound to devise a suitable data-dependent regularizer; and we investigate thoroughly the important question of the selection of the prior. We propose a systematic approach to simultaneously learning a data-dependent Gaussian mixture prior and using it as a regularizer. Interestingly, we show that a weighted attention mechanism emerges naturally in this procedure. Our experiments show that our approach outperforms the now popular Variational Information Bottleneck (VIB) method as well as the recent Category-Dependent VIB (CDVIB).
comment: Accepted as a Spotlight Paper at ICLR 2025
Learning Nash Equilibrial Hamiltonian for Two-Player Collision-Avoiding Interactions
We consider the problem of learning Nash equilibrial policies for two-player risk-sensitive collision-avoiding interactions. Solving the Hamilton-Jacobi-Isaacs equations of such general-sum differential games in real time is an open challenge due to the discontinuity of equilibrium values on the state space. A common solution is to learn a neural network that approximates the equilibrium Hamiltonian for given system states and actions. The learning, however, is usually supervised and requires a large amount of sample equilibrium policies from different initial states in order to mitigate the risks of collisions. This paper claims two contributions towards more data-efficient learning of equilibrium policies: First, instead of computing Hamiltonian through a value network, we show that the equilibrium co-states have simple structures when collision avoidance dominates the agents' loss functions and system dynamics is linear, and therefore are more data-efficient to learn. Second, we introduce theory-driven active learning to guide data sampling, where the acquisition function measures the compliance of the predicted co-states to Pontryagin's Maximum Principle. On an uncontrolled intersection case, the proposed method leads to more generalizable approximation of the equilibrium policies, and in turn, lower collision probabilities, than the state-of-the-art under the same data acquisition budget.
comment: Accepted by 2025 ACC
♻ ☆ Graph Neural Networks for the Offline Nanosatellite Task Scheduling Problem
This study investigates how to schedule nanosatellite tasks more efficiently using Graph Neural Networks (GNNs). In the Offline Nanosatellite Task Scheduling (ONTS) problem, the goal is to find the optimal schedule for tasks to be carried out in orbit while taking into account Quality-of-Service (QoS) considerations such as priority, minimum and maximum activation events, execution time-frames, periods, and execution windows, as well as constraints on the satellite's power resources and the complexity of energy harvesting and management. The ONTS problem has been approached using conventional mathematical formulations and exact methods, but their applicability to challenging cases of the problem is limited. This study examines the use of GNNs in this context, which has been effectively applied to optimization problems such as the traveling salesman, scheduling, and facility placement problems. More specifically, we investigate whether GNNs can learn the complex structure of the ONTS problem with respect to feasibility and optimality of candidate solutions. Furthermore, we evaluate using GNN-based heuristic solutions to provide better solutions (w.r.t. the objective value) to the ONTS problem and reduce the optimization cost. Our experiments show that GNNs are not only able to learn feasibility and optimality for instances of the ONTS problem, but they can generalize to harder instances than those seen during training. Furthermore, the GNN-based heuristics improved the expected objective value of the best solution found under the time limit in 45%, and reduced the expected time to find a feasible solution in 35%, when compared to the SCIP (Solving Constraint Integer Programs) solver in its off-the-shelf configuration
♻ ☆ Mitigating Paraphrase Attacks on Machine-Text Detectors via Paraphrase Inversion
High-quality paraphrases are easy to produce using instruction-tuned language models or specialized paraphrasing models. Although this capability has a variety of benign applications, paraphrasing attacks$\unicode{x2013}$paraphrases applied to machine-generated texts$\unicode{x2013}$are known to significantly degrade the performance of machine-text detectors. This motivates us to consider the novel problem of paraphrase inversion, where, given paraphrased text, the objective is to recover an approximation of the original text. The closer the approximation is to the original text, the better machine-text detectors will perform. We propose an approach which frames the problem as translation from paraphrased text back to the original text, which requires examples of texts and corresponding paraphrases to train the inversion model. Fortunately, such training data can easily be generated, given a corpus of original texts and one or more paraphrasing models. We find that language models such as GPT-4 and Llama-3 exhibit biases when paraphrasing which an inversion model can learn with a modest amount of data. Perhaps surprisingly, we also find that such models generalize well, including to paraphrase models unseen at training time. Finally, we show that when combined with a paraphrased-text detector, our inversion models provide an effective defense against paraphrasing attacks, and overall our approach yields an average improvement of +22% AUROC across seven machine-text detectors and three different domains.
♻ ☆ From Image to Video: An Empirical Study of Diffusion Representations
Diffusion models have revolutionized generative modeling, enabling unprecedented realism in image and video synthesis. This success has sparked interest in leveraging their representations for visual understanding tasks. While recent works have explored this potential for image generation, the visual understanding capabilities of video diffusion models remain largely uncharted. To address this gap, we systematically compare the same model architecture trained for video versus image generation, analyzing the performance of their latent representations on various downstream tasks including image classification, action recognition, depth estimation, and tracking. Results show that video diffusion models consistently outperform their image counterparts, though we find a striking range in the extent of this superiority. We further analyze features extracted from different layers and with varying noise levels, as well as the effect of model size and training budget on representation and generation quality. This work marks the first direct comparison of video and image diffusion objectives for visual understanding, offering insights into the role of temporal information in representation learning.
♻ ☆ From Isolated Conversations to Hierarchical Schemas: Dynamic Tree Memory Representation for LLMs
Recent advancements in large language models have significantly improved their context windows, yet challenges in effective long-term memory management remain. We introduce MemTree, an algorithm that leverages a dynamic, tree-structured memory representation to optimize the organization, retrieval, and integration of information, akin to human cognitive schemas. MemTree organizes memory hierarchically, with each node encapsulating aggregated textual content, corresponding semantic embeddings, and varying abstraction levels across the tree's depths. Our algorithm dynamically adapts this memory structure by computing and comparing semantic embeddings of new and existing information to enrich the model's context-awareness. This approach allows MemTree to handle complex reasoning and extended interactions more effectively than traditional memory augmentation methods, which often rely on flat lookup tables. Evaluations on benchmarks for multi-turn dialogue understanding and document question answering show that MemTree significantly enhances performance in scenarios that demand structured memory management.
♻ ☆ Latent Action Learning Requires Supervision in the Presence of Distractors ICLR 2025
Recently, latent action learning, pioneered by Latent Action Policies (LAPO), have shown remarkable pre-training efficiency on observation-only data, offering potential for leveraging vast amounts of video available on the web for embodied AI. However, prior work has focused on distractor-free data, where changes between observations are primarily explained by ground-truth actions. Unfortunately, real-world videos contain action-correlated distractors that may hinder latent action learning. Using Distracting Control Suite (DCS) we empirically investigate the effect of distractors on latent action learning and demonstrate that LAPO struggle in such scenario. We propose LAOM, a simple LAPO modification that improves the quality of latent actions by 8x, as measured by linear probing. Importantly, we show that providing supervision with ground-truth actions, as few as 2.5% of the full dataset, during latent action learning improves downstream performance by 4.2x on average. Our findings suggest that integrating supervision during Latent Action Models (LAM) training is critical in the presence of distractors, challenging the conventional pipeline of first learning LAM and only then decoding from latent to ground-truth actions.
comment: Preprint. In review. Edit: Accepted by ICLR 2025 Workshop on World Models: Understanding, Modelling and Scaling
♻ ☆ Semi-supervised Concept Bottleneck Models
Concept Bottleneck Models (CBMs) have garnered increasing attention due to their ability to provide concept-based explanations for black-box deep learning models while achieving high final prediction accuracy using human-like concepts. However, the training of current CBMs is heavily dependent on the precision and richness of the annotated concepts in the dataset. These concept labels are typically provided by experts, which can be costly and require significant resources and effort. Additionally, concept saliency maps frequently misalign with input saliency maps, causing concept predictions to correspond to irrelevant input features - an issue related to annotation alignment. To address these limitations, we propose a new framework called SSCBM (Semi-supervised Concept Bottleneck Model). Our SSCBM is suitable for practical situations where annotated data is scarce. By leveraging joint training on both labeled and unlabeled data and aligning the unlabeled data at the concept level, we effectively solve these issues. We proposed a strategy to generate pseudo labels and an alignment loss. Experiments demonstrate that our SSCBM is both effective and efficient. With only 10% labeled data, our model's concept and task accuracy on average across four datasets is only 2.44% and 3.93% lower, respectively, compared to the best baseline in the fully supervised learning setting.
comment: 16 pages
♻ ☆ Benchmarking MedMNIST dataset on real quantum hardware
Quantum machine learning (QML) has emerged as a promising domain to leverage the computational capabilities of quantum systems to solve complex classification tasks. In this work, we present the first comprehensive QML study by benchmarking the MedMNIST-a diverse collection of medical imaging datasets on a 127-qubit real IBM quantum hardware, to evaluate the feasibility and performance of quantum models (without any classical neural networks) in practical applications. This study explores recent advancements in quantum computing such as device-aware quantum circuits, error suppression, and mitigation for medical image classification. Our methodology is comprised of three stages: preprocessing, generation of noise-resilient and hardware-efficient quantum circuits, optimizing/training of quantum circuits on classical hardware, and inference on real IBM quantum hardware. Firstly, we process all input images in the preprocessing stage to reduce the spatial dimension due to quantum hardware limitations. We generate hardware-efficient quantum circuits using backend properties expressible to learn complex patterns for medical image classification. After classical optimization of QML models, we perform inference on real quantum hardware. We also incorporate advanced error suppression and mitigation techniques in our QML workflow, including dynamical decoupling (DD), gate twirling, and matrix-free measurement mitigation (M3) to mitigate the effects of noise and improve classification performance. The experimental results showcase the potential of quantum computing for medical imaging and establish a benchmark for future advancements in QML applied to healthcare.
♻ ☆ Chain-of-Thought Reasoning In The Wild Is Not Always Faithful ICLR 25
Chain-of-Thought (CoT) reasoning has significantly advanced state-of-the-art AI capabilities. However, recent studies have shown that CoT reasoning is not always faithful, i.e. CoT reasoning does not always reflect how models arrive at conclusions. So far, most of these studies have focused on unfaithfulness in unnatural contexts where an explicit bias has been introduced. In contrast, we show that unfaithful CoT can occur on realistic prompts with no artificial bias. Our results reveal non-negligible rates of several forms of unfaithful reasoning in frontier models: Sonnet 3.7 (16.3%), DeepSeek R1 (5.3%) and ChatGPT-4o (7.0%) all answer a notable proportion of question pairs unfaithfully. Specifically, we find that models rationalize their implicit biases in answers to binary questions ("implicit post-hoc rationalization"). For example, when separately presented with the questions "Is X bigger than Y?" and "Is Y bigger than X?", models sometimes produce superficially coherent arguments to justify answering Yes to both questions or No to both questions, despite such responses being logically contradictory. We also investigate restoration errors (Dziri et al., 2023), where models make and then silently correct errors in their reasoning, and unfaithful shortcuts, where models use clearly illogical reasoning to simplify solving problems in Putnam questions (a hard benchmark). Our findings raise challenges for AI safety work that relies on monitoring CoT to detect undesired behavior.
comment: Accepted to the Reasoning and Planning for LLMs Workshop (ICLR 25), 10 main paper pages, 39 appendix pages
♻ ☆ Macroeconomic Forecasting with Large Language Models
This paper presents a comparative analysis evaluating the accuracy of Large Language Models (LLMs) against traditional macro time series forecasting approaches. In recent times, LLMs have surged in popularity for forecasting due to their ability to capture intricate patterns in data and quickly adapt across very different domains. However, their effectiveness in forecasting macroeconomic time series data compared to conventional methods remains an area of interest. To address this, we conduct a rigorous evaluation of LLMs against traditional macro forecasting methods, using as common ground the FRED-MD database. Our findings provide valuable insights into the strengths and limitations of LLMs in forecasting macroeconomic time series, shedding light on their applicability in real-world scenarios
♻ ☆ Robust Federated Learning Over the Air: Combating Heavy-Tailed Noise with Median Anchored Clipping
Leveraging over-the-air computations for model aggregation is an effective approach to cope with the communication bottleneck in federated edge learning. By exploiting the superposition properties of multi-access channels, this approach facilitates an integrated design of communication and computation, thereby enhancing system privacy while reducing implementation costs. However, the inherent electromagnetic interference in radio channels often exhibits heavy-tailed distributions, giving rise to exceptionally strong noise in globally aggregated gradients that can significantly deteriorate the training performance. To address this issue, we propose a novel gradient clipping method, termed Median Anchored Clipping (MAC), to combat the detrimental effects of heavy-tailed noise. We also derive analytical expressions for the convergence rate of model training with analog over-the-air federated learning under MAC, which quantitatively demonstrates the effect of MAC on training performance. Extensive experimental results show that the proposed MAC algorithm effectively mitigates the impact of heavy-tailed noise, hence substantially enhancing system robustness.
comment: This is the full version of the paper, and the appendix contains a complete convergence analysis under non-convex conditions
♻ ☆ Theoretical Insights into Overparameterized Models in Multi-Task and Replay-Based Continual Learning
Multi-task learning (MTL) is a machine learning paradigm that aims to improve the generalization performance of a model on multiple related tasks by training it simultaneously on those tasks. Unlike MTL, where the model has instant access to the training data of all tasks, continual learning (CL) involves adapting to new sequentially arriving tasks over time without forgetting the previously acquired knowledge. Despite the wide practical adoption of CL and MTL and extensive literature on both areas, there remains a gap in the theoretical understanding of these methods when used with overparameterized models such as deep neural networks. This paper studies the overparameterized linear models as a proxy for more complex models. We develop theoretical results describing the effect of various system parameters on the model's performance in an MTL setup. Specifically, we study the impact of model size, dataset size, and task similarity on the generalization error and knowledge transfer. Additionally, we present theoretical results to characterize the performance of replay-based CL models. Our results reveal the impact of buffer size and model capacity on the forgetting rate in a CL setup and help shed light on some of the state-of-the-art CL methods. Finally, through extensive empirical evaluations, we demonstrate that our theoretical findings are also applicable to deep neural networks, offering valuable guidance for designing MTL and CL models in practice.
comment: TMLR camera-ready version
♻ ☆ No, of course I can! Refusal Mechanisms Can Be Exploited Using Harmless Fine-Tuning Data
Leading language model (LM) providers like OpenAI and Google offer fine-tuning APIs that allow customers to adapt LMs for specific use cases. To prevent misuse, these LM providers implement filtering mechanisms to block harmful fine-tuning data. Consequently, adversaries seeking to produce unsafe LMs via these APIs must craft adversarial training data that are not identifiably harmful. We make three contributions in this context: 1. We show that many existing attacks that use harmless data to create unsafe LMs rely on eliminating model refusals in the first few tokens of their responses. 2. We show that such prior attacks can be blocked by a simple defense that pre-fills the first few tokens from an aligned model before letting the fine-tuned model fill in the rest. 3. We describe a new data-poisoning attack, ``No, Of course I Can Execute'' (NOICE), which exploits an LM's formulaic refusal mechanism to elicit harmful responses. By training an LM to refuse benign requests on the basis of safety before fulfilling those requests regardless, we are able to jailbreak several open-source models and a closed-source model (GPT-4o). We show an attack success rate (ASR) of 57% against GPT-4o; our attack earned a Bug Bounty from OpenAI. Against open-source models protected by simple defenses, we improve ASRs by an average of 3.25 times compared to the best performing previous attacks that use only harmless data. NOICE demonstrates the exploitability of repetitive refusal mechanisms and broadens understanding of the threats closed-source models face from harmless data.
♻ ☆ Neuron-based explanations of neural networks sacrifice completeness and interpretability
High quality explanations of neural networks (NNs) should exhibit two key properties. Completeness ensures that they accurately reflect a network's function and interpretability makes them understandable to humans. Many existing methods provide explanations of individual neurons within a network. In this work we provide evidence that for AlexNet pretrained on ImageNet, neuron-based explanation methods sacrifice both completeness and interpretability compared to activation principal components. Neurons are a poor basis for AlexNet embeddings because they don't account for the distributed nature of these representations. By examining two quantitative measures of completeness and conducting a user study to measure interpretability, we show the most important principal components provide more complete and interpretable explanations than the most important neurons. Much of the activation variance may be explained by examining relatively few high-variance PCs, as opposed to studying every neuron. These principal components also strongly affect network function, and are significantly more interpretable than neurons. Our findings suggest that explanation methods for networks like AlexNet should avoid using neurons as a basis for embeddings and instead choose a basis, such as principal components, which accounts for the high dimensional and distributed nature of a network's internal representations. Interactive demo and code available at https://ndey96.github.io/neuron-explanations-sacrifice.
comment: TMLR 2025